
An Intelligent Approach for CRC Models
Based Agile Software Requirement

Engineering Using SBVR

Hina Afreen(&) and Umer Farooq

The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
hinaafreen02@gmail.com, umer.bwn1@gmail.com

Abstract. In requirement engineering (RE) for agile software development, the
Class-Responsibility-Collaborator (CRC) models are used as important brain-
storming tool. However, manual generation of such CRC models by analyzing
the requirements is a difficult and time-consuming task due to ambiguity and
informal nature of natural languages-based software requirements. This paper
introduces an improved requirement engineering technique based on CRC
models that can help in specifying and analyzing software requirements in a
better and faster way and curtailing difficulties associated with the traditional RE
analysis technique. The proposed technique employs Semantics of Business
Vocabulary and Rules (SBVR) to capture and specify software requirements in a
controlled natural language. The SBVR representation is processed to extract
object-oriented information and map the extracted information to CRC models
in both textual and visual form. The proposed approach is implemented as an
Eclipse plugin prototype SBVR2CRC as a proof of concept and the results of
the experiments validate the effectiveness of the presented approach. Results
show that such automated approach not only saves certain time and effort but
also assists in generation of better CRC models and simplifies the CRC models
based agile software development.

Keywords: Agile modeling � Requirement engineering � CRC models � SBVR

1 Introduction

In recent years, adoption of agile methodologies for software development has resulted in
not only a rapid development of high-quality software but also delivering the value to
customer [1]. Agile methods are totally different from standard SE process and based on
face-to-face communication and iterative development [2]. Agile requirement engi-
neering is a flexible, quicker and modern way of requirements elicitation that helps to
make rapid delivery of software [3]. There are different reasons of agile requirements
engineering success in software development process. One of the key reasons is face to
face communication that makes requirements clearer. Moreover, agile requirement
engineering allows customer to freely communicate with team throughout software
development process while traditional requirement engineering only allow early stage
communication of customer with development team that creates a gigantic gape in
requirement understanding.

© Springer Nature Singapore Pte Ltd. 2020
I. S. Bajwa et al. (Eds.): INTAP 2019, CCIS 1198, pp. 372–384, 2020.
https://doi.org/10.1007/978-981-15-5232-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5232-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5232-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5232-8_32&domain=pdf
https://doi.org/10.1007/978-981-15-5232-8_32

The requirement expert people find requirements elicitation techniques like brain-
storming are lengthy and laborious. The Class-Responsibility-Collaborator (CRC) [4,
5] models are typically used brain-storming tool for Agile based requirements elici-
tation and specification [6]. These days, the agile teams often use CRC models in
design of a distinct challenging user story. However, analysis of software requirements
and CRC cards based modeling can be a challenging task due to ambiguity and
informal natural of natural languages typically used for capturing software require-
ments. Semantics of Business Vocabulary and Rules (SBVR) [7] has emerged into a
widely adopted standard in the recent years, originally introduced by Object Man-
agement Group (OMG). SBVR can be useful in capturing and specifying software
requirements in a controlled natural language such as Structured English with under-
lying semantics. In this paper, we present an intelligent and novel approach to generate
Class-Responsibility-Collaborator (CRC) models by automatic extraction of object
oriented information from SBVR based software requirements and then transform the
extracted information into CRC models. CRC cards exhibit an effective way to rep-
resent requirement specifications that plays very vital role in software development
process.

The rest of this paper is structured into following sections: Sect. 2 provides related
work. Section 3 depicts the framework of presented prototype tool, SBVR2CRC.
Section 4 explains an experiment and results. Section 5 describes the conclusion and
highlights the future work.

2 Related Work

The use of artificial intelligence techniques and methodologies to automate and
improve the traditional practices and processes of software engineering is not a new
idea. One of the applications of such work is automated generation of class models
from natural language text such as Overmyer [8], Harmain [9], Gomes [10], Bajwa
[11], Deeptimahanti [12], Sagar [13], Gulia [14], and Arora [15]. Similarly, object
oriented analysis of SBVR to generate UML class models has also been partially
achieved previously such as SBVR to UML models (Raj [16]), SBVR to class models
(Bajwa [17]), SBVR to UML models (Njonko [18]) and extraction of SBVR from class
models (Skersys [20]). However, the object-oriented analysis discussed in the men-
tioned researches is partial and addresses subset of UML models. A few of these above-
mentioned works are discussed in the following text to highlight the research gap.

Raj et al. [16] presented an approach to transform SBVR business design into three
UML diagrams i.e. activity diagram, sequence diagram and class diagram. Raj’s work
to generate UML class diagram is at very early stage and reuse some existing trans-
formation rules that are described in official release of SBVR specifications.

Moreover, this approach does not address various object-oriented elements such as
methods, interfaces, data types, super lass, sub class etc.

Another automated approach is presented by Bajwa et al. [17] for object-oriented
analysis of SBVR based software requirements to generate UML class models. The
used approach systematically analyzes SBVR text and then formally transforms object-
oriented information into UML class diagrams. However, similar to other approaches,

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 373

this approach performs partial object-oriented analysis and does not cover extraction of
super-class, sub class, categorization, data types, etc.

Another contribution is made by Nemuraite et al. [21] by presenting a tool VeTIS
that provides editing facility of SBVR vocabularies and rules and can also partially
transforms them to UML and OCL models. Nemuraite’s work specifies requirements
by using use cases and performs modeling of business process with the help of
activities. This tool is integrated with Magic Draw UML case tool.

Another theoretical approach was presented by Awasthi et al. [19] to generate UML
class diagram from SBVR based business design. An algorithm was used in presented
research to partially extract object-oriented information and VeTIS tool is used to
evaluate its results.

One more automated transformation approach was proposed by Bonais et al. [22] to
produce the structural design models by defining a subset of SBVR specifications
according to the elements of UML class diagram. A formal meta-model of identified
SBVR subset is defined and used to generate UML class diagram for the defined subset
using a formal transformation. However, this work also generates partial UML class
models as the support to extract super-class, sub-class, visibility, multiplicity, inter-
faces, etc. is not provided.

3 The SBVR2CRC

This section elaborates the presented approach to automatically generate CRC cards
from software requirements specification that are described in English text.
SBVR2CRC approach consists of two main steps. In first step, SBVR specifications are
generated by processing software specifications that are taken as input text. Gener-
ated SBVR specifications consist of business vocabulary and business rules. We have
only required business vocabulary to generate CRC model. At second step, CRC model
is generated using object-oriented information (classes, inheritance, generalization,
aggregation etc.) that is extracted from SBVR business vocabulary. Here, we also
define transformation rules that transform OO information into CRC model. Remaining
part of this section explains all of these steps in detail.

3.1 Generate SBVR Model

To generate SBVR model, SBVR2CRC tool takes English software requirement as
input and process these requirements to generate elements of a SBVR model and these
elements are further processed to extract SBVR vocabulary and SBVR rules to com-
plete a SBVR model as depicted in Fig. 1.

The processing of software requirements specifications text is divided into three
steps like lexical, syntax and semantic analysis to generate SBVR based specifications.
Lexical analysis phase starts with the lexical processing of text file that contains
software requirements specifications. Lexical processing is process of producing stream
of characters and it is referred to as scanning.

374 H. Afreen and U. Farooq

The lexical analysis phase is further categorized four phases that are sentence
splitting, tokenization, POS tagging and lemmatization. After performing lexical
analysis, now we want to define the sentence structure of the input text. To accomplish
this, we have used Stanford parser [23] that generates a parse tree. After syntactic
analysis of text, generated parse tree is further used to perform semantic analysis.
Shallow semantic parsing performed in our approach is similar to the Sematic Role
Labeling (SRL) [24]. In the used approach, semantic roles are automatically assigned to
each token in a sentence with the help of Stanford NER (Named Entity Recognition)
also called CRFClassifier [25]. Since, Stanford CRFClassifier provides partial Semantic
Role Labelling (SRL); a set of rules are user to identify complete set of semantic roles.

3.2 Transformation of SBVR Model to CRC Model

A complete description of the process starts from taking English software requirements
to finally CRC model generation is shown in Fig. 2. The last step is the validation of
overall transformation result i.e. CRC model. Validation of CRC model is an optional
and during validation stage, one can go back and modify the concepts formed in the
preceding stages if necessary.

A CRC card has two sides: front side and back side. The front side of card
represents class name, responsibilities and collaborators. The class name represents the
name of class for which CRC card is drawn and shown on top of the card. The
responsibilities depicts knowing and doing of a class and are shown on left column of a
CRC card as depicts in Fig. 3. Each class has some responsibility to fulfil. If a class has
sufficient information to perform a responsibility, then it does not need collaborator
class. The collaborator classes are needed when a class does not sufficient information
to fulfill a job. The collaborators of a class are mentioned on right-hand column of a
class [26].

NL Software
Requirements

SBVR Model

SBVR verb
concepts

Formation of SBVR
business vocabulary

SBVR general
concepts

SBVR business
rules

Fig. 1. SBVR model generation from NL text

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 375

The backside of CRC card represents attributes and associations. The associations
are represented as is - a relationship, aggregation, generalization, etc. It is important to
note that consider front side of CRC card as the public information and the back side as
encapsulated implementation details.

The NL software requirement has been processed in previous step to generate
SBVR vocabulary and rules that define SBVR model. To generate CRC model, there is
need to identify SBVR model elements and their corresponding CRC elements as
shown in Table 1. After that perform their mapping using transformation rules that are
explained in next sub section.

By using the SBVR to CRC mappings given in Table 1, a set of transformation
rules are defined that are used to generate metadata of the target CRC model. Each
Transformation rule consists of two parts. One is Left-hand-side (LHS) for source
pattern and second is Right-Hand-Side (RHS) for target pattern.

NL Software
Requirements

Validate CRC model

SBVR Model

Generate CRC Model

OO analysis of
SBVR business

Fig. 2. Transformation of SBVR to CRC model

Fig. 3. A template of a CRC card [generated by software ideas modeler]

376 H. Afreen and U. Farooq

Extracting Class Name: CRC modeling provides a simple, easy and powerful way to
identify and organize classes relevant to system requirements. CRC card has been
divided into three sections [4]. The top section of CRC card contains class name.
A collection of similar objects represents a class. In SBVR vocabulary, all object types
are used identify to classes. The Rule1 contains three main parts of CRC card i.e. class
name, responsibility and collaboration. To describe each part of CRC card, a trans-
formation rule is needed. So Rule1 consists of three more rules i.e. Rule 2, Rule3 and
Rule4. Rule1 explains how CRC card designed is given below:

Extracting Responsibility: Anything that a class knows or does is responsibility.
Each class knows about its basic information and functionality that a class can perform.
Every class must have some responsibility to be performed. If a class has sufficient
information to accomplish assigned responsibility then it does not need any collabo-
rator class otherwise it needs collaboration [27].

Extract Class Attribute: Each class has some basic information. To represent this
information, all characteristics or unary verb concept (excluding action verbs) that are
extracted from SBVR vocabulary are used.

Extracting Class Methods: A CRC card contains attributes and method of a class.
Methods describe basic functionality that a class can perform [27]. There may be some
responsibility that a class does not perform and to perform this responsibility class
needed collaboration with other class that has ability to perform required functionality.
Now, we want to extract methods for a class. In CRC card diagram, left section
contains responsibilities that describe what a class knows or does. OO analysis of
SBVR vocabulary shows that verb concepts describe actions that all common nouns
can perform. So, all the verb concepts (associated to noun concept) are extracted from
SBVR vocabulary is mapped to methods of a class.

After identifying the collaborator class, it is necessary to add responsibilities and
check whether this class can perform its responsibilities. If identified collaborator class
does not fulfill its responsibility then it requires another collaborator class. There are
different types of generic relationship between classes that helpful in identification of
collaborators.

Table 1. Mapping of SBVR model elements to CRC model elements

SBVR element CRC model - front side CRC model - back side

General noun concept Class name –

Verb concept Responsibility –

General noun concept Collaborator –

Is-property-of or unary verb concept – Attribute
Associative verb concept – Association
Partitive verb concept – Aggregation
Categorization verb
concept

Generalization
(superclass, subclass)

–

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 377

• Extract is-part-of relationship: There are number of classes that are extracted from
software requirements specifications and have some relationship with other classes
in terms of functionality. The is-part-of relationship is used to connect all the classes
that are part of an aggregate class. This relationship may be a composition or
aggregation between classes.

• Find Aggregation: In this type of relationship, a part exists independently of whole
and also whole is not especially responsible for parts. Now, we want to express
relationship that exist between these classes so that CRC cards effectively show
requirements specifications that leads to agile software development. To find rela-
tionship between these classes, the categorization verb concepts are mapped to
aggregation. The main class is subject part of verb concept while subclass is object
part of verb concept.

• Find Composition: If a part is always a part of single whole then it shows com-
position. The part exists only if the whole exist and whole is responsible for creation
of other objects.

• Extract Is-kind-of relationship: Sometimes a class uses attributes and operations of
another class additional to its own attributes. And that class does not exist without
main class. There exists a relationship of is-kind-of between two classes that
identify generalization between these classes.

• Extract Association: Sometimes, there is a more general relationship between
classes that is known as association. In association, one class relates to another
class. Association creates a links between classes. After performing OO analysis of
SBVR based software requirements specifications, we have find that the association
is formed from all associative verb concepts.

• Multiplicity: An association can be further elaborated by representing multiplicity.
By using OO information that has extracted from software requirements specifica
tions, we can represent multiplicity by using quantification with noun concept.

3.3 Drawing CRC Cards

After generating metadata of CRC model in the previous phase, the extracted metadata
is used to draw a CRC model. The CRC cards can be generated from the extracted
metadata in two ways; by XMI with a professional CASE tool or draw from scratch by
using graphics libraries in Java. In our approach, the first way is opted as it generates
professional CRC cards in a formal way. The processes of drawing a CRC card starts
from a XMI template of an empty CRC card. In our implementation, such XMI
template is generated by drawing an empty CRC card in the Visual Paradigm tool and
exporting its XMI representation.

4 Experiment and Results

In this section, we have solved an example of library system originally presented by [28].
This example is later solved by Harmain to generate UML class models. Our proposed
prototype tool takes software requirements specifications as natural language text and
then generates SBVR based software requirements specifications. The SBVR software

378 H. Afreen and U. Farooq

requirements are further processed to extract business vocabulary as explained in Sect. 3.
The SBVR software requirements are further processed to extract business vocabulary
and all the extracted SBVR elements from solved example are shown in Table 2.

Following text explains the working of the prototype tool with screen shots. The
NLbased software requirements specifications are given as input to the prototype tool
SBVR2CRC as shown in Fig. 4.

When user clicks ‘GenerateSBVR’ button in menu bar, the SBVR specifications are
generated that consists of SBVR vocabulary shown in Fig. 5.

Table 2. Total number of SBVR elements extracted from the running example

Set no. SBVR element Number of entries

1 General noun concepts 42
2 Individual concepts 6
3 Verb concepts 11
4 Associative verb concept 07
5 Partitive verb concept 03

Total number of entries 69

Fig. 4. The input given to the SBVR2CRC tool

Fig. 5. SBVR vocabulary generated by the SBVR2CRC tool

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 379

The proposed prototype tool then automatically extract CRC meta data from SBVR
vocabulary and embed this metadata in a XMI of a blank CRC card that have exported
from Visual Paradigm tool. We have also generated CRC XMI after embedding the
metadata that is shown in Fig. 6.

Our proposed tool has also extracted metadata from given input according to the
transformation rules given in Sect. 3. The meatdata that is extracted is also shown in
Fig. 7.

The proposed prototype tool then automatically extract CRC meta data from SBVR
vocabulary and embed this metadata in a XMI of a blank CRC card that have exported
from Visual Paradigm tool. We have also generated CRC XMI after embeding the
meatdata.

The CRC XMI consists of information about class name, its attributes, responsi-
bilities and also super classes and sub classes of main class it have. A CRC is generated
from the XMI is shown in Fig. 8.

Now, evaluation of proposed tool is performed by using statistical measures pre-
cision and recalls. To accomplish this, we compare our presented prototype tool with
another tool presented by Harmain et al. [9] because a similar approach was presented
to generate class diagram from natural language. To do this comparison, first of all
there is needed to identify three sets. The precision and recall measures are defined on
the cardinality basis of these three sets is given below. The precision and recall per-
centage of all CRC elements generated by our transformation and Harmain’s trans-
formation is given in Table 3.

Fig. 6. SBVR rules generated by the SBVR2CRC tool

Fig. 7. SBVR model mapping to CRC model by the SBVR2CRC tool

380 H. Afreen and U. Farooq

Fig. 8. A CRC card generate from the XMI using Visual Paradigm tool.

Table 3. Precision and recall measures of CRC metadata

CRC
element

Expected
CRC
element TP

Our Transformation

FN FP Precision Recall TP

Harmain’s Transformation

FN FP Precision Recall

Classes 10 10 0 0 100% 100% 10 0 5 0.67 100%

Attributes 10 10 0 0 100% 100% 8 2 5 0.62 100%

Methods 11 11 0 0 100% 100% 9 2 4 0.69 100%

Association 07 07 0 0 100% 100% 5 2 5 0.44 71%

Aggrega-
tion

0 0 0 0 100% 100% 0 0 0 0 0

Super
class

1 1 0 0 100% 100% 0 1 0 N/A 0

Sub class 2 2 0 0 100% 100% 0 2 0 N/A 0

Visibility 21 19 2 2 95% 95% 0 21 0 N/A 0

Primitive
Data Type

17 16 1 1 100% 94% 0 17 0 N/A 0

Composi-
tion 02 01 0 1 50% 100% 1 1 1 50% 50%

Overall 81 77 3 4 94.5% 96% 33 48 20 62% 41%

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 381

We have also plotted the clustered column chart that compares values of precision
and recall of SBVR2CRC prototype tool and Harmain’s transformation shown in
Fig. 9. Harmain’s transformation did not generate several important elements like
aggregation, super class, sub class, visibility and primitive data type that also greatly
influenced the overall precision of their transformation. Our presented transformation
efficiently identifies all these important elements that are used to generate CRC model
and makes a great contribution in this aspect that leads towards generation of quick and
accurate software development.

5 Conclusion and Future Work

The main objective of paper was to address the challenging aspect of software
requirements specifications captured in natural language that are difficult to machine
process and produced low quality software. We presented a controlled representation of
software requirements that has greatly improved the accuracy of machine processing
and generate high quality software in an agile way. Our proposed approach starts from
generation of SBVR based requirements specifications. After that perform automatic
analysis of SBVR based specifications, CRC metadata like association, super class,
subclass, visibility, primitive data type is extracted that all other tools cannot extract.
Finally, SBVR2CRC prototype tool maps this extracted information into CRC cards
that represent software requirements specifications not only in an efficient way but also
improve the accuracy of software as well as faster the development process. Moreover,
our automated tool can be helpful for software developers to efficiently represent
software requirements specifications that results into agile software development and
also increase overall efficiency of development process.

Our presented approach also identifies all CRC elements that are not considered by
any other approach. There is not a single approach to generate CRC model of software
requirements specification. For the future work, we have planned to extend our
approach to handle alias, interface. We expect that our presented approach could play

Fig. 9. The precision and recall clustered column chart

382 H. Afreen and U. Farooq

an important role in capturing software requirements specification in the form of CRC
model that not only speed up the whole development process but also produce high
quality software.

References

1. Sillitti, A., Succi, G.: Requirements engineering for agile methods. In: Aurum, A., Wohlin,
C. (eds.) Engineering and Managing Software Requirements, pp. 309–326 (2005)

2. Cao, L., Ramesh, B.: Agile requirements engineering practices: an empirical study. IEEE
Softw. 25(1), 60–67 (2008)

3. Batool, A., Hafees, Y.: Comparative study of traditional requirement engineering and agile
requirement engineering. In: 15th International Conference on Advanced Communication
Technology (ICACT), pp. 1006–1014 (2013)

4. Beck, K., Cunningham, W.: A laboratory for teaching object-oriented thinking. In:
Proceedings of OOPSLA, pp. 1–6 (1989)

5. Wirfs, R., Alan, B.: Object Design: Brief Tour of Responsibility Driven Design. Addison
Wesley (2003). book chapter 2, ISBN 0201379430

6. Inayt, I., Salwah, S.: A systematic literature review on agile requirements engineering
practices and challenges. Comput. Hum. Behav. 51, 915–929 (2015)

7. OMG: Semantics of Business Vocabulary and Rules (SBVR) Standard v.1.0. Object
Management Group (2008). http://www.omg.org/spec/SBVR/1.0/

8. Overmyer, S.: Conceptual modeling through linguistic analysis using LIDA. In: Proceedings
of ICSE 2001 23rd international conference on Software Engineering, pp. 104–410 (2001)

9. Harmain, H.M., Gaizauska, R.: CM-builder: a natural language based CASE tool for object-
oriented analysis. Autom. Softw. Eng. 10(2), 157–181 (2003)

10. Gomes, P., Pereira, F., Paiva, P., Carreiro, P., Ferreira, J.: Reuse of UML class diagrams
using case-based composition. In: Proceedings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering (SEKE), pp. 20–24 (2004)

11. Bajwa, S., Mumtaz, S., Samad, A.: Object oriented software modeling using NLP based
knowledge extraction. Eur. J. Sci. Res. 32(3), 613–619 (2009)

12. Deeptimahanti, D., Ali, M.: An automated tool for generating UML models from natural
language requirements. In: IEEE/ACM International Conference on Automated Software
Engineering (2009)

13. Bhala, R., Sagar, V., Abirami, S.: Conceptual modeling of natural language functional
requirements. J. Syst. Softw. 88, 25–41 (2014)

14. Gulia, S., Choudhury, T.: An efficient automated design to generate UML diagram from
Natural Language Specifications. In: 6th International Conference on Cloud System and Big
Data Engineering (2016)

15. Arora, A., Sabetzadeh, L., Briand, M., Zimmer, F.: Automated checking of conformance to
requirements templates using natural language processing. IEEE Trans. Softw. Eng. 41(10),
944–968 (2015)

16. Raj, A., Prabhakar, T., Hendryx, S.: Transformation of SBVR business design to UML
models. In: Proceedings of 1st Annual India Software Engineering Conference, ISEC,
pp. 29–38 (2008)

17. Bajwa, S., I., Afreen, H.: Generating UML class models from SBVR software requirements
specifications. In: Artificial Intelligence Conference Belgian/Netherlands (2011)

18. Njonko,: From natural language business requirements to executable models via SBVR. In:
International Conference on Systems and Informatics (ICSAI), pp. 2453–2457 (2012)

An Intelligent Approach for CRC Models Based Agile Software RE Using SBVR 383

http://www.omg.org/spec/SBVR/1.0/

19. Awasthi, S.: Transformation of SBVR business rules to UML class model. In: Pfeiffer, H.D.,
Ignatov, D.I., Poelmans, J., Gadiraju, N. (eds.) Conceptual Structures for STEM Research
and Education. Lecture Notes in Computer Science (Including Subseries Lecture in AI and
Lecture Notes in Bioinformatics), pp. 277–288. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35786-2_21

20. Skersys, T., Danenas, P.: Extracting SBVR business vocabularies and business rules from
UML use case diagram. J. Syst. Sofw. (2018). https://doi.org/10.1016/j.jss.2018.03.061

21. Nemuraite, L.: Vetis tool for editing and transforming SBVR business vocabulary and rules
into UML & OCL. Inf. Technol. 377–384 (2010)

22. Bonais, M., Kinh, N., Eric, P., Wenny, R.: Automated generation of structural design models
from SBVR specification. Appl. Ontol. 11, 51–87 (2016)

23. Manning, C.D.: Par-of-speech tagging from 97% to 100%: is it time for some linguistics? In:
Proceedings of CICLing, vol. 1, pp. 171–189(2011)

24. Toutanova, K., Klein, G., et al.: Feature-rich part-of-speech tagging with acyclic dependency
network. In: Proceedings of HLT-NAACL, pp. 252–259 (2003)

25. Finkel, R.J., Grenager, T., Manning, C.: Incorporating non-local information into extraction
systems by Gibbs sampling. In: proceedings of 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 363–370 (2005)

26. Fayad, M., Hamza, H., Sanchez, H.: A pattern for an effective class responsibility
collaborator (CRC) cards. In: Proceeding of 5th IEEE Workshop on Mobile Computing
Systems and Applications USA, pp. 584–587 (2003)

27. Schach, S.R.: Object-Oriented and Classical Software Engineering. WCB/McGraw-Hill,
Boston (2011)

28. Callan, R.E.: Building Object-Oriented Systems: An Introduction from Concepts to
Implementation in C++. Computational Mechanics Publications, Southampton (1994)

384 H. Afreen and U. Farooq

https://doi.org/10.1007/978-3-642-35786-2_21
https://doi.org/10.1007/978-3-642-35786-2_21
https://doi.org/10.1016/j.jss.2018.03.061

	An Intelligent Approach for CRC Models Based Agile Software Requirement Engineering Using SBVR
	Abstract
	1 Introduction
	2 Related Work
	3 The SBVR2CRC
	3.1 Generate SBVR Model
	3.2 Transformation of SBVR Model to CRC Model
	3.3 Drawing CRC Cards

	4 Experiment and Results
	5 Conclusion and Future Work
	References

