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Abstract The aim of this paper is to design a Kalman filtering sliding mode
controller (KFSMC) for control of cart position (CP), and angular position (AP)
of the pendulum under uncertainties and disturbances. For designing of the KFSMC,
the fourth-order state-space model of the inverted pendulum (IP) is considered. In
this control strategy, the conventional sliding mode controller (CSMC) is reformu-
lated with a state estimator based on the Kalman filtering approach to improve
the control performance. The validation of the improved control performance of
KFSMC is established by comparative result investigation with other published con-
trol algorithms. The comparative results clearly reveal the better response of the
proposed approach to control the system dynamics within a stable range with respect
to accuracy, robustness, and ability to handle uncertainties.
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1 Introduction

The control of IP is a standard problemamong all other problems in the control system
engineering field owing to non-minimum phase, nonlinear, and under-actuated char-
acteristics as reported in the references [1–3]. Additionally, the IP system exhibits a
significant number of industrial applications like self-balancing two-wheeled vehi-
cles or a kind of Sag-way, guided missiles, rockets, intelligent robots, and other
crane models [4]. In this present study, an adaptive law of control approach is being
tested and analyzed to choose the IP system as it possesses a significant relevance
with the control dynamics. During the past three decades, so many control strategy
techniques are suggested and tested for control of AP of pendulum within the sta-
ble range. Time-discrete and switching PID control strategy is implemented in IP
problems with variable control gains based on the measured AP of the pendulum
[5, 6]. However, the optimal gain parameter setting, a lesser range of robust control,
and need of change of gain setting with varying conditions are the major limitations
to limit the real-time application of these controllers. Among other projected robust
control algorithms implemented for limiting the AP of the pendulum are fuzzy [7],
linear quadratic regulator (LQR) [8–10], neurocontrol [11], backstepping control
[12], passivity control [13], state feedback control [14], H-infinity (H∞) control
[15], sliding mode (SM) control [16], fuzzy sliding mode (FSM) control [17, 18],
and BLQG control [19]. However, even if these control techniques are implemented
effectively to control the AP of the pendulum with better accuracy, still they fail to
handle various constraints and random change found in a trajectory of motion in
the pendulum. These control techniques are not completely insensitive to the dis-
turbances and the uncertainties of the model in spite of the improved performance.
Hence, optimal control parameters setting for better performance and for avoiding
slow response following process disturbance, the current work suggests an alterna-
tive novel hybrid technique based on the Kalman filtering and sliding mode control
concept.

In this study, a hybrid concept based on Kalman filtering approach and principles
of sliding mode control is projected with the title Kalman filtering sliding mode
controller (KFSMC). The hybrid approach concept leads to an enhanced control
performancewith respect to robustness, accuracy, stability, andbetter ability to handle
uncertainty. The novel idea followed in this formulation is to modify CSMC with a
state estimator according to the approach of Kalman filtering. Secondly, a stabilizing
control law is framed by using the Kalman filtering approach [20–22]. Application
of the proposed approach is to control the AP of pendulum results to ensure a better
robust controller in comparison with other contemporary well-accepted methods
under both harmonized and incompatible uncertainties.

The highlights of this manuscript are as follows:

• Development of a SIMULINK model of an IP.
• Design of a KFSMC to control the AP of the pendulum within a stable range.
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• Estimation of the control actions of the KFSMC under huge deviation of process
disturbance.

• Comparative investigation to certify the better response of the KFSMC.

Thismanuscript is structured as follows: Sect. 2 concisely illustrates the IP system
with mathematical details reflecting to its dynamic characteristics. Also, it clearly
demonstrates the simulation execution of the system on MATLAB environment.
A detailed presentation on how the control technique is formulated and how it is
implemented for this problem is presented in Sect. 3. Comparative results of the
proposed approach with other published control techniques and the related analysis
are provided in Sect. 4. The concluding comments are summarized in Sect. 5.

2 Problem Formulation and Modeling

2.1 System Overview

The closed-loop model of the IP is depicted in Fig. 1a. The applied horizontal force
F(t) and v(t) are reflected as the process disturbance and the sensor noise, respectively,
in this study. The controller receives information about the AP of the pendulum as
an input to provide the optimal control force u(t), and it balances the pendulum.

2.2 System Modeling

Figure 1b reflects the cart-pendulummodel connected to a flexible cart rail with a free
swinging pole. The CP is being controlled by a DCmotor. The nonlinear IPmodeling
through the Newton’s law-based mathematical equations has been carried out. It is
presumed that the vertical force does not affect the CP and the CP is disturbed by
the horizontal force F(t) based on the operation of the DC motor [23, 24]. All the
physical activities of the IP system are expressed mathematically and specified by
Eqs. (1) and (2). All nomenclature and specifications for IP are shown in Tables 1
and 2, respectively. The SIMULINK model of the IP is established with respect to
the Eqs. (1) and (2) as displayed in Fig. 1c.

(M + m)
d2x(t)

dt2
− ml

d2θ(t)

dt2
cos θ(t)

+ ml

(
dθ(t)

dt

)2

sin θ(t) + b
dx(t)

dt
= F(t) (1)

(
i + Ml2

)d2θ(t)

dt2
− mgl sin θ(t) = ml

d2x(t)

dt2
cos θ(t) (2)
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(a)

(b)

(c)

Fig. 1 a IP model with KFSMC; b schematic model of the IP system; c simulation model of the
nonlinear IP system; d the horizontal force acting on the cart at the time of 0.1 s
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Fig. 1 (continued)

(d)

Table 1 IP model states and parameters

Symbol Description

F(t) Horizontal force acting on the cart

b dx(t)
dt Frictional force acting on the cart

x(t), dx(t)
dt ,

d2x(t)
dt2

Cart position, cart velocity, and cart acceleration, respectively

θ(t), dθ(t)
dt ,

d2θ(t)
dt2

AP, angular velocity, and angular acceleration of pendulum, respectively

Table 2 IP model
specification values

Symbol Physical meaning Value

M Cart mass 0.5 kg

m Pendulum mass 0.2 kg

i Inertia 0.3 kg m2

g Gravitational acceleration 9.8 m/s2

b Frictional coefficient 0.1 N.s/m

l Pendulum length 0.3 m

2.3 Linearization of IP Model

The nonlinear IP system is linearized surrounding the operating point for the design
of KFSMC to control the system dynamics within the stable range. The linearization
of the IP system based on Eqs. (1) and (2) is done by neglecting the higher-order

terms such as
(
dθ(t)
dt

)2
. For linearization of the nonlinear IP system, the dynamic

Eqs. (1) and (2) are reduced to Eqs. (3) and (4) based on the stable conditions such
as θ(t) = 0, d2θ(t)

dt2
∼= 0, and cos(0) = 1.
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(M + m)
d2x(t)

dt2
+ b

dx(t)

dt
− ml

d2θ(t)

dt2
= F(t) (3)

(
i + ml2

)d2θ(t)

dt2
− mglθ(t) = ml

d2x(t)

dt2
(4)

The transfer function (TF) of the CP and AP of the pendulum is derived as follows
[23]:

X (s)

U (s)
=

(i+ml2)s2−mgl
ψ

s4 + b(i+ml2)
ψ

s3 − (M+m)mgl
ψ

s2 − bmgl
ψ

s
(5)

θ(s)

U (s)
=

ml
ψ
s

s3 + b(i+ml2)
ψ

s2 − (M+m)mgl
ψ

s − bmgl
ψ

(6)

where ψ = [
(M + m)

(
i + Ml2

) − ml2
]
. The linearized equation of the IP system

with F(t) and v(t) based on the Eqs. (5) and (6) can be expressed as follows [23]:

dxm (t)
dt = ẋm(t) = Amxm(t) + Bmu(t) + Bd F(t)

y(t) = Cmxm(t) + Dmu(t) + v(t)

}
(7)

where xm(t), u(t), and y(t) are represented as the state variable, control input, and reg-
ulated output, respectively. The state-space matrices of the IP system are represented
as Am, Bm, Cm, Dm and Bd . The detailed description of linearization is described
in the literature [23]. In MATLAB, the command ‘linmod’ is used to evaluate the
state-space matrices on the SIMULINK model of IP as depicted in Fig. 1c.

2.4 Response of IP Model

There are four roots in IP system. One of them lies in right-hand side of the complex
plane. As a result, the system becomes unstable. This needs the design of an adaptive
controller for improving the stability of the system by means of shifting the roots
into the left-hand side of the complex plane. The IP system SIMULINK model in
the open-loop form is depicted in Fig. 1c. The IP system consists of two inputs and
four outputs. The control force u(t) and applied horizontal force F(t) are the two
inputs of the IP system. The CP and AP of the pendulum are the four outputs of the
IP system. An uncontrolled system dynamics such as AP of the pendulum and CP
are being observed owing to the application of 1 N impulsive horizontal force F(t)
on the cart at the time t = 1.0 s.

The uncontrolled system dynamics are illustrated in Fig. 2a, b. Figure 2a, b illus-
trates the unstable dynamics under various model uncertainties and disturbances.
The unstable dynamics can be reduced by applying the suitable control techniques.
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Fig. 2 a AP of pendulum with application of F(t); b CP with application of F(t)

In this case, the AP of the pendulum is the most essential outcome that needs to
be controlled within a stable range through suitable control techniques, and CP is
analyzed in order to view the motion trajectory.

3 Control Algorithm

The KFSMC control algorithm is demonstrated in this section. The closed-loop
system response with respect to robustness, accuracy, and stability are analyzed.
The control specifications such as settling time ts, steady-state error ess, maximum
overshoot Omax, and maximum undershoot Umax are also evaluated and examined
with proper validation of the controller action.

3.1 Design of KFSMC

The linearized model of the IP as discussed in Sect. 2.3 has been taken for the formu-
lation of the suggested control algorithm to regulate the CP and AP of the pendulum.
For accomplishing an upgraded performance and the adjustment of controller param-
eters of the suggested KFSMC, it is integrated into the linearized model of the IP as
illustrated in Fig. 3. The KFSMC is designed by integrating a state estimator with
the CSMC as shown in Fig. 1a. The state estimator is implemented to estimate all the
states of the system in a recursive manner to enhance the control performances such
as robustness, accuracy, and stability. The linearized model of the IP with F(t) and
v(t) is formulated as represented in Eq. (7), where both v(t) and F(t) are represented
as the Gaussian noise. The relationship between v(t) and F(t) is as follows:
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Fig. 3 Closed-loop IP model with KFSMC in the state-space representation

E{F(t)} = 0
E{v(t)} = 0

}
(8)

E
{
F(t)FT (τ )

} = Q2δ(t − τ) (9)

E
{
v(t)vT (τ )

} = R2δ(t − τ) (10)

F(t) is uncorrelated to the v(t); therefore, it can be defined as follows:

E
{
F(t)vT (τ )

} = 0 (11)

where Q2 and R2 are symbolized as the positive semi-definite intensity matrices of
the F(t) and v(t), respectively. Figure 3 illustrates the linearized model of the IP with
the feedback gain kc and Kalman filtering gain kf . The mathematical expressions of
kc and kf are presented in Sect. 3.1.2. The calculation of the TF of the KFSMC is
described in Sect. 3.1.3.

The control signal u(t) of proposed controller has two major components such
as switching function ust(t) and equivalent control input ueq(t). This is defined as
represented in Eq. (12).

u(t) = ust(t) + ueq(t) (12)

For the formulation of the proposed control algorithm, twobasic steps are required.
In the first step, the switching function ust(t) is to be ensured reaching condition by
pulling the all states of a nominal model inside the boundary layer near the sliding
hyperplanes; as a result, chattering is reduced and also robustness of a system is
improved. In the second step, the desired ueq(t) is to be formulated in such a manner
that accuracy, and stability of a system is enhanced. The design procedures of first
and second steps of the KFSMC are analyzed in Sects. 3.1.1 and 3.1.2, respectively.
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3.1.1 Reaching Condition (RC)

To achieve RC, all the states of the nominal model are to be inside the boundary layer
near the sliding hyperplanes. Secondly, these states should remain inside the bound-
ary layer after that [20]. The robustness of a model is enhanced by achieving the RC.
Under this situation, the system dynamics are independent to the model uncertainty
and disturbances. It can be possible through the sliding hyperplane parameter Gs.

(A) Sliding hyperplane parameter:

The sliding hyperplane parameter Gs for a system with α number of inputs is related
to the equal number of α hyperplane vectors as follows [20]:

si (t) = gTi xm(t) (13)

s(t) = Gsxm(t) (14)

where s(t) stands for si(t), Gs stands for gTi , si (t) = [s1(t), s2(t), s3(t), . . . , sα(t)],
si (t) is the ith hyperplane vector, gTi = [g1, g2, g3, . . . , gα]T , gTi is the transpose of
ith hyperplane parameter, α is the number of inputs of a system, and i varies from 1 to
α. When si (t) = 0, α number of hyperplanes move through the origin in state-space
as shown in Fig. 4. These hyperplanes are called as sliding hyperplanes.

Under the above condition, s(t) andGs are known as the sliding hyperplane vector
and sliding hyperplane parameter of the IP model, respectively. Equation (14) can
be rewritten as follows:

ṡ(t) = Gs ẋm(t) (15)

The Gs is derived by using the similarity transformation controllable canonical
form (STCCF) of an IP model. The STCCF of an IP model is defined as follows [20]:

q̇(t) = Amq(t) + Amu(t) + Adw(t) (16)

Fig. 4 Location of boundary
layer near the sliding
hyperplane
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where q(t) = Hxm(t), Am = H AmH−1, Bm = HBm , Bd = HBd . The H matrix is
computed by using Eq. (17).

H = [
F Bm

]T
(17)

where F = null
(
BT
m

)
. The q(t) can be decomposed as follows:

q(t) =
[
q1(t)
q2(t)

]
(18)

where q1(t) and q2(t) are vectors with size of (n−α)×α and α×α, respectively. The
n represents the order of the Am. When the rank of a systemmatrix Am is not matched
with the rank of the controllable matrix c(Am, Bm) of the system, the appropriate
system is uncontrollable in nature. The system can be decomposed into controllable
and uncontrollable parts. The decomposed controllable and uncontrollable parts of
the system with respect to Eq. (16) are defined as follows [20]:

[
q̇1(t)
q̇2(t)

]
=

[
Am11 Am12

Am21 Am22

][
q1(t)
q2(t)

]
+

[
0

Bmr

]
u(t) +

[
0
Bdr

]
w(t) (19)

where q1(t) and q2(t) are the controllable and uncontrollable parts of the system,
respectively. The Bmr consists of the last α-rows of the matrix Bm , and Bdr consists
of the last α-rows of the matrix Bd . The sliding hyperplane vector can be expressed
in the form of q1(t) and q2(t) as follows [20]:

s(t) = q2(t) + kq1(t) (20)

The Gs can be derived based on Eqs. (14) and (20), as follows [20]:

Gs = [
k Iα

]
H (21)

where k denotes the gain matrix of the proposed KFSMC, and Iα denotes an unitary
matrix with dimension of α × α.

(B) Gain matrix of KFSMC

The k is computed based on the IP model dynamics for the minimum value of the
quadratic performance index j as specified in Eq. (22).

j =
∞∫
0

[
q(t)T Qqq(t)

]
dt (22)

where Qq = (
H−1

)T
Q1H−1 and Q1 = CT

mCm . The Q1 signifies a positive semi-
definite weighted matrix of state. The matrix Qq can be decomposed with respect to
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Eq. (19) as follows:

Qq =
[
Qr N
NT R1

]
(23)

where thematrixQr is the first subpart of thematrixQq with size of (n−α)×(n−α).
The matrix N is the second subpart of the matrix Qq with size of (n − α) × α. The
NT is the third subpart of the Qq with dimension of α × (n − α). The R1 symbolizes
a positive definite weighted matrix of input, and it is the fourth subpart of the matrix
Qq with size of α × α. Equation (22) can be reformulated as follows:

j =
∞∫
0

[
q1(t)

T Qrq1(t) + 2q1(t)
T Nq2(t) + q2(t)

T R1q2(t)
]
dt (24)

The system can achieve RC, only when s(t) = 0. Under RC, the system dynamics
can be formulated based on the full state feedback along with size of (n − α) × α as
follows [20]:

q̇1(t) = Am1q1(t) + Am12q2(t) (25)

The k is computed based on the Eqs. (23) and (25) for the minimum value of the
quadratic performance index as specified in Eq. (26).

k = R−1
1

(
A
T
m12P + NT

)
(26)

where P denotes the controller algebraic Riccati equation (CARE) solution. The
CARE is specified as follows [20]:

P(Am11 − Am12R
−1
1 NT ) + (A

T
m11 − N R−1

1 A
T
m12)P

− P Ām12R
−1
1 A

T
m12P + Qr − N R−1

1 NT = 0 (27)

The sliding hyperplane parameter Gs can be computed by putting Eq. (26) in
Eq. (21). The system can achieve RC and enhanced robustness through the sliding
hyperplane parameter Gs. To satisfy the RC and chattering free control is chosen as
[20]:

u(t) = −(Gs Bm)−1diag(η)sat(s(t)) + ueq(t) (28)

where −(Gs Bm)−1diag(η)sat(s(t)) is the switching function ust (t) and diag(η) is
a diagonal matrix with ith diagonal element equal to a positive number ηi . The ith
element of sat(s(t)) is formulated as:
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sat(si (t)) =
{
sgn(si (t)) if |si (t)| > ρi

si/ρi otherwise
(29)

where ρi denotes the boundary layer thickness nearby the ith hyperplane as shown
in Fig. 4.

3.1.2 Equivalent Control Input ueq(t)

To satisfy the RC, the ueq(t) can be formulated with the use of kf and kc. The states
of the system are estimated recursively based on the Kalman filtering approach to
enhance the system response. The estimated state-space equation of the system is
defined as [20]:

˙̂xm(t) = Am x̂m(t) + Bmu(t) + k f [r(t) − y(t) − ŷ(t)] (30)

ŷ(t) = Cmx̂m(t) (31)

where x̂m(t) signifies the estimated state and ŷ(t) signifies the estimated output.
The kf can be formulated as [20]:

k f = 	kC
T
m R

−1
2 (32)

where 	k signifies the filter algebraic Riccati equation (FARE) solution. The FARE
is specified as follows [20]:

Am	k + 	k A
T
m + BdQ2B

T
d − 	kC

T
m R

−1
2 Cm	k = 0 (33)

The sliding hyperplane vector s(t) can be formulated with the use ofGs and x̂m(t)
as follows [20]:

s(t) = Gs x̂m(t) (34)

To satisfy the RC, the ueq(t) can be derived from Eqs. (30) and (34) as [20]:

ueq(t) = −(Gs Bm)−1
[
Gs

(
Am − k f Cm

)
x̂m(t) + Gsk f [r(t) − y(t)]] (35)

Under RC, the control law u(t) of suggested KFSMC is formulated based on
Eqs. (28), (29), and (35) as follows [20]:

u(t) = −(Gs Bm)−1
[
Gs

(
Am − k f Cm + γ In

)
x̂m(t) + Gsk f [r(t) − y(t)]] (36)

u(t) = −kc x̂m(t) − Ks[r(t) − y(t)] (37)
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Table 3 The optimal values
of control parameters

Q1 R1 Q2 R2

1000 ∗ CT
m ∗ Cm 1 0.01 0.0025

where Ks = (Gs Bm)−1Gsk f and kc = (Gs Bm)−1Gs
(
Am − k f Cm + γ In

)
. The In

is an unitary matrix with size of n × n, and n is the order of the Am. The kc and γ

are denoted for the feedback gain and sliding parameter of the suggested KFSMC,
respectively. The γ can be estimated as:

γ = ηi

ρi
= η

ρ
(38)

where ρi and ηi are denoted for the thickness of the boundary layer and any positive
number of the ith sliding hyperplane, respectively, as illustrated in Fig. 4. Both ηi
and ρi are taken as identical value for each γ and set to η and ρ, respectively.

3.1.3 Transfer Function (TF) of KFSMC

The TF of the KFSMC is defined from Eqs. (30) and (37) as follows [20]:

K (s) = β1
(
s In − Am + Bmβ1 + k f Cm

)−1
β2 + (Gs Bm)−1Gsk f (39)

where K (s) is denoted as theTFofKFSMC,β1 = (Gs Bm)−1Gs
(
Am + γ In − k f Cm

)
and β2 = k f − Bm(Gs Bm)−1Gsk f . The packed matrix notation of K(s) is specified
as follows [20]:

(40)

For the design of suggested KFSMC, the optimal values of control parameters are
evaluated with help of MATLAB and represented as in Table 3.

4 Outcomes and Discussions

The response of the closed-loop IP with proposed KFSMC is described in detail
in this section. The proposed control approach (KFSMC) is compared with other
popular control algorithms to justify its enhanced performance.



400 A. K. Patra et al.

Fig. 5 a AP of the pendulum with the application of F(t) based on KFSMC; b CP with the
application of F(t) based on KFSMC

4.1 Performance Analysis of IP System with KFSMC

In this section, all physical activities of the closed-loop IP model with suggested
KFSMC are examined under different conditions and the huge deviation of applied
horizontal force. The closed-loop system dynamics with 1 N impulsive horizontal
force F(t) at the time of 1.0 s are displayed in Fig. 5a, b. The outcomes clearly
specify the pendulum achieves the zero AP with less settling time and cart also
attains the balance position where the IP system is absolutely steady. To achieve
the enhanced system response, the required control force u(t) is generated by the
suggested KFSMC and demonstrated in Fig. 6.

4.2 Robustness of the KFSMC

Figure 7 illustrates theAP andAVof the pendulumwith suggestedKFSMCunder the
huge deviation of applied horizontal force F(t). The time-domain outcomes under
huge deviation of applied forces show the enhanced performance of the closed-loop
IP model with KFSMC. Overall in each case, the pendulum achieves finally zero
AP and zero AV with less settling time. As indicated by the results, the suggested
KFSMC robust performance under the huge deviation of applied horizontal forces
is much better.

4.3 Stability Investigation

Figure 8a, b illustrates the magnitude plots result of the open-loop and closed-loop
IP system to verify and analyze the stability conditions. From both the magnitude
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Fig. 6 Controlled signal u(t) of the KFSMC

Fig. 7 AP of the pendulum with a deviation of ±40% applied F(t) based on KFSMC
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Fig. 8 a Magnitude plot of the IP system; bMagnitude plot of the closed-loop IP system

plots, it is observed a better smoothness referring to the wider steady-state stability
of closed-loop system (Fig. 8b) than the open-loop system (Fig. 8a). In other words,
the bandwidth is increased in case of a closed-loop system with KFSMC than the
open-loop system. This clearly indicates a faster dynamics, and also it results zero
AP and zero AV of pendulum with quick settling time in case of the closed-loop
system. This justifies better stability during system operation.

4.4 Comparative Study

The proposed KFSMC control approach is compared with other popular control
approaches such as PID, fuzzy, LQR, H∞, FSM, and BLQG which justify its
enhanced performance as a controller. Figure 5a illustrates the effect of applied force
in the AP of the pendulum with the proposed KFSMC approach. Table 4 presents a
comparative analysis with respect to ts (sec), OMax (rad), UMax (rad), noise (%), and

Table 4 Comparative result analysis related to AP of pendulum

Controller PID [5] Fuzzy
[7]

LQR [9] H∞
[15]

FSM
[18]

BLQG
[19]

KFSMC
(proposed)

Applied
force (N)

1 1 1 1 1 1 1

ts (s) 2.8 3.0 3.2 1.5 1.6 0.4 0.36

OMax
(rad)

0.1 0.226 0.081 0.107 0.042 0.041 0.04

UMaz(rad) 0.01 0.087 0.02 0.045 0.151 0.01 0.009

Noise (%) 10 10 5 5 5 1 1

ess(%) 0 0 0 0 0 0 0



Kalman Filtering Sliding Mode Controller Design … 403

ess(%). The effect of applied force in the AP of pendulum applying different control
approaches such as PID, fuzzy, LQR, H∞, FSM, and BLQG is also demonstrated
in Table 4 based on the references [5, 7, 9, 15, 18, 19], respectively. Similar working
conditions are followed with the same level of sensor noise in all control techniques
application for comparison.

The AP of pendulum under 1 N impulsive horizontal force is tested. The cor-
responding results are presented for the various control approaches along with the
proposed KFSMC with respect to time-domain specifications such as OMax(rad),
UMax(rad), and ts(s). The results signify the better controllability of the KFSMC.
The simulation results also demonstrate the high noise and chattering elimination
capability with high robustness for the proposed approach. Overall, by looking to the
above comparative analysis, the findings of suggested approach advantages are the
higher accuracy and stability, more robustness, high noise and chattering elimination
capability, and better capability to handle uncertainty under various conditions and
huge deviation of road disturbance.

5 Conclusions

The manuscript proposed a novel control strategy (KFSMC) based on the Kalman
filtering approach to balance the pendulum. To justify its enhanced performance,
it has been applied and tested to control the system dynamics of IP system within
the stable range. Initially, the IP system is modeled as the fourth-order state-space
representation. Then, the proposed control approach (KFSMC) is designed. In sug-
gested KFSMC, state estimator is utilized to enhance the control performance. The
comparative results clearly reflect that the suggested KFSMC is arrived at better per-
formance than the other control approaches such as PID, fuzzy, LQR, H∞, FSM, and
BLQG with respect to stability, reliability, and robustness under various abnormal
conditions and disturbances. The better performance of the suggested approach in
terms of improved accuracy and stability, enhanced robustness, high noise and chat-
tering elimination capability, and better ability to control uncertainty which justifies
its real-time application.
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