
Bug Priority Assessment in Cross-Project
Context Using Entropy-Based Measure

Meera Sharma, Madhu Kumari, and V. B. Singh

1 Introduction

A large number of bugs are reported on bug tracking systems by different users,
developers, and staff members located at different geographical locations. Bug pri-
ority (P1, the most important, to P5, the least important) is an important attribute
which determines the importance and the order of fixing of the bugs in the presence
of other bugs. To automate the bug priority prediction, we need historical data to
train the classifiers. In reality, this data is not available easily in all software projects,
especially in new projects. Cross-project priority prediction works well in such sit-
uation where we train the classifiers with historical data of projects other than the
testing projects [1, 2].

The bug reports are reported by users having different levels of knowledge about
the software which results in uncertainty and noise in bug reports data. “Without
proper handling of these uncertainties and noise, the performance of learning strate-
gies can be significantly reduced” [22]. The entropy-based measure has been used
to calculate the uncertainty in bug summary reported by different users. In litera-
ture, researchers [1, 2] have made attempts for cross-project bug summary-based
priority prediction. No attempt has been made to handle uncertainty in bug sum-
mary in cross-project context for bug priority prediction. We have proposed sum-
mary entropy-based cross-project priority prediction models using Support Vector
Machine (SVM), k-Nearest Neighbors (k-NN), Naïve Bayes (NB), and Neural Net-
work (NNET). In addition to the summary entropy, we have also considered bug
severity and the derived bug summary weight attribute. Results show improvement
in performance over summary-based cross-project priority prediction models [2].

M. Sharma
Swami Shraddhanand College, University of Delhi, Delhi, India

M. Kumari · V. B. Singh (B)
Delhi College of Arts and Commerce, University of Delhi, Delhi, India
e-mail: vbsingh@dcac.du.ac.in

© Springer Nature Singapore Pte Ltd. 2021
S. Patnaik et al. (eds.), Advances in Machine Learning and Computational Intelligence,
Algorithms for Intelligent Systems, https://doi.org/10.1007/978-981-15-5243-4_10

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5243-4_10&domain=pdf
mailto:vbsingh@dcac.du.ac.in
https://doi.org/10.1007/978-981-15-5243-4_10


114 M. Sharma et al.

The rest of the paper is organized as follows: Sect. 2 deals with related work.
Section 3 describes the data description, bug attributes, and model building required
to perform the analysis. Results have been discussed in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Related Work

Bug priority assessment helps in correct resource allocation and bug fix scheduling.
A bug priority recommender has been proposed by Kanwal and Maqbool [3] by
using SVM classification technique. The study was further extended for comparison
of SVM and NB performance with different feature sets by Kanwal and Maqbool
[4]. An attempt for bug priority prediction has been made by Alenezi and Banitaan
[5] using NB, Decision Tree (DT), and Random Forest (RF) for Firefox and Eclipse
datasets. Lian Yu et al. [6] proposed defect priority prediction using Artificial Neural
Network (ANN) technique. Results show that ANN performs better than Bayes
algorithm. Tian et al. [7] proposed a new framework called DRONE (PreDicting
PRiority via Multi-Faceted FactOr ANalysEs) for Eclipse projects and compared it
with SeverisPrio and SeverisPrio+ [8].

In literature, several studies have been conducted in cross-project context [9–16].
Bug summary-based cross-project priority prediction models have been proposed

by [1, 2] using SVM, NB, k-NN, and NNET. Results show that cross-project bug
priority prediction works well. Another attempt has been made by authors to propose
bug summary-based cross-project severity prediction models [17].

Software are evolved through source code changes done in it to fix different issues,
namely bugs, new features, and feature improvements reported by different users.
These source code changes result in uncertainty and randomness in the system. In
literature, researchers have used entropy-basedmeasures to quantify the code change
process for defects prediction [18]. Researchers have used entropy-basedmeasures to
predict the potential code change complexity [19]. A software reliability uncertainty
analysis method has been proposed by Mierswa et al. [20].

To our knowledge, no work has been done for measuring trustworthiness of bug
summary data in bug repositories. The uncertainty/noise present in bug summary
data can affect the performance of prediction models. In this paper, we have mea-
sured the uncertainty in bug summary by using entropy-based measures. In addition
to summary entropy, bug severity and summary weight for bug priority prediction in
cross-project context have been considered. We have compared our proposed sum-
mary entropy-based bug priority prediction models with Sharma et al. [2] and found
improvement in performance of the classifiers.



Bug Priority Assessment in Cross-Project … 115

Table 1 Priority-wise number of bug reports of different projects

Project Product Priority-wise number of bug reports

P1 P2 P3 P4 P5 Total

Eclipse V2 923 1416 8609 370 229 11,547

Eclipse V3 361 963 26,667 320 136 28,447

OpenOffice DB 76 472 2834 243 38 3663

OpenOffice SST 82 518 4210 316 114 5240

OpenOffice PPT 62 553 2688 90 37 3430

3 Description of Datasets, Bug Attributes, and Model
Building

In this section, description of datasets and bug attributes used for validation and the
model building have been discussed.

3.1 Description of Datasets

We have taken different products, namely Platform Version 2 (V2), Platform Version
3 (V3) of Eclipse project (http://bugs.eclipse.org/bugs/) and Database Access (DB),
Spreadsheet (SST), Presentation (PPT) of OpenOffice project (http://bz.apache.org/
000/). We have considered the bug report for status “verified,” “resolved,” and
“closed.” Table 1 shows the distribution of bug reports of different priority levels.

3.2 Bug Attributes

To predict bug priority in cross-project context, we considered three attributes,
namely severity, summary weight, and entropy of summary. Severity is a nomi-
nal attribute, whereas summary weight and entropy are continuous attributes. Bug
severity gives the impact of bug on the functionality of software or its components.
It is divided into seven levels, namely “Blocker, Critical, Major, Normal, Minor,
Trivial, and Enhancement.” Blocker is the highest level, and Enhancement is lowest
level. Bug priority determines the importance of a bug in the presence of others. Bugs
are prioritized by P1 level, i.e., the most important, to P5 level, i.e., the least impor-
tant. The bug summary gives the textual description of the bug. Summary weight is
extracted from the bug summary attribute, entered by the users.

The bug summary has been preprocessed with the RapidMiner tool [21] to
calculate the summary weight of a reported bug [2].

http://habugs.eclipse.org/bugs/
http://bz.apache.org/000/


116 M. Sharma et al.

Different users are reported bug on bug tracking system. The size of software
repositories is also increasing by an enormous rate that enhances the noise and
uncertainty in the bug priority prediction. If these uncertainties are not handled
properly, the performance of the learning strategy can be significantly reduced [22].
We have proposed entropy-based measure to build the classifier for bug priority
prediction to handle uncertainties in cross-project context. We have used Shannon
entropy to build the classifier model.

Shannon entropy, S is defined as

S = −pi log2 pi

where pi = Total number of occurrences of terms in i th bug report
Total number of terms .

The top 200 terms have been taken from all terms based on their weight. To
rationalize the effect of the priority, we multiplied the entropy by 10 for P1 and P2
priority level bugs, 3 for the P3 priority level bug, and 1 for P4 and P5 priority level
bugs [23].

3.3 Model Building

We have proposed summary entropy-based classifiers based on SVM, k-NN, NNET,
and NB for bug priority prediction in cross-project context by taking bug attributes
severity and summary weight. We have taken the bug reports of two products of
Eclipse and three products of OpenOffice projects. To get the significant amount
of performance, we have used the appropriate parameters values. “For SVM, we
have taken polynomial kernel with degree 3, the value of k as 5 in case of k-NN
and for NNET the training cycle as 100” [2]. Number of validations is taken as 10
and sampling types as stratified sampling for different classification techniques. The
performance of the proposed models has been validated using different performance
measures, namely Accuracy, Precision, Recall, and F-measure.

Figure 1 shows the main process of cross-project priority prediction.

4 Results and Discussion

We have validated the entropy-based classifier of different machine learning tech-
niques, namely SVM, k-Nearest Neighbors, Naive Bayes, and Neural Network using
10 fold cross-validations for predicting the bug priority. We have compared the pro-
posed entropy-based approach to Sharma et al. [2]. We have taken the same datasets
and techniques as taken by Sharma et al. [2] to predict the bug priority in cross-project



Bug Priority Assessment in Cross-Project … 117

Fig. 1 RapidMiner process for bug priority prediction in cross-project context

context. Table 2 shows the Accuracy of different machine learning techniques to
predict the priority of cross-validated projects.

Accuracy for Training Dataset V2
For testing dataset V3, our entropy-based approach improves the Accuracy by 3.46%
and91.93%forSVMandNB, respectively.Our entropy-based approach improves the
Accuracy by 7.86%, 10.21%, 2.81%, and 82.85% for SVM, k-NN, NNET, and NB,
respectively, for testing dataset DB. For testing dataset SST, our approach improves
the Accuracy by 6.66%, 8.42%, 2.96%, and 82.08% for SVM, k-NN, NNET, and
NB, respectively. Our entropy-based approach improves the Accuracy by 11.69%,
10.99%, 13.00%, and 85.19% for SVM, k-NN, NNET, and NB, respectively, for
testing dataset PPT.

Accuracy for Training Dataset V3
Our entropy-based approach improves the Accuracy by 6.34%, 6.57%, 6.40%, and
82.10% for SVM, k-NN, NNET, and NB, respectively, for testing dataset DB. For
testing dataset SST, our approach improves the Accuracy by 3.46% and 91.93% for
SVM and NB, respectively. Our entropy-based approach improves the Accuracy by
9.39%, 8.16%, 7.41%, and 76.44% for SVM, k-NN, NNET, and NB, respectively,
for testing dataset PPT.

Accuracy for Training Dataset DB
For testing dataset V2, our entropy-based approach improves the Accuracy by



118 M. Sharma et al.

Table 2 Accuracy (%) of cross-validated projects

Training versus testing dataset Accuracy (%)

SVM k-NN NNET NB

V2 versus V3 95.51 89.26 91.13 95.59

V2 versus DB 84.93 86.24 80.04 86.40

V2 versus SST 86.43 87.69 83.19 87.02

V2 versus PPT 89.53 88.13 91.02 89.48

V3 versus DB 86.13 86.27 86.21 86.32

V3 versus SST 86.66 86.89 86.74 86.95

V3 versus PPT 87.67 86.50 87.64 81.95

DB versus V2 77.73 83.29 83.14 68.21

DB versus V3 94.48 91.05 96.07 85.55

DB versus SST 85.10 92.18 96.53 86.34

DB versus PPT 86.73 83.97 86.82 69.30

SST versus V2 77.61 74.00 50.40 58.68

SST versus V3 94.47 88.15 81.09 80.72

SST versus DB 84.93 88.15 81.33 82.25

SST versus PPT 86.85 83.76 82.30 61.25

PPT versus V2 78.58 79.13 83.02 79.02

PPT versus V3 94.87 93.34 93.94 92.06

PPT versus DB 86.24 82.72 73.87 86.35

PPT versus SST 86.98 77.96 75.82 86.97

3.43%, 10.29%, 9.09%, and 60.21% for SVM, k-NN, NNET, and NB, respec-
tively. Our entropy-based approach improves the Accuracy by 1.04%, 0.11%, 2.70%,
and 79.27% for SVM, k-NN, NNET, and NB, respectively, for testing dataset V3.
For testing dataset SST, our approach improves the Accuracy by 5.46%, 13.35%,
16.66%, and 76.19% for SVM, k-NN, NNET, and NB, respectively. Our entropy-
based approach improves the Accuracy by 8.77%, 5.66%, 11.59%, and 60.12% for
SVM, k-NN, NNET, and NB, respectively, for testing dataset PPT.

Accuracy for Training Dataset SST
For testing dataset V2, our entropy-based approach improves theAccuracy by 3.14%,
1.08%, and 49.11% for SVM, k-NN, and NB, respectively. Our entropy-based
approach improves the Accuracy by 0.92% and 75.93% for SVM and NB, respec-
tively, for testing dataset V3. For testing dataset DB, our approach improves the
Accuracy by 7.89%, 11.11%, 4.18%, and 75.83% for SVM, k-NN, NNET, and NB,
respectively. Our entropy-based approach improves the Accuracy by 8.89%, 5.25%,
4.02%, and 52.07% for SVM, k-NN, NNET, and NB, respectively, for testing dataset
PPT.



Bug Priority Assessment in Cross-Project … 119

Accuracy for Training Dataset PPT
For testing dataset V2, our entropy-based approach improves the Accuracy by
4.33%, 5.85%, 8.59%, and 70.95% for SVM, k-NN, NNET, and NB, respectively.
Our entropy-based approach improves the Accuracy by 1.42%, 1.64%, 0.38%, and
84.93% for SVM, k-NN,NNET, andNB, respectively, for testing datasetV3. For test-
ing dataset DB, our approach improves the Accuracy by 9.23%, 5.62%, and 72.92%
for SVM, k-NN, and NB, respectively. Our entropy-based approach improves the
Accuracy by 7.46% and 75.73% for SVM and NB, respectively, for testing dataset
SST.

Out of 19 combination cases, SVM, k-NN, NNET, and NB outperform in 19,
16, 14, and 19 cases, respectively, in comparison with Sharma et al. [2]. Our
approach improves the Accuracy 0.92–11.69% for SVM, 0.11–13.35% for
k-NN, 0.38–16.66% for NNET, and 49.11–91.93% for NB across all the 19
combinations for bug priority prediction in cross-project context. SVM and
NB outperforms for bug priority prediction across all the 19 combinations.

Table 3 shows the best training datasetwith highestAccuracy for differentmachine
learning techniques. Across all the machine learning techniques, on the basis of
Accuracy, DB is the best training dataset for V2 testing dataset, DB is the best
training dataset for V3 testing dataset, SST is best training dataset for DB testing
dataset, DB is the best training dataset for SST testing dataset, and V2 is the best
training dataset for PPT testing dataset.

Avg. F-Measure for Training Dataset V2
From Table 4, we observed that the value of F-measure (avg.) lies between 34.32%–
48.49%, 30.69%–40.52%, 31.63%–40.04%, and 35.13%–39.44% for training can-
didates V3, DB, SST, and PPT, respectively, across all the machine learning
techniques.

Avg. F-Measure for Training Dataset V3
We obtained the value of F-measure (avg.) that lies between 33.94%–35.22%,

Table 3 Classifier-wise best training candidate with highest accuracy

Best training dataset (Accuracy %)

Testing datasets SVM k-NN NNET NB

V2 PPT (78.58) DB (83.29) DB (83.14) PPT (79.02)

V3 V2 (95.51) DB (91.05) DB (96.07) V2 (95.59)

DB PPT (86.24) SST (88.15) V3 (86.21) V2 (86.40)

SST PPT (86.98) DB (92.18) DB (96.53) PPT (86.97)

PPT V2 (89.53) V2 (88.13) V2 (91.02) V2 (89.48)



120 M. Sharma et al.

Ta
bl
e
4

A
ve
ra
ge

pr
ec
is
io
n
(P
),
re
ca
ll
(R
),
an
d
F-
m
ea
su
re

(F
)
fo
r
tr
ai
ni
ng

da
ta
se
t(
V
2
pr
od
uc
t)

Te
st
in
g
da
ta
se
ts

SV
M

k-
N
N

N
N
E
T

N
B

P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)

V
3

40
.7
5

33
.4
7

36
.1
9

52
.2
9

53
.9
1

48
.4
9

31
.5
3

41
.4
4

34
.3
2

76
.8
3

40
.1
5

42
.5
8

D
B

32
.2
8

34
.4
6

33
.3
0

45
.6
1

37
.9
9

40
.5
2

28
.0
5

34
.7
1

30
.6
9

48
.8
7

35
.7
8

35
.8
3

SS
T

33
.9
4

33
.5
3

33
.5
2

48
.9
1

36
.8
1

40
.0
4

28
.7
8

35
.8
4

31
.6
3

54
.9
3

34
.1
0

34
.7
6

PP
T

39
.9
0

34
.1
4

35
.1
3

65
.5
5

35
.3
3

38
.5
6

36
.2
7

35
.7
2

35
.8
8

45
.5
8

37
.4
5

39
.4
4



Bug Priority Assessment in Cross-Project … 121

33.53%–35.98%, and 32.04%–35.96% for training candidates DB, SST, and PPT,
respectively, across all the machine learning techniques as given in Table 5.

Avg. F-Measure for Training Dataset DB
Table 6 shows the value of F-measure (avg.) that lies between of 25.23%–41.53%,
26.33%–38.09%, 30.93%–51.12, and 32.30%–42.75% for training candidates V2,
V3, SST, and PPT, respectively, across all the machine learning techniques for bug
priority prediction.

Avg. F-Measure for Training Dataset SST
From Table 7, we observed that the value of F-measure (avg.) lies between
25.00%–39.50%, 26.27%–38.80%, 32.46%–51.34%, and 31.84%–46.00% for train-
ing candidates V2, V3, DB, and PPT, respectively, across all the machine learning
techniques.

Avg. F-Measure for Training Dataset PPT
Table 8 shows the value of F-measure (avg.) that lies between 26.71%–40.29%,
29.10%–39.88%, 27.88%–40.53%, and 27.64%–37.54% for training candidates V2,
V3, DB, and SST, respectively, across all the machine learning techniques.

Table 9 shows the best training dataset with highest F-measure (avg.) for different
machine learning techniques. Across all the machine learning techniques, on the
basis of F-measure, DB is the best training candidate for V2 testing dataset, V2 is the
best training candidate for V3 testing dataset, SST is best training candidate for DB
testing dataset, DB is the best training candidate for SST testing dataset, and SST is
the best training candidate for PPT testing dataset.

Figure 2 shows the Accuracy comparison using SVMmachine learning technique
for cross-project bug priority prediction.

Figure 3 shows the Accuracy comparison using k-NNmachine learning technique
for cross-project priority prediction.

Figure 4 shows theAccuracy comparisonusingNNETmachine learning technique
for cross-project priority prediction.

Figure 5 shows the Accuracy comparison using NB machine learning technique
for cross-project priority prediction.

5 Conclusion

In the absence of data for building a classifier, cross-project study provides a solution.
In this paper, we have proposed an approach for cross-project bug priority prediction
using three attributes, bug severity, summary weight, and summary entropy. By con-
sidering learning from the uncertainty, we have derived an attribute termed as sum-
mary entropy using Shannon entropy. To build the classifier, we have used machine
learning techniques, namely Support Vector Machine (SVM), k-Nearest Neighbors
(k-NN), Naïve Bayes (NB), and Neural Network (NNET). The built-in classifiers



122 M. Sharma et al.

Ta
bl
e
5

A
ve
ra
ge

pr
ec
is
io
n
(P
),
re
ca
ll
(R
),
an
d
F-
m
ea
su
re

(F
)
fo
r
tr
ai
ni
ng

da
ta
se
t(
V
3
pr
od
uc
t)

Te
st
in
g
da
ta
se
ts

SV
M

k-
N
N

N
N
E
T

N
B

P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)

D
B

34
.9
6

33
.6
7

33
.9
4

52
.3
3

34
.5
5

35
.2
2

34
.9
2

33
.8
7

34
.0
6

33
.8
2

34
.9
9

34
.3
1

SS
T

35
.4
1

32
.7
8

33
.5
3

49
.8
0

33
.9
1

35
.9
8

35
.4
5

32
.9
3

33
.6
6

35
.1
4

33
.7
3

34
.1
1

PP
T

35
.6
4

31
.5
4

32
.7
6

45
.2
4

30
.3
8

32
.0
4

35
.6
7

31
.5
0

32
.7
4

33
.3
0

41
.2
2

35
.9
6



Bug Priority Assessment in Cross-Project … 123

Ta
bl
e
6

A
ve
ra
ge

pr
ec
is
io
n
(P
),
re
ca
ll
(R
),
an
d
F-
m
ea
su
re

(F
)
fo
r
tr
ai
ni
ng

da
ta
se
t(
D
B
pr
od
uc
t)

Te
st
in
g
da
ta
se
ts

SV
M

k-
N
N

N
N
E
T

N
B

P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)

V
2

30
.6
7

25
.1
8

25
.2
3

43
.1
3

43
.5
2

41
.5
3

33
.6
5

34
.7
5

32
.7
8

34
.9
2

39
.2
7

35
.5
8

V
3

35
.2
6

24
.3
6

26
.3
3

40
.3
0

43
.8
5

38
.0
9

38
.5
7

34
.3
0

34
.3
6

29
.0
5

42
.2
7

31
.5
8

SS
T

35
.1
3

29
.6
1

30
.9
3

51
.2
9

51
.1
4

51
.1
2

35
.1
0

32
.6
8

33
.3
9

69
.6
6

33
.6
1

34
.7
8

PP
T

45
.2
7

30
.6
7

32
.3
0

43
.2
4

44
.5
9

42
.7
5

37
.2
2

34
.3
6

34
.9
1

43
.6
9

38
.2
3

36
.6
3



124 M. Sharma et al.

Ta
bl
e
7

A
ve
ra
ge

pr
ec
is
io
n
(P
),
re
ca
ll
(R
),
an
d
F-
m
ea
su
re

(F
)
fo
r
tr
ai
ni
ng

da
ta
se
t(
SS

T
pr
od
uc
t)

Te
st
in
g
da
ta
se
ts

SV
M

k-
N
N

N
N
E
T

N
B

P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)

V
2

30
.7
5

24
.9
9

25
.0
0

39
.6
7

43
.9
3

39
.5
0

29
.7
6

33
.3
1

27
.3
2

33
.6
1

39
.9
4

32
.8
9

V
3

35
.1
7

24
.3
2

26
.2
7

41
.6
3

42
.4
0

38
.8
0

34
.3
3

35
.9
6

32
.8
7

31
.5
4

42
.3
1

31
.4
6

D
B

34
.6
7

31
.7
4

32
.4
6

50
.6
3

53
.0
5

51
.3
4

40
.6
3

44
.3
9

41
.2
0

38
.6
3

36
.0
4

34
.8
5

PP
T

35
.3
2

30
.5
2

31
.8
4

48
.3
0

51
.5
6

46
.0
0

40
.1
0

48
.6
7

39
.3
4

40
.8
5

40
.7
6

32
.9
2



Bug Priority Assessment in Cross-Project … 125

Ta
bl
e
8

A
ve
ra
ge

pr
ec
is
io
n
(P
),
re
ca
ll
(R
),
an
d
F-
m
ea
su
re

(F
)
fo
r
tr
ai
ni
ng

da
ta
se
t(
PP

T
pr
od
uc
t)

Te
st
in
g
da
ta
se
ts

SV
M

k-
N
N

N
N
E
T

N
B

P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)
P
(%

)
R
(%

)
F
(%

)

V
2

30
.4
5

26
.5
7

26
.7
1

49
.5
5

32
.4
3

35
.4
1

29
.4
0

34
.7
7

31
.8
4

41
.5
3

39
.6
8

40
.2
9

V
3

35
.1
8

26
.8
3

29
.1
0

44
.8
2

29
.0
6

32
.7
1

28
.2
0

34
.0
7

30
.4
3

38
.9
8

43
.4
1

39
.8
8

D
B

34
.1
3

34
.6
5

34
.2
4

47
.7
1

41
.7
0

40
.5
3

25
.4
8

33
.7
2

27
.8
8

33
.7
6

35
.0
4

34
.3
0

SS
T

35
.2
7

33
.6
1

34
.0
6

42
.6
9

41
.4
1

37
.5
4

25
.0
0

34
.3
5

27
.6
4

54
.8
8

33
.9
2

34
.3
0



126 M. Sharma et al.

Table 9 Classifier-wise best training candidate with highest F-measure (average)

Best training dataset (average F-measure)

Testing datasets SVM k-NN NNET NB

V2 PPT (26.71) DB (41.53) DB (32.78) PPT (40.29)

V3 V2 (36.191) V2(48.49) DB (34.36) V2 (42.58)

DB PPT (34.24) SST (51.34) SST(41.20) V2 (35.83)

SST PPT (34.06) DB (51.12) V3 (33.36) DB (34.78)

PPT V2 (35.13) SST (46.00) SST (39.34) V2 (39.44)

Fig. 2 SVM accuracy comparison (proposed work vs. Sharma et al., 2014 [2])

Fig. 3 k-NN accuracy comparison (proposed work vs. Sharma et al., 2014 [2])



Bug Priority Assessment in Cross-Project … 127

Fig. 4 NNET accuracy comparison (proposed work vs. Sharma et al., 2014 [2])

Fig. 5 NB accuracy comparison (proposed work vs. Sharma et al., 2014 [2])

based on these techniques predict the priority of a reported bug in cross-project
context very accurately and outperform with the work available in the literature.

References

1. M. Sharma, P. Bedi, K.K. Chaturvedi, V.B. Singh, Predicting the priority of a reported bug
using machine learning techniques and cross project validation, in Proceedings of the 12th



128 M. Sharma et al.

International Conference on Intelligent SystemsDesign and Applications (ISDA) (Kochi, India,
2012), pp. 539–545

2. M. Sharma, P. Bedi, V.B. Singh, An empirical evaluation of cross project priority prediction.
Int. J. Syst. Assur. Eng. Manage. 5(4), 651–663 (2014)

3. J. Kanwal, O. Maqbool, Managing open bug repositories through bug report prioritization
using SVMs, in Proceedings of the International Conference on Open-Source Systems and
Technologies (Lahore, Pakistan, 2010)

4. J. Kanwal, O. Maqbool, Bug prioritization to facilitate bug report triage. J. Comput. Sci.
Technol. 27(2), 397–412 (2012)

5. M. Alenezi, S. Banitaan, Bug reports prioritization: which features and classifier to use, in 12th
International Conference on Machine Learning and Applications (IEEE, 2013), pp. 112–116

6. L.Yu,W. Tsai,W. Zhao, F.Wu, Predicting defect priority based on neural networks, inProceed-
ings of the 6th International Conference on Advanced Data Mining and Applications (Wuhan,
China, 2010), pp. 356–367

7. Y. Tian, D. Lo, C. Sun, DRONE: predicting priority of reported bugs by multi-factor analysis,
in IEEE International Conference on Software Maintenance (2013), pp. 200–209

8. T. Menzies, A. Marcus, Automated severity assessment of software defect reports, in Pro-
ceedings of International Conference on Software Maintenance (IEEE, New York, 2008),
pp. 346–355

9. T. Zimmermann, N. Nagappan, H. Gall, Cross-project defect prediction: a large scale experi-
ment on data vs. domain vs. process, in Proceedings of the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (2009), pp. 91–100

10. B. Turhan, T. Menzies, A.B. Bener, J.D. Stefano, On the relative value of cross-company and
within-company data for defect prediction. Empir. Softw. Eng. (2009). https://doi.org/10.1007/
s10664-008-9103-7

11. Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software defect
prediction. Inf. Softw. Technol. 54, 248–256 (2011)

12. Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, An investigation on the feasibility of cross-project
defect prediction, in Automated Software Engineering (2012), pp. 167–199

13. F. Peters, T.Menzies, A.Marcus, Better cross company defect prediction, in 10th IEEEWorking
Conference on Mining Software Repositories (MSR) (IEEE, New York, 2013), pp. 409–418

14. G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, S. Panichella, Multiobjective
cross-project defect prediction, in IEEE 6th International Conference on Software Testing,
Verification and Validation (ICST) (IEEE, New York, 2013), pp. 252–261

15. J. Nam, S.J. Pan, S. Kim, Transfer defect learning, in Proceedings of International Conference
on Software Engineering (IEEE, New York, 2013), pp. 382–391

16. D. Ryu, O. Choi, J. Baik, Value-cognitive boosting with a support vector machine for cross-
project defect prediction. Empir. Softw. Eng. 21(1), 43–71 (2016)

17. V.B. Singh, S. Misra, M. Sharma, Bug severity assessment in cross project context and
identifying training candidates. J. Inf. Knowl. Manage. 16(01), 1750005 (2017)

18. A.E. Hassan, Predicting faults based on complexity of code change, in Proceedings of
International Conference on Software engineering (ICSE 09) (2009), pp. 78–88

19. K.K. Chaturvedi, P.K. Kapur, S. Anand, V.B. Singh, Predicting the complexity of code changes
using entropy-based measures. Int. J. Syst. Assur. Eng. Manage. Spr. 5, 155–164 (2014)

20. S. Kamavaram, K. Goseva-Popstojanova, Entropy as a measure of uncertainty in software
reliability, in 13th Int’l Symposium Software Reliability Engineering (2002), pp. 209–210

21. I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, T. Euler, YALE: rapid prototyping for
complex datamining tasks, inProceedings of the 12th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-06) (2006)

22. X. Wang, Y. He, Learning from uncertainty for big data. IEEE Syst. Man Cybern. Mag. 26–32
(2016)

23. [IEEE88], IEEE standard dictionary of measures to produce reliable software, IEEE Std 982.1-
1988, Institute of Electrical and Electronics Engineers (1989). http://www.rapid-i.com

https://doi.org/10.1007/s10664-008-9103-7
http://www.rapid-i.com

	 Bug Priority Assessment in Cross-Project Context Using Entropy-Based Measure
	1 Introduction
	2 Related Work
	3 Description of Datasets, Bug Attributes, and Model Building
	3.1 Description of Datasets
	3.2 Bug Attributes
	3.3 Model Building

	4 Results and Discussion
	5 Conclusion
	References




