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Abstract

The occurrence of rice diseases threatens food production worldwide. Developing
host resistance is considered as the most efficient and environment-friendly
method to reduce yield losses due to the diverse group of pathogens. Disease-
resistant quantitative trait loci (QTLs) are a valuable resource for rice crop
improvement program. Advanced molecular biology and biotechnological tools
accelerated the study of host-pathogen interactions and have resulted in the
identification, cloning, and characterization of many genes involved in the plant
defense responses. The extent of disease reduction varies with the strategy
employed as well as with the characteristics of the pathogen. Manipulation of
different hormone levels in transgenic rice plants has provided interesting
findings with regard to enhanced disease tolerance or susceptibility. The knowl-
edge is being utilized to modify rice genome to develop disease resistance by
means of genetic engineering and CRISPR/Cas9-mediated genome editing
technologies. Combinatorial effects of more than one defense genes have been
proved to be more promising in conferring disease resistance than single-
transgene introduction. The use of tissue-specific or pathogen-inducible
promoters and the engineered expression of resistant or susceptibility genes that
induce defense responses have the potential to provide commercially useful
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broad-spectrum resistance in the distant future. The issues and challenges of
genetic engineering and genome editing to engineer rice disease resistance that
need to be addressed are highlighted.
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1 Introduction

Rice is one of the leading primary staple foods for the increasing world population,
particularly in Asia. To meet the increasing global food demand, we will have to
produce up to 40% more rice by 2030 (Khush 2005). We have to achieve the goal on
a reduced sowing space because of urbanization and increasing environmental
pollution. Improvement of yield per plant is not the only way to achieve this goal;
reduction of losses by biotic and abiotic stress is also a potent solution. According to
Food and Agriculture Organization estimates, diseases, insects, and weeds cause the
maximum amount of annual yield losses in cereal crops (Khush 2005). In particular,
fungal diseases can cause yield losses between 1% and 10%, regionally (Savary et al.
2000). Strong efforts have been invested across the world for improving disease
resistance. Most of the efforts are capitalizing on the vast amount of information
generated from studying different aspects of plant diseases.

Since the initial definition of the plant resistance (R) genes by Flor (1942), several
R genes are known. The majority of the known R genes composed of proteins
carrying nucleotide-binding sites and leucine-rich repeat motifs (NBS-LRR) (Jones
and Dangl 2006). Most R genes recognize pathogen effectors, although there are
some exceptions (Lee et al. 2009). Some of these effectors thus correspond to the
initial definition by Flor of the avirulence gene. Depending on the presence/absence
of the R gene and of the matching avirulence product, the interaction will be
incompatible or compatible. Many R genes have been identified in rice and most
code for NBS-LRR genes (Ballini et al. 2008). After recognition mediates by the
R sequence, signal transduction occurs and requires regulators such as MAP kinases
(Mishra et al. 2006). Finally, transcription factors like WKRYs modulate a transcrip-
tional reprogramming within the cell (Eulgem 2005), leading to the activation of
defense responses. These in term induce the production of secondary metabolites
(Peters 2006), pathogenesis-related (PR) proteins (van Loon et al. 2006),
strengthening of cell wall (Hückelhoven 2007), and programmed cell death leading
to a hypersensitive response (HR) within the cell (Greenberg and Yao 2004).

Resistant cultivars and application of chemical pesticides have been widely used
for disease control in practice. However, the useful life span of many resistant
cultivars is only a few years, due to the breakdown of the resistance in the face of
high variability of the pathogen population. Use of pesticides is costly as well as
environmentally undesirable. Thus, novel ways offering protection for an extended
time and over a broad geographical area are required. Such strategies will be
particularly important in cases where the source of resistance is not available.
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The most vital advancement within the space of vertical development for resis-
tance is that the use of the techniques of recombinant DNA technology to develop
transgenic plants immune to disease. Moreover, genome editing by programmable
sequence-specific nucleases (SSN) like the zinc-finger nucleases (ZFNs) (Bibikova
et al. 2003), transcription activator-like effector nucleases (TALENs) (Moscou and
Bogdanove 2009), and Cas proteins (Jinek et al. 2012) has the potential to play a
significant role in developing disease-resistant plants. Since ZFNs and TALENs are
costly and not easy and straightforward to use, these two technologies have not
become the method of choice. On the contrary, the CRISPR (clustered regularly
interspaced short palindromic repeats)/Cas (CRISPR-associated) system simplifies
the operation of genome editing and provides a convenient and powerful tool for
genome editing. The CRISPR/Cas methods have gained rapid popularity, and it is
being used in rice functional genomics and disease resistance breeding (Molla and
Yang 2019; Shao et al. 2017; Shen et al. 2017).

2 Genetic Engineering of Rice for Biotic Stress Resistance

Among all the diseases recorded so far, the blast (Magnaporthe grisea), bacterial leaf
blight (Xanthomonas oryzae pv. oryzae), and sheath blight (Rhizoctonia solani) are
the most serious constraints of rice production. Several methods are established for
developing and raising rice resistance against the disease caused but fungus and
bacteria through transgenic approaches. In this section, we describe different R
genes identified from rice plants and other defense genes utilized for improving
rice disease resistance.

2.1 Rice Disease Resistance (R) Genes

Biotechnological tools have been playing an instrumental in identifying rice disease
resistance genes. Till now, more than 100 major blast resistance (R) genes have been
identified, and 35 genes have been cloned successfully (Wang et al. 2017). Table 1
summarizes the cloned blast resistance genes. Similarly, for bacterial blight, a total
of 42 resistance (R) genes identified and 9 have been molecularly cloned (Vikal and
Bhatia 2017). Please see Table 2 for all bacterial blight resistance genes identified.
Unlike blast and bacterial blight diseases, no resistance gene has been identified for
rice sheath blight (Molla et al. 2019a, b).

2.2 Other Defense Genes from Rice and Non-Rice Sources Utilized
for Improving Disease Resistance

Genes from plants apart from rice have been extensively tested in rice. Since no
resistant rice germplasm is known and resistance genes have not been identified for
sheath blight disease, genes that do not fall in R gene category have been utilized for
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Table 1 Summary of the cloned blast resistance genes

R gene Encoding protein Chromosome Donor References

Pi37 NLR 1 St. No. 1 Lin et al. (2007)

Pit NLR 1 K59 Hayashi and Yoshida
(2009)

Pish NLR 1 Nipponbare Takahashi et al.
(2010)

Pi35 NLR 1 Hokkai 188 Fukuoka et al. (2014)

Pi64 NLR 1 Yangmaogu Ma et al. (2015)

Pi-b NLR 2 Tohoku IL9 Wang et al. (1999)

pi21 Proline-rich metal
binding protein

4 Owarihatamochi Fukuoka et al. (2009)

Pi63/
Pikahei-1
(t)

NLR 4 Kahei Xu et al. (2014)

Pi9 NLR 6 75-1-127 Qu et al. (2006)

Pi2 NLR 6 Jefferson Zhou et al. (2006)

Piz-t NLR 6 Zenith Zhou et al. (2006)

Pi-d2 B lectin receptor
kinase

6 Digu Chen et al. (2006)

Pi-d3 NLR 6 Digu Shang et al. (2009)

Pi25 NLR 6 Gumei2 Chen et al. (2011)

Pid3-A4 NLR 6 A4 (Oryza
rufipogon)

Lü et al. (2013)

Pi50 NLR 6 Er-Ba-zhan
(EBZ)

Zhu et al. (2012)

Pigm NLR 6 Gumei4 Deng et al. (2017)

Pi36 NLR 8 Kasalath Liu et al. (2007)

Pi5 NLR 9 RIL260 Lee et al. (2009)

Pii NLR 9 Hitomebore Takagi et al. (2013)

Pi56 NLR 9 Sanhuangzhan
No. 2

Liu et al. (2013)

Pi54 NLR 11 Tetep Sharma et al. (2005,
2010)

Pikm NLR 11 Tsuyuake Ashikawa et al.
(2008)

Pb1 NLR 11 Modan Hayashi et al. (2010)

Pik NLR 11 Kusabue Zhai et al. (2011)

Pik-p NLR 11 K60 Yuan et al. (2011)

Pia NLR 11 Sasanishiki Okuyama et al. (2011)

Pi1 NLR 11 C101LAC Hua et al. (2012)

Pi54rh NLR 11 Oryza rhizomatis
(nrcpb 002)

Das et al. (2012)

Pi-CO39 NLR 11 CO39 Cesari et al. (2013)

Pi54of NLR 11 Oryza officinalis
(nrcpb004)

Devanna et al. (2014)

PiK-h NLR 11 K3 Zhai et al. (2014)

(continued)
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enhancing ShB resistance (Molla et al. 2019b). However, more than 50 genes
regulating disease resistance have now been discovered from different plant species
(Hammond-Kosack and Parker 2003). Some of these genes may not work properly
in rice for some biological reasons. Transferring gene from one species to another
may lead to detrimental effects. One of the most notable is the central regulatory
gene NPR1 (Cao et al. 1998). Phenotypic cost has been observed when the
Arabidopsis NPR1 gene was transferred to rice (Fitzgerald et al. 2004). The rice
plants overexpressing AtNPR1 displayed an environmentally regulated and heritable
lesion mimic phenotype. Moreover, a recent report on OsWRKY45 demonstrates that
overexpression in japonica rice confers increased susceptibility to bacterial blight,
whereas overexpressing in indica rice variety confers increased resistance to bacte-
rial blight. These findings revealed that one should be careful before transferring a
gene from one background to another, even within the Oryza sativa species.

2.3 Pathogenesis-Related (PR) Proteins

Pathogenesis-related (PR) proteins are a unique category of novel proteins
synthesized and accumulated in infected plant tissues. Two well-known PR proteins
are hydrolytic enzymes, chitinase, and ẞ-1,3-glucanase. Hydrolysis of cell wall
generates chitin oligomer which is known to induce host defense mechanism.
Genes encoding chitinase or ẞ-1,3-glucanase from plants and microbes have been
extensively studied and used in the generation of transgenic rice resistant against
fungal pathogens (Punja 2006). Transgenic plants overexpressing either a rice
chitinase or a rice thaumatin-like protein showed enhanced resistance against
R. solani (Datta et al. 1999, 2000, 2001). Green tissue-specific expression of rice
oxalate oxidase 4 (PR-9 family of proteins) gene in transgenic rice showed improved
resistance against sheath blight pathogen Rhizoctonia solani (Molla et al. 2013).
Hydrolytic enzymes from microbial origin have also been demonstrated to be
effective in engineering rice disease resistance against fungal pathogens. Bacterial
chitinase ChiC from Streptomyces griseus showed clear inhibition on fungal hyphae
under in vitro condition (Itoh et al. 2003). Majority of transgenic rice plants
expressing ChiC had higher resistance against M. grisea than non-transformed
control plants (Itoh et al. 2003). Three important genes, namely, ech42, nag70,
and gluc78 which encode hydrolytic enzymes from Trichoderma atroviride, were
introduced in rice either singly or in combination. Transgenic plants overexpressing

Table 1 (continued)

R gene Encoding protein Chromosome Donor References

Pike NLR 11 Xiangzao143 Chen et al. (2015)

Piks NLR 11 Unknown GenBank:
AET36547.1,
AET36548.1

Pi-ta NLR 12 Yashiro-mochi Bryan et al. (2000)
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Table 2 Summary of bacterial blight resistant genes in rice

Xa gene
Resistance to
Xoo race Donor cultivar Chromosome References

Xa1 Japanese race-I Kogyoku, IRBB1 4 Yoshimura et al.
(1998)

Xa2 Japanese race-II IRBB2 4 Sakaguchi (1967)

Xa3/
Xa26

Chinese,
Philippine, and
Japanese races

WaseAikoku
3, Minghui 63, IRBB3

11 Xiang et al. (2006)

Xa4 Philippine race I TKM6, IRBB4 11 Yoshimura et al.
(1995)

xa5 Philippine
race I, II, III

IRBB5 5 Iyer and McCouch
(2004)

Xa6 Philippine race
1

Zenith 11 Sidhu et al. (1978)

Xa7 Philippine races DZ78 6 Sidhu et al. (1978)

xa8 Philippine races PI231128 7 Vikal et al. (2014)

xa9 Philippine races Khao Lay Nhay and
Sateng

11 Singh et al. (1983)

Xa10 Philippine and
Japanese races

Cas 209 11 Mew et al. (1982)

Xa11 Japanese races
IB, II, IIIA, V

IR8 3 Ogawa and
Yamamoto (1986)

Xa12 Indonesian race
V

Kogyoku, Java14 4 Ogawa et al. (1974)

xa13 Philippine race
6

BJ1, IRBB13 8 Chu et al. (2006)

Xa14 Philippine race
5

TN1 4 Taura et al. (1987)

xa15 Japanese races M41 mutant – Nakai et al. (1998)

Xa16 Japanese races Tetep – Noda and Ohuchi
(1989)

Xa17 Japanese races Asominori – Ogawa et al. (1989)

Xa18 Burmese races IR24, Miyang23,
Toyonishiki

– Ogawa and
Yamamoto (1986)

xa19 Japanese races XM5 (mutant of IR24) – Taura et al. (1991)

xa20 Japanese races XM6 (mutant of IR24) – Taura et al. (1992)

Xa21 Philippine and
Japanese races

O. longistaminata,
IRBB21

11 Song et al. (1995)

Xa22 Chinese races Zhachanglong 11 Lin et al. (1996)

Xa23 Indonesian races O. rufipogon (CBB23) 11 Zhang et al. (1998)

xa24(t) Philippine and
Chinese races

DV86 2 Mir and Khush
(1990)

xa25/
Xa25(t)/
Xa25

Chinese and
Philippine races

Minghui 63, HX-3
(somaclonal mutant of
Minghui 63

12 Amante-Bordeos
et al. (1992)

xa26(t) Philippine races Nep Bha Bong Lee et al. (2003)

(continued)
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Gluc78 showed enhanced resistance against M. grisea, while overexpression of
endochitinase gene ech42 in transgenic rice showed significant resistance against
R. solani, resulting in 62% resistance against sheath blight disease (Liu et al. 2004).
There was a clear co-relation between ech42 expression and chitinase activity with
disease resistance (Liu et al. 2004).

2.4 Antimicrobial Proteins

Antimicrobial peptides (AMP) are amphipathic small molecules with conserved
α-helix and anti-parallel β-plated sheet and discrete patches of hydrophobic residues

Table 2 (continued)

Xa gene
Resistance to
Xoo race Donor cultivar Chromosome References

Xa27 Chinese strains
and Philippine
race 2–6

O. minuta IRGC
101141, IRBB27

6 Gu et al. (2004)

xa28(t) Philippine race
2

Lota sail – Lee et al. (2003)

Xa29(t) Chinese races O. officinalis (B5) 1 Tan et al. (2004)

Xa30(t) Indonesian races O. rufipogon (Y238) 11 Jin et al. (2007)

xa31(t) Chinese races Zhachanglong 4 Wang et al. (2009)

Xa32(t) Philippine race Oryza australiensis
(introgression line
C4064)

11 Zheng et al. (2009)

xa33(t),
Xa33(t)

Thai races Ba7 O. nivara 6 Korinsak et al.
(2009),
Natarajkumar et al.
(2010)

Xa34
(t) Xa34
(t)

Thai races Pin Kaset
O. brachyantha

– Korinsak et al.
(2009), Ram et al.
(2010)

Xa35(t) Xa35
(t) Philippine
races

Oryza minuta (Acc.
No. 101133)

11 Guo et al. (2010)

Xa36(t) Philippine races C4059 – Miao et al. (2010)

Xa38 Indian Punjab
races

O. nivara IRGC81825 – Cheema et al. (2008)

Xa39 Chinese and
Philippines
races

FF329 11 Zhang et al. (2014)

Xa40(t) Korean BB
races

IR65482-7-216-1-2 11 Kim et al. (2015)

xa41(t) Various Xoo
strains

Rice germplasm – Hutin et al. (2015)

xa42 Japanese Xoo
races

XM14, a mutant of
IR24

3 Busungu et al.
(2016)
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resulting in a structure capable of forming ion channels through the membrane.
Majority of antimicrobial peptides contain cysteine residues which are joined to
form disulfide bonds, leading to a compact structure. Different types of AMP have
been identified from plant as well as microbes and exploited in molecular improve-
ment of rice resistance against fungal and bacterial pathogens. Various types of
antimicrobial peptides have been identified in plants, including thionins (Bohlmann
and Broekaert 1994), maize zeamatin (Malehorn et al. 1994), coffee circulin (Tam
et al. 1999), and wheat puroindoline (Krishnamurthy et al. 2001). Plant defensins are
small peptides (45–54 amino acids) that share common characters among plants,
insects, and mammals. Dm-AMP1 from Dahlia merckii, a defensin, was introduced
into rice. Transgenic rice plants expressing Dm-AMP1showed significantly
enhanced resistance against M. oryzae and R. solani but not accompanied by an
activation of PR gene (Jha et al. 2009). In another study, overexpression of wasabi
defensin or Mirabilis jalapa antimicrobial protein Mj-AMP2 gene in transgenic rice
exhibited significant resistance against rice blast fungus (Kanzaki et al. 2002). There
was 50% reduction in lesions size of the transgenic plants as compared to
non-transformed control (Kanzaki et al. 2002). These reports highlight that expres-
sion of defensin in transgenic rice has the potential to provide broad-spectrum
disease resistance against fungal pathogens. An antifungal protein (AFP) from
Aspergillus giganteus showed in vitro antifungal activity against diverse economi-
cally important fungal pathogens including M. grisea (Hagen et al. 2007). The AFP
protein from transgenic plants showed inhibitory activity on the in vitro growth of
M. grisea and therefore enhanced resistance against blast disease (Coca et al. 2004).
Transgenic rice plants constitutively expressing AFP protein exhibited inheritance of
the transgene in subsequent generation without any phenotypic cost (Coca et al.
2004). Puroindolines, another small protein, reported to have in vitro antimicrobial
activity. Transgenic rice plants with constitutively expressing wheat puroindoline
genes PinA and/or PinB were generated. Puroindolines from leaf extracts of the
transgenic rice plants reduced the in vitro growth of M. grisea and R. solani.
Transgenic rice expressing PinA and/or PinB exhibited significantly increased resis-
tance to M. grisea and R. solani (Krishnamurthy et al. 2001). Cecropins, a family of
antimicrobial peptides, constitute a key component of insect immune response. The
transgenic rice plants overexpressing cecropin A accumulated active cecropin A
protein and showed resistance to rice blast disease (Coca et al. 2006). Similarly,
transgenic rice plants overexpressing cecropin B gene revealed a significant reduc-
tion in lesion development of bacterial blight (Sharma et al. 2000). Oat thionin, when
introduced into rice, showed potential to control bacterial leaf blight, caused by
Burkholderia plantarii (Iwai et al. 2002). Plant defensin genes from B. oleracea and
B. campestris conferred enhanced resistance in transgenic rice to blast and bacterial
leaf blight (Kawata et al. 2003). Generally; it has been seen that constitutively
expressed antimicrobial proteins in transgenic rice provide partial or moderate but
not absolute resistance against disease-causing pathogens.
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2.5 Defense Signaling Genes and Broad-Spectrum Disease
Resistance

Broad-spectrum resistance is defined at two different levels, i.e., firstly, resistance to
different isolates of the same pathogen localized at different regions of the world,
and secondly, resistance to two or more unrelated pathogenic strains. Some of the
known rice R genes have been found to confer broad-spectrum disease resistance
against different races of a pathogen and thus have the potential to be used in
breeding program or transferred into suitable elite rice varieties through genetic
engineering. One of the novel strategies for broad-spectrum plant disease resistance
has been to exploit the defense signaling network that modulates the innate plant
defense mechanisms against pathogen (Jones and Dangl 2006). Functional genes or
proteins belong to both plant and non-plant origins that positively regulate the broad-
spectrum systemic acquired resistance against viruses, bacteria, and fungi will act as
a useful source for genetic engineering. Recent studies have elucidated that salicylic
acid (SA)- and ethylene (ET)/jasmonic acid (JA)-mediated signaling pathways,
which act as prime candidate for activation of defense responses against biotrophic
and necrotrophic pathogens, respectively, play important roles in rice disease resis-
tance (Glazebrook 2005). Distinct mechanisms might be required for activation of
defense responses in rice against different pathogens (Ahn et al. 2005). NPR1 is a
master regulator in the SA-mediated signaling pathway in Arabidopsis thaliana.
Transgenic rice plants expressing AtNPR1 exhibited enhanced disease resistance
against M. grisea and X. oryzae by modulating the expression of SA-responsive
endogenous PR genes (Chern et al. 2001; Fitzgerald et al. 2004; Quilis et al. 2008).
Tissue-specific expression of AtNPR1 gene in transgenic rice showed enhanced and
significant resistance to the sheath blight pathogen Rhizoctonia solani without any
detrimental effect on rice phenotype (Molla et al. 2016).OsNPR1 is a rice orthologue
of Arabidopsis NPR1. Five NPR1-like genes present in rice genome, and three
among them, namely, OsNPR1, OsNPR2, and OsNPR3 were induced upon infection
by X. oryzae pv. oryzae and M. grisea. Constitutive overexpression of OsNPR1 in
rice conferred disease resistance against bacterial blight but also showed enhanced
herbivore susceptibility (Chern et al. 2005). OsNPR1 might be a potential candidate
gene that mediates crosstalk between the SA and JA signaling pathways and
provides an approach for engineering rice plants against several diseases (Yuan
et al. 2007). Genetic manipulation of JA biosynthesis pathway had shown to
improve rice disease resistance against microorganisms. Previous study has shown
that transgenic rice plants overexpressing a pathogen-inducible allene oxide
synthase (OsAOS2) gene, which encodes a key enzyme in the JA biosynthetic
pathway, upregulated expression of several PR genes and provide significant resis-
tance against M. Grisea (Mei et al. 2006). Another study demonstrated that modifi-
cation of JA-related fatty acid metabolism by suppressing beta-3 fatty acid
desaturases, allene oxide cyclase, and 12-oxo-phytodienoic acid reductase exhibited
increased disease resistance in transgenic rice against M. grisea (Yara et al. 2007,
2008).
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2.6 Reactive Oxygen Species

Oxidative burst is a general phenomenon, mediated by hydrogen peroxide (H2O2),
which has been recognized as a key component of the plant defense after infection.
Glucose oxidase (GOX), an enzyme predominantly occurring in some
microorganisms, brings about the oxidation of beta-D-glucose, generating H2O2,
and gluconic acid. Transgenic rice plants transformed with Aspergillus niger GOX
gene exhibited elevated levels of cellular H2O2, which in turn lead to cell death and
activation of several defense responsive genes. The overexpression of GOX in
transgenic rice plants exhibited enhanced resistance against both M. grisea and
X. oryzae pv. oryzae (Kachroo et al. 2003). Similarly, enhanced H2O2 generation
in infected rice plants with overexpressed oxalate oxidase gene showed improved
resistance to sheath blight pathogen (Molla et al. 2013).

2.7 Microbe-Derived Elicitor Genes

Microbe-derived elicitor molecules are well-known plant defense activators. Broad-
spectrum disease resistance could be achieved by expressing microbial genes coding
for elicitors. Several proteinaceous elicitors from microbial origin have been shown
to elicit systemic acquired resistance in plants by the activation of SA- and ET/JA-
mediated defense signaling pathways. The bacterial harpin and flagellin have been
extensively studied for generating broad-spectrum disease resistance in rice through
genetic engineering. Recently, a harpin-encoding gene hrf1, derived from X. oryzae
pv. oryzae, has been transferred into rice, and the generated transgenic rice lines
showed high level of resistance to major races of M. grisea. Defense responses
including elevated expression of several PR genes, increased content of silicon in
leaves of overexpressing transgenic plants, and significant inhibition of mycelial
growth on leaves of the transgenic rice plants were observed in hrf1 transgenic plants
(Shao et al. 2008). This study revealed that harpins from phytopathogenic bacteria
may offer new possibilities for generating broad-spectrum disease resistance in rice.
In a similar note, the flagellin gene from Acidovorax avenae, a phytopathogenic
bacterium, was introduced into rice to produce flagellin. The resultant transgenic
plants exhibited increased expression of defense genes, elevated H2O2 production,
and programmed cell death, signifying that the flagellin triggers innate plant immune
responses. Flagellin transgenic rice plants exhibited enhanced resistance against
M. grisea, accounting that the flagellin might provide a novel strategy for developing
genetically engineered disease-resistant rice (Takakura et al. 2008).

2.8 Gene Pyramiding in Rice for Biotic Stress Tolerance

The newly released varieties lost their resistance quickly due to the high level of
genetic instability in pathogen population. One way to combat this problem is to
develop transgenic rice varieties with (i) a combination of genes encoding disease-
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resistant proteins which showed synergistic interaction between themselves to real-
ize effective resistance against a particular or group of disease or (ii) pyramiding of
genes associated with different diseases for broad-spectrum disease resistance. A
previous report showed that pyramiding of three genes, namely, Xa21, chitinase, and
Bt-fusion gene in IR72 rice variety through crossing of two independent homozy-
gous transgenic rice lines, provide significant resistance against X. oryzae pv. oryzae,
R. solani, and yellow stem borer (Datta et al. 2002). Using both marker-assisted
breeding and genetic transformation yielded superior rice lines resistant against blast
and leaf blight through pyramiding of Pi1, Piz5, and Xa21 (Narayanan et al. 2004).
Genetic transformation of rice with a maize ribosome-inactivating protein and a rice
chitinase gene exhibited enhanced resistance against three fungal pathogens, such as
R. solani, Bipolaris oryzae, and M. grisea (Kim et al. 2003). Constitutive
co-expression of rice chitinase and thaumatin-like protein in indica rice cultivar
resulted in significant enhanced level of resistance against R. solani (Kalpana et al.
2006). Similarly, transgenic rice plants pyramided with chi11, tlp, and Xa21
exhibited an enhanced resistance against both sheath blight and bacterial blight
diseases (Maruthasalam et al. 2007). Tissue specific co-expression of rice oxalate
oxidase and chitinase genes in transgenic BR-29 rice lines conferred significantly
enhanced resistance against R. solani (Karmakar et al. 2016). In another report, it has
been shown that the dual gene expression cassette harboring Arabidopsis NPR1
(AtNPR1) and rice chitinase genes provide a superior level of resistance against
sheath blight pathogen R. solani than the level of resistance from the individual gene
cassette (Karmakar et al. 2017). Combinatorial expression of chitinase and 1,3-
glucanase genes in indica rice showed enhanced resistance against sheath blight
pathogen, R. solani (Sridevi et al. 2008). Transgenic rice lines expressing four
antifungal genes, i.e., RCH10, RAC22, Glu, and B-RIP showed a heightened state
of resistance to M. grisea, rice false smut (Ustilaginoidea virens), and rice kernel
smut disease (Tilletia barclayana) (Zhu et al. 2007). Therefore, an ingeniously
planned genetic engineering strategy involving a balanced expression of different
transgenes with a potential different mode of action would ensure broad-spectrum
and durable tolerance against diverse group of pathogens.

3 Genome Editing System

Genome editing systems with engineered nuclease (GEEN) allow cleavage and
rejoining of DNA molecules in specified target sites to successfully modify the
genetic loci. Special enzymes such as restriction endonucleases (RE) and ligase can
be used for cleaving and rejoining of DNAmolecules in small genomes like bacterial
and virus. However, using only these two enzymes such as restriction endonucleases
and ligases, it is very difficult to manipulate large and complex genomes of higher
organisms, including plants. Target specificity of RE is enough for short DNA
sequences such as bacterial and viral genomes, it is not sufficient to work with
large genomes such as plant.
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Invention of engineered nucleases for genome editing revolutionized biological
study. There are three well-known nucleases such as zinc finger nuclease (ZFN),
transcription activator-like effector nucleases (TALEN), and CRISPR/Cas9 avail-
able as genome editing tools. ZFN and TALEN depend on protein-DNA interaction,
whereas CRISPR/Cas9 relies on RNA-DNA interaction through Watson-Crick base
pairing. These engineered nucleases bind to targeted loci of the genome and make a
highly specific double-strand break (DSB). Upon recognition of the DSB, the error-
prone cellular repair machinery inserts or deletes few nucleotides at the DSB. Due to
this indel (insertion/deletion) formation, the targeted gene suffers from frameshift
mutation and that ultimately causes knockout of the gene. Similarly, utilizing
cellular homology-directed repair (HDR) system, precise editing could be achieved
with additional supply of donor template with homologous arms. Since working
with CRISPR/Cas9 is the simplest among the three tools, it gains rapid popularity
within a very short period of time. All the abovementioned three tools are discussed
below briefly.

3.1 Tools Available for Editing Rice Genome

3.1.1 Zinc Finger Nucleases (ZFNs)
ZFNs (zinc finger nucleases) are the first-generation genome editing tools, which are
chimerically engineered nucleases, and developed after the discovery of the working
principles based on functional Cys2-His2 zinc finger (ZF) domain (Kim et al. 1996).
Each Cys2-His2 ZF domain consists of about 30 amino acid residues, which are
capable of binding to target DNA by inserting a α-helix of the protein into the major
groove of the DNA-double helix (Pavletich and Pabo 1991). Each zinc finger
(ZF) protein has the ability to recognize three tandem nucleotides in the target
DNA. ZFNmonomer consists of about two different functional domains: an artificial
zinc finger (ZF) Cys2-His2 domain at the N-terminal portion and a FokI DNA
cleavage domain at the C-terminal region (Fig. 1). Dimerization of FokI domain is
critical factor for ZFN enzymatic activity (Kim et al. 1996). The modular recognition
of zinc finger domains represents consecutive three bp targets enabled the realization
that each of the individual zinc finger domains could be interchangeable and
manipulation of the domains would lead to unique binding specificities to the
proteins, enabling targeting of specific unique sequences in the genome.

The application of ZFNs involves assembly, optimization, and modular design of
zinc fingers against specific target DNA sequences. Over the past few years, zinc
finger domains have been generated to recognize a large number of triplet
nucleotides, which provide the accurate selection and linking of zinc fingers with a
particular sequence that would permit recognition of the target sequence. Many
successful studies on genome editing in plants have been reported using zinc finger
nucleases (ZFNs). Utilization of ZFNs to induce a double-strand break in the soluble
starch synthase gene (SSIVa) in rice leads to the regulation of the SSIVa expression.
ZFN-mediated targeted gene disruption in the coding sequence of the SSIVa rice
gene is an effort to elucidate the functional role of the gene (Jung et al. 2018).
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3.1.2 Transcription Activator-Like Effector Nucleases (TALENs)
The efficient manipulation of target genomic DNA led to the identification of unique
transcription activator-like effector (TALE) proteins that recognize and activate
specific plant promoters through a set of tandem repeats which form basis for the
creation of a new genome editing tool consisting of chimeric nucleases, called TALE
nucleases (TALENs) (Jankele and Svoboda 2014). DNA-binding ability of these
proteins was first discovered in the year 2007; after a year later, two scientific groups
have decoded the recognition code of target DNA sequence by TALE proteins (Boch
et al. 2009).

TALE monomers consist of a central repeat domain (CRD) that provides DNA
binding and host specificity. The central repeat domain (CRD) consists of 34 amino
acid tandem repeats. Two of the amino acids at positions 12 and 13 of the repeat are
highly variable and are responsible for the recognition of specific nucleotide (Fig. 2).
These two positions are known as repeat variable diresidue (RVD) (Moscou and
Bogdanove 2009). The DNA binding specificity of RVD domain has been
repurposed for designing specific DNA binding artificial TALE proteins. The fusion
of Fok1 nuclease domain with TALE DNA binding domain has been demonstrated
to successfully create a new class of target-specific nucleases (Christian et al. 2010).

With the use of TALENs, it will be possible to introduce double-strand breaks in
any location of the genome as long as that location harbors the recognition sequence
corresponding to the DNA-binding domains of TALENs.

The pathogen Xanthomonas oryzae pv. oryzae (Xoo) produces and translocates
its virulence proteins with the TAL effectors into the host cells through a type-III
secretion system. After internalization, TAL effectors are localized into the nuclei of
the host cells and bind to the promoters of susceptibility (S) genes. After that, TAL

Fig. 1 Basic structure and design of a zinc finger nuclease (ZFN). ZFNs are created by joining a
DNA-binding region to the catalytic domain of the nonspecific Fok1 endonuclease. Each zinc
finger, illustrated by an individual circle, recognizes 3–4 nucleotides, and, by assembling three or
four suitable zinc finger motifs, a sequence-specific DNA-binding domain can be created. Fok1
nuclease activity requires dimerization, and so the customized ZFNs function in pairs. As shown,
the zinc finger-binding domain brings two Fok1 units together in the right orientation over the target
sequence; this induces Fok1 dimerization and target sequence cleavage
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effectors activate the S-gene expression that in turn leads to more susceptibility of
host plants to bacterial infection. SWEET11, SWEET13, and SWEET14 are known
rice susceptibility genes (Yang et al. 2006). SWEET14 gene has been disrupted using
TALEN to develop bacterial blight resistant rice plants (Li et al. 2012). Similarly,
Cai et al. showed that TALEN-mediated editing of rice gene Os09g29100 enhances
resistance to the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola
(Cai et al. 2017).

3.1.3 Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)

A novel genome editing system that has been discovered recently and became so
demanding and popular is the clustered regularly interspaced short palindromic
repeats (CRISPR)/CRISPR-associated (Cas) protein system, popularly known as
CRISPR/Cas system. The technology is derived from CRISPR/Cas type II immune
system found in the bacterium Streptococcus pyogenes. It is comprised of CRISPR
RNA (crRNA), trans-activating crRNA (tracrRNA), and Cas9 protein. crRNA-
tracrRNA hybrid guides the Cas9 nuclease to bind to a homologous nucleic acid
and make a specific double-strand break. Jinek et al. (2012) first demonstrated
successfully this system to make targeted DSB in DNA. The study also showed
that a single chimeric RNA (comprised of crRNA and tracrRNA) known as single
guide RNA (sgRNA) could direct the Cas9 to any DNA sequences of interest if they
have a NGG sequence nearby. This 50-NGG-30 is known as protospacer adjacent
motif (PAM). The 50 20 bp sequence in the sgRNA sequence is known as
protospacer sequence which can be designed as per the requirement of a specific
experiment. Hence, the design of a CRISPR/Cas experiment is easy and
straightforward.

Fig. 2 A scheme for introducing a double-strand breaks using chimeric TALEN proteins. One
monomer of the DNA-binding protein domain recognizes one nucleotide of a target DNA sequence.
Two amino acid residues in the monomer are responsible for binding. Recognition sites are located
on the opposite DNA strands at a distance sufficient for dimerization of the FokI catalytic domains.
Dimerized FokI introduces a double-strand break into DNA
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Since the initial study by Jinek et al. (2012), CRISPR/Cas9 system has exten-
sively been used in various fields of applied biology, biotechnology, and genome
engineering, due to its simplicity, efficiency, and wide applicability. Besides the
conventional CRISPR/Cas9-mediated knockout techniques (Fig. 3), various
CRISPR-derived technologies have been generated. CRISPR interference
(CRISPRi) and CRISPR activator (CRISPRa) have been generated for gene repres-
sion and activation, respectively (Qi et al. 2013; Gilbert et al. 2013). Recently,
CRISPR/Cas-mediated base editing systems have been developed to install precise
point mutation in the genome (reviewed by Molla and Yang 2019). Base editing
system has been used successfully to precisely install A to G conversion in the rice
genome (Molla et al. 2020).

Fig. 3 Schematic depiction of CRISPR/Cas9 genome editing mechanism. sgRNA guides Cas9 to
bind and cut specific genomic locus. Once a double-strand break (induced by Cas9) is detected,
cellular repair machinery repairs it through either non-homologous end joining (NHEJ) or homol-
ogy directed repair (HDR) pathways. Error-prone NHEJ causes indel (red) formation at the DSB
and results in frameshift of the coding sequence knocking out the gene activity. Although extremely
low in efficiency, HDR uses homologous sequence to precisely repair the DSB. If artificial
homologous sequence (donor) (green) containing desired nucleotide alteration (blue) is supplied
in the vicinity of DSB, HDR could incorporate the change (blue) in the targeted genomic locus
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3.2 CRISPR/Cas9 System for Biotic Stress Tolerance in Rice

CRISPR/Cas9 system has been utilized to install mutation in OsSWEET13 gene to
prevent its neutralization by the TAL effector gene pthXo2, leading to improved
tolerance against bacterial blight disease (Zhou et al. 2015). A recent study has been
demonstrated that CRISPR/Cas9-targeted knockout of an ERF transcription factor
gene OsERF922 showed enhanced resistance against rice blast fungus (Wang et al.
2016). Targeted mutagenesis with insertion or deletion at the target site and the
frequency of mutation was up to 42% in T0 plant lines. Phenotypic assessment of six
T2 homozygous mutant lines demonstrated that there was a significant reduction in
the number of blast lesions in mutant lines as compared to wild-type plants. A recent
study demonstrated editing of promoters of multiple SWEET genes in rice to
develop broad spectrum bacterial blight resistance (Oliva et al. 2019). This result
revealed that CRISPR/Cas9 is a powerful tool for enhancing blast resistance in rice.
A brief summary of studies on CRISPR/Cas-mediated attempts to develop disease-
resistant rice plants is given in Table 3.

4 Future Prospects

In the cases where defense manipulation is achieved by expression of a single or
multiple protein from microbial origin or phytoalexins, the resistance in transgenic
rice is not absolute, and majority of them only show partial or moderate resistance
against a particular disease. Surprisingly, a number of disease resistance genes have
been isolated from rice, and few have been shown to provide broad-spectrum disease
resistance against diverse groups of pathogens.

Table 3 Use of CRISPR/Cas technology for developing disease-resistant rice

Species Pathogen Target gene
Transformation
methods References

Oryza sativa
L. japonica

Tungro virus eIF4G Agrobacterium-
mediated
transformation

Macovei
et al.
(2018)

Oryza sativa
L. japonica

Magnaporthe
oryzae

SEC3A Protoplast
transformation

Ma et al.
(2018)

Oryza sativa
L. japonica

Magnaporthe
oryzae

ERF922 Agrobacterium-
mediated
transformation

Wang
et al.
(2016)

Oryza sativa
L. japonica

Xanthomonas
oryzae
pv. oryzae

SWEET13 Agrobacterium-
mediated
transformation

Zhou et al.
(2015)

Oryza sativa L.
japonica and Oryza
sativa L. indica

Xanthomonas
oryzae pv.
oryzae

SWEET11,
SWEET13 and
SWEET14

Agrobacterium-
mediated
transformation

Oliva et al.
(2019)
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Engineering of rice varieties with durable and broad-spectrum resistance would
be only achieved probably through genetic manipulation of regulatory mechanisms
and signaling network controlling activation of multiple defense-responsive genes.
Extensive and through studies of rice disease resistance, using approaches such as
genomics and proteomics, will lead to identification of novel candidate genes that are
involved in the defense signaling as well as subsequent metabolic pathways. Func-
tional genomics aided by new genome editing technologies would play a significant
role toward that direction. These identified novel genes will be helpful in the
generation of new superior rice varieties with high level of durable resistance against
broad range of disease caused by diverse pathogens.

Knowledge of molecular mechanisms of host-pathogen interaction is crucial to
utilize the full potential of the advance technologies like genome editing. Versatile
technologies like CRISPR/Cas would assist us to decipher the mechanism in one
hand and could be utilized to develop disease-resistant plants utilizing that knowl-
edge on the other hand. Most simplified way is to knock out or knock down any
known negative regulator or susceptibility genes for a disease. However, it needs to
keep in mind that many susceptibility genes play pleiotropic roles and knocking out
may have some unknown consequences. The RVD of bacterial TAL proteins has
specific binding sequences in the promoter of susceptibility genes to increase their
expression. Instead of knocking out by conventional CRISPR, the nucleotide/s of the
TALE binding site in the susceptibility gene promoters can be mutated utilizing
CRISPR/Cas base editing technologies to enhance resistance without pleiotropic
effects (Molla and Yang 2019). Base editing permits C to T and A to G transitions
mutations in plants. This editing tool has tremendous potential in installing precise
mutation in the genome. However, changing a susceptible allele to a resistant allele
through genome editing may need to perform transversion mutation, specific addi-
tion, deletion, or replacement of sequences. Homology directed repair (HDR)
(Fig. 3) is the only available way to achieve those kinds of changes in the genome.
The matter of concern is that HDR is extremely low in efficiency in plants. However,
a recently developed technology, prime editing, can perform all kinds of precise
editing up to 40 bp with much higher efficiency than HDR (Anzalone et al. 2019).
Rapid advancements in technologies would ease genome modification and subse-
quently aid in developing disease-resistant rice plants.
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