
Jili Tao
Ridong Zhang
Yong Zhu

DNA Computing
Based Genetic
Algorithm
Applications in Industrial Process
Modeling and Control

DNA Computing Based Genetic Algorithm

Jili Tao • Ridong Zhang • Yong Zhu

DNA Computing Based
Genetic Algorithm
Applications in Industrial Process Modeling
and Control

123

Jili Tao
School of Information Science
and Engineering
NingboTech University
Ningbo, Zhejiang, China

Yong Zhu
School of Information Science
and Engineering
NingboTech University
Ningbo, Zhejiang, China

Ridong Zhang
The Belt and Road Information
Research Institute
Hangzhou Dianzi University
Hangzhou, Zhejiang, China

ISBN 978-981-15-5402-5 ISBN 978-981-15-5403-2 (eBook)
https://doi.org/10.1007/978-981-15-5403-2

© Springer Nature Singapore Pte Ltd. 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-15-5403-2

Contents

1 Introduction . 1
1.1 Standard Genetic Algorithm . 1
1.2 State of Art for GA. 2

1.2.1 Theoretical Research of GA . 2
1.2.2 Encoding Problem of GA . 4
1.2.3 Constraint Handling in GA . 4
1.2.4 Multi-objective Genetic Algorithm 6
1.2.5 Applications of GA . 8

1.3 DNA Computing Based GA . 11
1.3.1 DNA Molecular Structure of DNA Computing 11
1.3.2 Biological Operators of DNA Computing 12
1.3.3 DNA Computing Based Genetic Algorithm 13

1.4 The Main Content of This Book . 13
References . 16

2 DNA Computing Based RNA Genetic Algorithm 25
2.1 Introduction . 25
2.2 RNA-GA Based on DNA Computing 26

2.2.1 Digital Encoding of RNA Sequence 26
2.2.2 Operations of RNA Sequence 27
2.2.3 Encoding and Operators in RNA-GA 28
2.2.4 The Procedure of RNA-GA . 34

2.3 Global Convergence Analysis of RNA-GA. 34
2.4 Performance of the RNA-GA . 37

2.4.1 Test Functions . 37
2.4.2 Adaptability of the Parameters 39
2.4.3 Comparisons Between RNA-GA and SGA 41

2.5 Summary . 52
Appendix . 54
References . 54

v

3 DNA Double-Helix and SQP Hybrid Genetic Algorithm 57
3.1 Introduction . 57
3.2 Problem Description and Constraint Handling 58
3.3 DNA Double-Helix Hybrid Genetic Algorithm

(DNA-DHGA) . 59
3.3.1 DNA Double-Helix Encoding 59
3.3.2 DNA Computing Based Operators 61
3.3.3 Hybrid Genetic Algorithm with SQP 64
3.3.4 Convergence Rate Analysis of DNA-DHGA 66

3.4 Numeric Simulation . 70
3.4.1 Test Functions . 70
3.4.2 Simulation Analysis . 70

3.5 Summary . 75
Appendix . 76
References . 78

4 DNA Computing Based Multi-objective Genetic Algorithm 81
4.1 Introduction . 81
4.2 Multi-objective Optimization Problems 83
4.3 DNA Computing Based MOGA (DNA-MOGA) 84

4.3.1 RNA Encoding . 84
4.3.2 Pareto Sorting and Density Information 85
4.3.3 Elitist Archiving and Maintaining Scheme 86
4.3.4 DNA Computing Based Crossover and Mutation

Operators . 89
4.3.5 The Procedure of DNA-MOGA 90
4.3.6 Convergence Analysis of DNA-MOGA 90

4.4 Simulations on Test Functions by DNA-MOGA 92
4.4.1 Test Functions and Performance Metrics 92
4.4.2 Calculation Results . 93

4.5 Summary . 96
Appendix . 96
References . 99

5 Parameter Identification and Optimization of Chemical
Processes . 101
5.1 Introduction . 101
5.2 Problem Description of System Identification 103

5.2.1 Lumping Models for a Heavy Oil Thermal
Cracking Process . 104

5.2.2 Parameter Estimation of FCC Unit Main
Fractionator . 105

vi Contents

5.3 Gasoline Blending Recipe Optimization 111
5.3.1 Formulation of Gasoline Blending Scheduling 111
5.3.2 Optimization Results for Gasoline Blending

Scheduling . 113
5.4 Summary . 116
Appendix . 116
References . 117

6 GA-Based RBF Neural Network for Nonlinear SISO System 119
6.1 Introduction . 119
6.2 The Coke Unit . 122
6.3 RBF Neural Network . 123
6.4 RNA-GA Based RBFNN for Temperature Modeling 126

6.4.1 Encoding and Decoding . 126
6.4.2 Fitness Function . 127
6.4.3 Operators of RBFNN Optimization 128
6.4.4 Procedure of the Algorithm . 130
6.4.5 Temperature Modeling in a Coke Furnace 131

6.5 Improved MOEA Based RBF Neural Network
for Chamber Pressure . 135
6.5.1 Encoding of IMOEA . 138
6.5.2 Optimization Objectives of RBFNN Model 143
6.5.3 Operators of IMOEA for RBFNN 143
6.5.4 The Procedure of IMOEA . 145
6.5.5 The Chamber Pressure Modeling in a Coke

Furnace . 146
6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling

of Chamber Pressure . 154
6.6.1 RV Criterion in PCA Variable Selection 154
6.6.2 Encoding of RBFNN . 156
6.6.3 Operators of INSGA-II . 156
6.6.4 The Procedure of Improved NSGA-II 158
6.6.5 Main Disturbance Modeling of Chamber Pressure 158

6.7 Summary . 164
References . 164

7 GA Based Fuzzy Neural Network Modeling for Nonlinear
SISO System . 167
7.1 Introduction . 167
7.2 T-S Fuzzy Model . 169

7.2.1 T-S Fuzzy ARX Model . 169
7.2.2 T-S Fuzzy Plus Tah Function Model 171

Contents vii

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 172
7.3.1 Hybrid Encoding Method . 173
7.3.2 Objectives of T-S Fuzzy Modeling 174
7.3.3 Operators of IGA for T-S Fuzzy Model 175
7.3.4 Optimization Procedure . 177
7.3.5 Computing Complexity Analysis 177
7.3.6 Oxygen Content Modeling by Fuzzy ARX Model 178

7.4 IGA Based Fuzzy ARX Plus Tanh Function Model 182
7.4.1 Encoding of IGA for Fuzzy Neural Network 182
7.4.2 Operators of IGA for New Fuzzy Model 184
7.4.3 Liquid Level Modeling by Nonlinear Fuzzy Neural

Network . 185
7.5 Summary . 186
References . 190

8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear
DPS . 193
8.1 Introduction . 193
8.2 DPS Modeling Issue . 194

8.2.1 Time/Space Separation via PCA 195
8.2.2 Decoupled ARX Model Identification 198
8.2.3 RBF Neural Network Modeling 199
8.2.4 Structure and Parameter Optimization by GA 201
8.2.5 Encoding Method . 202

8.3 Simulation Results . 204
8.3.1 Catalytic Rod . 205
8.3.2 Heat Conduction Equation . 215

8.4 Summary . 216
References . 219

9 GA-Based Controller Optimization Design 221
9.1 Introduction . 221
9.2 Non-minimal State-Space Predictive Function PID

Controller . 223
9.2.1 Process Model Formulation . 223
9.2.2 PID Controller Design . 225
9.2.3 GA-Based Weighting Matrix Tuning 226
9.2.4 The Chamber Pressure Control by PFC-PID 228

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 236
9.3.1 Neuron Controller . 236
9.3.2 Simple Fuzzy PI Control . 237
9.3.3 Fuzzy Neuron Hybrid Control (FNHC) 239
9.3.4 Parameters Optimization of RNA-GA 240

viii Contents

9.3.5 Continuous Steel Casting Description 241
9.3.6 FNHC Controller Performance Analysis 243

9.4 Stabilization Subspaces Based MOGA for PID Controller
Optimization . 249
9.4.1 Generalized Hermite-Biehler Theorem 249
9.4.2 Hermite-Biehler Theorem Based PID Controller

Stabilizing . 250
9.4.3 Optimizing PID Controller Parameters Based

on Stabilization Subspaces . 253
9.4.4 Simulation for Optimization of PID Controllers 254

9.5 Summary . 257
References . 258

10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller
for FC/SC HEV . 261
10.1 Introduction . 261
10.2 FC/SC HEV System Description . 263
10.3 Q-Learning Based Fuzzy Energy Management Controller 263

10.3.1 Fuzzy Energy Management Controller 264
10.3.2 Q-Learning in HEV Energy Control 267
10.3.3 GA Optimal Q-Learning Algorithm 269
10.3.4 Initial Value Optimization of Q-Table 269
10.3.5 Procedure of Improved Q-Learning Fuzzy EMS 271
10.3.6 Real-Time Energy Management 272

10.4 Summary . 273
References . 273

Contents ix

Chapter 1
Introduction

This chapter first reviews the research status of genetic algorithm theory, encoding
problem, constrained optimization, and multi-objective optimization. Secondly, it
briefly introduces the biological basis, the problems of DNA biocomputing, and the
significance of the combination of genetic algorithm and DNA computing. Finally,
the main work and organizational structure of this book are introduced.

Genetic algorithms (GAs) are one of the evolutionary computing techniques,
which have been widely used to solve complex optimization problems that are
known to be difficult for traditional calculus-based optimization techniques [1–3].
These traditional optimization methods generally require the problem to possess
certain mathematical properties, such as continuity, differentiability, and convexity.
[4], which cannot be satisfied in many practical problems [5, 6]. As such, GA, that
does not require these requirements, has been considered and often adopted as an
efficient optimization tool in many applications.

1.1 Standard Genetic Algorithm

Since professor Holland of Michigan University proposed GA in 1975 [7], it has
achieved numerous achievements in solving various complex optimization problems
[8–10]. In 1985, the first international conference on genetic algorithm was held
in Carnegie Mellon University. In 1989, Goldberg and Michalewicz published an
important monograph: Genetic Algorithms in Search, Optimization, and Machine
Learning [11]. Since then, genetic algorithms entered a period of vigorous develop-
ment, the applications of GAs were more extensive, and the theoretical research was
more in-depth. After that, IEEE Transactions on Evolutionary Computation started
its publication in 1997. Michalewicz described clearly some real number genetic
operators and their typical applications in his book: Genetic Algorithms + Data
Structures = Evolution Programs [12]. There are a lot of articles in Elsevier, IEEE,
and other kinds of databases [13–17]. However, GAs are not always superior for

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_1&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_1

2 1 Introduction

Initialize the parameters and generate the initial population
Calculate the value of the fitness function of each individual
While (Stop condition is not satisfied)

Calculate the fitness values of all individuals in the population
Compute the selection probability of each individual
Select N individual as the parents of crossover and mutation operators
for i=0; i <N/2; i++

Select two parents in terms of selection rate
Randomly generate r between 0 and 1
if r>Pc

Save two parent unchanged to the next population
else

Execute crossover operation and produce two children
Save them to the next population

end
Randomly generate r between 0 and 1
If r<Pm

Execute the mutation operation and produce a new individual
Save it to the next population

end
end

Output the optimal solution

Fig. 1.1 The basic framework of SGA

specific problems in a certain field. A lot of basic research and theoretical innova-
tion is still needed to be further developed. Among all of the various GAs, standard
GA (SGA) is a basic one. In SGA, each variable of the problem to be optimized
can be described by a binary chromosome with length l, that is, the range of the
variable is [0, 2l − 1]. If there are n variables, the length of the binary chromosome
becomes L = n × l. By executing the selection, crossover, and mutation operators,
the chromosome population will evolve and converge to the optimal ones.

The framework of SGA is shown in Fig. 1.1,where there are four basic parameters,
i.e., crossover rate Pc, mutation rate Pm, population size N, and encoding length l. l
is set according to the precision requirements for the problem being solved, and the
other parameters recommended by Schaffer are that:N = 20− 200,Pc = 0.5− 1.0,
and Pm = 0 − 0.05.

1.2 State of Art for GA

1.2.1 Theoretical Research of GA

Though the simplicity of SGA computing is witnessed, its operating mechanism is
complicated. With its applications in complex optimization problems and industrial
processes, the theoretical basis of GA has obtained more and more attention.

1.2 State of Art for GA 3

(1) Schema theory [7]: Suppose that the probabilities of crossover and muta-
tion are Pc and Pm, the distance of Schemata S is δ(S), the length of S
is l, the order is o(S), the number of instances of S at generation t is
N (S, t), the expected number of instances of a schema S at t + 1 gener-
ation is E[N (S, t + 1)], the following inequality will be satisfied: E[|S ∩
p(t+1)|] ≥N (S, t)r(S, t)

[
1 − pc

δ(S)

l−1 − o(S)pm

]
, where fitness ratio r(S, t) =

f (S,t)
f̄ (t)

is an important parameter expressing the fitness of a schema f (S, t) rela-

tive to the average fitness of the population f̄ (t). Readers can refer to [18] to gain
the detailed derivation process. The theorem states that the number of schemata
with low order, short defined distance, and excess average fitness will increase
exponentially with the number of iteration. Poli et al. utilized schema theory and
its hidden parallel principle to explain the evolution mechanism of GA, which
can be used to analyze the different strategies for encoding and genetic operators
[19–21]. However, schema theory was found insufficient and not rigorous [22].

(2) Building block Hypothesis [23]: By implementing selection, crossover, and
mutation operators, the gene of an individual can be spliced together, and a new
chromosome with higher fitness is generated. The hypothesis explains the basic
idea of solving various problems by genetic algorithm, i.e., by splicing between
gene blocks, a better solution can be obtained [24, 25]. However, the building
block hypothesis has never been proved.

(3) New models of GA

To understand the mechanism of genetic algorithm better, a variety of newmodels
have been constructed, such as the Markov chain model [26], axiomatic model [29,
30], integral operatormodel [31, 32], and paradox [33, 34],where themost typical one
is the Markov chain model. There are mainly three Markov chain models of genetic
algorithm: populationmodel [27, 35], Vosemodel [35, 36], andCerf perturbedmodel
[37]. The population Markov chain model treats the population iterative sequence as
a finite state Markov chain and uses some general properties of the model transition
probability matrix to analyze the extreme behavior of the genetic algorithm. Under
the assumption of infinite population, Vose and Liepins modeled genetic algorithm
selection and recombination as the interleaving of linear and quadratic operators.
Moreover, spectral analysis of the underlying matrices drew preliminary conclusions
about fixed points and their stability, an explicit formulawas also obtained relating the
nonuniformWalsh transform to the dynamics of genetic search [38]. Cerf considered
the genetic algorithm as a special form of simulated annealing model and used
the stochastic perturbation theory to study the extreme behavior and convergence
speed of the genetic algorithm, showing how a delicate interaction between the
perturbations and the selection pressure forced the convergence toward the global
maxima of the fitness function [39].

In summary, the existing research results have been achieved under a certain or
specific condition.Whenusing theMarkov chainmodel to analyze the convergence of
genetic algorithms, it is difficult to obtain the transition probability, which hinders the
study of the finite-time behavior of genetic algorithms. However, it is helpful to grasp

4 1 Introduction

the characteristics of the genetic algorithm and improve the efficiency and accuracy
of the solution from the perspective of the stochastic process and mathematical
statistics. Till now, most of the algorithm analysis is still based on the Markov chain
model [28, 40, 41].

1.2.2 Encoding Problem of GA

Binary encoding is used widely in GA; however, there exists a Hamming cliff
problem, i.e., when 15(01111) is changed to 16(10000), all bits in the chromosome
need to be inversed. There are various encodings to improve the performance of GA.

(1) Gray encoding [42]: It is a variant of the binary encoding. Only one bit is
different between the Gray code corresponding to two consecutive integers,
and the difference between any two integers is the Hamming distance of Gray
coding, which overcomes the Hamming cliff problem of the binary coding and
improves the local search capability of the genetic algorithm.

(2) Real encoding [43]: For somemulti-dimension, high-precision continuous opti-
mization problems, binary coding is not convenient to reflect the specific knowl-
edge of the problem and brings the mapping error when the continuous vari-
ables are discretized. Real coding of GA is to overcome these shortcomings,
that is, each gene is represented by a real number to decrease the computational
complexity and improve the computational efficiency.

(3) Symbol encoding [44]: The gene in the chromosome is taken from a symbol set
without numerical meaning. These symbols can be the characters or numbers.
The advantages of symbolic coding lie in its easier utilization of the specific
knowledge and algorithms associated with the problem.

In addition, there are various other encoding forms, such as multi-value encoding
[45], dynamic parameter encoding [46], delta encoding [47], hybrid encoding [48],
and DNA encoding [49, 50]. When solving the optimal problems, the encoding form
should be selected carefully in terms of their characteristics and advantages.

1.2.3 Constraint Handling in GA

Many optimization problems involve inequality and/or equality constraints, which
are regarded as constrained optimization problems. In order to solve constrained
optimization problems using GAs, various constraint handling methods have been
developed.

(1) Penalty function method

Penalty function method is a popular approach to handle constraints, especially for
inequality constraints. It was first proposed by Courant [51], and various improved

1.2 State of Art for GA 5

forms were proposed afterward [52–55]. The penalty parameters keep constant in the
whole evolution processes when using the static penalty function method. The main
disadvantage is that the penalty parameters are determined based on specific issues
and lack versatility [56, 57]. Though the dynamic penalty function method [58] has
better optimization performances than static ones, it is also difficult to design the
dynamic penalty parameters. Adaptive penalty function method [59, 60] can change
the penalty parameters according to the feedback information during the search
processes; however, the ranges of the parameters need to be defined beforehand, and
their variation ranges should be defined to avoid the abrupt change of the penalty
parameters.

(2) Specific encoding and operators

A specific encoding strategy is proposed for the specific constrained optimization
problem. The specific operators are designed to be suitable for the specific encoding.
The feasibility of the solution can then be guaranteed and the constraint problem is
solved [61]. However, this kind of method cannot be popularized easily and mainly
applied to the problem that is difficult to obtain feasible solutions.

(3) Repair method

Some repair programs were utilized to repair the infeasible solutions from the
constraint set during the evolution processes [62]. The advantage of the repair
method is that there are not toomany additional requirements for individual encoding,
genetic operators, etc., and it is expected that the optimal solution can be eventually
approached from both sides of the feasible and infeasible solutions. Its disadvan-
tage is the dependency on the problem itself at the expense of expanding the search
space. In some problems, the repair process was evenmore complex than the original
problem [44].

(4) Separation of objectives and constraints

Co-evolution method, multi-objective optimization method, etc., can be used to
implement the separation. In the co-evolution method, the constraints and the fitness
function were evolved simultaneously using two populations, which was similar
to the adaptive penalty method and capable of obtaining satisfactory results [63].
However, using historical records to calculate an individual’s fitness value may cause
the evolution to stagnate. The heuristic rule was introduced to separate the feasible
solution and the infeasible solution andmade the fitness value of the feasible solution
better than that of the infeasible solution [64, 65]. The separation method has defects
in the maintenance of population diversity, even may be invalid, especially when the
feasible domain is too small in the entire search space. Multi-objective optimiza-
tion method transformed the constrained optimization problems into multi-objective
optimization problems by redefining each objective function [66], which was not
sensitive to parameter settings. However, the optimization results are not superior to
those obtained using the penalty function.

6 1 Introduction

(5) Hybrid method

Since the structure of the genetic algorithm is open, it is easy to combine with
other algorithms, such as steepest descent method [67], quasi-Newton method [68],
simplex method [69], augmented Lagrange method [70], and sequence quadratic
programming [71]. The hybrid search algorithm is mainly experimental, and no
theory has yet been researched. Moreover, other parameters will be introduced, and
the main limitation of the traditional penalty function method is still not solved. If
combined with the random evolution algorithm, it actually becomes another repair
method [72]. However, if there are no feasible solutions in the initial population,
it is not clear how the algorithm performs and whether it is suitable for nonbinary
encoding. Applying a hybrid approach may sacrifice the versatility of GA, but there
are some methods that take advantage of both specific knowledge and versatility,
which is an effective way to improve the performance of basic genetic algorithms
[60].

The constraint handling in Chaps. 3 and 9 is designed based on the idea that
feasible solutions are always better than infeasible solutions by combining the penalty
function method, separation method, and hybrid method.

1.2.4 Multi-objective Genetic Algorithm

For multi-objective optimization problems, genetic algorithm either expresses
multiple objective functions as a single target or finds the Pareto optimal set in the
evolution processes. The most popular multi-objective optimization methods based
on the genetic algorithm are as follows:

(1) Weighted-sum method

Weighted sums of multiple objectives is the most common method [73] that converts
multiple objective functions to one fitness function. GA can then be applied to solve
the multi-objective problem without any modification. However, the optimization
results are affected directly by the values of weights. Lacking enough information
about the problem, the weights are difficult to be determined. Moreover, it cannot be
applied to solve the optimization problem of the concave Pareto frontier. Adaptive
weighted sum method was then proposed to adapt the concave Pareto front [74, 75].

(2) Vector evaluated genetic algorithm (VEGA)

Schaffer proposed VEGA to mainly improve the selection operator when solving the
multi-objective optimization problem [76]. In the evolution processes, subpopulation
is generated according to each objective function. For a problem with k objective
functions, GAwith a population size N will produce k subpopulations with size N

/
k

1.2 State of Art for GA 7

at each generation. Then, the crossover and mutation operations are performed to
produce the next generation population. Notice that each subpopulation is generated
based on a single-objective function regardless of other objective functions. Hence,
the solutions obtained by VEGA are locally non-inferior, but not necessarily glob-
ally inferior, that is, individuals in different subpopulations are optimized only for
single target within the subpopulation. This may make individuals with intermediate
performance eliminated in the selection operator because they are not optimal in
single target evaluation [77].

(3) Niched Pareto genetic algorithm (NPGA)

In NPGA, the selection operator of SGA is improved using the new selection strategy
based on Pareto’s superiority and inferiority [78]. Unlike the traditional genetic
algorithm that compares only two individuals, NPGA allows competition between
multiple individuals. When two competitors are non-inferior or inferior, the compe-
tition result is determined according to the sharing factor of the fitness function in
the target domain. Since the Pareto rank is only applied to a part of the population, it
has a faster calculation speed, but its population size is larger. Moreover, in addition
to the sharing factor, an additional parameter is required to indicate the number of
individuals participating in the competition [79].

(4) Multi-objective genetic algorithm (MOGA)

MOGA adopts a rank-based fitness assignment strategy [80]. The rank of each indi-
vidual in the population is determined by the number of superior individuals. All
non-inferior individuals have a rank of 1, while other individuals have a rank of 1
plus the number of dominated individuals in the current generation. By using sharing
function [81] and species formation [82], the population can be evenly distributed in
the Pareto frontier to a certain degree, and avoid premature convergence of the popu-
lation. MOGA is widely used for solving multi-objective optimization problems,
especially in the field of control system design because of its excellent performance.
However, its performance relies toomuch on the appropriate choice of sharing factors
[83, 84].

(5) Non-dominated sorting genetic algorithm (NSGA)

InNSGA, the hierarchical selection is used to guarantee the good individuals, and the
niche method is adopted to maintain the stability of the excellent subpopulations. Its
overall performance and computational complexity are inferior to MOGA, and it is
more sensitive to the sharing factor. Deb et al. presented an improved NSGAmethod,
i.e., NSGA-II [85], which utilized the elitist strategy and crowded distance evalua-
tion strategy to overcome the above shortcomings. Furthermore, the computational
complexity is reduced from the original O(MN3) to O(MN2), where M delegates
the number of objectives, and N represents the population size. Experiment results
showed that NSGA-IIwas better than several otherMOEAalgorithms [86], and some
successful applications have been achieved by solving the multi-objective optimal
problems [87, 88]. However, further efforts are required to maintain the population

8 1 Introduction

diversity and solve more complicated multi-objective problems. Recently, NSGA-
III has been proposed to solve many objectives and big data optimization problems
[89–92].

(6) Pareto archived evolution strategy (PAES)

In PAES, local search is introduced into the multi-objective optimization, and the
computational complexity is greatly reduced [93]. Only mutation operator is used
in the evolution processes, and the generated individual is limited to a local range;
however, some advantages based on the population are lost. Hence, Knowles et al.
proposed an improved PAES, i.e., M-PAES, which used a crossover operator and
combined PAES with the usage of a population and recombination strategy [94].
Moreover, PAES-II was proposed using region-based selection where the unit of
selection was a hyper box in objective space [95]. In addition, the rigorous running
time was analyzed for PAES using a simple mutation operator [96] as a comple-
ment of insufficient theoretical analysis of multi-objective evolutionary algorithms
(MOEAs).

(7) Strength Pareto evolutionary algorithm (SPEA)

SPEA was developed based on the synthesis of multiple MOEAs described above,
where an external non-inferior set was used to save the non-inferior solutions found
in each evolution process [97]. In the external non-inferior set, the strength of the ith
individual is a real number between [0, 1], and the individual fitness value is equal to
its strength value. As for the individual in the current population, the fitness value is
equal to the sum of all the strength values superior to the individual. At the same time,
individuals in the external non-inferior set can also participate in competition, and
Pareto-based niche methods do not require the distance parameters [98]. Zitzler et al.
proposed SPEA2, which incorporated in contrast to its predecessor a fine-grained
fitness assignment strategy, a density estimation technique, and an enhanced archive
truncation method [99]. Many good results have been obtained through applications
of SPEA and its modified formats [100, 101].

The content of Chap. 4 is based on the research of SPEA and NSGA.

1.2.5 Applications of GA

Since there exist many complex optimization problems in various fields, the applica-
tion research on GAs has penetrated into all disciplines, such as artificial intelligence
[102], robotics [103], social science [104], bioengineering [105], electronics [106],
automatic control [107], and so on. In this book, we will focus on the optimization
problems in the field of automatic control.

(1) System parameter identification

The selection of model structure and model parameter identification are two main
problems in system identification. There are quite a lot of advantages using genetic

1.2 State of Art for GA 9

algorithm for system identification, such as wide adaptability, stable calculation,
high identification accuracy, and simultaneous determination of the model structure
and parameters. For a linear system, system order, time lag, and its parameters can
be constituted into a chromosome. The modeling error is converted into the value
of fitness function. Thus, the system identification problem becomes an optimal
problem that can be solved by GA. As for the nonlinear system, since there are not
uniform expression of nonlinear system, it is necessary to determine which type of
structure is used in advance [108], and various nonlinear modeling tools such as
neural networks [109, 110], fuzzy neural networks [111, 112], and support vector
machine [113, 114] can also be utilized.

Due to the universal approximation capability of neural networks, it has been
successfully applied in the nonlinear system modeling. However, how to determine
the neural network structure still lacks theoretical basis. Genetic algorithm combined
with artificial neural network is another active research field, which has been success-
fully applied in structure optimization of several types of neural networks, such
as back-propagation (BP) neural network [115, 116], radial basis function (RBF)
network [117, 118], recurrent neural network [119, 120], and fuzzy neural network
[111, 112]. Esposito et al. optimized the output layer weights of RBF neural networks
by GA [121]. Vesin et al. proposed a simplex reproduction scheme to solve the center
selection problem of an RBF network. This algorithm was easy to implement, but
the centers of the radial basis functions were selected among the input samples,
which was difficult to reflect the input–output relationship in many cases [122].
Moreover, GA was utilized to simultaneously optimize the structure and centers of
RBF network by minimizing model output error, but data morbidity can occur in the
evolution process [118]. There are still many literature of neural network optimiza-
tion using GA, and most of them focused on the optimization of connection weights,
structures, and neural network parameters [115, 123, 124]. We cannot list them here
due to space limitation and vast literature.

In the first part of Chap. 5 in this book, system parameter identification is carried
out assuming that the model structure is known. The nonlinear system of Chaps. 6
and 7 is based on the nonlinear modeling tools, and the genetic algorithm is applied
to solve the nonlinear system modeling and optimization problem using RBF neural
network and T-S fuzzy neural network.

(2) Controller optimization

When designing the control system, almost all controllers need to tune parameters
in advance, such as PID controller parameter tuning [125–128], selection of poles in
pole placement controller [129–131], membership function determination of fuzzy
controller [132, 133], and weights setting of neural network controller [134, 135].
The parameters can be calculated either in terms of mathematical model, or by
trial and error, or by optimization methods. The parameters of the controller will
directly affect the performances of the whole control system. Genetic algorithms are
appropriate to off-line optimization of various types of controller parameters, such as
controller structure optimization, controller parameter optimization, and controller
structure and parameter optimization simultaneously [125, 129, 134, 136].

10 1 Introduction

Except for a single-objective genetic algorithm, there are a large number of
multi-objective genetic algorithms (MOGAs) for controller design. Fonesca et al.
used MOGA to solve the optimization problem of the low-pressure spool speed
governor of a Pegasus turbine engine [137]. Chen et al. introduced a fuzzy controller
multi-objective optimal design method to guarantee H2 and H∞ reference tracking
performance simultaneously [138]. In non-dominated Pareto frontier based multi-
objective optimization methods [80, 139, 140], all possible non-inferior solutions
can be obtained, and users can choose the final results according to control system
requirement. PID controller and its improved format designed in Ch9 are another
useful attempt in this context based on Pareto sorting multi-objective genetic algo-
rithm and SGA, respectively. The research of GA for controller optimization design
will continue to be studied in-depth, and readers can refer to a large number of
references on controller optimization.

(3) Machine learning optimization

Machine learning is a subfield of Artificial Intelligence that is currently a hot field
in computer science. There are many types of machine learning techniques, such
as supervised learning [141], unsupervised learning [142], semi-supervised learning
[143], reinforcement learning [144], evolutionary learning [145], and deep learning
[146]. Humans have very strong skills for sensing the environment, they take actions
against what they perceive from the environment [147], which is the basic idea of
reinforcement learning (RL). Now, RL is a popular computational approach to learn
whereby an agent tries to maximize the total amount of reward it receives, while
interacting with a complex, uncertain environment. It is different from supervised
learning in the sense that accurate input and output sets are not offered [144]. With
strong environment adaptability, RL scheme is receiving considerable attention, and
evolution algorithm is also utilized to optimize the RL scheme. In [148], a simple GA
was used to search the space of RL policies by designing an appropriate objective
function. Such et al. optimized the weights of a deep neural network with a simple,
gradient-free GA, and it performedwell on hard deep RL problems [149]. Vice versa,
RL can be utilized to improve the performance of GA. Liu et al. proposed a reinforce-
ment mutation GA, which used heterogeneous pairing selection instead of random
pairing selection and constructed a reinforcementmutation operator bymodifying the
Q-Learning algorithm [150].Mariani et al. proposed an improvedNSGA-II approach
by incorporating a parameter-free self-tuning method using reinforcement learning
technique [151].

In Chap. 10, a Q-Learning based fuzzy energy management controller was
proposed for real-time hybrid energy vehicle (HEV) energy split; GA is utilized
to optimize its initial value of Q-table to satisfy the power requirement and decrease
energy consumption and load fluctuation simultaneously. There are a large number
of manuscripts about RL and its applications published every year [152], and readers
can also follow these references [153–155].

1.3 DNA Computing Based GA 11

1.3 DNA Computing Based GA

With the optimization problem being more complex, GAs are also continuously
improving. DNA computing becomes conducive to improve GA after Dr. Adleman
successfully solving the Hamiltonian path problem of 7 vertices with the operation
of DNAmolecules [156], and opening up a new biomolecular computing, e.g., DNA
computing.

1.3.1 DNA Molecular Structure of DNA Computing

DNA computing simulates the double-helix structure and base complementary
pairing rules to implement the information encoding. Whether in theory or tech-
nology, DNA computing is a challenge for traditional computing methods. In spite of
its amazing development in the past decades, the disadvantages of DNA computing,
such as the exponential explosion problem and its limitation to solve complex
optimization problems in the engineering, have appeared [157].

DNA is the main molecule of DNA computing, which carries genetic information
and its basic unit is deoxynucleotide [158]. A polynucleotide or deoxynucleotide
is formed by linking 3′ and 5′ phosphodiester bond to four kinds of nucleotide or
deoxynucleotide bond in a certain order, which is called a nucleotide sequence or
a base sequence. The difference of nucleotides lies in the bases, where adenine and
guanine are denoted as A and G and cytosine and thymine are denoted as C and T.
The deoxynucleotide or nucleotide linkage has a strict directionality, and 3′-OH of
the former nucleotide forms a 3′–5′ phosphodiester bond with the 5′ phosphoric acid
of the next nucleotide to form a linear macromolecule without branches, as shown in
Fig. 1.2. RNA is another polymer that plays an important role in active cells [159].
Its structure is very close to the DNA’s, but the pyrimidine is composed of cytosine
and uracil, T of DNA is then replaced by U.

Fig. 1.2 Biological structure
of DNA

12 1 Introduction

Fig. 1.3 Double-helix
structure of DNA

C

G

T

A

G

C

A

T

A
A

T
T

C

G

T

A

G

C

The hydroxyl of one nucleotide can interact with that of another nucleotide to
form a weaker hydrogen bond, and the formation of the bond complies with the
Watson–Crick complementarity pairing principle, i.e., A pairs T, C pairs G. A single
strand of DNA is first formed through a phosphodiester bond. Then, a double-strand
DNAmolecule can be easily formed using this complementarity principle. Two long
nucleotides are joined together by a hydrogen bond between the bases to form a
double-strand helical structure, as shown in Fig. 1.3. It has been simplified greatly
as two linear chains combined by the Watson–Crick complementarity principle.

1.3.2 Biological Operators of DNA Computing

DNA computing is implemented using various biological operators. Some of them
are physical while some are chemical. The physical operators are actually to control
the conditions of its biochemical reaction, such as temperature, pH values, and so
on. The most important biological operators are DNA denaturation and renaturation,
DNA crossover, DNA probe, polymerase chain reaction, DNA gel electrophoresis,
DNA reduction, DNA ligation, and DNA extension [160].

In terms of the characteristics of DNA structure and its biological operations, there
contains two important units in DNA molecule with computational power: (1) an
information processing unit that performs denaturation, replication, and annealing
of DNA molecules by the action of an enzyme, i.e., DNA molecules can be cut,
copied, and pasted; (2) information store unit throughDNA sequences usingmultiple
biological enzymes to simultaneously perform DNA molecule manipulation. The
advantages of DNA computing lie in its huge parallelism of information storage and
its parallel operation capabilities.However, the experimental implementationofDNA
computing is unreliable and the cost is high [161]. At present, most improvement of
DNA computing is only theoretically feasible that depends on further improvement
of DNA biological operations. Nevertheless, DNA is an important genetic material
that carries abundant genetic information. It can promote the genetic mechanism
and gene regulation mechanism of organisms, which may be helpful to improve the
performance of GA.

1.3 DNA Computing Based GA 13

1.3.3 DNA Computing Based Genetic Algorithm

Genetic algorithm is similar toDNAcomputing to some degree, and the new theory of
DNA computing, such as DNA encoding, DNAmolecular operators, and the creative
ideas ofDNAcomputing,maybe combined to improve theperformanceof the genetic
algorithm when solving the complicated problems in the fields of automatic control,
pattern recognition, decision making, machine learning, etc. Recently, various DNA
computing based GAs have been proposed to solve complicated problems. Dio et al.
presented a novel GA with DNA double-helix to promote non-metamorphic vari-
ation in DNA replication [162]. Yoshikawa et al. combined DNA encoding with
pseudo-bacteria GA [163]. Ren et al. proposed a CM-DNAGA based on not only
the properties of randomness and the stable tendency of the normal cloud model, but
also the idea of GA with the bio-inspired coding method, i.e., DNA [164]. Lin et al.
raised an encoding mode based on DNA biological molecular structure to encode
the PID controller structure and parameters [165]. Gu et al. proposed various DNA
computing based GAs to avoid its shortcoming of premature convergence and solve
the Job shop scheduling problem efficiently [166]. Abdullah used DNA and logistic
map functions to create the number of initial DNA masks and applied GA to deter-
mine the best mask for encryption, and the results were superior to methods available
in the literature [167]. The authors presented RNA-based GA, double-helix structure
based GA, and other advanced GA to improve the optimization performance and
solve the complicated problems in system modeling and control [49, 112].

Recently, various evolution algorithms, such as Ant Colony Algorithm [168–
171], Particle swarm optimization [172–174], Cuckoo Search Algorithm [175, 176],
Differential Evolution algorithm [177–180], Artificial Fish Swarm algorithm [181,
182], and so on, are emerging. GA was combined with these algorithms to improve
the performance [178, 183–185]. The ideas of DNA computing based GA may also
be helpful to these algorithms.

1.4 The Main Content of This Book

It can be seen from the above analysis that the research on DNA-GA for complicated
optimization problem still needs to be further studied. Accordingly, the specific
structure of the book is arranged as shown below (Fig. 1.4):

The book is divided into 10 chapters. The first chapter firstly describes the prac-
tical background and research significance of this topic and explains the related
characteristics of DNA-GA and the difficulty for system modeling and control tech-
nologies. Secondly, the basic genetic algorithm is introduced, and the trend and its
application to different optimization problems in research are pointed out. Then,
the research topics and related DNA computing and its biological operations are
introduced, which paves the way for the subsequent contents of the book.

14 1 Introduction

Ch.10 Ch.9 Ch.8Ch.7Ch.5Ch.4 Ch.3 Ch.2

Part. Part.

Ch.1

Ch.6

Fig. 1.4 Relation among chapters

Subsequent contents are divided into two parts. Part I mainly studies DNA-GA
for unconstrained, constrained, single-objective, and multi-objective function opti-
mization problems, and Part II mainly studies the modeling and control problems
in industrial processes. The contents of each chapter of the book are both related
to and different from one another. For example, Part I proposes several improved
GAs based on DNA and RNA operators, Part II uses improved GA to solve the
industrial modeling and control problems; however, some new operators can also be
introduced to be appropriate for the different optimization problems. For Chap. 2,
RNA-GA is proposed to solve the unconstrained function minimization problem,
and Chap. 3 combines SQP algorithm to enhance the constraint handling capability.
Chapter 4 presentedDNA-MOGA to solve themulti-objective functionminimization
problems. Chapters 5–10 are based on Chaps. 2–4. Chapter 5 solves the parameter
identification problems based on the known system structure. Chapter 6 models the
nonlinear system using an optimal RBF neural network considering the network
structure simplification and modeling precision. Chapter 7 uses T-S fuzzy neural
network to construct the nonlinear system model by utilizing constrained single-
objective and multi-objective DNA-GA. Chapter 8 constructs the distributed param-
eter system (DPS) model using PCA, RBF, and GA. Chapters 9 and 10 solve the
controller optimization problems. In Chap. 10, the controller is a Q-Learning based
fuzzy controller, and GA is utilized to optimize the parameters of Q-Table. This
book proposes some DNA computing based GA and solves the system modeling
and controller optimization problems in industrial processes. It can be used as the
guiding material for corresponding engineering modeling and control problems, and
can also provide some help for engineers and technicians.

Some parts of the material in this book were published in relevant journals by the
authors several years ago and included here for relevance and completeness. This
includes

Chapters 2 and 5 reprinted with permission from Computers and Chemical Engi-
neering, volume 31, Tao Jili, Wang Ning, DNA computing based RNA genetic algo-
rithm with applications in parameter estimation of chemical engineering processes,
1602–1618, © 2007 Elsevier Ltd., with permission from Elsevier.

Chapters 3 and 5 reprinted with permission from Chemical Engineering & Tech-
nology, volume 31, Tao Jili, Wang Ning, DNA Double Helix Based Hybrid Genetic

1.4 The Main Content of This Book 15

Algorithm for the Gasoline Blending Recipe Optimization Problem, 440-451, ©
2008 Elsevier Ltd.

Chapter 4 reprinted with permission from Neurocomputing, volume 98, Tao
Jili, Fan Qinru, Chen Xiaoming, Zhu Yong, Constraint multi-objective automated
synthesis for CMOS operational amplifier, 108–113, © 2012 Elsevier Ltd.

Section 6.4 of Chap. 6 reprinted with permission from Industrial & Engineering
Chemistry Research, volume 53, Zhang, Ridong; Tao, Jili; Gao, Furong Temperature
Modeling in a Coke Furnace with an Improved RNA-GA Based RBF Network,
3236–3245 © 2014 American Chemical Society.

Section 6.5 of Chap. 6 reprinted with permission from IEEE Transactions on
Industrial Electronics, volume 64, Zhang, Ridong; Tao, Jili, Data-Driven Modeling
Using Improved Multi-Objective Optimization Based Neural Network for Coke
Furnace System, 3147–3155. © 2017 IEEE.

Section 6.6 of Chap. 6 reprinted with permission from Industrial & Engineering
Chemistry Research, volume 58, Zhang Ridong, Lv Qiang, Tao, Jili, Gao Furong.
Data driven modeling using optimal principle component analysis based neural
network and its application to nonlinear coke furnace, 6344–6352. © 2018 American
Chemical Society.

Section 7.3 of Chap. 7 reprinted with permission from Industrial & Engi-
neering Chemistry Research, volume 55, Zhang Ridong, Tao Jili, Gao Furong. A
new approach of Takagi–Sugeno fuzzy modeling using an improved genetic algo-
rithm optimization for oxygen content in a coke furnace. Industrial & Engineering
Chemistry Research, 6465–6474. © 2016 American Chemical Society.

Section 7.4 of Chap. 7 reprinted with permission from IEEE Transactions on
Industrial Electronics, volume 65, Zhang Ridong, Tao Jili. A nonlinear fuzzy neural
network modeling approach using an improved genetic algorithm, 5882–5892 ©
2017 IEEE.

Chapter 8 reprinted with permission from IEEE Trans Neural Netw Learn Syst,
volume 29, Zhang Ridong, Tao Jili, Lu Renquan, Jin, Qibing. Decoupled ARX and
RBF Neural Network Modeling Using PCA and GA Optimization for Nonlinear
Distributed Parameter Systems, 457–469 © 2018 IEEE.

Section 9.2 of Chap. 9 reprinted with permission from Chemometrics and Intel-
ligent Laboratory Systems, volume 137, Tao, Jili; Yu, Zaihe; Zhu, Yong, PFC based
PID design using genetic algorithm for chamber pressure in a coke furnace, 155–161
© 2014 Elsevier Ltd.

Section 9.3 of Chap. 9 reprinted from 31st Annual Conference of IEEE Industrial
Electronics Society, Tao Jili, Wang Ning. Neuron control based on RBF network and
fuzzy scheme for a direct drive robot, 165–170. © 2005 IEEE.

Section 9.4 of Chap. 9 reprinted from Proceedings of the 27th Chinese Control
Conference, Jili Tao, Ning Wang, Xiongxiong He, Stabilization subspaces based
DPGA for optimizing PID controllers, 38–42. © 2008 IEEE.

16 1 Introduction

References

1. Haupt, R.L., and S.E. Haupt. 2004. Practical Genetic Algorithms, 2nd ed. Hoboken, New
Jersey: Wiley.

2. Whitley, D. 1994. A genetic algorithm tutorial. Statistics Computing 4 (2): 65–85.
3. Zhang, R.D., et al. 2016. A new approach of Takagi-Sugeno fuzzy modeling using improved

GA optimization for oxygen content in a coke furnace. Industrial and Engineering Chemistry
Research 55 (22): 6465–6474.

4. Nocedal, J., and S. Wright. 2006. Numerical Optimization. Springer Science & Business
Media.

5. Campbell, S.D., et al. 2019. Review of numerical optimization techniques for meta-device
design. Optical Materials Express 9 (4): 1842–1863.

6. Mohamed, A.W., and A.K.Mohamed. 2019. Adaptive guided differential evolution algorithm
with novel mutation for numerical optimization. International Journal of Machine Learning
Cybernetics 10 (2): 253–277.

7. Holland, J.H. 1975. Adaptation in Natural and Artificial Systems. The University of Michigan
Press.

8. Dong, H., et al. 2018. A novel hybrid genetic algorithm with granular information for feature
selection and optimization. Applied Soft Computing 65: S1568494618300048.

9. Edison, E., and T. Shima. 2011. Integrated task assignment and path optimization for cooper-
ating uninhabited aerial vehicles using genetic algorithms. Computers Operations Research
38 (1): 340–356.

10. Zhang, R., et al. 2018. Decoupled ARX and RBF neural network modeling using PCA and
GA optimization for nonlinear distributed parameter systems. IEEE Transactions on Neural
Networks and Learning Systems 29 (2): 457–469.

11. Goldberg, D.E. 1989. Genetics algorithms in search, optimization and machine learning.
Addison-Wesley: MA Publisher.

12. Michalewicz and Zbigniew. 1996. Genetic Algorithms + Data Structures = Evolution
Programs. Berlin: Springer.

13. Jiang,Y., et al. 2019.Multi-parameter andmulti-objective optimisation of articulatedmonorail
vehicle system dynamics using genetic algorithm. Vehicle System Dynamics 47: 1–18.

14. Kao, Y.T., and E. Zahara. 2008. A hybrid genetic algorithm and particle swarm optimization
for multimodal functions. Applied Soft Computing 8 (2): 849–857.

15. Lopez-Garcia, P., et al. 2015. A hybrid method for short-term traffic congestion forecasting
using genetic algorithms and cross entropy. IEEE Transactions on Intelligent Transportation
Systems 17 (2): 557–569.

16. Zhang, R., and J. Tao. 2018. GA based fuzzy energy management system for FC/SC powered
HEV considering H2 consumption and load variation. IEEE Transactions on Fuzzy Systems
26 (4): 1833–1843.

17. Tavakkoli-Moghaddam, R., J. Safari, and F. Sassani. 2017. Reliability optimization of series-
parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliability
Engineering & System Safety 93 (4): 550–556.

18. Reeves, C., and J.E. Rowe. 2002. Genetic Algorithms: Principles and Perspectives: A Guide
to GA Theory, vol. 20. Springer Science & Business Media.

19. Poli, R., and N.F. McPhee. 2003. General schema theory for genetic programming with
subtree-swapping crossover: Part II. Evolutionary Computation 11 (2): 169–206.

20. Poli, R., and W.B. Langdon. 1998. Schema theory for genetic programming with one-point
crossover and point mutation. Evolutionary Computation 6 (3): 231–252.

21. Poli, R., and N.F. McPhee. 2001. Exact schema theory for GP and variable-length GAs
with homologous crossover. In Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation. Morgan Kaufmann Publishers Inc.

22. Sudholt, D. 2017. How crossover speeds up building block assembly in genetic algorithms.
Evolutionary Computation 25 (2): 237–274.

References 17

23. Forrest, S., and M. Mitchell. 1993. Relative building-block fitness and the building-block
hypothesis. In Foundations of Genetic Algorithms, 109–126. Elsevier.

24. Stephens, C., andH.Waelbroeck. 1999. Schemata evolution and building blocks.Evolutionary
Computation 7 (2): 109–124.

25. Wu, A.S., and R.K. Lindsay. 1996. A comparison of the fixed and floating building block
representation in the genetic algorithm. Evolutionary Computation 4 (2): 169–193.

26. Goldberg, D.E., and P. Segrest. 1987. Finite Markov chain analysis of genetic algorithms. In
Proceedings of the Second International Conference on Genetic Algorithms.

27. Suzuki, J. 1995. A Markov chain analysis on simple genetic algorithms. IEEE Transactions
on Systems, Man, Cybernetics 25 (4): 655–659.

28. Ter Braak, C.J. 2006. A Markov Chain Monte Carlo version of the genetic algorithm differ-
ential evolution: easy Bayesian computing for real parameter spaces. Statistics Computing 16
(3): 239–249.

29. Leung, K.-S., et al. 2001. A new model of simulated evolutionary computation-convergence
analysis and specifications. IEEE Transactions on Evolutionary Computation 5 (1): 3–16.

30. Mingzhi, X., Z. Weicai, and J. Licheng. 2003. The convergence of the abstract evolu-
tionary algorithm based on a special selection mechanism. In Proceedings Fifth Interna-
tional Conference on Computational Intelligence and Multimedia Applications. ICCIMA
2003. IEEE.

31. Rudolph, G. 1996. Convergence of evolutionary algorithms in general search spaces. In
Proceedings of IEEE International Conference on Evolutionary Computation. IEEE.

32. Hou, J., et al. 2009. Integrating genetic algorithm and support vector machine for polymer
flooding production performance prediction. Journal of Petroleum Science Engineering 68
(1–2): 29–39.

33. Wang, X.P., and L.M. Cao. 2002. Genetic Algorithms-Theory, Application and Software
Implementation. Xi’ an: Xi’ an Jiaotong University Press.

34. Nordin, P., and W. Banzhaf. 1996. Genetic Reasoning Evolving Proofs with Genetic Search.
Citeseer.

35. Vose, M.D. 1995. Modeling simple genetic algorithms. Evolutionary Computation 3 (4):
453–472.

36. Nix, A.E., and M.D. Vose. 1992. Modeling genetic algorithms with Markov chains. Annals
of mathematics artificial intelligence 5 (1): 79–88.

37. Catoni,O., andR.Cerf. 1997. The exit path of aMarkov chainwith rare transitions.Probability
Statistics 1: 95–144.

38. Liepins, G.E., and M.D. Vose. 1991. Deceptiveness and genetic algorithm dynamics. In
Foundations of genetic algorithms, 36–50. Elsevier.

39. Cerf, R. 1998. Asymptotic convergence of genetic algorithms. Advances in Applied Proba-
bility 30 (2): 521–550.

40. Heo, J.-H., et al. 2011. A reliability-centered approach to an optimal maintenance strategy
in transmission systems using a genetic algorithm. IEEE Transactions on Power Delivery 26
(4): 2171–2179.

41. Yang, S., et al. 2018. Machine learning approach to decomposing arterial travel time using a
hidden Markov model with genetic algorithm. Journal of Computing in Civil Engineering 32
(3).

42. Chakraborty, U.K., and C.Z. Janikow. 2003. An analysis of Gray versus binary encoding in
genetic search. Information Sciences 156 (3–4): 253–269.

43. Ono, I., and S. Kobayashi. 1999. A real-coded genetic algorithm for function optimization
using unimodal normal distribution. In Proceedings of International Conference on Genetic
Algorithms.

44. Jia, H., et al. 2003. Amodified genetic algorithm for distributed scheduling problems. Journal
of Intelligent Manufacturing 14 (3–4): 351–362.

45. Pouryoussefi, S., and Y. Zhang. 2015. Identification of two-phase water–air flow patterns in
a vertical pipe using fuzzy logic and genetic algorithm. Applied Thermal Engineering 85:
195–206.

18 1 Introduction

46. Schraudolph, N.N., and R.K. Belew. 1992. Dynamic parameter encoding for genetic
algorithms. Machine Learning 9 (1): 9–21.

47. Mathias, K.E., and L.D. Whitley. 1994. Initial performance comparisons for the delta coding
algorithm. In Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE
World Congress on Computational Intelligence. IEEE.

48. Baskar, S., P. Subbaraj, and M. Rao. 2003. Hybrid real coded genetic algorithm solution to
economic dispatch problem. Computers Electrical Engineering 29 (3): 407–419.

49. Tao, J., and N. Wang. 2007. DNA computing based RNA genetic algorithm with applications
in parameter estimation of chemical engineering processes.Computers Chemical Engineering
31 (12): 1602–1618.

50. Ding, Y., and L. Ren. 2000. DNAgenetic algorithm for design of the generalizedmembership-
type Takagi-Sugeno fuzzy control system. In IEEE International Conference on Systems, Man
and Cybernetics. IEEE.

51. Courant, R. 1943. Variational Methods for the Solution of Problems of Equilibrium and
Vibrations. Verlag nicht ermittelbar.

52. Knypiński, Ł., K. Kowalski, and L. Nowak. 2018. Constrained optimization using penalty
functionmethod combinedwith genetic algorithm. In ITM Web of Conferences. EDPSciences.

53. Li, B., et al. 2011. An exact penalty function method for continuous inequality constrained
optimal control problem. Journal of Optimization Theory Applications 151 (2): 260.

54. Liu, J., et al. 2016. An exact penalty function-based differential search algorithm for
constrained global optimization. Soft Computing 20 (4): 1305–1313.

55. Munjiza, A., and K. Andrews. 2000. Penalty function method for combined finite–discrete
element systems comprising large number of separate bodies. International Journal for
Numerical Methods in Engineering 49 (11): 1377–1396.

56. Coello Coello, C.A. 2016. Constraint-handling techniques used with evolutionary algo-
rithms. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion. ACM.

57. Tao, J., X. Chen, and Y. Zhu. 2010. Constraint multi-objective automated synthesis for CMOS
operational amplifier. In Life System Modeling and Intelligent Computing, 120–127. Springer.

58. Kazarlis, S., and V. Petridis. 1998. Varying fitness functions in genetic algorithms: studying
the rate of increase of the dynamic penalty terms. In International Conference on Parallel
Problem Solving from Nature. Springer.

59. Tessema, B., and G.G. Yen. 2006. A self adaptive penalty function based algorithm for
constrained optimization. In IEEE International Conference on Evolutionary Computation.
IEEE.

60. Tao, J., and N. Wang. 2008. DNA double helix based hybrid GA for the gasoline blending
recipe optimization problem. Chemical Engineering Technology 31 (3): 440–451.

61. Bakirtzis, A.G., et al. 2002. Optimal power flow by enhanced genetic algorithm. IEEE
Transactions on Power Systems 17 (2): 229–236.

62. Chootinan, P., and A. Chen. 2006. Constraint handling in genetic algorithms using a gradient-
based repair method. Computers operations research 33 (8): 2263–2281.

63. Chang, Y.-H. 2010. Adopting co-evolution and constraint-satisfaction concept on genetic
algorithms to solve supply chain network design problems. Expert Systems with Applications
37 (10): 6919–6930.

64. Powell, D., and M.M. Skolnick. 1993. Using genetic algorithms in engineering design opti-
mization with non-linear constraints. In Proceedings of the 5th International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers Inc.

65. Dasgupta, D., and Z. Michalewicz. 2013. Evolutionary Algorithms in Engineering Applica-
tions. Springer Science & Business Media.

66. Cai, Z., and Y. Wang. 2006. A multiobjective optimization-based evolutionary algorithm for
constrained optimization. IEEE Transactions on Evolutionary Computation 10 (6): 658–675.

67. Lin, Y.-C., F.-S. Wang, and K.-S. Hwang. 1999. A hybrid method of evolutionary algorithms
for mixed-integer nonlinear optimization problems. In Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406). IEEE.

References 19

68. Razik, H., C. Defranoux, and A. Rezzoug. 2000. Identification of induction motor using a
genetic algorithm and a quasi-Newton algorithm. In 7th IEEE International Power Electronics
Congress. Technical Proceedings. CIEP 2000 (Cat. No. 00TH8529). IEEE.

69. Wang, Y., et al. 2009. Constrained optimization based on hybrid evolutionary algorithm and
adaptive constraint-handling technique. Structural Multidisciplinary Optimization 37 (4):
395–413.

70. Costa, L., I.A.E. Santo, and E.M. Fernandes. 2012. A hybrid genetic pattern search augmented
Lagrangian method for constrained global optimization. Applied Mathematics Computation
218 (18): 9415–9426.

71. Fesanghary, M., et al. 2008. Hybridizing harmony search algorithm with sequential
quadratic programming for engineering optimization problems.Computer Methods in Applied
Mechanics Engineering 197 (33–40): 3080–3091.

72. Belur, S.V. 1997. CORE: Constrained optimization by random evolution. In Late Breaking
Papers at the Genetic Programming 1997 Conference. Stanford Bookstore.

73. Das, I., and J.E. Dennis. 1997. A closer look at drawbacks of minimizing weighted sums
of objectives for Pareto set generation in multicriteria optimization problems. Structural
Optimization 14 (1): 63–69.

74. Kim, I.Y., and O. De Weck. 2006. Adaptive weighted sum method for multiobjective opti-
mization: a newmethod for Pareto front generation. Structural Multidisciplinary Optimization
31 (2): 105–116.

75. Zhang, R., J. Tao, and F. Gao. 2014. Temperaturemodeling in a coke furnacewith an improved
RNA-GAbasedRBFnetwork. Industrial Engineering Chemistry Research 53 (8): 3236–3245.

76. Schaffer, J.D. 1985. Multiple objective optimization with vector evaluated genetic algo-
rithms. In Proceedings of the First International Conference on Genetic Algorithms and
Their Applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers.

77. Dias, A.H., and J.A. DeVasconcelos. 2002.Multiobjective genetic algorithms applied to solve
optimization problems. IEEE Transactions on Magnetics 38 (2): 1133–1136.

78. Rey Horn, J., N. Nafpliotis, and D.E. Goldberg. 1994. A niched Pareto genetic algorithm for
multiobjective optimization. In Proceedings of the First IEEE Conference on Evolutionary
Computation, IEEE World Congress On Computational Intelligence. Citeseer.

79. Guria, C., P.K. Bhattacharya, and S.K. Gupta. 2005. Multi-objective optimization of reverse
osmosis desalination units using different adaptations of the non-dominated sorting genetic
algorithm (NSGA). Computers Chemical Engineering 29 (9): 1977–1995.

80. Deb, K. 2001. Multi-objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley
81. Goldberg, D.E., and J. Richardson. 1987. Genetic algorithms with sharing for multimodal

function optimization. In Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum.

82. Deb, K. 1989. An investigation of niche and species formation in genetic function
optimization. In Proceedings of the Third International Conference on Genetic algorithms.

83. Coello, C.C. 1999.An updated survey of evolutionarymultiobjective optimization techniques:
State of the art and future trends. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406). IEEE.

84. Hu, Z.-H. 2010. A multiobjective immune algorithm based on a multiple-affinity model.
European Journal of Operational Research 202 (1): 60–72.

85. Deb, K., et al. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6 (2): 182–197.

86. Kannan, S., et al. 2008. Application of NSGA-II algorithm to generation expansion planning.
IEEE Transactions on Power Systems 24 (1): 454–461.

87. Dhanalakshmi, S., et al. 2011. Application of modified NSGA-II algorithm to combined
economic and emission dispatch problem. International Journal of Electrical Power 33 (4):
992–1002.

88. Taleizadeh, A.A., P.P. Khaligh, and I. Moon. 2019. Hybrid NSGA-II for an imperfect produc-
tion system considering product quality and returns under two warranty policies. Applied Soft
Computing 75: 333–348.

20 1 Introduction

89. Vesikar, Y., K. Deb, and J. Blank. 2018. Reference point based NSGA-III for preferred
solutions. In IEEE Symposium Series on Computational Intelligence (SSCI). IEEE.

90. Vesikar, Y., K. Deb, and J. Blank. 2018. Reference point based NSGA-III for preferred
solutions. In 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE.

91. Li, H., et al. 2019. Comparison between MOEA/D and NSGA-III on a set of novel many
and multi-objective benchmark problems with challenging difficulties. Swarm Evolutionary
Computation 46: 104–117.

92. Yi, J.-H., et al. 2018. An improved NSGA-III Algorithm with adaptive mutation operator for
big data optimization problems. Future Generation Computer Systems 88: 571–585.

93. Knowles, J., and D. Corne. 1999. The pareto archived evolution strategy: a new baseline
algorithm for pareto multiobjective optimisation. In Congress on Evolutionary Computation
(CEC99).

94. Knowles, J.D., and D.W. Corne. 2000. M-PAES: A memetic algorithm for multiobjective
optimization. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00
(Cat. No. 00TH8512). IEEE.

95. Corne, D.W., et al. 2001. PESA-II: region-based selection in evolutionary multi-objective
optimization. In Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation. Morgan Kaufmann Publishers Inc.

96. Peng, X., et al. 2018. Running time analysis of the Pareto archived evolution strategy on
pseudo-Boolean functions. Multimedia Tools Applications 77 (9): 11203–11217.

97. Zitzler, E., and L. Thiele. 1999. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3
(4): 257–271.

98. Zitzler, E., K. Deb, and L. Thiele. 2000. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evolutionary Computation 8 (2): 173–195.

99. Zitzler, E., M. Laumanns, and L. Thiele. 2001. SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. TIK-report, 103.

100. Rostami, S., and F. Neri. 2016. Covariance matrix adaptation pareto archived evolu-
tion strategy with hypervolume-sorted adaptive grid algorithm. Integrated Computer-Aided
Engineering 23 (4): 313–329.

101. Ding, R., et al. 2019. A novel two-archive strategy for evolutionary many-objective
optimization algorithm based on reference points. Applied Soft Computing 78: 447–464.

102. Tabassum, M., and K. Mathew. 2014. A genetic algorithm analysis towards optimization
solutions. International Journal of Digital Information Wireless Communications 4 (1): 124–
142.

103. Ayala, H.V.H., and L. dos Santos Coelho. 2012. Tuning of PID controller based on a multiob-
jective genetic algorithm applied to a robotic manipulator. Expert Systems with Applications
39 (10): 8968–8974.

104. Epstein, J.M. 2018. Nonlinear Dynamics, Mathematical Biology, and Social Science: Wise
Use of Alternative Therapies. CRC Press.

105. Tumuluru, J.S., and R. McCulloch. 2016. Application of hybrid genetic algorithm routine in
optimizing food and bioengineering processes. Foods 5 (4): 76.

106. Zebulum, R.S., M.A. Pacheco, and M.M.B. Vellasco. 2018. Evolutionary Electronics:
Automatic Design of Electronic Circuits and Systems by Genetic Algorithms. CRC press.

107. Zou, T., S. Wu, and R. Zhang. 2018. Improved state space model predictive fault-
tolerant control for injection molding batch processes with partial actuator faults using GA
optimization. ISA Transactions 73: 147–153.

108. Naitali, A., and F. Giri. 2016. Wiener-Hammerstein system identification—an evolutionary
approach. International Journal of Systems Science 47 (1): 45–61.

109. Zhang, R., and J.L. Tao. 2017. Data driven modeling using improved multi-objective opti-
mization based neural network for coke furnace system. IEEE Transactions on Industrial
Electronics 64 (4): 3147–3155.

110. Kant, G., and K.S. Sangwan. 2015. Predictive modelling and optimization of machining
parameters tominimize surface roughness using artificial neural network coupledwith genetic
algorithm. Procedia Cirp 31: 453–458.

References 21

111. Ishigami, H., et al. 1995. Structure optimization of fuzzy neural network by genetic algorithm.
Fuzzy Sets Systems 71 (3): 257–264.

112. Zhang, R., and J. Tao. 2018. A nonlinear fuzzy neural network modeling approach using an
improved genetic algorithm. IEEE Transactions on Industrial Electronics 65 (7): 5882–5892.

113. Nekoei, M., M. Mohammadhosseini, and E. Pourbasheer. 2015. QSAR study of VEGFR-
2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic
algorithm-support vector machine (GA-SVM): a comparative approach.Medicinal Chemistry
Research 24 (7): 3037–3046.

114. Liu, D., et al. 2014. Short-term wind speed forecasting using wavelet transform and support
vector machines optimized by genetic algorithm. Renewable Energy 62: 592–597.

115. Lam, H., et al. 2001. Tuning of the structure and parameters of neural network using an
improved genetic algorithm. In IECON’01. 27th Annual Conference of the IEEE Industrial
Electronics Society. IEEE.

116. Yanmin, W., and Y. Pingjing. 2003. Simulation and optimization for thermally coupled distil-
lation using artificial neural network and genetic algorithm. Chinese Journal of Chemical
Engineering 11 (3): 307–311.

117. Zhang, R., et al. 2018. Data driven modeling using optimal principle component analysis
based neural network and its application to nonlinear coke furnace. Industrial and Engineering
Chemistry Research 57 (18): 6344–6352.

118. Sarimveis, H., et al. 2004. A new algorithm for developing dynamic radial basis function
neural network models based on genetic algorithms. Computers Chemical Engineering 28
(1–2): 209–217.

119. Angeline, P.J., G.M. Saunders, and J.B. Pollack. 1994. An evolutionary algorithm that
constructs recurrent neural networks. IEEE Transactions on Neural Networks 5 (1): 54–65.

120. Juang, C.-F. 2004. A hybrid of genetic algorithm and particle swarm optimization for recurrent
network design. IEEE Transactions on Systems, Man, Cybernetics, Part B 34 (2): 997–1006.

121. Esposito, A., et al. 2000. Approximation of continuous and discontinuous mappings by a
growing neural RBF-based algorithm. Neural Networks 13 (6): 651–665.

122. Vesin, J.-M., and R. Grüter. 1999. Model selection using a simplex reproduction genetic
algorithm. Signal Processing 78 (3): 321–327.

123. Lin, C.-T., M. Prasad, and A. Saxena. 2015. An improved polynomial neural network clas-
sifier using real-coded genetic algorithm. IEEE Transactions on Systems, Man, Cybernetics:
Systems 45 (11): 1389–1401.

124. Assunção, F., et al. Evolving the topology of large scale deep neural networks. In European
Conference on Genetic Programming. 2018. Springer.

125. Thomas, N., and D.P. Poongodi. 2009. Position control of DC motor using genetic algorithm
based PID controller. In Proceedings of the World Congress on Engineering.

126. Tao, J., Z. Yu, and Y. Zhu. 2014. PFC based PID design using genetic algorithm for chamber
pressure in a coke furnace. Chemometrics Intelligent Laboratory Systems 137: 155–161.

127. Wang, Y., et al., Predictive fuzzy PID control for temperature model of a heating furnace. In
2017 36th Chinese Control Conference (CCC). IEEE.

128. Zhang, R., et al. 2014. New PID controller design using extended nonminimal state
space model based predictive functional control structure. Industrial Engineering Chemistry
Research 53 (8): 3283–3292.

129. Eshtehardiha, S., A. Kiyoumarsi, and M. Ataei. 2007. Optimizing LQR and pole placement
to control buck converter by genetic algorithm. In 2007 International Conference on Control,
Automation and Systems. IEEE.

130. Russell, D., A.J. Fleming, and S.S. Aphale. 2015. Simultaneous optimization of damping
and tracking controller parameters via selective pole placement for enhanced positioning
bandwidth of nanopositioners. Journal of Dynamic Systems, Measurement, Control 137 (10).

131. Nevaranta, N., et al. 2020. Adaptive MIMO pole placement control for commissioning of a
rotor system with active magnetic bearings. Mechatronics 65: 102313.

132. Sanchez, E., T. Shibata, and L.A. Zadeh. 1997. Genetic Algorithms and Fuzzy Logic Systems:
Soft Computing Perspectives, vol. 7. World Scientific.

22 1 Introduction

133. Lagunes, M.L., et al. 2019. Comparative study of fuzzy controller optimization with dynamic
parameter adjustment based on Type 1 and Type 2 fuzzy logic. In International Fuzzy Systems
Association World Congress. Springer.

134. Zhang, R., et al. 2014. GA based predictive functional control for batch processes under
actuator faults. Chemometrics and Intelligent Laboratory Systems 137: 67–73.

135. Han, H.-G., et al. 2018. Multi-objective design of fuzzy neural network controller for
wastewater treatment process. Applied Soft Computing 67: 467–478.

136. Lam, H., et al. 2001. Tuning of the structure and parameters of neural network using an
improved genetic algorithm. In IECON’01. 27th Annual Conference of the IEEE Industrial
Electronics Society (Cat. No. 37243). IEEE.

137. Fonseca, C.M., and P.J. Fleming. 1995. Multiobjective Optimization and Multiple Constraint
Handling with Evolutionary Algorithms II: Application Example. The University of Sheffield.

138. Chen, B.S., and S.J. Ho. 2016. Multiobjective tracking control design of T-S fuzzy systems:
Fuzzy Pareto optimal approach. Fuzzy Sets and Systems 290: 39–55.

139. Gad, S., et al. 2017.Multi-objective genetic algorithm fractional-order PIDcontroller for semi-
activemagnet orheologically damped seat suspension. Journal of Vibration23 (8): 1248–1266.

140. Mahmoodabadi, M., and H. Jahanshahi. 2016. Multi-objective optimized fuzzy-PID
controllers for fourth order nonlinear systems. International Journal of Engineering Science
Technology 19 (2): 1084–1098.

141. Havlíček, V., et al. 2019. Supervised learning with quantum-enhanced feature spaces. Nature
567 (7747): 209–212.

142. Wang, L. 2016. Discovering phase transitions with unsupervised learning. Physical Review B
94 (19): 195105.

143. Ashfaq, R.A.R., et al. 2017. Fuzziness based semi-supervised learning approach for intrusion
detection system. Information Sciences 378: 484–497.

144. Sutton, R.S., and A.G. Barto. 2018. Reinforcement Learning: An Introduction. MIT press.
145. Oh, B.K., et al. 2017. Evolutionary learning based sustainable strain sensing model for

structural health monitoring of high-rise buildings. Applied Soft Computing 58: 576–585.
146. Marsland, S. 2014. Machine Learning: An Algorithmic Perspective. Chapman and Hall/CRC.
147. Sharma, P., and M. Kaur. 2013. Classification in pattern recognition: a review. International

Journal of Advanced Research in Computer Science Software Engineering 3 (4).
148. Moriarty, D.E., A.C. Schultz, and J.J. Grefenstette. 1999. Evolutionary algorithms for

reinforcement learning. Journal of Artificial Intelligence Research 11: 241–276.
149. Stanley,K.O., et al. 2019.Designing neural networks through neuroevolution.Nature Machine

Intelligence 1 (1): 24–35.
150. Liu, F., and G. Zeng. 2009. Study of genetic algorithm with reinforcement learning to solve

the TSP. Expert Systems with Applications 36 (3): 6995–7001.
151. Bora, T.C., V.C. Mariani, and L. dos Santos Coelho. 2019. Multi-objective optimization of

the environmental-economic dispatch with reinforcement learning based on non-dominated
sorting genetic algorithm. Applied Thermal Engineering 146: 688–700.

152. Liu, J., et al. 2020. QMR: Q-learning based multi-objective optimization routing protocol for
flying Ad Hoc networks. Computer Communications 150: 304–316.

153. Tong, Z., et al. 2020. A scheduling scheme in the cloud computing environment using deep
Q-learning. Information Sciences 512: 1170–1191.

154. Pi, C.-H., et al. 2020. Low-level autonomous control and tracking of quadrotor using
reinforcement learning. Control Engineering Practice 95: 104222.

155. Dabney, W., et al. 2020. A distributional code for value in dopamine-based reinforcement
learning. Nature 1–5.

156. Adleman, L.M. 1994.Molecular computation of solutions to combinatorial problems. Science
1021–1024.

157. Ezziane, Z. 2005. DNA computing: applications and challenges.Nanotechnology 17 (2): R27.
158. Kari, L., et al. 1998. DNA computing, sticker systems, and universality. Acta Informatica 35

(5): 401–420.
159. Shapiro, E., and B. Gil. 2008. RNA computing in a living cell. Science 322 (5900): 387–388.

References 23

160. Kaiser, C.A., et al. 2007. Molecular Cell Biology. WH Freeman.
161. Paun, G., G. Rozenberg, andA. Salomaa. 2005.DNA Computing: New Computing Paradigms.

Springer Science & Business Media.
162. Doi, H., and M. Furusawa. 1996. Evolution is promoted by asymmetrical mutations in DNA

replication-genetic algorithm with double-stranded DNA. FSTJ 32 (2): 248–255.
163. Yoshikawa, T., T. Furuhashi, and Y. Uchikawa. 1997. The effects of combination of DNA

coding method with pseudo-bacterial GA. In Proceedings of 1997 IEEE International
Conference on Evolutionary Computation (ICEC’97). IEEE.

164. Zang,W., et al. 2018. A cloudmodel basedDNAgenetic algorithm for numerical optimization
problems. Future Generation Computer Systems 81: 465–477.

165. Jan, H.Y., C.L. Lin, and T.S. Hwang. 2006. Self-organized PID control design using DNA
computing approach. Journal of the Chinese Institute of Engineers 29 (2): 251–261.

166. Qun,N., andG.Xingsheng. 2004. Flow shop scheduling problems based onDNAevolutionary
algorithms. Journal of Shanghai University(Natural Science) 10 (B10): 88–92.

167. Enayatifar, R., A.H. Abdullah, and I.F. Isnin. 2014. Chaos-based image encryption using a
hybrid genetic algorithm and a DNA sequence. Optics Lasers in Engineering 56: 83–93.

168. Dorigo,M., and L.M.Gambardella. 1997. Ant colony system: a cooperative learning approach
to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1 (1):
53–66.

169. Rajendran, C., and H. Ziegler. 2004. Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of Operational
Research 155 (2): 426–438.

170. Dorigo, M., and T. Stützle. 2019. Ant colony optimization: overview and recent advances. In
Handbook of Metaheuristics, 311–351. Springer.

171. Mirjalili, S., J.S. Dong, and A. Lewis. 2020. Ant Colony optimizer: theory, literature review,
and application in AUV path planning. In Nature-Inspired Optimizers, 7–21. Springer.

172. Shelokar, P., et al. 2007. Particle swarm and ant colony algorithms hybridized for improved
continuous optimization. Applied Mathematics Computation 188 (1): 129–142.

173. Kennedy, J., and R. Eberhart. 1995. Particle swarm optimization (PSO). In Proceeding of
IEEE International Conference on Neural Networks, Perth, Australia.

174. Deng, W., et al. 2019. A novel intelligent diagnosis method using optimal LS-SVM with
improved PSO algorithm. Soft Computing 23 (7): 2445–2462.

175. Gandomi, A.H., X.-S. Yang, and A.H. Alavi. 2013. Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems. Engineering with Computers 29 (1):
17–35.

176. Zhang, M., et al. 2018. Hybrid multi-objective cuckoo search with dynamical local search.
Memetic Computing 10 (2): 199–208.

177. Sun, J., Q. Zhang, and E.P. Tsang. 2005. DE/EDA: A new evolutionary algorithm for global
optimization. Information Sciences 169 (3–4): 249–262.

178. Shi, X., et al. 2005. An improved GA and a novel PSO-GA-based hybrid algorithm.
Information Processing Letters 93 (5): 255–261.

179. Qin, A.K., V.L. Huang, and P.N. Suganthan. 2008. Differential evolution algorithm with
strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary
Computation 13 (2): 398–417.

180. Fleetwood, K. 2004. An introduction to differential evolution. In Proceedings of Mathematics
and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane,
Australia.

181. Neshat, M., et al. 2014. Artificial fish swarm algorithm: a survey of the state-of-the-art,
hybridization, combinatorial and indicative applications. Artificial Intelligence Review 42
(4): 965–997.

182. Zheng, Z.-X., J.-Q. Li, and P.-Y. Duan. 2019. Optimal chiller loading by improved artificial
fish swarm algorithm for energy saving.Mathematics Computers in Simulation 155: 227–243.

183. Fang, N., et al. 2014. A hybrid of real coded genetic algorithm and artificial fish swarm
algorithm for short-term optimal hydrothermal scheduling. International Journal of Electrical
Power Energy Systems 62: 617–629.

24 1 Introduction

184. Trivedi, A., et al. 2016. A genetic algorithm–differential evolution based hybrid framework:
case study on unit commitment scheduling problem. Information Sciences 354: 275–300.

185. Kanagaraj, G., S. Ponnambalam, and N. Jawahar. 2013. A hybrid cuckoo search and genetic
algorithm for reliability–redundancy allocation problems. Computers Industrial Engineering
66 (4): 1115–1124.

Chapter 2
DNA Computing Based RNA Genetic
Algorithm

Based on the biological RNA operations, DNA sequence selection, and mutation
model, a RNA genetic algorithm (RNA-GA) algorithm is described in detail in this
chapter. RNA molecules A, T, U, and C are utilized to encode the chromosome, and
RNA molecular operations and DNA mutation model are combined to improve the
crossover and mutation operators of SGA. The convergence of RNA-GA is analyzed
using theMarkov chain model. Five benchmark functions are applied to demonstrate
the application process of the RNA-GA algorithm, and compare with SGA to effec-
tively show the results by alleviating the premature convergence and improving the
exploitation capacity of SGA.

2.1 Introduction

Since a computationally hard issue of the directed Hamiltonian path problem was
first solved by DNA computing [1], many research results on different NP hard
problems with fewer variables have been carried out [2–7]. Generally, there are three
major steps in Adleman-style DNA computing: (1) a data pool of DNA molecules
that represent all possible solutions is generated to the studied problem, (2) a series
of biology laboratory techniques are utilized to exclude the DNA strands that don’t
match the logic constraints of the problem, (3) the surviving DNA molecules are
collected for the process of answer readout. Obviously, the size of the initial data
pool in DNA computing will increase exponentially with the increasement of the
variables to be solved, it is a brute-force method in nature. In fact, the difficulty of
DNA computing is not the absence of correct strands, but vast contaminating DNA
sequences. To overcome the shortcomings of the brute-force method and imple-
ment the DNA operations with an existing digital computer, several DNA computing
methods [7–9] and electronic DNA computing algorithms have been presented [10].
Because laboratory implements of DNA computing are highly difficult, inefficient,

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_2

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_2&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_2

26 2 DNA Computing Based RNA Genetic Algorithm

un-scalable, and expensive, most of the DNA computings are carried out theoreti-
cally. Moreover, electronic DNA (EDNA) computing simulating a virtual test tube
by digital computer was also proposed [11–13].

Holland first presented GA in 1975 [14], it is a global optimization algorithm
based on the principle of survival of the fittest, similar partly to DNA computing.
It may be possible to break the barrier of DNA computing and make it practical as
the problem size scales up by combining GA. However, three operations of standard
GA (SGA) in each chromosome are time-consuming, and the fixed mutation prob-
ability neglects the differences among various genes. SGA with too large mutation
probability becomes a random search algorithm, on the contrary, it is prone to fall
into local optimum with too small mutation probability.

Since the double helix structure of DNA strand cannot be directly combined with
the chromosome of SGA, other genetic material needs to be considered. Recently,
RNA computing was developed based on DNA computing [15–18]. Using the
complementary oligonucleotides of DNA molecules, RNA strands inherit the DNA
genetic information. Moreover, RNA computing with unique single-chain structure
and various RNA operations is much easier to be combined with SGA. Enlightened
by the RNA computing rules, a digital RNA-GA is proposed in this chapter [19] to
improve the performances of SGA. The proposed algorithm may be applied to the
biological computing to break the barrier of brute-force DNA computing.

First, crossover operators based on RNA operations and the mutation operators
based on DNA sequence model are introduced to the SGA.

Secondly, the convergence of RNA-GA is analyzed based on the Markov chain
model.

Finally, the parameter setting is illustrated by simulation on the typical test
functions, and the application process is illustrated and compared with SGA.

2.2 RNA-GA Based on DNA Computing

2.2.1 Digital Encoding of RNA Sequence

There are four nucleotide bases of a RNA sequence, i.e., Adenine (A), Uracil (U),
Guanine (G), and Cytosine (C), which are utilized to encode the solution of the given
problem inRNAcalculations. The type space for aRNAsequence isE = {A, U,G,C}l ,
and l is the length of sequence. However, such RNA sequence cannot be processed
by a digital computer. Because the 2-bit binary digital encoding (00, 01, 10, 11)
can represent the structure, functional group, complementary relationship, and the
number of hydrogen bonding of RNA nucleotide bases, it is used to encode four
RNA nucleotide bases. There are totally P4

4 = 24 possible encoding formats, among
them, 0123/CUAG obtained in terms of the molecular weight of the nucleotide bases
is selected as the best coding mode [17]. To be convenient of the mathematical and
logical operations, the first bit is defined as a structure bit, and the second bit as the

2.2 RNA-GA Based on DNA Computing 27

function bit, e.g., 1 × delegates the purine base, 0 × delegates the pyridine base, ×0
represents the keto group, and×1 represents the amido group, where× is 0 or 1 [18].
Therefore, Cytosine (C) corresponds to 00, Uracil (U) corresponds to 01, Adenine
(A) corresponds to 10, and Guanine (G) corresponds to 11.

A RNA sequence with a length of L = 6 used as the SGA chromosome can be
expressed as R1 = C AUCG A, whose quaternary number is coded as R1 = 021032.
All of the following discussions are based on this digital encoding.

2.2.2 Operations of RNA Sequence

There are many operations on RNA sequences. However, the genetic operators
changing the length of RNA sequence are not introduced considering that the length
of a single chromosome remains unchanged in SGA. We choose three main oper-
ations that can be applied to a single RNA sequence, i.e., namely translocation,
transformation, and permutation.

(1) Translocation operator
The subsequences of RNA sequence are transferred to the new locations.
For example, the original RNA sequence is R = R5R4R3R2R1, where Ri

(i = 1, 2, . . . , 5) is the subsequence of RNA sequence (R) composed of four
nucleotide bases (0123/CUAG), after translocation operation, the new RNA
sequence becomes R

′ = R5R2R4R3R1.
(2) Transformation operator

Two segments of RNA sequence exchange their locations mutually. For
example, after transformation operator, the sequence R = R5R4R3R2R1

becomes R
′ = R5R2R3R4R1 by exchanging R4 with R2.

(3) Permutation operator
One subsequence of an RNA sequence is replaced by another one. For example,
R′
2 subsequence obtained from other RNA sequence or the same one is used to

replace R2, the new sequence is R′ = R5R4R3R′
2R1.

Because of four types of elements in RNA sequence, three mutation operators of
nucleotide bases are designed as follows:

(1) Reversal operator
The function bit of RNA nucleotide base is reversed while keeping its structure
bit invariable, i.e., the premier digit of RNA encoding is reversed. There are
totally four cases: C↔A, U↔G, i.e., 0↔2, 1↔3.

(2) Transition operator
Contrary to the reversal operator, the structure bit of RNA nucleotide base is
inverted while keeping its function bit invariable. There also exist four cases:
C↔U, A↔G, i.e., 0↔1, 2↔3.

28 2 DNA Computing Based RNA Genetic Algorithm

(3) Exchange Operator
Both structure bit and function bit of RNA nucleotide base are transformed,
i.e., both the first bit and the second bit are reversed, and then a complementary
sequence of the given RNA sequence is then yielded. The four cases are as
follows: A↔U, C↔G, i.e., 2↔1, 0↔3.

2.2.3 Encoding and Operators in RNA-GA

According to DNA sequence model under selection and mutation operations [20],
some sequences are classified as harmful ones and the rest are classified as neutral
ones. Analogously, RNA sequences are divided into the above two classes in terms
of the value of fitness function of the individual, e.g., there are N individuals in the
population at the current generation, the former <N /2> individuals are neutral and
the left are deleterious, where < · > denotes the reduction (an exact figure) to the
nearest integer. The crossover operator is executed among the neutral sequences to
keep the excellent parents and produce better offspring, while the mutation oper-
ator is implemented in all sequences to keep the diversity of individuals. Thus, the
encoding/decoding and RNA operators with SGA are given as follows:

(1) The encoding and decoding

In terms of the digital encoding method described in Sect. 2.2.1, the encoding space
for a RNA sequence isE = {0, 1, 2, 3}l with sequences of length l. The chromosomes
with population size N are shown in Fig. 2.1, which is an nl × N matrix, that means
Nchromosomes in the population for the optimization problem with n variables.

MATLAB code for generating the chromosome in a population is shown as
follows:

function [chromosome] = createchromo(Size,CodeL)
% Size is the population size
% CodeL is the length of Bases
for i = 1:Size
for j = 1:CodeL
chromosome(i,j) = round(rand*3);

end
end

Fig. 2.1 RNA encoding of
one population

2.2 RNA-GA Based on DNA Computing 29

The decoding process of the ith chromosome is to take a decimal number and
map it into the given range.

ci j = qil−14
l−1 + qil−24

l−2 + · · · qi04
0

xi j = ximin + ci j

4l − 1
(ximax − ximin) (2.1)

There are three MATLAB subfunctions to finish the decoding and mapping
functions of the chromosome, which are listed as follows:

function [genepara] = uncode(chromosome, howlong)
% howlong is the number of the Bases for 1 variable
m = size(chromosome,1);% m is the population size
n = size(chromosome,2);% n is the whole length of chromosome
for i = 1:m
for j = 1:n/(howlong)

partofchromosome = chromosome(i,((j-1)* howlong + 1):j * howlong);
genepara(i,j) = onegenepart (partofchromosome, howlong);
end

end
function [genepara] = onegenepart(partofchromosome, howlong)

% Calculate 1 variable of the optimal problem
ii = howlong;
sum = 0;
jj = 0;
while ii >=1

sum = sum + partofchromosome (ii)*4ˆjj;
ii = ii-1;
jj = jj + 1;

end
genepara = sum;

function [unipara] = uniformity(genepara,umax,umin, paragennum)
% Map the value of chromosome to the given range [umin, umax];
m = size(genepara,1);
n = size(genepara,2);
for i = 1:m

for j = 1:n
unipara(i,j) = (umax-umin)/(4ˆ paragennum -1)*genepara(i,j) + umin;

end
end

(2) The crossover operator based on RNA operations

The <N /2> sequences with the former <N /2> smaller fitness value (f) are defined
as the neural ones and the left are the deleterious ones. The crossover operators are
then performed in the neural ones, including translocation operator, transformation
operator, and permutation operator. The permutation probability is set as 1, subse-
quence R2 is produced randomly among the range of [1, l] in the current sequence,
and subsequence R′

2 possessing the same length of R2 is generated from the other
sequences. The translocation probability is chosen as 0.5, when implemented, we

30 2 DNA Computing Based RNA Genetic Algorithm

randomly obtain the subsequence R2 in the range of [1, l/2], and randomly find a new
position in the range of [R2h + l/2, l], where R2h is the higher location of R2 in the
crossover sequence. If the translocation operator is not carried out, the transforma-
tion operator is performed. The subsequence R2 is selected in the first half part of the
crossover sequence, while R4 with the same length as R2 is located in the second half
part. After implementing the crossover operator in the neural sequences, N offspring
are produced in terms of N/2 parents.MATLAB code of crossover operation is given
as follows:

% ***** Crossover Operation ************
for i = 1:1:Size/2

temp = rand;
%permutation operator is implemented with probability 1
if temp <=1

n11(1) = ceil(CodeL*rand);
n11(2) = ceil(CodeL*rand);
while n11(2) ==n11(1)
n11(2) = ceil(CodeL/2*rand);

end
location = ceil(rand*Size/2);
while location ==i

location = ceil(rand*Size/2);
end
TempE1(i,n11(1):n11(2)) = TempE(location,n11(1):n11(2));

end
% translocation operator
if temp <=0.5

n11(1) = ceil(CodeL/2*rand); % define the R in the left part
n11(2) = ceil(CodeL/2*rand);
while n11(2) ==n11(1)

n11(2) = ceil(CodeL/2*rand);
end
[n11,n] = sort(n11);
n21(2) = CodeL/2 + ceil((CodeL/2-n11(2) + n11(1)-1)*rand) + n11(2)-n11(1);
n21(1) = n21(2)-n11(2) + n11(1);
TempE2(i,n21(1):n21(2)) = TempE(i,n11(1):n11(2));
TempE2(i,n11(1):n11(2)) = TempE(i,n21(1):n21(2));

end
%transformation operator
if temp > 0.5

% define the R in the left part
n11(1) = ceil(CodeL/2*rand);
n11(2) = ceil(CodeL/2*rand);
while n11(2) ==n11(1)

n11(2) = ceil(CodeL/2*rand);
end
[n11,n] = sort(n11);
nmove = CodeL/2 + n11(2)-n11(1) + 1+round((CodeL/2-n11(2) + n11(1)-1)*rand);
% define the sequence moved
tempa1(1,:) = TempE3(i,:);
tempa2 = [];

2.2 RNA-GA Based on DNA Computing 31

tempa2 = [tempa2,TempE3(i,1:n11(1)-1),TempE3(i,n11(2) + 1:CodeL)];
[tempm,tempn] = size(tempa2);
tempa1(1,nmove-n11(2) + n11(1):nmove) = TempE3(i,n11(1):n11(2));
tempa1(1,1:nmove-n11(2) + n11(1)-1) = tempa2(1,1:nmove-n11(2) + n11(1)-1);
if nmove ~=CodeL
tempa1(1,nmove + 1:CodeL) = tempa2(1,nmove-n11(2) + n11(1):tempn);

end
end

end

(3) The RNA mutation operators

The RNA mutation is to keep the diversity of the population and generate new
genetic material of RNA sequence, it is performed among the offspring produced by
crossover operator among the neural ones, i.e.,N offspring, and the<N /2> deleterious
ones. Hence, there are totally 3N /2 sequences formutation operators. There exist “hot
spots” and “cold spots” in theDNAsequencemodel [20]. Themutations of nucleotide
bases in the “cold spots” are slower than those in the “hot spots”, that is consistentwith
the fact that the spots in different bit positions have different effects on the solutions
of the problem. Therefore, at the beginning stage of the evolution, higher mutation
probability is assigned to the RNA nucleotide bases in the higher bit positions (“the
hot spots”) to explore the larger feasible region. When a globally optimal region is
found, the probabilities of mutation operators of RNA nucleotide bases in the higher
bit positions will be reduced to prevent better solutions from disruption. The hot
spots are converted into the cold spots accordingly. Set the nucleotide bases of RNA
sequence between 1 and <L/2> to the low bit position, and the left as the high bit
position, two kinds of mutation probability pmh and pml are described as follows:

pmh = a1 + b1
1 + exp[aa(g − g0)] (2.2)

pml = a1 + b1
1 + exp[−aa(g − g0)] (2.3)

where a1 denotes the initial mutation probability of pml , b1 is the range of trans-
mutability, g is the evolution generation, g0 delegates the generation where great
change of mutation probability occurs, and aa denotes the speed of change. The pmh

and pml curves changing with evolution generation are shown in Fig. 2.2. The coef-
ficients of Eqs. 2.2 and 2.3 are selected as follows: a1 = 0.02, b1 = 0.2, g0 = G/2,
and aa = 20/G.

After calculating the mutation probability, nl decimal numbers between 0 and
1 are produced and compared with the above changing probability. If the mutation
probability is greater than the corresponding decimal number, the nucleotide base
is replaced by one of another three integers, i.e., a random integer between 0 and 3
besides the nucleotide base itself. Therefore, threemutations in the nucleotide base of
Sect. 2.2.2 are achieved. MATLAB code for mutation operator is shown as follows:

32 2 DNA Computing Based RNA Genetic Algorithm

0 200 400 600 800 1000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

evolution generation

Th
e

ch
an

ge
 o

f m
ut

at
io

n
pr

ob
ab

ilit
y

low bit position
high bit position

Fig. 2.2 Curves of pmh and pml

%***** Step 4: Mutation Operation **************
pmh = a1 + b1/(1 + exp(-aa*(kg-g0)));
pml = a1 + b1/(1 + exp(aa*(kg-g0)));
alphatable = [0,1,2,3];
for i = 1:1:1.5*Size
for ij = 1:num
for j = (ij-1)*howlong + 1:(ij-1)*howlong + howlong/2 % the cold part

temp = rand;
if pml > temp %Mutation Condition
tmpa = TempE5(i,j);
randnum = round(rand*3); %mutation
while(randnum ==tmpa)

randnum = round(rand*3);
end
br = randnum + 1;
TempE5(i,j) = alphatable(br);

end
end
for j = (ij-1)*howlong + howlong/2 + 1:ij*howlong% the hot spots
temp = rand;
if pmh > temp %Mutation Condition

tmpa = TempE5(i,j);
randnum = round(rand*3); %mutation
while(randnum ==tmpa)

randnum = round(rand*3);
end
br = randnum + 1;
TempE5(i,j) = alphatable(br);

end
end

end
end

2.2 RNA-GA Based on DNA Computing 33

(4) The selection operator

There are now totally 3N/2 sequences, the newpopulation is constructed by selecting
the best N/2 sequences and theworst N/2 sequences. According toDNAcomputing,
DNA molecules are usually amplified by polymerase chain reaction (PCR) tech-
nology, where DNA sequences with higher concentration or melting temperature
(Tm) can be copied with more chances. It can be seen that the PCR technology in
DNA computing is analogous to the proportionate selection of SGA in some degree;
hence, the same selection operator is adopted by RNA-GA. The proportional selec-
tion operator is then performed in the population withN sequences, which is made up
of the best N/2 sequences and the worst N/2 sequences. The number of sequences
is reproduced as follows:

nr =
〈⎛
⎜⎜⎜⎝ Ji

N∑
i=1

Ji

⎞
⎟⎟⎟⎠

〉
∗ N (2.4)

where Ji = Fmax − fi , and Fmax is a constant chosen to guarantee Ji > 0. Thus,
N sequences can be reproduced, and N/2 neural sequences as the parents of the
crossover operator. Note that if nr is equal to zero, the sequence will still be repro-
duced because < · > is used and the decimal number less than 1 is set to one. If
nr > 1, nr sequences will be generated. The corresponding MATLAB code is given
as follows:

% calculate the fitness function
Ji = Functionmax-fi; %turn the min to max problem
[Oderfi,Indexfi] = sort(Ji); %Arranging Ji from small to big

% Select and Reproduct Operation
fi_sum = sum(Ji);
fi_Size = (Oderfi/fi_sum)*Size;
fi_S = round(fi_Size); %Selecting Bigger Ji value

kk = 1;
for i = Size:-1:1

if fi_S(i) ==0
TempE(kk,:) = E1(Indexfi(i),:);
kk = kk + 1;

else
for j = 1:1:fi_S(i) %Select and Reproduce

TempE(kk,:) = E1(Indexfi(i),:); % copy the chromosome
kk = kk + 1; %kk is used to reproduce

end
end

end

34 2 DNA Computing Based RNA Genetic Algorithm

2.2.4 The Procedure of RNA-GA

The processes of function evolution, selection, crossover, and mutation operators are
described for RNA-GA as follows:.

Step 1: Initialize the maximum evolutionary generation G, chromosome encoding
length L = nl, and population size N. Generate N RNA chromosomes randomly
in the search space.
Step 2: Decode and calculate the fitness function value f for each individual in
the population.
Step 3: Select the chromosomes to generate the parents of the next generation
according to selection operator according to Eq. 2.4.
Step 4: In the former N/2 neural individual, three crossover operations are
performed as follows: the permutation operator is executed with probability 1,
and the transposition operator is executed with probability 0.5, while the trans-
position operator is executed if the transposition operator does not execute. After
the crossover operation, N individuals can be generated.
Step 5: N individuals generated in step 4 and the remaining N/2 individuals in
the crossover operator are used as the parents of the mutation operation, and the
adaptive dynamic mutation probability is performed according to Eqs. 2.2 and
2.3.
Step 6: For the individuals generated in step 5, the best N/2 sequences and the
worst N/2 sequences are selected as the parents of the selection operation.
Step 7: Repeat steps 2–6 until a termination criterion is satisfied. This can be
the set maximum number of evolutions, the minimum improvement of the best
performance of successive generations, or a known global optimum. In addition,
Elitism is used throughout the process to include the best current individuals into
the offspring.

2.3 Global Convergence Analysis of RNA-GA

Li et al. made a summary of conditions guaranteeing the convergence of GA with
mutation operator for the global optimization problem, which is listed as follows
[21]:

Assumption 2.1 At each generation t, if every individual (x) in the population and
a random individual (y) satisfy x �= y, then there exists p(t) > 0, where p(t) is the
probability changing x into y by one mutation operator.

Theorem 2.1 If GA with elitist keeping strategy satisfies Assumption 2.1, it will
converge in probability to the optimal solution of the problem. Moreover, its conver-
gence is irrelevant to the distribution of the initial population. If the optimal chromo-
some of the population is monotonic in time and any individual in X can be reached

2.3 Global Convergence Analysis of RNA-GA 35

by mutation and reorganization in a limited number of steps, GA will converge to
the optimal solution with probability 1.

Based on the above assumption and the theorem, the convergence of the proposed
RNA-GA is analyzed as follows:

As defined in RNA-GA, RNA strands are essentially the quadruple sequences
with length of L. Its encoding space is defined as S = {0, 1, 2, 3}L, i.e., |S| = 4L.
Set N as the population size of individuals, � as the sequence set of RNA, X as the
population composed of the elements in �, and �N as all possible populations in �,
�N = {X1, X2, . . . X N }.

The transition probability matrix (P) can be decomposed into the product of three
probability matrices [21]: crossover (C), mutation (M), and selection (S), i.e., P =
CMS. Matrices C, M, and S have the following properties:

n∑
j=1

ci j = 1 (2.5)

where ci j is the probability of changing sequence i into sequence j by the crossover
operator.

m jk =
∏N

i=1

(
pm

C − 1

)Hi

(1 − pm)L−Hi k ∈ {1, 2 . . . n} (2.6)

wherem jk denotes the probability of turning sequence j into sequence k bymutation,
C = 4, and H is the individual Hamming distance between sequence j and sequence
k.

Because at least one individual is selected, the following inequality holds:

n∑
k=1

skq > 0 q ∈ {1, 2 . . . n} (2.7)

where skq denotes the probability of changing sequence k into sequence q by the
selection operator. Let

ρ =
[
min

(pm

3
, 1 − pm

)]N L
(2.8)

Then, the following inequality can be obtained based on Eqs. 2.6 and 2.8:

m jk > ρ (2.9)

36 2 DNA Computing Based RNA Genetic Algorithm

The equation is then derived in term of the running processes of RNA-GA

P = C M S =
n∑

k=1

⎛
⎝ n∑

j=1

ci j m jk

⎞
⎠skq (2.10)

Substituting Eqs. 2.9 into 2.10, the following inequality is obtained:

P ≥
n∑

k=1

⎛
⎝ n∑

j=1

ci jρ

⎞
⎠skq (2.11)

Equation 2.11 can be rewritten by substituting Eq. 2.5 into it:

P ≥ ρ

n∑
k=1

skq (2.12)

From Eqs. 2.7–2.12, the ultimate answer is

P > 0 (2.13)

SinceEq. 2.13 is satisfied, thefinite states homogeneousMarkov chain constructed
at each generation is ergodic, which is consistent with the fact that the initial popu-
lation of RNA-GA is finite. Thus, any point in X can be reached from limited steps
by mutation and reorganization operations.

Denote f ∗ as the global optimal solution for the given optimization problems,
and define Zt = max{ f (X (t)

k)|k = 1, 2, . . . n} as the state of optimal fitness value
attainable among t generations, and pt

i as the probability when the individual reaches
Zt . It is obvious that

P{Zt �= f ∗} ≥ pt
i (2.14)

Thus, Eq. 2.15 can be obtained as follows:

P{Zt = f ∗} ≤ 1 − pt
i (2.15)

with time t approaches to infinity:

p∞
i > 0 (2.16)

Hence,

lim
t→∞ P{Zt = f ∗} ≤ 1 − p∞

i < 1 (2.17)

2.3 Global Convergence Analysis of RNA-GA 37

It should be noted that the elite maintaining strategy is not used in the deriva-
tion of Eq. 2.17. In fact, once a better individual is generated in X, the elite main-
taining strategy can retain it in the offspring. After the finite-time state transition,
the best solution can always be obtained, which makes the optimal fitness sequence
monotonous to time and satisfy the condition of Theorem 2.1. Therefore, when elite
maintaining strategy is adopted,RNA-GAcan converge to the global optimal solution
with probability 1.

2.4 Performance of the RNA-GA

2.4.1 Test Functions

In order to given the application procedure of RNA-GA algorithm, a test environment
is provided in the form of several typical optimization functions. Choosing a set of
representative functions is not an easy task, since any particular combination of prop-
erties represented by a test function doesn’t allow for the generalized performance
statements. Five commonly used test functions are shown in the Appendix in the
chapter, which represent a group of landscape classes with various characteristics,
i.e., large search space, numerous local minima, and fraudulence. All the functions
are two-dimensional, which makes it easy to visualize them and to see the action of
algorithm.

The global optimum of the Rosenbrock function f1 is located in a very narrow
valley with a flat bottom.Moreover, the non-separable characteristic of this quadratic
function with different eigenvalues further increases the difficulty of solving the
problem. Needle-in-haystack (NiH) function f2 has four local optima with the
value of 2748.78, and they are close to the global optimum (3600). In addition,
the degree of fraudulence will change when selecting different coefficients of NiH
function. Schwefel’s function f3 is symmetric, separable, and multimodal, and its
global minimum is close to the domain boundary and geometrically distant from the
second minimum points. Therefore, the search algorithms are prone to be cheated
and converge to the wrong direction. Rana function f4 is a non-separable and highly
multimodal function. Its best solutions are located at the corner of the domain.
The Griewank function f5 is highly multimodal with thousands of widespread local
minima, which are distributed regularly. To get a topological impression, the land-
scapes of the two-dimensional functions from f1 to f5 are plotted in Figs. 2.3, 2.4,
2.5, 2.6, and 2.7, respectively. These functions are hard to be optimized using clas-
sical methods as well as most evolutionary algorithms. The successful search of
the optimal solutions can only be derived by methods with effective anti-deceptive
search capability.

38 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.3 The two-dimensional Rosenbrock function f 1

Fig. 2.4 The two-dimensional NiH function f 2

Fig. 2.5 The two-dimensional Schwefel function f 3

2.4 Performance of the RNA-GA 39

Fig. 2.6 The two-dimensional Rana function f 4

Fig. 2.7 The two-dimensional Griewank function f 5

2.4.2 Adaptability of the Parameters

How to set the parameters is critical to the application of RNA-GA, and the adap-
tation ability of the main parameters in RNA-GA is then illustrated by applying to
optimize the Rana model f4 as well as the Griewank function f5. In the first group
of experiments, the coefficients aa = 20/G and a1 = 0.02 are fixed, but the value
of b1 is varying. The second uses fixed b1 = 0.2 and a1 = 0.02, but various aa;
Similarly, the third uses fixed coefficients aa = 20/G and b1 = 0.2, but various a1.
In Figs. 2.8, 2.9, and 2.10, the experiment results are given in a trend curves of the
average best-so-far objective function values over 50 independent runs.

The linear convergence can be clearly observed in these figures, and the adapta-
tion mechanism of RNA-GA can operate effectively. Moreover, it can be seen that

40 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.8 Convergence curves of RNA-GA corresponding to different settings of b1 for f 4 and f 5

Fig. 2.9 Convergence curves of RNA-GA corresponding to different settings of aa for f 4 and f 5

Fig. 2.10 Convergence curves of RNA-GA corresponding to different settings of a1 for f 4 and f 5

the convergence rate is more sensitive to b1 and a1 than aa, and larger b1 and a1 lead
to faster convergence of RNA-GA. However, for the sake of robustness, the more
moderated settings of a1 = 0.001−0.05, b1 = 0.1−0.3, and aa = 20

/
G are recom-

mended, since too large b1 and a1 tend to become random search, while too small

2.4 Performance of the RNA-GA 41

b1 and a1 are prone to converge prematurely. The feasibility of the recommended
parameters setting has also been empirically verified by the successful optimizations
of the functions f1 to f3.

2.4.3 Comparisons Between RNA-GA and SGA

To understand how RNA-GA converge to the global optimal value, the distribution
of the individuals in the RNA-GA population on contour plots of the functions to be
optimized are shown in this section. When the RNA-GA algorithm is implemented,
the maximum evolution generation is limited to 1000, the population size N is set
to 60, and the individual length is set to 40. Other parameters are kept unchanged as
shown in Sect. 2.4.2. To be convenient for comparison, SGA in the GA toolbox of
MATLAB 7.1 is adopted to optimize these functions. GA uses proportional selec-
tion, adaptationmutation, and two-point crossover with the crossover probability 0.8.
Elitist reservation mechanism is utilized to ensure the monotony of the best-so-far
individual in population. The runs of the algorithms terminate when the predeter-
minedmaximal evolution generation is performed or the inequality |Fb − F∗| < � is
satisfied, where Fb denotes the objective function value of the best-so-far individual,
and F∗ the global optimum, � is a precision requirement of the optimal solution, as
set to 0.0001. The behavior of RNA-GA and SGA are shown in Figs. 2.11, 2.12, 2.13,
2.14, 2.15, 2.16, 2.17, 2.18, 2.19, and 2.20. It is obvious that RNA-GA possesses an
improved population diversity. With a similar initial population, RNA-GA is capable
to explore more search space than SGAs during the in-process population. Even at
the end of the evolution, the population of RNA-GA still remains in diversity, while
the population of SGA is prone to converge to one point, which makes SGA easy to
trap into local minima.

In order to obtain statistically significant data, a sufficiently large number (R)
of independent runs must be implemented. The performance of the convergence
speed is measured by the average evaluation number Ē , the minimum and maximum
evaluation number Emin, and Emax over R runs, where Ē = 1

R

∑R
i=1 Ei , and Ei (i ∈

1, . . . , R) are the actual evaluation generations satisfying terminate conditions. The
corresponding data obtained by R = 50 are given in Table 2.1.

The global search capability is measured by Fmin, Fmax, and F̄ , denoted as the
minimum, maximum, and average optimal value of the test functions over R runs,
respectively. The rate of the runs accurately reaching the global optimum is also
demonstrated by Suc.rate. The corresponding statistical results are listed in Table 2.2.

The statistic results in Table 2.2 show that RNA-GA can overcome the fraud
of test functions with fewer local optima values, such as f2 and f3, and has been
succeeded in finding the solutions in all tests. As for f5, because there exist thousands
of local optima with regularity, RNA-GA also traps into local optima. However, most
numerical experiments can find the global optimum. As for the Rana function f 4,
RNA-GA has found the global optimum located at (−488.63, 512) with a value of
−511.7329, which is different from the optimum in the literature, that is (512, 512)

42 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.11 Behavior of
RNA-GA in the Rosenbrock
problem

Initial population

In-process population

Final population

2.4 Performance of the RNA-GA 43

Fig. 2.12 Behavior of SGA
in the Rosenbrock problem

Initial population

In-process population

Final population

44 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.13 Behavior of
RNA-GA in the NiH
problem

Initial population

In-process population

Final population

2.4 Performance of the RNA-GA 45

Fig. 2.14 Behavior of SGA
in the NiH problem

Initial population

In-process population

Final population

46 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.15 Behavior of
RNA-GA in the Schwefel
problem

Initial population

In-process population

Final population

2.4 Performance of the RNA-GA 47

Fig. 2.16 Behavior of SGA
in the Schwefel problem

Initial population

In-process population

Final population

48 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.17 Behavior of
RNA-GA in the Rana
problem

Initial population

In-process population

Final population

2.4 Performance of the RNA-GA 49

Fig. 2.18 Behavior of SGA
in the Rana problem

Initial population

In- process population

Final population

50 2 DNA Computing Based RNA Genetic Algorithm

Fig. 2.19 Behavior of
RNA-GA in the Griewank
problem

Initial population

In-process population

Final population

2.4 Performance of the RNA-GA 51

Fig. 2.20 Behavior of SGA
in the Griewank problem

Initial population

In-process population

Final population

52 2 DNA Computing Based RNA Genetic Algorithm

Table 2.1 Comparison of the convergence speed by RNA-GA and SGA over 50 runs

Test functions RNA-GA SGA

Ē Emin Emax Ē Emin Emax

f2 614.45 109 1000 311.3 77 1000

f2 489.5 327 577 941.18 724 1000

f3 323.5 117 603 240.95 201 1000

f4 760.1 493 1000 961.5 211 1000

f5 497.0667 5 1000 859.25 89 1000

with a value of −511.7011. However, the success rate is still quite small because of
thousands of local optima, which is only 32%. Compared with the statistic results
of SGA, such as the success rate of f 4 is as low as 5%, the global search capability
of RNA-GA is greatly improved. As for f 1 and f 3, SGA has similar success rate as
RNA-GAs in Table 2.2, but the convergence rate of SGA is faster than RNA-GA
in Table 2.1, because there is a turning point of mutation probability at evolution
generation g0, and the rapidity of convergence is sacrificed to keep the diversity of
population. As for the single model function f 1, though both SGA and RNA-GA can
find the best results with 100% success rate, the results of RNA-GA are better than
SGAs. Therefore, RNA-GA has obtained better search performance than SGA.

2.5 Summary

In this chapter, a RNA-GA framework for complex function optimization is described
by combining RNA operations and DNA sequence models with genetic algorithms.
Numerical simulation results demonstrate the effectiveness of the hybridization,
especially the advantages of RNA-GA in optimizing quality, efficiency, and initial
conditions. The superiority of the RNA-GA lies in the combination of a DNA
sequence model with variable mutation probability and the combination of multiple
RNA operators.

When the biological RNA molecule calculation is used instead of the electronic
RNA-GA calculation process, even if the good resolution in the RNA molecule
calculation is accidentally eliminated, a better solution can still be obtained after
the next recombination of left solutions. After a limited number of repetitions, the
optimal solutions or near-optimal solutions of RNA sequences will increase greatly,
and the correct RNA sequence can be obtained relatively simply. In theory, since all
the operators in RNA-GA are obtained through the operation of RNAmolecules, the
algorithm can be simply converted and applied to actual biochemical reactions, and
it can break the limitation of the brute-force method of DNA calculation.

2.5 Summary 53

Ta
bl
e
2.
2

C
om

pa
ri
so
n
of

th
e
gl
ob
al
re
se
ar
ch

ab
ili
ty

by
R
N
A
-G

A
an
d
SG

A
ov
er

50
ru
ns

Te
st
fu
nc
tio

n
R
N
A
-G

A
SG

A

F̄
F

b
F

w
Su

c.
ra
te
(%

)
F̄

F
b

F
w

Su
c.
ra
te
(%

)

f 2
8.
57
0e

−7
8.
33
6e

−9
3.
47
93
e−

7
10
0

4.
59
8e

−6
3.
25
4e

−9
4.
06
5e

−5
10
0

f 2
3.
60
0e
+
3

3.
60
0e
+
3

3.
60
0e
+
3

10
0

3.
31
6e
+
3

3.
60
0e
+
3

2.
74
88
e+

3
66
.6
7

f 3
−8

37
.9
66

−8
37
.9
66

−8
37
.9
66

10
0

−8
33
.2
28

−8
37
.9
66

−7
19
.5
27

96

f 4
−5

11
.6
13

−5
11
.7
33

−5
10
.5
85

32
−5

00
.4
06

−5
11
.7
33

−4
63
.4
19

5

f 5
0.
00
20

4.
15
6e

−8
0.
00
74

76
0.
01
02

5.
84
9e

−1
0

0.
02
71

21

54 2 DNA Computing Based RNA Genetic Algorithm

Appendix

Five test functions:

Test functions Optimal
solution

Optimal value

f1(x) = 100(x2 − x21)
2 + (1 − x1)2

x1, x2 ∈ [−5.12, 5.12]

(1,1) 0

max f2(x) =
(

a
b+(x21+x22)

)2

+ (
x21 + x22

)2
a = 3.0, b = 0.05, x1, x2 ∈ [−5.12, 5.12]

(0,0) 3600

f3(x) = ∑2
i=1 −xi sin(

√|xi |)
x1, x2 ∈ [−500, 500]

(420.9687,
420.9687)

−837.9658

f4(x) = x1 × sin(
√|x2 + 1 − x1|) × cos(

√|x1 + x2 + 1)

+ (x2 + 1) cos(
√|x2 + 1 − x1|) × sin(

√|x1 + x2 + 1|)
x1, x2 ∈ [−512, 512]

(−488.63,
512)

−511.7329

f5(x) = ((x1 − 100)2 + (x2 − 100)2)/4000

− cos(x1 − 100) cos((x1 − 100)/
√
2 + 1

x1, x2 ∈ [−600, 600]

(100,100) 0

References

1. Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science
266 (1): 1021–1024.

2. Braich, R.S., et al. 2002. Solution of a 20-variable 3-SAT problem on a DNA computer. Science
296: 499–502.

3. Dan, B., C. Dunworth, and R.J. Lipton.1995. Breaking DES using a molecular computer. In
Proceedings of a DIMACS Workshop, Series in Discrite Mathematics Theoretical Computer
Science. Princeton University.

4. Ji, Y.L., et al. 2004. Solving traveling salesman problems with DNA molecules encoding
numerical values. Biosystems 78 (1): 39–47.

5. Ouyang, Q., et al. 1997. DNA solution of the maximal clique problem. Science 278: 446–449.
6. El-Seoud, S.A., R. Mohamed, and S. Ghoneimy. 2017. DNA computing: challenges and

application. International Journal of Interactive Mobile Technologies 11 (2): 74–87.
7. Ren, J., and Y. Yao. 2018. DNA computing sequence design based on bacterial foraging algo-

rithm. In Proceedings of the 2018 5th International Conference on Bioinformatics Research
and Applications. ACM.

8. Yamamoto, M., et al. 2001. Solutions of shortest path problems by concentration control.
Lecture Notes in Computer Science 2340 (40): 231–240.

9. Yang, C.N., and C.B. Yang. 2005. A DNA solution of SAT problem by a modified sticker
model. Biosystems 81 (1): 1–9.

References 55

10. Boruah, K., and J.C. Dutta. 2016. Development of aDNAcomputingmodel for Boolean circuit.
In 2016 2nd International Conference on Advances in Electrical, Electronics, Information,
Communication and Bio-Informatics (AEEICB). IEEE.

11. Garzon, M., R.J. Deaton, and J.A. Rose. 1999. Soft molecular computing. DNA Based
Computers 91–100.

12. Hartemink, A.J., T.S. Mikkelsen, and D.K. Gifford. 1999. Simulating biological reactions: A
modular approach. In International Meeting on Preliminary.

13. Li, Y., C. Fang, and Q. Ouyang. 2004. Genetic algorithm in DNA computing: A solution to the
maximal clique problem. Chinese Science Bulletin 49 (9): 967–971.

14. Holland, J.H. 1992. Adaptation in Natural and Artificial Systems, vol. 6, issue 2, 126–137.
15. Cukras, A.R., et al. 1999. Chess games: A model for RNA based computation. Biosystems 52

(1–3): 35–45.
16. Faulhammer, D., et al. 2000. Molecular computation: RNA solutions to chess problems. In

Proceedings of the National Academy of Sciences of the United States of America.
17. Li, S., and J. Xu. 2003. Digital coding for RNA based on DNA computing. Computer

Engineering Applications 39 (5): 46–47.
18. Shu chao, L.I. 2003. Operational rules for digital coding of RNA sequences based on DNA

computing in high dimensional space. Bulletin of Science Technology.
19. Tao, J., and N. Wang. 2007. DNA computing based RNA genetic algorithm with applications

in parameter estimation of chemical engineering processes. Computers Chemical Engineering
31 (12): 1602–1618.

20. Neuhauser, C., and S.M. Krone. 1997. The genealogy of samples in models with selection.
Genetics 145 (2): 519.

21. Hu, J., Y. Sun, and Q. Xu. 2010. The theory and application of genetic algorithm. In Interna-
tional Conference on Computer & Communication Technologies in Agriculture Engineering.

Chapter 3
DNA Double-Helix and SQP Hybrid
Genetic Algorithm

By utilizing the global exploration of GA and local exploitation characteristics
of sequential quadratic programming (SQP), a hybrid genetic algorithm (HGA) is
proposed in this chapter for the highly nonlinear constrained functions. Thereafter,
the theoretical analysis for the convergence of the HGA is then made. In the global
exploration phase, the Hamming cliff problem is solved by DNA double-helix struc-
ture, and DNA computing inspired operators are introduced to improve the global
searching capability of GA.When the feasible domains are located, the SQP method
is executed to find the optimum quickly, in the meantime, it can achieve better solu-
tion accuracy. Six benchmark functions are applied to demonstrate the application
process of the hybrid algorithm and compare with GA to effectively show the results
by alleviating the premature convergence and improving the exploitation capacity of
the constrained optimization algorithm.

3.1 Introduction

Most of the problems in theoretical research and engineering practice are the
nonlinear constrained optimization problems.AlthoughGAsperformwell for uncon-
strained or simple constrained optimization problems, such as box constraint and
spherical constraint, they may have trouble in solving highly nonlinear constrained
optimization problems [1]. Standard GAs have several shortcomings: the Hamming
cliffs in binary encoding format, the premature convergence, the weak local search
capability, and the blindness to the constraints [2]. Enlightened from theDNAdouble-
helix structure, which is complementary and symmetry, it is utilized to overcome the
Hamming cliff problem in SGA. In addition, the new operators in DNA computing
are introduced to improve its global search capability of SGA. Since biological DNA
computing was first introduced to solve a directed Hamilton path problem in 1975, it
has been used to solve various different NP hard problemswith fewer variables [3–5].

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_3

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_3&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_3

58 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

Moreover, research results on DNA computing have been extended to other artifi-
cial intelligent fields, such as evolutionary computation, neural networks, and fuzzy
control. Ren et al. presented a DNA-GA to find the rule sets of fuzzy controller in a
Mamdani fuzzy system [6]. Yoshikawa et al. combined the DNA encoding method
with the pseudo-bacterial genetic algorithm [7]. Our group presented an RNA-GA
by utilizing RNA computing based operators and the DNA sequence model [8].

The Newton method, interior point method, SQP method, and other traditional
calculus-based optimization techniques [9–11] can quickly derive the optimal solu-
tions by several iterations from a starting location; however, all of them are local
search algorithms and may not obtain the solutions for complex optimization prob-
lems. GA is a global random searching algorithm, which has been applied as a
practical optimization tool in many disciplines. Therefore, combining the traditional
calculus-based optimization algorithmwith GA to construct a hybrid GA is regarded
as efficient for solving the highly nonlinear constrained optimization problems [12].

In this chapter, DNA complementary double-helix structure is utilized to over-
come the Hamming cliffs in binary encoding format, and DNA single-strand based
genetic operations are adopted to avoid the premature convergence and improve the
global exploration capability of SGA; thus, it can quickly find the feasible regions
of the given problem [13]. Moreover, a self-adaptive constraint handling approach is
designed to avoid selecting the penalty parameters that will directly affect the solu-
tion of the given problem. When the starting points located in the feasible domain
are found, SQP method is used to accelerate the convergence speed and improve
the solution accuracy. The algorithm is carried out to solve six benchmark functions
and compared with the optimal or the best-known solutions. Alongside solving the
numerical function problems, the convergence rate is analyzed theoretically.

3.2 Problem Description and Constraint Handling

Without loss of generality, the nonlinear constrained optimization problem can be
expressed as follows:

min f (x)

s.t. lm ≤ gm(x) ≤ um, m = 1, 2, . . . , M

xl
i ≤ xi ≤ xu

i , i = 1, 2, . . . , z (3.1)

where x = [x1, x2, . . . xz] represents the solution vector, the ith variable xi is in the
range [xl

i , xu
i], and gm(x) m = 1, 2, . . . , M are the inequality constraints that define

the feasible regions, lm, um ∈ R.

3.2 Problem Description and Constraint Handling 59

In order to solve the above nonlinear constrained optimization problem, the
constraints should be handled efficiently. There exist many constraint handling
approaches [14], of which the penalty function method was the most popular one.
However, penalty parameters are required to be set for each constraint, which are
difficult to be obtained. Moreover, different penalty parameters will derive different
optimal solutions for the same problem. To avoid setting the penalty parameters, the
following criteria were proposed [15]: (1) Any feasible solution was preferred to
any infeasible solution. (2) Among two feasible solutions, the one having a better
objective function value was preferred. (3) Among two infeasible solutions, the one
having a smaller constraint violation was preferred. Following the above criteria,
a constraint handling approach without penalty parameter is derived, and the new
fitness function is given as follows:

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

violation =
∑M

j=1
(

∣
∣
∣min(0, g j (x) − lm)

∣
∣
∣ +

∣
∣
∣max(0, g j (x) − um)

∣
∣
∣) all solutions are infeasible

f (x) if feasible

fmax(k) (1 + sign (fmax(k) · violation)) if infeasible

}

otherwise

(3.2)

As a minimization problem in Eq. 3.1, fmax(k) records the worst value of the
objective function in the feasible solutions for k evolution generations, f max (k) �= 0,
it can update with the evolution processes and act as a penalty parameter needless to
be selected in advance. sign is a sign function utilized to guarantee that the constraint
violation is added to the fitness function as a penalty term without considering the
symbol of fmax(k). In Eq. 3.2, if all solutions in a population are infeasible, only
the offset between the upper and lower bound is calculated because the infeasible
solutions cannot be implemented in practice. If some solutions are feasible and some
are infeasible, the infeasible ones are punished by adding the violation to the current
maximal value of the fitness function.

3.3 DNA Double-Helix Hybrid Genetic Algorithm
(DNA-DHGA)

3.3.1 DNA Double-Helix Encoding

Four nucleotide bases: Adenine (A), Thymine (T), Guanine (G), and Cytosine (C) are
existed in a DNA double-helix chromosome, and ranked according to Watson–Crick
complementary criterion, which are shown in the upper part of Fig. 3.1.

We want to utilize DNA chromosome to encode the solution vector in GA.
However, it is obvious that such A, T, G, and C DNA double-helix chromo-
some cannot be directly processed in the digital computer. 0(00), 1(01), 2(10),

60 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

Fig. 3.1 DNA double-helix
based binary encoding

and 3(11) are then substituted for A, T, G, and C, which are similar to those in
Chap. 1. Till now, binary encoding is still extensively applied in evolutionary algo-
rithm due to its simplicity and easy operation but there exists the Hamming cliff
in the traditional binary encoding format. When the DNA double-helix chromo-
some is combined, the DNA double-helix encoding structure actually contains the
complementary binary chromosomes as shown in the lower part of Fig. 3.1., e.g.,
x1 and its complement representation x̄1 coexist in one DNA chromosome. Once
a DNA double-helix chromosome is produced, there are actually two solutions:
x = [x1, x2, . . . , xz], x = [x1, x2, . . . , xz]. The Hamming cliff problem is then
solved naturally since the complementary DNA single strands coexist. For example,
there are Hamming cliff problem in 10000 and 01111, they are coexisted in the
double-helix chromosome; thus, the Hamming cliff problem is solved naturally. To
be compatible with A T G C, the quanternary encoding (0 1 2 3) is adopted, and
MATLAB code for generating DNA double-helix chromosome is shown as follows:

3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA) 61

function [chromosome]=createchromosome(Size,CodeL)
 % Size is the number of chromosome in the population
 % CodeL is the length of DNA chromosome
 for i = 1:2:2*Size % double-helix
 for j = 1:1:CodeL
 k=round(rand*3); % generate 0,1,2,3 randomly
 chromosome(i,j) = k;
 switch k %create the double helix structure
 case 0
 chromosome(i+1,j) =3;
 case 1
 chromosome(i+1,j) =2;
 case 2
 chromosome(i+1,j) =1;
 case 3
 chromosome(i+1,j) =0;
 end
 end
 end

The decoding process is the same as Sect. 2.2.3, readers can refer to the
corresponding code in Chap. 2.

3.3.2 DNA Computing Based Operators

Genetic operators are widely used for the application of GAs [16], and they are criti-
cally verified as a successful way. In this chapter, except for DNA double-helix chro-
mosome, more complicated gene-level operators enlightened by DNA computing
and RNA computing are introduced to enhance the searching capability of SGA.

3.3.2.1 Selection Operator

The value of F(x) is required to calculate twice for one DNA chromosome because
of the double-helix structure. Two complementary solution vectors x,x will lead to a
double increasement of the computational complexitywhen the new encoding format
is directly applied to the crossover and mutation operators. To reduce the calculation
complexity, the strand with a better value of fitness function denoted as x′ is selected
as the representation of DNA double-helix chromosome before implementing the
genetic operators, which can be obtained according to Eq. 3.3:

62 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

x′ =
{
x F(x) ≤ F(x)

x F(x) > F(x)
(3.3)

where the value of fitness function F can be calculated in terms of Eq. 3.2.
MATLAB code for the constraint handling in Sect. 3.2 is shown as follows, here,

f 4 in the appendix is taken as an example.

%calculate the constraint and function value, x1 is the decoded variables
 kk=1;tempF=[];violation=[];
 for i=1:size % size is the population size
 [funci(i),violation(i,:)]=my_funcCon5(x1(i,:),5);
%judge whether all of the constraints are satisfied
 tempflag(i)=violation(i,1)==0 && violation(i,2)==0 &&
 violation(i,3)==0 && violation(i,4)==0 && violation(i,5)==0;
 if tempflag(i)
 tempF(kk)=funci(i);
 kk=kk+1;
 end
 end
 flagfail=0;
 if size(tempF,1)==0
 fmax=0;
 flagfail=1;
 else
 tempfmax=max(funci);
 if tempfmax>fmax
 fmax=tempfmax;
 end
 end
% constraint handling in terms of Eq.3.2 %
 for i=1:size
 if flagfail==1
 F(i)=sum(violation(i,:));
 else
 if tempflag(i)
 F(i)=funci(i);
 else
 F(i)=fmax*(1+sign(fmax)*sum(violation(i,:)));
 end
 end
 end

3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA) 63

Once the constraint handling and fitness function calculating are finished, x′ is
easy to be derived according to Eq. 3.3.

To produce the parents of crossover and mutation operators, the proportional
selection operator is implemented based on x′, and the number of selected individuals
is calculated as follows:

SN =< J (x′)N

/
N∑

i=1

J (x ′
i) > (3.4)

where J (x′) = Fmax − F(x′), Fmax is a positive number which is set to guarantee
J (x′) > 0, < · > denotes the round-off operation symbol, and N is the population
size. For MATLAB code of selection operator, refer to Sect. 2.2.3.

After calculating Eq. 3.4 for each x′, there will produce at most N + 1 strands
due to the round-off operation, and the former N strands will be kept as the parents
of the crossover and mutation operations.

3.3.2.2 Crossover Operator

After the selection operation, the crossover operator based on DNA computing for
single strand can then be implemented [17]. By application of various enzymes,
there are various operations for DNA sequences. However, the genetic operations
that change the length of the DNA sequence are not appropriate for crossover oper-
ator since the length of the chromosome keeps invariable in GA. On a single strand of
DNA sequence, there are three main operations: translocation, transformation, and
permutation, which have been described in Sect. 2.2.2, and obtained better perfor-
mance than SGA. MATLAB code for the crossover operation can be derived in
Chap. 2.

3.3.2.3 Mutation Operator

Mutation operator is necessary for GA to explore better searching domain. However,
the mutation probability of SGA is fixed during the whole evolution process. Since
GA with too large mutation probability will become a random searching algorithm.
And it is prone to trap into local optimum with too small mutation probability, a
dynamical mutation probability in Chap. 2 is then adopted.

Actually, various bit positions in a chromosome have different effects on the solu-
tion at different evolution stages, e.g., the most significant bit and the least significant
bit. Hence, at the beginning of evolution, the larger mutation probability is assigned
to the higher bit positions to explore the larger feasible region. Then, if the global
optimum located region is found, themutation probability in the higher bit positions is
decreased to prevent disrupting the better solution, while the mutation probability in
the lower bit positions is increased to improve the solution accuracy. The quaternary

64 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

strand between 1 and L/2 is defined as the low bit position, and the left [L/2 + 1, L] as
the high bit position. Accordingly, there are two kinds of mutation probabilities:pmh

and pml , which will change dynamically with the evolution of generations. The
dynamic probabilities are given in Eqs. 2.2and 2.3. If pmh or pml is satisfied, then the
quaternary base in the relevant position is reversed; thus, the mutation operation is
finished. ForMATLAB code for the dynamic mutation operation, refer to Sect. 2.2.3.

3.3.3 Hybrid Genetic Algorithm with SQP

SQP is an iterative optimizationmethod, which is starting from an initial point for the
constrained nonlinear optimization problem where the constraints and the objective
function would be required twice continuously differentiable. It actually solves a
sequence of optimization sub-problems. Each optimization sub-problem optimizes a
quadratic model of the objective subjecting to the linearization of the constraints.
If the optimization problem is unconstrained, SQP is then reduced to Newton’s
method to find a point where the gradient of the objective function vanishes. If the
optimization problem has only equality constraints, SQP is then equivalent to apply
Newton’s method to the first-order optimality conditions, or Karush–Kuhn–Tucker
conditions of the problem. Since SQP is a local search method, its starting point
will affect the optimal solutions greatly. Without an appropriate starting point, SQP
algorithm may trap into the local optimum and cannot obtain the optimal solution.
To obtain a good starting point, GA is applied to optimize the starting point of SQP.
When the current optimum of starting point keeps invariable for 100 successive
generations in GA or all constraints are met, the point is regarded as a good one, and
SQP is implemented. The new solution solved by SQP algorithm is changed as DNA
quaternary single-strand chromosome to perform the above genetic operations.

Based on the DNA double-helix chromosome and DNA computing single-strand
operators, the procedure of the SQP hybrid GA is summarized as follows:

Step 1: Initialize the maximum generation G, the length of chromosome L ,
and the population size N . Generate the complementary quaternary double-helix
chromosomes for the population initialization.

Step 2: Decode the DNA double-helix chromosome and calculate the value of
fitness function in terms of Eq. 3.2.

Step 3: Select the representation of the DNA double-helix chromosome by using
Eq. 3.3. Sort the representations and choose the best 3 N /4 and the worst N /4 to form
N individuals.

Step 4: Judge whether the starting point is appropriate to implement SQP algo-
rithm. If no, go to step 5. If yes, obtain the solution derived by SQP algorithm, then
change it into quaternary encoding format to perform the genetic operators.

Step 5: Execute the selection operator to obtain N individuals according to Eq. 3.4
as the parents of crossover and mutation operators.

3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA) 65

Step 6: Implement the crossover operator in the best N /2 individuals, where
the permutation operator is implemented with probability 1 and the transforma-
tion operator is implemented with probability 0.5. If the transformation operator is
not performed, the translocation operator is then implemented. N offspring are then
generated by the crossover operator.

Step 7: Carry out the mutation operator in the left N /2 individuals and the new N
offspring; thus, there are totally 3 N /2 individuals generated.

Step 8: Generate the complementary quaternary strand to construct the DNA
double-helix chromosome.

Step 9: Repeat steps 2–8 until a termination criterion is met. We set 3 termination
conditions, i.e., the setmaximal number of evolutions, the setminimum improvement
of the best performance in successive generations, and the setminimumerror between
the obtained solution and the global optimum.

The program framework is shown in Fig. 3.2.

Fig. 3.2 SQP hybrid GA
based on DNA double-helix
structure

Initialize
Parameters

Evaluate
solutions

Selection

RNA
Crossover

Self-adaptive
Mutation

Can SQP be applied?

SQP method

DNA double
helix

chromosome

Y

N

Report the
solution

Stopping
criteria met

Decimal
to

quanternary

Y

N

Generate
initial

population

66 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

3.3.4 Convergence Rate Analysis of DNA-DHGA

Essentially, DNA double-helix chromosomes are binary strings with length of L. Its
encoding space can be defined as S = {0, 1}L , i.e., |S| = 2L . Set Ω as the single-
strand set of DNA chromosome, X as the population composed of the elements in
Ω , and Ω N as all possible population in Ω , Ω N = {X1, X2 . . . Xn}.

For the purpose of analyzing the convergence rate of DNA-DHGA, lemma 3.1
and proposition 3.1 are given firstly as follows:

Lemma 3.1 Suppose Markov chains meet the following inequality:

Pk0(x, A) ≥ βξ(A), x ∈ R, A ⊆ Ω N (3.6)

where k0 is a positive integer, R is the subset ofΩ N ,β > 0, and ξ(·) is a probability
distribution on Ω N . Equation 3.6 is a minorization condition of the Markov chain
[18]. Suppose k0 = 1, the following inequality holds:

P(x, A) ≥ βξ(A), x ∈ R, A ⊆ Ω N (3.7)

Given the above minorization condition, Rosenthal gave an upper bound of the
Markov chain, as shown in the following proposition [19]:

Proposition 3.1 Suppose Markov chain meets the minorization condition and
converges to the distribution π , then, there should be β ∈ [0, 1], and the following
inequality holds for any random initial distribution πk :

‖πk − π‖ ≤ (1 − β)k (3.8)

Set the probability transition matrix P(·, ·) as the Markov chain of the population
{X (k), k ≥ 0}, and define the probability transition matrix from the population at
k generation to the population at k + 1 generation as P(X, Y) = P{X (k + 1) =
Y |X (k) = X}, X, Y ∈ Ω N . In the discrete space, let β = ∑

Y∈R
min
X∈R

P(X, Y), and the

maximum of Eq. 3.8 can be achieved for P(X, ·).
The mentioned transition probability matrix (P) can also be decomposed into

three probability matrices: crossover (C), mutation (M), and selection (S), i.e., P =
CMS. Moreover, Matrix C possesses the following property:

n∑

j=1

ci j = 1 (3.9)

where ci j is the probability of changing sequence i into sequence j through the
crossover operator. And Matrix M possesses the following property:

3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA) 67

m jz =
∏N

i=1

(
pm

C − 1

)H

(1 − pm)L−H z ∈ {1, 2, · · · , n} (3.10)

where m jz denotes the probability of transforming sequence j into sequence z
through the mutation operator, and C is 2 and H is the individual Hamming distance
between sequence j and sequence z.

Suppose 0 < pm ≤ 1
L+1 , i.e., Lpm ≤ 1 − pm , then

∏N

i=1

(
pm

C − 1

)H

(1 − pm)L−H ≥
∏N

i=1

(
pm

C − 1

)H

(Lpm)L−H

=
∏N

i=1

(
1

C − 1

)H

(L)L−H pL
m ≥

∏N

i=1

(
1

C − 1

)L

pL
m =

(
pm

C − 1

)N L

(3.11)

Likewise, suppose 1
L+1 ≤ pm < 1, i.e., pm ≥ 1−pm

L , then

∏N
i=1

(
pm

C − 1

)H
(1 − pm)L−H ≥

∏N
i=1

(
1

C − 1

)H (
1 − pm

L

)

(1 − pm)L−H

=
∏N

i=1

(
1

C − 1

)H (
1

L

)L−H
(1 − pm)L ≥

∏N
i=1

(
1

LC − 1

)L
(1 − pm)L =

(
1 − pm
LC − 1

)N L
(3.12)

In terms of Eq. 3.11 and Eqs. 3.12, 3.10 can be rewritten as

m jk ≥

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
pm

C − 1

)N L

0 < pm ≤ 1

L + 1
(
1 − pm

LC − 1

)N L 1

L + 1
< pm ≤ 1

(3.13)

Since at least one individual is selected, Matrix S holds the following inequality:

n∑

k=1

skq > 0 (3.14)

where skq denotes the probability of changing sequence k into sequence q through
the selection operator.

Set the parent population as S(k) and the in-process population as p+. If q /∈ p+,
q cannot become a new parent by selection operator, i.e., skq = 0. Hence, suppose
q ∈ p+, the following equation of skq can be obtained:

skq =
∏

xk∈S(q)

⎡

⎢
⎣

f (x∗)
∑

x j ∈p+
f (x j)

⎤

⎥
⎦ (3.15)

68 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

There always exists xk satisfying f (xk) ≥ f (x∗) for the minimization problem,
where f (x∗) is the minimum statistic of the given problem. In terms of Eq. 3.15, the
following inequality can be derived:

skq ≥
⎡

⎢
⎣

f (x∗)
∑

x j ∈p+
f (x j)

⎤

⎥
⎦

N

(3.16)

According to the running process of DNA-DHGA and Chapman–Kolmogorov
equation, the following equation can be obtained:

P = C M S =
n∑

k=1

(

n∑

j=1

ci j m jk)skq (3.17)

Let ρ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
pm

C − 1

)N L

0 < pm ≤ 1

L + 1
(
1 − pm

LC − 1

)N L 1

L + 1
< pm ≤ 1

, and substitute Eq. 3.13 into

Eq. 3.17, the following inequality is obtained:

P ≥
n∑

k=1

(

n∑

j=1

ci jρ)skq (3.18)

Substituting Eq. 3.9 into Eq. 3.18, the following inequality can be achieved:

P ≥ ρ

n∑

k=1

skq (3.19)

According to Eqs. 3.16 and 3.19, the probability transition matrix P satisfies the
following equation:

min
X,Y∈Ω N

P(X, Y) = ρ

⎡

⎢
⎣

f (x∗)
∑

x j ∈P+
f (x j)

⎤

⎥
⎦

nN

(3.20)

Let β = C N L · ρ

⎡

⎣ f (x∗)∑

x j ∈p+
f (x j)

⎤

⎦

nN

, ξ(A) = C−N L |A|, A ⊆ Ω N , where |A|

represents the size of set A. For any X, A, the following inequality can be achieved:

3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA) 69

P(X, A) =
∑

Y∈A

P(X, Y) ≥ min
X,Y∈S

P(X, Y)|A| = βξ(A) (3.21)

It can be seen from Eq. 3.21 that the above β and ξ(·) are specific minorization
conditions for Markov chain. If there exists a steady-state distribution π to any
initial distribution πk according to proposition 3.1, Eq. 3.8 can then be established.
Therefore, substituting β into Eq. 3.8, the following inequality can be derived:

‖πk − π‖ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎣1 −

(
pm

C − 1

)N L

⎡

⎢
⎣

f (x∗)
∑

x j ∈p+
f (x j)

⎤

⎥
⎦

nN ⎤

⎥
⎦

k

0 < pm ≤ 1

L + 1

⎡

⎢
⎣1 −

(
pm

zLC − 1

)N L

⎡

⎢
⎣

f (x∗)
∑

x j ∈p+
f (x j)

⎤

⎥
⎦

nN ⎤

⎥
⎦

k

1

L + 1
≤ pm < 1

(3.22)

In terms of Eq. 3.22, it is obviously shown that the more the local minima found
during the evolution process, the less the upper bound of ‖πk − π‖, also the faster
the convergence of GA can be achieved. Hence, SQP method combined in GA
will efficiently improve the local searching performance of GA and find more local
minima; thus, the upper bound of ‖πk − π‖ decreases and the convergence rate
becomes faster.

The bigger the population size N and the longer the length of the chromosome
string L, the larger the upper bound of ‖πk − π‖ is obtained, then the slower the
convergence speed of GA is achieved. Therefore, the length of the chromosome
and the population size should be selected as small as possible to accelerate the
convergence rate. However, the length of the chromosome should be determined
according to the precision requirement of the given problem, and the population
diversity should also be considered except for the convergence speed. Herein, the
population with size N = 40 used in DNA-DHGA is similar to the population with
size N = 60 in GA because of DNA double-helix structure and its special genetic
operators. Therefore, the adoption of DNA gene-level operators can accelerate the
convergence speed.

For 0 < pm ≤ 1
L+1 , the bigger the mutation probability, the less the upper bound

of ‖πk − π‖ becomes, and the faster the convergence speed of GA can be obtained;
while for 1

L+1 ≤ pm < 1, the bigger mutation probability, the larger the upper bound
of ‖πk − π‖ becomes, and the slower the convergence speed of GA can be gained.
Hence, the mutation probability cannot be set too large.

Since pmh decreases while pml increases gradually in the earlier evolution
processes, the convergence speed of DNA-DHGA can be accelerated at this stage,
and after that, the change of pmh and pml may decelerate the convergence speed.
Since the application of SQP method can greatly enhance the local search capability

70 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

and speed up the GA convergence. Hence, the change of mutation probability at this
stage has a small effect on the whole convergence speed.

In terms of the above analysis, it can be concluded thatDNA-DHGAcan accelerate
the convergence speed and improve the solution accuracy theoretically.

3.4 Numeric Simulation

3.4.1 Test Functions

To investigate the efficiency of DNA-DHGA, the proposed GA is applied to six
different nonlinear constrained optimization problems that have been studied in the
literature [1, 20]; x* and f * delegate the optimal solution and the optimum values of
the constraint problem. The details of six test functions for constraint optimization
problems are given in the appendix.

3.4.2 Simulation Analysis

The parameters of the proposed algorithm are set as L = 20, N = 40, and G = 1000
by trial and error. A termination criterion is the set maximal 1000 generations or
the set minimum error satisfying the precision requirement ε ≤ 1%, where ε =
| f − f ∗|/ f ∗, and f is the value of constrained optimization problem solved by
the optimization algorithm. Since GA is a random searching algorithm, 50 runs are
executed from randomly initialized populations in all problems. A comparison with
the algorithms in [1, 20] is made and shown in Table 3.1, where Best denotes the best
solution in 50 runs, similarly, Worst denotes the worst result obtained in 50 runs;
avekg represents the average generations satisfying the termination criteria.

Table 3.1 Comparison of the solutions for test functions over 50 runs

f Other methods* DNA-DHGA

Best Worst G Best Worst avekg

f 1 13.59085 117.02971 1000 13.59084 13.59084 80.0

f 2 680.6344 680.6508 5000 680.6300 680.6300 333.3

f 3 7060.221 10230.834 4000 7049.2840 7049.2840 531.5

f 4 -30665.537 -29846.654 5000 -30665.539 -30665.539 456.0

f 5 24.3725 25.0753 - 24.3062 24.3062 650.4

f 6 -0.8011 -0.745329 - -1.1891 -1.1243 393.3

- represents no result in the subject
* represents that Deb’s method is adopted for f 1–f 5 and Michalwicz’s is utilized for f 6

3.4 Numeric Simulation 71

In order to visualize easily, a two-dimensional constrained minimization problem
f 1 is first selected. The unconstrained objective function of f 1 has a minimum solu-
tion located at (3, 2) with an optimal value f * = 0. However, due to the presence
of constraints in f 1, this solution is no longer feasible and the constrained optimum
solution is f ∗ = 13.59085. The feasible region is a narrow crescent-shaped region
located approximately 0.7% of the total search space, as shown in Fig. 3.3. The
problem is relatively easy to solve because of low dimensions of the solution vector
and the simplicity of the optimization problem. Hence, the average evolution gener-
ation is only 80 as listed in Table 3.1 and the evolution generations with the best
solution over 50 runs are plotted in Fig. 3.4. It can be seen that the feasible region is
gained at the initial population and the optimum is found soon with the process of
population evolution. The best solution is located at(2.2468, 2.3819)with the func-
tion value 13.59084. After 50 runs, the distribution of solution vectors is given in

Fig. 3.3 Feasible search
space and the initial
population distribution
(marked with open circles)
and final population
distribution (marked with *)
on f 1

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x2

Fig. 3.4 The evolution
process with the best
solution over 50 runs on f 1

5 10 15 20 25
12

14

16

18

20

22

24

26

28

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

72 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

Fig. 3.5 The solution
vectors obtained by 50
independent runs on f 1

2.2468 2.2468 2.2468 2.2468 2.2468 2.2468
2.3819

2.3819

2.3819

2.3819

2.3819

2.3819

2.3819

2.3819

2.3819

2.3819

x1

x2

Fig. 3.5, it can be seen that the difference between these solutions is so small that it
can be ignored, which indicates the stability of the proposed algorithm. The results
obtained by Deb’s GA without niching and mutation operator are relatively worse
in terms of the Best and Worst values in Table 3.1, and the comparison results also
show the efficiency of the proposed algorithm.

The simulation results obtained from the best solution over 50 runs for f 2–f 6 are
illustrated from Figs. 3.6, 3.7, 3.8, 3.9, 3.10. The feasible region of f 2 accounts for
about 0.5% of the total search space. The best solution obtained by DNA-DHGA
is located at x = (2.330498, 1.951372, -0.477540, 4.365726, -0.624487, 1.038137,
1.594228) with the function value f (x) = 680.630. Deb has found the best solution
680.634, and Michalewicz reported the best result of 680.642 correspondingly. The
evolution process in Fig. 3.6 is similar to that of Fig. 3.4. Figure 3.6 shows that
the feasible region is gained at the first generation, and when the best solution in the
feasible region is kept invariant for 100 continuous generations, SQP is implemented

Fig. 3.6 The evolution
process with the best
solution over 50 runs on f 2

50 100 150 200 250 300

700

800

900

1000

1100

1200

1300

1400

1500

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

3.4 Numeric Simulation 73

Fig. 3.7 The evolution
process with the best
solution over 50 runs on f 3

0 50 100 150 200
0

2000

4000

6000

8000

10000

12000

14000

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

Fig. 3.8 The evolution
process with the best
solution over 50 runs on f 4

0 50 100 150 200 250 300
-3.07

-3.06

-3.05

-3.04

-3.03

-3.02

-3.01

-3
x 10

4

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

Fig. 3.9 The evolution
process with the best
solution over 50 runs on f 5

0 100 200 300 400 500 600
0

100

200

300

400

500

600

700

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

74 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

Fig. 3.10 The evolution
process with the best
solution over 50 runs on f 6

50 100 150 200 250 300
-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

Generations

Fu
nc

tio
n

va
lu

e
of

 th
e

be
st

 in
di

vi
du

al

to get better solutions. The result derived by DNA-DHGA is obviously superior to
Deb’s and Michalewicz’s because the Best solution of Deb’s method is worse than
the Worst solution of the proposed method.

For f 3, Michalewicz has experienced the difficulty of solving this problem. Deb
obtained the best solution 7060.221 with niching and mutation with maximal gener-
ation 4000 and population size 80. The best solution solved by DNA-DHGA is
located at x = (0.579.3067, 1359.9707, 5109.9706, 182.0177, 295.6012, 217.9823,
286.4165, 395.6012) with f (x) = 7049.2480, which is superior to the current best
solution f * = 7049.3309. In Fig. 3.7, the feasible region cannot be found at the initial
stage because of the difficulty of the problem, the population is then developed to
satisfy all the constraints after 69 generations evolution. When the best solution
located at the feasible domain cannot be improved for 100 continuous generations,
SQP algorithm is executed and the problem is solved rapidly.

The function f 4 has 5 variables and 6 inequality constraints, and Deb solved this
problem by GA employing a penalty function method without penalty coefficients,
and obtained the best solution −30665.537. The best solution obtained by DNA-
DHGA is located at x = (78, 33, 29.9953, 45, 36.7758) with f (x) = −30665.5387.
Though the Best value of the proposedmethod is a little inferior to Deb’s, the stability
of the solutions of the proposed method at different runs is superior to Deb’s. The
evolution process in Fig. 3.8 is quite similar to that of Fig. 3.6.

The function f 5 has 10 variables and 8 inequality constraints, and the optimum is
still unknown, the best solution given in the literature is f ∗

5 = 24.3062 and regarded
as the optimum of f 5. Eight inequality constraints obtained by Deb are 10−6 (0.0095,
0, 0.3333, 0.1006, 0, 0.4305, 0, 0), where the positive number denotes the degree
of deviation from the constraint, and zero means that the constraint is satisfied. The
best solution obtained by DNA-DHGA is f (x) = 24.3062, located at x = (2.1720,
2.3637, 8.7739, 5.0960, 0.9907, 1.4306, 1.3216, 9.8287, 8.2801, 8.3759), where the
deviation from the constraints are only 10−9(0, 0, 0.0099, 0, 0, 0.1078, 0, 0). It is

3.4 Numeric Simulation 75

obvious that the degree of constraint deviation obtained by DNA-DHGA is less than
Deb’s. The evolution process in Fig. 3.9 is similar to that of Fig. 3.7.

The function f 6 is a heavily nonlinear and multimodal constrained optimization
problem, and the global optimum is also unknown at present. Let n be 20,Michalwicz
obtained the best solution −0.8036. By using DNA-DHGA, if the solution keeps
invariant for 300 successive generations or the evolution generation reaches the set
maximal value, the algorithm will be terminated and the solution is kept as the
final result. The evolution process is illustrated in Fig. 3.10. It can be seen that
for f 6 DNA-DHGA also trapped into the local optimum because of its multimodal
characteristics. However, the solution in Table 3.1 is better thanMichalwicz’s, whose
best solution is -0.8011. The best solution obtained by DNA-DHGA is located at x=
(3.1520, 9.4137, 6.2666, 4.6805, 3.1172, 3.1085, 3.0997, 3.0910, 3.0821, 3.0733,
0.2080, 3.0554, 0.2003, 0.1965, 0.1929, 0.1894, 0.1859, 0.1826, 0.1793, 0.1762),
with f (x) = −1.1891.

In Table 3.1, the precision requirement with ε ≤ 1% ismet byDNA-DHGA for all
test functions over 50 runs except for f 6, while the precision requirement is satisfied
only for f 2 by other methods. Moreover, the Best and Worst solutions obtained by
DNA-DHGA are obviously superior to those obtained by other methods. As to the
comparison of convergence speed, since avekg cannot be obtained in the literature,
G is substituted instead of avekg when using other methods. The number of avekg
obtained by DNA-DHGA can be decreased greatly, and the result shows that its
convergence has been speeded up greatly.

From Figs. 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 and the comparison results in Table 3.1, it
can be seen that the DNA-DHGA algorithm can be performed efficiently in solving
the heavily constrained optimization problem, it has obtained the best-known solution
and become more robustness according to the number of successful finding solution
close to the best-known solution than previous methods.

3.5 Summary

DNA computing based genetic operators and DNA complementary double-helix
binary encoding can efficiently improve the global exploration performance and help
to determine the feasible regions of the nonlinear constrained problem, and the SQP
method can accelerate the convergence speed and increase the solution precision.
Therefore, the DNA-DHGA keeps a good balance between the local exploitation
and the global exploration and guarantees an accurate solution with more rapid
convergence speed. The convergence analysis based on theMarkovmodel has shown
the efficiency of DNA-DHGA theoretically. Moreover, six typical test functions of
nonlinear constrained optimization problems are selected, and the optimal results
show thatDNAdouble-helix structure, gene-level operators, and SQPmethod play an
important role in improving the efficiency, convergence speed, and solution accuracy
of GA.

76 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

Appendix

Six heavily constrained test functions:
f1:

min f (x) = (x2
1 + x2 − 11)2 + (x1 + x2

2 − 7)2

s.t. g1(x) ≡ 4.84 − (x1 − 0.05)2 − (x2 − 2.5)2 ≥ 0,

g2(x) ≡ x2
1 + (x2 − 2.5)2 − 4.84 ≥ 0,

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 6.

The optimal solution: x∗ = (2.246826, 2.381865), f ∗ = 13.59085.
f2:

min f (x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2 + 10x6

5 + 7x2
6 + x4

7

−4x6x7 − 10x6 − 8x7

s.t. g1(x) ≡ 127 − 2x2
1 − 3x4

2 − x3 − 4x2
4 − 5x5 ≥ 0,

g2(x) ≡ 282 − 7x1 − 3x2 − 10x2
3 − x4 + x5 ≥ 0,

g3(x) ≡ 196 − 23x1 − x2
2 − 6x2

6 + 8x7 ≥ 0,

g4(x) ≡ −4x2
1 − x2

2 + 3x1x2 − 2x2
3 − 5x6 + 11x7 ≥ 0,

− 10 ≤ xi ≤ 10, i = 1, . . . 7.

The optimal solution:

x∗ =(2.330499, 1.951372,−0.4775414, 4.365726,−0.6244870, 1.038131, 1.594227)

f ∗ =680.6300573

f3:

min f (x) = x1 + x2 + x3
s.t. g1(x) ≡ 1 − 0.0025(x4 + x6) ≥ 0

g2(x) ≡ 1 − 0.0025(x5 + x7 − x4) ≥ 0

g3(x) ≡ 1 − 0.01(x8 − x5) ≥ 0

g4(x) ≡ x1x6 − 833.33252x4 − 100x1 + 83333.333 ≥ 0

g5(x) ≡ x2x7 − 1250x5 − x2x4 + 1250x4 ≥ 0

g6(x) ≡ x3x8 − x3x5 + 2500x5 − 1250000 ≥ 0

100 ≤ x1 ≤ 10000

1000 ≤ (x2, x3) ≤ 10000

10 ≤ xi ≤ 1000, i = 4, · · · , 8

Appendix 77

The optimal solution:

x∗ = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)

f ∗ = 7049.330923

f4

min f (x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

s.t. g1(x) ≡ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≥ 0

g2(x) ≡ 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5 ≤ 92

g3(x) ≡ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 ≥ 90

g4(x) ≡ 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23 ≤ 110

g5(x) ≡ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≥ 20

g5(x) ≡ 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4 ≤ 25

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45, i = 3, 4, 5.

The optimal solution: x∗ = (78, 33, 29.995, 45, 36.776), f ∗ = −30665.5.
f5:

min f (x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

s.t. g1(x) = 105 − 4x1 − 5x2 + 3x7 − 9x8 ≥ 0,

g2(x) = −10x1 + 8x2 + 17x7 − 2x8 ≥ 0,

g3(x) = 8x1 − 2x2 − 5x9 + 2x10 + 12 ≥ 0,

g4(x) = −3(x1 − 2)2 − 4(x2 − 3)2 − 2x23 + 7x4 + 120 ≥ 0,

g5(x) = −5x21 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0,

g6(x) = −x21 − 2(x2 − 2)2 + 2x1x2 − 14x5 + x6 ≥ 0,

g7(x) = −0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x25 + x6 + 30 ≥ 0,

g8(x) = 3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0,

−10 ≤ xi ≤ 10, i = 1, · · · , 10.

The optimal solution:

x∗ = (2.171996, 2.363683, 8.773926, 5.095984, 0.9906548, 1.430574,

1.321644, 9.828726, 8.280092, 8.375927)

f (x∗) = 24.3062

f6:

78 3 DNA Double-Helix and SQP Hybrid Genetic Algorithm

min f (x) = −
∣
∣
∑n

i=1 cos
4(xi) − 2

∏n
i=1 cos

2(xi)
∣
∣

√∑n
i=1 i xi

s.t.
∏n

i=1
xi ≥ 0.75

∏n

i=1
xi ≤ 7.5n

0 ≤ xi ≤ 10, i = 1, · · · , n

The current best solution: f ∗ = −0.803553.

References

1. Michalewicz, Z. 1994. Genetic Algorithms + Data Structures = Evolution Programs. Springer
Science & Business Media.

2. Sivanandam, S, and S Deepa. 2008. Genetic Algorithms. In Introduction to genetic algorithms,
15–37. Springer.

3. Cukras, A.R., et al. 1999. Chess games: A model for RNA based computation. Biosystems 52
(1–3): 35–45.

4. Boneh, D., et al. 1996. On the computational power of DNA. Discrete Applied Mathematics
71 (1–3): 79–94.

5. Adleman, L.M. 1994. Molecular computation of solutions to combinatorial problems. Science
266 (1): 1021–1024.

6. Ding, Y, and LRen. 2000.DNA Genetic Algorithm For Design of the Generalized Membership-
Type Takagi-Sugeno Fuzzy Control System. In 2000 IEEE international conference on systems,
man and cybernetics. IEEE.

7. Yoshikawa, T, Furuhashi, and Y Uchikawa. 1997. The effects of combination of DNA coding
method with pseudo-bacterial GA. In Proceedings of 1997 IEEE international conference on
evolutionary computation (ICEC’97). IEEE.

8. Tao, J.L., and N. Wang. 2007. Engineering, DNA computing based RNA genetic algorithm
with applications in parameter estimation of chemical engineering processes. Computers &
Chemical Engineering 31 (12): 1602–1618.

9. Yan, W., et al. 2006. A hybrid genetic algorithm-interior point method for optimal reactive
power flow. IEEE Transactions on Power Systems 21 (3): 1163–1169.

10. Myung, H., and J.H. Kim. 1996. Hybrid evolutionary programming for heavily constrained
problems. Biosystems 38 (1): 29–43.

11. Gudla, P.K., and R. Ganguli. 2005. An automated hybrid genetic-conjugate gradient algorithm
formultimodal optimization problems.Applied Mathematics Computation 167 (2): 1457–1474.

12. Başokur, A.T., I. Akca, and N.W. Siyam. 2007. Hybrid genetic algorithms in view of the
evolution theorieswith application for the electrical soundingmethod.Geophysical Prospecting
55 (3): 393–406.

13. Tao, J., and N. Wang. 2008. DNA double helix based hybrid GA for the gasoline blending
recipe optimization problem. Chemical Engineering Technology 31 (3): 440–451.

14. Ponsich, A., et al. 2008. Constraint handling strategies in Genetic Algorithms application to
optimal batch plant design. Chemical Engineering and Processing 47 (3): 420–434.

15. Rey Horn, J., N Nafpliotis, and D. E. Goldberg. 1994.A niched Pareto genetic algorithm
for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary
computation, IEEE world congress on computational intelligence. Citeseer.

16. Chakraborty, U.K., and C.Z. Janikow. 2003. An analysis of Gray versus binary encoding in
genetic search. Information Sciences 156 (3): 253–269.

References 79

17. Tao, J., and Wang, N. 2007. DNA computing based RNA genetic algorithm with applica-
tions in parameter estimation of chemical engineering processes. Computers and Chemical
Engineering 31 (12): 1602–1618.

18. Athreya, K.B., and P. Ney. 1978. A new approach to the limit theory of recurrent Markov
chains. Transactions of the American Mathematical Society 245: 493–501.

19. Rosenthal, J.S. 1995.MinorizationConditions andConvergenceRates forMarkovChainMonte
Carlo. Publications of the American Statistical Association 90 (430): 558–566.

20. Deb, K. 2000. An efficient constraint handling method for genetic algorithms. Computer
Methods in Applied Mechanics Engineering 186 (2): 311–338.

Chapter 4
DNA Computing Based Multi-objective
Genetic Algorithm

In this chapter, DNA computing based non-dominated sorting genetic algorithm is
described for solving the multi-objective optimization problems. First, the inconsis-
tent multi-objective functions are converted into Pareto rank value and density infor-
mation of solution distribution. Then, the archive is introduced to keep thePareto front
individuals by Pareto sorting, and the maintaining scheme is executed to maintain
the evenness of individual distribution in terms of individual crowding measuring.
Finally, the gene-level operators of DNA computing are adopted to enhance the
global searching capability of a multi-objective genetic algorithm (MOGA). The
convergence speed is analyzed, and several suggestions on parameter setting are
given based on the convergence analysis. Six multi-objective numeric functions are
given, and the application results have shown the efficiency of DNA-MOGA in the
evenness of population distribution and the convergence near the Pareto frontier.

4.1 Introduction

Multiple noncommensurable and simultaneously competing objectives are involved
inmanymulti-objective optimization problems. If preference articulation of multiple
objectives is aggregated into a scalar function with adequate weights, the multi-
objective optimization problem can be transformed into a single-objective optimiza-
tion problem,which can be solved bymanymethods [1]. However, various objectives
often conflict with one another, and it is often unrealistic to obtain a single optimal
solution for a multi-objective optimization problem. Hence, a group of compromise
solutions will be derived through a multi-objective optimization algorithm, then, the
decision maker will select one among those representative solutions.

Since Sckaffer first proposed Vector Evaluated Genetic Algorithm (VEGA) in
1985 [2], multi-objective evolution algorithms (MOEAs), such as PAES [3], SPEA2
[4], NSGA-II [5], etc., have gained significant attention from various fields. As the
Pareto frontier is a set of solutions for multi-objective optimization problems, there

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_4&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_4

82 4 DNA Computing Based Multi-objective Genetic Algorithm

are two targets when applying the multi-objective optimization algorithm, that is,
converge to the Pareto frontier and solution diversity preservation. Therefore, the
individual fitness value according to the Pareto dominated relationship, as well as
individual density information, is calculated by MOEAs. The corresponding indi-
vidual maintaining and updating strategies are also studied in-depth. Usually, the
individual updating strategy is implemented according to Pareto dominated relation-
ship. In the cases that the individuals do not dominate each other, the individual
density information considering the diversity index should be used. Though many
schemes have considered the evenness degree of individual distribution, there are still
short of the concrete measurement index. Some existing indexes are too complex to
be applied easily in MOEA. Knowles et al. proposed an adaptive grid archiving
strategy in PAES that provably maintained solutions in some “critical” regions of
the Pareto front set once they were found [3]. Deb et al. computed the evenness of
individual distribution using the cluster analysis method, however, the computing
complexity was O(N 3) with population size N [6].

As for theoretical research of MOEA, though most of MOEAs obtained satisfac-
tory results of test functions, they lack theoretical analysis to guarantee the conver-
gence of the solution distribution.Because of the importance of convergence analysis,
theoretical research is carried out gradually. Rudolph proved that MOEA converged
to the Pareto-optimal set with probability 1 [7]. The convergence of MOEA was
usually analyzed by the Markov chain model without consideration of the evenness
of individual distribution [8]. Laumanns et al. introduced the concept of ε-dominance
and established MOEAs with the desired convergence and distribution properties,
however, the convergence ofMOEAwas not analyzed [9]. Zitzler raised a theoretical
analysis method to evaluate the performances of MOEA [10].

In this chapter, a DNA computing based non-dominated sorting multi-objective
genetic algorithm (DNA-MOGA) is designed that guarantees both the progress
towards the Pareto-optimal set and the evenness distribution of whole non-dominated
solutions. The convergence of DNA-MOGA is analyzed based on Markov chain
model to prove the effectiveness of the algorithm theoretically.

First, the inconsistent multi-objective fitness functions are converted into a single-
objective function by Pareto sorting and individual crowding distance measuring.

Second, an external archive is introduced to keep the Pareto front individuals, and
a maintaining scheme is used to maintain the evenness of individual distribution.

Third, the gene-level operators of DNA computing are adopted to enhance the
global searching capability of DNA-MOGA.

Finally, six typical multi-objective test functions are applied to show an evenness
distribution of Pareto frontier and a quick convergence to the true Pareto-optimal set.

4.2 Multi-Objective Optimization Problems 83

4.2 Multi-objective Optimization Problems

Without loss of generality, multi-objective optimization algorithm seeks to optimize
a vector of noncommensurable and competing objectives or cost functions, and the
constrained multi-objective optimization problem is described as follows:

min f (x) = [f1(x), f2(x), . . . , fm(x)]
s.t. gi (x) ≤ 0, i = 1, 2, . . . , h, x ∈ Rn (4.1)

where fi (1 ≤ i ≤ m) is the objective function with totallym objectives, gi (1 ≤ i ≤
h) is the constraint condition, andx = [x1, x2 . . . xn] is the solution vector to be solved
with n variables. Solutions of the multi-objective optimization problem are a family
of points known as the Pareto-optimal solution set, where each objective component
of any point along with the Pareto frontier can only be improved by degrading at least
one of the other objective components [6]. In the absence of preference information
of the objectives, the Pareto ranking scheme is regarded as an appropriate approach
to represent the strength information of each individual in a MOEA [7]. The vectors
are compared according to the dominance relationship defined below [11].

Definition 4.1 (Dominance relationship) a vector x dominates another vector y,
denoted as x ≺ y, if

fi (x) ≤ fi (y), ∀i ∈ {1, 2, . . . ,m} (4.2)

f j (x) < f j (y), ∃ j ∈ {1, 2, . . . ,m} (4.3)

Based on the concept of the dominance, the Pareto set can be defined.

Definition 4.2 (Pareto set) Let F ⊆ Rn be a set of vectors, then the Pareto set F∗
of F is defined as follows: F∗ contains all vectors x ∈ F that are not dominated by
any other vector f ∈ F , i.e.

F∗ := {x ∈ F |� f ∈ F : f ≺ x} (4.4)

Vectors in F∗ are called the Pareto vectors of F. All Pareto set of F is denoted as
P∗(F). Moreover, for a given set F, the Pareto set F∗ is unique. Therefore, we have
P∗(F) = F∗. Since the Pareto set F∗ is of substantial size for multiple sets of F, the
determination of F∗ is quite difficult.

To illustrate the concept of Pareto-optimal solution set, the Pareto ranking scheme
for a bi-objectiveminimization problem is shown inFig. 4.1.As can be seen, it assigns
the same smallest ranking value 1 for all non-dominated vectors, while the domi-
nated ones are inversely ranked according to howmany individuals in the population
dominated them. The Pareto ranking was first introduced by Goldberg [12], and
successfully applied by NSGA-II, which ensures that all the non-dominated indi-
viduals in the population will be assigned rank 1 and removed from a temporary

84 4 DNA Computing Based Multi-objective Genetic Algorithm

Fig. 4.1 Schematic
illustration of Pareto ranking

1

1f

2f

i
1i +

1i −

rank 1

rank 2

rank 3

N ′

assertion, then a new set of non-dominated individuals will be assigned 2, and so
forth.

4.3 DNA Computing Based MOGA (DNA-MOGA)

Generally, the purpose ofMOEA is to find or approximate the Pareto set and keep the
diversity of Pareto-optimal solutions [1]. Hence, Pareto ranking and density values of
the individual distribution are utilized as two important attributes to each individual.
In this chapter, a fitness assignment strategy is designed and an external population
is utilized in order to search for an approximated optimal Pareto frontier, and the
maintaining scheme is also designed to keep the diversity of Pareto set. In addition, the
DNA gene-level operators are introduced to improve the global searching capability
of MOGA. Four crucial strategies to improve the performance of DNA-MOGA are
discussed as follows.

4.3.1 RNA Encoding

RNA nucleotide base in Chap. 2 is also adopted, 0123 instead of AUGC is used to
encode the variable to be solved, and the length of each variable is set as l. Since
there are n variables in Eq. 4.1, the length of one chromosome becomes L = nl.
Moreover, fitness values of multi-objective functions are calculated to analyze the
ranking and density values of the chromosome. Thus, the structure of a chromosome
is obtained as shown in Fig. 4.2. For a general multi-objective optimization problem,
the quaternary encoding chromosomewith the length of nl is generated randomly for
n variables, Pareto sorting rank and density information are recorded in the (nl + 1)

Fig. 4.2 The encoding and
structure of one chromosome

103 2131 20 23 01 m
l l l

n

rank f f� � � � �������� ������� �������
�����������������������

4.3 DNA Computing Based MOGA (DNA-MOGA) 85

th location, and the fitness values of m objective functions are also recorded in the
chromosome. The total length of a chromosome is then nl+m+1, where the former
nl uses the quaternary encoding and the latter m + 1 decimal numbers are obtained
in terms of the former quaternary encoding. The decoding process of quaternary
encoding is the same as that in Chap. 2.

03 · · · 21
︸ ︷︷ ︸

l

31 · · · 20
︸ ︷︷ ︸

l

· · · 23 · · · 01
︸ ︷︷ ︸

l
︸ ︷︷ ︸

n

rank f1 · · · fm

4.3.2 Pareto Sorting and Density Information

The rank value of Pareto sorting for the individuals has been described in Fig. 4.1.
However, the ranking method may fail when most of the individuals do not domi-
nate one another, i.e., all individuals have rank 1. Therefore, additional density
information is incorporated to discriminate among individuals with identical rank
value. Thus, any multi-objective optimization problem can be converted into a bi-
objective optimization problem, i.e., minimizing the ranking value and maximizing
the crowding distance [5], which can be further changed into a single-objective
optimization problem through some modifications.

In Fig. 4.3, the size of individuals in the Pareto frontier with rank 1 is N ′ and the ith
individual is alongside the Pareto frontier. The calculation of the density information
for the ith individual for a bi-objective optimization problem is described as follows:

d ′
i = 1

/
∑2

j=1
(f i+1

j − f i−1
j) (4.5)

According to Eq. 4.5, the density value is inversely proportional to the perimeter
of a rectangle composed of the dotted line, so the more crowding the individual
distribution, the larger the individual density value. For the boundary individuals
(1th and N ′th), the rectangle is regarded as infinite and the density value is set to 0.

Fig. 4.3 Schematic
illustration of individual
density calculation

1

1f

2f

i
1i +

1i −
L

L rank 1

rank 2

rank 3

N ′

86 4 DNA Computing Based Multi-objective Genetic Algorithm

After a simple transformation, e.g., reciprocals operation in Eq. 4.5, themaximiza-
tion crowding distance is changed into the minimization problem that is consistent
with the rank value. As the minimum of Pareto sorting rank is 1, d ′

i is normal-
ized to di = d ′

i

/

dmax, where dmax is the maximum of the current d ′
i . Hence, a

single-objective fitness function can be derived:

Ff it (i) = irank + λdi (4.6)

where irank is the Pareto sorting rank obtained by non-dominated sorting algorithm
that requires O(mN ′2) comparisons [5], and λ = 0.99 is a coefficient to guarantee
Ff it (i) less than irank + 1. Equation 4.6 changes the multi-objective optimization
problem into a single-objective optimization problem by combining the rank value
together with the density information. The calculation complexity of density value
is dependent on the sorting algorithm for the current Pareto frontier, and the sorting
algorithm requires O(mN ′ log N ′) computations. Hence, the overall computational
complexity of the fitness calculation is O(mN ′2).

Matlab Pseudocode of non-dominated sorting algorithm can be obtained from [5],
and the code can be gained from their website. All the individuals in the first front
are given rank 1, the second front individuals are assigned rank 2, and so on. After
assigning the rank, the crowding in each front can be calculated in terms of Eq. 4.6.

4.3.3 Elitist Archiving and Maintaining Scheme

In terms of Eq. 4.6, the individuals satisfying Ffit < 2 are obviously the elitists,
which will be kept at an archive. At each generation (g), a Pareto approximated set
F will be produced and stored to the archive. Thus, the archive size will increase
with the evolution process, and it may be far larger than N . Obviously, too many
solutions cannot help decision maker deal with the problem. The desirable solution
set is an approximation of F∗ that dominates all elements of F and of bounded size.
Hence, the maximal size of the elitist archive is limited to N . If the size of elitist
archive (N ′) is larger than N , the maintaining scheme for the archive size limitation
is implemented to keep the individual diversity and evenness distribution of the
individuals. The following principles are abided by: if the new individual dominates
partial individuals in the archive, then, the dominated ones are eliminated from the
archive and the new individual is added, else, if the individuals do not dominate one
another, themaintaining scheme is performed tomake the archive size not larger than
N and keep the evenness of individual distribution in the archive. Whether it can be
added to the archive is depending on the Pareto rank. The computational complexity
of the maintaining scheme is similar to the Pareto non-dominated sorting algorithm
depending on the size of the elitist archive, i.e., O(mNN ′). When all individuals in
the archive are along the Pareto frontier, a modified adaptive cell density evaluation
scheme is implemented that is originated from [13], as shown in Fig. 4.4.

4.3 DNA Computing Based MOGA (DNA-MOGA) 87

Fig. 4.4 Density map and
density grid of the Pareto
frontier

1 432

1

4

3

2

1f

2f

After elitist keeping, all individuals in the archive are non-dominated ones. If the
archive size is still larger than N , the maintaining scheme is carried out to guarantee
that atmost one individual is kept at each cell. For example, there are three individuals
at cell ‘A’ in Fig. 4.4, and two individuals will be removed by themaintaining scheme.
The cell width in each dimension of objective functions can be calculated as

gwi = [max fi (x) − min fi (x)]
/

Ki (4.7)

where gwi is the cell width in the ith dimension at generation (g), Ki denotes the
number of cells designated for the ith dimension, e.g., in Fig. 4.4, and there exist
16 cells if K1 = K2 = 4. Since the maximal and minimal fitness values in the
objective space will change with the process of evolution, the cell size will vary from
generation to generation.

At every generation (g), the cell information is first calculated in terms of Eq. 4.7,
and the cells with more than 1 individual will be maintained. The main procedure of
the maintaining scheme is given as follows [14].

(1) Calculate the width of the cell (gwi) and add ζ to gwi in order to guarantee that
all individuals locate in the cell but are not at the boundary line of the cell.

(2) Repeat to find the position of each individual and judgewhether there exist other
individuals in the cell; if so, compare the fitness value obtained by Eq. 4.6 and
keep the best individual, else the individual is directly added to the archive.
Through the above procedure, there is at most one individual in a cell. The calcu-
lation complexity of the maintaining scheme is O(N ′2) to locate the position of
the individuals, where N ′ is the archive size, N ′ > N .
By using the elitist archive and its maintaining scheme, the diversity of the
population is kept, and the archive size (N ′) satisfies K j < N ′ <

∑m
j=1 K j .

When there are two or more individuals in a cell, the excessive individuals will
be deleted. Matlab code of the maintenance function is given as follows:

88 4 DNA Computing Based Multi-objective Genetic Algorithm

function CompressedData=maintainf(RawData,ColumnIndex, Count)

% RawData is individuals in the archive, ColumnIndex is nl+M+V, Count is

Population size

[m,n]=size(RawData);

TempPoint=zeros(1,n);

for i=m:-1:2

 for j=1:1:i-1

 if RawData(j,ColumnIndex)>RawData(j+1,ColumnIndex)

 TempPoint=RawData(j,:);

 RawData(j,:)=RawData(j+1,:);

 RawData(j+1,:)=TempPoint;

 end

 end

end

% Locate the cell position

maxX=max(RawData(:,ColumnIndex));

minX=min(RawData(:,ColumnIndex));

maxY=max(RawData(:,ColumnIndex+1));

minY=min(RawData(:,ColumnIndex+1));

 % obtain the length of cell

unitX=(maxX-minX)/Count+1e-4;

unitY=(maxY-minY)/Count+1e-4;

SelectedDataFirst=[zeros(1,ColumnIndex-1),100,100,0,0];

for i=1:m

 areaX=ceil((RawData(i,ColumnIndex)-minX)/unitX+1e-8);

 areaY=ceil((RawData(i,ColumnIndex+1)-minY)/unitY+1e-8);

 [mm,nn]=size(SelectedDataFirst);

 flag=0;

 for j=1:mm

 if SelectedDataFirst(j,nn-1)==areaX &&

SelectedDataFirst(j,nn)==areaY

 flag=1;

 if SelectedDataFirst(j,ColumnIndex)>RawData(i,ColumnIndex)

&&

SelectedDataFirst(j,ColumnIndex+1)>RawData(i,ColumnIn

dex+1)

SelectedDataFirst(j,1:ColumnIndex+1)=RawData(i,:); %COPY the X

information

 end

 end

 end

 if flag == 0

SelectedDataFirst=[SelectedDataFirst;[RawData(i,:),areaX,areaY]];

 end

end

[mm,nn]=size(SelectedDataFirst);

SelectedDataFirst=SelectedDataFirst(2:1:mm,:);

CompressedData=SelectedDataFirst(:,1:ColumnIndex+1);

4.3 DNA Computing Based MOGA (DNA-MOGA) 89

4.3.4 DNA Computing Based Crossover and Mutation
Operators

When solving the single-objective optimization problem, various crossover and
mutation operators are proposed and the shortcomings of SGA can be alleviated
greatly [15]. Recently, DNA computing based gene-level operators have made some
significant achievements [16, 17]. However, most of MOEAs utilize the traditional
crossover and mutation operators. In this chapter, DNA computing based crossover
and mutation operators are utilized to improve the global searching capability of
MOGA.

(1) Selection operator

Because the population in the archive is composed of the non-dominated individuals,
they are directly selected as the parents of the genetic operators. If the number of
the non-dominated individuals N ′ is less than N , the random selection for a better
individual with the value of Eq. 4.6, is adopted to choose the rest (N − N ′) of the
individuals. TheMatlab code is given as follows: Note that the proportional selection
and Roulette wheel selection can also be used here.

function parent_chromosome=chooserest(BestS,SizeBestS,chromosome,pop,BsJi)

% BestS is the individuals in the archive, SizeBestS is N , pop is

population size

if SizeBestS<=pop

 parent_chromosome(1:SizeBestS,:)=BestS;

 kk=SizeBestS+1;

 while kk<=pop

 choose_1=kk;

 choose_2=ceil(rand*pop); % randomly selected individual

 while choose_1==choose_2

 choose_2=ceil(rand*pop);

 end

 if BsJi(choose_1)<=BsJi(choose_2) %better individual is selected.

 parent_chromosome(kk,:)=chromosome(choose_1,:);

 kk=kk+1;

 else

 parent_chromosome(kk,:)=chromosome(choose_2,:);

 kk=kk+1;

 end

 end

 else

 parent_chromosome(1:pop,:)=BestS(1:pop,:);

 end

90 4 DNA Computing Based Multi-objective Genetic Algorithm

(2) Crossover and mutation operators

Since DNA sequence is made up of four nucleotide bases, i.e., Adenine (A), Uracil
(U), Guanine (G), and Cytosine (C). The quadruple encode is also selected as the
encoding of chromosomes. Three operations on a single RNA sequence: transloca-
tion, transformation, and permutation are adopted as the crossover operators [18].
While three operations for mutation of nucleotide base: reversal, transition, and
exchange are utilized as the mutation operators [18]. The corresponding description
about RNA crossover and mutation operators, and their Matlab code can refer to
Chap. 2.

4.3.5 The Procedure of DNA-MOGA

InDNA-MOGA, a fitness function using Pareto sorting rankwith density information
is given in Sect. 3.2. The elitist individuals are then kept in the archive. To keep the
evenness distribution of the elitist, a maintaining scheme is designed based on the
adaptive cell. DNAcomputing based crossover andmutation operators are introduced
to improve the global searching capability ofMOGA. The whole procedure of DNA-
MOGA is described in the following steps.

Step 1: Initialize the population size N, the number of cells for the ith dimension
Ki, and the maximum generation G.

Step 2: Generate theN quaternary encoding chromosomes randomly in the search
space, decode, and calculate the fitness value in terms of Eq. 4.6.

Step 3: Keep the elitists in the archive and maintain the archive when the number
of archive individuals N ′ is larger than N .

Step 4: Select the archive population as the parents of the genetic operators. If
N ′ < N , use the random selection operation for choosing the rest of the individuals.

Step 5: Carry out the crossover operator in the best N /2 individuals in terms of
the value of the single-objective function Eq. 4.6, where the permutation operator
is implemented with probability 1 and the transformation operator is implemented
with probability 0.5. If the transformation operator is not performed, the translocation
operator is then implemented. N offspring are generated by the crossover operator.

Step 6: Implement themutation operator in the leftN /2 individuals. The nucleotide
base is replaced by one of the three integers when themutation operator is performed.

Step 8: Repeat steps 3–6 until the termination criterion is met, that is, the set
maximal generation or the set minimal distance to the true Pareto frontier is satisfied.

4.3.6 Convergence Analysis of DNA-MOGA

At present, the convergence analysis of MOEA mainly lies in the infinite Pareto
solutions [9]. In this chapter, the elitists are kept in the archive with bounded size,

4.3 DNA Computing Based MOGA (DNA-MOGA) 91

and the convergence is analyzed according to the above definition of Pareto non-
dominated relationship and the running procedure of DNA-MOGA.

Theorem 4.1 Let F (g) = ∪g
j=1 f

(j)
i , 1 ≤ f (j)

i ≤ N ′, i ∈ {1, . . . ,m} be the set of
elitists in the archive and maintained by the maintaining scheme. Then A(g) is an
approximated Pareto set of F (g) with bounded size

∣

∣A(g)
∣

∣, i.e., (1) A(g) ∈ P∗(F (g)),
(2)

∣

∣A(g)
∣

∣ ≤ ∑m
i=1 Ki .

Proof

(1) Suppose A(g) /∈ P∗(F (g)) is at generation g. According to Definition 4.2, the
case occurs only if f is not dominated by any individual of A(g) or not in A(g).

For f that is not in A(g), i.e., f is not an elitist or f is an elitist but removed later
on. Removal, however, only takes place when some new f p enters the archive which
dominates f . The case contradicts the assumption that f is not dominated by any
individuals of A(g). Likewise, removal takes place in the maintaining scheme when
f p and f are located in the same cell, i.e., both of them are individuals in the Pareto
frontier, and the fitness value of f p is superior to f ’s, which contradicts with the
assumption that f is not in A(g).

For f in A(g), however, f does not belong to the Pareto-optimal set. Hence, there
exists f p ∈ F∗(g) that f p ≺ f . If this is the case, f will be eliminated by elitist
maintaining scheme, i.e., f /∈ A(g), which contradicts the assumption.

(2) In terms of the maintaining scheme, the objective spaces are divided into
∏m

i=1 Ki cells. For A(g) ∈ P∗(F (g)), only those with rank 1 is maintained,
and at most one individual can be kept at each cell. Therefore, the maximum
number of individuals distributed at the cells is

∑m
i=1 Ki , i.e.,

∣

∣A(g)
∣

∣ ≤ ∑m
i=1 Ki .

Theorem 4.2 If
∣

∣A(g)
∣

∣ ≤ N , DNA-MOGA converges to the Pareto-optimal set with
probability 1.

Proof In terms of theorem 4.1, the size of Pareto-optimal set
∣

∣A(g)
∣

∣ is the boundary.
If the transition probability matrix (P) is the finite state homogeneous Markov
chain, then the state of the population is ergodic. Because the elitist maintaining
scheme is adopted in DNA-MOGA, the Pareto-optimal individual can be kept and
the dominated ones are eliminated finally.

Since the population size is finite and the crossover and mutation operators with
elitist are adopted in DNA-MOGA, the transition probability matrix has been proved
as the finite states homogeneous Markov chain in [19], i.e., the whole state of popu-
lation can be reached by DNA-MOGA. Obviously,

∣

∣A(g)
∣

∣ ≤ N is the premise of the
ergodicity.

In terms of theorem 4.1 and 4.2, DNA-MOGA can not only converge to the
Pareto-optimal set with probability 1 but also keep the evenness of the population
distribution usingmaintaining scheme. Though

∣

∣A(g)
∣

∣ ≤ N is required by the conver-

gence analysis,
∣

∣A(g)
∣

∣ = ∑k
i=1 Ki is an extreme number obtained by DNA-MOGA.

Hence, it is not necessary for N to be larger than
∑m

i=1 Ki , however, N should be at
least greater than max(Ki).

92 4 DNA Computing Based Multi-objective Genetic Algorithm

4.4 Simulations on Test Functions by DNA-MOGA

4.4.1 Test Functions and Performance Metrics

Six test problems are used to examine the performances of DNA-MOGA as listed
in the Appendix, where ZDT3, ZDT4, and ZDT6 were designed by Zitzler, as can
be found in [4] and [20], and other test functions include DEB, FON, and KUR
problems. These problems have characteristics that are suitable for examining the
effectiveness of multi-objective optimization approaches in terms of maintaining the
population diversity, as well as converging to the Pareto frontier. Many researchers,
such as Zitzler et al. [4], Deb et al. [5], Knowles and Corne [13], and Tan et al. [21],
have used these test problems in their research on MOEAs.

Three different quantitative performance metrics for multi-objective optimization
approaches are utilized, which are capable of evaluating non-dominated individuals
and widely used in the different MOEAs [4, 5, 21].

(1) GenerationalDistance (GD): Themetric of generational distance represents how
“far” the known Pareto front (PFknown) is from the true Pareto front (PFtrue),
which is defined as

GD =
(

1

nPF

nPF
∑

i=1

d2
i

)1/ 2

(4.8)

where nPF is the number of individuals in PFknown , and di is the Euclidean distance
in the objective domain between the individuals in PFknown and its nearest individual
in PFtrue. The smaller the value of GD, the better the approximation of the Pareto-
optimal set becomes.

(2) Evenness Spacing (ES): The metric of spacing measures how “even” the
individuals in PFknown are distributed. It is defined as

ES =

[

1
nPF

nPF∑

i=1
(d ′

i − d̄ ′)2
]1/ 2

d̄ ′ , d̄ ′ = 1

nPF

nPF
∑

i=1

d ′
i (4.9)

where d ′
i is the Euclidean distance in the objective domain between the ith individual

in PFknown and its nearest one. The smaller the value of ES, the more evenness the
distribution of Pareto frontier will be.

(3) Maximum Spread (MS): The metric of maximum spread measures how ‘well’
the PFtrue is covered by the PFknown through hyper-boxes formed by the
extreme function values observed in the PFtrue and PFknown . In order to
normalize the metric, it is described as

4.4 Simulations on Test Functions by DNA-MOGA 93

MS =
√

√

√

√
1

m

m
∑

i=1

{

[min(fmax
i , Fmax

i) − max(fmin
i , Fmin

i)]
Fmax
i − Fmin

i

}2

(4.10)

wherem is the number of objectives, fmax
i and fmin

i are themaximumandminimum

values of the ith objective function in PFknown; Fmax
i and Fmin

i are the maximum
and minimum values of the ith objective in PFtrue, respectively. The maximum of
MS is 1, which shows that the extremum of each objective function is covered by the
solutions in the Pareto frontier.

4.4.2 Calculation Results

When DNA-MOGA is used, quaternary encoding is adopted to simulate four
nucleotide bases, the individual length for each variable is set to 10, initial population
size N is set to 60, the maximum generation number is limited to 10000, and the
cell number for each objective dimension Ki is set to 50. The runs of DNA-MOGA
terminate when SD < 10−3 is satisfied or the maximum generation is performed.
NSGA-II is also used to optimize the same multi-objective optimization problems
and compared with DNA-MOGA. NSGA-III has obtained a great improvement in
solving the multi-objective problem with more than two objectives [22], here, it is
not adopted to solve the bi-objective optimization functions.

Two MOEAs are run 50 times, respectively, and the best results with Pareto
frontier are selected as the final results. The simulation results are illustrated in
Figs. 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, and listed in Table 4.1. It can be seen that the DNA-
MOGA guarantees both progress towards the Pareto-optimal frontier and covering
the whole range of non-dominated solutions evenly. For DEB problem and ZDT4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

Pareto-optimal front
NSGA-II

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f1

f 2

Pareto-optimal front
DNA-MOGA

Fig. 4.5 Pareto-optimal solutions to FON problem found by DNA-MOGA and NSGA-II

94 4 DNA Computing Based Multi-objective Genetic Algorithm

-20 -19 -18 -17 -16 -15 -14
-12

-10

-8

-6

-4

-2

0

2

f
1

f 2

Pareto-optimal front
NSGA-II

-20 -19 -18 -17 -16 -15 -14
-12

-10

-8

-6

-4

-2

0

2

f
1

f 2
Pareto-optimal front
DNA-MOGA

Fig. 4.6 Pareto-optimal solutions to KUR problem found by DNA-MOGA and NSGA-II

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

f
1

f 2

Pareto-optimal front
DNA-MOGA

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

f
1

f 2
Pareto-optimal front
NSGA-II

Fig. 4.7 Pareto-optimal solutions to DEB problem found by DNA-MOGA and NSGA-II

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

Pareto-optimal set
DNA-MOGA

0 0.2 0.4 0.6 0.8 1
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

f
1

f 2

Pareto-optimal front
NSGA-II

Fig. 4.8 Pareto-optimal solutions to ZDT3 problem found by DNA-MOGA and NSGA-II

4.4 Simulations on Test Functions by DNA-MOGA 95

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2
Pareto-optimal front
DNA-MOGA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

f
1

f 2

Pareto-optimal front
NSGA-II

Fig. 4.9 Pareto-optimal solutions to ZDT4 problem found by DNA-MOGA and NSGA-II

Table 4.1 The comparison results for test problems over 50 runs

Test problems NSGA-II DNA-MOGA

SD ES MS SD ES MS

FON 0.0014 0.6236 1.0000 0.0012 0.3032 0.9948

KUR 0.0056 0.6717 1.0000 0.0045 0.9995 0.9935

DEB 0.0723 0.7114 0.7181 0.0056 0.4403 0.9981

ZDT3 0.0069 0.6374 0.9333 0.0058 0.4620 0.9311

ZDT4 0.0956 0.7425 0.7279 0.0021 0.4589 0.9999

ZDT6 0.0069 0.5811 1.0000 0.0049 0.2304 1.0000

problem with many local minima and fraudulence characteristics, the advantages
of DNA-MOGA are especially obvious from Figs. 4.7 and 4.9, and the measure
of SD in Table 4.1 also shows the improvement of DNA-MOGA in approximating
to the Pareto-optimal solution set. The metrics of ES indicate the superiority of
DNA-MOGA in the evenness of population distribution except for theKURproblem.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2

Pareto-optimal front
DNA-MOGA

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Pareto-optimal front
NSGA-II

Fig. 4.10 Pareto-optimal solutions to ZDT6 problem found by DNA-MOGA and NSGA-II

96 4 DNA Computing Based Multi-objective Genetic Algorithm

Concerning the measure of MS, because one cell is required to keep at most
one individual, the individual with larger fitness value but better single-objective
value will be removed, which may affect the performance of MS. The comparison
results from Table 4.1 illuminate this deficiency of DNA-MOGA, especially the
KUR problem. Since the Pareto front of the KUR problem is noncontinuous and
the distance between 2 noncontinuous frontiers is relatively large, the drawback of
DNA-MOGA is then prominent and themetrics ofES is inferior toNSGA-II’s, which
can be improved by increasing the number of the cells. However, the computation
burden will become heavy with the increasement of the cell number. Since SD and
ES are the main indexes of the multi-objective optimization problem, DNA-MOGA
is superior to NSGA-II as a whole.

4.5 Summary

TheDNAcomputing based non-dominated sorting genetic algorithm is suggested for
multi-objective optimization problems. The inconsistentmulti-objective fitness func-
tions are converted into a single-objective function by Pareto sorting and individual
crowding measuring. And an external archive is introduced to keep the individuals
in the Pareto frontier, and the maintaining scheme is designed to keep the even-
ness of individual distribution. The gene-level operators of DNA computing are also
adopted to enhance the global searching capability of MOGA. Convergence analysis
and simulation results on typical multi-objective test problems show the improve-
ment of DNA-MOGA in the spread of solutions and the convergence near the true
Pareto-optimal set.

Appendix

Typical multi-objective test problems

Appendix 97

Pr
ob
le
m
s

T
he

m
in
im

um
ob
je
ct
iv
e
fu
nc
tio

ns
O
pt
im

al
so
lu
tio

ns
C
om

m
en
ts

D
E
B

f 1
(x

)
=

x 1

f 2
(x

)
=

g/

f 1
(x

)

g
=

2
−

ex
p{

−(

x 2
−

0.
2

0.
00
4

)
2
}

−
0.
8
ex
p{

−(

x 2
−

0.
6

0.
4

)
2
}

x i
∈[

0.
1,
1]

i
=

1,
2

N
on
-c
on
ve
x

FO
N

f 1
(x

)
=

1
−

ex
p(

−
∑

3 i=
1

(x
i
−

1/
√ 3)

2
)

f 2
(x

)
=

1
−

ex
p(

−
∑

3 i=
1

(x
i
+

1/
√ 3)

2
)

x i
∈[

−4
,
4]

i
=

1,
2,

3

N
on
-c
on
ve
x

K
U
R

f 1
(x

)
=

∑
2 i=

1
[1

−
10

ex
p(

−0
.2

√

x2 i
+

x2 i+
1
)]

f 2
(x

)
=

∑
3 i=

1
[|x

i|0
.8

+
5
si
n(
x3 i

)]

x i
∈[

−5
,
5]

i
=

1,
2,

3

N
on
-c
on
ve
x

N
on
co
nt
in
uo
us

Z
D
T
3

f 1
(x

)
=

x 1

f 2
(x

)
=

g[1
−

(x
1
/

g)
1 /

2
−

x 1
si
n(
10

π
x 1

)/

g]
g

=
1

+
9(

∑
n i=

2
x i

/

(n
−

1)
)

f 1
(x

)
=

x 1

f 2
(x

)
=

g[1
−

(x
1
/

g)
1 /

2
−

x 1
si
n(
10

π
x 1

)/

g]
g

=
1

+
9(

∑
n i=

2
x i

/

(n
−

1)
)

x i
∈[

0,
1]

i
=

1,
2,

..
.,
30

C
on
ve
x,

di
sc
on
ne
ct
ed

Z
D
T
4

f 1
(x

)
=

x 1

f 2
(x

)
=

g[1
−

(x
1
/

g)
1 /

2
]

g
=

1
+

10
(n

−
1)

+
∑

n i=
2

[x2 i
−

10
co
s(
4π

x i
)]

x 1
∈[

0,
1]

x i
∈[

−5
,
5]

i
=

2,
···

,
10

N
on
-c
on
ve
x

Z
D
T
6

f 1
(x

)
=

1
−

ex
p(

−4
x 1

)
si
n6

(6
π
x 1

)

f 2
(x

)
=

g[1
−

(x
1
/

g)
2
]

g
=

1
+

9(
∑

n i=
2
x i

/

(n
−

1)
)
0.
25

x i
∈[

0,
1]

i
=

1,
2,

..
.,
10

N
on
-c
on
ve
x
no
n-
un
if
or
m
ly

sp
ac
ed

98 4 DNA Computing Based Multi-objective Genetic Algorithm

Matlab code of the main function for improved DNA-MOGA to solve the multi-
objective function

clc;

clear all;

close all;

global howlong G

fig=0;

G=10000; % Maximal generation

pop=60; % Population size

V=2; fmax=0; M=2; howlong=8; num=V;

CodeL=V*howlong;

Rep=1;

amax=ones(1,V);

amin=0.1*ones(1,V);

max_range=amax;min_range=amin;

 for rep=1:1:Rep

 t0=clock; SizeBestS1=0;deltkg=1;

 chromosome = initialize_variablesRNADEB(pop,M, V, min_range,

max_range);

 chromosome= non_domination_sort_modRNA(chromosome, M, V);

 BsJi=chromosome(:,CodeL+1);

 a=find(BsJi<2);%%%find the non-dominated individuals

 ma=size(a,1);

 BestS=[];

 for i=1:ma

 BestS=[BestS;chromosome(a(i),:)];

 end

kkk=1;

for kg=1:1:G

 time(kg)=kg;

 BsJi=chromosome(:,CodeL+1);

 a=find(BsJi<2);

 ma=size(a,1);

 for i=1:ma

 BestS=[BestS;chromosome(a(i),:)];

 end

 SizeBestS=size(BestS,1);

 tempBest= non_domination_sort_modRNA1(BestS, M, V);

 tempBsJi=tempBest(:,CodeL+1);

 a=find(tempBsJi<2);

 ma=size(a,1); BestS=[];

 for i=1:ma

 BestS=[BestS;tempBest(a(i),:)];
 end

Appendix 99

 SizeBestS=size(BestS,1);

 if SizeBestS>pop

 BestS=SelectComData(BestS(:,1:M+CodeL+1),CodeL+M,60);

 SizeBestS=size(BestS,1);

 deltsize(deltkg)=SizeBestS-SizeBestS1;

 deltkg=deltkg+1;

 SizeBestS1=SizeBestS;

 end

 if deltkg>1201

 sumdeltsize=sum(deltsize(deltkg-1200:deltkg-1));

 if sumdeltsize<1

 break;

 end

 end

 parent_chromosome=chooserest(BestS,SizeBestS,chromosome,pop,BsJi);

 [temp_chromosome1,indexp]=sort(parent_chromosome(:,CodeL+1));

 for i=1:pop

 parent_chromosome1(i,:)=parent_chromosome(indexp(i),:);

 end

 offspring_chromosome = ...

 genetic_operatorRNADEB(parent_chromosome1,i,pop,...

 M, V, min_range, max_range);

 chromosome=non_domination_sort_modRNA(offspring_chromosome, M, V);

end

wholetime=etime(clock,t0)

bestjj(rep,:,:)=BestS;

rep

end

 plot(BestS(:,CodeL + 2),BestS(:,CodeL + 3),'o');

 xlabel('f_1','fontsize',12);

 ylabel('f_2','fontsize',12);

References

1. Deb, K. 2001.Multi-objective optimization using evolutionary algorithms. JohnWiley& Sons.
2. Schaffer, J.D. 1985. Multiple Optimization with vector evaluated genetic algorithms. In

International conference on genetic algorithms.
3. Knowles, J.D., and D.W. Corne. 2000. Approximating the nondominated front using the pareto

archived evolution strategy, vol. 8.
4. Zitzler, E., K. Deb, and Thiele, L. 2000. Comparison ofmultiobjective evolutionary algorithms:

empirical results. Evolutionary Computation 8 (2): 173–195.
5. Deb,K., andD.Kalyanmoy. 2002.A fast and elitistmultiobjective genetic algorithm:NSGA-II.

IEEE Transactions on Evolutionary Computation 6 (2): 182–197.

100 4 DNA Computing Based Multi-objective Genetic Algorithm

6. Konak, A., Coit D.W., and Smith, A.E. 2006. Multi-objective optimization using genetic
algorithms: A tutorial. Reliability Engineering & System Safety 91 (9): 992–1007.

7. Rudolph,G. 1998.Onamulti-objective evolutionary algorithmand its convergence to thePareto
set. In IEEEWorld Congress on IEEE International Conference on Evolutionary Computation.

8. Rudolph, G.N., and A. Agapie. 2000. Convergence properties of some multi-objective
evolutionary algorithms. In Congress on Evolutionary Computation.

9. Laumanns,M., et al. 2002.Combining convergence and diversity in evolutionarymultiobjective
optimization. Evolutionary Computation 10 (3): 263–282.

10. Zitzler, E., et al. 2003. Performance assessment of multiobjective optimizers: An analysis and
review. IEEE Transactions on evolutionary computation 7 (2): 117–132.

11. Fonseca, C.M., and P.J.J.E.C. Fleming. 2014. An overview of evolutionary algorithms in
multiobjective optimization. 3 (1): 1–16.

12. Goldberg, D.E. 1989. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Boston, MA.

13. Knowles, J., and D. Corne. 1999. The pareto archived evolution strategy: A new baseline
algorithm for pareto multiobjective optimisation. In Proceedings of Congress on Evolutionary
Computation.

14. Tao, J., Q. Fan., and Chen X, et al. 2012. Constraint multi-objective automated synthesis for
CMOS operational amplifier.Neurocomputing 98: 108–113.

15. Michalewicz Z. 2013. Genetic algorithms+ data structures= evolution programs[M]. Springer
Science & Business Media.

16. Ren, L., et al. 2010. Emergence of self-learning fuzzy systems by a new virus DNA–based
evolutionary algorithm. International Journal of Intelligent Systems 18 (3): 339–354.

17. Jan, H.Y., C.L. Lin, and Hwang, T.S. 2006. Self-organized PID control design using DNA
computing approach. Journal of the Chinese Institute of Engineers 29 (2): 251–261.

18. Tao, J., and N.Wang. 2007. DNA computing based RNA genetic algorithmwith applications in
parameter estimation of chemical engineering processes. Computers Chemical Engineering31
(12): 1602–1618.

19. Liepins, G.E. 1992. Global convergence of genetic algorithms. Proceedings of SPIE - The
International Society for Optical Engineering 1766: 61–65.

20. Fonseca, C.M. and P.J. Fleming 2002. Multiobjective optimization and multiple constraint
handlingwith evolutionary algorithms. II.Application example. IEEETransactions on Systems,
Man Cybernetics, Part A 28 (1): 38–47.

21. Tan,K.C.,Y.J.Yang, andT.H.Lee. 2006.Adistributed cooperative coevolutionary algorithm for
multiobjective optimization. IEEETransactions onEvolutionaryComputation 10 (5): 527–549.

22. Mkaouer, W., M, Kessentini., and Shaout A, et al. 2015. Many-objective software remod-
ularization using NSGA-III. ACM Transactions on Software Engineering and Methodology
(TOSEM) 24 (3): 1–45.

Chapter 5
Parameter Identification
and Optimization of Chemical Processes

Because of the complex nonlinear characteristics of chemical processes, traditional
numerical optimization algorithms generally cannot be used to solve the modeling
and optimization problems. In this chapter, the estimation of model parameters
for heavy oil thermal cracking is firstly solved by RNA-GA. Then, we use DNA-
DHGA to solve the recipe optimization problem of gasoline blending with heavy
nonlinear inequality constraints. DNA computing based GAs are efficient in solving
the optimization problems in chemical processes.

5.1 Introduction

Complex chemical processes are often nonlinear with serious coupling of multiple
inputs and multiple outputs. The precise mathematical models of chemical processes
are requiredwith higher production requirements ofmodern industry [1]. The estima-
tion problem of the model parameters is actually approximated to the real industrial
processes by using the sampling data and minimizing the modeling error. The heavy
oil cracking chemical processes is chosen as an example of the chemical process
modeling [5]. The structure of three lumping models has been obtained, and there
are totally eight parameters to be estimated. Due to the nonlinear characteristics of
the process, traditional parameter estimation algorithms, such as the least squares
algorithm [6], maximum-likelihood method [7], etc., are not used to solve such
parameter estimation problems. Similarly, the parameter estimation of the FCCU
main fractionator was not easy to be solved by the traditional parameter estimation
method, due to the severe coupling between multiple variables [8]. In Chap. 2, an
RNA-GA is proposed based on DNA computing, which overcomes some shortcom-
ings of SGA. In this chapter, RNA-GA is applied to solve the parameter estimation
problem of the above two chemical processes [9]. Simulation results are illustrated to
show the effectiveness and practicability of RNA-GA in chemical process parameter
estimation.

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_5

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_5&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_5

102 5 Parameter Identification and Optimization of Chemical Processes

Except for the system identification of chemical processes, the system parameter
optimization of the chemical process, such as gasoline blending recipe optimization
[10], is also quite challenging. The reformulated gasoline has strict regulations on the
content of benzene and oxygen, Reid vapor pressure (RVP), olefin, and aromatics.
Refineries have to reduce production costs while meeting the gasoline quality spec-
ifications for a higher profit. On the one hand, the refinery uses advanced equipment
to improve the production efficiency and gasoline quality. On the other hand, the
blending technology is utilized to blend the multi-component oil, especially low-
grade gasoline according to a certain formula to produce high quality gasoline with
the lowest cost and qualified quality.

Gasoline blending is the last step of the refinery, and the blending efficiency
plays an important role in the economic benefits of production enterprises. The tank
blending is usually applied in traditional gasoline blender. The octane number in
different component gasolines should be known in advance, the proportion of each
component gasoline can then be determined. Because of the complex blending effect
of gasoline components, it is difficult to predict the octane number of the blended
gasoline [11]. Therefore, the octane number of blended gasoline is usually much
higher than the required index, which means that refineries have to bear unnecessary
and considerable economic losses every year. In order to obtain the target octane
number, the gasoline blending was simplified to a linear system, and GA was used
to solve the gasoline blending formula [12]. The basic particle swarm optimization
(PSO) algorithm and its improved algorithms were also used to solve the gasoline
blending optimization problem [13, 14]. However, the octane number was still higher
than the required index using the above methods.

Recently, many companies have done a lot of theoretical research and technology
development work. For example, the BOSS (Blending Optimization Scheduling
System) of Haverly Systems, can automatically calculate and optimize the blending
formula, reduce the surplus of various indicators, and eliminate the re-adjustment.
The software has been used in 16 refineries around the world. G-Spare software
of Honeywell Profimatics is another blending monitoring system, which has been
used in 12 blenders of 3 refineries. ABB Simcon has developed a blending control
software, which combines online optimization control with off-line formula calcula-
tion. They provide automatic calculations of economically optimal gasoline recipes
according to price analysis and refinery conditions [15, 16]. In China, many enter-
prises have developed gasoline blending systems, most of them are still at the level
of off-line optimization [17].

The product oil indexes, such as octane number and vapor pressure, etc., are
nonlinear functions of the gasoline components blending formula. Moreover, mate-
rial balance constraints and index constraints have to be satisfied in the blending
processes. Therefore, the calculation of the oil blending formula is a complex
constrained nonlinear optimization problem. Conventional optimization algorithms
are difficult to obtain satisfactory optimization solutions. The DNA-DHGA [20] in
Chap. 3 is then applied to solve the problem.

5.2 Problem Description of System Identification 103

5.2 Problem Description of System Identification

Due to the superior performances of RNA-GA, it is applied for model parameter
estimation problem, which is given as follows:

y(t) = g(u(t), θ) (5.1)

where y(t) is system output, u(t) is the system input vector, and θ = [θ1, θ2, . . . , θk]T
are the parameters to be estimated. The modeling error is a function of the system
output y(t) and the model output ŷ(t) when the system input u(t) is given. Suppose
the structure of the model g is known, the parameters θ = [θ1, θ2, . . . , θk]T can then
be estimated by minimizing the modeling error. Obviously, the parameter estimation
problem is essentially an optimization problem, where the objective function can be
defined as follows:

f (θ) =
ns−1∑

t=0

|y(t) − ŷ(t)| (5.2)

where ns is the number of samples. The framework to solve the model parameter
estimation problem can be illustrated by Fig. 5.1, where the RNA-GA algorithm is
used to identify the estimated parameters with the objective function. Because of
the nonlinearity and complication of chemical processes, traditional numerical opti-
mization methods for parameter estimation are ineligible and not applied here. Here,
the RNA-GA is used to solve the parameter estimation and optimization problems.
The implementation process of RNA-GA can be referred to in Chap. 2. It’s worth
noting that ns is crucial for the parameter estimation, because the larger ns is, the
more precise parameter estimation can be obtained, while the less ns is, the more
sensitive time delay becomes. Hence, ns should be selected according to the specific
issue.

Fig. 5.1 Framework of
solving the model parameter
estimation

×

RNA-GA

y

ŷ

e

() ((),)y t g t= u θ

ˆˆ() ((),)y t g t= u θ

u

+−

104 5 Parameter Identification and Optimization of Chemical Processes

5.2.1 Lumping Models for a Heavy Oil Thermal Cracking
Process

A heavy oil thermal cracking three lumping model has been described as follows [5]:

xL = KLP0e−ELP/T

nL
[1 − (1 − z)nL]

+ KWP0KWLP0e−(EWP+EWLP)/T

nW − KWLP0e−EWLP/T

{
1 − (1 − z)KWLP0e−EWLP/T

KWLP0e−EWLP/T
+ 1

nW

[
(1 − z)nW − 1

]
}

(5.3)

where z and T are input variables, and xL is the system output. RNA-GA is used to
estimate parameters in the above modelKLP0, KWP0, KWLP0, ELP, EWP, EWLP, nL, nW .
We chose 20 groups of data from [5], to estimate the unknown parameters. Here, the
optimization objective Eq. (5.2) is changed as follows:

f =
ns−1∑

i=0

|xL(i) − x̂L(i)| (5.4)

where x̃L is obtained by using Eq. (5.1). The bounds of the parameters to be esti-
mated are set as follows: KLP0 ∈ (0, 10), KWP0 ∈ (0, 10), KWLP0 ∈ (0, 10),
ELP ∈ (800, 1500), EWP ∈ (1500, 4000), EWLP ∈ (1500, 4500), nL ∈ (0, 5),
nW ∈ (0, 5). The maximum evolution generation of RNA-GA is set as 2000, and
the other parameters of RNA-GA are the same as those in Chap. 2. Run the RNA-
GA independently 50 times for the above model, and the best results are listed in
Table 5.1, where the comparisons of the results between RNA-GA and SGAmethods
are also listed. The best fitness value (Fb) of SGA is also calculated with the same
data as RNA-GA. We also compare the model outputs obtained by SGA and RNA-
GA with the same training and testing data. The corresponding outputs are shown in
Figs. 5.2 and 5.3.

All of the 56 groups of data provided by [5], are used as the test samples in order
to verify the efficiency of the above model parameters. The model outputs are shown
in Fig. 5.3. The value of the objective function of Eq. (5.4), is 1.2116 when using
SGA, while it is 0.8759 when using RNA-GA. From Figs. 5.2 and 5.3, and their
corresponding performance index listed in Table 5.1, we can find that the modeling
precision of RNA-GA is superior to that of SGA.

Table 5.1 Results of parameter estimation by SGA and RNA-GA

Methods KLP0 KWP0 KWLP0 ELP EWP EWLP nL nW Fb f (test
data)

SGA 4.680 5.155 4.197 1257 1850 3776 1.191 1.488 0.4883 1.2116

RNA-GA 3.221 9.333 3.385 998.1 2779 3662 1.439 3.308 0.2815 0.8738

5.2 Problem Description of System Identification 105

Fig. 5.2 Comparison of
model outputs obtained
using training data

Fig. 5.3 Comparison of
model outputs using testing
data

5.2.2 Parameter Estimation of FCC Unit Main Fractionator

5.2.2.1 FCC Unit Description

Fluid catalytic cracking (FCC) is an important oil refinery process, which converts
high molecular weight oils into lighter hydrocarbon products. It consists of the
reactor–regenerator, the riser reactor, the main fractionator, the absorber-stripper-
stabilizer, the main air blower, the wet gas compressor, etc. Among them, the main
fractionator is the most important one to realize the advanced control of the FCC
unit. The main fractionator configuration of a 140 wt FCC unit in an oil refinery
factory is given in Fig. 5.4.

The configuration is shown as follows: FIC2207, top circulation flow controller;
FIC2202, mid circulation flow controller 1. FIC2208, mid circulation flow controller

106 5 Parameter Identification and Optimization of Chemical Processes

Fig. 5.4 The main
fractionator in a 140wt FCC
unit

2. FIC2203, mid circulation flow controller 3. FIC2204, bottom slurry circulation
flow controller 1. FIC2220-bottom slurry circulation flow controller 2. TIC2202, top
temperature controller; TIC2203, mid circulation temperature controller 1. TIC2204,
mid circulation temperature controller 2. TI2243, feeding temperature; EPI2201, soft
sensing for end point of crude oil; EPI2202, soft sensing for pour point of light diesel
oil; QI2207, top circulation heat quantity; HCPPN, crude oil gas pressure; TI2253,
tray 20 vapor temperature; QI2202, mid circulation heat quantity; HCPPL, light
diesel oil pressure.

The oil quality is conventionally controlled by the top temperature and tray
20 vapor temperature (TI2253). However, the product quality cannot be precisely
reflected by the controlled temperature. It mainly depends on the parting accuracy in
the boiling range, such as the end point of crude oil and the pour point of light diesel
oil. Therefore, the quality index of the main fractionator is not the top temperature
or tray 20 vapor temperature but the end point of naphtha. An online soft sensing for
the end point of naphtha has been successfully established by the members in our
laboratory [8].

The 400 °C oil gas from the reactor is fed into the bottom of the main fractionator
at tray 1 after heat removal. Once it is in contact with the 275 °C counter flow of slurry
from top circulation, the oil gas is cooled down, and separated into gas, crude oil,
light diesel oil, cycle oil, and slurry. In order to provide enough inner reflux andmake
the load distribution uniform, the fractionator contains four heat circulation systems,

5.2 Problem Description of System Identification 107

i.e., top heat removal circulation, the first mid heat removal circulation, the second
mid heat removal circulation, and slurry heat removal circulation. In the slurry heat
removal system, the slurry is extracted from the tower bottom and synchronously
exchanges heat quantity with fuel oil. The slurry is then separated into two parts: one
is the cycle slurry and the other is discharged from the fractionator. In the second
heat removal circulation system, there exist three parts: the first part returns to tray
2 as an inner circulation; the second part returns to tray 5; the third part is extracted
as the cycle oil. The first heat removal circulation system locates between tray 17
and tray 20, the light diesel oil is drawn out from tray 20. In the top heat removal
circulation system, the oil gas is abstracted from tray 29 and returns to tray 32 when
the temperature cools down to 80 °C.When the oil gas enters the tower top, the vapor
phase and liquid phase (crude oil) can then be obtained.

5.2.2.2 Process Modeling

From the above analysis, the influencing factors of the end point are top temperature,
top pressure, top heat removal, etc. The top heat removal is the main method to adjust
the end point. The factors affecting the pour point are mainly top load changes, top
pressure changes, first and second mid heat removal. Since most of the heat in the
second mid circulation acts as the thermal resource of the bottom reboiler, only a
small amount of heat is used to adjust the temperature of tray 1, and the first mid
heat removal becomes the most important adjustment method for pour point. The
change of heat removal is implemented by the change of flow or by the change of
temperature. Therefore, the top circulation flow, the first mid flow, and the second
mid flow are chosen as the manipulated variables, denoted as MV1–MV3; the top
temperature, the end point of crude oil, and the pour point of light diesel oil are
selected as controlled variables, denoted as CV1–CV3. To implement the advanced
control of product quality for the main fractionator, the dynamic model is necessary
to be established. As it is designed to be applied in industrial implementation, the
model structure cannot be too complicated. It is supposed as the following discrete
representation: a(1)+a(2)z−1

1−bz−1 z−d . Because the coupling mainly exists between CV1 and
CV2, as well as CV2 and CV3, the MIMO process models of the main fractionator
of the FCC unit can be simplified as shown in Table 5.2.

The multiple inputs multiple outputs (MIMO) process model is then obtained as
follows:

Table 5.2 FCC unit main fractionator process models

CV1 CV2 CV3

MV1
a11(1)+a11(2)z−1

1−b11z−1 z−d11 0 0

MV2
a21(1)+a21(2)z−1

1−b21z−1 z−d21 a22(1)+a22(2)z−1

1−b22z−1 z−d22 0

MV3 0 a32(1)+a32(2)z−1

1−b32z−1 z−d32 a33(1)+a33(2)z−1

1−b33z−1 z−d33

108 5 Parameter Identification and Optimization of Chemical Processes

CV1(z
−1) = a11(1) + a11(2)z−1

1 + b11z−1
z−d11MV1(z

−1)

+ a21(1) + a21(2)z−1

1 + b21z−1
z−d21MV2(z

−1) (5.5)

CV2(z
−1) = a22(1) + a22(2)z−1

1 + b22z−1
z−d22MV2(z

−1)

+ a32(1) + a32(2)z−1

1 + b32z−1
z−d32MV3(z

−1) (5.6)

CV3(z
−1) = a33(1) + a33(2)z−1

1 + b33z−1
z−d33MV3(z

−1) (5.7)

Since there exists the coupling of the estimated parameters in 5.5–5.7, these parame-
ters are difficult to estimate. RNA-GA inChap. 2 can be used to solve the complicated
parameter estimation problem. The model of the main fractionator in a FCC unit was
established according to the typical field data by the members of our laboratory
[21]. Therefore, the input–output data were produced by the model provided in [22].
Moreover, the noise satisfying the practical conditions is added into the original data
based on the knowledge of the refinery process unit.

5.2.2.3 System Parameter Estimation by RNA-GA

The objective functions for the above three models are listed as follows:

fi =
ns∑

k=1

|CVi(k) − ĈVi(k)| i = 1, 2, 3 (5.8)

where ĈVi is the model output. The outputs are generated by a group of step signals
using the given model with a maximum divergence of±10%. The inputs and outputs
are then normalized between 0 and 1. The parameter domain of the fraction equations
is set as [−1, 1], and as it is a stable process, the range of denominator coefficient is
reduced to [−1,0). The range of time delay is supposed as [1, 10].

All parameters of RNA-GA are kept unchanged as those in parameter estimation
of the heavy oil thermal cracking three lumping model. RNA-GA for each f i is
also implemented for 50 independent runs. The results with the best values of the
objective function are selected as the ultimate estimated parameters, they are listed
in Table 5.3.

The model outputs of CV1, CV2, and CV3, as well as the corresponding values of
the real process, are shown in Figs. 5.5, 5.6, and 5.7. To verify the efficiency of the
obtained model, another group of test data is selected, which is shown in Figs. 5.8,
5.9, 5.10. We can find that using RNA-GA to estimate the parameter is applicable
in real processes, and the established model can make a good description of the

5.2 Problem Description of System Identification 109

Table 5.3 Results of estimated parameters for main fractionator by RNA-GA

Models Numerator Denominator Delay Fb

CV1MV1 a11 = [0.0904, −0.0045] b11 = −0.9138 d11 = 6.0000 1.1913

CV1MV2 a21 = [0.0626, −0.0789] b21 = −0.0012 d21 = 3.0000

CV2MV2 a22 = [0.0626, −0.0196] b22 = −0.4165 d22 = 8.0000 0.8636

CV2MV3 a32 = [0.4284, −0.3602] b32 = −0.9254 d32 = 1.0000

CV3MV3 a33 = [0.5171, −0.3801] b33 = −0.8599 d33 = 3.0000 0.5439

Fig. 5.5 Comparisons of
model prediction and real
value for CV1

Fig. 5.6 Comparisons of
model prediction and real
value for CV2

dynamic characteristic between manipulated variables and controlled variables. We
can conclude that RNA-GA should be an effective and efficient approach for model
parameter estimation of this kind of chemical process.

110 5 Parameter Identification and Optimization of Chemical Processes

Fig. 5.7 Comparisons of
model prediction and real
value for CV3

Fig. 5.8 Comparisons of
model prediction and real
value for CV1 by test data

Fig. 5.9 Comparisons of
model prediction and real
value for CV2 by test data

5.3 Gasoline Blending Recipe Optimization 111

Fig. 5.10 Comparisons of
model prediction and real
value for CV3 by test data

5.3 Gasoline Blending Recipe Optimization

In Chap. 3, a DNA-DHGA is described in detail. When the feasible domains are
located, the sequential quadratic programming (SQP) method is applied to effi-
ciently find the local optimum and improve the solution accuracy. The DNA-DHGA
effectively alleviates the premature convergence and improves the weak exploitation
capability of GA. The solving of gasoline blending recipe optimization problem will
further demonstrate how to apply DNA-DHGA to solve the constrained industrial
optimization problem efficiently.

5.3.1 Formulation of Gasoline Blending Scheduling

Various component streams are mixed in the gasoline blending process to produce
an automotive gasoline product stream meeting certain quality specifications [13],
as shown in Fig. 5.11.

The usual objective function of blending scheduling is to maximize the product
profit given as follows:

max
T∑

t=1

Np∑

n=1

(Cpn,t V pn,t −
Ncn∑

m=1

Ccm,t V cn,m,t) (5.9)

where the first part is the gasoline production value, the second part is the spent
cost of blending components, T is the time scale of the blending scheduling, Ncn is
the component categories for product n, Np is the product categories, V cn,m,t is the
volume of the component m in product n, V pn,t is the blending volume in product n,
Ccm,t is the cost of component m, and Cpn,t is the price of product n.

112 5 Parameter Identification and Optimization of Chemical Processes

Analytic
instrument

Analytic
instrument

Analytic
instrument

Analytic
instrument

Analytic
instrument

Economic data
Market data
Stock data

Recipe optimization

Controller

Mixing
machine

Mixing
machine

Analytic
instrument

Analytic
instrument

Reformate

Butane

Catalytic
gas

Virgin oil

Gasoline
alkylate

Fig. 5.11 Simplified flowsheet for gasoline blending

Specifications on gasoline qualities include octane number, volatility, sulphur
content, aromatics content, RVP, and viscosity, etc. As the most important quality
index of gasoline products, research octane number (RON), motor octane number
(MON), and Reid vapor pressure (RVP) are constraints with nonlinear property
in the process of blending scheduling. In contrast with other methods of predicting
components of octane properties, the ethylRT-70models exhibit the best combination
of predictive accuracy and parsimony for octane numbers [23]. Hence, the ethyl RT-
70 models have been used to represent the mixing rules for octane numbers, which
is shown as follows:

PRON = rTx + α1

(
rTdiag(s)x − (rTx)(sTx)

eTx

)
+ α2

(
oT

s x − (oTx)2

eTx

)

+ α3

(
aT

s − (aTx)2

eTx

)
(5.10)

PMON = mTx + α4

(
mTdiag(s)x − (mTx)(sTx)

eTx

)
+ α5

(
oT

s x − (oTx)2

eTx

)

+ α6

10000(eTx)

(
aT

s − (aTx)2

eTx

)2

(5.11)

5.3 Gasoline Blending Recipe Optimization 113

where x is the feedstock flow rate, r is the RON of each component, m is the MON of
each feedstock, s = r−m, o is the olefin content of each feedstock, os is the square
of the olefin content, a is the aromatics content of each feedstock, as is the square of
the aromatics content, PRON is the blended RON, PMON is the blended MON, and ai

are the coefficients in the above model, where a1 = 0.03224, a2 = 0.00101, a3 = 0,
a4 = 0.0445, a5 = 0.00081, a6 = −0.00645.

The RVP model to represent the blending process is the blending index approach
which has the following form [24]:

PRV P =
(

n∑

i=1

ui(RVPi)
1.25

)0.8

(5.12)

where n is the number of components in the blend, PRVP is the blended RVP, ui is
the volume fraction of component i.

5.3.2 Optimization Results for Gasoline Blending Scheduling

To demonstrate the application process of the DNA-DHGA scheme to a large extent,
we shall further apply it for the optimization of a short-term gasoline blending recipes
in [13]. The blending process obtains two products using five components as shown in
Fig. 5.11. The regular gasoline is derived using Reformate, LSR naphtha, n-Butane,
and Catalytic gas, while the premium gasoline is produced using Reformate, LSR
naphtha, n-Butane, Catalytic gas, andAlkylate. The blending product requires to have
the following specifications: a minimum RON, a minimum MON, and a maximum
RVP. The optimization objective is tomaximize the profit of the gasoline blend recipe
on the premise that the quality and quantity of their products are satisfied. Themarket
demand for the production is listed in Table 5.4. The parameters of the refined oil
and five components are listed in Tables 5.5 and 5.6, respectively. Equation 5.9, is
then accordingly rewritten as

Table 5.4 Production
requirement

Demand Regular Premium

Demand in the first day(ton) 3000 3500

Demand in the second day(ton) 3300 3300

Demand in the third day(ton) 2500 3300

Table 5.5 Refined oil parameters

Types Cost(¥/ton) Minimum RON Minimum MON Maximum RVP

Regular 1900 88.5 77.0 10.8

Premium 2200 91.5 80.0 10.8

114 5 Parameter Identification and Optimization of Chemical Processes

Table 5.6 Component data

Feedstock Reformate LSR naphtha n-Butane Catalytic gas Alkylate

RON 94.1 70.7 93.8 92.9 95.0

MON 80.5 68.7 90.0 80.8 91.7

Olefin (%) 1.0 1.8 0 48.8 0

Aromatics (%) 58.0 2.7 0 22.8 0

RVP/psi 3.8 12.0 138 5.3 6.6

Available (ton/day) 1700 700 300 4000 200

Cost (¥/ton) 1960 1500 600 1800 2100

max f (x) = 1900xr + 2200xh − 1960(xr1 + xh1) − 1500(xr2 + xh2)

− 600(xr3 − xh3) − 1800(xr4 + xh4) − 2100xh5 (5.13)

where xr is the yield of regular gasoline, xh is the yield of premium gasoline, xri is
the quantity of components used in the blending process for regular gasoline, xhi is
the quantity of components used in the blending process for premium gasoline. The
equality constraints of material balance are shown as follows:

xr = xr1 + xr2 + xr3 + xr4

xh = xh1 + xh2 + xh3 + xh4 + xh5 (5.14)

Accordingly, the inequality constraints of material balance in Table 5.6 are
described as follows:

0 ≤ xr1 + xh1 ≤ 1700
0 ≤ xr2 + xh2 ≤ 700
0 ≤ xr3 + xh3 ≤ 300
0 ≤ xr4 + xh4 ≤ 4000
0 ≤ xr5 ≤ 200

(5.15)

According to Table 5.5, the inequality constraints for quality control are given as
follows:

88.5 ≤ PrRON ≤ 90

77.0 ≤ PrMON ≤ 80

10.8 ≤ PrRVP ≤ 11

88.5 ≤ PhRON ≤ 90

91.5 ≤ PhMON ≤ 92

10.8 ≤ PhRVP ≤ 11 (5.16)

5.3 Gasoline Blending Recipe Optimization 115

It is noteworthy that to reduce the difficulty of solving the optimization problem,
the recipe for premium gasoline with higher profit is first solved and the recipe of
regular gasoline is optimized using the left components. Moreover, the left compo-
nents are added to the components the next day. When DNA-DHGA is applied, the
maximum evolution generation G is set as 1000, the population size N is initialized
to 60, and the individual length is set to 40. The calculated results for three days
are listed in Tables 5.7 and 5.8. The profit using DNA-DHGA is ¥5,317,630. The
comparisons with the PSO algorithm were listed in Table 5.9, and the profit using
PSO was ¥5,289,908 [24]. Obviously, the profit obtained by DNA-DHGA is more
than PSO’s. However, there still exists larger redundancy of the quality indicator for

Table 5.7 Component requirement calculated by DNA-DHGA

Time Product Reformate LSR naphtha n-Butane Catalytic gas Alkylate

First day Regular 1044.0 105.0 63.7 1254.1 0.0

Premium 34.1 592.4 67.0 2738.4 67.3

Second day Regular 1158.8 93.8 74.6 1522.8 0.0

Premium 75.9 598.6 55.4 2483.1 86.8

Third day Regular 350.3 81.0 49.8 1576.1 0

Premium 14.5 627.5 57.6 2417.6 134.1

Remaining
components

2422.4 1.7 531.9 7.9 311.8

Table 5.8 Quality indicators and profit of refined oil calculated by DNA-DHGA

Time Product RON MON RVP Profit(¥)

First day Premium 92.0224 80.0622 10.7155 1,819,730

Regular 92.3884 80.9026 10.7615

Second day Premium 91.7619 80.0170 10.2946 1,748,840

Regular 92.5109 80.9802 10.7995

Third day Premium 91.5117 80.0433 10.5995 1,749,060

Regular 92.9466 80.9197 10.7208

Table 5.9 Component requirement calculated by PSO algorithm

Time Product Reformate LSR naphtha n-Butane Catalytic gas Alkylate

First day Regular 1652.9 644.7 64.4 637.7 0.3

Premium 13.7 22 86.2 3362.2 15.9

Second day Regular 1666.7 629.7 71.7 817.7 114.2

Premium 0 36.9 80.7 3182.4 0

Third day Regular 787.1 540 50.2 1122.7 0

Premium 254.3 87.7 80.7 2877.3 0

116 5 Parameter Identification and Optimization of Chemical Processes

the regular gasoline. The production of LSR naphtha and Catalytic gas is insufficient
to meet the market demand according to the optimization result listed in Table 5.7,
which is the key issue to improve the profit of the refinery factory.

5.4 Summary

In this chapter, RNA-GA is applied to the model parameter estimation of complex
chemical processes with given model structures. In the parameter estimation of three
lumped models, the errors of this model are less than those of SGA. In the model
parameter estimation for the catalytic cracking main fractionation tower, satisfac-
tory modeling precision is also obtained. However, the successful application of the
above model parameter estimation problem mainly depends on the choice of the
model structure. If the model structure is not appropriate, any algorithm can obtain
satisfactory results. In the next chapter, we will apply neural networks to solve the
modeling problem of chemical processes in the case of an unknown model structure.

Aiming at the difficulty of dealing with the nonlinear constrained problem of
gasoline blending with traditional algorithms, DNA-DHGA in Chap. 3, is applied to
solve the constraint optimization problem of oil blending formula. The optimization
results illustrate that the algorithm can achieve the quality index of the refined oil,
which can effectively avoid repeated blending.

Appendix

Modeling data of heavy oil thermal cracking

NO. T/K X XL NO. T/K X XL

1 673 0.3122 0.2034 29 723 0.4371 0.2802

2 673 0.3138 0.2136 30 723 0.3637 0.2674

3 673 0.3879 0.2806 31 673 0.2075 0.1282

4 683 0.3348 0.2305 32 683 0.311 0.2276

5 683 0.3384 0.2497 33 703 0.3927 0.3049

6 683 0.4684 0.3693 34 683 0.222 0.1447

7 693 0.405 0.3041 35 683 0.2599 0.1822

8 695 0.3355 0.2369 36 698 0.2846 0.2045

9 703 0.4034 0.3209 37 723 0.342 0.2559

10 708 0.4266 0.3107 38 713 0.3306 0.2426

11 698 0.2674 0.1638 39 713 0.2062 0.1397

12 713 0.4514 0.3326 40 733 0.4585 0.2977

(continued)

Appendix 117

(continued)

NO. T/K X XL NO. T/K X XL

13 708 0.4534 0.326 41 733 0.472 0.3099

14 713 0.4552 0.3282 42 713 0.4447 0.3441

15 715 0.4075 0.2724 43 733 0.3729 0.2688

16 723 0.51 0.3555 44 733 0.4234 0.3083

17 725 0.5918 0.4101 45 663 0.1739 0.1064

18 733 0.574 0.3685 46 663 0.1893 0.1104

19 708 0.3637 0.2449 47 673 0.2169 0.1541

20 689 0.3562 0.2609 48 673 0.1619 0.1103

21 693 0.3397 0.2482 49 673 0.0649 0.0439

22 693 0.2381 0.1483 50 683 0.2512 0.1867

23 684 0.3031 0.1976 51 683 0.141 0.0983

24 703 0.5436 0.3831 52 693 0.2532 0.1833

25 703 0.3478 0.2346 53 703 0.3973 0.3018

26 708 0.4719 0.3222 54 713 0.4162 0.3266

27 713 0.4232 0.2945 55 723 0.4203 0.339

28 719 0.5367 0.3354 56 723 0.3011 0.251

References

1. Turton, R., R.C. Bailie, W.B. Whiting, et al. 2008. Analysis, synthesis and design of chemical
processes. Pearson Education.

2. Thompson,M.L., andM.A.Kramer. 1994.Modeling chemical processes using prior knowledge
and neural networks. AIChE Journal 40 (8): 1328–1340.

3. Li, C., C. Yang, and H. Shan. 2007. Maximizing propylene yield by two-stage riser catalytic
cracking of heavy oil. Industrial and Engineering Chemistry Research 46 (14): 4914–4920.

4. He, Y.L., and Q.X. Zhu. 2016. A novel robust regression model based on functional link
least square (FLLS) and its application to modeling complex chemical processes. Chemical
Engineering Science 153: 117–128.

5. Song, X., et al. 2003. Eugenic evolution strategy genetic algorithms for estimating parameters
of heavy oil thermal cracking model. Journal of Chemical Engineering of Chinese Universities
17 (4): 411–417.

6. Björck, Å. 1996. Numerical methods for least squares problems. Society for Industrial and
Applied Mathematics.

7. Murshudov, G.N., A.A. Vagin, and E.J. Dodson. 1997. Refinement of macromolecular struc-
tures by the maximum-likelihood method. Acta Crystallographica. Section D, Biological
Crystallography 53 (3): 240–255.

8. Zhong, X., and S. Wang. 1998. On-line soft sensing for end point of naphtha based on neural
network. Journal of Chemical Industry & Engineering 49 (2): 251–255.

9. Tao, J., and N.Wang. 2007. DNA computing based RNA genetic algorithmwith applications in
parameter estimation of chemical engineering processes. Computers & Chemical Engineering
31 (12): 1602–1618.

118 5 Parameter Identification and Optimization of Chemical Processes

10. Li, J., I.A. Karimi, and R. Srinivasan. 2010. Recipe determination and scheduling of gasoline
blending operations. AIChE Journal 56 (2): 441–465.

11. Pasadakis, N., V. Gaganis, and C. Foteinopoulos. 2006. Octane number prediction for gasoline
blends. Fuel Processing Technology 87 (6): 505–509.

12. Litvinenko,V.I., et al. 2002.Applicationof genetic algorithm for optimizationgasoline fractions
blending compounding. In IEEE international conference on artificial intelligence systems.

13. Zhao, X. 2010. Blending scheduling based on particle swarm optimization algorithm. In 2010
Chinese control and decision conference. IEEE.

14. Pan, H., and L. Wang, 2006. Blending scheduling under uncertainty based on particle swarm
optimization with hypothesis test. In 2006 international conference on intelligent computing,
109–120. Springer.

15. Kirgina, M.V., et al. 2014. Computer program for optimizing compounding of high-octane
gasoline. Chemistry Technology of Fuels Oils 50 (1): 17–27.

16. Sakhnevitch, B., et al. 2014. Complex system for gasoline blending maintenance. Procedia
Chemistry 10: 289–296.

17. Shang, B., L. Jiao, and Z. Shang. 2007. The optimum control design for gasoline piping
automatic blending. Automation in Petro-Chemical Industry 1: 22–24.

18. Li, W., L. Shi, and C. Liang. 2009. Forecasting model of research octane number based on
PSO-VB-LSSVM. Chinese Journal of Scientific Instrument 30 (2): 335–339.

19. Zhang, J., X. Luo, and L. Yang. 2006. Dvelopment of online optimization system of gasoline
blending. Computer Engineering and Applications 42 (33): 216–218.

20. Tao, J., and N. Wang. 2008. DNA double helix based hybrid GA for the gasoline blending
recipe optimization problem. Chemical Engineering and Technology 31 (3): 440–451.

21. Zhong, X., Q. Zhang, and S. Wang. 2001. Multivariable constrained generalized predictive
control strategy for the FCCU main fractionator. Control Theory & Applications 18: 134–140.

22. Liu, Q. and Q. Kang. 1997. The DCS implementation of FCCU main fractionator tray 20
temperature feed forward control system. Automation in Refined and Chemical Industry 5:
29–32. (In Chinese).

23. Zhang, Y., D. Monder, and J.F. Forbes. 2017. Real-time optimization under parametric
uncertainty: a probability constrained approach. Journal of Process Control 12 (3): 373–389.

24. Zhao, X., Research on Refinery Production Scheduling Problems. 2005, Zhejiang University.

Chapter 6
GA-Based RBF Neural Network
for Nonlinear SISO System

Radial basis function (RBF) neural network is efficient to model nonlinear systems
with its simpler network structure and faster learning capability. The temperature and
pressure modeling of the coke furnace in an industrial coke equipment is not very
easy due to disturbances, nonlinearity, and switches of coke towers. To construct the
temperature and pressure models in a coke furnace, RBF neural network is utilized to
improve the modeling precision. Moreover, the shortcoming of RBF neural network,
such as over-fitting is overcome. Moreover, the improved RNA-GA, MOGA, and
PCA-based NSGA-II are utilized to optimize both the structure and parameters of
the RBF network. Encoding/decoding, genetic operations, and fitness functions are
designed to obtain satisfying modeling performances. The industrial data sets in the
industrial coke furnace are utilized to construct the RBF neural network model by
using three modeling optimization strategies.

6.1 Introduction

SinceBroomhead andLowe, proposed0Radial basis function (RBF) neural networks
in 1988 [1], RBF networks have attracted a lot of interests to application research in
various fields because of the partial response character of the neuron, better approxi-
mation capability, simpler network structure, and faster learning capability than other
artificial neural networks (ANNs) [2–4]. However, how to design radial basis func-
tions remains a critical issue for RBF networks. The number and parameters of radial
basis functions control the structure complexity and the generalization capability of
RBF networks. A RBF network with too few radial basis functions gives poor gener-
alization on new data because of the limited flexibility, while a RBF network with
too many radial basis functions yields poor generalization since it is too flexible and
may fit the noise in the training data. The best generalization performance can be
obtained via a compromise between the conflicting requirements of reducing predic-
tion error while simultaneously decreasing model complexity [5, 6]. This trade-off

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_6

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_6&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_6

120 6 GA-Based RBF Neural Network for Nonlinear SISO System

highlights the importance of optimizing the structure complexity of the RBF network
to improve its generalization capability.

More specifically, the network structure of the RBF network needs to be given
before training other parameters in the neural network. The procedures usually
proceed in two steps: First, the centers of radial basis functions are determined by a
clustering method; second, the final-layer weights are calculated by the least square
method. Usually, an unsupervised method that is separated from the actual objective
of minimizing the modeling error will be executed in the first stage. The structure
optimization in the construction of the network is desirable, however, it is a rather
difficult problem and cannot be easily solved by the standard optimization method
[7].

An interesting alternative for solving this complicated problem can be offered
by the recently developed evolutionary algorithms. Perhaps the most popular and
successful strategies are the genetic algorithms (GAs), which have succeeded in the
structure selection of several kinds of neural networks, such as, Back propagation
(BP) neural networks [8, 9] and recurrent neural networks [10, 11], etc. As for RBF
neural networks, Vesin et al. used a GA to solve the whole optimization problem
of the RBF network, but the centers of the potential nodes were restricted among
the training data set [12]. Esposito et al. employed a GA-based technique for the
determination of the widths of Gaussian radial basis functions [13], while Sarimveis
et al., utilized a GA approach for optimizing RBF network only based on prediction
errors [14].

When RBF networks are used to model the nonlinear system, the learning algo-
rithm of the RBF network to determine its structure and parameters is critical,
because different learning algorithms have a great influence on the performances
of the derived RBF-based models.

Studies on parameter learning algorithm and the network structure optimization
have been developed in-depth. Huang et al., proposed a simple sequential learning
algorithm for RBF neural networks, which is referred to as the RBF growing and
pruning algorithm [15]. Du et al., proposed a multi-output fast recursive algorithm
(MFRA) that formulates the construction of an RBF network as a linear parameter
optimization problem [16]. Han et al., presented a flexible structural radial basis
function (FS-RBF) neural network, which changed its structure dynamically in order
to maintain the prediction accuracy [17]. Most previous algorithms will become
inefficient with too large search space and trap into the local minimum.

Although GA is a global searching algorithm, it is challenged by its weak local-
search capability and premature convergence. As such, some biological operations
at the gene level are effectively adopted in SGA, and the global searching speed
can be largely improved [18, 19]. Moreover, the pruning operation is introduced to
simplify the structure of the RBF neural network. In addition, the fewest process
variables for accurate modeling are often of great interest by means of the most
relevant variables selection, thus, themodeling, control, optimization, andmonitoring
issues for quality improvement of industrial production will be much easier [20–
22]. Hence, it is anticipated that prediction accuracy can be improved by variable

6.1 Introduction 121

selection techniques, which will reduce the model complexity and capture the nature
of industrial processes better [23–26].

Research on various variable selection methods for ANNs has been developed
continuously. Huang et al., utilized the least absolute shrinkage operator for the
input variables selection of a multilayer perceptron neural network in nonlinear
industrial processes [27]. A sequential backwardmultiplayer perceptron (SBS-MLP)
was proposed to perform feature selection [28]. Souza et al., have considerably
reduced the computational cost and improved the model accuracy by variable selec-
tion comparing with SBS-MLP [29]. Estévez et al., proposed an improved variable
selection method by introducing the average normalized mutual information for the
measurement of redundancy [30].

The variable selection using principal component analysis (PCA) has also been
studied in recent years [31–33]. However, the principal components are obtained by
the linear combination of all variables, which makes the interpretation of principal
component variable quite difficult. Therefore, a variety of criterion functions, such as
Similarity indices, RM criterion, RV criterion, Generalized Coefficient of Determi-
nation (GCD) criterion have been proposed for subset selection [34]. In addition, the
heuristics algorithm [35], simulated annealing [36], stochastic approximation itera-
tion [37], genetic algorithm [38], etc., have also been applied to select the variables.
Though some variable selection methods are efficient in the literatures [31–35, 37–
39], most of them are not included in system modelling, while the variable selection
in neural network only considered modeling accuracy [27].

Coking is an important process to improve economic benefits and has been widely
used for refineries [40, 41]. A coke unit usually consists of coke furnaces, fraction-
ating towers and coke towers. The temperature control of the coke furnaces is one of
the operation goals in the unit, due to the coke furnaces, fractionating towers and coke
towers in a completed process stream with their dynamic characteristics interacting
with one another, the tasks are complicated. For example, the temperature affects the
coking rate in the tubes of coke towers, which in turn has an impact on the tempera-
ture in the furnace [42]. Modeling is very important for advanced controller design
but is evenmore difficult in term of the nonlinear characteristics, time delay and other
various disturbances, such as feeding quantity, feeding temperature, fuel amount, etc.
One of the most serious disturbances is the switches of coke towers, which disturb
the temperature periodically and cause severe temperature fluctuations.

In this chapter, the structure optimization is included, and the fitness value of each
chromosome is calculated based on the prediction error and the structure complexity
criterion. In order to simplify the optimization of the RBF network, thin-plate-spline
function can be chosen as the radial basis function, which is not required to determine
its widths. However, the Gaussian function may obtain better performance with
suitable centers.Generally, theRBFcenters are determinedbasedon a self-organizing
clustering process, such as k-means clustering, the nearest neighbor clustering. The
application of the above algorithms requires the network structure to be selected
through trial and error, and only the input data is considered. Herein, several RBF
neural network optimization methods are given as follows:

122 6 GA-Based RBF Neural Network for Nonlinear SISO System

First, a pruning operator is designed to simplify the RBFNN structure, and a
RNA-GA is first developed to optimize the RBF neural network structure and its
corresponding parameters of radial basis functions to improve the approximation and
generalization performance of RBFNN for temperature modeling in a coke furnace
[7].

Second, the structure of the input and hidden layers, the parameters of theGaussian
basis functions are encoded in a chromosome. The local search operator and the
prolong operator are proposed to obtain multiple RBF neural network structure. And
an improved MOEA is then designed for the RBFNN modeling of the chamber
pressure [43].

Finally, PCA variable selection is combined with ANN for nonlinear system
modeling, and anRVcriterion function of PCA is used to select the effective variables.
Since both RV criterion and modeling accuracy are considered, the multi-objective
evolution algorithm (MOEA) is adopted. Among MOEAs, NSGA-II is adopted due
to its popularity and efficiency in solving ANN optimization and modeling problems
[44, 45]. Here, it is also used to solve the variable selection and ANN modeling
problem.

6.2 The Coke Unit

The whole process flow is shown in Fig. 6.1. It consists of such equipment as one
fractionating tower (T102), three coke furnaces (F101/1, 2, 3), and six coke towers
(T101/1, 2, 3, 4, 5, 6). The detailed flow of each part of the unit is shown in Fig. 6.2,
its main job is to coke residual oil. Take furnace (F101/3) as an example, the process
flow is as follows: The flow of residual oil is divided into two branches (FRC8103,
FRC8105) and sent into the convection chamber of the furnace (F101/3) to be heated
to about 330 °C, then the two branches are combined and flow out of the radiation
chamber of the furnace and go to the fractionating tower (T102) for heat exchange
with gas oil from the coke towers (T101/5, 6). After heat exchange, the heavy part
of both residual oil and the gas oil join together, which is called circulating oil. The
circulating oil is then divided into two branches (FRC8107, FRC8108) by pumps
(102/1, 2, 3) and returned to enter the radiation chamber of the furnace (F101/3) to
be heated to about 495 °C. Finally, the two branches join together and go to the coke
towers (T101/5, 6) to remove coke. This process is called the coking of residues.
The flows of the other two furnaces are the same as that of the furnace (F101/3), but
the corresponding coke towers are different. The coke towers (T101/1, 2) are for the
furnace (F101/1) and (T101/3, 4) for the furnace (F101/2). Each time, only one of
each pair of coke towers works for its corresponding furnace, and when it is full, the
other one replaces it. This replacement is called the switch of coke towers and the
procedure recycles. The switch time of three pairs of coke towers is different. The
heat exchange with gas oil from the coke towers poses a continuous disturbance on
the outlet temperature because of the volume of the gas oil from the coke towers.
During the switch of the coke towers, the outlet temperature of the furnace often

6.2 The Coke Unit 123

Circula ng oil

Rresidual oil

Gas oil

Furnace F101/2

Furnace F101/3

Furnace F101/1

Frac ona ng tower T102

T101/5 T101/6

T101/3 T101/4

T101/1 T101/2

Coke towers
T101/1-6

Fig. 6.1 Overall flow of coke unit

drops and rises sharply because some of the oil in it will become gas oil, and part of
the inlet gas oil flowing into it will be used for the heating of coke towers. What’s
more, the random switch time of three pairs of coke towers adds to this serious
problem.

The outlet pressure, temperature, and relevant variables are sampled using the
experimental equipment CENTUM CS3000 Distributed Control System (DCS), as
shown in Fig. 6.3. The DCS has a database, namely PAI database, for process data
acquisition. To ensure the modeling precision and make the administrator conve-
niently analyze the process data, the sampling period 0.5 s is set in the PAI database,
and 2 digits after the decimal point are retained in the sampling dataset.

6.3 RBF Neural Network

Aschematic of theRBFnetworkwith n inputs and a scalar output is shown in Fig. 6.4.
In the RBF neural network (RBFNN), the function form ϕ(·) and the centers

ci are assumed fixed. Here we denote a set of the inputs x(k) as x(k) =

124 6 GA-Based RBF Neural Network for Nonlinear SISO System

Residual oilFRC8105
36.9 t/h

FRC8103
37.2 t/h

50.8% 51.4%

AUTCAS

TRC8105
496

AUT

Go to fuel
valve

TRC8103
496.6

Go to fuel
valve

AUT

Fraction tower circulating oil
from pumps 102/1,2,3

To T102

To T101/5,6

FRC8107
43.5 t/h

AUT

79.8%

FRC8108
43.6 t/h

AUT

85.1%

TR8155
348.6

TR8156
339.6

TR8129
495.8Furnace

101/3

Fig. 6.2 Overall flow of coke furnace

Fig. 6.3 Data acquisition
configuration for system
outputs

database

Pressure
system

FCS
system

Monitor
computer

Pr essure

Flow

...

6.3 RBF Neural Network 125

Fig. 6.4 Schematic of RBF
network

[y(k − 1), . . . , y(k − n),u(k − 1), . . . ,u(k − m)], u(k) as the selected manipu-
lated variables evaluated by RV criterion of PCA, ŷ as the output of RBFNN, and
ω = [ω1, . . . , ωnr] as the weights between the hidden layer and the output layer,
where nr is the number of the nodes in the hidden layer. The choices of ϕ(·) and ci

must be carefully considered for the RBF neural network to obtain both the approx-
imation capability and generalization performance. The thin-plate-spline function
and the Gaussian function are two typical choices, both of them have obtained good
approximation capabilities according to the fitting result of RBF networks [44].

Here, φi (x) is the ith neuron output in the hidden layer, which is selected as the
Gaussian function or thin-plate-spline function:

φi (‖x‖) = exp

(
−‖x − ci ‖

σ 2
i

)
or φi (‖x‖) = ‖x − ci ‖2 log‖x − ci ‖, i = 1, 2, . . . , nr

(6.1)

where ‖x − ci‖ is the Euclidean distance between x and ci , ci ∈ �n+m is the center
vector and σi ∈ � represents the spread of radial basis function, respectively.

The prediction of RBFNN, ŷ(k), can be expressed as a linear weighted sum of nr

hidden functions

y(x(k)) =
nr∑

i=1

ωiφi (‖x(k)‖) = ωΦ(k) (6.2)

where � = [φ1, · · · , φnr]T . Given N1 samples of training data, Y1 =
[y1(1), · · · , y1(N1)] and U = [u(1), · · · ,u(N1)], the weight coefficients can be
calculated by recursive least squares (RLS) method [20]

⎧⎨
⎩

ω(k) = ω(k − 1) + K(k)[fi (k) − �T (k)ωi (k − 1)]
K(k) = P(k − 1)�(k)[�T (k)P(k − 1)�(k) + μ]−1

P(k) = 1
/

μ[I − K(k)�T (k)]P(k − 1)
(6.3)

where 0 < μ < 1 is the forgetting factor, P(k) is a positive definite covariance
matrix, P(0) = α2I, and I is an (n + m) × (n + m) identity matrix, α is a sufficiently

126 6 GA-Based RBF Neural Network for Nonlinear SISO System

large real number set to 105 and ω(0) = ε, and ε is a sufficiently small n + m real
vector as set to 10−3, K(k) is a weight matrix.

6.4 RNA-GA Based RBFNN for Temperature Modeling

By giving a set of the inputs x(t) and the corresponding output y(t) for t = 1 to
N1, the weights of RBFNN can be derived using RLS method in 0.3. However, the
number of neuron nodes in the input and hidden layer will determine the structure
complexity of RBFNN, and the parameter selection of radial basis function is quite
important in order to obtain a good approximation capability. The better modeling
capability with a simpler structure was tried to be obtained by an improved RNA-
GA. Since the encoding/decoding method and the genetic operations will affect the
efficiency of GA, this section is focused on the optimization of the RBF network by
the RNA-GA.

6.4.1 Encoding and Decoding

Select the Gaussian function as the radial basis function, σi , ci , and the number of
hidden nodes of RBFNN of the lth chromosome is shown as follows:

Cl =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cl
1,1

cl
1,2 · · · cl

1,n σ1

cl
2,1 cl

2,2 · · · cl
2,n σ2

...
...

. . .
...

...

cl
nr ,1 cl

nr ,2 · · · cl
nr ,n σnr

0 0 0 0 0
...

...
...

...
...

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4)

where l = 1, 2, . . . N , N is the population size, nr is generated randomly between 1
and D, D is the maximal number of hidden neurons. The rows between [nr + 1, D]
are set to zeros and do not correspond to a center. The number of neurons in the
input layer (n) is generated randomly between 2 and 5. Since the choice of the input
layer is limited, it then uses the enumerated method during the optimization process.
There are entirely D × (n +1) real parameters to be optimized in the RBFNN, which
means one chromosome should represent D × (n + 1) real number. The elements of
Cl are then encoded by 0123/CUAG as shown in Fig. 6.5.

The parameters of the chromosome can be decoded by using the following
equations:

6.4 RNA-GA Based RBFNN for Temperature Modeling 127

Fig. 6.5 Quanternary encoding for Cl

ci j = x j,min + x

4L − 1
·
(

x j,max − x j,min

)
, 1 ≤ i ≤ nr , 1 ≤ j ≤ n (6.5)

σ j = x

4L − 1
wmax (6.6)

where x is the integer decoded by quaternary encoding with the encode length L,
x j,min and x j,max are the minimum and maximum values of input variables given
in the problem, wmax is the maximum width of Gaussian basis function.

6.4.2 Fitness Function

The training procedures using the improved RNA-GA (IRNA-GA) are processed
in two steps. First, the network structure and the parameters of radial basis func-
tions are determined by the chromosomes in an individual. Second, the final-layer
weights are calculated by the RLS method, because IRNA-GA is a random search
algorithm, and the constructed RBFNN system maybe ill-conditioned. Hence, the
ordinary least square method cannot be applied in the optimization procedure. At
each generation of IRNA-GA, the calculation of the weights in the output layer
completes the formulation of N RBFNN, which can be expressed by the pairs
(C1, w1), (C2, w2), . . . (CN , wN).

To obtain good generalization capability of RBF network, the sampled data set
is divided into 3 groups, where one group of data subset (X1,Y1) are used to
calculate the weights of the final layer, the second group (C1,ω1) are utilized to
evaluate the modeling performance of RBFNN at each generation, and the third
group · · · (CN , ωN) is used to verify the modeling performance of the optimal RBF
network. This scheme incorporates a testing procedure into the training process and
ensures good generalization performance of RBFNN. However, to obtain a better
approximation capability with a simpler structure and avoid neural network over-
fitting, the objective function considering both the approximation capability and
structure complexity is shown as follows:

J (Ci ,wi) =
N1∑

t=1

|Y1(t) − Ŷ1(t)|2 +
N2∑

t=1

|Y2(t) − Ŷ2(t)|2 + λ(nr + n) (6.7)

128 6 GA-Based RBF Neural Network for Nonlinear SISO System

It can be seen that a compromise has been made between the modeling errors and
the complexity of network structure. Here, λ is a coefficient between 0 and 1, and
the bigger λ is, the more complicated the structure of RBFNN.

6.4.3 Operators of RBFNN Optimization

Li et al. has summarized various operations of DNA computing, such as elongation
operation, deletion operation, absent operation, insertion operation, translocation
operation, transformation operation, and permutation operation, etc. [46]. In addition
to selection, crossover, and mutation operators, other appropriate operations of DNA
computing can also be adopted to improve the performances of RBFNN modeling.

(1) Selection operator

A set of individuals from the previous population must be selected for reproduction
depending on their fitness values. Individuals with bigger fitness value have more
probability to survive. There exist several types of selection operators, and Roulette
wheel method is applied to produce the parents of crossover and mutation operators.
The probability of an individual being selected, P(Ci), is given by

P(Ci) = f (Ci)

N∑
l=1

f (Ci)

(6.8)

where f Ci is the fitness value of an individual Ci by using reciprocals of Eq. (6.7),
i.e., 1/j (CiWi). The roulette wheel is placed with N equally spaced pointers. A
single spin of the roulette wheel will simultaneously pick N individuals of the next
population.

(2) Crossover operator

The crossover operator is executed with the crossover probability pc among the
selected individuals, and generates new structure and the parameters of RBFNN.
If the randomly generated number is less than pc, crossover operation is carried out
between the current chosen individualCl and the next individualCl+1, and yields the
offspring chromosomesC′

l ,C
′
l+1. Since the number of input neurons n is fixed during

an optimization process, the procedure is illustrated with an example presented in
Fig. 6.6, which includes a scheme of the multi-point crossover operation, where the
crossover points are generated randomly between 1 and L. The operator is prone to
generate more hidden neurons, e.g., after the crossover of cnr + 1, n of Cl and cnr + 1, n

of Cl+1, the new nonzero chromosomes are generated, and the number of the hidden
nodes in C′

l becomes nr + 1.

6.4 RNA-GA Based RBFNN for Temperature Modeling 129

Fig. 6.6 Example of the crossover operation

(3) Mutation operator

To have a better exploration of the search space, the mutation operator is imple-
mented. Because there exist four elements (0123/CUAG) in RNA sequence, the
mutation of the nucleotide base is relatively complex. Three mutation operations
on a single RNA sequence, i.e., reversal, transition, and exchange operations are
adopted. The reversal operator makes 0 ↔ 2, 1 ↔ 3, transition operator makes
0 ↔ 1, 2 ↔ 3, and exchange operator makes 2 ↔ 1, 0 ↔ 3. When the element of an
individual is mutated with a probability pm, three mutation operators are executed
simultaneously. This will generate more than N individuals after mutation operators,
but the population size still remains invariant after selection operator.

The mutation probability is critical and generally small since too large mutation
probability makes RNA-GA become a random search algorithm. At the beginning
stage of the evolution process, larger probability ofmutation is assigned to explore the
larger feasible region. When the region of the global optimum is found, the mutation
probabilities are reduced to prevent better solutions from disruption. Therefore, the
dynamic mutation probability pm is described as follows:

pm = a0 + b0
1 + eaa(g−g0)

(6.9)

where a0 denotes the initial mutation probability of pm , b0 is the variation range of
mutation probability, g is the evolution generation, g0 decides the generation where a
great change of mutation probability occurs, and aa denotes the speed of change. The
coefficients of Eq.(6.9) are selected as follows: a0 = 0.02,b0 = 0.2, g0 = G

/
2,

aa = 20
/

G. Let G be 1000, the probability curve Cl changing with evolution
generation is shown in Fig. 6.7.

After calculating themutation probability in terms of 0.9, L ×N decimal fractions
between0 and1 are produced comparedwith the abovedynamicmutationprobability.

130 6 GA-Based RBF Neural Network for Nonlinear SISO System

Fig. 6.7 Mutation
probability decreasing with g
increasing

0 100 200 300 400 500 600 700 800 900 1000
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

g

pm

If the decimal fraction is less than the corresponding probability in Fig. 6.7, 3 RNA
mutation operators are executed meanwhile, and 3 new individuals will be produced.

(4) Pruning operator

Since the chromosomes are generated randomly, the effectiveness of every hidden
neuron is evaluated in terms of the active firing (AF) of the hidden neurons, which
is described as follows [17]:

A fi = ρe−‖x−ci ‖ φi (x)∑nr
i=1 φi (x)

, i = 1, . . . , nr (6.10)

where Af i is the active firing of the ith hidden neuron, φi (x) is the output of the ith
hidden neuron, ρ > 1 is a positive constant, which is set as 100. When Af i is less
than the activity threshold Af o (0.05 < Af o < 0.3), the hidden neuron i is regarded
as an inactive neuron. The number of the hidden neurons (nr) will be decreased and
the corresponding ci is moved to the last location of cnr, its values of chromosomes
are then set to zeros.

6.4.4 Procedure of the Algorithm

The fitness function evaluation, selection, crossover, mutation, and pruning opera-
tors are described for RNA-GA to be appropriate to optimize RBFNN, the running
procedure is given in the following steps.

Step 1: Generate input layer with n inputs, x(t), which consists of 〈n/2〉 system
input (u) and n–〈n/2〉 previous values of system output (y). Here 〈·〉 is to round the

6.4 RNA-GA Based RBFNN for Temperature Modeling 131

elements to the nearest integer. As an example of 3 inputs, 2 inputs u(k), u(k–1) and
1 previous system output y(k–1) are produced, that is, x(t) = [u(k), u(k-1), y(k-1)].

Step 2: Generate randomly N quaternary encoding chromosomes with a length of
D × L in the search space, where N is the population size.

Step 3: Decode and compute the performance J of each individual.
Step 4: Select the chromosomes to generate N new chromosomes as the parents

of the next generation by tournament selection operator. Before selection operator,
the best 〈3 N /4〉 individuals and the worst 〈N /4〉 individuals are derived to make up
of N individuals to keep population diversity.

Step 5: Judge if the crossover probability is satisfied, if yes, select one point
randomly in l quaternary genes, and totally Dn points are generated as shown in
Fig. 6.6, and exchange the codes of Cl and the next individual Cl+1. Repeat this for
all the pc × N/2 pairs of parents produced at step 4.

Step 6: For effectivemutation, execute 3RNAmutation operators once the random
number is less than the dynamic mutation probability in 0.7, and this step may
generate the individuals more than N.

Step 7: If the number of individuals is greater than N, the pruning operator is
performed to improve the quality of RBFNN, else the pruning operator is not carried
out.

Step 8: Repeat steps 3–7 until a termination criterion is met, that is, the maximal
evolution generation (G). Moreover, elitism, the inclusion of the best individual in
the next population is used throughout the optimization procedure.

Step 9: Increase the number of the input nodes and repeat steps 2–8. Choose the
best RBFNN in terms of the value of an objective function using the test data set
(X3, Y3).

6.4.5 Temperature Modeling in a Coke Furnace

Advanced temperature control is critical for the coke unit and the first important issue
to advanced controller design is systemmodeling. In this section, RBFNN optimized
by the IRNA-GA is used to construct the north and south sides of the temperature
models and the main disturbances in the coking furnace.

The experimental data are collected from the industrial coking unit of a refinery
controlled by CENTUM CS3000, which is described in Sect. 6.2. The temperature
is measured by thermocouple with the measuring precision ±1.5°C. The flow rate
is measured by the mass flowmeter. There are totally 1350 data sampled from PAI
database of the control system. Each measurement sample includes four inputs and
four outputs, that is, the north side primary channel model of the outlet tempera-
ture (TRC8105) and the input fuel flow (FRC8105), its disturbance channel model
of the perturbation of FRC8105 and its corresponding temperature perturbation of
TRC8105, the south side primary channelmodel of the outlet temperature (TRC8103)
and the input fuel flow (FRC8103), and its disturbance channelmodel of the perturba-
tion of FRC8103. Four groups of input and output data are plotted from Fig. 6.8a–d,

132 6 GA-Based RBF Neural Network for Nonlinear SISO System

Fig. 6.8 a Input FRC8105
and output TRC8105 for
north side primary channel
modeling. b Input FRC8105
perturbation and output
TRC8105 for north side
disturbances modeling.
c Input FRC8103 and output
TRC8103 for south side
primary channel modeling.
d Input FRC8103
perturbation and output
TRC8103 for south side
disturbances modeling

0 200 400 600 800 1000 1200 1400
494

495

496

497

498

499

TR
C

81
05

Samples
0 200 400 600 800 1000 1200 1400

61

61.5

62

62.5

63

63.5

FR
C

81
05

0 200 400 600 800 1000 1200 1400
0

5

10

TR
C

81
05

Samples
0 200 400 600 800 1000 1200 1400

-10

0

10

FR
C

81
05

 d
is

tu
rb

an
ce

a

b

0 200 400 600 800 1000 1200 1400
493

494

495

496

497

498

499

TR
C

81
03

Samples
0 200 400 600 800 1000 1200 1400

56

56.5

57

57.5

58

58.5

59

FR
C

81
03

c

6.4 RNA-GA Based RBFNN for Temperature Modeling 133

Fig. 6.8 (continued)

0 200 400 600 800 1000 1200 1400
0

2

4

6

TR
C

81
03

Samples
0 200 400 600 800 1000 1200 1400

0

2

4

6

FR
C

81
03

 D
is

tu
rb

an
ce

d

where the x-axis is the number of samples, y-axis labeling on the left is the system
output, and the right one is the system input.

All collected 1350 samples are divided into three groups. The first group of 450
samples is selected as the training set, and the intermediate 450 samples are used to
verify the generalization capability of RBFNN, the remaining 450 samples are used
as the final testing set. Based on the three sets of data, the IRNA-GA is employed
to optimize the structure and parameters of RBFNN by minimizing 0.7. Here, the
parameters of the IRNA-GA are set as follows: the population size N is 60, the
maximal evolution generation G is 1000, the individual length L is 3 × D, the
probability of crossover operator pc is 0.6, themutation probability pm is dynamically
changed according to Eq. (6.9), the activity threshold Af o is 0.1, and λ is 0.3. To
examine the generalization capability of the constructed model, the trained RBFNN
is used to predict the coke temperature yield of the testing samples, which are not
included in the training data. In addition, for validation of the effectiveness of the
random optimization algorithm, RBFNN is trained for 10 times. At each time, the
parameters of IRNA-GA and data set are kept invariant. The best results are listed
in Table 6.1, where e1 is Root Mean Squared Error (RMSE) of the testing data.

The IRNA-GA is compared with the k-means method, which is used to train the
centers of the RBF network. The pruning operator is also applied and final-layer
weights are derived using the RLS method, and the number of the input nodes is
the same as the optimized RBFNN. The maximal number of hidden neuron nodes
is set to 38, which is also obtained based on the maximal number of hidden nodes

Table 6.1 The simulation results comparison with 2 methods

Methods TRC8105 TRC8105
disturbances

TRC8103 TRC8103
disturbances

n1 n2 e1 n1 n2 e1 n1 n2 e1 n1 n2 e1

IRNA-GA 4 32 0.0094 3 38 0.0439 4 31 0.0305 3 28 0.0813

k-means 4 38 0.0584 3 38 0.3245 4 38 0.2707 3 38 0.0866

134 6 GA-Based RBF Neural Network for Nonlinear SISO System

optimized by IRNA-GA. From Table 6.1, it can be seen that the best results of IRNA-
GA can obtain better prediction precision than using the k-means method in terms of
e1. Moreover, RBFNN using IRNA-GA can obtain smaller errors with fewer hidden
nodes for the four groups of the testing dataset. Though the RMSE of the TRC8103
disturbance model using IRNA-GA is similar to that of the k-means method, the
number of the hidden nodes using IRNA-GA is reduced greatly. All the results in 10
runs are superior to those of the k-means method, because the RBFNN with fewer
hidden nodes gains better generalization capability. The simpler structure of RBFNN
with higher modeling precision is obtained after running IRNA-GA.

To reflect the prediction accuracy of the established RBFNNmodel, the predicted
temperature is compared with the measured temperature on the testing set for the
main channels of the north side and south side (TRC8105, TRC8103) and their
disturbance channels, the comparison results are given in Figs. 6.9, 6.10, 6.11, 6.12,
6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24, respectively.

Figure 6.9 shows the predicted yields comparing with measured outputs on the
testing set by IRNA-GA, while the corresponding prediction error is plotted in
Fig. 6.10. Figure 6.12 shows the fitting curve of the prediction outputs and the
measured outputs using the k-means method, and the estimation errors are given in
Fig. 6.11. Comparing Figs. 6.9 with 6.11, it can be seen that the maximal modeling
error obtained by the k-means method is several times larger than that obtained by
IRNA-GA. Similar results can be observed by comparing with the modeling error
of TRC8103 and their disturbance models, which are shown Figs. 6.14, 6.16, 6.18,
6.20, 6.22, and 6.24, respectively, it can be seen from Figs. 6.9, 6.10, 6.11, 6.12, 6.13,
6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22, 6.23, and 6.24 that the IRNA-GA
optimal RBFNN modeling approach has obtained considerably smaller modeling
error with simpler network structure.

0 50 100 150 200 250 300 350 400 450
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Time

Tr
c8

10
5

m
od

el
 e

rro
r

Fig. 6.9 Modeling error of TRC8105 using IRNA-GA

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 135

0 50 100 150 200 250 300 350 400 450
494.6

494.8

495

495.2

495.4

495.6

495.8

Samples

Tr
c8

10
5

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.10 RBFNN model output for TRC8105 using IRNA-GA

0 50 100 150 200 250 300 350 400 450
-0.1

-0.05

0

0.05

0.1

0.15

Samples

Tr
c8

10
5

m
od

el
 e

rro
r

Fig. 6.11 Modeling error of TRC8105 using k-means method

6.5 Improved MOEA Based RBF Neural Network
for Chamber Pressure

In Sect. 6.4, RBFNN is optimized by the weighted-sum method in (6.7). In this
section, RBFNN is to be optimized by an improved MOEA (IMOEA) considering

136 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 50 100 150 200 250 300 350 400 450
494.4

494.6

494.8

495

495.2

495.4

495.6

495.8

Samples

Tr
c8

10
5

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.12 RBFNN model output for TRC8105 using k-means method

0 50 100 150 200 250 300 350 400 450
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Samples

Tr
c8

10
5

di
st

ur
ba

nc
e

m
od

el
 e

rro
r

Fig. 6.13 Modeling error for TRC8105 disturbances using IRNA-GA

two objectives: the smallest modeling error and the simplest structure. The encoding
method and various operators for the RBFNN structure and parameter optimization
are also designed to solve the bi-objective optimization problem.

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 137

0 50 100 150 200 250 300 350 400 450
1

2

3

4

5

6

7

8

Samples

Tr
c8

10
5

di
st

ur
ba

nc
e

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.14 RBFNN model output for TRC8105 disturbances using IRNA-GA

0 50 100 150 200 250 300 350 400 450
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Samples

Tr
c8

10
5

di
st

ur
ba

nc
e

m
od

el
 e

rro
r

Fig. 6.15 Modeling error of TRC8105 disturbances using k-means method

138 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 50 100 150 200 250 300 350 400 450
1

2

3

4

5

6

7

8

Samples

Tr
c8

10
5

di
st

ur
ba

nc
e

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.16 RBFNN model output for TRC8105 disturbances using k-means method

0 50 100 150 200 250 300 350 400 450
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Samples

Tr
c8

10
5

m
od

el
 e

rro
r

Fig. 6.17 Modeling error of TRC8103 using IRNA-GA

6.5.1 Encoding of IMOEA

Herein, m and n in the input layer, the number of the neurons in the hidden layer
nr and the parameters of the Gaussian functions ci , σi , i = 1, . . . , nr are optimized

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 139

0 50 100 150 200 250 300 350 400 450
493.5

494

494.5

495

495.5

496

496.5

497

497.5

Samples

Tr
c8

10
5

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.18 RBFNN model output for TRC8103 using IRNA-GA

0 50 100 150 200 250 300 350 400 450
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Samples

Tr
c8

10
3

m
od

el
 e

rro
r

Fig. 6.19 Modeling error of TRC8103 using k-means method

simultaneously. The encoding for all the parameters is designed similarly to Eq. (6.4),
and the lth chromosome is given as follows:

140 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 50 100 150 200 250 300 350 400 450
493.5

494

494.5

495

495.5

496

496.5

497

497.5

Samples

Tr
c8

10
3

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.20 RBFNN model output for TRC8103 using k-means method

0 50 100 150 200 250 300 350 400 450
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Samples

Tr
c8

10
3

di
st

ur
ba

nc
e

m
od

el
 e

rro
r

Fig. 6.21 Modeling error of TRC8103 disturbances using IRNA-GA

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 141

0 50 100 150 200 250 300 350 400 450
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Samples

Tr
c8

10
3

di
st

ur
ba

nc
e

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.22 RBFNN model output for TRC8103 disturbances using IRNA-GA

0 50 100 150 200 250 300 350 400 450
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Samples

Tr
c8

10
3

di
st

ur
ba

nc
e

m
od

el
 e

rro
r

Fig. 6.23 Modeling error of TRC8103 disturbances using k-means method

142 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 50 100 150 200 250 300 350 400 450
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Samples

Tr
c8

10
3

di
st

ur
ba

nc
e

m
od

el
 o

ut
pu

t

Neural Predictions
Real Values

Fig. 6.24 RBFNN model output for TRC8103 disturbances using k-means method

Cl =

⎡
⎢⎢⎢⎢⎣

c1,1 · · · c1,n 0 c1,Nn+1 · · · c1,Nn+m+1 0 σ1

...
...

...
...

...
...

...
...

...

cnh ,1 · · · cnh ,n0 cnh ,Nn+1 · · · cnh ,Nn+m+10 σnh

0 · · · 0 0 0 · · · 0 0 0

⎤
⎥⎥⎥⎥⎦ (6.11)

where l = 1, 2, . . . N , m, n, and nr are limited to 1 ≤ m ≤ Nm , 1 ≤ n ≤ Nn ,1 ≤
nr ≤ D, respectively. Cl is a D × (Nm+Nn+1) matrix and the rows below nr are
set to zeros. The columns of (n, Nn] and (m + Nn, Nm + Nn] are also set to zeros.
Hence, there are actually nr · (m + n + 1) parameters to be optimized. m, n, and nr

are first generated randomly among the given range. In Sect. 6.4.1, the number of
the input nodes is obtained by using enumeration method, here, it is encoded in Eq.
(6.11) and optimized by the evolution algorithm. The elements in Cl can be obtained
as follows:

ci j =
{

ymin + r(ymax − ymin) 1 ≤ i ≤ nr , 1 ≤ j ≤ n
umin + r(umax − umin) 1 ≤ i ≤ nr , Nn < j ≤ Nn + m

(6.12)

σi = rwmax 1 ≤ i ≤ nh (6.13)

where r is randomly generated between [0.01, 1], umin and umax are the minimal
and maximal values of the system inputs, and ymin and ymax are the minimal and
maximal values of the system outputs. wmax is the maximal width of the Gaussian
basis function that is set to max(umax, ymax).

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 143

Once Cl is generated randomly, the structure and parameters of the RBFNN
are determined and the connecting weight vector can be derived by the RLS algo-
rithm by using the training data. N RBFNNs can then be obtained, denoted as
(C1,ω1), . . . (CN , ωN).

6.5.2 Optimization Objectives of RBFNN Model

Two objectives considering the structure complexity and modeling accuracy of
RBFNN are expressed as follows:

Min

⎧⎪⎨
⎪⎩

f1 =
√

N1∑
k=1

∣∣∣y1(k) − ∧
y1(k)

∣∣∣2 +
√

N2∑
k=1

∣∣∣y2(k) − ∧
y2(k)

∣∣∣2
f2 = (m + n)nr

(6.14)

We denote Y1 = [y1(1), . . . y1(N1)] as the training data set used to calculate
the weight vector ω, Y2 = [y2(1), . . . y2(N2)] as the testing data set, Ŷ1 =
[ŷ1(1), . . . ŷ1(N1)] and Ŷ2 = [ŷ2(1), . . . , ŷ2(N2)] as the prediction outputs of the
RBFNN. Here f1 is the modeling accuracy by using the sum of the root of square
errors (RSE) for Y1 and Y2, in which the generalization capability of the RBFNN is
involved. f2 is the structure complexity of the RBFNN by using the product of the
number of neurons in the input layer and the hidden layer. Y3 is used to choose the
best RBFNN among the Pareto frontier.

6.5.3 Operators of IMOEA for RBFNN

After the Roulette wheel selection of the parents from individuals in terms of the
top N /2 f 1 and the top N /2 f 2, respectively, the crossover and mutation operators are
then implemented to generate the offspring.

(1) Crossover and mutation operators

The crossover operation is performed with probability pc between individuals Cl

and Cl+1, and the offspring C
′
l and C

′
l+1 are produced. The crossover position is

generated between [1, nr] randomly. The number of the input nodes m + n and
the corresponding parameters of the radial basis functions are changed dynamically
with the evolution processes going on. However, the number of the hidden nodes
cannot be changed by crossover operation. In Fig. 6.25, an example of the crossover
operation is given in the genes surrounded by a dotted line, all genes in the dotted
line are exchanged, and obviously, this is a multi-point crossover operator in nature.

For a better exploration, a mutation operator is also designed with the probability
pm. When the mutation operator is implemented, m, n, and nr are first produced in

144 6 GA-Based RBF Neural Network for Nonlinear SISO System

Fig. 6.25 Example of the crossover operator

random among the given ranges in Sect. 6.5.1. and the elements of the mutation
individual are replicated according to the Eqs. (6.12)–(6.13). The new structure of
the RBFNN is thus generated.

In addition to the crossover and mutation operators, the local search operator,
prolong and pruning operators are designed to improve the search capability of
MOEA and guarantee the rationality of the RBFNN.

(2) Local search operator

The local search operator is given as follows:

C = α1Cl + (1 − α1)C
′
l (6.15)

C = Cl + α2Cl (6.16)

where Cl is selected randomly from the former N /2 parents, C′
l is chosen randomly

from the latter N /2 parents, and α1 is randomly generated between (0,1) that is to
generate excellent offspring inheriting the gene information of Cl and C′

l . If Cl is
equal to C′

l , 0.146 is utilized to generate the offspring and α2 is generated randomly
between (−1, 1). In order to keep the population diversity and avoid running into
the local optima as the evolution goes on, a similar dynamical probability of 0.9 is
adopted for local search operator. The difference is that the probability is increased
from pl0 to plG with the generation increasing from 1 to G by using minus aa.

(3) Prolong and pruning operators

Since the crossover operator cannot generate new structures of the hidden layer
and the probability of mutation is low, the prolong operator is designed. That is,
the number of the hidden nodes is reproduced randomly between nr and D with

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 145

probability pp. The elements of the newly added node can be calculated according
to Eqs. (6.12)–(6.13).

Because the chromosomes are randomly generated, the crossover and mutation
operations are also of randomness and there may be inactive structures in the popu-
lation. The neuron with ci = 0, i < nr will first be deleted, and each hidden neuron
is evaluated in terms of the active firing (AF) in Sect. 6.4.3, using the same value of
ρ. Here the upper threshold Af o is also selected from [0.05, 0.3]. When the hidden
neuron is judged as inactive, the corresponding hidden neuron is deleted.

(4) Elitism maintaining scheme

The fast non-dominated sorting scheme is adopted and all non-dominated individuals
in the population are regarded as the elitists, which will be found and stored to an
archive. Because the size of the archive will increase with the evolution going on, the
maximum size of the elitist archive is set asNe. If the current size of the elitist archive
is larger than Ne, the maintaining scheme will be performed to keep the evenness
of the elitist population. The fast non-dominated sorting algorithm is implemented
and the dominated individuals will be removed from the archive. If the archive size
becomes less than Ne, the maintaining procedure will not be carried out, otherwise, a
modified adaptive cell density maintaining scheme will be implemented by dividing
the objective spaces into

∏2
i=1 k1 cells, and at most one individual can be kept at

each cell [45]. Matlab code of the maintaining scheme has been given in Chap. 4.
When the maximal number of the individuals distributed at the Pareto frontier is set
as, and

∑2
i=1 ki − 1, and Ne <

∑2
i−1 Ki must be satisfied to keep the evenness

of the population distribution which can refer to the analysis of MOEA in Chap. 4.

6.5.4 The Procedure of IMOEA

The whole procedure of IMOEA can be run by using the following steps.
Step 1: Initialize the population size N, the maximum generations G, the operator

probabilities pc, pm, pl0, plG pp, and Af o, the RBFNN Nm, Nn, D, the number of cells
for the ith objective function Ki, and the maximal archive size Ne, then generate
randomly N chromosomes using 0.11.

Step 2: Calculate the two fitness functions based on 0.14.
Step 3: Implement the non-dominated sorting algorithm in NSGA-II and keep the

elitists in the archive. Execute the elitist maintaining scheme when the size of the
elitist archive is larger than Ne.

Step 4: Select the parent individuals using the Roulette wheel method in terms
of f 1 and f 2, and Pareto Elite individuals are also selected as the parents to produce
the offspring by genetic operators. To keep the individual diversity, Ne is set as not
larger than N/2.

Step 5: Execute the crossover and mutation operators with probability pc and
pm, respectively, then implement the local search operator with dynamic probability,

146 6 GA-Based RBF Neural Network for Nonlinear SISO System

prolong operator with probability pp, and pruning operator with probability 1 to
produce the offspring.

Step 6: Repeat steps 2–5 until the maximum generation G is met.
Step 7: Calculate RMSE of an unused data set for determining the final solution,

and the RBFNN model with a minimal value of f 1 is selected as the final optimal
one.

6.5.5 The Chamber Pressure Modeling in a Coke Furnace

This section describes the application of the IMOEA to optimize the RBFNN model
for the chamber pressure in the industrial coke furnace in Sect. 6.2. Herein, the
parameters of the IMOEAare set asN = 60,G = 1000, pc = 0.9, pm = 0.1, pl0 = 0.02,
plG =0.22, andAf o =0.1. Since the prolong operator is used to increase the number of
the hidden nodes, the probability pp is set relatively small as 0.1. The pruning operator
is designed to keep the rationality of the RBFNN structure and its probability is set
as 1. Ki, i = 1, 2, is set to 20 and the archive size Ne is set to 30 to satisfy Ne ≤ N

/
2

and Ne <
∑2

i−1 Ki · Nm, Nn and D are directly related to the model complexity and
can be selected among the following ranges:Nm, Nn ∈ [3, 10], D ∈ [10, 60], where
a little of prior knowledge is required to set suitable values for these parameters.
Note that the simpler the modeled system, the smaller the value is to be set, which
may speed up the convergence of the algorithm. Nm, Nn, and D in this section are set
as 5, 5, 60, respectively.

Two pressure branches, i.e., the main channel and its coupling disturbance should
be modeled here. Then, several sets of step tests are performed for system analysis
and modeling. The input step signal is the set point of the originally designed PID
controller and this signal also poses disturbances on the other side of the chamber
pressure. The experimental data are collected from the same industrial coke unit
equipped with a distributed control system CENTUM DCS3000. And all data are
filtered to reduce the impact of measurement noise. There are totally 4 groups of
1200 input/output samples as plotted in Figs. 6.26 and 6.27. For the main channel of
the chamber pressure PRC8112A/PRC8112B, the input is the valve opening given
by the PID controller and the output is the chamber pressure PRC8112A/PRC8112B.
The output responses of PRC8112A and its coupling disturbance on PRC8112B are
shown in Fig. 6.26 when the set point is set as−0.029 kPa,−0.024 kPa,−0.019 kPa,
and−0.024 kPa, respectively. Figure 6.27 shows the output responses of PRC8112B
and its coupling disturbance on PRC8112A when the set point is set as −0.022 kPa,
−0.016 kPa, −0.02 kPa, −0.026 kPa, and −0.02 kPa, respectively. The sampled
dataset is equally divided into three groups, where the former 1/3 data are selected
as the training data Y1, the intermediate 1/3 data as Y2, and the latter 1/3 data as
Y3. In addition, the RBFNN is optimized by running 10 times and the parameters of
IMOEA remain unchanged at each run.

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 147

0 200 400 600 800 1000 1200-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

Samples

P
re

ss
ur

e/
kP

a

Disturbance of west side
East side
setpoints

Fig. 6.26 Outputs of PRC8112A (main channel) and its disturbance on pressure PRC8112B

0 200 400 600 800 1000 1200
-0.03

-0.028

-0.026

-0.024

-0.022

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

Samples

P
re

ss
ur

e/
kP

a

Disturbance of east side
West side
setpoints

Fig. 6.27 Outputs of PRC8112B (main channel) and its disturbance on pressure PRC8112A

The IMOEA method is compared with NSGA-II, IMOEA with fixed input layer
(IMOEA-Fix), IRNA-GA with WSO method [19], and artificial neural network
with LM algorithm (LMANN). The details of the compared algorithms are given
as follows:

(1) The encoding/decoding method, crossover, mutation, and zero ci deletion of
IMOEA are adopted in NSGA-II, while the individuals in the mating pool are
selected in terms of the non-dominated sorting rank and its spread evenness
information.

148 6 GA-Based RBF Neural Network for Nonlinear SISO System

(2) For IMOEA-Fix, all the parameters and operators are the same as those of
IMOEA except for the structure of the input layer, where m is set as 3, n as 2,
and they are fixed during the whole optimization procedure.

(3) Aweighted sum of objectives based on IRNA-GA that has obtained good results
of temperature modeling in Sect. 6.4 is chosen to be compared. The objective
function in Eq. (6.17) for IRNA-GA is similar to Eq. (6.7) and that in Ref. [19],
however, the weight coefficient is decreased to 0.01 by trial and error focusing
on the modeling accuracy.

J = f1 + λ f2 (6.17)

(4) For LMANN, an enumeration method is applied to select the NN structure, i.e.,
the number of the neurons in the input layer (m + n) is enumerated from 2 to
10 and the number of the neurons in the hidden layer (nh) is enumerated from
1 to 60, and there are totally 25 × 60 combinations of ANN.

The selecting criterion in step 7 is used to choose the ultimate RBFNN among
Pareto individuals and also for selecting the best one in 10 runs of IRNA-GA and
LMANN.

To illustrate the population diversity and distribution evenness, the Pareto frontier
with the maximal number of individuals in 10 runs using 3 MOEAs are shown in
Figs. 6.28, 6.29, 6.30,and 6.31, where the modeling error f 1 is in the horizontal coor-
dinate and the structure complexity f 2 is in y-coordinate. Obviously, the objectives
are conflicting with each other; the RBFNNwith simpler structure, that is smaller f2,
has weaker approximation capability, that means larger f1, and vice versa. When f 2
is less than 10, f1 grows quickly because of too simple structure of RBFNN. Since
only zero ci deletion is used to keep the rationality of the RBFNN in NSGA-II, the
value of f2 in NSGA-II is larger than that of IMOEA as shown in Figs. 6.28, 6.29,
6.30, and 6.31. Moreover, in Figs. 6.29 and 6.30, it is obvious that IMOEA is nearer
to the Pareto frontier compared with NSGA-II because the local search operator and
pruning operator are beneficial to produce more individuals and decrease the struc-
ture complexity. In Fig. 6.31, though IMOEA-fix has more individuals, only three

Fig. 6.28 Pareto frontier for
PRC8112A

0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

400

500

f1

f2

NSGA-II
IMOEA-Fix
IMOEA

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 149

Fig. 6.29 Pareto frontier for
the disturbance of
PRC8112B

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

20

40

60

80

100

f1
f2

NSGA-II
IMOEA-Fix
IMOEA

Fig. 6.30 Pareto frontier for
PRC8112B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

f1

f2

NSGA-II
IMOEA-Fix
IMOEA

Fig. 6.31 Pareto frontier for
the disturbance of
PRC8112A

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

f1

f2

NSGA-II
IMOEA-Fix
IMOEA

individuals have good modeling accuracy where f1 is less than 0.1. Since the struc-
ture of the input layer is fixed, the performance of the RBFNN is restricted greatly.
Themaintaining scheme of IMOEAhas kept the elitist archive size in a rational range
during the optimization process. However, the number of individuals in the Pareto
frontier in 3 MOEAs is relatively small, i.e., the size of the elitist archive is less
than Ne and the evenness distribution problem is not serious, thus, the maintaining
scheme will not be implemented in most evolution generations.

ThebestRBFNNsoffivemethods are obtained after selecting in termsofmodeling
accuracy and their modeling errors are plotted in Figs. 6.32, 6.33, 6.34, and 6.35.
It is obvious that the errors of IRNA-GA are much larger than those of MOEA

150 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 50 100 150 200 250 300 350 400
-8

-6

-4

-2

0

2

4

6 x 10-4

Samples

M
od

el
in

g
er

ro
r

NSGA-II IMOEA-Fix IMOEA IRNA-GA LMANN

Fig. 6.32 Errors of best RBFNN for PRC8112A

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1 x 10-3

Samples

M
od

el
in

g
er

ro
r

NSGA-II IMOEA-Fix IMOEA IRNA-GA LMANN

Fig. 6.33 Errors of best RBFNN for PRC8112B

0 50 100 150 200 250 300 350 400
-4

-3

-2

-1

0

1

2

3 x 10-3

Samples

M
od

el
in

g
er

ro
r

NSGA-II IMOEA-Fix IMOEA IRNA-GA LMANN

Fig. 6.34 Errors of best RBFNN for the disturbance of PRC8112B

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 151

0 50 100 150 200 250 300 350 400
-1.5

-1

-0.5

0

0.5

1

1.5

2 x 10-3

Samples

M
od

el
in

g
er

ro
r

NSGA-II IMOEA-Fix IMOEA IRNA-GA LMANN

Fig. 6.35 Errors of best RBFNN for the disturbance of PRC8112A

partly because the structure simplification in Eq. (6.17) is considered during the
optimization processes. As a typical and widely used MOEA, NSGA-II can obtain
satisfactory modeling accuracy as shown in Fig. 6.34. However, by introducing local
search, prolong and pruning operators, IMOEAhas obtained smaller errors than other
GA-based methods. As for IMOEA-fix, if the input layer is not set appropriately
beforehand as shown in Fig. 6.35, its modeling error will be larger than those of
IRNA-GA and NSGA-II. Otherwise, its modeling error of IMOEA-fix is similar to
that of IMOEA.

The statistical results about the structure of the input layer, the number of hidden
nodes of the best RBFNN, and their RMSEs of six methods among 10 runs are
listed in Tables 6.2 and 6.3, respectively. In Table 6.2, LMANN has obtained the best
results of PRC8112B and its disturbance channel using the enumeration method,
however, the average running time is quite long, which depends on the range of m, n,
and nr , and the enumeration method may be impracticable with large variable range.
LMANN-fix used the same structure of the optimalRBFNN’s, however, its results are
worse than those of the enumerated LMANN because the structure, weight learning
algorithm, and radial basis function are quite different between ANN and RBFNN,
and the optimal structure of the RBFNN is not suitable for ANN. Moreover, ANN
will be greatly affected by the initialization of the weight vector that is implemented
automatically by the toolbox, and its average RMSE (RMSE) in Table 6.3 is much
larger than their RMSEs in Table 6.2. The RMSE of IRNA-GA in Table 6.2 is
several times larger than those in three MOEAs except for the disturbance model of
PRC8112A by IMOEA-fix, which is consistent with Fig. 6.34. The variation range
of nr by IRNA-GA in Table 6.3 is relatively smaller than that of MOEA because
the WSO method takes into account the structure simplification in the optimization
process and the average running time (T̄) of the single-objective optimization is
relatively shorter. Compared with the implementation of NSGA-II, IMOEA can
obtain better accuracy with simpler structure, because several new operators are
carried out, however, its T̄ is the longest in the MOEAs. As for IMOEA-Fix, the

152 6 GA-Based RBF Neural Network for Nonlinear SISO System

Ta
bl
e
6.
2

T
he

co
m
pa
ri
so
n
of

be
st
si
m
ul
at
io
n
re
su
lts

by
6
m
et
ho

ds

M
et
ho
ds

PR
C
81
12
A

D
is
tu
rb
an
ce

of
PR

C
81
12
B

PR
C
81
12
B

PR
C
81
12
B

m
n

n h
R
M
SE

m
n

n h
R
M
SE

m
n

n h
R
M
SE

m
n

n h
R
M
SE

L
M

A
N
N

1
1

9
3.
5e

−
5

2
2

6
5.
73
e

−
6

3
2

10
5.
96
e

−
6

1
2

6
2.
25
e

−
5

L
M
A
N
N
-F
ix

1
2

9
7.
65
e

−
5

1
1

11
1.
41
e

−
4

3
2

7
3.
53
e

−
5

1
3

18
8.
18
e

−
5

IR
N
A
-G

A
2

1
7

2.
28
e

−
4

2
2

6
3.
69
e

−
4

2
3

10
2.
89
e

−
4

3
2

11
3.
05
e

−
4

N
SG

A
-I
I

2
1

12
7.
42
e

−
5

1
2

10
1.
94
e

−
5

4
1

23
2.
41
e

−
5

2
4

19
1.
32
e

−
4

IM
O
E
A
-F
ix

3
2

13
2.
53
e

−
5

3
2

13
8.
77
e

−
5

3
2

24
2.
22
e

−
5

3
2

12
3.
76
e

−
4

IM
O
E
A

1
2

9
2.
47
e

−
5

1
1

11
6.
01
e

−
6

3
2

7
3.
62
e

−
5

1
3

18
1.
51
e

−
5

6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure 153

Ta
bl
e
6.
3

T
he

pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

6
m
et
ho
ds

in
10

ru
ns

M
et
ho

ds
PR

C
81

12
A

D
is
tu
rb
an
ce

of
PR

C
81

12
B

PR
C
81

12
B

PR
C
81

12
B

m
n

n h
T̄

R
M

S
E

m
n

n h
T̄

R
M

S
E

m
n

n h
T̄

R
M

S
E

m
n

n h
T̄

R
M

S
E

L
M

A
N
N

2
±

1
2

±
1

6
±

3
31

50
8.
15
e

−
5

2
±

1
2

±
1

4
±

2
28

50
1.
18
e

−
4

2
±

1
2

±
1

6
±

4
25

50
3.
47

e
−

4
2

±
1

2
±

1
6

±
4

28
20

2.
51
e

−
4

L
M
A
N
N
-F
ix

1
±

0
2

±
0

9
±

0
21

3.
96
e

−
4

1
±

0
1

±
0

11
±

0
19

7.
13
e

−
4

3
±

0
2

±
0

7
±

0
17

2.
5e

−
4

1
±

0
3

±
0

18
±

0
19

8.
74
e

−
4

IR
N
A
-G

A
3

±
1

3
±

2
10

±
8

65
1

9.
81
e

−
4

3
±

1
3

±
1

16
±

12
85

3
1.
52
e

−
3

3
±

1
3

±
1

15
±

9
60

7
1.
12
e

−
3

3
±

1
3

±
1

13
±

8
56

9
1.
05
e

−
3

N
SG

A
-I
I

3
±

1
3

±
1

28
±

19
10

29
4.
46
e

−
4

3
±

2
3

±
2

34
±

24
11

52
5.
19
e

−
4

3
±

2
3

±
2

26
±

20
10

27
2.
19

e
−

4
3

±
1

4
±

1
37

±
22

92
5

1.
75
e

−
4

IM
O
E
A
-F
ix

3
±

0
2

±
0

19
±

10
10

43
5.
03
e

−
3

3
±

0
2

±
0

26
±

13
10

22
2.
76
e

−
3

3
±

0
2

±
0

30
±

24
10

12
2.
84
e

−
3

3
±

0
2

±
1

19
±

16
98

2
1.
41
e

−
3

IM
O
E
A

3
±

2
2

±
1

15
±

10
18

29
7.
32
e

−
5

3
±

2
3

±
2

26
±

15
17

74
4.
25
e

−
5

3
±

1
2

±
1

15
±

10
17

83
1.
23

e
−

4
2

±
1

4
±

1
29

±
12

16
24

4.
91
e

−
4

154 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 200 400 600 800 1000 1200
-6

-4

-2

0

2
x 10

-3

Samples

M
od

el
in

g
er

ro
r(a

)

0 200 400 600 800 1000 1200
-1

0

1

2
x 10

-3

Samples

M
od

el
in

g
er

ro
r (

b)

IMOEA
LMANN

IMOEA
LMANN

0 200 400 600 800 1000 1200
-2

0

2

4
x 10

-3

Samples

M
od

el
in

g
er

ro
r (

c)

0 200 400 600 800 1000 1200
-5

0

5

10
x 10

-4

Samples

M
od

el
in

g
er

ro
r (

d)

IMOEA
LMANN

IMOEA
LMANN

Fig. 6.36 Comparison IMOEA RBFNN with LMANN in the case of noisy data a PRC8112A
b PRC8112B c Disturbance of PRC8112B d Disturbance of PRC8112A

complicated input layer structure seems to require more hidden nodes to obtain the
similar modeling precision compared with IMOEA. Moreover, one order higher of
RMSE in Table 6.3 illustrates that m = 3, n = 2 is not appropriate to construct the
chamber pressure model. Hence, the input layer will affect both the model structure
and modeling accuracy greatly.

In order to illustrate the generalization capability of the optimization methods,
10% of noise levels are added to the sampled data, and other parameters are kept
unchanged. The modeling errors of IMOEARBFNN are compared with the enumer-
ated LMANN and plotted in Fig. 6.36. The RMSEs of enumerated LMANN are
5.10e − 4, 3.83e − 4, 1.26e − 4, 1.67e − 5, while the IMOEA RBFNN’s are 6.70e
− 5, 2.32e − 4, 1.178e − 4 and 1.39e − 4, respectively. Though small RMSEs of
PRC8112B and its disturbance of PRC8112B have been derived by the enumerated
LMANN in Table 6.2, much larger error has been observed from the noisy data as
shown in Fig. 6.36 and reflected in their RMSEs, whichmay be caused by overfitting.
IMOEA based RBFNN is more robust than LMANN in the aspect of generalization
capability. It can be concluded that IMOEA is superior to the other four methods
with respect to the smaller errors inmodel accuracy and simpler structure of RBFNN,
however, the algorithm is more complicated and its running time is longest.

6.6 PCA and INSGA-II Based RBFNN Disturbance
Modeling of Chamber Pressure

6.6.1 RV Criterion in PCA Variable Selection

The key variables are important to be found for multiple variables system modeling,
the RV criterion in principal component analysis has been utilized to measure the

6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure 155

similarity of the selected subset. If the value of RV criterion is the largest among all
possible subsets, the optimal subset will be obtained. In order to calculate the RV
criterion, the following augmentation of notation has been listed in Table 6.4.

The optimal solution for a given subset, P, is equivalent to maximize the RV
criterion as follows [22]:

f1 =
√

tr((S−1
P [S2]P)2)

tr(S2)
(6.18)

If all variables are selected, the maximum value of f1 reaches 1. Since f1 is to be
maximized, the objective is then changed into theminimization problemby reciprocal
operation of Eq. (6.18), shown as follows:

J1=1
/

f1. (6.19)

Once the selected variables are determined in terms of J1, they are used as the inputs
of the system model.

When the RBFNN model is constructed and its parameters are trained, its
modeling accuracy can be evaluated according to the sum of RMSEs of the training
and testing data

J2 =
√√√√ N1∑

k=1

|y1(k) − ŷ1(k)|2
/

N1 +
√√√√ N2∑

k=1

|y2(k) − ŷ2(k)|2
/

N2 (6.20)

The two objectives J1, J2 can be optimized simultaneously. The encoding method
and various operators in an improved NSGA-II for variable selection, RBFNN struc-
ture, and parameter optimization are then designed to solve this multi-objective
optimization problem.

Table 6.4 Notation for RV criterion

Parameters Description

X an N × M data matrix for N objects measured on M variables

X(P) the N × p vector of X for the selected variables in P

S the covariance matrix for the full data matrix, X

S2 the product of the covariance matrix and itself, S2 = SS

SP the p × p submatrix of S corresponding to the selected variables in P

[S2]P the p × p submatrix of S2 corresponding to the selected variables in P

156 6 GA-Based RBF Neural Network for Nonlinear SISO System

6.6.2 Encoding of RBFNN

For simplicity, n in the input layer is set as 2, while m for one input variable is set
as 1, here, there are at most six disturbance variables according to prior knowledge
of coke furnace, m is then limited to [1, 6]. Once the key variables are selected, the
input nodes are then determined. The number of the hidden neurons (nr) and the
parameters of Gaussian functions ci , σi , i = 1, . . . , nr , 1 ≤ nr ≤ D, with D being
the maximal number of the hidden nodes, are to be optimized. The encoding for
different variables selection and RBFNN is then designed, and the ith chromosome
is shown as follows:

Ci =

⎡
⎢⎢⎢⎢⎢⎣

c11 c21 c31 · · · c81 σ1
...

...
...

...
...

...

c1nr c2nr c3nr · · · c8nr σnr

0 0 0 · · · 0 0
0 0 1 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎦ (6.21)

Here 1 ≤ i ≤ N, (m + n) ∈ [3, 8] and the elements in rows [1, nr] can be obtained
as follows: ⎧⎨

⎩
ci j = ymin + r(ymax − ymin) 1 ≤ i ≤ 2 1 ≤ j ≤ nr

umin + r(umax − umin) 3 ≤ i ≤ 8 1 < j ≤ nr

σ j = rwmax 1 ≤ j ≤ nr

(6.22)

where r is randomly generated in [0.01,1], umin, umax ymin, ymax, and wmax are the
same as those in Eqs. (6.12)–(6.13).

The last row in Ci delegates which variable of columns 3–8 will be selected, thus
it is encoded by binary encode, and the valid bits are located at [3 8], for example

cD+1 = [0 0 0 0 1 1 0 1 0 0] (6.23)

It means that u3, u4, u6 are selected, and columns c5, c6, c8 are valid centers of the
Gaussian functions.

Once Ci is obtained, both the structure and the parameters of RBFNN can be
determined, and the weight w can be further calculated by RLS based on the training
data.

6.6.3 Operators of INSGA-II

(1) Selection operator

When the NSGA-II is implemented, the rank and crowding distance of individuals
can be obtained. The individuals with rank 1 are regarded as the elitists and chosen as

6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure 157

the parents. The individuals at each frontier from rank 1 are selected into the parent
population one by one until exceeding the population size N. Then, the crowing
distance in the current frontier is compared by sorting in descend and the individuals
with larger crowing distance are selected into the parent population. If the size is still
less than the population size, the Roulette wheel selection operator is implemented
to select half of the rest of the population in terms of J1 and the other half of the rest
of the population in terms of J2.

(2) Crossover and mutation operators

The crossover and mutation operators are carried out among the selected population
to produce the offspring.

In Fig. 6.37, the crossover operator with probability pc is executed between the
individuals Ci and C′

i , and the location is randomly generated between [1 9]. The
parameters of the radial basis function are changed and the selected variables are
also changed in the offspring. Note that the number of the hidden nodes cannot be
changed by using this crossover operator.

The element in Eq. (6.21) is mutated with the probability pm. When the mutation
operator is implemented, the elements are produced in terms of Eq. (6.22) and the
elements in Eq. (6.23) performs a logic NOT operation, that is, 1 to 0 and 0 to 1. The
new structure of RBFNN and different key variables can be obtained.

In addition to crossover and mutation, the prolong and pruning are also designed
for improving the searching capability of NSGA-II and keeping the rationality of
RBFNN.

(3) Prolong and pruning operators

Due to the fact that the number of the hidden nodes is not changed and some irrational
structure may be produced by random operators, the prolong and pruning operators
are then designed. If the number of the hidden neuron is less than 2, the prolong

Fig. 6.37 Example of the crossover operator

158 6 GA-Based RBF Neural Network for Nonlinear SISO System

operator is executed, i.e., a random number between [1, D-2] is produced randomly
as the newly added neuron and the elements of the new neuron are calculated in
terms of Eq. (6.22). If the neuron has only one nonzero element in ci, the pruning
operator is implemented. Here, the neuron will be deleted and the number of the
hidden neuron is reduced.

6.6.4 The Procedure of Improved NSGA-II

The whole procedure of the INSGA-II applied for RBFNN optimization is shown as
follows:

Step 1: Initialize the population sizeN, themaximumgenerationsG, the operators’
probabilities pc, pm, the system parameters umin, umax, ymin and ymax, then generate
N chromosomes randomly.

Step 2: Select variables in terms of Eq. (6.18) and calculate J1.
Step 3: Construct the RBFNN and calculate the value of J2.
Step 4: Implement INSGA-II and select the parent population in terms of the front

rank, crowing distance, and Roulette wheel selection operator.
Step 5: Implement the crossover and mutation operators with pc and pm, then the

prolong and pruning operators are carried out for the offspring.
Step 6: Repeat steps 2–5 until G is met.

6.6.5 Main Disturbance Modeling of Chamber Pressure

The chamber pressure operation in the coke furnace is critical to guarantee burning
security. However, its system model for advanced control is a highly complex task
because nonlinear characteristics, time delay, and a lot of disturbances such as fuel
volume, the coupling of pressures, etc., coexist in the unit. The input variable of
the main channel is known, but the main disturbance model is especially difficult
to be obtained because of the above various disturbances. How to select the key
disturbance variables and construct its disturbance model is still challenging.

The pressure PRC8112A coupled with the pressure PRC8112B, the temperature
in the chamberTR8109A,TR8109B, the oxygen contentAR8102,ARC8101, and the
external flow XLF103, are sampled. Meanwhile, the other side pressure PRC8112B
with similar disturbance variables is also collected and stored in the PAI database.
Since the values of different variables in Figs. 6.38a and 6.39a vary considerably
large, they are normalized to [0, 1] and shown in Figs. 6.38b and 6.39b. It is obvious
that the dynamic response is complex, and accurate disturbance modeling is difficult.

The INSGA-II is used to select the main disturbances and optimize both the
structure and the parameters of RBFNN such that the nonlinear dynamic behavior
of the disturbance of chamber pressure can be captured. The population size N is set
to 60, the maximal evolution generation G is 1000, and the operator probabilities pc

6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure 159

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

40

60

80

100

120

140

160

Samples

V
ar

ia
bl

es

PRC8112A
PRC8112B
AR8102
ARC8101
XLF103
TR8109A
TR8109B

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

V
ar

ia
bl

es

PRC8112A
PRC8112B
AR8102
ARC8101
XLF103
TR8109A
TR8109B

(b)(a)

Fig. 6.38 a Original variables sampled in the PAI database for PRC8112A, b normalized variables

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

40

60

80

100

120

140

160

Samples

Va
ria

bl
es

PRC8112B
PRC8112A
AR8102
ARC8101
XLF103
TR8109A
TR8109B

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

V
ar

ia
bl

es

PRC8112B
PRC8112A
AR8102
ARC8103
XLF103
TR8109A
TR8109B

(a) (b)

Fig. 6.39 a Original variables sampled in the PAI database for PRC8112B, b normalized variables

and pm are set to 0.9 and 0.1, N1, N2 of the training data (Y1) and the testing data
(Y2) are set as 400, 400, N, M in X are 6 and 800, respectively. The maximal number
of the hidden nodes (D) is set to 30, [umin, umax] is [0, 1] and [ymin, ymax] is [0, 1].
The optimization result for PRC8112A and PRC8112B is a group of Pareto optimal
solutions and shown in Figs. 6.40 and 6.41, respectively.

It can be seen in Figs. 6.40 and 6.41 that the RMSE of RBFNNmodel J2 becomes
larger with the value of RV criterion J1 close to 1, where the number of the selected
variables has been changed from 1 to 6. Though the RMSE becomes larger, the
difference between the maximal and minimal values of J1 in the Pareto frontier is
not large, e.g., PRC8112A’s is 0.18 and PRC8112B’s is 0.35. J2 is then used to
select the final solution. The individual with the minimal value of J2 is chosen as the
final solution, i.e., the individuals where (J1, J2) is (1.18, 0.071) in Fig. 6.40, and
(J1, J2) is (1.18, 0.071) in Fig. 6.41, are chosen. In the selected individual, cD+1 is

160 6 GA-Based RBF Neural Network for Nonlinear SISO System

0.07 0.072 0.074 0.076 0.078 0.08 0.082 0.084
0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

J2

J1

Fig. 6.40 Pareto front for PRC8112A

0.04 0.045 0.05 0.055 0.06
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

J2

J1

Fig. 6.41 Pareto front for PRC8112B

[00100000], which means PRC8112B is the main disturbance for PRC8112A and
PRC8112A is the main disturbance for PRC8112B. Therefore, the input vector of
RBFNN is [y(k −1), y(k −2), u1(k)]. The model output and its modeling errors for
PRC8112A and PRC8112B are plotted in Figs. 6.42 and 6.43.

6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure 161

0 100 200 300 400 500 600 700 800
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Samples

M
od

el
in

g
ou

tp
ut

Real output
Model output

0 100 200 300 400 500 600 700 800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Samples

M
od

el
in

g
er

ro
r

Fig. 6.42 Outputs and errors of RBF disturbance model for PRC8112A by proposed method

0 100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Samples

M
od

el
in

g
ou

tp
ut

Real output
Model output

0 100 200 300 400 500 600 700 800
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Samples

M
od

el
in

g
er

ro
r

Fig. 6.43 Outputs and errors of RBF disturbance model for PRC8112B by proposed method

We also selected several methods to select the key variables and construct the
disturbance model, which are PCA variable selection method [47] with RBFNN
optimized by an improved GA [7] aimed at minimizing J2 (PCAGA RBF), simu-
lated annealing for variable selection in terms of RV criterion [23] and RBFNN
modeling (SAPCA RBF), and the multilayer perceptron (MLP) neural network with
least absolute shrinkage and selection operator to select the input variables (LASSO
NN) [27].

In the PCAGA RBF method, the component with small eigenvalue, usually less
than 0.7, is of less importance. Consequently, the variable that dominates it should
be superfluous. Here, the eigenvector is [19.6760, 9.3106, 6.1678, 3.8346, 3.3994,
1.2042] for PRC8112A and [17.7668, 10.5847, 8.3911, 6.6600, 4.7317, 3.2693]
for PRC8112B, obviously, all values in the eigenvector are larger than 0.7, thus,
the disturbances need to be kept. The parameters of the radial basis function and
the number of the hidden nodes are derived after optimization. The errors of the
constructed RBFNN disturbance models for PRC8112A and PRC8112B are shown
in Fig. 6.44.

When using SAPCA RBF method, the third disturbance and the fifth disturbance
are selected as the main disturbance for PRC8112A and PRC8112B, respectively.

162 6 GA-Based RBF Neural Network for Nonlinear SISO System

0 100 200 300 400 500 600 700 800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Samples

M
od

el
in

g
er

ro
r

0 100 200 300 400 500 600 700 800
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

Samples

M
od

el
in

g
er

ro
r

Fig. 6.44 The modeling errors of PRC8112A and PRC8112B by PCARBF method

The input vector of theRBFNN for the two-side disturbancemodel is [y(k−1), y(k−
2), u3(k)] and [y(k − 1), y(k − 2), u5(k)], respectively. The modeling error of the
RBFNN for PRC8112A and PRC8112B are plotted in Fig. 6.45.

When applying the LASSONNmethod, the MLP neural network is first obtained
by the Levenberg-Marquard learning algorithm, then the LASSO is applied to select
the variables. Three main disturbances [u1(k), u2(k), u5(k)] for PRC8112A and four
variables [u1(k), u2(k),u4(k),u5(k)] for PRC8112B are obtained, and their modeling
errors are given in Fig. 6.46.

It can be seen from Figs. 6.42, 6.43, 6.44, 6.45, and 6.46, that the INSGA-II
method has obtained the best modeling accuracy. In order to be convenient to show
the different performances of the above methods, RMSEs of the training data and
test data, which are denoted as RMSE1 and RMSE2, the parameters of the RBFNN,
the running time, and the RV criterion are listed in Table 6.5.

In Table 6.5, the number of disturbances is only one with the less similarity RV
value for the INSGA-II method, while the PCA eigenvalue analysis method selected
all disturbance. For the SAPCA RBF method, larger RV value is obtained than
the proposed method because the RV criterion is optimized independently by SA.

0 100 200 300 400 500 600 700 800
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Samples

M
od

el
in

g
er

ro
r

0 100 200 300 400 500 600 700 800
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Samples

M
od

el
in

g
er

ro
r

Fig. 6.45 The modeling errors of PRC8112A and PRC8112B by SAPCA RBF method

6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure 163

0 100 200 300 400 500 600 700 800
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Samples

M
od

el
in

g
er

ro
r

0 100 200 300 400 500 600 700 800-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Samples

M
od

el
in

g
er

ro
r

Fig. 6.46 The modeling errors of PRC8112A and PRC8112B by LASSO NN method

Table 6.5 The comparison results of 4 methods

Methods Plant No. of
disturbances

No. of
input
nodes

No. of
hidden
nodes

RMSE1 RMSE2 Running
time (s)

RV

Proposed PRC8112A 1 3 7 0.019 0.020 5035 0.847

PRC8112B 1 3 6 0.0154 0.0213 5106 0.739

PCAGA
RBF

PRC8112A 6 8 20 0.032 0.043 2096 1

PRC8112B 6 8 22 0.0145 0.0258 2198 1

SAPCA
RBF

PRC8112A 1 3 6 0.0235 0.0356 606 0.953

PRC8112B 1 3 4 0.0427 0.0477 609 0.767

LASSO
NN

PRC8112A 3 5 15 0.0542 0.0599 3.92 0.991

PRC8112B 4 6 15 0.0829 0.0422 3.89 0.996

However, the final RMSE1 and RMSE2 of the disturbance models are inferior to the
INSGA-II’s. Besides, the number of the hidden nodes of PCAGA RBF is the largest
because of the complicated input structure by using eight inputs. Since the compu-
tation of INSGA-II is complicated, the running time of INSGA-II is the longest
among the four methods, while the running time of the LASSO NN method without
using the random search algorithm is the shortest. In summary, the multi-objective
optimization method considering the RV criterion coordinated with modeling accu-
racy can gain a group of solutions to be selected for specific purposes. The values
of RMSE1 and RMSE2 using the INAGA-II method are the smallest with a simple
structure of using less input and hidden nodes. The modeling method is efficient in
key variable selection, such as the disturbances selection, and complex systemmodel
construction.

164 6 GA-Based RBF Neural Network for Nonlinear SISO System

6.7 Summary

In this chapter, temperature, pressure, and its disturbance models of coke furnace
are constructed using RBF Neural Network and improved GA. All data sets were
gathered from the same industrial equipment.

(1) To improve the approximation and generalization performance, an improved
RNAGA is first developed to optimize the RBF neural network structure and its
corresponding parameters of radial basis functions. A pruning operator is also
designed to simplify the RBFNN structure. The simulation results show that the
constructed RBFNNmodel optimized by IRNA-GA can obtain good prediction
accuracy with a relatively simple network structure.

(2) An IMOEA is used for the RBFNN modeling of the chamber pressure. The
encodingmethod is designed for the structure of the input layer, the hidden layer,
and the parameters of the Gaussian basis function. The local search operators
are helpful to improve the search capability, and the prolong and pruning oper-
ators are beneficial to change the hidden layer structure. The adaptive archive
maintaining is applied to retain the elitists and maintain their evenness. It is
efficient and easy to be implemented in industrial processes with a little prior
knowledge.

(3) The disturbance selection using the RV criterion of principle analysis and
RBFNN modeling for nonlinear processes are optimized by using an INSGA-
II, where the RV criterion and modeling error are optimized simultaneously.
In addition, the encoding, prolong, and pruning operators are adopted to make
NSGA-II suitable for RBFNN optimization. Among a set of Pareto solutions,
RMSE value is used to choose the final result in the Pareto frontier. The main
disturbance can be selected successfully and the RBFNN has established the
disturbance model with satisfactory accuracy.

References

1. Broomhead, D.S., and D. Lowe. 1988. Multivariable functional interpolation and adaptive
networks. Complex Systems 2 (3): 321–355.

2. Wei, C., and J. Qiao. 2014. Passive robust fault detection using RBF neural modeling based on
set membership identification. Engineering Applications of Artificial Intelligence 28 (1): 1–12.

3. Wilamowski, B.M., et al. 2015. A novel RBF training algorithm for short-term electric load
forecasting and comparative studies. IEEE Transactions on Industrial Electronics 62 (10):
6519–6529.

4. Reiner, P., and B.M. Wilamowski. 2015. Efficient incremental construction of RBF networks
using quasi-gradient method. 150: 349–356.

5. Ahmadizar, F., et al. 2015. Artificial neural network development by means of a novel combi-
nation of grammatical evolution and genetic algorithm. Engineering Applications of Artificial
Intelligence 39: 1–13.

6. Wu, J., L. Jin, and M. Liu. 2015. Evolving RBF neural networks for rainfall prediction using
hybrid particle swarm optimization and genetic algorithm. Neurocomputing 148 (2): 136–142.

References 165

7. Zhang, R., J. Tao, and F. Gao. 2014. Temperature modeling in a coke furnace with an improved
RNA-GA based RBF network. Industrial Engineering Chemistry Research 53 (8): 3236–3245.

8. Wang,Y., andP.Yao. 2003. Simulation and optimization for thermally coupled distillation using
artificial neural network and genetic algorithm. Chinese Journal of Chemical Engineering 11
(3): 307–311.

9. Yang, T., H.C. Lin, and M.L. Chen. 2006. Metamodeling approach in solving the machine
parameters optimization problem using neural network and genetic algorithms: A case study.
Robotics Computer Integrated Manufacturing 22 (4): 322–331.

10. Blanco, A., M. Delgado, andM.C. Pegalajar. 2001. A real-coded genetic algorithm for training
recurrent neural networks. Journal of the International Neural Network Society 14 (1): 93–105.

11. Delgado, M., and M.C. Pegalajar. 2005. A multiobjective genetic algorithm for obtaining the
optimal size of a recurrent neural network for grammatical inference. Pattern Recognition 38
(9): 1444–1456.

12. Yang, L. and J. Yen. 2010. An Adaptive Simplex Genetic algorithm. in Genetic & Evolutionary
Computation Conference.

13. Esposito, A., et al. 2000. Approximation of continuous and discontinuous mappings by a
growing neural RBF-based algorithm.Neural Networks the Official Journal of the International
Neural Network Society 13 (6): 651–665.

14. Sarimveis, H., et al. 2004. A new algorithm for developing dynamic radial basis function neural
network models based on genetic algorithms. Computers Chemical Engineering Journal 28
(1–2): 209–217.

15. Guang-Bin, H., P. Saratchandran, and S.Narasimhan. 2005.A generalized growing and pruning
RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural
Networks 16 (1): 57–67.

16. Du, D., L. Kang, and M. Fei. 2010. A fast multi-output RBF neural network construction
method. Neurocomputing 73 (10): 2196–2202.

17. Han, H.G., Q.L. Chen, and J.F. Qiao. 2011. An efficient self-organizing RBF neural network
for water quality prediction. Neural Networks the Official Journal of the International Neural
Network Society 24 (7): 717–725.

18. Chen, X., and N. Wang. 2009. A DNA based genetic algorithm for parameter estimation in the
hydrogenation reaction. Chemical Engineering Journal 150 (2): 527–535.

19. Tao, J., and N. Wang. 2007. DNA computing based RNA genetic algorithm with applications
in parameter estimation of chemical engineering processes. Computers Chemical Engineering
Journal 31 (12): 1602–1618.

20. Dayal, B.S., and J.F. Macgregor. 1997. Improved PLS algorithms. Journal of Chemometrics
11 (1): 73–85.

21. Zhang, R., J. Tao, and F. Gao. 2016. A new approach of takagi-sugeno fuzzy modeling using
an improved genetic algorithm optimization for oxygen content in a coke furnace. Industrial
Engineering Chemistry Research 55 (22): 6465–6474.

22. Zhang, R., et al. 2016. New minmax linear quadratic fault-tolerant tracking control for batch
processes. IEEE Transactions on Automatic Control 61 (10): 3045–3051.

23. Brusco, M.J. 2014. A comparison of simulated annealing algorithms for variable selection
in principal component analysis and discriminant analysis. Computational Statistics & Data
Analysis 77: 38–53.

24. Li, J., C. Duan, and Z. Fei. 2016. A Novel Variable Selection Approach for Redundant Infor-
mation Elimination Purpose of Process Control. IEEE Transactions on Industrial Electronics
63 (3): 1737–1744.

25. Zhang, R. and J. Tao,. 2017. A nonlinear fuzzy neural network modeling approach using an
improved genetic algorithm. IEEE Transactions on Industrial Electronics 65(7): 5882–5892.

26. Andersen, C.M., and R. Bro. 2010. Variable selection in regression—a tutorial. Journal of
Chemometrics 24 (11–12): 728–737.

27. Sun, K., et al. 2016. Design and application of a variable selection method for multilayer
perceptron neural network with LASSO. IEEE Transactions on Neural Networks and Learning
Systems 28(6): 1386–1396.

166 6 GA-Based RBF Neural Network for Nonlinear SISO System

28. Enrique, R. and S. Josep María, Romero. 2008. Performing feature selection with multilayer
perceptrons. IEEE Transactions on Neural Networks 19(3): 431–441.

29. Souza, F.A.A., et al. 2013. A multilayer-perceptron based method for variable selection in soft
sensor design. Journal of Process Control 23 (10): 1371–1378.

30. Estévez, P.A., et al. 2009. Normalizedmutual information feature selection. IEEE Transactions
on Neural Networks 20 (2): 189–201.

31. Zhang, R., et al. 2016. Decoupled ARX and RBF neural network modeling using PCA and
GA optimization for nonlinear distributed parameter systems. IEEE Transactions on Neural
Networks Learning Systems 29 (2): 457–469.

32. Pacheco, J., S. Casado, and S. Porras. 2013. Exact methods for variable selection in principal
component analysis:Guide functions and pre-selection.Computational Statistics Data Analysis
57 (1): 95–111.

33. Puggini, L., and S. Mcloone. 2017. Forward selection component analysis: Algorithms and
applications. IEEE Transactions on Pattern Analysis Machine Intelligence 39 (12): 2395–2408.

34. Chen, J. 2004. Computational aspects of algorithms for variable selection in the context of
principal components. Computational Statistics Data Analysis 47 (2): 225–236.

35. Cadima, J.F.C.L., and I.T. Jolliffe. 2001. Variable selection and the interpretation of principal
subspaces. Journal of Agricultural Biological Environmental Statistics 6 (1): 62–79.

36. Brusco, M.J. 2014. A comparison of simulated annealing algorithms for variable selection
in principal component analysis and discriminant analysis. Computational Statistics & Data
Analysis 77 (9): 38–53.

37. Li, C.J., et al. 2018. Near-optimal stochastic approximation for online principal component
estimation. Mathematical Programming 167 (1): 75–97.

38. Wei-Shi, Z., L. Jian-Huang, andP.C.Yuen. 2005.GA-fisher:AnewLDA-based face recognition
algorithm with selection of principal components. IEEE Transactions on Systems, Man and
Cybernetics Part B 35 (5): 1065–1078.

39. Brusco,Michael J. 2017.A comparison of simulated annealing algorithms for variable selection
in principal component analysis and discriminant analysis. Computational Statistics & Data
Analysis 77: 38–53.

40. Nchare, M., B. Shen, and S.G. Anagho. 2012. Co-processing vacuum residue with waste
plastics in a delayed coking process: Kinetics and modeling. China Petroleum Processing
Petrochemical Technology 14 (3): 44–49.

41. Bello, O.O., et al. 2006. Effects of operating conditions on compositional characteristics and
reaction kinetics of liquid derived by delayed coking of Nigerian petroleum residue. Brazilian
Journal of Chemical Engineering 23 (3): 331–339.

42. Zhang, R., and S. Wang. 2008. Support vector machine based predictive functional control
design for output temperature of coking furnace. Journal of Process Control 18 (5): 439–448.

43. Zhang,R., and J. Tao. 2017.Data-drivenmodeling using improvedmulti-objective optimization
based neural network for coke furnace system. IEEE Transactions on Industrial Electronics
64 (4): 3147–3155.

44. Zhang,R.,Q. Lv, J. Tao, et al. 2018.Data drivenmodeling using an optimal principle component
analysis based neural network and its application to a nonlinear coke furnace. Industrial and
Engineering Chemistry Research 57 (18): 6344–6352.

45. Tao, J., X. Chen, and Z. Yong. 2012. Constraint multi-objective automated synthesis for CMOS
operational amplifier. Neurocomputing 98 (18): 108–113.

46. Li, Y., C. Fang, and Q. Ouyang. 2004. Genetic algorithm in DNA computing: A solution to the
maximal clique problem. Chinese Science Bulletin 49 (9): 967–971.

47. Martin, N. and H. Maes. 1979 Multivariate analysis. London: Academic Press.

Chapter 7
GA Based Fuzzy Neural Network
Modeling for Nonlinear SISO System

Abstract Fuzzy neural networks are quite useful for nonlinear system identification
with only input/output data information available. A fuzzy neural network and its
improved framework are proposed and the improved genetic algorithms are designed
for the structure and parameter optimization to catch the unknown plant dynamics.
The hybrid encoding/decoding, neighborhood search operator and maintaining oper-
ator are presented to optimize the structure of the input layer, fuzzy rule layer and the
parameters of themembership functions together. The liquid level andoxygen content
modeling problems in the industrial coke furnace described in Ch. 6 are utilized to
compare the performance of several methods. Simulation results show that GA opti-
mized fuzzy neural network is superior in modeling precision and generalization
capability. Fuzzy neural networks are quite useful for nonlinear system identifi-
cation with only input/output data information available. A fuzzy neural network
and its improved framework are proposed and the improved genetic algorithms are
designed for the structure and parameter optimization to catch the unknown plant
dynamics. The hybrid encoding/decoding, neighborhood search operator and main-
taining operator are presented to optimize the structure of the input layer, fuzzy
rule layer and the parameters of the membership functions together. The liquid level
and oxygen content modeling problems in the industrial coke furnace described in
Ch. 6 are utilized to compare the performance of several methods. Simulation results
show that GA optimized fuzzy neural network is superior in modeling precision and
generalization capability.

7.1 Introduction

Takagi-Sugeno (T-S) fuzzy neural network is a universal approximation tool, which
is widely used in system modeling [1–5]. By using fuzzy modeling approach with
satisfactory prediction accuracy [6–10], a large number of nonlinear systems have
been approximated. When considering the performance of fuzzy neural networks,
T-S fuzzy system and their improved forms are especially outstanding. Some newly
presented fuzzy frameworks, such as interval type-2 radial basis function neural
network [11], fuzzy neural network with correlated fuzzy rules [12], four layers

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_7

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_7&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_7

168 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

network featuredTakagi-Sugeno-Kang fuzzy architecturewithmultivariateGaussian
kernels [13],wavelet fuzzy neural network [14], etc.,were proposed and are still in the
process of exploration to obtain a compact fuzzy neural network with the advantage
of smaller number of fuzzy rules.

Once the framework of the fuzzy model is fixed, focusing on the structure opti-
mization and parameter identification is the most important part in systemmodeling.
As for structure evolving learning method, a starting point of 2n fuzzy rules was
initialized to deal with the exponential increase of fuzzy rules [15]; The initial rule
base in the interval type-2 fuzzy neural network was empty, and the online clustering
method was presented to generate fuzzy rules that flexibly partition the input space
[16]. Only one fuzzy rule was started in a fuzzy system identification problem, if
the simplified structure evolving method was applied [17]. In terms of spiking inten-
sity and relative mutual information, a set of fuzzy rules were obtained via learning
the structure and parameters simultaneously in a self-organizing fuzzy system [18].
In an adaptive neuro-fuzzy inference system, using new adding/pruning techniques
could derive a high accuracy with compact structure [19]. Moreover, a fuzzy clus-
tering method was used to generate fuzzy rules, which flexibly partitioned the input
space and implemented the structure identification [20, 21]. An adaptive second order
gradient learning algorithm was presented to decide the widths, centers and output
weights [22]. However, the structure evolving algorithm are usually in more coarse
partition for the fuzzy region among these methods; As for the clustering method,
only the input space is considered when used in system modeling; while for the
back propagation algorithm, it is prone to trap into local optimum and is limited
to the given system structure. In addition, the inefficient input variables cannot be
eliminated in the above methods.

Generally, the structure identification should be the difficult section in fuzzy
modeling. As a global optimization method, GA and other evolutionary computing
algorithms, such as Tabu search algorithm [23], particle swarm optimization (PSO)
[24], artificial bee colony algorithm [25], and differential evolution [26] etc., are
capable of obtaining a global optimal fuzzy neural network. Moreover, the structure
operations can be easily involved in the gene operators [27–29]. However, most of
them only focused on the partition of input space, i.e., partial structure identification.
How to determine the whole structure which includes the inputs, the linguistic parti-
tioning, the fuzzy rule set and the consequent part, is still quite challenging, especially
for the nonlinear system with more complex dynamics, such as the oxygen content,
liquid level of the coke furnace. It is also a difficult problem to develop a simple but
efficient fuzzy model that can be used in system identification and controller design
in the industrial field.

A fuzzymodel based on input-output data is desired to have both precisemodeling
accuracy and simple structure [30–33]. It can be regarded as a bi-objective optimiza-
tion problem, which can be solved by multi-objective optimization algorithms, such
as weighted sums of objectives (WSO) [34], multi-objective evolution algorithms
(MOEAs), etc. [35–37]. NSGA-II is superior to several representative algorithms
among MOEAs [38]. However, its computing complexity is relevant to o(MN),
where M is the number of objectives and N is the population size. Its Pareto optimal

7.1 Introduction 169

set includes a set of solutions, and need to be selected by decision makers. The
bi-objective optimization problem can be transformed to single objective problem
by the WSO method, and its weighting coefficient is critical to the final optimiza-
tion solution. For T-S fuzzy model, its model information can also be obtained and
the modeling accuracy can be predicted by expert experience. Thus, the weighting
coefficient is easy to choose.

In this chapter, GA is used to optimize the structure and parameters of fuzzy
model. Besides, autoregressive with exogenous input (ARX) plus Tanh function
fuzzy model is presented to obtain satisfied nonlinear approximating capability. The
specific encoding/decoding method, crossover, mutation, neighborhood search and
maintain operators are designed together for the synchronous optimization of the
structure and parameters on the premise of modeling accuracy. And the oxygen
content and liquid level modeling in the industrial coke furnace are applied and
compared with typical fuzzy modeling methods.

7.2 T-S Fuzzy Model

T-S fuzzy model possesses the powerful approximating capability with good predic-
tive feature. A nonlinear mapping between the past input-output data and the
predicted output is given below:

ŷ(k) = f (X(k)) (7.1)

where X(k) = [y(k − 1), · · · , y(k − n), u(k − d), u(k − d), · · · , u(k − d − m)],
m and n are the maximal lags considered for the input and output terms, d is the
discrete time delay, and f represents the nonlinear relation of the fuzzy model.

7.2.1 T-S Fuzzy ARX Model

By using the ARX model structure, the T-S fuzzy ARX model often interpolates
local linear time-invariant (LTI) ARX submodel, and the jth IF-THEN fuzzy rule is
shown as follows:

Rule j: If x1(k) is A1 j and x2(k) is A2 j and … and xs(k) is Asj , then.

f j (k) = BTX(k), j = 1, 2, · · · , M, M ≤
s∏

i=1

mi

170 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

where B j = [a j
1 , a j

2 , · · · , a j
n , b j

1, b j
2, · · · , b j

m]T, the input vector x(k) = [x1(k), …,
xs(k)] is usually a subset of X(k), namely, x(k) ∈ X(k), mi is the number of member-
ship functions of xi (k), and M is the number of fuzzy rules. The final output of the
fuzzy model by a weighted mean defuzzification can be expressed as:

ŷ(k) =
∑M

j=1 α j [x(k)] f j (k)
∑M

j=1 α j [x(k)] (7.2)

where α j [x(k)] delegates the overall value of the premise part of the jth implication
for the input x(k) in the fuzzy inference system (FIS) A j , A j = ∏s

i=1 Ai j , and
α j [x(k)] can be calculated as:

α j [x(k)] = μ
j
1μ

j
2 · · ·μ j

s (7.3)

A Gaussian membership function is chosen and shown as follows:

μ
j
i = exp

[
−||xi − ci j ||2

σ 2
i j

]
(7.4)

where ci j and σi j are the center andwidth of theGaussian function in Ai j respectively.
Define fuzzy basis function (FBF) as:

ϕ j [x(k)] = α j [x(k)]
∑M

i=1 αi [x(k)] (7.5)

As a linear combination of FBFs for the fuzzy consequent ARX submodel, the
output ŷ(k) can be rewritten in the following form:

ŷ(k) =
∑M

j=1
ϕ j [x(k)] f j (k) (7.6)

The input vector, the number of fuzzy rules and its parameters of membership
functions determine the fuzzy premise part. The ARX submodel structure and its
parameters comprise the consequent part. Once the complete fuzzy premise part and
ARX submodel structure are determined, RLS method in Ch. 6 can be utilized to
determine the parameters of ARX submodel in terms of input-output data set.

Denote

θ = [BT
1B

T
2 · · ·BT

M]T (7.7)

�(k) = [ϕ1[x(k)]X(k)T, ϕ2[x(k)]X(k)T, · · · , ϕM [x(k)]X(k)T]T (7.8)

7.2 T-S Fuzzy Model 171

Substitute Eqs. 7.7 and 7.8 into Eq. 7.6 yields:

ŷ(k) = �(k)Tθ (7.9)

If there are N1 sampling outputs Y = [y(1), y(2), …, y(N1)], the value of θ can be
obtained by RLS method after N1 iterations:

⎧
⎨

⎩

θ(k) = θ(k − 1) + K(k)[y(k) − �T(k)θ(k − 1)]
K(k) = P(k − 1)�(k)[�T(k)P(k − 1)�(k) + 1]−1

P(k) = P(k − 1) − K(k)KT(k)[�T(k)P(k − 1)�(k) + 1]
(7.10)

where k = 1, 2, …, N1, K(0) is set as relatively small values of (m + n)M-by-1
vector and P(0) is set as big values of (m + n)M-by-(m + n)M matrix.

7.2.2 T-S Fuzzy Plus Tah Function Model

The fuzzy model in Sec. 7.2.1 is essentially a combination of the local linear
submodels. Taking the local nonlinear characteristics of system model into consid-
eration, a discrete time form of the system dynamics can be constructed by a linear
ARX model plus a nonlinear function f :

y(k) = −a1y(k − 1) − · · · − an y(k − n) + b1u(k − d) + · · ·
+ bmu(k − d − m) + f (y(k), u(k)) (7.11)

where f is a smooth and bounded nonlinear function. According to the universal
approximation theorem [39], a fuzzy neural network (FNN) φ(y(k), u(k), θ) can
approximate f with arbitrary precision, where θ is the parameter vector of FNN.
Suppose the neural network linearly parameterizable, i.e., φ(y(k), u(k), θ) can be
expressed as φ(y(k), u(k))θ. If the approximation capability ε of the nonlinear
function is given, the main objective of FNN modeling is to find a vector θ such
that:

‖ f (y(k), u(k)) − φ(y(k), u(k))θ‖ ≤ ε (7.12)

Accordingly, the objective now is to design a fuzzy neural network denoted as:

y(k) = −a1y(k − 1) − · · · − an y(k − n) + b1u(k − d)

+ · · · + bmu(k − d − m) + φ(y(k), u(k))θ (7.13)

172 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

Remark 7.1: The advantage of the structure in Eq. 7.13 is that it is only to identify
one simplified nonlinear function φ(y(k), u(k)) that depends on (y, u), rather than
identifying f in Eq. 7.11.

Given this model framework, it is necessary to obtain an algorithm and a fuzzy
neural network, and the fuzzy neural network should use input/output samplings
to identify the parameters of the ARX linear part, the nonlinear function φ and its
corresponding parameters θ. Given the system to be identified described in Eq. 7.13,
the rule of the fuzzy neural network is defined as follows:

Rule j: If y(k) is A1j and u(k) is A2j then y j (k) = BT
jX(k) + ρ(X(k))θ j , j =

1, 2, · · · , M

where X(k) = [y(k − 1), · · · , y(k − n), u(k − d), u(k − d), · · · , u(k − d − m)],
θ j = [θ1 j , θ2 j , · · · , θm+n, j], ρ is selected as a smooth Tanh function with the output
domain [−1, 1]. A1j, A2j are Gaussian membership functions of fuzzy sets in Eq. 7.4.
Note that the inputs of the fuzzy premise part are fixed, i.e., s = 2, x1 = y(k), x2 =
u(k). Denote

Θ = [BT
1 , BT

2 , L BT
M , θT

1 , θT
2 , LθT

M]T

�(k) = [ϕ1(k)X(k)T · · · ϕR(k)X(k)T, ϕ1(k)ρ(X(k))T · · · ϕM(k)ρ(X(k))T]T

The parameter calculation procedure for B j and θ j is similar to Eqs. 7.9 and 7.10.

7.3 Improved GA based T-S Fuzzy ARX Model
Optimization

If the system is nonlinear, we can select the T-S fuzzy ARX model at first. Then the
model structure and parameters are optimized using an improved GA (IGA). The
framework of the whole system optimization for the coke unit is shown in Fig. 7.1.

The structure incorporating parameter identification is the most difficult part in
fuzzy modeling approaches. An IGA is proposed to simultaneously determine the
structure and parameters of the fuzzy system using the hybrid encoding and several
gene operators, also the structure complexity is taken into count for the modeling
accuracy.

In Fig. 7.1, select the system output y(k − 1), · · · , y(k − n) and the system input
u(k), · · · , u(k − m) as the input vector of the T-S fuzzy ARX model, where the
model prediction output ŷ(k) and system output y(k) is compared, and the modeling
error e(k) can be obtained. The modeling error and the T-S Fuzzy model structure
complexity are two objectives of IGA, which can be changed into single objective
by choosing the appropriate weighting coefficient in terms of WSO method.

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 173

Coke unit
()u k ()y k

T-S
Fuzzy ARX

model

IGA

1z −

1z −

1z −

1z −

(1)−u k

()−u k m

(1)−y k

()−y k n

ˆ()y k

()e k

structure

+

-

Fig. 7.1 Block diagram of IGA based T-S fuzzy model identification

It is clear that with the dimension increase of the input vector, the number of fuzzy
rules, ARX submodel structure and the system complexity will increase exponen-
tially.Moreover, the rules based on expert knowledge are usually complex, some even
become impossible without necessary and enough knowledge especially for complex
industrial applications. Determining the input variables, the linguistic partitioning,
the rule set and ARX submodel structure together involves a complex search space,
which is not an easy object to be optimized.

7.3.1 Hybrid Encoding Method

In the T-S fuzzy ARXmodel, considering the similarity of u(k−1), …, u(k − m) and
y(k−1), …, y(k − n), the input vector x(k) is initially chosen as [y(k−1), u(k−1)],
which is denoted as m1 and is to be optimized, d is set as 1, and m and n in X(k) are
generally set in advance according to a priori knowledge. Since m and n will directly
determine the approximation capability of the fuzzy model, they are also optimized
in the limitation input vector of [y(k−1), u(k−1)]. Moreover, the number of fuzzy
rules and their parameters in Eq. 7.6 are also included in the encoding method. The
ith chromosome for encoding the whole fuzzy model is then designed:

174 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

Ci =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 σ11 σ12

c21 c22 σ21 σ22
...

...
...

...

cr1 cr2 σr1 σr2
...

...
...

...

0 0 0 0
n 0 m 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.14)

where i = 1, 2, · · · , N , m1, m and n are the positive integers with 1 ≤ m1 ≤ 2,
1 ≤ m ≤ 4, 1 ≤ n ≤ 4. m and n are adopted one-bit quaternary encoding (0, 1, 2, 3),
where the decoding is just to add one to the quaternary encoding. The optimization
of m1 is essential to implement the selection of the input vector. If m1 is 1, the
input vector becomes x(k) = [y(k-1)], ci2 in column 2 and σi4 in column 4 are then
set to zeros; else the input vector becomes x(k) = [y(k−1), u(k−1)]. Here, m1 is
enumerated the above two cases. r is the number of fuzzy rules generated randomly
between [1, 9], the rows in [r+1, 9] are also set to zeros. Though Ci is a 4-by-10
matrix, there are actually at most r ×4+2 parameters to be optimized. The elements
ci j , σi j in Eq. 7.14 can be initialized as follows:

ci j =
{

ymin + δ(ymax − ymin) 1 ≤ i ≤ r, j = 1

umin + δ(umax − umin) m1 �= 0, 1 ≤ i ≤ r, j = 2

σi =
{

0.1 + δ(ymax − 0.1) 1 ≤ i ≤ r, j = 3

0.1 + δ(umax − 0.1) m1 �= 0, 1 ≤ i ≤ r, j = 4
(7.15)

where δ is a random number produced between 0 and 1, umin and umax are the
minimum and maximum of the system inputs, and ymin and ymax are the minimum
and maximum of the system outputs. Therefore, the input vector, the fuzzy rules
and ARX submodel structure are included in the given hybrid encoding method.
The parameters θ for ARX submodel can be obtained by RLS algorithm in terms of
Eq. 7.10. Thus, N T-S fuzzy model can be obtained (C1, θ1), · · · , (CN , θN).

7.3.2 Objectives of T-S Fuzzy Modeling

For the purpose of the improvement of the modeling accuracy and its generalization
capacity, the samples are equally divided into two groups, where the former 1/2
data (Y 1) is selected to calculate the model parameter θ, and the latter 1/2 data
(Y 2) is chosen to evaluate its generalization capacity at every generation. These two
objectives considering the structure simplification and modeling precision are the
same as those in Sec. 6.5.2.

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 175

The objective function is then derived using the weight-sum method, shown as
follows:

MinJ (Ci) =

√√√√√
N1∑

i=1

∣∣∣∣Y1(i) − ∧
Y1(i)

∣∣∣∣
2
/

N1 +

√√√√√
N2∑

i=1

∣∣∣∣Y2(i) − ∧
Y2(i)

∣∣∣∣
2
/

N2 + ω(m + n)r (7.16)

The objective in Eq. 7.16 is composed of two performances of the fuzzy model.
The first one is the sum of Root Mean Squared Error (RMSE) for Y 1 and Y 2, where
Y 1(i) (i = 1, …, N1) are the samples in the training dataset Y 1, θ can be gained
according to Y 1, and Y1(i) (i = 1, · · · , N1) are then obtained as the predictions of
T-S fuzzy model. Keep θ invariant, Y2(i) (i = 1, · · · , N2) can be derived by the
same fuzzy model. It shows that a testing procedure is incorporated in the objective
function, which guarantees the generalization performance of the constructed fuzzy
model. The second part expresses the structure complexity of the fuzzy system, and
ω is a weighting coefficient between (0, 1], which reflects the importance degree of
the structure complexity. Since the order of the magnitude of RMSE for the fuzzy
model can be obtained easily, and the range of structure parameters (m, n, r) is known,
ω is selected to propel the value of the second part ten times less than the order of
magnitude of RMSE for the sake of the modeling accuracy. For example, the order
of magnitude of RMSE is 10−2, the order of magnitude of (m + n)r is 10, then ω can
be set as 10−4.

7.3.3 Operators of IGA for T-S Fuzzy Model

In addition to traditional crossover and mutation operators, improved selection oper-
ator, the dynamical mutation probability and maintain operator have been designed
for the optimization of fuzzy model, which may improve the weak local-search
capability and avoid premature convergence of SGA.

(1) Selection operator

Roulette wheel method is mostly used as the selection operator, and the selection
probability of an individual Ci , can be calculated as follows.

p(Ci) = f (Ci)

N∑
i=1

f (Ci)

, f (Ci) = 1

J (Ci)
(7.17)

In Eq. 7.17, the individual with better performance index, i.e., smaller value of the
objective function, bigger probability to survive. A set of individuals can be selected
as the parents for reproduction of offspring. To keep the population diversity, 3 N /4
parents are picked according to Roulette wheel method, while the remaining N /4
parents are chosen from the worst N /4 individuals to keep the population diversity.

176 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

The elitist, namely, the individual with the smallest value of objective function, is
directly selected as the parent.

(2) Crossover and mutation operators

The crossover operation is executed with probability pc which is between current
individual Ci and the next individual Ci+1, and pc is set as 0.9. The offspring C

′
i , C

′
i+1

are calculated after the crossover operator.

C
′
i = αCi + (1 − α)Ci+1

C
′
i+1 = (1 − α)Ci + αCi+1 (7.18)

where α is initiated randomly, specifically, α ∈ (0, 1), and n and m are rounded
to the nearest integers. The input vector, ARX structure and the rules are changed
dynamically during the crossover operation process. However, the operator will be
prone to produce more fuzzy rules, and some irrational ones can also be yielded.

For a better exploration, the individual is mutated with different mutation proba-
bility pmi . To keep the better individual, the mutation probability is assigned in terms
of the value of objective function, the better individual is set to a smaller mutation
probability, shown as follows:

pmi = pm0 − i

N
�pm (7.19)

where pm0 is the initial mutation probability, �pm is the maximum change rate,
i = 1, · · · , N , and the individuals are sorted ascending according to the value of
objective function. Once the mutation is operated, m, n are mutated within the range
of quaternary encoding, r is kept invariant, and the elements of mutated individual
are reproduced in terms of Eq. 7.15.

(3) Maintain operator

Essentially, GA is a randomoptimization algorithm, so there exists some irrational
fuzzy systems during the optimization process. In the meantime, crossover operator
cannot produce new structure of fuzzy rules, thus the maintain operator is designed.

1. Calculate �ci j = ∣∣ci j − ci, j+1

∣∣, if �ci j < 0.03, then cij is deleted, and the
number of the fuzzy rules (r) is decreased.

2. If the number of the fuzzy rules is less than 2, a random�r is produced satisfying
r + �r � 9, and the elements in the new rules are produced according to Eq. 7.15.

3. If all the coefficients in Bj are less than 0.003, the submodel for rule j is regarded
inactive, and the corresponding rule is deleted.

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 177

7.3.4 Optimization Procedure

The whole optimization process for IGA is described as the following steps:
Step 1: Setting m1 as 1, the input vector becomes x(k) = [y(k−1)], or Set m1 as

2, the input vector becomes x(k) = [y(k−1), u(k−1)].
Step 2: Initialization of the maximal generation G and the population size

N. Generation of the chromosomes randomly in the search space for the initial
population.

Step 3: Decoding of the chromosome to generate N fuzzy model in terms of
Eqs. 7.2–7.10 and computation of the performance J for each individual.

Step 4: Selection of the chromosomes to generate 3 N/4 parent chromosomes of
the next generation, which is according to Roulette wheel selection. The worst N /4
individuals are directly inherited to keep population diversity, but trapping in the
local optimization solution early should be avoided.

Step 5: Execution of the crossover operator. Repeat it for all the pc × N /2 pairs of
parents, and implement the mutation operator with dynamical mutation probability.

Step 6: Carrying out maintain operator in the new individuals to improve the
quality of fuzzy model generated by crossover and mutation operators.

Step 7: Repeat steps 3–6 until the set maximum evolution generation G is met.
Moreover, elitism, the inclusion of the best individual in the next population, is used
throughout the optimization process.

Step 8: Comparing the optimization result at cases of m1 = 1 and m1 = 2, choose
the one with less value of fitness function as the final fuzzy model.

7.3.5 Computing Complexity Analysis

Consider the computation complexity for executing one iteration under the above
optimization process. The time-consuming parts are mainly ascribed to the RLS and
sort algorithms, and the worst-case complexity can be analyzed as follows:

1. RLS algorithm for one individual is O(N1(2M)(Nm + Nn)) and N individuals
have the complexity O(N N1(2M)(Nm + Nn)).

2. Sorting algorithm of N individuals is O(N M2).

The overall computing complexity of the algorithm is O(N N1M(Nm + Nn)), and
the number of training data N1 and the population sizeN will affect the running time.
In fact, M and (Nm + Nn) are more than r and (m + n) in the evolutionary processes,
then, the computing complexity can be much less than the worst-case complexity.

178 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

7.3.6 Oxygen Content Modeling by Fuzzy ARX Model

In order to validate the effectiveness of the optimal fuzzy ARX method, the IGA is
run for 10 times. The parameters of IGA are set as follows: population size N = 40,
maximal evolution generations G = 1000, the crossover probability pc = 0.9, pm is
dynamic changing, pm0 is set to 0.2, and�pm is set to 0.1. The parameter range of the
fuzzy ARXmodel is utilized with an expert knowledge, in other words, the maximal
number of fuzzy rules is set as 9, the input vector is chosen from [y(k−1),u(k−1)], and
the maximal n and m are set as 4 and 4, respectively. At each running, the parameters
of IGA, fuzzy ARX model and the training data set are kept invariant. In the case
of oxygen content modeling, ω is set as 0.001, which is an order magnitude less
than that of the expected RMSE of fuzzy model. The fuzzy model with the smallest
RMSE of testing data is deemed as the best result. Comparing with a number of fuzzy
models in the literature, mean square error (MSE) is calculated as the performance
index of the IGA optimized fuzzy model, which is defined as the square of RMSE.

Oxygen content modeling is critical to realize the model-based advanced control.
Themain channel and its disturbance channel are constructed here. The experimental
data is also gathered from the distributed control system (DCS) CS3000 in the same
industrial coking unit of a refinery. 1200 input-output measurement samples are
gained for oxygen content modeling, which is shown in Fig. 7.2a, b. At each sample,
2 inputs (the outlet oxygen content and the inlet blower valve opening for the main
channel) and 2 outputs (the perturbation of oil flow and its corresponding oxygen
content perturbation for the disturbance channel) are contained respectively. The
input-output samples in Fig. 7.2 are normalized, and then divided equally into 2
groups, each one includes 600 input-output data.

Now that there are two objectives in nature, IGA is compared with a typical multi-
objective genetic algorithm, namely, NSGA-II. The maintain operator is also applied
inNSGA-II and the parameters ofARXsubmodel are derived usingRLSmethod. The

0 200 400 600 800 1000 1200
4.2

4.4

4.6

4.8

5

Samples

O
xy

ge
n

co
nt

en
t

0 200 400 600 800 1000 1200
45

50

55

60

Samples

Bl
ow

er
 o

pe
ni

ng

0 200 400 600 800 1000 1200
4.5

5

5.5

6

Samples

O
xy

ge
n

co
nt

en
t

0 200 400 600 800 1000 1200
750

800

850

Samples

O
il

flo
w

 c
ha

ng
e

(a) Blower opening and oxygen content for main
channel.

(b) Oil flow change and oxygen content for
disturbance channel

Fig. 7.2 1200 input-output samples for system modeling

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 179

Pareto frontier of themain channel and disturbance channel are illustrated in Figs. 7.3
and 7.4. Since the range of structure parameter (m, n, r) is relatively small, there are
only few solutions in the Pareto frontier. Furthermore, fuzzy c-means method is
adopted to train the centers of Gaussian membership functions, while other fuzzy
parameters, such as input vector, the number of fuzzy rules and ARX submodel
structure, are set to be the same as the best results optimized by IGA.

The best fuzzy models obtained by the mentioned three methods are listed in
Table 7.1, where RMSE is calculated for the testing data (Y 2). In Table 7.1, the fuzzy
model of IGA can obtain better prediction precision than NSGA-II’s in terms of
RMSE. However, the structure of fuzzy model using NSGA-II is simplifier than that

Fig. 7.3 The pareto front of
main channel by NSGA-II

0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
2

2.5

3

3.5

4

4.5

5

5.5

6

f1

f2

Fig. 7.4 The pareto front of
disturbance channel by
NSGA-II

0.012 0.0122 0.0124 0.0126 0.0128 0.013 0.0132 0.0134 0.0136 0.0138
8

8.5

9

9.5

10

10.5

11

11.5

12

f1

f2

180 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

Table 7.1 Comparison of the
best simulation results with 3
methods

Methods Main channel Disturbance channel

m1 n m r RMSE m1 n m r RMSE

IGA 2 3 1 3 4.5e−3 1 3 3 3 4.4e−3

NSGA-II 1 1 1 3 6.1e−3 1 1 2 4 7.0e−3

c-means 1 3 1 4 4.5e−3 1 3 3 3 4.4e−3

of IGA. Because fuzzy c-means method utilizes the optimized structure parameters
of IGA, the RMSEs of main channel and disturbance model by using IGA are similar
to those of c-means method. The statistical results in 10 runs are listed in Table 7.2.
It can be seen that the mean of RMSE of IGA is superior to that of NSGA-II, partly
because the fuzzy model with complex ARX submodel gains better approximation
capability. The simple fuzzy model structure and satisfied modeling precision are
obtained by IGA. Specifically, the running time of IGA is much shorter than that of
NSGA-II.

To reflect the prediction accuracy of the established model, the comparisons
of the predicted oxygen content with the measured data of the testing set for the
main channel and its disturbance channel are given in Figs. 7.5, 7.6, 7.7 and 7.8,

Table 7.2 The performance comparisons of 3 methods for 10 runs

Methods Main channel Disturbance channel

m1 n m r T̄(s) RMSE m1 n m r T̄(s) RMSE

IGA 1.5±0.5, 2.5±0.5, 2±1, 3.5±0.5, 217,
5.4e−3

1.5±0.5, 1.5±0.5, 2±1, 3±1, 214,
6.1e–3

NSGA-II 1.5±0.5, 1±0, 1.5±0.5, 3.5±0.5, 757,
6.8e−3

1.5±0.5, 2±1, 2.5±0.5, 4.5±0.5, 851,
7.3e−3

c-means 1±0, 1±0, 3±0, 1±0, 0.171, 4.5e−3 1±0, 3±0, 3±0, 3±0 0.177, 4.6e−3

Fig. 7.5 Comparisons of
disturbance channel outputs
for 3 methods

0 100 200 300 400 500 600
0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Samples

O
xy

ge
n

co
nt

en
t o

f d
is

tu
rb

an
ce

s

Real values
IGA
NSGA-II
c-means

7.3 Improved GA based T-S Fuzzy ARX Model Optimization 181

Fig. 7.6 Comparisons of
main channel outputs for 3
methods

0 100 200 300 400 500 600
0.85

0.9

0.95

1

Samples

O
xy

ge
n

co
nt

en
t

Real values
IGA
NSGA-II
c-means

Fig. 7.7 Modelling errors of
disturbance channel for 3
methods

0 100 200 300 400 500 600
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Samples

M
od

el
in

g
er

ro
rs

IGA
NSGA-II
c-means

Fig. 7.8 Modelling errors of
main channel for 3 methods

0 100 200 300 400 500 600
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

Samples

M
od

el
in

g
er

ro
rs

IGA
NSGA-II
c-means

182 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

respectively. Figure 7.5 plotted the predicted yields comparingwithmeasured outputs
of the best model by using the 3 methods for the main channel, while the corre-
sponding prediction errors are shown in Fig. 7.6. Figure 7.7 shows the fitting curve
of the prediction values and the real values of the disturbance channel using the same
methods, and the estimation errors are depicted in Fig. 7.8. Comparing Fig. 7.6 with
Fig. 7.8, the maximal modeling errors obtained by c-means method and NSGA-II
are larger than those obtained by IGA. The similar results can be observed in terms
of the modeling errors of their disturbance models. It can be seen in Table 7.1 that
IGA has managed to sustain the errors to considerably small values by optimizing
the whole structure and parameters of the T-S fuzzy ARX model.

7.4 IGA Based Fuzzy ARX Plus Tanh Function Model

In this section, the fuzzy submodel is composed of the ARX plus Tanh function.
The input layer, the structure and the parameters of the submodel, the number of
fuzzy rules and its parameters of Gaussian functions will be solved simultaneously
by IGA, which is quite difficult in nonlinear system modeling. The framework for
the optimization of fuzzy ARX plus Tanh function model, i.e., a special type of
fuzzy neural network (FNN) model, is illustrated in Fig. 7.9, where the input/output
measurements [u(k), y(k)] are utilized to design the fuzzy neural network using an
improved GA (IGA). The structure and parameters of the proposed FNN can then
be optimized by minimizing both the training and testing errors, which is beneficial
to guarantee the modeling accuracy and generalization capability.

7.4.1 Encoding of IGA for Fuzzy Neural Network

As described in Sect. 7.3.1, m, n, r and the parameters of membership functions in
FNN are to be optimized, and d is set according to a priori knowledge of the system.
Since the fuzzy antecedent in rule j is limited to y(k) and u(k), the encoding of the
ith chromosome is given as follows.

Fig. 7.9 Block diagram of
IGA-based fuzzy system
modelling

Unknown
system

()u k ()y k
Fuzzy
model
with

ARX+Tanh

IGA
ˆ()y k

()e k

+

-

7.4 IGA Based Fuzzy ARX Plus Tanh Function Model 183

Ci =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c12 σ11 σ12

c21 c22 σ21 σ22

...
...

...
...

cr1 cr2 σr1 σr2

...
...

...
...

cR + 1,1cR+1,2 cR+1,3cR+1,4

cR+2,1cR+2,2 cR+2,3cR+2,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.20)

where i = 1, 2, · · · , N . Ci is a 4-by-R + 2 matrix, r is the number of the fuzzy rules
with 1 ≤ r ≤ R, and R is an empirical value denoted as the maximal number of
fuzzy rules. The rows between r + 1 andR are set to zeros.m, n are encoded by binary
encoding format and located at the last two rows, that is, cR+1,1 cR+1,2 cR+1,3 cR+1,4

and cR+2,1 cR+2,2 cR+2,3 cR+2,4 are the binary encoding. Here m ∈ [1, Nm], n ∈
[1, Nn] can be decoded as follows:

m =<
c12,123 + c12,222 + c12,321 + c12,420

24 − 1
× (Nm − 1) + 1 >

n =<
c13,123 + c13,222 + c13,321 + c13,420

24 − 1
× (Nn − 1) + 1 > (7.21)

where <·> rounds the element to the nearest integer.
The other r × 4 elements in Eq. 7.20 are initialized as follows.

ci j =
{

ymin + δ(ymax − ymin) 1 ≤ j ≤ r, i = 1

umin + δ(umax − umin) 1 ≤ j ≤ r , i = 2

σi j =
{

0.1 + δ(ymax − 0.1) 1 ≤ j ≤ r , i = 1

0.1 + δ(umax − 0.1) 1 ≤ j ≤ r, i = 2
(7.22)

where δ is generated randomly between [0, 1], umin, umax, ymin and ymax are the same
as those in Eq. 7.15.

Hence, the structure of input layer, fuzzy rules layer and the parameters of
Gaussian functions are expressed by binary and decimal hybrid encoding method.

184 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

7.4.2 Operators of IGA for New Fuzzy Model

The selection, crossover andmutation operators are the same as those in Sec. 7.3.3. In
order to improve the local search capability of GA, a neighborhood search operator
is added to this IGA.

(1) Neighborhood search operator

An individual Ci is represented as a solution in the search space and a set of solutions
surroundingCi are defined as a neighborhood. A perturbation ofCi (�Ci) is obtained
based on Ci, which is produced with probability pn.

�Ci =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�c11 �c12 �σ11 �σ12

�c21 �c22 �σ21 �σ22

...
...

...
...

�c<r+�r>,1 �c<r+�r>,2 �σ<r+�r>,1�σ<r+�r>,2

...
...

...
...

�cR+1,1 �cR+1,2 �cR+1,3 �cR+1,4

�cR+2,1 �cR+2,2 �cR+2,3 �cR+2,4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.23)

where �r = δr , < r + �r >∈[1, R]. If the number of fuzzy rules is increased, the
elements of the new rules are produced in terms of Eqs. 7.21 and 7.22, otherwise, the
elements of the decreased rules are set to zero. For the elements in the unchanged
rules, �ci j = δci j is added to ci j , i = 1, · · · r , where δ is randomly generated
between [−0.1, 0.1]. �cR+1,i ,�cR+2,i (i = 1, · · · , 4) are set to 0, and cR+1,i , cR+2,i

are kept invariant.

(2) Maintain operator

In order to guarantee the rationality of FNN produced by IGA, the maintain
operator is then designed to obtain the effective fuzzy rules and its parameters.

1. If the width σi j is zero, the rule will be deleted.
2. Sort the first column in ascending order, and if the distance of the adja-

cent centers dci j is too close, e.g., dci j ≤ ε, cij will be deleted and the
corresponding fuzzy rules are decreased.

3. If all the elements in Θ are smaller than 0.001, the submodel of the ith rule
is considered useless and this rule is removed directly.

The procedure and complexity analysis are also similar to those in Sec. 7.3.4 and
readers can refer to the relevant contents.

7.4 IGA Based Fuzzy ARX Plus Tanh Function Model 185

7.4.3 Liquid Level Modeling by Nonlinear Fuzzy Neural
Network

The liquid level model in the industrial coke fractionation tower is also critical for
advanced controller design. The detailed description of the coke unit can be found in
[40], and the flow of the coke furnace is given in Ch. 6. The manipulated variable of
the liquid level is the overall residual oil flow that goes into the convection rooms of
the furnace. In addition, a lot of disturbances are influencing the process, such as the
load changes, unsteady flames of the coke furnace, the amount of input fuel, the outer
environment, and the coupling of the two pressure branches etc. The fluctuation of
the liquid level is usually caused by these disturbances. Hence, there are also two
types of model of liquid level to be constructed, namely, the main channel model
and its disturbance channel model. 1600 input-output samples for constructing the
model have been plotted in Figs. 7.10 and 7.11. The former 800 samples are selected
as the training data and the latter 800 as the testing data. All the parameters of IGA
are set the same as those in the case of oxygen content modeling, except w, which is
set to 0.05. Some expert knowledge about the process is used to set the parameters of
the fuzzy model, e.g., set the maximal number of the fuzzy rules (R) as 11, and Nm,
Nn as 4 and 4, respectively. Similarly, 10 runs of the proposed approach are executed
and the best model with the smallest J is shown in Fig. 7.12.

All data are divided into the training data (Y1) and testing data (Y2) to build the
systemmodel and test the performances of the fuzzy model. Herein, the training data

Fig. 7.10 Input/output samples for the liquid level main channel

186 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

Fig. 7.11 Input/output samples for the liquid level disturbance channel

set is utilized to produce the coefficients � of the FNN model, and the testing data
set is adopted to verify its generalization capability.

When comparing the predicted outputs with the samples in Figs. 7.13 and 7.14,
it is obvious that the constructed models can match the outputs of the two channels,
and the training error is much less than the testing error. The best RMSE of the main
channel for the training errors (0.3157) is less than that of testing errors (0.6080) in
Table 7.3, where the RMSE of the training error is denoted as RMSE1 and the RMSE
of the testing error is RMSE2. Similar results can be obtained for the disturbance
channel model by using IGA method too. The statistical results in 10 runs are also
shown in Table 7.3. It shows that the number of fuzzy rules is distributed between [4,
6], and the average values ofRMSE from0.3295 to 0.8193 are satisfactory comparing
with the magnitude of system output.

7.5 Summary

An improved genetic algorithm was proposed to construct a T-S fuzzy ARX model
and T-S ARX plus Tah function model, which consists of the input layer, the fuzzy
rules layer and the output layer. The input variables and the fuzzy rules layer are
considered to construct the premise part of the fuzzy model, then the output layer

7.5 Summary 187

Fig. 7.12 Predictions of the built model and its modelling errors of main channel

is used to form the consequent part. In order to determine both the structure and
parameters in the whole fuzzy system, the hybrid encoding is designed to encode the
structure and parameters of fuzzy model in a chromosome. The selection, crossover,
local search,mutation andmaintain operators are used, especially amaintain operator
including pruning and deleting are proposed to guarantee the validity of the fuzzy
system. RLS is applied to obtain the coefficients of the submodel. Furthermore, to
simplify the fuzzy model structure and improve the modeling accuracy, modeling
accuracy, generalization performance and structure complexity of the fuzzy system
are considered simultaneously in the objective function.

188 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

0 200 400 600 800 1000 1200 1400 1600
65

70

75

80

85

90

95

Samples

D
is

tu
rb

an
ce

 o
f l

iq
ui

d
le

ve
l

FuzzyNN outputs
Real outputs

0 200 400 600 800 1000 1200 1400 1600
-6

-4

-2

0

2

4

6

Samples

M
od

el
in

g
er

ro
rs

Fig. 7.13 Predictions of the built model and its modeling errors of main channel

0 200 400 600 800 1000120014001600
60

65

70

75

80

85

90

95

Samples

Li
qu

id
 le

ve
l

FuzzyNN outputs
Real outputs

0 200 400 600 800 1000120014001600
-6

-4

-2

0

2

4

6

Samples

M
od

el
in

g
er

ro
rs

Fig. 7.14 Predictions of the built model and its modeling errors of disturbance channel

The fuzzy neural network optimization method is successfully applied to the
oxygen content and liquid level modeling of an industrial coke furnace. Simulation
results show that the optimization method has the ability to obtain a more compact
structure with higher prediction accuracy compared with other works.

7.5 Summary 189

Ta
bl
e
7.
3

T
he

be
st
fu
zz
y
m
od

el
an
d
its

st
at
is
tic

s
re
su
lts

in
10

ru
ns

R
es
ul
ts

M
ai
n
ch
an
ne
l

D
is
tu
rb
an
ce

ch
an
ne
l

m
n

N
o.

of
ru
le
s

R
M
SE

1
R
M
SE

2
m

n
N
o.

of
ru
le
s

R
M
SE

1
R
M
SE

2

B
es
t

3
3

4
0.
31
57

0.
60
80

3
1

4
0.
44
25

0.
71
48

St
at
is
tic

s
2.
5±

0.
5

2.
5±

0.
5

4.
5±

0.
5

0.
32
95

0.
65
47

1.
5±

0.
5

2.
5±

0.
5

5.
5±

0.
5

0.
54
29

0.
81
93

190 7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System

References

1. Kosko, B. 1994. Fuzzy systems as universal approximators. In Proceedings of IEEE
International Conference of Fuzzy Systems.

2. Zeng, K., N.Y. Zhang, and W.L. Xu. 2000. A comparative study on sufficient conditions
for Takagi-Sugeno fuzzy systems as universal approximators. IEEE Transactions on Power
Electronics 8 (6): 773–780.

3. Park, C.W., and M. Park. 2004. Adaptive parameter estimator based on T-S fuzzy models
and its applications to indirect adaptive fuzzy control design. Information Sciences 159 (1–2):
125–139.

4. Hyun, C.H., C.W. Park, and S. Kim. 2010. Takagi-Sugeno fuzzy model based indirect adaptive
fuzzy observer and controller design. Information Sciences 180 (11): 2314–2327.

5. Elmetennani, S., and T.M. Laleg-Kirati. 2014. Fuzzy universal model approximator for
distributed solar collector field control. In 2014 UKACC International Conference on Control.
IEEE.

6. Pedrycz, W. 2005. Knowledge-Based Clustering: From Data to Information Granules.
7. Riid, A., and E. Rüstern. 2011. Identification of transparent, compact, accurate and reliable

linguistic fuzzy models. Information Sciences 181 (20): 4378–4393.
8. Nayak, P.C., K.P. Sudheer, and S.K. Jain. 2014. River flow forecasting through nonlinear local

approximation in a fuzzy model. Neural Computing Applications 25 (7–8): 1951–1965.
9. Zhang, R., and J. Tao. 2017. A nonlinear fuzzy neural network modeling approach using

improved genetic algorithm. IEEE Transactions on Industrial Electronics 65 (7): 5882–5892.
10. Zhang, R., J. Tao, and F. Gao. 2016. A new approach of Takagi-Sugeno fuzzy modeling using

an improved genetic algorithm optimization for oxygen content in a coke furnace. Industrial
Engineering Chemistry Research 55 (22): 6465–6474.

11. Rubio-Solis, A., and G. Panoutsos. 2015. Interval type-2 radial basis function neural network:
a modeling framework. Fuzzy Systems IEEE Transactions on 23 (2): 457–473.

12. Ebadzadeh, M.M., and Armin Salimi-Badr. 2015. CFNN: correlated fuzzy neural network.
Neurocomputing 148 (1): 430–444.

13. Pratama, M., et al. 2013. Data driven modeling based on dynamic parsimonious fuzzy neural
network. Neurocomputing 110 (8): 18–28.

14. Hung, Y.C., et al. 2014. Wavelet fuzzy neural network with asymmetric membership func-
tion controller for electric power steering system via improved differential evolution. IEEE
Transactions on Power Electronics 30 (4): 2350–2362.

15. Wang, D., X.J. Zeng, and J.A. Keane. 2010. A structure evolving learning method for fuzzy
systems. Evolving Systems 1(2): 83–95.

16. Juang, C.F., and Y.W. Tsao. 2008. A self-evolving interval type-2 fuzzy neural network with
online structure and parameter learning. IEEE Transactions on Fuzzy Systems 16 (6): 1411–
1424.

17. Wang, D., et al. 2013. A simplified structure evolving method for Mamdani fuzzy system
identification and its application to high-dimensional problems. Information Sciences 220 (1):
110–123.

18. Han, H., X.L. Wu, and J.F. Qiao. 2014. Nonlinear systems modeling based on self-organizing
fuzzy-neural-network with adaptive computation algorithm. IEEE Trans Cybern 44 (4): 554–
564.

19. Figueroa-García, J.C., C.M. Ochoa-Rey, and J.A. Avellaneda-González. 2013. Rule generation
of fuzzy logic systems using a self-organized fuzzy neural network. Neurocomputing 151:
955–962.

20. Agrawal, S., B.K. Panigrahi, and M.K. Tiwari. 2008. Multiobjective particle swarm algo-
rithm with fuzzy clustering for electrical power dispatch. IEEE Transactions on Evolutionary
Computation 12 (5): 529–541.

21. Pedrycz, W., and H. Izakian. 2014. Cluster-centric fuzzy modeling. IEEE Transactions on
Fuzzy Systems 22 (6): 1585–1597.

References 191

22. Han, H.G., L.M. Ge, and J.F. Qiao. 2016. An adaptive second order fuzzy neural network for
nonlinear system modeling. Neurocomputing 214: 837–847.

23. Bagis, A. 2008. Fuzzy rule base design using Tabu search algorithm for nonlinear system
modeling. ISA Transactions 47 (1): 32–44.

24. Liang, Z., et al. 2010. Automatically extracting T-S fuzzy models using cooperative random
learning particle swarm optimization. Applied Soft Computing 10 (3): 938–944.

25. Lee, K.H., and K.W. Kim. 2015. Performance comparison of particle swarm optimization and
genetic algorithm for inverse surface radiation problem. International Journal of Heat Mass
Transfer 88: 330–337.

26. Hung, Y.C., et al. 2015. Wavelet fuzzy neural network with asymmetric membership func-
tion controller for electric power steering system via improved differential evolution. IEEE
Transactions on Power Electronics 30 (4): 2350–2362.

27. Setnes, M., and H. Roubos. 2000. GA-fuzzy modeling and classification: complexity and
performance. IEEE Transactions on Fuzzy Systems 8 (5): 509–522.

28. Chen, C.H., J.S. He, and T.P. Hong. 2013. MOGA-based fuzzy data mining with taxonomy.
Knowledge-Based Systems 54: 53–65.

29. Ouarda, A., and M. Bouamar. 2014. A comparison of evolutionary algorithms: PSO, DE and
GA for fuzzy C-partition. International Journal of Computer Applications 91 (10): 32–38.

30. Yang, T., et al. 2013. Fuzzy modeling approach to predictions of chemical oxygen demand in
activated sludge processes. Information Sciences 235 (6): 55–64.

31. Barragán, A.J., et al. 2014. A general methodology for online TS fuzzy modeling by the
extended Kalman filter. Applied Soft Computing 18 (4): 277–289.

32. David, R.C., et al. 2014. An Approach to Fuzzy Modeling of Anti-lock Braking Systems.
33. Lemos, A.P., W.M. Caminhas, and F.A.C. Gomide. 2011. Multivariable Gaussian evolving

fuzzy modeling system. IEEE Transactions on Fuzzy Systems 19 (1): 91–104.
34. Das, I., and J.E. Dennis. 1997. A closer look at drawbacks of minimizing weighted sums

of objectives for Pareto set generation in multicriteria optimization problems. Structural
Optimization 14 (1): 63–69.

35. Deb, K. and H. Jain. 2012. Handling many-objective problems using an improved NSGA-II
procedure. In 2012 IEEE Congress on Evolutionary Computation. IEEE.

36. Santana-Quintero, L.V., and C.A.C. Coello. 2005. An algorithm based on differential evolution
for multi-objective problems. International Journal of Computational Intelligence Research 1
(1): 151–169.

37. Sudeng, S., and N. Wattanapongsakorn. 2015. Post Pareto-optimal pruning algorithm for
multiple objective optimization using specific extended angle dominance. Engineering
Applications of Artificial Intelligence 38: 221–236.

38. Deb, K. 2012. Optimization for Engineering Design: Algorithms and Examples. PHI Learning
Pvt. Ltd.

39. Tsekouras, G.E. 2005. On the use of the weighted fuzzy c-means in fuzzy modeling. Advances
in Engineering Software 36 (5): 287–300.

40. Zhang, R., et al. 2014. Design and implementation of an improved linear quadratic regulation
control for oxygen content in a coke furnace. IET Control Theory and Applications 8 (14):
1303–1311.

Chapter 8
PCA and GA Based ARX Plus RBF
Modeling for Nonlinear DPS

Distributed parameter systems (DPSs) are difficult to model due to their nonlin-
earity and infinite-dimension characteristics. This chapter adopts principal compo-
nent analysis (PCA) to derive a hybrid modeling strategy for modeling such systems.
The strategy consists of a decoupled linear autoregressive exogenous (ARX) model
and a nonlinear Radial Basis Function (RBF) neural network model. Using PCA, the
spatial-temporal output is firstly divided into a few dominant spatial basis functions
andfinite-dimension temporal series. Then, the linear dynamicmodel of the dominant
modes of the time series is constructed with a decoupled ARXmodel. The nonlinear
residual is parameterized by RBF neural networks and GA is adopted to optimize the
RBF neural network structure and parameters. A nonlinear spatial-temporal dynamic
system will be finally obtained after the time/space reconstruction. In the simulation
part, a catalytic rod and a heat conduction equation have been utilized to demonstrate
the application process of the DPS modeling strategy.

8.1 Introduction

Distributed parameter systems (DPSs) are characterized by nonlinear partial differ-
ential equations (PDEs) with mixed or homogeneous boundary conditions, where
the inputs, outputs and parameters vary spatially and temporally [1]. Modeling and
control of such systems are difficult but also important. Due to the infinite-dimension
characteristics of these systems,modeling and controlmethods for lumped parameter
systems (LPSs) cannot be directly extended [2, 3]. Conventional spatial discretiza-
tion methods, such as finite difference etc., will lead to approximation systems of
high-order ordinary differential equations (ODEs). It is still a hot topic to develop
methods to capture the dominant dynamics of DPSs [2–4].

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_8

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_8&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_8

194 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Traditional model reduction methods rely on an accurate model, and this is not
practical in industrial application. In view of this, data-drivenmethods can be consid-
ered [5–7]. Typically, PCA can be a choice and has been widely applied in DPSs [8–
10].However, it is also known thatDPSs exist nonlinear behavior and traditional PCA
cannot be directly used. In view of this, neural network can be chosen for nonlinear
modeling [11, 12]. There have been some results with singular value decomposition
(SVD) and proper orthogonal decomposition (POD) [8, 13]. Other nonlinear iden-
tification techniques using Wiener and Hammerstein were also proposed [14–16].
However, issues of simplifying the model and considering nonlinearity are still a
hot topic. It is known that autoregressive models with exogenous inputs (ARX) are
suitable for the subsequent controller design. For nonlinear systems, neural network
a with exogenous input (NN-ARX) will show good nonlinear modeling in terms of
root-mean-square error (RMSE) and mean absolute error (MAE) [17]. Moreover,
searching algorithms, such as cuckoo search algorithm (CSA) and genetic algorithm
(GA), can be used to optimize parameters [18, 19].

This chapter proposes an ARX model structure plus GA optimization based RBF
neural networks for nonlinear DPSs. PCA is first used for spatial-temporal separa-
tion and a decoupled ARX model is obtained. RBF neural network is further used
for nonlinear black box identification. GA is finally introduced to optimize neural
network parameters to improve modeling accuracy and simple model structure.

8.2 DPS Modeling Issue

It is not possible to place infinite number of actuators and sensors to model and
control DPSs for their infinite-dimension characteristics. In view of this, to map the
infinite-dimension space into a new low-dimension eigenspace, PCA is first adopted
using sampled spatio temporal data. For the linear part of the low-dimension time-
series, a decoupled ARX model will be built. RBF neural networks will be used to
approximate the nonlinear part, and its structure and parameters will be optimized
with GA. The diagram is shown in Fig. 8.1.

Fig. 8.1 Framework of
PCA-base decoupled ARX
plus GA optimized RBF
neuralnetwork

8.2 DPS Modeling Issue 195

Denote t and z as the continuous time and space variables, respectively, where
z ∈ Ω ∈ � is an open connected and bounded region in the 1-dimension Euclidean
space. The corresponding discrete time instants and locations in t and z are then
defined as tk and zk, k = 1, 2, · · · .

Here u(k) = [u1(tk), . . . , um(tk)] is the temporal inputs at m spatial locations
z1, . . . , zm for time instant tk . yk(z) = [y(z1, tk), . . . , y(zN , tk)] is the spatio-
temporal output at N spatial locations z1, . . . , zN . They are uniformly sampled
at time instant tk , k ∈ [1, . . . , L], and L is the time length.

Inwhat follows, wewill simplify the notation tk as k. Here yk(z) is anN-vector and
referred as “snapshot”. Using PCA, yk(z) can be divided into n spatial basis func-
tions ϕi (z) and low-dimension temporal series yi(k), i = 1, . . . , n, with ϕi (z) =
[ϕi (z1), ϕi (z2), . . . , ϕi (zN)], ϕi (z) ∈ ϕ(z), ϕ(z) = [ϕ1(z), ϕ2(z), . . . , ϕL(z)]. A
decoupled ARX model plus RBF neural networks can then be used to predict yi(k)
and the spatio-temporal dynamics ŷk(z) will be reconstructed.

8.2.1 Time/Space Separation via PCA

The dominant spatial patterns ϕ(z) is derived using PCA for capturing almost all
ensemble energy of the spatio-temporal outputs.

For simplicity, y(zi , k) (i = 1, . . . , N) is defined as a function of yk(z) at time
instant k in space domain Ω . ϕ(z) and yk(z) are simplified as ϕ and yk , respectively.
ϕ is maximize the averaged projection of yk on it and expressed as a maximization
problem [20, 21]:

max
ϕ

< |(yk, ϕ)|2 >

‖ϕ‖2
s.t. ‖ϕ‖2 = 1 (8.1)

where < • > is an averaging operator, |•| denotes the modulus, (·, ·) is defined as the
inner product and ||•|| is given as ‖·‖ = (·, ·) 1

2 . ‖ϕ‖2 = 1 is a constraint to ensure
that ϕ is unique. The Lagrange function is derived to solve Eq. 8.1:

J (ϕ) =< |(yk, ϕ)|2 > −λ(‖ϕ‖2 − 1) (8.2)

A necessary condition is that, for δ ∈ � and ψ as an arbitrary function, the
functional derivative vanishes for all ϕ + δψ :

d

dδ
J (ϕ + δψ)|δ=0 = 0 (8.3)

Thus, we obtain:

196 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

d

dδ
J (ϕ + δψ)|δ=0

= d

dδ
[< (yk, ϕ + δψ)(ϕ + δψ, y) > −λ(ϕ + δψ, ϕ + δψ)]|δ=0

= 2Re[< (yk, ψ)(ϕ, yk) > −λ(ϕ,ψ)]
=<

∫
Ω

ψ(ς)yk(ς)dς
∫

Ω

ϕ(z)yk(z)dz > −λ

∫
Ω

ϕ(z)ψ(z)dz

=
∫

Ω

∫
Ω

< yk(ς)yk(z) >ϕ(ς)dςψ(z)dz −
∫

Ω

λϕ(z)ψ(z)dz

=
∫

Ω

[∫
Ω

< yk(ς)yk(z) > ϕ(ς)dς − λϕ(z)

]
ψ(z)dz = 0 (8.4)

Note that ψ(z) is an arbitrary function, the condition is reduced as:

∫
Ω

< yk(ς)yk(z) >ϕ(ς)dς = λϕ(z) (8.5)

By introducing the spatial two-point correlation function:

R(z, ς) =< yk(z)yk(ς) >= 1

L

L∑
k=1

yk(z)yk(ς)

Equation 8.5 can be rewritten as:

∫
Ω

R(z, ς)ϕ(ς)dς = λϕ(z) (8.6)

The solution of Eq. 8.6 will require expensive computation, therefore, the method
of snapshots is introduced [22]. Assuming that ϕ(z) can be expressed as a linear
combination of the snapshots:

ϕ(z) =
L∑

k=1

γk yk(z) (8.7)

Substituting Eq. 8.7 into Eq. 8.6, we obtain:

∫
Ω

1

L

L∑
κ=1

yκ(z)yκ(ς)

L∑
k=1

γk yk(ς)dς = λ

L∑
k=1

γk yk(z) (8.8)

A nice geometrical interpretation of this representation can be obtained particu-
larly in the finite-dimension case [20], where the observations yk(z) are N-vectors.

Define Cκk = 1
/
L

∫
Ω
yκ(ς)yk(ς)dς , γ = [γ1, . . . , γL]T, Eq. 8.8 will be

rewritten as:

8.2 DPS Modeling Issue 197

Cγ = λγ (8.9)

Solving Eq. 8.9 with standard matrix theory, such as QR decomposition, the
eigenvectors γ = [γ1, · · · , γL]T, γi = [γi1 · · · γi L], i = 1, . . . , L will be obtained
and used to construct the eigenfunctions ϕ1(z), · · · , ϕL(z). Moreover, matrix C is
symmetric and positive semi-definite with its eigenvalues λκ , κ = 1, · · · , L being
real and non-negative.

Let the eigenvalues λ1 >λ2 > · · · >λL , an ‘energy’ percentage for the associated
eigenvalues, be assigned for every eigenfunction [8]:

Ei = λi

/
L∑
j=1

λ j (8.10)

Here, the total ‘energy’ is calculated as the sum of the eigenvalues, and only the
first few eigenfunctions that represent 99% of the ‘energy’ can capture the dominant
dynamics of many spatio-temporal systems [14]. It can also be used to determine the
value of n, n < L. That is, ϕi (z), i = 1, . . . , n are selected as the most representative
characteristic eigenfunctions and ϕi (z), i = n + 1, . . . , L are neglected. ϕi (z j) can
then be derived as:

ϕi (z j) =
L∑

k=1

γik y(z j , k) (8.11)

where ŷ(z j , k) can be expanded into n orthonormal spatial basis functions with
temporal series yi (k), which is described as follows:

ŷ(z j , k) =
n∑

i=1

ϕi (z j)yi (k), j = 1, 2, . . . , N (8.12)

Here, ŷ(z j , k) denotes the nth-order approximation of the spatio-temporal output,
and yk(z) is approximated as ŷk(z) = [ŷ(z1, k), · · · , ŷ(zN , k)]. Since ϕi (z) is
orthonormal, the temporal series yi (k) can be derived as:

yi (k) = (ϕi (z), yk(z)), i = 1, . . . , n (8.13)

The PCA time/space separation is summarized as follows:

Step 1: Obtain L × N data matrix of the snapshots yk(z).
Step 2: Subtract the mean value for each dimension of yk(z).
Step 3: Calculate the covariance matrix C in Eq. 8.9.
Step 4: Find the eigenvectors and eigenvalues of Eq. 8.9 with QR decomposition.
Step 5: Extract the diagonal of R matrix as the eigenvalue vector and sort its
elements in the decreasing order.

198 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Step 6: Calculate the energy percentage with Eq. 8.10, and select n eigenvectors
in the Q matrix that captures more than 99% of the system energy.
Step 7: Obtain n spatial basis functions with Eq. 8.11.
Step 8: Project the original time-space data with Eq. 8.13 to obtain yi (k).

8.2.2 Decoupled ARX Model Identification

We define n time series of the output and input as y(k) = [y1(k), · · · , yn(k)]T and
u(k) = [u1(k), · · · , un(k)]T, respectively. The ith dynamic system within u(k) and
y(k) can be simplified as a decoupled ARX model plus a nonlinear function [3]:

yi (k) = a1i yi (k − 1) + · · · + anyi yi (k − ny)

+ b1i ui (k − 1) + · · · bnui ui (k − nu) + fi (k)

= (a1i q
−1 + · · · anyiq

−ny)yi (k) + i = 1, · · · , n

(b1i q
−1 + · · · bnuiq−nu)ui (k) + fi (k) (8.14)

Here q is the time shift operator, ny and nu are the maximal output and input lags,
respectively, a1i , . . . , anyi , b1i , . . . , bnui are the model parameters, and fi (k) is the
nonlinear part of the system.

The linear time invariant (LTI) system of Eq. 8.14 can be rewritten as:

⎡
⎢⎢⎢⎢⎣

y1(k)

y2(k)

...

yn(k)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

a11q
−1 + · · · any1q

−ny

a12q
−1 + · · · any2q

−ny

...

a1nq
−1 + · · · anynq

−ny

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

y1(k)

y2(k)

...

yn(k)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

b11q
−1 + · · · bnu1q−nu

b12q
−1 + · · · bnu2q−nu

...

b1nq
−1 + · · · bnunq−nu

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1(k)

u2(k)

...

un(k)

⎤
⎥⎥⎥⎥⎦

DenoteAi = diag(a1i , . . . , ani)T, i = 1, . . . , ny , Bi = diag(b1i , . . . , bni)T, i =
1, . . . , nu , we obtain:

⎧⎪⎨
⎪⎩

y(k) = A(q−1)y(k) + B(q−1)u(k)

A(q−1) = A1q
−1 + · · · + Any

q−ny

B(q−1) = B1q
−1 + · · · + Bnu

q−nu

(8.15)

where A(q−1), B(q−1) are the n × n matrix polynomials.
In Eq. 8.15, the ith item yi(k) can also be rewritten as:

8.2 DPS Modeling Issue 199

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yi (k) = θiHi (k)

θi = [a1i · · · anyi b1i · · · bnui] ∈ �(ny+nu)

Hi (k) = [yi (k − 1) · · · yi (k − ny)

ui (k − 1) · · · ui (k − nu)]T

The estimation of θi can be derived through the recursive least squares (RLS)
method [20]:

⎧⎪⎨
⎪⎩

θi (k) = θi (k − 1) + K(k)[yi (k) − HT
i (k)θi (k − 1)]

K(k) = P(k − 1)Hi (k)[HT
i (k)P(k − 1)Hi (k) + μ]−1

P(k) = 1
/

μ[I − K(k)HT
i (k)]P(k − 1)

(8.16)

where 0 <μ <1 is the forgetting factor, P(k) is a positive definite covariance matrix
with P(0) = α2I, I is an (ny + nu) × (ny + nu) identity matrix, α is a real number
with sufficiently large value, θi (0) = ε with ε being a sufficiently small ny + nu
dimensional real vector andK(k) is a weight matrix, θi , i = 1, . . . , n can be obtained
using n least squares estimations.

The procedure of the parameter identification of the decoupled ARX model is
given as follows:

Step 1: Initialize ny, nu, Hi(1) and μ. Start from the first time series with i = 1.
Step 2: Initialize P(0) and θi (0).
Step 3: Repeat to calculate θi with Eq. 8.16 until k reaches L.
Step 4: Go to step 2 until i reaches n.
Step 5: Copy the values of θi , i = 1, . . . , n to A1 · · ·Any

, B1 · · ·Bnu
.

8.2.3 RBF Neural Network Modeling

WhenA1 · · ·Any
andB1 · · ·Bnu

are gained in Sec. 8.2.2, the outputs of the decoupled
ARXmodel, ŷ(k) = [ŷ1(k), . . . ŷn(k)], can then be obtained. The deviation between
y(k) and ŷ(k) is denoted as f(k):

f(k) = y(k) − ŷ(k) (8.17)

Here, f(k) = [f1(k), . . . , fn(k)]. See Fig. 8.2, the RBF neural network contains
one input layer, one hidden layer and one output layer. Since Gaussian function [23]
and thin plate spline function [24] are the typical radial basis functions, which has
the fewest number of unknown parameters and shown in Ch. 6. There are a total of
n RBF neural networks to model n nonlinear parts in Eq. 8.17.

The input vector of the ith RBF neural network is selected as its state variables
[3]:

200 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Fig. 8.2 RBF neural
network modeling for
prediction of f i(k)

Xi (k) = [yi (k − 1), . . . yi (k − ny)], k = 1, . . . , L .

The thin plate spline function as follow is used to obtain the output of the jth
hidden node:

h j (Xi (k)) = ∥∥Xi (k) − c j
∥∥2

lg(
∥∥Xi (k) − c j

∥∥), j = 1, 2, . . . , nr

Here cj = [c1 j , . . . , cny j] is the center of the jth RBF hidden node and
∥∥Xi (k) − c j

∥∥ =
√

ny∑
j=1

(yi (k − j) − ci j)2.

The output of the ith RBF neural network, denoted as f̂i (k), is represented by a
linear weighted sum of nr hidden functions as:

f̂i (k) =
nr∑
j=1

h j (k)ωi j = ωih(k) (8.18)

where ωi = [ωi1, . . . , ωinr] is the weight vector connecting the hidden layer h(k) =
[h1(k), . . . , hnr (k)]T to the output layer. RLS method can be used to calculate the
estimation of ωi :

⎧⎪⎨
⎪⎩

ωi (k) = ωi (k − 1) + K(k)[fi (k) − hT(k)ωi (k − 1)]
K(k) = P(k − 1)h(k)[hT(k)P(k − 1)h(k) + μ]−1

P(k) = 1
/

μ[I − K(k)hT(k)]P(k − 1)

where P(k), P(0), μ and ω1(0) = ε are the same as those in Eq. 8.16.
The relationship of the ith nonlinear part is shown as follows:

f̂i (k) =
nr∑
j=1

(
∥∥Xi (k) − c j

∥∥2
lg(

∥∥Xi (k) − c j
∥∥))ω j i (8.19)

8.2 DPS Modeling Issue 201

The data set has been divided into a training data set and a testing data set with
length of L

/
2. The sum of the absolute values of the prediction error for the ith RBF

neural network is selected as:

es =
L/ 2∑
k=1

| fi (k) − f̂i (k)| (8.20)

The number of hidden nodes nr and the centers cj in the hidden functions are then
optimized by GA.

The procedure of RBF neural network formodeling the ith nonlinear part is shown
as follows:

Step 1: Initialize ny , nu , and calculate ŷi (k) for the decoupled ARX model to
obtain fi (k).
Step 2: Construct the input layer data Xi (k) and the output layer data fi (k),
k = 1, · · · , L .
Step 3: Divide the input/output data into a training set and a testing set with
length of L

/
2. Optimize the number of hidden nodes (nr) and the parameters of

the hidden functions by using GA.
Step 4: Repeatedly calculate the output of the hidden layer h(k) until k reaches
L
/
2.

Step 5: Initialize P(0), ωi (0), h(1), μ and compute ωi (k) with RLS algorithm
until k reaches L

/
2.

Step 6: Compute the output of the RBF neural network with Eq. 8.19.

8.2.4 Structure and Parameter Optimization by GA

Note that the input vector [yi (k−1), · · · yi (k−ny)] should be fixed, and the number
of hidden nodes nr and the centers of the hidden functions c j , j = 1, · · · , nr will be
optimized considering both modeling error and structure complexity:

f = es + β · nr , J = 1/ f (8.21)

where β is a weight coefficient between [0.0001, 0.1]. Generally, β · nr should be
proportional to the value of es. Larger β indicates that more importance is focused
on the structure.

202 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

8.2.5 Encoding Method

The number of input nodes ny is set in advance and there are nr · ny parameters to be
optimized by GA. Here, the decimal encoding method is adopted and the decoding
step is then not needed. The ith chromosome is given as follows:

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎣

ci11 . . . ci1ny

ci21 . . . ci2ny

...
...

...

cinr1 . . . cinr ny

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(8.22)

where i = 1, . . . , Nc with Nc as the population size, 1 ≤ nr ≤ D with D as the
maximal number of hidden nodes and set to 50, andCi is a ny × 50 matrix. The rows
below nr are set to zeros and cannot be used as centers. The elements in Eq. 8.22 are:

ci j = fmin + r(fmax − fmin), 1 ≤ i ≤ nr , 1 ≤ j ≤ ny (8.23)

where r is randomly generated between [0.1, 1], fmin and fmax are the minimum and
maximum values of the outputs. RLS can be used to calculate the weights of the RBF
neural network with the neural network structure and the parameters of the hidden
functions derived in Eq. 8.22.

8.2.5.1 Operators

(1) Selection operator

The Roulette wheel method is adopted, and the selection probability depends on the
reciprocal of the objective function in Eq. 8.21. Individuals with larger values of J
will have more chances to be survived and a single spin of the Roulette wheel will
select Nc individuals at the same time.

(2) Crossover operator

The crossover operator is executed with probability pc between the current indi-
vidual Ci and the next individual Ci+1 at the former Nc/2 individuals. Ci+1 is
selected randomly in the latter Nc/2 individuals for keeping population diversity.
The offspring chromosomes C

′
i ,C

′
i+1 are produced through a multi-point crossover

operator in Fig. 8.3. Suppose the number of the hidden nodes n
′
r inCi+1 is larger than

nr in Ci and the crossover location r is generated randomly between 1 and nr , then,
[cT1 , · · · , cTr] in Ci is exchanged with that in Ci+1. After the crossover operation, the
offspring C

′
i ,C

′
i+1 are produced:

8.2 DPS Modeling Issue 203

Fig. 8.3 Example of the
crossover operator: The
elements from line 1 to r in
Ci are exchanged with those
in Ci+1

From Fig. 8.3, the crossover operator is likely to generate new parameters in the
hidden layer. However, the structure of the hidden layer is kept unchanged.

(3) Regulation operator

Note that the crossover operator cannot produce new structures of the hidden layer,
the regulation operator is then designed to be carried out with probability pr to
change the structure of the hidden layer. The new number of the hidden nodes is thus
obtained as follows:

n
′
r = �nr + r · nr�, 1 ≤ n

′
r ≤ D (8.24)

where r is produced randomlybetween [−0.5, 0.5], and �·� is a rounddownoperation.
The elements of the new added nodes from rows nr + 1 to n

′
r in Fig. 8.4 are created

with Eq. 8.23, and the elements of the decreased nodes are set to zeros. The structure
of the hidden layer is changed with nr changing.

Fig. 8.4 Example of
regulation operator with the
number of hidden nodes
changed from nr to n′

r

204 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

(4) Mutation operator

A mutation operator with probability pm is carried out. The new center c
′
i j of the

mutated element is produced as follows:

c
′
i j = ci j + r · ci j (8.25)

where r is the same as that in Eq. 8.24. The new parameters of the hidden functions
can then be derived by the mutation operator.

To further avoid getting stuck in the local optima, the dynamic probabilities of
pm and pr are adopted as follows:

pm = pr = 0.1 + 0.1g
/
G (8.26)

where g is the current evolution generation. What is noteworthy is that the mutation
and regulation probability will gradually become larger. This will be helpful with
keeping population diversity during the later evolution processes.

8.2.5.2 Optimization Process

The whole procedure of GA optimization for RBF neural network is given in the
following steps:

Step 1: Set the population size Nc to 60, maximal generation G to 1000, β to
0.0001, and pc to 0.8 and generate the initial population randomly.
Step 2: Calculate the outputs of the RBF neural network according to Sec. 8.2.3
and compute the value of the fitness function with Eq. 8.21.
Step 3: Perform a tournament selection to select the better individual with greater
probability, calculate pr and pm , carry out the crossover, mutation and regulation
operators to generate a new population.
Step 4: Keep the elitist individual in the new population.
Step 5: Go to Step 2 until G is reached.

8.3 Simulation Results

In this section, two DPSs are studied. One is a nonlinear catalytic rod in the chemical
industry and the other is a heat conduction equation. The PDEs are solved using the
finite difference method with {y(zi , tk)}120,100i=1k=1 spatial-temporal outputs produced to
construct the low-order models. PCA is used to obtain the dominant components
and temporal outputs. The decoupled ARXmodel will be formed using the temporal
outputs and stimulus inputs. The deviation can then be derived for GA to optimize
RBF neural networks.

8.3 Simulation Results 205

The PCA-ARXmethod [16] and PCA-Hammersteinmethod [14] are adopted here
for comparison. For the low-dimension temporal data set {u(k), y(k)}, the PCA-ARX
model employed the following ARX form as y(k) = A(q−1)y(k) + B(q−1)u(k);
while the PCA-Hammerstein algorithm utilized y(k) = A(q−1)y(k) + B(q−1)v(k),
where v(k) is the nonlinear static function of u(k). HereA(q−1) and B(q−1) are n ×
n and n × m matrix polynomials, respectively.

The sums of the absolute error (SAE) and the RMSE are defined as follows.

SAE =
N∑
i=1

L∑
k=1

|e(zi , tk)| (8.27)

RMSE =
√√√√ 1

NL

N∑
i=1

L∑
k=1

|e(zi , tk)|2 (8.28)

where e(zi , tk) = y(zi , tk) − ŷ(zi , tk).

8.3.1 Catalytic Rod

The reaction process is composed of a long, thin rod (catalytic rod) in a reactor shown
in Fig. 8.5.

The reactor is fed with pure species A, and a zeroth order exothermic catalytic
reaction of the form A → B takes place in the rod. The reaction is exothermic and
a cooling medium is equipped for cooling. Here we firstly make assumptions of
constant density, heat capacity, conductivity, temperature at both ends of the rod
and an excess of species A, and then describe the spatio-temporal distribution of the
dimensionless temperature as [14]:

∂y(z, t)

∂t
= ∂2y(z, t)

∂z2
+ βT (e− Υ

1+y − e−Υ)

+ βu(bT (z)u(t) − y(z, t)) (8.29)

Fig. 8.5 A cataytic rod in a
reactor with catalytic
reaction form A → B

206 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

subject to the Dirichlet boundary conditions:

y(0, t) = 0, y(Z , t) = 0

and the initial condition:

y(z, 0) = y0(z)

where y(z, t), βT , Υ , βu, b(z), u(t), Z and T denote the dimensionless temperature
in the reactor, the dimensionless reaction heat, the dimensionless activation energy,
the dimensionless heat transfer coefficient, the actuator distribution, the manipulated
input, i.e., the temperature of the cooling medium, the length of the reactor and the
total chemical reaction time, respectively. The values of system parameters for the
catalytic rod are shown in Table 8.1.

There are totally four actuators available u(t) = [ui (t), . . . , u4(t)]T with the space
distribution function as bi (z) = H(z − (i − 1)π/4) − H(z − iπ)/4), i = 1, . . . , 4,
b(z) = [b1(z), · · · , b4(z)]T. Here, ui (t) = 1.1+ 5 sin(t

10 + i
10), (i = 1, 2, 3, 4)

is the standard Heaviside function. The input stimulus signals are ui (t) = 1.1 +
5 sin(t

10 + i
10), i = 1, · · · , 4. The model shown in Fig. 8.6 is constructed by the

production of the outputs of the catalytic rod.

Table 8.1 Typical values of the catalytic rod process

Parameters βT βu Υ y0(z) T Z

The values 16 2 2 0.5 2 3

Fig. 8.6 The spatio
temporal outputs of the
catalytic rod with four
stimulus input signals

0
1

2
3

0

1

2
0

2

4

6

zt

y(
z,

t)

8.3 Simulation Results 207

8.3.1.1 PCA Time/Space Separation and ARX Modeling

The eigenvalues can be calculated based on PCA and the system energy for different
numbers of dominant modes n, which is listed in Table 8.2. The system energy is
more than 99% under n = 3 and n = 4 and a system model can be built with the
information provided by this. The space basis functions ϕi (z) and their temporal
series yi (k) (i = 1, · · · , n) can also be obtained.

For n = 4, four actuators available in the reactor u(k) =
[u1(k), u2(k), u3(k), u4(k)]

T are used as system inputs and four temporal series are
used as system outputs y(k) = [y1(k), y2(k), y3(k), y4(k)]

T. Set ny to 2 and nu to 2;
the decoupled ARX model in Eq. 8.15 can be obtained as follows:

y(k) = (A1q
−1 + A2q

−2)y(k) + (B1q
−1 + B2q

−2)u(k) (8.30)

Ai = diag(a1i , · · · , a4i), Bi = diag(b1i , · · · , b4i), i = 1, 2.
The parameters in Ai and Bi are calculated with RLS algorithm in Eq. 8.16 as:

A1 = diag(1.9567, 1.8070, 1.8286, 1.3460)

A2 = diag(−0.9574,−0.8110,−0.8443,−0.4277)

B1 = diag(0.0387,−0.0016, 0.1682,−0.0661)

B2 = diag(−0.0336, 0.0007,−0.1689, 0.0664)

For n = 3, to construct the three-input three-output decoupled ARX model, three
actuators u(k) = [u1(k), u2(k), u3(k)]

T with the space distribution functions bi (z) =
H(z − (i − 1)π/3) − H(z − iπ)3), i = 1, 2, 3 are chosen. The locations and the
number of the actuators are different, so compared with that using four actuators,
there exists a systematic deviation as shown in Fig. 8.7.

Here ny and nu are also set to 2, and three dominant time series are denoted as
y(k) = [y1(k), y2(k), y3(k)]

T, then the decoupled ARXmodel is similar to Eq. 8.30.
The parameters of A1,A2, B1, B2 are then derived and given as follows:

A1 = diag(a11, a21, a31) = diag(1.9569, 1.7326, 1.8317)

A2 = diag(a12, a22, a32) = diag(−0.9575,−0.7376,−0.8459)

B1 = diag(b11, b21, b31) = diag(0.0453,−0.0122, 0.1549)

B2 = diag(b12, b22, b32) = diag(− 0.0408, 0.0112,−0.1556)

Table 8.2 The energy of
PCA with different n

The value of n Energy(%)

1 95.3262

2 98.6537

3 99.7153

4 99.8996

208 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Fig. 8.7 The deviation of
spatio temporal outputs
using four actuators and
three actuators

0
1

2
3

0
0.5

1
1.5

2
0

0.1

0.2

0.3

0.4

zt
e

(z
,t)

8.3.1.2 RBF Neural Network Optimized by GA

After constructing the decoupled ARX model, the nonlinear terms f(k) =
[f1(k), · · · , fn(k)] will be obtained with Eq. 8.17. Note that the weight coefficient
β will affect the optimization result greatly, the first dominant time series y1(k) and
its nonlinear part f 1(k) for n = 4 are selected to show the effect of β. Here, the input
layer is [y1(k − 1), y1(k − 2)] and the output is f 1(k). The input and output data are
divided into two groups, where one group is used to train the hidden layer and its
parameters of RBF neural network by using GA, and the other group is used to test
the RBF neural network. GA is run 10 times for each value of β. The RBF neural
network with the minimum value of SAE is regarded as the best one. The best results
of RBF neural network with different values of β are shown in Table 8.3, where es1
is SAE for the training data and es2 is for the testing data.

It is obvious that when β is decreasing, the number of the hidden nodes will
increase, and the modeling accuracy in Eq. 8.20 is also decreased. Herein, β is
selected as 0.0001 to obtain good modeling accuracy.

After GA optimization, the seven best RBF neural networks with different nr
hidden nodes are obtained in the cases of n = 4 and n = 3. The results are shown
in Table 8.4. It can be seen that although the testing error is larger than the training
error, the values are quite small and satisfactory.

The outputs of the RBF neural network with its modeling errors in the cases of
n = 4 and n = 3 are shown in Figs. 8.8, 8.9, 8.10, 8.11, 8.12, 8.13 and 8.14, respec-
tively. In all of figures, the former fifty samples are selected as the training data
and the latter fifty samples are the testing data. It can be seen that the order of the
magnitudes has reached to 10−5 for the training and testing data.

Table 8.3 Optimization
results of RBF for f 1 with
different β

β nr es1 es2

0.0001 22 0.009 0.011

0.01 17 0.0117 0.0217

0.1 8 0.0537 0.1218

8.3 Simulation Results 209

Table 8.4 Results of RBF models for nonlinear functions

Index n = 4 n = 3

F f 1 f 2 f 3 f 4 f 1 f 2 f 3

nr 22 19 21 18 18 17 20

es1 0.009 0.008 0.010 0.021 0.028 0.024 0.013

es2 0.011 0.010 0.015 0.036 0.034 0.051 0.018

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.04

-0.02

0

0.02

f1

Neural Predictions

Real Values

0 10 20 30 40 50 60 70 80 90 100
-1

0

1

2

3
x 10

-5

Samples

E
rr

or
s

Fig. 8.8 Prediction of RBF network for f 1 and modeling errors of case n = 4

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10
x 10

-3

f2

Neural Predictions
Real Values

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1
x 10

-5

Samples

E
rr

o
rs

Fig. 8.9 Prediction of RBF network for f 2 and modeling errors of case n = 4

210 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

0 10 20 30 40 50 60 70 80 90 100
-0.01

0

0.01

0.02

0.03

f3

Neural Predictions

Real Values

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2
x 10

-5

Samples

E
rr

o
rs

Fig. 8.10 Prediction of RBF network for f 3 and modeling errors of case n = 4

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

8
x 10

-3

f4

Neural Predictions
Real Values

0 10 20 30 40 50 60 70 80 90 100
-4

-2

0

2

4

6
x 10

-5

Samples

E
rr

or
s

Fig. 8.11 Prediction of RBF network for f 4 and modeling errors of case n = 4

8.3.1.3 Performance Comparison

The decoupled ARX model plus RBF neural network has been obtained and ŷk(z)
can be reconstructed with Eq. 8.12. For convenience, the proposed method is named
as PCA-DARX-RBF. The reconstructed outputs in the cases of n = 4 are shown in
Fig. 8.15 and the prediction errors e(z, t) are presented in Fig. 8.16a. For the case of

8.3 Simulation Results 211

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1
x 10

-5

Samples

E
rr

or
s

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.04

-0.02

0

0.02

f1
Neural Predictions

Real Values

Fig. 8.12 Prediction of RBF network for f 1and modeling errors of case n = 3

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

10
x 10

-3

f2

Neural Predictions
Real Values

0 10 20 30 40 50 60 70 80 90 100
-3

-2

-1

0

1

2
x 10

-5

Samples

E
rr

or
s

Fig. 8.13 Prediction of RBF network for f 2 and modeling errors of case n = 3

n= 3, the prediction error values are plotted in Fig. 8.16b. It can be seen that the PCA-
DARX-RBF model can approximate the spatio-temporal dynamics of the original
system satisfactorily. However, the error values increase with fewer dominant modes.

In Fig. 8.17, the spatial-temporal reconstruction error values for n = 3 and n = 4
show the efficiency of the PCA-ARX model. For the PCA-Hammerstein model, the
literature [14] gave the expression of v(k) for n = 3 with four input actuators and a

212 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

0 20 40 60 80 100
-0.01

0

0.01

0.02

0.03

Samples

f3

Neural Predictions
Real Values

0 20 40 60 80 100
-6

-4

-2

0

2
x 10

-5

E
rr

or
s

Fig. 8.14 Prediction of RBF network for f 3 and modeling errors of case n = 3

Fig. 8.15 Reconstructed
spatial-temporal outputs for
the proposed PCA decoupled
ARX plus RBF network
model for case n = 4

0

1

2

3

0
0.5

1

1.5
2

-2

0

2

4

6

zt

y(
z,

t)

Gaussian function used as the static function. Its centers were uniformly distributed
among the range of the input data, and the width was set to 1. Here, ny and nu
are also set as 2. The reconstruction errors are smaller than those of [14] as shown
in Fig. 8.18a, and the simulation result for n = 4 with the same v(k) is shown in
Fig. 8.18b. It can be seen that the PCA-Hammerstein model can approximate the
spatio-temporal dynamics well.

The indexes of RMSE and SAE for the three methods are listed in Table 8.5.
Since the PCA with n ≥ 3 obtains more than 99% system energy, reconstruction
accuracy is guaranteed in the whole spatio-temporal distribution. All of the methods
in Figs. 8.16, 8.17 and 8.18 show satisfactory accuracy. However, themodeling errors
with n = 3 are larger than those with n = 4. In Table 8.4, the values of RMSE and
ASE with n = 4 are also less than those with n = 3.

8.3 Simulation Results 213

Fig. 8.16 Spatial-temporal
modeling errors by
PCA-DARX-RBF for the
cases of n = 3 a and n = 4 b

0
1

2
3

0

1

2
-0.01

0

0.01

0.02

(b)

zt

e(
z,

t)

0
1

2
3

0

1

2
-0.01

0

0.01

0.02

(a)

zt

e(
z,

t)

Fig. 8.17 Spatial-temporal
modeling errors by
PCA-ARX for the cases of
n = 3 a and n = 4 b

0
1

2
3

0

1

2
-0.01

0

0.01

0.02

(a)

zt

e(
z,

t)

0
1

2
3

0

1

2
-0.01

0

0.01

0.02

(b)

zt

e(
z,

t)

It can be seen that PCA-Hammerstein has larger errors than those of PCA-ARX
and PCA-DARX-RBF partly because of the structure of v(k). The limitation of PCA-
ARX model is that this model is confined to linear systems and fully coupled, while
PCA-Hammersteinmodel is for the nonlinear and inter-coupling systems.Obviously,
PCA-DARX-RBF can obtain good reconstruction accuracy for nonlinear DPSs.

214 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Fig. 8.18 Spatial-temporal
modeling errors by PCA
Hammerstein under the cases
of n = 3 a and n = 4 b

0
1

2
3

0

1

2
-0.01

0

0.01

0.02

(b)

zt

e(
z,

t)

0
1

2
3

0

1

2
-0.02

-0.01

0

0.01

(a)

zt

e(
z,

t)

Table 8.5 Index
comparisons for two cases

Cases Methods RMSE ASE

Catalytic rod PCA-ARX
n = m=4

7.77e − 4 4.8947

PCA-ARX
n = m=3

0.0017 12.1216

PCA-Hammerstein
n = 3,m = 4

0.0017 12.1815

PCA-Hammerstein
n = m=4

8.256e − 4 5.5348

PCA-DARX-RBF
n = m=4

9.25e − 4 5.2878

PCA-DARX-RBF
n = m=3

0.0017 11.3534

Heat conduction PCA-ARX
n = m=4

6.69e − 4 4.1655

PCA-ARX
n = m=3

0.0019 12.0925

PCA-DARX
n = m=4

7.51e − 4 4.2001

PCA-DARX
n = m=3

0.0019 12.0643

PCA-DARX-RBF
n = m=4

7.72e − 4 4.0954

PCA-DARX-RBF
n = m=3

0.0020 12.1424

8.3 Simulation Results 215

Fig. 8.19 The
spatial-temporal outputs of
the heat conduction equation
with four stimulus input
signal

0

1

2

3

0

0.5

1

1.5

2
0

0.5

1

1.5

2

2.5

3

zt

y
(z

,t
)

8.3.2 Heat Conduction Equation

The dynamic parabolic PDE of a linear heat conduction equation is described as
follows [25]:

∂y(z, t)

∂t
= ∂2y(z, t)

∂z2
+ bT(z)u(t) (8.31)

s.t. y(0, t) = 0, y(Z , t) = 0, t ∈ [0, T], y(z, 0) = y0(z), z ∈ [0, Z].

The parameters Z, T and their stimulus input signals bT (z)u(t) are set as the same
as those in Sec. 8.3.1. The DPS outputs {y(zi , tk)}120, 100i=1 k=1 with four input stimulus
signals are also produced and shown in Fig. 8.19. The systematic deviation between
four inputs and three inputs is illustrated in Fig. 8.20.

By using PCA method, the system energy in the dominant modes n = 2, 3, 4 is
gained 97.65%, 99.44% and 99.83%, respectively. Here the dominant modes n = 3
and n = 4 are selected, and the temporal series yi (k) i = 1, . . . , n can be obtained.
In order to build the decoupled temporal model, the number of the stimulus inputs
is equal to n. ny and nu in the ARX structure as the same as those in modeling the
catalytic rod. The model coefficients for n = 4 are obtained as:

A1 = diag(1.4912, 0.8145, 1.8176, 1.3476)

A2 = diag(−0.5063, 0.1784,−0.8290,−0.4186)

B1 = diag(0.0296,−0.0051,−0.1339, 0.0613)

B2 = diag(0.0369, 0.0013, 0.1345,−0.0615)

For n = 3, the model coefficients are:

216 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Fig. 8.20 The
spatial-temporal output
deviation with different
stimulus input signals

0

1

2

3

0

0.5

1

1.5

2
0

0.05

0.1

0.15

0.2

0.25

zt

e
(z

,t)

A1 = diag(1.5112, 0.9337, 1.8093)

A2 = diag(−0.5248, 0.0502,−0.8184)

B1 = diag(0.0078, 0.0257,−0.1188)

B2 = diag(0.0485,−0.0288, 0.1194)

The nonlinear terms for n = 4 are modeled and the predicted outputs are shown
in Fig. 8.21. The output error values using PCA-DARX-RBF for n = 4 and n = 3
are shown in Fig. 8.22a, b. Note that the nonlinear parts are relatively small, the RBF
neural networks are omitted and the algorithm is named as PCA-DARX. The spatial-
temporal reconstruction error values are shown in Fig. 8.23a, b. Here the modeling
error values for PCA-ARX are plotted in Fig. 8.24a, b.

It can be seen that the error of the four dominant modes is smaller than that
of the three dominant modes. The RMSE and ASE for PCA-DARX-RBF, PCA-
DARX and PCA-ARX are listed in Table 8.5. The nonlinearity is not serious and
RBF neural network does not give any significant contribution, so RMSE for PCA-
DARX-RBF is the largest. RMSE and ASE for PCA-DARX are somewhat larger
than those of PCA-ARX because the simple decoupled ARX misses some system
information. Therefore, for linear DPSs, RBF neural networks may not be helpful to
improve modeling accuracy, and the PCA-DARX-RBF method can be simplified to
PCA-DARX with satisfactory modeling accuracy.

8.4 Summary

This chapter proposes a hybrid modeling strategy for parabolic PDE systems. PCA
is firstly utilized to derive the set of dominant spatial patterns and the temporal
series. Then, a decoupled ARX form is constructed and the nonlinear unmodeled
dynamics are further modelled with a GA optimization-based RBF neural network.

8.4 Summary 217

0 5 10 15 20 25 30 35 40 45 50
-0.01

0

0.01

Samples

f1

0 5 10 15 20 25 30 35 40 45 50
-5

0

5
x 10

-3

Samples

f2

Neural Predictions
Real Values

Neural Predictions
Real Values

0 5 10 15 20 25 30 35 40 45 50
-5

0

5
x 10

-3

Samples

f3

0 5 10 15 20 25 30 35 40 45 50
-2

0

2

4
x 10

-3

Samples

f4

Neural Predictions
Real Values

Neural Predictions
Real Values

Fig. 8.21 The nonlinear terms predicted RBF network for n = 4

Fig. 8.22 Spatial-temporal
modeling errors by
PCA-DARX-RBF for n = 4
a and n = 3 b

0

1

2

3

0

0.5

1

1.5

2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

zt

e(
z,

t)

0

1

2

3

0

0.5

1

1.5

2
-0.03

-0.02

-0.01

0

0.01

0.02

zt

e
(z

,t)

218 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

Fig. 8.23 Spatial-temporal
modeling errors by
PCA-DARX for n = 4 a and
n = 3 b

0

1

2

3

0

0.5

1

1.5

2
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

zt

e
(z

,t)

0

1

2

3

0

0.5

1

1.5

2
-0.03

-0.02

-0.01

0

0.01

0.02

zt

e
(z

,t)

Fig. 8.24 Spatial-temporal
modeling errors by PCA-AR
X for n = 4 a and n = 3 b

0

1

2

3

0

0.5

1

1.5

2
-0.02

-0.01

0

0.01

0.02

zt

e(
z,

t)

0

1

2

3

0

0.5

1

1.5

2
-0.03

-0.02

-0.01

0

0.01

0.02

zt

e(
z,

t)

8.4 Summary 219

The satisfying modeling results of two DPS systems have been derived by using
PCA-DARX-RBF method.

References

1. Zhang, R., et al. 2016. Decoupled ARX and RBF neural network modeling using PCA and
GA optimization for nonlinear distributed parameter systems. IEEE Transactions on Neural
Networks Learning Systems 29 (2): 457–469.

2. Baker, J., and P. Christofides. 2000. Finite-dimensional approximation and control of non-linear
parabolic PDE systems. International Journal of Control 73(5): 439–456.

3. Luo, B., H.N. Wu, and H.X. Li. 2015. Adaptive optimal control of highly dissipative nonlinear
spatially distributed processes with neuro-dynamic programming. IEEE Transactions on
Neural Networks Learning Systems 26 (4): 684.

4. Christofides, P.D., and J. Chow. 2001. Nonlinear and robust control of PDE systems. Applied
Mechanics Reviews 55 (2): B29–B30.

5. Zhang, R., and J.L. Tao. 2017. Data driven modeling using improved multi-objective optimiza-
tion based neural network for coke furnace system. IEEETransactions on Industrial Electronics
64 (4): 3147–3155.

6. Luo, B., H.N. Wu, and H.X. Li. 2014. Data-based suboptimal neuro-control design with
reinforcement learning for dissipative spatially distributed processes. Industrial Engineering
Chemistry Research 53 (19): 8106–8119.

7. Zhang, R., A. Xue, and S. Wang. 2011. Dynamic modeling and nonlinear predictive control
based on partitioned model and nonlinear optimization. Industrial Engineering Chemistry
Research 50 (13): 8110–8121.

8. Aggelogiannaki, E., et al. 2008. Nonlinear model predictive control for distributed parameter
systems using data driven artificial neural network models. Computers Chemical Engineering
32(6): 1225–1237.

9. Yin, S., et al. 2013. Data-driven monitoring for stochastic systems and its application on batch
process. International Journal of Systems Science 44(7): 1366–1376.

10. Wang, M., X. Yan, and H. Shi. 2013. Spatiotemporal prediction for nonlinear parabolic
distributed parameter system using an artificial neural network trained by group search
optimization. Neurocomputing 113 (7): 234–240.

11. Chairez, I., I. García-Peña, and A. Cabrera. 2009. Dynamic numerical reconstruction of a
fungal biofiltration system using differential neural network. Journal of Process Control 19
(7): 1103–1110.

12. Zhang, R., et al. 2009. Neural network based iterative learning predictive control design for
mechatronic systems with isolated nonlinearity. Journal of Process Control 19 (1): 68–74.

13. Shvartsman, S.Y., et al. 2000. Order reduction for nonlinear dynamic models of distributed
reacting systems. Journal of Process Control 10 (2–3): 177–184.

14. Qi, C., and H.X. Li. 2009. A time/space separation-based Hammerstein modeling approach
for nonlinear distributed parameter processes.Computers Chemical Engineering 33 (7): 1247–
1260.

15. Qi, C.,H.T. Zhang, andH.X. Li. 2009.Amulti-channel spatio-temporalHammersteinmodeling
approach for nonlinear distributed parameter processes. Journal of Process Control 19 (1):
85–99.

16. Hua,C., L.I. Ning, andL.I. Shao-Yuan. 2011. Time-spaceARXmodeling and predictive control
for distributed parameter system. Control Theory Applications 28 (12): 1711–1716.

17. Kariminia, S., et al. 2016.Modelling thermal comfort of visitors at urban squares in hot and arid
climate using NN-ARX soft computing method. Theoretical Applied Climatology 124 (3–4):
991–1004.

220 8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS

18. Zhang, R., J. Tao, and F. Gao. 2014. Temperature modeling in a coke furnace with an improved
RNA-GA based RBF network. Industrial Engineering Chemistry Research 53 (8): 3236–3245.

19. Shamshirband, S., et al. 2016. Estimation of reference evapotranspiration using neural networks
and cuckoo search algorithm. Journal of Irrigation Drainage Engineering 142 (2): 04015044.

20. Glauser, M. 1996. Turbulence. Dynamical Systems and Symmetry: Coherent Structures.
21. Armaou, A., and P.D. Christofides. 1999. Nonlinear feedback control of parabolic partial differ-

ential equation systems with time-dependent spatial domains ✩. Journal of Mathematical
Analysis Applications 73 (17): 124–157.

22. Chorin, A. 1998. New perspectives in turbulence. Quarterly of Applied Mathematics 56 (4):
767–785.

23. Liu, J. 2013. Radial Basis Function (RBF) Neural Network Control for Mechanical Systems.
Springer Science & Business Media.

24. Chen, S., C.N. Cowan, and P.M. Grant. 1991. Orthogonal least squares learning algorithm for
radial basis function networks. IEEE Transactions on Neural Network 64 (5): 829–837.

25. Goldstein, J.A. 1985. Semigroups of Operators and Applications.

Chapter 9
GA-Based Controller Optimization
Design

In this chapter, GA is used to optimize the controller design. First, a new PID
controller is designed by using a non-minimal state-space model through predic-
tive function control. The weighting matrix in the predictive function controller is
optimized throughGAso as to achieve a relatively desired closed-loop control perfor-
mance. Secondly, a fuzzy neuron non-model controller is designed for a continuous
casting process with strong nonlinearity and severe uncertainty, and its parameters
are optimized through RNA-GA. Finally, a MOGA based on parameter stabilization
space of the PID controller is used to control the first-order lag unstable process. The
simulation results confirm the effectiveness of GA and its improved format in the
optimization of the control system design problem.

9.1 Introduction

A robust and reliable control system is critical to obtain high-quality production for
satisfying the requirement of industrial applications [1]. With the more and more
complexity of the modern industrial processes, higher control performances are
required for the control system design. All of the engineers are facing increasing
challenges of how to choose the appropriate controller and optimize its parameters
to meet different application requirements [2, 3]. The performances of the actual
controller often have strict constraints, moreover, the whole control system may
not have continuous and differentiable characteristics suitable for the traditional
numerical optimization methods [4−5].

Because of PID controllers’ simplicity, satisfactory performances, and high
cost/benefit ratio, they are widely used in the industrial plants. For the purpose of
simplifying the engineers’ work, many PID parameter tuning methods have been
devised during the past 70 years and applied widely in the industrial processes [6,
7]. PID parameter tuning is typically categorized by the type of process models,
such as first-order plus dead time (FOPDT) [7−8] and integrator plus dead time

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_9

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_9&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_9

222 9 GA-Based Controller Optimization Design

(IPDT) [9, 10], etc. Also, some PID tuning methods are applicable for both FOPDT
and IPDT models [11−12]. For example, internal model control (IMC) based PID
tuning method showed good robustness and set-point tracking, but poor response
under disturbance for processes with dominant lags [10]; The improved disturbance
rejection for IPDT processes could be obtained by PID parameter tuning but poor
performance for processeswith large time delay [11]. A compromise between robust-
ness and stability control performances were discussed in [13]. Some model predic-
tive control (MPC) based PID controllers have also been proposed in [14] and [15],
which have made significant progress in both theory and practice among various
advanced control strategies [16, 17]. Sometimes, there is great uncertainty in the
controlled plant or its structure varies greatly. So that, the mathematical model of the
practical process is difficult to be established. Thus, the application of model-based
control may be limited to a restricted extent and its control performance will be
deteriorated.

To solve the system modeling problem, the research has undergone from tradi-
tional input-output models to state-space models. To overcome the limitation of
traditional state observers, non-minimal state-space models, fuzzy logic models, and
other advanced models have been developed [18−19]. However, MPCs still need
to overcome the troublesome nonlinearity and uncertainty of the system. Further-
more, the implementation of MPC is not as easy as that of PID controller, which
possessed the advantages of finding effective control with a simple structure. The
new PID controller combined with MPC and predictive function control (PFC) is
also designed in [20] and [21].

Recently, many artificial intelligence (AI) techniques, such as fuzzy systems [22,
23], neural networks [24, 25], and neuro-fuzzy logic [26, 27] have been applied
to improve the performances of PID controller. Neuron controllers are particularly
suitable for the objects with the time-variance and uncertainty because they are
independent on the model and have self-learning capability. The simulations studied
on industrial process control such as turbine and electroslag remelting showed the
excellent tracking performance and robustness of the controllers [28, 29].

Many evolutionary search methods, such as particle swarm optimization [30],
differential evolution [31], simulated annealing (SA) [32], and genetic algorithms
(GAs) [33] have received much interest due to their high potential to be applied
to global optimization of controller optimization design. As an optimization tech-
nique, GAs neither need to know the property of the problem, nor need to have the
strict mathematical characteristic requirement. Moreover, GA offers an effective and
efficient optimization method based on selection, crossover, and mutation opera-
tors. Therefore, it can be easily applied to the problems involving non-differentiable
functions and discrete search spaces.

In this chapter, GA is applied in optimizing three types of controllers to improve
the control performance.

(1) Motivated by the extended non-minimal state-space models (ENMSS), a PID
controller is designed based on PFC using thesemodels. The resulting controller

9.1 Introduction 223

is having the MPC framework in fact. In view of that, the performance is asso-
ciated with the weighting matrix of the cost function, then GA is adopted to
optimize the elements in these matrices.

(2) Considering the difficulty of systemmodeling, the model-free neuron controller
combined with the fuzzy PI controller is constructed. The gain of the neuron
controller is adjusted online by a fuzzy algorithm and the parameters of the
proposed controller are optimized by RNA-GA. The results illustrate high
precision mold-level control is reached and the proposed control method can
efficiently control mold level for the plant with great uncertainty and grave
nonlinearities.

(3) AMOGAbased on stabilization subspaces that optimizes PID controller param-
eters for unstable FOPDT processes is developed. Two-level PID controller
structure is utilized. The inner loop is used to stabilize the unstable system, and
the outer loop of the PID controller is optimized by MOGA based on stabiliza-
tion subspaces to improve the control performance. The simulation results of
several unstable FOPDT plants show the efficiency of the proposed methods.

9.2 Non-minimal State-Space Predictive Function PID
Controller

9.2.1 Process Model Formulation

For simplicity, the single-input single-output (SISO) model is adopted here, which
is described as follows:

�y(k + 1) + L1�y(k) + L2�y(k − 1) + · · · + L p�y(k − p + 1)

= S1�u(k) + S2�u(k − 1) + · · · + Sq�u(k − q + 1) (9.1)

where u(k), y(k) are the input signals and process output at time instant K , p and q
are the output and input orders, � is the difference operator, respectively.

Based on the strategy in [21], a non-minimal state vector is selected as

�xm(k)T = [�y(k) �y(k − 1) . . . �y(k − p + 1) �u(k − 1)

�u(k − 2) . . . �u(k − q + 1)] (9.2)

Then a state-space model can be derived as follows:

�xm(k + 1) = Am�xm(k) + Bm�u(k)

�y(k + 1) = Cm�xm(k + 1) (9.3)

224 9 GA-Based Controller Optimization Design

where

Am =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−L1 −L2 · · · −L p−1 −L p S2 · · · Sq−1 Sq

1 0 · · · 0 0 0 · · · 0 0
0 1 · · · 0 0 0 · · · 0 0
...

... · · · ...
...

... · · · ...
...

0 0 · · · 1 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 1 · · · 0 0
...

... · · · ...
... · · · ...

...
...

0 0 · · · 0 0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bm = [
S1 0 · · · 0 1 0 · · · 0]T

Cm = [
1 0 0 · · · 0 0 0 0

]

Define the expected set point r(k), the output error is further expressed as

e(k) = y(k) − r(k) (9.4)

Considering Eqs. (9.3) and (9.4), the dynamics of output error are

e(k + 1) = e(k) + Cm Am�xm(k) + Cm Bm�u(k) − �r(k + 1) (9.5)

A new state variable z(k) is further defined as

z(k) =
[

�xm(k)

e(k)

]
(9.6)

Thus, the final ENMSS process model is derived:

z(k + 1) = Az(k) + B�u(k) + C�r(k + 1) (9.7)

where

A =
[

Am 0
Cm Am 1

]
; B =

[
Bm

Cm Bm

]
; C =

[
0

−1

]
(9.8)

In Eq. (9.8), 0 is a zero vector with an appropriate dimension.

Remark 9.1 The process dead time can be incorporated when S1 = S2 = · · · = Sd

(d ≤ q).

9.2 Non-minimal State-Space Predictive Function PID Controller 225

9.2.2 PID Controller Design

In this section, the PFC strategy is adopted for the design of PID controller, and the
future state variable from sampling instant k is

z(k + P) = AP z(k) + ψ�u(k) + θ�R (9.9)

where

θ = [
AP−1C AP−2C · · · C

];ψ = AP−1B

�R = [
�r(k + 1) �r(k + 2) · · · �r(k + P)

]T

r(k + i) = αi y(k) + (1 − αi)c(k)

Here P is the prediction horizon, α is the smoothing factor, c(k) is the set point.
The cost function is selected as

minJ (k) = z(k + P)TQz(k + P) (9.10)

where Q is the weighting matrix.
The discrete PID controller is adopted as follows:

u(k) = u(k − 1) + K p(k)(e1(k) − e1(k − 1)) + Ki (k)e1(k)

+ Kd(k)(e1(k) − 2e1(k − 1) + e1(k − 2))

e1(k) = c(k) − y(k) (9.11)

where K p(k), Ki (k), Kd(k) denote the proportional coefficient, the integral coef-
ficient, and the derivative coefficient, respectively, e1(k) is the error between the
process set point and the real output.

Equation (9.11) is further formulated as follows:

u(k) = u(k − 1) + w(k)TE(k)

w(k) = [w1(k), w2(k), w3(k)]T

w1(k) = K p(k) + Ki (k) + Kd(k)

w2(k) = −K p(k) − 2Kd(k)

w3(k) = Kd(k)

E(k) = [e1(k), e1(k − 1), e1(k − 2)]T (9.12)

226 9 GA-Based Controller Optimization Design

From Eqs. (9.3)–(9.12), the optimal control action can be derived as follows:

w(k) = −ψTQ(AP z(k) + θ�R)E(k)

ψTQψ E(k)TE(k)
(9.13)

where

K p(k) = −w2(k) − 2Kd(k)

Ki (k) = w1(k) − K P(k) − Kd(k)

Kd(k) = w3(k) (9.14)

However,w is to be infinite if e1(k) is reaching zero, but it is obviously unrealistic.
Here a small output error limitation δ is chosen, which leads to the following realistic
control formulation:

⎧⎪⎨
⎪⎩

K p(k) = K p(k − 1)

Ki (k) = Ki (k − 1)

Kd(k) = Kd(k − 1)

. . . |e1(k)| ≤ δ

⎧⎪⎨
⎪⎩

K p(k) = −w2(k) − 2Kd(k)

Ki (k) = w1(k) − K P(k) − Kd(k)

Kd(k) = w3(k)

. . . |e1(k)| > δ (9.15)

Then

u(k) = u(k − 1) + K p(k)(e1(k) − e1(k − 1)) + Ki (k)e1(k)

+ Kd(k)(e1(k) − 2e1(k − 1) + e1(k − 2)) (9.16)

9.2.3 GA-Based Weighting Matrix Tuning

A basic GA is introduced to optimize the elements in Q in order to achieve the
desired process responses. Note that Q is represented as

Q = diag{q j 1, q j 2, . . . , q j p, q j p+1, q j p+2, . . . , q j p+q−1, q j e}

Remark 9.2 It can be seen that q j1, q j2, . . . , q jp are related to the responses of the
process output, q j p+1, q j p+2, . . . , q j p+q−1 are related to the process input responses
and qi e are the weights on the output error. It shows that these parameters can be
tuned to achieve desired process performance. Note that the first element in Q has

9.2 Non-minimal State-Space Predictive Function PID Controller 227

the largest impact on the closed-loop responses, thus the first one is optimized, and
the others are set to zeros.

9.2.3.1 Encoding Method

The first element of Q is denoted by the binary encoding format, a 15-bit binary code
just to be as follows:

[b14, . . . , b0] = |1 |0 |0 |1 |1 |0 |1 |0 |1 |1 |1 |1 |0 |1 |1| (9.17)

Then the first element in Q can be decoded and recalculated by

q11 =
14∑

i=0

bi2
i/215 (qmax − qmin) + qmin (9.18)

where qmin = 1, qmax = 100.

9.2.3.2 Fitness Function

Here theminimization of overshoot and rise time responses are considered as follows:

min over shoot(k) + rise time(k) (9.19)

Thus, the following fitness function is expressed as

Max 1/[over shoot(k) + rise time(k)] (9.20)

9.2.3.3 Operators

(1) Selection operator

The selection probability of an individual is given by Roulette wheel method as
follows:

P(cl) = f (cl)

N∑
l=1

f (cl)

(9.21)

where cl is the individual of Q, f (cl) is its fitness value in Eq. (9.20),N is the
population size.

228 9 GA-Based Controller Optimization Design

(2) Crossover and mutation operators

The crossover and mutation probability are denoted as pc and pm . The single-point
crossover operation is carried out between individuals cu and cv at probability pc,
then the offspring c

′
u , c

′
v will be produced. The value of gene is negated when the

mutation operation is implemented at probability pm .
Thewhole optimization procedure of PFC-PID is described in the following steps.

Step 1 Initialization of the maximal generation G and the population size N. Gener-
ation of the chromosomes randomly in the search space for the initial
population.

Step 2 Decoding of the chromosome to generate N Q weighting matrix and
computation of the performance in Eq. (9.20) for each individual.

Step 3 Execution of the selection, crossover, and mutation operators to improve the
quality of the PFC-PID controller.

Step 4 Repetition of steps 2 and 3 until the set maximum evolution generation G is
met

9.2.4 The Chamber Pressure Control by PFC-PID

In this section, the chamber pressure control in the coke furnace is introduced. The
chamber pressure is built as a FOPDT model derived by a step response test. The
advantages are that FOPDT models are convenient for PID designs, and they can
also be easily transformed into the difference equation models using sampling time
Ts = 20 s. The process model under the operation conditions in Table 9.1 is modeled
as

Table 9.1 Steady-state
operating conditions

Coke furnaces

Radiation output temperature 495 °C

Convection output temperature 330 °C

Chamber temperature 800 °C

Oxygen content 5%

Circulating oil flow 35 t/h

Coke fractionating tower

Tower bottom temperature 350 °C

Tower liquid level 70%

Coke towers

Tower top temperature 415 °C

Tower bottom temperature 300 °C

Temperature after cooling 85 °C

Tower top pressure 0.25 Mpa

9.2 Non-minimal State-Space Predictive Function PID Controller 229

G(s) = −0.02

150s + 1
e−40 s (9.22)

The simulations environments are set as follows. The step set point is commanded
at k = 0, and an output disturbance with amplitude −0.1 is added to the process at
k = 100 for output disturbance test. An input disturbance with amplitude -30 is also
added to the process at k = 100 for input disturbance test. The permissible error δ is
chosen as 10−4. The recent ENMSSPFC-based PID design [21] proposed by Zhang
et al. has shown its superiority overmanymethods and is chosen here for comparison.
The common control parameters of two methods are the same, specially P = 8 and
theweighting factor on the output error goes to be 1. However, the difference between
the proposed PID and that of Zhang’s is that the rest elements in Q can be optimized
through GA. The population size of GA is set to 40, the maximal generation G is
set to 1000, the mutation probability and the crossover probability are 0.05 and 0.8,
respectively.

Since uncertainty exists in such processes and causes model/process mismatches,
thus it is very important to evaluate the control performance under mentioned condi-
tions. Here three cases of model/process mismatches are generated through Monte
Carlo simulations, i.e., parameters in Eq. (9.22) are changed randomly each time.
Three cases with real process parameter uncertainty are

Case 1 K = −0.024, T = 109, τ = 32.
Case 2 K = −0.025, T = 115, τ = 48.
Case 3 K = −0.014, T = 162, τ = 32.

However, two controllers are still designed using the nominal process model
described by Eq. (9.22).

Figures 9.1 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8, 9.9, 9.10, 9.11, and 9.12 show the
responses of the two controllers. It can be seen that the performances of the set-
point tracking, output disturbance rejection, and input disturbance rejection of the
PFC-PID are better than those of Zhang’s. In the first case, the first element in Q
is optimized as 26.35. Under such a weighting factor, the response of the PFC-PID
is smoother than Zhang’s controller. The output shows small overshoot and short
rise time simultaneously. While for Zhang’s controller, the responses are oscillating
strongly with larger overshoot.

The first element in Q for case 2 is optimized as 20.24. As expected, the output
responses show improved performances for both output tracking and disturbance
rejections compared with Zhang’s controller. This is due to the function of elements
in Q, which are closely associated with the closed-loop control performance.

For case 3, the first element in Q is optimized as 18.63. It can be seen that Zhang’s
method shows continuous oscillation responses and they can never settle to their set
point, which can also be revealed through the corresponding control signals. As to
the proposed controller, the responses are smoother and the oscillations are nearly
invisible. These results are more acceptable for industrial applications.

230 9 GA-Based Controller Optimization Design

Fig. 9.1 Closed-loop output responses under output disturbance for case 1

Fig. 9.2 Closed-loop control signals under output disturbance for case 1

9.2 Non-minimal State-Space Predictive Function PID Controller 231

Fig. 9.3 Closed-loop output responses under input disturbance for case 1

Fig. 9.4 Closed-loop control signals under input disturbance for case 1

232 9 GA-Based Controller Optimization Design

Fig. 9.5 Closed-loop output responses under output disturbance for case 2

Fig. 9.6 Closed-loop control signals under output disturbance for case 2

9.2 Non-minimal State-Space Predictive Function PID Controller 233

Fig. 9.7 Closed-loop output responses under input disturbance for case 2

Fig. 9.8 Closed-loop control signals under input disturbance for case 2

234 9 GA-Based Controller Optimization Design

Fig. 9.9 Closed-loop output responses under output disturbance for case 3

Fig. 9.10 Closed-loop control signals under output disturbance for case 3

9.2 Non-minimal State-Space Predictive Function PID Controller 235

Fig. 9.11 Closed-loop control signals under input disturbance for case 3

Fig. 9.12 Closed-loop output responses under input disturbance for case 3

236 9 GA-Based Controller Optimization Design

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller

With the precise mathematic model of the process, many advanced model-based
control strategies can achieve satisfying control performances in simulations.
However, most of them fail in practical industrial applications. Single-neuron non-
model control strategies are more appropriate when the model is difficult to be
established or has great uncertainty [34]. But for the controlled plant with severe
nonlinearity and uncertainty characteristics, the basic neuron controller is also diffi-
cult to achieve satisfying control performance. Considering a strong complemen-
tarity between the fuzzy system and the neuron control [35], they can be combined
to improve the control performance. However, the determination of the fuzzy rule
requires a deep understanding of the controlled plant. The adaptive formula proposed
in [36] is actually an analytical description of fuzzy rules, which greatly simplifies the
implementation of fuzzy controllers. Therefore, the simple formula fuzzy controller
is combinedwith the neuron controller to obtain a fuzzy neuron parallel control struc-
ture. Since the neuron gain has a great impact on the control performance, the fuzzy
controller is used for online self-tuning of the neuron gain. Although the fuzzy neuron
control system can improve the controller’s performance, it sacrifices the simplicity
of the traditional PID controller actually. In the design of the fuzzy neuron controller,
many controller parameters are introduced to be tuned in advance. Then RNA-GA is
used to optimize the controller parameters, and finally is applied to the liquid level
control of the continuous casting process with uncertainty and nonlinearity.

9.3.1 Neuron Controller

The basic neuron controller in [28] is illustrated in Fig. 9.13.

where E is the surroundings of the neuron. The neuron output u(t) can be marked as

x2(t)

wn(t)
K E

xn(t)

x1(t)

...

...

w1(t)

pi (t)

u(t)w2(t)
...

Fig. 9.13 The neuron model for control

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 237

u(t) = K
n∑

i=1

wi (t)xi (t) (9.23)

where K is the neuron proportional coefficient and K > 0; xi (t) (i = 1, 2, …, n)
represent the neuron inputs; wi (t) are the connection weights of xi (t), which can
be determined by some learning rule. It is widely believed that a neuron can self-
organize bymodifying its synaptic weights. According to the well-known hypothesis
proposed by D. O. Hebb, the learning rule of a neuron is formulated as

wi (t + 1) = wi (t) + dpi (t) (9.24)

where d is the learning rate and d > 0; pi (t) denotes learning strategy, which is
suggested for control purposes as follows [28]:

pi (t) = z(t)u(t)xi (t) (9.25)

It expresses that an adaptive neuron using the learning way that integrated
Hebbian learning and supervised learning, even it makes actions and reflections
to the unknown outsides with the associative search. That means that the neuron
self-organizes the surrounding information under supervising of the teacher’s signal
z(t), emits the control signal, and implies a critic on the neuron actions.

According to the neuron model and its learning strategy described above, the
neuron model-free control method is derived as follows:

{
u(t) = K

∑n
i=1 wi (t)xi (t)∑n

i=1 wi (t)

wi (t + 1) = wi (t) + de(t)u(t)xi (t)
(9.26)

e(t) = r(t) − y(t) (9.27)

where y(t) is the output of the plant, respectively, u(t) is the control signal produced
by the neuron, r(t) is the set point, and the neuron inputs, and xi (t) can be selected
by the demands of the control system designs.

9.3.2 Simple Fuzzy PI Control

When a basic fuzzy system is designed, the following three problems should be
solved.

(1) Fuzzification of the input variables.
(2) Design of a fuzzy rule base for the inference engine.
(3) Defuzzification of the output U of the inference engine.

238 9 GA-Based Controller Optimization Design

The key to having good performance of a fuzzy control system is the regulation
of the fuzzy rule base according to the controlled plant. A regulating method for
fuzzy control rule base was presented in [34], which can express the fuzzy control
inference process by a simple formula as follows:

U =< λE + (1 − λ)EC > (9.28)

where E, EC are the fuzzy input variables of a control system, i.e., error e(t) and its
change �e(t), respectively,λ ∈ (0, 1) is the factor regulating the fuzzy rule base.
〈x〉 denotes the inference engine to have the nearest integer of x. By changing the
factor λ, the rule base can be regulated, and the performance of fuzzy controller
can be changed conveniently, U is the output of the inference engine. It has been
proved that Eq. (9.28) has the same function as a conventional Mamdani-type fuzzy
inference engine with symmetrical triangle membership functions. Thus, the fuzzy
system can be written as

Fuzzifier:

E =< kee(t) >, EC =< kec�e(t) > (9.29)

Fuzzy inference:

U =< λE + (1 − λ)EC > (9.30)

Defuzzifier:

u f (t) = kuU (9.31)

where ke, kec are fuzzification factors of inputs e(t) and �e(t), respectively, λ ∈
(0, 1). ku is the defuzzification coefficient of the fuzzy inference engine output,
u f (t) is the fuzzy system output. The above fuzzy controller is obviously a PD-type
controller in terms of Eqs. (9.29)–(9.31). To obtain the PI controller, the integration
is introduced and fuzzy PI-type controller is constructed as follows:

uFC(t) =
t∑

i=0

u f (i) (9.32)

Substituting Eqs. (9.29)–(9.31) into Eq. 9.32 can lead to

uFC(t) = ku

t∑
i=0

< λ < kee(i) > +(1 − λ) < kec�e(i) � (9.33)

Thus, the simple fuzzy PD-type controller becomes a fuzzy PI-type controller.

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 239

9.3.3 Fuzzy Neuron Hybrid Control (FNHC)

The fuzzy neuron hybrid control system is then set up in Fig. 9.14. In the hybrid
structure, the gain of the neuron controller is tuned by the fuzzy algorithm, the sum
of the outputs of the fuzzy PI controller and neuron controller is the output of the
hybrid controller. u(t) is the control signal produced by the hybrid controller, xi (t)
are the inputs of the neuron, uNC(t) is the control action produced by the neuron,
u f (t) is the output of the fuzzy PD controller, which is used to update the neuron
gain K (t). uFC(t) is the control action of the fuzzy PI controller.

The output of the fuzzy neuron hybrid controller is obtained as follows:

u(t) = uNC (t) + uFC(t) (9.34)

where uNC(t) is the output of the neuron controller:

⎧⎨
⎩

uNC(t) = K (t)
3∑

i=1
wi (t)xi (t)

/
3∑

i=1
|wi (t)|

wi (t + 1) = wi (t) + di e(t)uNC(t)xi (t)
(9.35)

K (t) is the gain of the neuron model-free controller, which is regulated by

K (t) = K (t − 1) + u f (t) (9.36)

where u f (t) is obtained by Eq. (9.31). K (t) ≥ k1e−u1 , where k1 is a constant to
be chosen. Considering the demands of different set points, the neuron inputs are
chosen as follows:

x1(t) = u1r(t), x2(t) = u1e(t), x3(t) = �e(t) (9.37)

where u1 can be a parameter of the controlled plant.

Fig. 9.14 Fuzzy neuron hybrid control system

240 9 GA-Based Controller Optimization Design

In Eq. (9.34), uFC(t) is the output of the Fuzzy PI controller given by Eq. (9.33).
Hence, the whole fuzzy neuron hybrid control method is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uNC(t) = K (t)
3∑

i=1
wi (t)xi (t)

/
3∑

i=1
|wi (t)|

uFC(t) =
t∑

j=0
u f (j)

u(t) = uNC(t) + uFC(t)
E =< kee(t) >, EC =< kec�e(t) >

u f (t) = ku < λE + (1 − λ)EC >

K (t) = K (t − 1) + kuU, K (0) = k1e−u1

wi (t + 1) = wi (t) + di (r(t) − y(t))uNC(t)xi (t)
x1(t) = u1r(t), x2(t) = u1e(t), x3(t) = �e(t)

(9.38)

where ke, kec, ku , λ, k1, di are the parameters of the hybrid controller to be optimized.

9.3.4 Parameters Optimization of RNA-GA

Since the parameters (ke, kec, ku ,λ, k1, di) of the hybrid controller will seriously affect
the control performance, it is crucial to optimize these parameters appropriately.
The parameters range should be set before RNA-GA optimization. Moreover, the
commonly accepted performance criterion, such as ITAE, is selected, which takes
into account the rising time, the overshoot, and the output of controller:

Jmin =
T∑

i=1

(|e(i)| + u(i)) (9.39)

where T is the control time when the parameters are given at one generation of
RNA-GA. e(i) is the tracking error, and u(i) is the controller output. However, as a
computationally intensive optimizationmethod, RNA-GA for the hybrid controller is
executed off-line, which is shown in Fig. 9.15. It is noteworthy that the optimization

Fig. 9.15 The framework of
RNA-GA-based controller
optimization

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 241

process is based on the mathematic model, however, the constructed model is always
different from the actual plant.

For a class of ITAE linear integral performance indices, Wang et al. gave the
following sufficient conditions that the performance of the model can reflect the
actual plant [36]:

|�J − �Jm | ≤ 2εT (9.40)

where ε is set as max
k

∣∣y(k) − ŷ(k)
∣∣, �Jm indicates the performance index variation

by applying two groups of controller parameters to the constructed model, �J indi-
cates the performance index variation by applying the same two groups of controller
parameters to the actual plant. If Eq. (9.40) is satisfied, the obtained optimal controller
parameters can be used to the actual process. Though themodel is identified based on
the specific case, the self-learning capability of FNHC can overcome the uncertainty
and time-variance characteristics of the controlled plant.

9.3.5 Continuous Steel Casting Description

The continuous steel casting is the process ofmoldingmoltenmetal into solid blooms.
A schematic diagram of this process is illustrated in Fig. 9.16 [37], where the ladle
[a] is acting as a reservoir for the molten metal and the valve [c] regulating its flow
into the mold [d]. The tundish [b] acts as an intermediate reservoir that retains a
constant supply to mold when an emptied ladle is being replaced by a full one. The
cast metal undergoes two cooling processes. Primary cooling occurs in the mold and

Fig. 9.16 Simplified
continuous steel caster

242 9 GA-Based Controller Optimization Design

Fig. 9.17 Slide gate valve xv

Av

produces a supporting shell around the still liquid center [e]. This semielastic strand
is then continuously withdrawn from the mold through a series of supporting rolls
containing the secondary cooling stage [f, g], after which the new strand is cut into
blooms by torch cutters. [i] is the mold level, it can be measured by a mold-level
sensor.

Being complex, with great uncertainty, nonlinearity, and running under a high-
temperature condition, it is hard to model the continuous steel casting process. This
caster mainly consists of hydraulic actuators, a slide gate valve, and a mold.

The hydraulic actuators are prone to have non-smooth nonlinearity such as slip-
stick friction and backlash. The non-smooth nonlinearity can be compensated by a
high bandwidth controller [28]. Thus, the approximate transfer function of the valve
position loop can be gained as kv

/
(βs + 1), where kv, β are the parameters of the

loop.
The slide gate valve consists of three identical plates, with the outer two fixed

and the center one sliding between two outer parts in Fig. 9.17. All plates contain
an orifice of radius R, so that the effective area of matter flowing into the mold is
determined by the overlapping orifice areas. When the center plate is at the specified
location xv, elementary trigonometric considerations show that the effective flow
area can be given by

Av = R2(α − sin(α)) (9.41)

α = 2 cos−1(1 − xv

2R
), 0 ≤ xv ≤ 2R (9.42)

The process also has non-smooth nonlinearity due to the flow dynamics and valve
geometry. The nonlinear model is given by

dy(t)

dt
= Av

Am
cvcc

√
2gh − u1 (9.43)

where Am is the casting cross-sectional area, cv is a velocity coefficient dependent
on the viscosity of the steel grade being cast, cc is a coefficient of contraction with

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 243

Fig. 9.18 Mold-level control system for the continuous steel casting

value 0.6 for a new valve with sharp edges and 0.95 for a worn valve with rounded
edges, and h is the height of matter in the tundish. It can be seen that this plant is
time-varying.

By analyzing the continuous steel casting, the mold-level control system is illus-
trated in Fig. 9.18, where, r(t) is the set point, y(t) is the mold level, u(t) is the control
signal, FNHC is the fuzzy neuron hybrid controller, u1 is the casting speed.

9.3.6 FNHC Controller Performance Analysis

To verify the effectiveness of the proposed control method, the simulation tests
of mold-level control for the continuous steel casting process are executed. The
parameters of the plant are given as: g = 9.8, h = 0.9, Am = 1, cv = 0.24,
cc = 0.74, R = 0.8, β = 1, kv = 1. All of those experiments are carried out to
track the reference trajectory using the same controller parameters under the case
of u1 = 1, cc = 0.74, kv = 1. The parameters of the fuzzy neuron hybrid controller
optimized by RNA-GA are given as: ke = 8.1,kec = 8.3, ku = 0.007, λ = 0.8,
k1 = 3.2,d1 = 100, d2 = 25, d3 = 80. The sampling period is set to be T = 0.6 s.
In order to inspect the performance of the proposed model-free control method, the
robustness tests are also made under the conditions of different casting speeds, new
slide gate valve and old slide gate valve, and the changing of the valve position loop
gain.

At the case of u1 = 0.6, 1000 input data are generated randomly, and the corre-
sponding outputs can be obtained,with themeantime,±3%noise is added to simulate
the actual condition. Since most of parameters of the continuous casting process are
known in advance, only kv, β, and cccv are the unknown parameters, the model
structure of the nonlinear controlled plant adopts the structure shown in Fig. 9.18.
Themodel parameters of the system are identified by the RNA-GA, the identification
process can refer to Sect. 5.2. The obtained parameters are: kv = 3.3644, β = 4.9545,
cccv = 0.1318. The model outputs and its errors by applying the optimal parame-
ters are illustrated in Figs. 9.19 and 9.20. It is obvious that the optimal model has
achieved good modeling accuracy under the given conditions, and the maximum
modeling error is only 0.1106. Therefore, the identified model can be used as the
controlled plant to optimize the controller parameters, and the ITAE is selected as
the optimization index. RNA-GA is also applied to optimize the parameters of the
FNHC controller. The range of values of each controller parameter is set by trial

244 9 GA-Based Controller Optimization Design

Fig. 9.19 The modeling of
the continuous casting
process

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

t/sec

M
o

ld
 le

ve
l

Model outputs
System outputs

Fig. 9.20 The modeling
errors of the continuous
casting process

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

t/sec

E
st

im
at

io
n

 e
rr

o
rs

and error: ke ∈ [1, 50], kec ∈ [1, 50], ku ∈ [0.0001, 0.01], ku ∈ [0.0001, 0.01],
K (0) ∈ [0.1, 1], λ ∈ [0, 1], di ∈ [1, 150], wi ∈ [0.1, 20] (Fig. 9.20).

To further illustrate the efficiency of the constructed model, two groups of
controller parameters for FNHC optimized by RNA-GA, denoted as P1 and P2,
are selected and applied to the constructed model and the actual plant, respec-
tively. Accordingly, the ITAE indexes can be obtained as: Jm1 = 38.0649, Jm2 =
29.2784, J1 = 41.7868, J2 = 31.9412. Thus, |�J − �Jm | = 1.0591, 2εT = 39.82,
satisfying Eq. (9.40). RNA-GA runs 10 times, and the best results are listed as
follows: ke = 9.8738, kec = 9.9934, ku = 0.0063, K (0) = 0.7455, λ = 0.8748,
d1 = 133.36, d2 = 30.47, d3 = 40.22, w1(0) = 12.5732, w2(0) = 5.8283,
w3(0) = 4.6209. The simulation results obtained by the constructed model are
illustrated in Fig. 9.21. It shows that the controller optimized by RNA-GA under the
identified model can obtain good control tracking performance. Applying the same
FNHC to the controlled plant in Fig. 9.18, the simulation results under the same

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 245

Fig. 9.21 The control
results applied on the
constructed model

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

t/sec

M
o

ld
 le

ve
l

FNHC P1
FNHC P2

conditions are illustrated in Fig. 9.22. It tells us that the controller is effective for the
actual plant.

For the purpose of verifying the effectiveness of the proposed FNHC controller
in self-learning capability, various robustness test experiments are carried out at
different continuous casting rates and valve ages. The PID controller and single-
neuron controller are selected to compare with the FNHC,where the incremental PID
controller �u(k) = kp[e(k) − e(k − 1)] + ki e(k) + kd [e(k) − 2e(k − 1) + e(k − 2)]
is used. Both the PID and single-neuron controller are optimized by RNA-GA. The
optimal parameters of PID controller are: kp = 1.3405, ki = 0.4548, kd = 15.5937,
and the parameters of single-neuron controller are: K = 1.7416, d1 = 149.22,
d2 = 37.40, d3 = 51.47, w1(0) = 5.9273,w2(0) = 5.3694, w3(0) = 12.1955. In all
tests, the controller parameters and the molt steel level set to be the same.

Fig. 9.22 The control results
applied on the actual plant

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/sec

M
od

e
l l

e
ve

l

FNHC P1
FNHC P2

246 9 GA-Based Controller Optimization Design

The step response of the FNHC controller is shown in Figs. 9.23 and 9.24, and the
control performance of the PID controller is given in Figs. 9.25 and 9.26. Because
the plant has nonlinear characteristics, the tracking performance of the FNHC’s is
relatively superior to the PID controller. When the work conditions change, the PID
control performance is greatly deteriorated due to lack of adaptive and self-learning
capability of the PID controller. The step response of single-neuron control is shown
in Figs. 9.27 and 9.28. Due to the lack of online self-adjustment of gain K, although
the single neuron has a similar control performance to FNHC’s under the initial
conditions, when the work conditions change, single-neuron control performance
is also deteriorated, a large overshoot occurs and the set points cannot be tracked.
The gain self-tuning process of the FNHC controller is shown in Fig. 9.29, which
illustrates the effectiveness of the fuzzy unit to improve the performance of the neuron
controller.

Fig. 9.23 Step response of
FNHC under different speeds

0 50 100 150 200 250 300
0

0.5

1

1.5

t/sec

M
o

ld
 le

ve
l

u1=1
u1=0.6
u1=0.3

Fig. 9.24 Step response of
FNHC under valve with
different ages

0 50 100 150 200 250 300
0

0.5

1

1.5

t/sec

M
o

ld
 le

ve
l

cc=0.95
cc=0.74
cc=0.6

9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller 247

Fig. 9.25 Step response of
PID under different speeds

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

t/sec

M
ol

d
 le

ve
l

u1=1
u1=0.6
u1=0.3

Fig. 9.26 Step response of
PID under valve with
different ages

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

t/sec

M
o

ld
 le

ve
l

cc=0.6

cc=0.74

cc=0.95

Fig. 9.27 Step response of
SNC under different speeds

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

t/sec

M
o

ld
 le

ve
l

u1=1
u1=0.6
u1=0.3

248 9 GA-Based Controller Optimization Design

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t/sec

M
ol

d
le

ve
l

cc=0.95
cc=0.74
cc=0.6

Fig. 9.28 Step response of SNC under valve with different ages

0 100 200 300 400 500
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

t/sec

N
e

u
ro

n
 g

a
in

Fig. 9.29 The gain adjusting process of FNHC

The above simulation results illustrate that good performance is obtained in all
test cases and the set points of the mold level can be reached. The control system can
respond quickly, smoothly, and almost without overshoot. The proposed model-
free controller has very strong robustness and adaptability, even if the dynamic
characteristics of the nonlinear plant changes greatly.

9.4 Stabilization Subspaces Based MOGA for PID Controller Optimization 249

9.4 Stabilization Subspaces Based MOGA for PID
Controller Optimization

There are many processes that can be expressed as unstable first-order time-delay
(FOTD) plants. When the lag time is large, the performance of PID controllers will
deteriorate greatly. Since the controller parameter optimization can greatly improve
the performance of the system control, the optimization problemof the PID controller
design for unstable first-order time-delay plant is tried to be solved by using a genetic
algorithm. However, the difficulty in the PID controller design is to accurately obtain
the stable region of the PID controller parameters [38]. The generalized Hermite-
Biehler theorem (abbreviated as H-B theorem) provides sufficient and necessary
conditions for obtaining the parameter stabilization space of the PID controller [39,
40]. However, for unstable FOTD plants, the generalized H-B theorem cannot guar-
antee that the stable closed space can always be obtained. Therefore, two-level control
structure in [41] is adopted, the unstable plant is first stabilized by the inner loop,
then the generalized stable plant is obtained, and the stabilization search space can
be obtained, which will be utilized by GA.

9.4.1 Generalized Hermite-Biehler Theorem

In this section, the generalized Hermite-Biehler theorem is introduced. Let δ(s) =
δ0 + δ1s + · · · δnsn be a given real polynomial of degree n. Rewrite δ(s) = δe(s2) +
sδo(s2), where δe(s2), δo(s2) are the components of δ(s) made up of even-order part
and odd-order part of s, respectively. For each frequency ω ∈ R, denote δ(jω) =
p(ω) + jq(ω), where p(ω) = δe(−ω2), q(ω) = ωδo(−ω2), and define the feature
sign of the polynomial δ(s) by σ(δ(s)), where σ(δ(s)) can be derived by subtracting
number of roots in the right half plane of δ(s), nR

δ from the number of roots in the left
half plane of δ(s), nL

δ , i.e., σ(δ(s)) = nL
δ −nR

δ . Thus, the generalized Hermite-Biehler
theorem can be described as follows.

Generalized Hermite-Biehler Theorem [40]: Let δ(s) be a given real polynomial
of degree n without jω axis roots, except for the root at the origin. Let 0 = ω0 < ω1

< ω2 < … < ωm−1 < wl = ∞ be the real, nonnegative, distinct finite zeros of q(ω)

with odd multiplicities. Then

σ(δ(s)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{sgn[p(ω0)] − 2sgn[(p(ω1)] + 2sgn[(p(ω2)] + · · ·
+(−1)m−12sgn[(p(ωm−1)] + (−1)m2sgn[(p(ωm)]} · γ

if n is even
{sgn[p(ω0)] − 2sgn[(p(ω1)] + 2sgn[(p(ω2)] + · · ·

+(−1)m−12sgn[(p(ωm−1)] · γ
if n is odd

(9.44)

where γ = (−1)l−1sgn[q(kp,∞)], and

250 9 GA-Based Controller Optimization Design

sgn(x) =
{

x
/ |x | x
= 0
0 x = 0

(9.45)

If the polynomial δ(s) is Hurwitz, the interlacing property can be immediately
implied in the generalized Hermite-Biehler theorem.

9.4.2 Hermite-Biehler Theorem Based PID Controller
Stabilizing

In [40], the generalized Hermite-Biehler theorem is used to provide a complete
analytical solution to the PID controller, the control system is illustrated in Fig. 9.30.

where r(t) is the set point, and y(t) is the output of a controlled plant, C(s) is the
PID controller, C(s) = kp + ki

s + kds, G(s) is the controlled plant, G(s) = N (s)
D(s) .

The closed-loop characteristic polynomial becomes

δ(s) = s D(s) + (ki + s2kd)N (s) + skp N (s) (9.46)

The stabilization problem of using a PID controller is to determine the values of
kp, ki , and kd for which the closed-loop characteristic polynomial δ(s) is Hurwitz.

According to the generalized Hermite-Biehler theorem and its synthesis of
stabilizing PID controller, p(ω) and q(ω) can be obtained.

p(ω) = p1(ω) + (ki − kdω
2)p2(ω) (9.47)

q(ω) = q1(ω) + kpq2(ω) (9.48)

where p1(ω) = −ω2[Do(−ω2)Ne(−ω2) − De(−ω2)No(−ω2)],p2(ω) =
N 2

e (−ω2) + ω2N 2
o (−ω2), q2(ω) = ωp2(ω),q1(ω) = ω[Ne(−ω2)De(−ω2) +

ω2No(−ω2)Do(−ω2)],De(s2),Do(s2), and Ne(s2), No(s2) are the components of
D(s) and N (s) made up of even and odd orders of s, respectively, s = jω.

In Eq. (9.48), for every fixed kp, the zeros of q(ω, kp) do not depend on ki or kd ,
so we can first calculate the stable range of kp, then use generalized Hermite-Biehler
theorem to determine the stabilizing sets of ki and kd .

Fig. 9.30 Unity feedback
control system)(sC)(sG

)(tr)(ty

9.4 Stabilization Subspaces Based MOGA for PID Controller Optimization 251

9.4.2.1 Stable Region of Kp for Unstable FOPDT Processes

The FOPDT process is described by the transfer function G(s) = ke−θs

T s−1 , which is
usually reduced to Eq. (9.49) by normalizing the dead time (L = θ/T) and absorbing
the gain into the controller:

G(s) = e−Ls

s − 1
(9.49)

Assume C(s) = kp in Fig. 9.30, the closed-loop characteristic polynomial δ(s)
can be derived:

δ(s) = D(s) + kp N (s) (9.50)

There are several classic methods that can be used to determine the value of
kp satisfying the condition that δ(s) is Hurwitz, such as the root locus technique,
the Nyquist stability criterion, and the Routh-Hurwitz criterion and so on. Since
the former two methods are graphical in nature and fail to provide us an analytical
characterization of all stabilizing values of kp. Hence, The Routh-Hurwitz criterion
can be adopted to obtain an analytical solution. However, there will not always exist
kp to stabilize the unstable FOPDT process when using Routh-Hurwitz criterion. To
obtain the stable range of kp, the two-controller structure is adopted as illustrated in
Fig. 9.31 [39].

In Fig. 9.31, C1(s) is the P or PD controller in order to stabilize the controlled
plant, while C(s) is a PID controller to improve the control performance of the inner
loop. According to the time delay (L), the controller structure is selected as follows
[39]:

C1(s) =
{

kp1 L ≤ 1
kp1(1 + Td1)s 1 < L < 2

(9.51)

If the controlled plant is known, the controller structure can be fixed. If C1(s) is
PD controller, the range of Td1 is given as

L − 1 < Td1 < 1 (9.52)

Fig. 9.31 Two-loop
controller structure)(sC)(1 sG

)(tr)(ty

)(1 sC

252 9 GA-Based Controller Optimization Design

By selecting Td1 among the given range, the stable range of kp1 can be derived
according to Routh-Hurwitz criterion. The exponential transfer function e−Ls can be
approximated by using the Pade approximation formula. Thus, the controller C1(s)
is designed, and the generalized controlled plant G(s) in Fig. 9.30 is also obtained:

G(s) = G1(s)

1 + G1(s)C1(s)
(9.53)

The stable range of kp can be derived by the same method used in C1(s). Because
G(s) is stable, the stable interval of kp can always be guaranteed.

9.4.2.2 Stable Domains of Ki and Kd

Since zeros of q(ω, kp) in Eq. (9.48) is independent on ki or kd , we can obtain a stable
interval of ki and kd corresponding to each kp. The solution can be implemented using
the following procedure [40].

Step 1: For a fixed kp, determine (0 = ω0 < ω1 < ω2 < … < ωl−1 < ωl = ∞),
the real, non-negative, distinct finite zeros of q(ω, kp), also define n as the degree of
δ(s) and m ′ as the degree of N ′(s),where N ′(s) = N (−s).

Step 2: Choose it such that

n − σ(N ′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

{i0 − 2i1 + 2i2 + · · · + (−1)l−12i l−1 + (−1)l il} · γ

for m ′ + n even
{i0 − 2i1 + 2i2 + · · · + (−1)l−12i l−1} · γ

for m ′ + n odd
, where γ is

defined in Eq. (9.44).
Step 3: Determine the stable intervals of ki and kd by solving the following linear

inequalities:

{
p1(ωt) + (ki − kdω

2
t)p2(ωt) > 0 if it = 1

p1(ωt) + (ki − kdω
2
t)p2(ωt) < 0 if it = −1

(9.54)

for t = 0, 1, 2, . . . , l and p2(ωt)
= 0.
By solving the above inequalities, the stable intervals of (ki, kd) can be obtained

for which δ(s) is Hurwitz. As to the stable controlled plant, the stable interval of ki

and kd can always be obtained.

9.4 Stabilization Subspaces Based MOGA for PID Controller Optimization 253

9.4.3 Optimizing PID Controller Parameters Based
on Stabilization Subspaces

9.4.3.1 The Objective Functions

Since the stable regions of (kp, ki, kd) are obtained based on Routh-Hurwitz criterion
and generalized Hermite-Biehler theorem in Sect. 9.4.2, the initial separation of
search space can be accomplished. Assuming that the tracking error and energy
consumption is to be minimized, meanwhile, the system overshoot and steady-state
error are required to meet certain constraints. Thus, two objective functions with
constraints are given as follows:

min f1 =
T∑

k=1

|e(k)|, f2 =
T∑

k=1

u2(k)

s.t. Omax ≤ ξ1r(k)

|ess | ≤ ξ2r(k) (9.55)

where e(k) = r(k) − y(k) is the system tracking error, u(k) is the controller output
Omax = max

k
y(k) − r(k) is the maximal overshoot, ess is the steady-state error. The

objective functions in Eq. (9.55) is to minimize the accumulated error and the energy
consumption satisfying the maximum overshoot and steady-state error inequality
constraints. Generally, ξ1 and ξ2 are set as: 0 < ξ1 ≤ 1, 0 ≤ ξ2 ≤ 0.05.

9.4.3.2 Dominating with Constraint Handling

Since there are two constraints in Eq. (9.55), the constraints should be combined in
performing non-dominated sorting algorithm. When the ith and j th solutions satisfy
one of the following conditions:

1. The ith solution is feasible, and the j th solution is not feasible;
2. Neither solutions are feasible, the constraint offset of the ith solution is smaller

than the constraint offset of the j th solution;
3. Both solutions are feasible, at least one objective function of the ith solution is

better than the j th solution.

Thus, the ith solution dominates the j th solution. According to the above Pareto
dominance relationship with constraint handling, the Pareto sorting can then be
implemented.

254 9 GA-Based Controller Optimization Design

9.4.3.3 The Procedure of PID Controller Optimization

The main procedure of implementing PID controller parameters optimization by
MOGA based on stabilization space is as follows:

1. Compute the stabilization spaces of the parameters for PID controller

Step 1 Assume C(s) = kp, obtain the stable region of kp based on the Routh-
Hurwitz criterion, kp ∈ (kpmin, kpmax).

Step 2 Choose the number of search subspaces: Nz , and gain the scan step of kp:
η = (kp max − kp min)

/
Nz .

Step 3 Select kp among kpmin, kpmin + η, . . . , kpmin + Nz · η in turns, and calculate
the corresponding stable regions of ki and kd based on Sec. 9.4.2.

Step 4 Derive NZ search subspaces, where the search domains of kp is as follows:
[kpmin, kpmin + η], . . . , [kpmin + (Nz − 1)η, kpmin + Nzη]. Because each
kp has the corresponding stable regions of ki and kd in step 3, there exist
a cluster of 2-dimensional regions of (ki,kd), choose the biggest region of
(ki,kd) as the search subspace.

2. Execute MOGA in Ch.4 to solve the constrained bi-objective optimization
problem. The steps are as follows:

Step 1 Initialize the population size N , the maximum evolution generations G, and
the number of grids Ki in the stable space.

Step 2 Adopt decimal encoding, perform the constraint non-dominated sorting of
the Pareto frontier based on f1 and f2.

Step 3 Use the tournament selection to produce the parents, and the elitistswith rank
1 are directly kept as the parents of the crossover and mutation operators.

Step 4 Perform an analog binary crossover operator and a polynomial mutation
operator.

Step 5 Repeat steps 2 to 4 until the termination condition is met. The termination
condition is the maximum evolution generation.

3. Select one of the PID controllers according to the application requirement.

9.4.4 Simulation for Optimization of PID Controllers

In order to indicate the efficiency of the proposed method, two first-order with dead
time (FOPDT) unstable processes are given as follows.

G1(s) = 4e−2s

4s − 1
(9.56)

G2(s) = e−1.5s

s − 1
(9.57)

9.4 Stabilization Subspaces Based MOGA for PID Controller Optimization 255

According to Eq. (9.49), the values of L are 0.5 and 1.5 for plants G1(s) and
G2(s), respectively, then, the structure of C1(s) in Fig. 9.31 can be selected in terms
of Eq. (9.51). The controlled plants G1(s) and G2(s) are stabilized first by the inner
loop. In termsofEq. (9.52), the rangeofTd1 forG2(s) canbegained as 0.5 < Td1 < 1.
For convenience of comparing with the method in [41], denoted as X&N method,
kp1 and Td1 are set the same values as X&N method’s, and the results of the inner
loop controller C1(s) are listed in Table 9.2. Once the inner loop is chosen, the stable
generalized controlled plant can be obtained. Thus, the stable region of kp can be
calculated based on Routh-Hurwitz criterion. Suppose there are three subspaces, that
is, NZ = 3, the search subspaces based on Hermite-Biehler theorem are given in
Table 9.3, where the maximal region of the subspace is selected as the final search
space. Obviously, the stability spaces of the outer-loop controller for G1(s) are:
0 < kp < 0.314, 0 < ki < 31.949, −0.9879 < kd < 1, while the G2(s)’s are:
0 < kp < 0.0341, 0 < ki < 53.8427, −1.5868 < kd < 0.41.

When using MOGA to optimize the parameters of the PID controller, the param-
eters of MOGA are set as: ξ1 = 50%, ξ2 = 1%, G = 1000, Ki = 30, N = 60. After
being optimized, the Pareto frontier of PID controllers and their control performances
are shown in Figs. 9.32 and 9.33.

From the Pareto frontier distribution in Figs. 9.32a and 9.33a, it can be seen
that f1 and f2 are contradictory. The smaller the error accumulation, the larger the
required energy consumption. From Figa. 9.32b and 9.33b, it can also be seen that
the optimal PID controllers satisfy the constraint conditions with small steady error

Table 9.2 The results of inner loop of G1(s) and G2(s)

Plants Inner loop Stable range of kp1 The results

G1(s) kp1 0.25 < kp1 < 0.634 kp1 = 0.41

G2(s) kp1(1 + Td1s) Td1 = 0.59,−0.05 < kp1 < 1.8 kp1 = 1.019,Td1 = 0.59

Table 9.3 The search subspaces of generalized control plant

Plants Stable range of kp Subspaces of PID controller parameters

G1 = (S) 0 < kp< 0.314 NZ = 3 0.001 < kp<
0.1047

0.97864 < ki <
31.3168

−0.9306 < kd < 1

0.1047 < kp<
0.2093

0.001 < ki <
31.6365

−0.9905 < kd < 1

0.2093 < kp<
0.314

0.001 < ki <
31.9492

−0.9879 < kd < 1

G2 = (S) 0 < kp< 0.0341 NZ =
3

0.001 < kp<
0.0113

0.001 < ki <
53.7929

−1.5868 < kd <
0.41

0.0113 < kp<
0.0227

0.001 < ki <
53.8171

−1.5866 < kd <
0.41

0.0227 < kp<
0.0341

0.001 < ki <
53.8427

−1.5864 < kd <
0.41

256 9 GA-Based Controller Optimization Design

40 50 60 70 80 90
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

f1

f 2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/sec

y(
t) (b)(a)

Fig. 9.32 a Pareto frontier of PID controllers for G1(s) and b their control performances

20 40 60 80 100 120 140 160
36

38

40

42

44

46

48

50

f1

f 2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/sec

y(
t)(a) (b)

Fig. 9.33 a Pareto frontier of PID controllers for G2(s) and b their control performances

and overshoot. How to choose the PID controller should be determined according to
the application requirement. Assuming that the overshoot is required to be less than
1% and the rising time to be the shortest, the final PID controller can then be found,
which is listed in Table 9.4.

In order to indicate the effectiveness of the proposedmethod, the simulation results
are compared with the X&Nmethod, which also adopts a two-level control structure.
The parameters of the outer-loop PID controller are set according to the specified
phase-amplitude characteristics. The tuning parameters are also listed in Table 9.4.
The simulation results are shown in Figs. 9.34 and 9.35. It is obvious that the control
performance obtained by MOGA is better than that of the X&N method.

Table 9.4 The parameters of
PID controller using two
methods

Plants X&N Method DNA-MOGA

[kp, Ki, kd] [kp, Ki, kd]

G1(s) [0.0681,0.0421,0.2133] [0.1095, 0.0192 0.2353]

G2(s) [0.0080, 0.0054, 0.0729] [0.0116, 0.0042, 0.0547]

9.5 Summary 257

Fig. 9.34 Comparison
results for G1(s)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/sec

y(
t)

set-point
X&N method
MOGA-PID

Fig. 9.35 Comparison
results for G2(s)

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t/sec

y(
t)

set-point
X&N method
MOGA-PID

9.5 Summary

In this chapter, GA is used to optimize three types of control systems:

(1) A new PID controller based on ENMSSPFC and GA optimization is proposed
and tested on the chamber pressure in a coke furnace. Since the PID controller
structure is based on the prediction model and the parameters are optimized in
the controller design, the control performance can be further improved, and at
the same time, facilitates with a simple PID structure.

(2) Though the PID controller has achieved good control performance through
the optimization of the control system structure and parameters, the limitation
of the PID controller is also demonstrated. Therefore, the improved neuron

258 9 GA-Based Controller Optimization Design

controller is designed and optimized by RNA-GA. The hybrid controller is
constructed by the fuzzy PI controller and the neuron controller. The gain of the
neuron controller is tuned online by a fuzzy algorithm and the parameters of
the proposed controller are optimized by RNA-GA. The simulation tests under
various conditions are made. The results illustrate that high precision mold-
level control is reached and the proposed control method can efficiently control
the mold level for the plant with big uncertainties and grave nonlinearities.
This model-free controller has good performance, very strong robustness, and
adaptability.

(3) AnMOGA based on stabilization subspaces to optimize PID controller parame-
ters for unstable FOPDT processes is developed. Because generalized Hermite-
Biehler theorem cannot always obtain stable intervals of PID controller param-
eters for an unstable FOPDT process, two-level PID controller structure is
utilized, where the plant is first stabilized by the inner loop and the outer loop
of PID controller is optimized by MOGA based on stabilization subspaces to
improve the control performance. Simulation results of several unstable FOPDT
plants show the efficiency of the proposed methods.

References

1. Zhang, R., S. Wu, and J. Tao. 2018. A new design of predictive functional control strategy
for batch processes in the two-dimensional framework. IEEE Transactions on Industrial
Informatics 15 (5): 2905–2914.

2. Dorf, R.C. and R.H. Bishop. 2011. Modern control systems. Pearson.
3. Jacquot, R.G. 2019. Modern digital control systems. Routledge.
4. Nocedal, J. and S. Wright. 2006. Numerical optimization. Springer Science & Business Media.
5. Bryson, A.E., Y.C. Ho, and G.M. Siouris. 2007. Applied optimal control: optimzation,

estimation, and control. IEEE Transactions on Systems Man Cybernetics 9 (6): 366–367.
6. Skogestad, S. 2004. Simple analytic rules for model reduction and PID controller tuning.

Modeling Identification Control Engineering Practice 13 (4): 291–309.
7. Wang, Q.G., C.C. Hang, andX.P. Yang. 2001. Single-loop controller design via IMCprinciples.

Automatica 37 (12): 2041–2048.
8. Marchetti, G., C. Scali, and D.R. Lewin. 2001. Identification and control of open-loop unstable

processes by relay methods. Automatica 37 (12): 2049–2055.
9. Tyreus, B.D., andW.L. Luyben. 1992. Tuning PI controllers for integrator/dead time processes.

Industrial and Engineering Chemistry Research 31 (11): 2625–2628.
10. Luyben, W.L. 1996. Tuning proportional—integral—derivative controllers for inte-

grator/deadtime processes. Industrial Engineering Chemistry Research 35 (10): 3480–3483.
11. Ziegler, J.G., and N.B. Nichols. 1993. Optimum settings for automatic controllers. Asme Trans

64 (2B): 759–768.
12. Ramasamy, M., and S. Sundaramoorthy. 2008. PID controller tuning for desired closed-loop

responses for SISO systems using impulse response. Computers Chemical Engineering 32 (8):
1773–1788.

13. Rico, J.E.N., and J.L. Guzmán. 2012. Unified PID tuning approach for stable, integrative and
unstable dead-time processes. IfAC Proceedings 45 (3): 35–40.

14. Zhang, R., A. Xue, and S.Wang. 2011.Modeling and nonlinear predictive functional control of
liquid level in a coke fractionation tower. Chemical Engineering Science 66 (23): 6002–6013.

References 259

15. Zhang, R., et al. 2014. Real-Time implementation of improved state-space MPC for air supply
in a coke furnace. IEEE Transactions on Industrial Electronics 61 (7): 3532–3539.

16. Zhang, R., et al. 2012. An improved state-space model structure and a corresponding predictive
functional control design with improved control performance. International Journal of Control
85 (8): 1146–1161.

17. Zhang, R., and F. Gao. 2012. State space model predictive control using partial decoupling and
output weighting for improved model/plant mismatch performance. Industrial Engineering
Chemistry Research 52 (2): 817–829.

18. Exadaktylos, V., and C.J. Taylor. 2010. Multi-objective performance optimisation for model
predictive control by goal attainment. International Journal of Control 83 (7): 1374–1386.

19. Zhang, R., A. Xue, and S. Wang. 2011. Dynamic modeling and nonlinear predictive control
based on partitioned model and nonlinear optimization. Industrial Engineering Chemistry
Research 50 (13): 8110–8121.

20. Tao, J., Z. Yu, and Z. Yong. 2014. PFC based PID design using genetic algorithm for chamber
pressure in a coke furnace. Chemometrics Intelligent Laboratory Systems 137 (20): 155–161.

21. Zhang, R., et al. 2014.NewPID controller design using extended nonminimal state spacemodel
based predictive functional control structure. Industrial Engineering Chemistry Research 53
(8): 3283–3292.

22. Tang, K.S., et al. 2001. An optimal fuzzy PID controller. IEEE Transactions on Industrial
Electronics 48 (4): 757–765.

23. Grum, J. 2008. Book review: Fuzzy controller design, theory and applications by Z. Kovacic
and S. Bogdan. International Journal of Microstructure Materials Properties, 3(2/3): 465–466.

24. Zeng, G.Q., et al. 2019. Adaptive population extremal optimization-based PID neural network
for multivariable nonlinear control systems. Swarm Evolutionary Computation 44: 320–334.

25. Chen, J., and T.C. Huang. 2004. Applying neural networks to on-line updated PID controllers
for nonlinear process control. Journal of Process Control 14 (2): 211–230.

26. Chen, M., and D.A. Linkens. 1998. A hybrid neuro-fuzzy PID controller. Fuzzy Sets and
Systems 99 (1): 27–36.

27. Kim, S.M., andW.Y. Han. 2006. Inductionmotor servo drive using robust PID-like neuro-fuzzy
controller. Control Engineering Practice 14 (5): 481–487.

28. Wang, N. 1993. Neuron intelligent control for electroslag remelting process. Acta Automatica
Sinica 38 (3): 178–180.

29. Muyeen, S., et al. 2009. A variable speed wind turbine control strategy to meet wind farm grid
code requirements. IEEE Transactions on Power Systems 25 (1): 331–340.

30. Gaing,Z.L. 2004.Aparticle swarmoptimization approach for optimumdesignofPIDcontroller
in AVR system. IEEE Transactions on Energy Conversion 19 (2): 384–391.

31. Coelho, L.D.S., and M.W. Pessôa. 2011. A tuning strategy for multivariable PI and PID
controllers using differential evolution combined with chaotic Zaslavskii map. Expert Systems
with Applications 38 (11): 13694–13701.

32. Hung, M.H., et al. 2008. A Novel intelligent multiobjective simulated annealing algorithm
for designing robust PID controllers. IEEE Transactions on Systems Man Cybernetics Part A
Systems Humans 38 (2): 319–330.

33. Zhang, J., et al. 2009. Self-organizing genetic algorithm based tuning of PID controllers.
Information Sciences 179 (7): 1007–1018.

34. Tao, J., and N. Wang. 2005. Fuzzy neuron hybrid control for continuous steel casting. IFAC
Proceedings 38 (1): 121–126.

35. Kikuchi and Pursula. 1998. Treatment of uncertainty in study of transportation: Fuzzy set
theory and evidence theory. Journal of Transportation Engineering 124 (1): 1–8.

36. Wang Y.N. 2006. Intelligent control system. Hunan University Press.
37. Graebe, S.F., G.C. Goodwin, and G. Elsley. 1995. Control design and implementation in

continuous steel casting. IEEE Control Systems 15 (4): 64–71.
38. Datta, A, M.T. Ho., and S.P. Bhattacharyya. 2013. Structure and synthesis of PID controllers.

Springer Science & Business Media.

260 9 GA-Based Controller Optimization Design

39. Roy, A, and K. Iqba. 2005. Synthesis of stabilizing PID controllers for biomechanical models.
in Proceedings of 2005 IFAC World Congress. Praha.

40. Ho, M.T., A. Datta, and S.P. Bhattacharyya. 2000. Generalizations of the Hermite-Biehler
theorem: the complex case. Linear Algebra and its Applications 320 (1): 23–36.

41. Xiang, C, and L.A. Nguyen. 2005. Control of unstable processes with dead time by PID
controllers. International Conference on Control and Automation. IEEE, 2: 703–708.

Chapter 10
Further Idea on Optimal Q-Learning
Fuzzy Energy Controller for FC/SC HEV

With the development of intelligent algorithms, the learning-based algorithm has
been considered as viable solutions to various optimization and control problems.
GA can also be efficient to optimize the new emerging intelligent algorithm. Here,
an adaptive fuzzy energy management control strategy (EMS) based on Q-Learning
algorithm is presented for the real-time power split between the fuel cell and super-
capacitor in the hybrid electric vehicle (HEV) in order to adapt the dynamic driving
pattern and decrease the fuel consumption. Different from the driving pattern recog-
nition basedmethod, Q-Learning controller observes the driving states, takes actions,
and obtains the effects of these actions. By processing the accumulated experience,
the Q-Learning controller progressively learns an appropriate fuzzy EMS output
tuning policy that associates suitable actions to the different driving patterns. The
environment adaptation capability of fuzzyEMS is then improved needless of driving
pattern recognition. To enhance the learning capability and decrease the effect on
the initial values of Q-table, GA can also be utilized to optimize the initial values of
Q-Learning based fuzzy energy management.

10.1 Introduction

With the energy crisis and environment pollution, new fuel cell (FC) energy vehicles
(EVs) are drawing more and more attention because of their high reliability and
low pollutant emission [1]. However, with slow dynamic response and limited load
following capability, the vehicle equipped with fuel cell is often acted as the main
power [2], and the energy storage devices, such as supercapacitor, are usually selected
as a power buffer during climbing, acceleration, andbraking [3, 4]. For fuel cell hybrid
energy vehicle (HEV), an efficient energy management control strategy (EMS) is
critical to improve the fuel economy and prolong the lifetime of the fuel cell.

© Springer Nature Singapore Pte Ltd. 2020
J. Tao et al., DNA Computing Based Genetic Algorithm,
https://doi.org/10.1007/978-981-15-5403-2_10

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5403-2_10&domain=pdf
https://doi.org/10.1007/978-981-15-5403-2_10

262 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

Generally, there are two types of energy management strategies: rule-based and
optimization-based [5, 6]. The former strategies can be subdivided into the deter-
ministic rule and fuzzy rule based methods, while the latter is conducive to the
combination of advanced control theory, such as the dynamic programming(DP)
[7], GA [8], or predictive control [9], to achieve optimal control of energy manage-
ment. The deterministic rule based methods are used widely because of its easy
implementation [10–12]. However, the rule-based strategy is often sub-optimal and
highly dependent on the expert experience, so efforts have focused on improving the
optimization-based strategy.

Most of DP and genetic algorithm based energymanagement strategy could deter-
mine the best fuel economy once the driving cycle was given [13, 14]. Because they
required a high computation load, the above optimal algorithm cannot be used in a
real-time scene.

To combine the advantages of rule-based and optimization-based methods, some
rule-based control strategies are optimized by minimizing a loss function that gener-
ally represents the control objectives under a fixed driving cycle [15]. However, such
a strategy is no longer optimal at various driving patterns. Since driving patterns have
an important impact on the energy economy of HEVs, Dayeni et al. obtained better
control performances using a prior knowledge of the driving cycle [16]. However,
it is impossible in practice to know the driving cycles in advance except for global
positioning system (GPS), geographic information system (GIS), intelligent trans-
port system (ITS) [17–19]. Comparing with external traffic information, the driving
information derived by on-vehicle sensors is much more reliable. Several methods,
such as k-nearest neighbor [20], fuzzy logic classifier [16], neural networks [21],
support vector machine [22], have been utilized to recognize the driving patterns.
There are usually four typical driving patterns in the literature, but the actual traffic is
much complex and the EMS should be adaptive to the varying environment. How to
improve the adaptability of the energy management controller without complicated
structure and heavy computation? The learning-based energy management method
may provide a viable solution to solve electric power system decision and control
problems [23]. A learning-based energymanagement system can learn to take actions
directly from the states without any prediction or predefined rules, and converge to
an optimal policy. Additionally, the learning-based energy management system has
shown its self-learning capability on the adaption of different driving conditions
[24–26]. However, the deep reinforcement learning algorithm is not stable and its
convergence is relatively slow [27].

In this chapter, aQ-Learning based fuzzy energymanagement controller is consid-
ered for real-time HEV energy split that satisfies the driver’ demand and achieves
optimization of energy consumption and load fluctuation. In particular, we focus on
improving the Q-Learning (QL) driven agent’s adaption to different driving cycles.
And theQ-Learning strategy is utilized to tune fuzzy output to be adaptive to different
driving patterns. To avoid the initialization effect of Q-table, GA can be utilized to
optimize its initial value. Moreover, in order to enhance the learning capability, the
elitist is maintained, and the converging process is speeded up by getting rid of the
greedy process in the late stage.

10.2 FC/SC HEV System Description 263

Fig. 10.1 The structure and
main components in the
powertrain

10.2 FC/SC HEV System Description

The series architecture of the powertrain for FC/SC HEV is shown in Fig. 10.1.
The primary power is applied by the fuel cell and the supercapacitor acts as the
power buffer, which provides the peak power during cold start, hard acceleration and
absorbs regenerative braking energy. The load is a 49 kW alternating current (AC)
permanent magnet motor. A unidirectional DC/DC converter is connected to FC and
a bidirectional DC/DC converter to SC, while a DC/AC converter is connected to
the AC motor. The Q-Learning based adaptive fuzzy energy management controller
is proposed to split the demand power of HEV between fuel cell and supercapacitor.
The target vehicle is a VW Jetta modified hybrid vehicle and its main parameters
can be found in [28].

10.3 Q-Learning Based Fuzzy Energy Management
Controller

Since Q-Learning alone has the limitation in that it is too hard to visit all the state–
action pairs and fall into local optimum [29]. In addition, there are many hidden
states that cannot be visited due to the discretization process. More seriously, the
algorithm may be difficult to converge and become unstable [27]. Hence, we extend
the learning algorithm by using a fuzzy EMS to generalize Q-Learning over the
continuous state space. In addition, GA is used as an optimization tool to tune the
initial values of the Q-table. The framework of the proposed strategy is shown in
Fig. 10.2. Fuzzy logic controller (FLC) is the main energy management controller,
and a Q-Learning strategy is designed to compensate the adaptation of FLC for
different driving conditions. Moreover, GA is introduced to initialize the Q-table,
and its learning algorithm is improved to speed up the convergence process, which
will compensate for the limitation of theQ-Learning. The instantaneousmanagement
of the power flow between the FC and the SC is to meet the power demand of the
HEV and minimize the fuel consumption. Meanwhile, the current fluctuation of the
FC is to be reduced to prolong its cycling life.

264 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

Fig. 10.2 The framework of
the proposed method

10.3.1 Fuzzy Energy Management Controller

A block diagram of fuzzy energy management system is shown in Fig. 10.3. It has
two inputs: the positive demand power Pdem required by the vehicle and the SoC of
supercapacitor, and the output u f is the ratio of Pdem assigning to the fuel cell. To
guarantee the safety of supercapacitor, the energymanagement controller is executed
when the demand power is positive and the SoC is larger than 0.45. If the SoC of
supercapacitor is less than 0.45, the fuel cell provides all the required power in its
power capability.

I1, I2 are the inputs by fuzzifying Pdem and SoC into the fuzzy domain [0, 1], [0,
1], respectively.

I1 = Pdem
Pmax

, I2 = SoC − SoCmin

SoCmax − SoCmin
(10.1)

where Pmax is the maximal demand power, and SoCmax SoCmin are the maximal and
minimal safe values of SoC.

In terms of expert knowledge about the energy management system, the fuel cell
delivers as much as possible the required power when the demand power is high and
the SoC of supercapacitor is low. When the demand power is low and the SoC of

Fig. 10.3 The block
diagram of fuzzy energy
management controller

10.3 Q-Learning Based Fuzzy Energy Management Controller 265

Table 10.1 The rules of
fuzzy logic controller

SoC uf Pdem VL L M H

L L M MH H

M ML L MMH

H VL ML L M

supercapacitor is high, the fuel cell stack delivers relatively low power. The whole
rule base is listed in Table 10.1.

Each linguistic value is assignedby amembership function (MF).Here, aGaussian
MF has been selected: Gaussion(x; σ, c) = exp(−‖x − c‖2/2σ 2), where c repre-
sents MF’s center and σ determines MF’s width. The fuzzy membership functions
for SoC, Pdem, and uf are shown in Fig. 10.4.

Takagi–Sugeno–Kang fuzzy inference system (TSKFIS) is adopted, and ith rule,
for example, is described as follows: If Pdem is H and SoC is L, then uf is H. Using
centroid defuzzification, the fuzzy output can be formulated as follows:

u f (k) =
∑r1

j=1

∑r2
i=1 μ

j
I1
(k)μi

I2(k)�μ
i j
u (k)

∑r1
j=1

∑r2
i=1 μ

j
I1
(k)μi

I2(k)
(10.2)

where r1 is 4 and r2 is 3, as given from Table 10.1. μx (k) is the degree of the
membership function of SoC and Pdem, respectively, and �μ

i j
u (k) is obtained by

using the Mamdani product and maximization fuzzy inference scheme.
The fuzzy EMS output u f cooperating with the Q-Learning controller is used as

the coefficient to assign the power of fuel cell, which is derived as follows:

PFC = (u f + a)Pdem (10.3)

Fig. 10.4 Membership
functions for inputs and
output of fuzzy EMS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

SOC

M
em

be
rs

hi
p

G
ra

de
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Pdem

M
em

be
rs

hi
p

G
ra

de
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

uf

M
em

be
rs

hi
p

G
ra

de
s

266 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

where a is the action of Q-Learning controller and the total split coefficient should
be not more than 1.

MATLAB code for the calculation of fuzzy controller output u f is shown as
follows:

function out = fuzzyEMSGauss(input x, input y, parameters)
% input x, input y are the inputs of fuzzy controller, parameters are the widths of
fuzzy MFs
c1 = [0.02, 0.5, 0.99];
c2 = [0.01, 0.3, 0.6, 0.99];
c3 = [0.01, 0.2, 0.4, 0.6, 0.8, 0.99];
% The centers of MFs for inputs and output
point_n = 100;
x = linspace(0, 1, point_n);
a = parameters(1:3); % obtain the width of 3 MFs

ante_param_x = [];
temp = [a(1) a(1) a(1)]; % the width for the input1 MF
ante_param_x = [ante_param_x; temp; c1(1:3);]’;
temp = [];
temp = [a(2) a(2) a(2) a(2)]; % the width for the input2 MF
ante_param_y = [];
ante_param_y = [ante_param_y; temp; c2(1:4);]’;
temp = [];
temp = [a(3) a(3) a(3) a(3) a(3) a(3)]; % the width for the output MF
cons_param = [];
cons_param = [cons_param; temp; c3(1:6);]’;
for i = 1:3,

ante_mf_x(i, :) = gauss_mf(x, ante_param_x(i, :));
end
for i = 1:4,

ante_mf_y(i, :) = gauss_mf(x, ante_param_y(i, :));
end
for i = 1:6,

cons_mf(i, :) = gauss_mf(x, cons_param(i, :));
end
for k = 1:3

mfx(k) = gauss_mf(inputx, ante_param_x(k, :));
end
for k = 1:4

mfy(k) = gauss_mf(inputy, ante_param_y(k, :));
end
rules = [3 4 5 6; % Table of fuzzy rules

2 3 4 5;
1 2 3 4;];

10.3 Q-Learning Based Fuzzy Energy Management Controller 267

kk = 1; qualified_cons_mf = [];
for k = 1:3
for j = 1:4

w(k, j) = min(mfx(k), mfy(j));
qualified_cons_mf(kk,:) = w(k, j)*cons_mf(rules(k, j), :);
kk = kk + 1;

end
end
overall_out_mf = max(qualified_cons_mf);
out = defuzzy(x, overall_out_mf, 1);

10.3.2 Q-Learning in HEV Energy Control

Given an episode under the defined driving cycle, Q-Learning controller is utilized
to compensate the fuzzy EMS output to adapt to the varying driving conditions.
During the learning process, the Q-Learning driven controller observes the state
of the driving condition, then performs the action and calculates the reward value.
The value function accumulating the total rewards over time is then updated. When
the value function converges, the learning process ends, and the control policy is
obtained. The key concepts applied in the QL are formulated as follows:

Policy: The policy is generated from a lookup Q-table filled with value functions.
The Q-table is a multiple dimension array that contains the state space and action
space. When the agent is in one of these states, the action can be derived by checking
the maximal value function in the Q-table.

State space: The instantaneous demand powerPdem and SoC of the SC are selected
as the system state denoted as s. In order to discretize the continuous state variables,
they are discretized by Eqs. 10.4 and 10.5:

Pd = Pdem
d1

+ 1, d1 = Pmax

n1 − 1
(10.4)

SoCd = SoC − SoCmin

d2
+ 1, d2 = SoCmax − SoCmin

n2 − 1
(10.5)

where d1, d2 represent the discretization degree of Pdem,SoC, n1, n2 represent the
number of the states, respectively. After discretization, Pd and SoCd delegate the
searching index in the state space.

Action space: The compensating output for different driving patterns is chosen as
the control action. The same discretization technique is applied to the action output
as shown in Eq. 10.6:

ud = kd3 + udmin, d3 = udmax − udmin

n3 − 1
(10.6)

268 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

where d3 is the discretization degree, n3 represents the number of action, udmax and
udmin is the maximal and minimal ud for compensation, and k is the one-based index
to the action obtained in terms of Q-table.

Reward function: Since the control objectives of the HEV is to satisfy the
demanding power,minimize the fuel consumption and the fluctuation of FC’s current,
leave the SoC of the SC to the safe range, the reward function is then defined as
follows:

rt =
{−1000 SoC > SoCmax or SoC < SoCmin

�I 2 + �P2 otherwise
(10.7)

where rt is the immediate reward at time t , �P = Pdem − PFC − PSC. PSC is the
power provided by SC.

Value Function: An estimation of future total rewards at state s, which is formu-
lated as the expectation of the sum of future immediate rewards as described in
Eq. 10.8:

Q(st , at) = E(rt+1 + γ rt+2 + γ 2rt+3 + · · · |st , at) (10.8)

where γ is the discount factor that assures the infinite sum of rewards to converge.
Define Q* as the optimal value function representing the maximum accumulative
rewards; Q* can be expressed by the Bellman equation:

Q∗(st , at) = E(rt+1 + γ max
at+1

Q∗(rt+1, at+1)|rt , at) (10.9)

where the first part is the immediate reward rt+1, and the second part is the discounted
value of successor stateQ(st+1, at+1). To obtainQ*, the Bellman equation is to iterate
the value function as follows:

Qt+1(st , at) = Qt (st , at) + η(rt+1 + γ max
at+1

Qt (st+1, at+1) − Qt (st , at)) (10.10)

where η ∈ (0, 1) is the learning rate, by using Eq. 10.10, Qt will converge to the
optimal action value function Q* as t → ∞. After obtaining Q*, the action can be
obtained in terms of the current input states.

The procedure of Q-Learning strategy is executed off-line and shown as follows:
Step 1: Initialize value function Q(st , at) randomly, set the maximal learning

epochs Np, the driving cycles T.
Step 2: In the former 10% driving cycles, with probability ξ select a random action

at , otherwise select at = argmaxQ
at

(st , at). Take action at and add to the fuzzy EMS

output in terms of Eq. 10.12, calculate st+1, and reward rt+1. Update Qt+1 according
to Eq. 10.19.

10.3 Q-Learning Based Fuzzy Energy Management Controller 269

Step 3: If the reward is−1000, the learning process during the driving cyclesT will
break immediately, otherwise repeat step 2 until T is terminal, thus, Qt+1(st , at) =
Qt (st , at) + η(rt+1 − Qt (st , at)) is the learned Q-table.

Step 4: Repeat steps 1–3 until the maximal epochs Np is satisfied.

MATLAB code for the action calculation is given below as follows:
Function action = QL(P, SOC)
% P is the demand power, SOC is the state of charge of SC, action is the action
value.
p_dem_index = round((P/300 + 1);
soc_index = round((SOC-0.4)/0.01 + 1);
greedy = rand(1); %choose action by greedy search
if(greedy <=epsilon)
action_index = randperm(num_action,1);
action = (action_index-1)/(num_action-1)*0.5 + 0.4;

else
temp = Q(p_dem_index, soc_index,:); %Q*
[value, action_index] = max(temp);
action = (action_index-1)/(num_action-1)*0.5 + 0.4;

end

10.3.3 GA Optimal Q-Learning Algorithm

As shown in 10.10, Q-Learning algorithm is a gradient descent optimal algorithm,
and its results will be affected by the initial value of Q-table. Moreover, it is easy to
trap into the local optima. GA is then introduced to improve the performance of the
learning algorithm.

10.3.4 Initial Value Optimization of Q-Table

(1) Objective function

For Q-Learning based fuzzy EMS, the initialization optimization of Q-table is to
minimize fuel consumption to save the energy and the current fluctuation of the fuel
cell to prolong the cycle period of the fuel cell. In addition, some constraints have to
be satisfied to guarantee the safety of EMS. For example, in order to avoid reactant
starvation, the maximal current of the fuel cell is limited to 150 A; the power change
rate of the fuel cell is restricted to 10 kW/s with the chemical response lag of the
reactant supply system. Once the stack voltage falls below 60 V, the fuel cell will be
shut down. For SC, its transient power is limited to 30 kW and the current is less than
150 A considering the power limit of bidirectional DC/DC converter. Moreover, the

270 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

SoC of the SC is kept in [0.45 0.95] in order to absorb the regenerative braking power
and provide the transient power. The objective function is formulated by using the
weighted-sum method:

Min J = ω

K∑

k=1

�I (k)2+
K∑

k=1

mH2(k)

s.t. PFC + PSC = Pdem
0 < PFC ≤ 40

0 < iFC ≤ 150

− 5 ≤ �PFC ≤ 5

− 30 ≤ PSC ≤ 30

− 150 ≤ iSC ≤ 150

vFC ≥ 60 (10.11)

where K is the number of samples in the whole driving trip, iFC and iSC are the
currents of fuel cell and supercapacitor, respectively. �I (t) = iFC(t) − iFC(t − 1)
is the current variation of the fuel cell at time t, �PFC(t) = PFC(t) − PFC(t − 1)
is the power variation of the fuel cell, and ω is the weight coefficient of the two
objectives. The inequality and equality constraints are handled as a penalty factor,
which is added to J . The constraint handling is similar to that in Chap. 3.

(2) Genetic encoding and operators

As described in Sect. 10.3.2, Q is an n1 × n2 × n3 matrix. Provided there are N
chromosomes, the elements in the ith chromosome (Ci) using decimal encoding are
randomly initialized between (0, 1). The selection, crossover, and mutation operators
have been adopted to make the objective evolve to the optimal one.

Roulette wheel selection is used, and its probability distribution is computed in
terms of the objective function:

p = [p1, · · · , pN] =
[

f1
∑N

i=1 fi
,
f1 + f2
∑N

i=1 fi
, · · · ,

∑N−1
i=1 fi

∑N
i=1 fi

, 1

]

(10.12)

where fi = 1
/
Ji , Ji is computed according to 10.11 for the ith individual. ξ ∈ (0, 1)

is randomly generated, and the individuals satisfying ξ < pi will be found; however,
only one individual at the first index is selected as the parent. Totally, N −1 Roulette
wheel selections are executed, and the elitism is maintained in the parents. After
parent selection, the crossover operator is executed with probability pc between
individuals Ci and Ci+1. The offspring C

′
i , C

′
i+1 are then generated:

10.3 Q-Learning Based Fuzzy Energy Management Controller 271

C
′
i = βCi + (1 − β)Ci+1

C
′
i+1 = βCi+1 + (1 − β)Ci (10.13)

where β is gained randomly between (0, 1).
For a better exploration, the mutation operator is carried out among N offspring

with probability pm. Once the element in C
′
i is mutated, its value will be reproduced

randomly between (0, 1).

10.3.4.1 Application of Improved Q-Learning Algorithm

The initial value of Q-table is obtained by GA to decrease the effect of different
initializations. Moreover, to avoid trapping into the local optima too quickly, the
action index is randomly generated with probability ξ in the first 10% learning
steps. Else, the action index is obtained by maximizing the Q value function. The Q-
Learning process is iterated according to the best Q-table with the maximal reward
in Eq. 10.7. When a training trip is finished, the whole learning process will be
re-evaluated:

Rtotal(i) =
T∑

t=1

mH2(t), i = 1 : Np (10.14)

The Q-table with minimal Rtotal in the learning process is denoted as Qbt , and
Eq. 10.10 is then rewritten as follows:

Qb,t+1(st , at) = Qbt (st , at) + η(rt+1 + γ max
at+1

Qbt (st+1, at+1) − Qbt (st , at))

(10.15)

The whole evaluation of Q-Learning based EMS is beneficial to keep the elitism
of Q-table and speed up the convergence of the learning process.

10.3.5 Procedure of Improved Q-Learning Fuzzy EMS

The GA and Q-Learning optimization processes are done off-line, which is shown
as follows:

Step 1: Initialize the maximal generation G, population size N , crossover and
mutation operator probabilities pc, pm, and its weight coefficient ω. Initialize the
chromosomes Qs randomly.

Step 2: For each chromosome, implement Q-Learning fuzzy EMS for one time
and calculate the performance J.

272 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

Step 3: Produce the offspring using tournament selection and elitism maintaining
strategy. Execute the crossover and mutation operator with probability pc and pm,
respectively.

Step 4: Repeat steps 2–3 until the maximal evolution generation G is met and
obtain the optimal Q initialization.

Step 5: Set the number of training epochs Np to update the value function and
the length of the driving episode K . The energy management policy is performed at
each step within the episode duration with GA initialized Q-table.

Step 6: The action is selected and performed for the corresponding state with
probability ξ in the first 10% learning steps. Otherwise, the action index is obtained
bymaximizing theQ value function. The SoC and reward function are then obtained.

Step 7: The value function is updated by theBellmanEq. 10.10. Steps 6–7 repeated
until the episode ends.

Step 8: If the sum of fuel consumption in Eq. 10.14 is better in the latter training
epochs, the Qb is gained and the learning process is updated according to Eq. 10.15.

After off-line optimization, the Q-Learning fuzzy EMS is obtained which can be
applied online to adapt to various driving conditions.

10.3.6 Real-Time Energy Management

The GA optimal Q-Learning fuzzy EMS for HEV energy management in the above
sections is implemented off-line, which means the agent is trained under the specific
driving cycle and expected to adapt to different driving cycles for real-time energy
management. Unlike the traditional algorithms based on driving cycle recognition,
the HEV energy management algorithm trains the values of Q-table and does not
depend on the driving pattern recognition. The framework in power system deci-
sion and control is described in Fig. 10.5. It can be seen that the learned agent in
the learning module is directly applied in the execution module. In the simulation
environment, the agent tries to explore more information by the action generated
from greedy strategy in the early learning stage. In this way, the agent can enlarge

Fig. 10.5 The learning and
real-time agents for driving
conditions

10.3 Q-Learning Based Fuzzy Energy Management Controller 273

the scope of the cognition about the environment through the Q-table as complete as
possible and keep the best Q-table. However, in practice, the agent no longer takes
risks to obtain more information by the greedy algorithm, but still receives reward
from the environment to help in adapting to different driving conditions. That is,at
is obtained according to argmaxQ

at
(st , at) without the greedy process.

10.4 Summary

TheQ-Learning based adaptive fuzzyEMShas a potential to adapt to different driving
conditions and obtain minimal fuel consumption of the fuel cell. The characteristics
of the quick charge and discharge of supercapacitor can be utilized adequately and the
slow response andhydrogen starvation of the fuel cell can be compensated bySCbank
during the transient variation of the required power. The perturbation minimization
of the output current and voltage of the fuel cell may be helpful to prolong the lifetime
of the fuel cell. Little expert knowledge is required to define the fuzzy rules carefully,
and GA can also be utilized to automatically initialize the value of Q-table to speed
up the convergence of Q-Learning controller. Thus, the driving pattern is not required
in advance, and the environment information can be learned automatically.

References

1. Ralph, T.R. 2006. Principles of fuel cells. Platinum Metals Review 50 (4): 200–201.
2. Meacham, et al. 2006. Analysis of stationary fuel cell dynamic ramping capabilities and ultra

capacitor energy storage using high resolution demand data. Journal of Power Sources 156(2):
472–479.

3. Khaligh, A., and Z. Li. 2010. Battery, ultracapacitor, fuel cell, and hybrid energy storage
systems for electric, hybrid electric, fuel cell, and plug-in hybrid electric vehicles: state of the
art. IEEE Transactions on Vehicular Technology 59 (6): 2806–2814.

4. Liu, C., et al. 2010. Graphene-based supercapacitor with an ultrahigh energy density. Nano
Letters 10 (12): 4863–4868.

5. Hofman, T., et al. 2007. A Rule-based energy management strategies for hybrid vehicles.
International Journal of Electric Hybrid Vehicles 1 (1): 71–94.

6. Trovão, J.P., et al. 2013. A multi-level energy management system for multi-source electric
vehicles—an integrated rule-basedmeta-heuristic approach. Applied Energy 105 (2): 304–318.

7. Chen, B.C., Y.Y. Wu, and H.C. Tsai. 2014. Design and analysis of power management strategy
for range extended electric vehicle using dynamic programming. Applied Energy 113 (1):
1764–1774.

8. Golchoubian, P., and N.L. Azad. 2017. Real-time nonlinear model predictive control of a
battery-supercapacitor hybrid energy storage system in electric vehicles. IEEE Transactions
on Vehicular Technology 66 (11): 9678–9688.

9. Panday, A., and H.O. Bansal. 2016. Energy management strategy for hybrid electric vehicles
using genetic algorithm. Journal of Renewable Sustainable Energy 8 (1): 646–741.

10. Jalil, N., N.A. Kheir, and M. Salman. 1997. Rule-based energy management strategy for a
series hybrid vehicle. In American Control Conference.

274 10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller …

11. Hemi, H., J. Ghouili, and A. Cheriti. 2014. A real time fuzzy logic power management strategy
for a fuel cell vehicle. Energy Conversion Management 80 (4): 63–70.

12. Zhang, R., J. Tao, andH. Zhou. 2019. Fuzzy optimal energymanagement for fuel cell and super-
capacitor systems using neural network based driving pattern recognition. IEEE Transactions
on Fuzzy Systems 26 (4): 1833–1843.

13. Wu, L., et al. 2011. Multiobjective optimization of HEV fuel economy and emissions using
the self-adaptive differential evolution algorithm. IEEE Transactions on Vehicular Technology
60 (6): 2458–2470.

14. Opila, D.F., et al. 2012. An energy management controller to optimally trade off fuel economy
and drivability for hybrid vehicles. IEEE Transactions on Control Systems Technology 20 (6):
1490–1505.

15. Glavic, M., R. Fonteneau, and D. Ernst. 2017. Reinforcement learning for electric power
system decision and control: past considerations and perspectives. IFAC-PapersOnLine 50 (1):
6918–6927.

16. Dayeni, M.K., and M. Soleymani. 2016. Intelligent energy management of a fuel cell vehicle
based on traffic condition recognition. Clean Technologies Environmental Policy 18 (6): 1–16.

17. Johnson, D.A. and M.M. Trivedi. 2011. Trivedi. Driving style recognition using a smartphone
as a sensor platform. In International IEEE Conference on Intelligent Transportation Systems.
2011.

18. Stenneth, L., et al. 2011. Transportation mode detection using mobile phones and GIS infor-
mation. In Acm Sigspatial International Symposium on Advances in Geographic Information
Systems.

19. Gong, Q., Y. Li, and Z.R. Peng. 2007. Optimal power management of plug-in HEV with intel-
ligent transportation system. In IEEE/ASME International Conference on Advanced Intelligent
Mechatronics.

20. Liaw, B.Y. 2004. Fuzzy logic based driving pattern recognition for driving cycle analysis.
Journal of Asian Electric Vehicles 2 (1): 551–556.

21. Wang, J., et al. 2015. Driving cycle recognition neural network algorithm based on the sliding
time window for hybrid electric vehicles. International Journal of Automotive Technology 16
(4): 685–695.

22. Xing, Z., et al. 2015. Embedded feature-selection support vector machine for driving pattern
recognition. Journal of the Franklin Institute 352 (2): 669–685.

23. Yuan, Z., et al. 2016. Reinforcement learning-based real-time energy management for a hybrid
tracked vehicle. Applied Energy 171: 372–382.

24. Qi, X., et al. 2016. Data-driven reinforcement learning-based real-time energy management
system for plug-in hybrid electric vehicles. Journal of the Transportation Research Board 2572
(1): 1–8.

25. Teng, L., et al. 2017. Reinforcement learning optimized look-ahead energy management of
a parallel hybrid electric vehicle. IEEE/ASME Transactions on Mechatronics PP(99): 1497–
1507.

26. Yue, H., et al. 2018. Energy management strategy for a hybrid electric vehicle based on deep
reinforcement learning. Applied Sciences 8 (2): 187–198.

27. Volodymyr, M., et al. 2015. Human-level control through deep reinforcement learning. Nature
518 (7540): 529.

28. Caux, S., et al. 2010. On-line fuzzy energy management for hybrid fuel cell systems.
International Journal of Hydrogen Energy 35 (5): 2134–2143.

29. Sutton, R.S., and A.G. Barto. 1998. Reinforcement learning: an introduction. IEEE Transac-
tions on Neural Networks 9 (5): 1054.

	Contents
	1 Introduction
	1.1 Standard Genetic Algorithm
	1.2 State of Art for GA
	1.2.1 Theoretical Research of GA
	1.2.2 Encoding Problem of GA
	1.2.3 Constraint Handling in GA
	1.2.4 Multi-objective Genetic Algorithm
	1.2.5 Applications of GA

	1.3 DNA Computing Based GA
	1.3.1 DNA Molecular Structure of DNA Computing
	1.3.2 Biological Operators of DNA Computing
	1.3.3 DNA Computing Based Genetic Algorithm

	1.4 The Main Content of This Book
	References

	2 DNA Computing Based RNA Genetic Algorithm
	2.1 Introduction
	2.2 RNA-GA Based on DNA Computing
	2.2.1 Digital Encoding of RNA Sequence
	2.2.2 Operations of RNA Sequence
	2.2.3 Encoding and Operators in RNA-GA
	2.2.4 The Procedure of RNA-GA

	2.3 Global Convergence Analysis of RNA-GA
	2.4 Performance of the RNA-GA
	2.4.1 Test Functions
	2.4.2 Adaptability of the Parameters
	2.4.3 Comparisons Between RNA-GA and SGA

	2.5 Summary
	Appendix
	References

	3 DNA Double-Helix and SQP Hybrid Genetic Algorithm
	3.1 Introduction
	3.2 Problem Description and Constraint Handling
	3.3 DNA Double-Helix Hybrid Genetic Algorithm (DNA-DHGA)
	3.3.1 DNA Double-Helix Encoding
	3.3.2 DNA Computing Based Operators
	3.3.3 Hybrid Genetic Algorithm with SQP
	3.3.4 Convergence Rate Analysis of DNA-DHGA

	3.4 Numeric Simulation
	3.4.1 Test Functions
	3.4.2 Simulation Analysis

	3.5 Summary
	Appendix
	References

	4 DNA Computing Based Multi-objective Genetic Algorithm
	4.1 Introduction
	4.2 Multi-objective Optimization Problems
	4.3 DNA Computing Based MOGA (DNA-MOGA)
	4.3.1 RNA Encoding
	4.3.2 Pareto Sorting and Density Information
	4.3.3 Elitist Archiving and Maintaining Scheme
	4.3.4 DNA Computing Based Crossover and Mutation Operators
	4.3.5 The Procedure of DNA-MOGA
	4.3.6 Convergence Analysis of DNA-MOGA

	4.4 Simulations on Test Functions by DNA-MOGA
	4.4.1 Test Functions and Performance Metrics
	4.4.2 Calculation Results

	4.5 Summary
	Appendix
	References

	5 Parameter Identification and Optimization of Chemical Processes
	5.1 Introduction
	5.2 Problem Description of System Identification
	5.2.1 Lumping Models for a Heavy Oil Thermal Cracking Process
	5.2.2 Parameter Estimation of FCC Unit Main Fractionator

	5.3 Gasoline Blending Recipe Optimization
	5.3.1 Formulation of Gasoline Blending Scheduling
	5.3.2 Optimization Results for Gasoline Blending Scheduling

	5.4 Summary
	Appendix
	References

	6 GA-Based RBF Neural Network for Nonlinear SISO System
	6.1 Introduction
	6.2 The Coke Unit
	6.3 RBF Neural Network
	6.4 RNA-GA Based RBFNN for Temperature Modeling
	6.4.1 Encoding and Decoding
	6.4.2 Fitness Function
	6.4.3 Operators of RBFNN Optimization
	6.4.4 Procedure of the Algorithm
	6.4.5 Temperature Modeling in a Coke Furnace

	6.5 Improved MOEA Based RBF Neural Network for Chamber Pressure
	6.5.1 Encoding of IMOEA
	6.5.2 Optimization Objectives of RBFNN Model
	6.5.3 Operators of IMOEA for RBFNN
	6.5.4 The Procedure of IMOEA
	6.5.5 The Chamber Pressure Modeling in a Coke Furnace

	6.6 PCA and INSGA-II Based RBFNN Disturbance Modeling of Chamber Pressure
	6.6.1 RV Criterion in PCA Variable Selection
	6.6.2 Encoding of RBFNN
	6.6.3 Operators of INSGA-II
	6.6.4 The Procedure of Improved NSGA-II
	6.6.5 Main Disturbance Modeling of Chamber Pressure

	6.7 Summary
	References

	7 GA Based Fuzzy Neural Network Modeling for Nonlinear SISO System
	7.1 Introduction
	7.2 T-S Fuzzy Model
	7.2.1 T-S Fuzzy ARX Model
	7.2.2 T-S Fuzzy Plus Tah Function Model

	7.3 Improved GA based T-S Fuzzy ARX Model Optimization
	7.3.1 Hybrid Encoding Method
	7.3.2 Objectives of T-S Fuzzy Modeling
	7.3.3 Operators of IGA for T-S Fuzzy Model
	7.3.4 Optimization Procedure
	7.3.5 Computing Complexity Analysis
	7.3.6 Oxygen Content Modeling by Fuzzy ARX Model

	7.4 IGA Based Fuzzy ARX Plus Tanh Function Model
	7.4.1 Encoding of IGA for Fuzzy Neural Network
	7.4.2 Operators of IGA for New Fuzzy Model
	7.4.3 Liquid Level Modeling by Nonlinear Fuzzy Neural Network

	7.5 Summary
	References

	8 PCA and GA Based ARX Plus RBF Modeling for Nonlinear DPS
	8.1 Introduction
	8.2 DPS Modeling Issue
	8.2.1 Time/Space Separation via PCA
	8.2.2 Decoupled ARX Model Identification
	8.2.3 RBF Neural Network Modeling
	8.2.4 Structure and Parameter Optimization by GA
	8.2.5 Encoding Method

	8.3 Simulation Results
	8.3.1 Catalytic Rod
	8.3.2 Heat Conduction Equation

	8.4 Summary
	References

	9 GA-Based Controller Optimization Design
	9.1 Introduction
	9.2 Non-minimal State-Space Predictive Function PID Controller
	9.2.1 Process Model Formulation
	9.2.2 PID Controller Design
	9.2.3 GA-Based Weighting Matrix Tuning
	9.2.4 The Chamber Pressure Control by PFC-PID

	9.3 RNA-GA-Based Fuzzy Neuron Hybrid Controller
	9.3.1 Neuron Controller
	9.3.2 Simple Fuzzy PI Control
	9.3.3 Fuzzy Neuron Hybrid Control (FNHC)
	9.3.4 Parameters Optimization of RNA-GA
	9.3.5 Continuous Steel Casting Description
	9.3.6 FNHC Controller Performance Analysis

	9.4 Stabilization Subspaces Based MOGA for PID Controller Optimization
	9.4.1 Generalized Hermite-Biehler Theorem
	9.4.2 Hermite-Biehler Theorem Based PID Controller Stabilizing
	9.4.3 Optimizing PID Controller Parameters Based on Stabilization Subspaces
	9.4.4 Simulation for Optimization of PID Controllers

	9.5 Summary
	References

	10 Further Idea on Optimal Q-Learning Fuzzy Energy Controller for FC/SC HEV
	10.1 Introduction
	10.2 FC/SC HEV System Description
	10.3 Q-Learning Based Fuzzy Energy Management Controller
	10.3.1 Fuzzy Energy Management Controller
	10.3.2 Q-Learning in HEV Energy Control
	10.3.3 GA Optimal Q-Learning Algorithm
	10.3.4 Initial Value Optimization of Q-Table
	10.3.5 Procedure of Improved Q-Learning Fuzzy EMS
	10.3.6 Real-Time Energy Management

	10.4 Summary
	References

