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Abstract Epilepsy is a well-known neurological disorder which affects moreover
2% of the World’s population. Irregular excessive neuronal activities to the human
brain cause epileptic seizures onset. Electroencephalograph (EEG) signals aremostly
examined for the detection of epileptic seizure onsets. But an EEG signal consists of a
huge amount of complicated information and it is very difficult to analyze itmanually.
Over the decades, a lot of research has been focused on the development of automated
epilepsy diagnosis systems. These systems are dependent on sophisticated feature
captureization and classification techniques. The paper aims to present a generalized
review and performance comparison of the work reported over a decade in the area of
automated epilepsy diagnosis systems that will help future researchers lead a better
direction.

Keywords Electroencephalogram (EEG) · Epilepsy · Feature extraction ·
Classifier

1 Introduction

Epilepsy is among the commonly existing neurological infirmity and is described
as an unexpected change in the usual electrical activities in some parts of the brain
or in the entire brain. These abnormal responses in the brain are called epileptic
seizures [1]. A normal brain produces low amplitude electrical pulses but if a person
is suffering from epilepsy then these pulses are produced in excessive amounts and
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are not easily controllable. The diagnosis of seizures is not easily predictable and if
it is ignored, then it may lead to the death of the patient. According to a recent study,
epilepsy affects around 6–10 million people in India, and less than half are treated
[2].

Electroencephalogram (EEG) is a method of recording the electrical signals of the
brain developed by cortical neurons. As per international standards, 10–20 electrodes
are located around the scalp of the person to record the brain signals which are
produced by the cerebral cortex nerve cells [3]. Neurologists generally use EEG
signals for detection and diagnoses of epileptic seizures. Analyzing the EEG signals
visually or manually requires a lot of time and neurological knowledge, making the
epilepsy detection process tedious, difficult and may sometimes result in incorrect
diagnoses. So, a lot of research has been done to propose computer-based automatic
EEG epilepsy detection systems. Such a systemmust be able to classify the epileptic
seizure signal from non-epileptic signals with more accuracy and in less time.

To automatize the seizure detection from an EEG signal, variousmachine learning
approaches have been proposed by various researchers. Machine learning methods
are more fast, accurate, and consistent in performance compared to manual labelling
[4–9]. The machine learning approach is basically based on training a classifier
with a repository of existing data consisting of both, epilepsy seizure signals and
normal signals. A typical automated diagnosis system for epilepsy detection gener-
ally consists of followingmodules: EEG signal pre-processing, feature extraction and
feature selection and finally classification of extracted features as normal, seizure or
non-seizure. The performance efficiency of a typical automated epilepsy seizure
detection technique is dependent on the type of classifier used, as well as on the
features that are inputted to that classifier. Figure 1 presents a typical approach of
detecting epileptic seizures for single-channel dataset, for example, the University
of Bonn dataset. Similarly, Fig. 2 provides a general framework of epilepsy seizure
detection for a multichannel dataset, for example, CHB-MIT dataset. These datasets
are discussed in detail in the next section.

Fig. 1 Common approach to detect epilepsy seizure for single-channel dataset

Fig. 2 Schematic illustration of the general approach to detect epilepsy seizure for multichannel
dataset
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The objective of this literature is to present an advanced review of the methods
and techniques used for designing these modules. The remaining part of this paper
is organized as follows: Sect. 2 focused on the various freely available standard
seizure and non-seizure EEG signal datasets. Section 3 briefly summarizes various
pre-processing and feature extraction techniques available in the literature. Section 4
studies various classification techniques used in the literature. Finally, the conclusion
is given in Sect. 5.

2 EEG Dataset

In literature, many standard datasets for epileptic EEG signals and non-epileptic
EEG signals have been utilized by authors for their research work. Online access
is available for all such datasets; some are freely accessible and some have paid
access. Two well-known datasets are being discussed, in this paper, that have free
access online, and these are the University of Bonn dataset and CHB-MIT dataset.
The details of these datasets are given below:

(i) University of Bonn dataset

The above-aforementioned EEG dataset was recorded at the University of Bonn,
Germany acquired by Andrzejak et al. [10]. This dataset comprises five sets A, B,
C, D and E of EEG signal, where every set encompasses 100 single-channel EEG
fragments of 23.6 s, which are sampled at a rate of 173.61 Hz, thus giving a total
of 4097 samples per set. The spectral bandwidth for all sets ranges between 0.5 and
85 Hz. All the recordings were made using the same 128 channel amplifier system.
Set A and B comprises of information gathered from five healthy volunteers with
eyes open and closed, separately, utilizing the standardized surface EEG recordings.
Sets C, D and E were obtained from five epileptic patients experiencing pre-surgical
epilepsy diagnosis. Set C and set D were recorded during epilepsy free interval and
set E was recorded during the occurrence of epileptic seizures. More information
about this dataset can be gathered from [10]. The authors in papers [4, 6, 12, 13,
16–20] have utilized the University of Bonn dataset for their research work. Table 1
depicts a summary for the University of Bonn dataset and Fig. 3 presents waveforms
of typical signals from set A to set E. As can be observed from Fig. 3 the amplitude
of set E (ictal with seizure) is much greater than the amplitude of other sets.

(ii) CHB-MIT Dataset

It is also one of the commonly used datasets. This dataset is also referred to as
the EEG PhysioNet dataset. It was acquired at Boston Children’s Hospital [11],
consisting of multichannel EEG signals that were recorded from 23 paediatric
patients (5 males and 18 females) suffering from intractable epilepsy. The paediatric
patients were reported to be between age 1.5 and 22 years.

The data was recorded for 23 channels using the international Federation of clin-
ical neurophysiology standard of 10–20 electrode placement. Each channel data was
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Table 1 Detail of University of Bonn dataset

Set A Set B Set C Set D Set E

Patient’s
condition

Conscious and
eyes open
(normal)

Conscious
and eyes
closed
(normal)

Seizure-free
(inter-ictal)

Seizure-free
(inter-ictal)

Seizure
activity(ictal)

Type of
electrode

Surface Surface Intra-cranial Intra-cranial Intra-cranial

Placement of
electrode

International
10–20 system

International
10–20 system

Opposite to
epileptogenic
zone

Within
epileptogenic
zone

Within
epileptogenic
zone

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
- 2 0 0
- 1 0 0

0
1 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
- 2 0 0
- 1 0 0

0
1 0 0
2 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
- 2 0 0- 1 0 00
1 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
- 1 0 0

0
1 0 0

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
- 2 0 0 0
- 1 0 0 0

0
1 0 0 0

SE
T

 A
SE

T
 B

SE
T

 C
SE

T
 D

SE
T

 E

Fig. 3 Single channel Bonn dataset typical EEG signal from set A, B, C, D and E

digitized at a sampling rate of 256Hzwith 16-bit resolution.While recording clinical
experts manually annotated the beginning and end of each seizure, and classified the
EEG signals as epileptic seizures and non-seizures. The acquired dataset was 916 h
long and consisted of a total of 198 identified seizures. The shortest duration seizure
lasts for 6 s and the longest duration seizure lasts for 752 s with an average seizure
duration of 72 s. The authors in papers [7, 8, 27–31] have utilized CHB-MIT dataset
for their research work. Table 2 further gives detailed insight into the CHB-MIT
dataset. Figure 4 plots a typical multichannel CHB-MIT dataset signal.

3 Pre-processing Techniques and Feature Extraction
Methods

Pre-processing is a process of removing unwanted artifacts and noise from raw EEG
signal that is collected directly from the scalp. These artifacts/noise may be present
either because of blinking eyes, muscle movements, head motion during the record
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Table 2 CHB-MIT dataset detailed description

Identification
No.

Patient gender Patient age Seizure events
(Tmin − Tmax)
in seconds

Total seizure
time in seconds

Total
seizure-free
time in seconds

1 F 11 7 (28–102) 449 23,475

2 M 11 3 (10–83) 175 7983

3 F 14 7 (48–70) 409 24,791

4 M 22 4 (50–117) 382 37,976

5 F 7 5 (97–121) 563 17,437

6 F 1.5 9 (13–21) 147 93,051

7 F 14.5 3 (87–144) 328 32,208

8 M 3.5 5 (135–265) 924 17,076

9 F 10 4 (63–80) 280 34,218

10 M 3 7 (36–90) 454 50,008

11 F 12 3 (23–753) 809 9249

13 F 3 12 (18–71) 547 28,253

14 F 9 8 (15–42) 117 25,023

15 M 16 20 (31–205) 2012 48,420

16 F 7 10 (7–15) 94 21,506

17 F 12 3 (89–116) 296 10,528

18 F 18 6 (31–69) 323 19,951

19 F 19 3 (78–82) 239 10,307

20 F 6 8 (30–50) 302 19,732

21 F 13 4 (13–82) 203 13,587

22 F 9 3 (59–75) 207 10,593

23 F 6 7 (21–114) 431 31,823

24 16 (17–71) 527 42,673

of the data, any problem in the channel/electrode, or any connectivity issue. Pre-
processing thus may be utilized not just for artifacts removal but also for improving
the Signal to Noise ratio and spatial resolution. Digital filters have been used by most
of the authors in the pre-processing step.

In [12] EEG sample data is filtered through a 50 Hz IIR notch filter to eliminate
AC power supply noise. In [13] the raw EEG signal is made to pass from a band-pass
filter having a lower cut-off frequency of 0.53 Hz and higher cut-off frequency of
40 Hz for the removal of artifacts and noise. In [14] seventh order Chebyshev IIR
filter is utilized. In [15] the EEG signal is de-noised by passing it through an FIR
low-pass filter designed using Hamming with cut-off frequency at 60 Hz.

For an EEG prediction model to accurately classify between epileptic and non-
epileptic signals, feature extraction is a very crucial step. Feature extraction is
required because of the non-linear, stochastic and non-stationary behaviour of the
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Fig. 4 Multichannel CHB-MIT dataset typical signal

EEG signal [6]. A good feature exaction technique must minimize the resources
required for accurate classification of the signal as well as the loss of valuable infor-
mation. The feature extraction process basically converts the raw signal information
into a set of mathematical descriptors so that a better understanding of the complex
data can be gained. Feature extraction is followed by a feature selection that aims
to select the most relevant features and removes redundant features. Although there
exist a number of feature selection algorithms in the literature, however Independent
Component Analysis (ICA) [14] and Principal Component Analysis (PCA) [18]
being the most popular.

The feature extraction techniques used in EEG signals analysis model are either
time-based [2–14, 23], frequency-based [5, 12, 14, 23] or time-frequency based [4, 5,
16–18, 20, 21, 23–25, 27]. The most popular being the time-frequency analysis since
it is able to provide both time and frequency information of the signal simultane-
ously. Time-domain features are obtained by analyzing the EEG signal as a function
of time. Examples of typical features of time-domain includemean,median, standard
deviation, kurtosis, amplitude, etc. Likely frequency-domain features are extracted by
analyzingEEGdata as a function of frequency.Various techniques like Fourier Trans-
form are used for frequency-domain feature extraction. These features are related to
spectral information of EEG signals. Examples of such features include spectral
flux, power spectrum, spectral centroid, spectral entropy, etc. In the time-frequency
domain both time-domain as well as frequency-domain features are extracted simul-
taneously. Discrete Wavelet Transform (DWT) is the most popular time-frequency
domain based feature extraction technique.

In [4] authors have proposed a unique feature extraction technique based on
Stockwell-transform (ST). It is a joint time-frequency analysis technique that is
applicable to non-stationary signals. Such technique is more noise-robust, able to
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retain the absolute phase of the individual frequency component and provide more
information with less features. After performing S-transform, two features namely,
energy and standard deviation are extracted for both seizure and seizure-free EEG
signals. In [12] the cross-bispectrum values for three EEG channels are computed to
determine various linear (average, maximum and minimum) and non-linear features
in EEG data. In [13], for feature extraction EEG signals are sampled twice and
plotted as vertical bars. Then a feature called visibility height is computed for the
three adjoining neighbours from the top of the referenced bar. Then four various types
of entropy are computed to reduce the dimension of data. In [14] after pre-processing
the EEG signal, Wavelet Analysis also known as DWT is used for feature extrac-
tion. DWT is a time-frequency analysis method used for analyses of non-stationary
signals. In this technique the signal is passed through a set of consecutive low-
pass and high-pass filters to decompose the signal into set of five sub-bands. Thus,
decomposing the initial signal into a set of coefficients that describe the frequency
content. But to lower the spectrum usage and time complexities authors in this paper
have used only the lowest frequency sub-band for feature extraction. The feature
extracted from these identified sub-bands helps in further classification of data. In
[15] authors have extracted thirteen features like min amplitude, max amplitude,
Entropy, Mean, Median, Standard Deviation, etc. belonging to time, frequency as
well as both domains. In [16] also authors have utilized DWT for feature extrac-
tion. After DWT decomposition, the sub-bands of EEG signals are discretized using
Equal Frequency Discretization (EFD) technique. EFD technique helps to compute
the probability density for all sub-band of each EEG segment. Thus, providing the
probability densities of both healthy EEG dataset and epilepsy patient EEG dataset.
In [17] Local Mean Decomposition (LMD) is utilized that iteratively transforms raw
EEG data into a set of product functions (PFs) where a PF is generated by multi-
plying envelope signal with a frequencymodulated signal. This technique has got the
advantage of high processing speed along with low computational complexity. From
each PF three time-domain features namely maximum amplitude, minimum ampli-
tude, average absolute value, and three frequency-domain features namelymaximum
power spectral density, skewness, kurtosis are extracted. The authors have further
computed the Fractal Dimension (FD), Renyi Entropy (RE) and Hurst exponent for
EEG dataset to form a nine-dimensional feature vector. In [18] for feature extraction
authors have utilized Daubechies Wavelet order 4 (DB4). Then for the dimension-
ality reduction, PCA is applied to the extracted data. PCA reduces the data to lower
dimensional space bymodifying the signal into the newPrincipal Components (PCs).
This is done to reduce the complexity in both space and time. In [19] authors have
proposed a Discrete Cosine Transform (DCT) based 3-level multi-rate filter bank
that extracts alpha, beta, gamma, delta and theta brain rhythms. Delta brain rhythms
are modelled using fractional Brownian motion (fBm) process and the other four
brain rhythms namely alpha, beta, gamma and theta are modelled using fractional
Gaussian noise (fGn) process. Autoregressive Moving Average (ARMA) model and
Hurst exponent (H value) together constitute the extracted feature vector. In [20]
Daubechies 4 (DB4) wavelet transform (WT) of the EEG signal is computed to
produce wavelet coefficients. Then, phase-space reconstruction (PSR) is computed
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for the wavelet coefficients of both normal and epileptic EEG signals. Then, in the
third step Euclidean Distance (ED), the distance between the origin and the wavelet
coefficients plotted in PSR, is calculated. These EDs form the initial feature vector.

4 Classification

An automated epilepsy diagnosis systemmust be able to accurately classify the EEG
signals as epileptic and non-epileptic signal. In this regard many machine learning-
based classification algorithms have been proposed in the literature. These algorithms
usually train the system using either supervised, unsupervised or semi-supervised
learning bypassing the selected features of the relevant class of the training data;
and then the trained system performance is evaluated using different parameters
for predicting the class of testing data. Although in literature there exists so many
machine learning-based classification algorithms that classify the EEG signal as an
epileptic class and non-epileptic class but the most popular being Support Vector
Machine (SVM) [12, 13, 17, 21, 25, 26], K-nearest neighbour (KNN) [17, 18, 27,
30, 31], Linear Discriminant Analysis (LDA) [17] and Random forest (RF) [8, 13].

SVM is a very commonly used supervised learning-based classifier. It works
by a creating hyperplane or set of hyperplanes in a multi-dimensional space that
will separate data into various classes linearly. For a two-dimensional space, the
hyperplane reduces to a line. The vectors that define the hyperplane are termed
as support vector. This algorithm has got good generalization properties but the
poor speed of execution. LDA is also one of the most commonly used supervised
learning-based pattern reduction anddimensionality reduction algorithms.LikeSVM
this technique also separates the data into different classes using hyperplanes. In this
algorithm, the first separability between different classes is computedwhich is termed
as a between-class variance. Then it calculates within-class variance, i.e. the distance
between the mean of the class and the individual samples of the class. Then creates a
low-dimensional space that will maximize the between-class variance and minimize
the within-class variance. KNN is also a very simple, popular and supervised based
learning algorithm. The basic idea behind this is to first make the system learn
through training data and as the new instance comes, it is assigned the class that
is closest among the k-neighbours. The performance of the algorithm is very much
dependent on k value. Greater k value reduces the effect of noise and increases the
processing time. Random forest (RF) is a simple, flexible and easy to use machine
learning algorithm. RF is also a supervised learning algorithm that works by creating
an ensemble of decision trees. As a new instance comes, the class of this instance is
decided by travelling from the root node of the tree to its leaf. At each node end, the
successor may be chosen if there is a need to split the input space data. For the design
of more efficient classifiers, future work can be done in the direction of using various
optimization algorithms that have been explored in other applications [32–35].

The performance of a classifier is very much dependent on the characteris-
tics/features of the data that is being inputted. Thus, if the extracted features are
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not relevant then the classification algorithm may not be able to accurately identify
the class of the data. Also, the performance of a classifier is evaluated by using a
number of performance measures/parameters that include classification accuracy,
false alarm rate, specificity, sensitivity, latency and Receiving Operating Character-
istic (ROC). The performance measures that are being accessed also depends on the
dataset that is being used. Authors that have used the University of Bonn dataset
have evaluated the accuracy, sensitivity, specificity, confusion matrix, and ROC as
the performance parameters, with accuracy and confusion matrix being the most
common and widely used performance measure. Table 3 presents the comparison
of accuracy level achieved through different classifiers inputting different extracted
features. In literature, as briefed in Table 4, it is also found that some researchers have
computed the classification accuracy by considering different cases that constitute a
different combination of sets (from A to D) with set E from the University of Bonn
dataset. For the CHB-MIT dataset apart from performance parameters evaluated for
the University of Bonn dataset, two more parameters namely latency and false alarm
rate are also evaluated. Table 5 briefs the literature work of different performance
parameters evaluated and their experimental values for the CHB-MIT database.

5 Conclusion

This paper presents a review of the automatic epilepsy detection system that is able to
classifyEEGsignals as epileptic or non-epileptic.Abrief literature survey of the auto-
mated epilepsy detection system with a focus on its modules such as pre-processing,
feature extraction and selection, and finally classification is been given. Two most
commonly used and freely available datasets, i.e. University of Bonn dataset and
CHB-MIT dataset are also discussed. The findings of different authors in terms of
different performance parameters have also been summarized and compared. This
review will give a clear birds-eye view of the recent advancements and techniques
to the upcoming researchers in this field.
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Table 3 Comparison of accuracy level of different classifiers designed for University of Bonn
dataset

Researchers Year Feature Extraction
Technique

Classifier Accuracy

Orhan et al. [16] 2011 DWT + Equal
Frequency
Discretization (EFD)
+ Probability density

Mean square error
(MSE)

82.5%

Leeet al. [20] 2014 Wavelet transform
(WT) + Phase-space
reconstruction (PSR)
+ Euclidean distance
(ED)

Neural network with
weighted fuzzy
membership
functions (NEWFM)

98.17%

Lasefr et al. [14] 2017 DWT SVM 96%

ANN 98%

Zhang et al. [17] 2017 Local mean
decomposition
(LMD)

BPNN 98.10%

KNN 98.87%

LDA 98.47%

SVM 98.40%

GA-SVM 100%

Jiang et al. [5] 2017 Wavelet packet
decomposition
(WPD)
Short time-frequency
transform (STFT)
Kernel principal
component analysis
(KPCA)

S-TL-SSL-TSK
A-TL-SSL-TSK

Above 95% in all
cases

Rahmawati et al.
[18]

2017 DWT + PCA KNN 99.83%

Tiwari et al. [21] 2017 Key points detection
+ Local binary
patterns (LBPs)
computation

SVM 99.89%

Saini et al. [15] 2018 Standard
mathematical
formulas

ANN 99%

PSO-ANN 99.3%

Mahmoodian et al.
[12]

2019 Cross-bispectrum
Analysis

SVM 96.84%
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Table 4 Accuracy comparison of classifier used for University of Bonn dataset with different
dataset combinations

Researchers/Year Methodology Dataset Accuracy No. of features

Kaleem et al. [22] Empirical mode
decomposition modified
peak selection
(EMD-MPS) + 1-NN
classifier + 10-fold cross
validation

A and E
AB and CD
ABCD and E

100%
99%
98.2%

4

Peker et al. [23] Dual-tree complex
wavelet transformation +
Complex-valued neural
network

5

DTCWT + CVANN-1 +
10-fold cross validation

A–E 100

DTCWT + CVANN-2 +
10-fold cross validation

99.5

DTCWT + CVANN-3 +
10-fold cross validation

100

DTCWT + CVANN-3 +
10-fold cross validation

A, D, E 99.3

DTCWT + CVANN-3 +
10-fold cross validation

AB–CD–E 98.23

Alsharabi et al. [24] DWT-based shannon
entropy feed-forward
neural network (FFNN)

A–E 100 1

Zhang et al. (2017) [17] Local mean
decomposition (LMD) +
GA-SVM

A–E
D–E
ABCD–E
A–D–E
AB–CD–E

100
98.10
98.87
98.47
98.40

9

Sharma et. al. [26] Analytic time-frequency
flexible wavelet transform
(ATF-FWT) + Fractal
dimension (FD) least
squares SVM classifier

A–E
B–E
C–E
D–E
AB–E
CD–E
AB–CD
ABCD–E

100
100
99
98.50
100
98.67
92.50
99.20

7
16
17
17
17
16
17
16

Zeng et al. [13] Entropy of visibility
heights of hierarchical
neighbours (EVHHN) +
4 different classifiers
(i) SVM
(ii) Least squares SVM
(iii) KNN
(iv) RF

A–E 100
100
100
100

4

(continued)
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Table 4 (continued)

Researchers/Year Methodology Dataset Accuracy No. of features

(i) SVM
(ii) Least squares SVM
(iii) KNN
(iv) RF

AB–E 99.67
99.67
99.67
99.67

(i) SVM
(ii) Least squares SVM
(iii) KNN
(iv) RF

C–E 98
98.50
97.3
97.25

(i) SVM
(ii) Least squares SVM
(iii) KNN
(iv) RF

CD–E 97.67
98.37
97.63
97.20

Table 5 Performance comparison of different techniques used for CHB-MIT dataset

Researchers/Year Technology/Method/Algorithm
used

Dataset/Parameters
used

Experimental
values

Samiee et al. [29] Sparse rational decomposition
and the local gabor binary
patterns (LGBP)

Average sensitivity
Rate of false alarms
per hour

91.13%
0.35

Abhijit et al. [27] Empirical wavelet transform
(EWT) + Random forest
classifier

Average sensitivity
Specificity
Accuracy

97.91%
99.57%
99.41%

Shanir et al. [30] Morphological attribute
extraction method based on the
local binary pattern (LBP)
operator + K-nearest neighbour
classifier

Mean accuracy
Mean specificity
Average false
detection
Sensitivity

99.7%
99.8%
0.47/h
99.2%

Solaija et al. [7] Dynamic mode decomposition
(DMD) + RUS boost classifier
+ Post processing step

Sensitivity
Specificity

0.87
0.99

Wu et al. [8] Mixed seizure finding algorithm
by combining cEEG-based and
aEEG-based seizure finding
algorithm + Random forest
classifier

Accuracy (AC)
Specificity (SP)
Sensitivity based on
the event (SE)
False positive ratio
based on the event
(FPRE)

99.36%
82.98%
99.41%
0.57 times/h

Bashivan et al. [31] Spectral features (using STFT),
spatial features (using
Multi-scale 3D-CNN), temporal
features (using bidirectional
GRU) + Deep neural network
(DNN) classifier

Sensitivity
False positive rate

89.4%
0.5/h

Fan et al. [28] Recurrence network (RN) based
multivariate seizure detection

Sensitivity
Latency

98%
6 s
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