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Abstract

Synthetic biology aims to build increasingly complex biological systems from
standard interchangeable parts. The ideal microorganism for biofuel production
may produce a single fermentation product and might possess high substrate
utilization and processing capacities. Such microorganisms may also possess fast
and deregulated pathways for sugar transport, good tolerance to inhibitors and
product, and high metabolic fluxes. The choice to produce such an organism lies
between engineering natural function and importing biosynthetic capacity which
is affected by current progress in metabolic engineering and synthetic biology.
Synthetic biology is bringing together engineers and biologists to design and
build novel biomolecular components, networks, and pathways and to use these
constructs to rewire and reprogram organisms. Recent findings that plant meta-
bolic pathways can be reconstituted in heterologous hosts and metabolism in crop
plants can be engineered to improve the production of biofuels have given new
hope for molecular biological approaches in improving food and biofuel produc-
tion. The de novo engineering of genetic circuits, biological modules, and
synthetic pathways is beginning to address these crucial problems and is being
used in related practical applications.
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11.1 Introduction

Public concerns over environmental pollution, greenhouse gas emissions, and the
shortage of raw oils are increasing, and considerable attention is turning toward
alternative, renewable sources of chemical products to reduce both dependency on
oil reserves and carbon dioxide emissions into the environment (US Energy Infor-
mation Administration 2012; Arslan et al. 2012; Kawaguchi et al. 2016; Scheffers
et al. 2016; Kumar et al. 2018; Kumar 2020). Analysis by Rogelj et al. (2011)
confirms that if the mechanisms needed to enable an early peak in global emissions
followed by steep reductions are not put in place, there is a significant risk that the
2 �C target will not be achieved. Long et al. (2015) reported the global food demand
of the future by engineering crop photosynthesis and yield potential. Recent reviews
on synthetic biology have provided excellent information about the development of
synthetic biology (Barber 2009; Khalil and Collins 2010; Erb and Zarzycki 2016;
Bhansali and Kumar 2018; Kumar et al. 2019).

The production of numerous sustainable chemicals using engineered microbes
has a potential environmental impact with a significant reduction in greenhouse gas
emissions (GGEs) while offering the potential of advanced products with improved
properties (Wu et al. 2015; Lynch 2016).

Environmental applications of synthetic biology include microbes that sense,
report, and degrade toxic chemicals (Hillson et al. 2007; Chen et al. 2014). Besides,
it has the capability to produce a variety of chemical products ranging from thera-
peutics to plastics and biofuels (Fortman et al. 2008; Lee et al. 2012; Beller et al.
2015; Sitepu et al. 2014; Yu et al. 2015; Bhansali and Kumar 2018; French 2019).

Biofuels are environmentally friendly and sustainable sources. Their production
including bioethanol, biobutanol, and biodiesel has gained considerable interest
(Jiang et al. 2019). Bioethanol was regarded as one of the most promising biofuels,
particularly as a carbon-neutral liquid transportation fuel (Jiang et al. 2019). Artifi-
cial microbial consortia are specifically constructed to broaden the scope of
feedstocks, enhance the productivity of target bio-products, etc. (Jiang et al. 2019).
Next-generation biofuels and green chemicals will be produced from lignocellulosic
materials, such as agricultural residues, woody energy crops, and municipal solid
waste, which are abundant and inexpensive (Carroll and Somerville 2009; Green
2011; Kumar 2020).

The natural fermentation produces alcohols such as ethanol and propanol, lacking
the energy density of petroleum fuels (Mackenzie 2013). According to Connor and
Atsumi (2010), some of the next-generation biofuels depend on highly precise
modification and can produce energy-dense hydrocarbon by introduction of “foreign
genes and pathways into central metabolism” of well-studied model organisms such
as yeasts and bacteria (Mackenzie 2013).

Engineering of biological systems has emerged as one of the most exciting recent
technologies (Nielsen and Keasling 2011; Kumar 2014; Farr et al. 2014; Guo et al.
2016; Gall et al. 2017). The complex oleochemicals that cannot be obtained from
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natural sources because of low abundance can be produced by introducing novel
synthetic biochemical pathways into platform chassis (Marella et al. 2018).

Jang et al. (2012) reviewed systems metabolic engineering which allows system-
atic changes of metabolic pathways toward desired goals including enhancement of
product concentration, yield, and productivity. Guo et al. (2016) reviewed the
development of metabolic engineering and synthetic biology and microbial produc-
tion of fatty alcohols from renewable feedstock in both Escherichia coli and
Saccharomyces cerevisiae. The boundaries and overlap between metabolic engi-
neering and synthetic biology are often blurry as practitioners often work in both
fields, which also share common tools (Couto et al. 2018).

The integration of protein engineering, systems biology, and synthetic biology
into metabolic engineering has extended strain engineering from local modification
to system-wide optimization. Powerful omics technologies, such as genomics,
transcriptomics, proteomics, and fluxomics, have been combined for in-depth under-
standing of glycerol metabolism and regulation of microorganism at the system level
(Wang et al. 2003; Liao et al. 2011; Beckers et al. 2016; Salazar et al. 2009; Kumar
2015; Kumar et al. 2018, 2019).

11.2 Sugar Is the Next Oil

Plant metabolic pathways can be reconstituted in heterologous hosts, and metabo-
lism in crop plants can be engineered to improve the production of biofuels.
According to Sanford et al. (2016), the theme of “sugar is the next oil” connects
chemical, biological, and thermochemical conversions of renewable feedstocks to
products which are drop-in replacements for petroleum-derived chemicals,
bio-polymers (Wang et al. 2015; Dai and Nielsen 2015), or are new to market
chemicals/materials.

11.3 Bugs to Synthetic Biofuels

Lee et al. (2008) proposed the term bugs to synthetic biofuels. Gaida et al. (2016)
reported for the first time the production of n-butanol directly from crystalline
cellulose using a single engineered organism—Clostridium cellulolyticum, a bacte-
rium. According to Becker and Wittmann (2016), E. coli has also entered the
precious market of high-value molecules and is becoming a flexible, efficient
production platform for various therapeutics, pre-biotics, nutraceuticals, and
pigments. This is enabled by systems metabolic engineering concepts that integrate
systems biology and synthetic biology into the design and engineering of powerful
E. coli cell factories.

An artificial Escherichia coli binary culture was constructed for the direct con-
version of hemicellulose into ethanol. Short-chain alcohols can also be produced in
E. coli from 2-keto acids, common intermediates in amino acid biosynthetic
pathways. By expressing genes in E. coli, six short-chain alcohols including
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1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, 3-methyl-1-butanol, and
2-phenylethanol were produced by non-fermentative pathways (Atsumi et al.
2008a, b; Liao et al. 2016).

11.3.1 Xylose Utilization

Efficient xylose utilization is one of the most important prerequisites for developing
an economic microbial conversion process of terrestrial lignocellulosic biomass into
biofuels and biochemical (Kwak and Jin 2017). Kwak and Jin (2017) reported a
robust ethanol-producing yeast Saccharomyces cerevisiae has been engineered with
heterologous xylose assimilation pathways. A two-step oxidoreductase pathway
consisting of NAD(P)H-linked xylose reductase and NAD+-linked xylitol dehydro-
genase and a one-step isomerase pathway using xylose isomerase have been
employed to enable xylose assimilation in engineered S. cerevisiae (Alper and
Stephanopoulos 2009) (Fig. 11.1).

11.3.2 Xylose Fermenting

Native Saccharomyces cerevisiae (Scer) does not consume xylose but can be
engineered for xylose consumption with a minimal set of assimilation enzymes,
including xylose reductase (Xyl1) and xylitol dehydrogenase (Xyl2) from the
xylose-fermenting Pichia stipitis (Psti) (Jeffries 2006; Van Vleet and Jeffries
2009). However, xylose fermentation remains slow and inefficient in Scer,
especially under anaerobic conditions when NADH cannot be recycled for NAD+-
dependent Xyl2 (Jeffries 2006). Therefore, improving xylose utilization in industri-
ally relevant yeasts is essential for producing economically viable biofuels from
cellulosic material (Wohlbach et al. 2011). Yeasts engineered to ferment xylose do
so slowly and cannot utilize xylose until glucose is completely consumed (Fig. 11.1).
Ha et al. (2011) engineered yeasts to coferment mixtures of xylose and cellobiose
(see also Diao et al. 2013).

The development of xylose-utilizing strains of Saccharomyces cerevisiae has
improved the prospects of lignocellulosic biorefinery, enabling the creation of full-
scale second-generation bioethanol production plants worldwide (Diao et al. 2013;
Jansen et al. 2017). Tran et al. (2018) successfully developed a high-performance
xylose-fermenting strain of S. cerevisiae, XUSE, through CRISPR–Cas9-mediated
rational engineering and evolutionary engineering. According to Tran et al. (2018),
for further engineering, XUSE could serve as a promising platform strain for
lignocellulosic biorefinery (see also Estrela and Cate 2016).

11.4 Biosynthetic Pathways of Biofuels

Different pathways of carbon feedstocks are shown by Liao et al. (2016) (Fig. 11.2).
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Different pathways can be assembled to produce molecules not currently used as
fuels, but with likely suitable properties, including fatty alcohols (Steen et al. 2010;
Feng et al. 2014), methyl ketones (Goh et al. 2012, 2014), γ-hydroxy and dicarbox-
ylic acids (Clomburg et al. 2015), and other fatty acid-derived products.

Fig. 11.1 Two routes to xylose assimilation. When xylose enters Saccharomyces cerevisiae, it can
be incorporated into the pentose phosphate pathway through either the three-enzyme pathway
containing a xylitol intermediate or a two-step process that uses a fungal or bacterial xylose
isomerase gene. The two-step process bypasses the need for the reducing power that is incorporated
in NAD- and NADP-reducing partners and has been shown to improve ethanol production.
Xylulose 5-phosphate is formed by both pathways and can enter into central carbon metabolism
through the transketolase and transaldolase reactions. (Source: Alper, H. & Stephanopoulos,
G. (2009). Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic
potential. Nature Reviews. Microbiology 7: 715–723. Retrieved from https://doi.org/10.1038/
nrmicro2186. Reproduced with license number 46456408400514)

11 Synthetic Biology and Future Production of Biofuels and High-Value Products 275

https://doi.org/10.1038/nrmicro2186
https://doi.org/10.1038/nrmicro2186


Fig. 11.2 Biosynthetic pathways of biofuels. Ethanol is produced from either pyruvate or acetyl-
CoA (orange arrows), with acetaldehyde as a common intermediate. The keto acid pathway (green
arrows) can be used to produce both branched and straight-chain alcohols. It uses parts of amino
acid biosynthesis pathways for keto acid chain elongation. This is followed by decarboxylation and
reduction of the keto acid, analogous to the conversion of pyruvate to ethanol. Fatty acid synthesis
(purple arrows) extends acyl-acyl carrier proteins (ACPs) in a cyclical manner, using malonyl-CoA
as a precursor. Fatty acyl-ACPs may be converted into free fatty acids (FFAs) with acyl-ACP
thioesterase. FFAs can be esterified to esters, such as fatty acid methyl esters (FAMEs) or fatty acid
ethyl esters (FAEEs), reduced to fatty alcohols, or reduced to fatty aldehydes followed by
decarbonylation to alkanes and alkenes. The CoA-dependent pathway (red arrows) uses reverse
β-oxidation chemistry for the production of higher alcohols or decarboxylation of the precursor
acetoacetyl-CoA for the production of isopropanol. Isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP), the universal precursors of isoprenoid biofuel biosynthesis
(blue arrows), may be produced either through the mevalonate (MVA) or methylerythritol
4-phosphate (MEP) pathway. G3P glyceraldehyde-3-phosphate. Metabolic engineering for the
production of biofuels has been reviewed by Kumar (2010), Kumar (2013), and Kumar (2015).
(Source: Liao, J. C., Mi, L., Pontrelli, S., & Luo, S. (2016). Fuelling the future: microbial
engineering for the production of sustainable biofuels. Nature Publishing Group, Nature Review.
Microbiology 14(5): 288–304. https://doi.org/10.1038/nrmicro.2016.32. Reproduced under license
number 4645730007098)
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11.5 Metabolic Engineering

Martien and Amador-Noguez (2017) suggested the major goals of metabolic engi-
neering for microbial biofuel production are (1) to direct metabolic flux toward
maximum biofuel generation, (2) to enable the use of economical feedstock such as
lignocellulose, and (3) to improve stress tolerance to inhibitors produced during
pre-processing or biofuel production (Fig. 11.3). Metabolic engineering is a process
of optimizing native metabolic pathways and regulatory networks or assembling
heterologous metabolic pathways for the production of targeted molecules using
molecular, genetic, and combinatorial approaches (Zhu and Jackson 2015). A
common strategy of metabolic engineering is to increase the endogenous supply of

Fig. 11.3 The major goals of metabolic engineering for microbial biofuel production are (1) to
direct metabolic flux toward maximum biofuel generation, (2) to enable the use of economical
feedstock such as lignocellulose, and (3) to improve stress tolerance to inhibitors produced during
pre-processing or biofuel production. The studies featured in this review apply knowledge gained
from metabolomics-based methods to achieve these goals. (Source: Martien J.I., and Amador-
Noguez D. (2017). Recent applications of metabolomics to advance microbial biofuel production.
Current Opinion in Biotechnology 43: 118–126. https://doi.org/10.1016/j.copbio.2016.11.006.
Reproduced with permission Licence number 4666750205840)
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precursor metabolites to improve pathway productivity (Leonard et al. 2010).
Several excellent reviews on systems metabolic engineering and synthetic biology
have highlighted the motivation and need for pathway balancing (Lee et al. 2008;
Völler and Budisa 2017).

Maximizing microbial biofuel production from plant biomass (i.e., lignocellu-
losic biomass or plant dry matter) requires reprogramming metabolism to ensure a
seamless supply of carbon, energy (e.g., ATP), and reducing power (e.g., NAD(P)H)
toward engineered biofuel pathways (Martien and Amador-Noguez 2017). Nature
exploits a very limited set of just 20 canonical alpha-L-amino acids (cAAs) for the
ribosomal translation of peptides and proteins. Reprogramming this process enables
the incorporation of additional ncAAs capable of delivering a variety of novel
chemical and biophysical properties into target proteins or protein-based complex
structures (Agostini et al. 2017). Significant progress has been achieved in under-
standing and engineering the de novo lipid biosynthesis in Y. lipolytica (Zhu and
Jackson 2015).

Jones et al. (2015) reviewed metabolic pathway balancing and its role in the
production of biofuels and chemicals (Fig. 11.4).

Chae et al. (2017) reviewed recent advances in systems metabolic engineering
which analyzes various omics data together, rather than just a single type of omics.
The multiomics approach can be used to elucidate various phenomena in a metabol-
ically engineered strain and to identify further engineering targets.

They further resorted to chemical hydrogenation of bisabolene into the final
product bisabolane with the ultimate goal of complete microbial production of
bisabolane. This will require the reduction of terpenes in vivo using designer
reductases and, potentially, balancing cellular reducing equivalents (Peralta-Yahya
et al. 2011).

Bisabolane as a biosynthetic alternative to D2 diesel fuel. Peralta-Yahya et al.
(2011) identified a novel biosynthetic alternative to D2 diesel fuel, bisabolane, and
engineered microbial platforms for the production of its immediate precursor,
bisabolene (Fig. 11.5). Peralta-Yahya and Keasling 2010 hypothesized that for a
fully reduced monocyclic sesquiterpene, bisabolane may serve as a biosynthetic
alternative to diesel (Figs. 11.5 and 11.6). D2 diesel, the fuel for compression
ignition engines, is a mixture of linear, branched, and cyclic alkanes with an average
carbon length of 16 (Fortman et al. 2008). Bisabolane has a carbon length (C15)
close to the average carbon length of diesel (C16). To our knowledge, there are no
reports of bisabolane as a biosynthetic alternative to D2 diesel. Source: Peralta-
Yahya, P. P., Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling, J. D., & Lee,
T. S. (2011). Identification and microbial production of a terpene-based advanced
biofuel. Nature Communications 2: 483–488. https://doi.org/10.1038/ncomms1494.
This is an open-access article distributed under the terms of the Creative Commons
CC-BY license, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.
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Fig. 11.4 Six major approaches to optimize metabolic pathways in common laboratory organisms
such as E. coli and S. cerevisiae. The left- and right-hand sides of the figure represent modern and
classical approaches, respectively. Modern techniques can be summarized as dynamic metabolite
monitoring and balancing through critical intermediate chemicals, spatial organization of enzymes
by using synthetic scaffolds or fusion proteins, and organelle-level compartmentalization of both
metabolites and pathway enzymes to take advantage of elevated concentrations of substrates and
enzymes. On the other hand, classical techniques include utilizing plasmid copy number or
chromosomal integration modularity by combinational approach; gene expression level control
through promoter engineering, including synthetic hybrid promoters (e.g., regulation through toxic
chemicals or specific precursors); and lastly, ribosome binding site engineering for each different
pathway gene to optimize and normalize their translational efficiencies. (Source: Jones, J.A., Ö.
Duhan Toparlak and Mattheos AG Koffas (2015). Metabolic pathway balancing and its role in the
production of biofuels and chemicals. Current Opinion in Biotechnology, 33, 52–59. https://doi.
org/10.1016/j.copbio.2014.11.013. Reproduced with permission no 4671031226483)
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11.5.1 Lycopene

Ma et al. (2019) established a heterologous lycopene pathway in strain YZL141
(Fig. 11.2) by genomic integration of genes encoding GGPP synthase (CrtE),
phytoene synthase (CrtB), and phytoene desaturase (CrtI) from different sources.
Ma et al.’s (2019) findings are the first, describing lipid-metabolic engineer to
promote lycopene overproduction in a non-oleaginous organism (Figs. 11.7 and
11.8).

Using systematic traditional engineering methods, Ma et al. (2019) established
high-yield heterologous lycopene biosynthesis in S. cerevisiae. Their results con-
firmed the successful development of an oleaginous biorefinery platform in
S. cerevisiae that enabled the efficient overproduction of the intracellular lipophilic
natural product lycopene.

Efforts to increase terpenoid production in E. coli previously focused on
(1) overexpression of pathway enzymes and (2) optimizing the expression of
enzymes by codon bias (Leonard et al. 2010; Lindberg et al. 2009; Dueber et al.
2009; Tyo et al. 2009). Thus, in addition to metabolic engineering, the molecular
reprogramming of key metabolic nodes such as prenyltransferase (GGPPS) and
terpenoid synthase (LPS) through protein engineering is required to achieve sub-
stantial overproduction of a desired terpenoid product (Keeling and Bohlmann 2006;
Tholl 2006; Keeling and Bohlmann 2006; Christianson 2008; Leonard et al. 2010;
Peralta-Yahya and Keasling 2010; Kumar 2013).

There are two main precursors which are isopentenyl pyrophosphate (IPP) and
dimethylallyl pyrophosphate (DMAPP). There are two pathways to generate
isoprenoids: the mevalonic acid pathway (MVA, for some bacteria, plants, and
higher eukaryotes) and the 2-C-methyl-d-erythritol 4-phosphate/1-deoxy-d-

Fig. 11.5 Chemical structures of fuels. Bisabolane (2); hexadecane (3), a representative molecule
for diesel; farnesane (4); and methyl palmitate (5), a representative molecule for fatty acid methyl
esters. (Source: Peralta-Yahya, P. P., Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling, J. D., &
Lee, T. S. (2011). Identification and microbial production of a terpene-based advanced biofuel.
Nature Communications 2: 483–488. https://doi.org/10.1038/ncomms1494. This is an open-access
article distributed under the terms of the Creative Commons CC-BY license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited)
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xylulose5-phosphate pathway (DXP, for plants and most of the bacterial strains).
The end products of both pathways are the precursors of all terpenoids, some with
pharmaceutical relevance such as taxol, artemisinin, and lycopene (Figs. 11.7 and
11.8).

The fully reduced form of the linear terpene farnesene is being pursued as an
alternative biosynthetic diesel in the market (Renniger and McPhee 2008).

Generally, butanol was synthesized through traditional acetone–butanol–ethanol
(ABE) fermentation process by solventogenic Clostridium sp. (Jin et al. 2011;
Campos-Fernández et al. 2012; Zheng et al. 2015; Trindade and Santos 2017; Sun
et al. 2018; Shanmugam et al. 2018). However, according to Jiang et al. (2018), most
Clostridia could not directly utilize polysaccharides, such as lignocellulose due to
the inexpression of polysaccharide-degrading enzymes. Even though metabolic
engineering has provided different alternatives such as improved solvent tolerance
and non-acetone-forming strains, systems biology-guided strain engineering and
synthetic biology can lead to sustained industrial viability (Birgen et al. 2019).

Fig. 11.6 Bisabolane from chemical hydrogenation of microbially produced bisabolene. The
engineered microbe (yellow box) converts simple sugars into acetyl-CoA via primary metabolism.
A combination of metabolic engineering of the heterologous mevalonate pathway to convert acetyl-
CoA into FPP and enzyme screening to identify a terpene synthase to convert FPP into bisabolene
(1) is used to produce bisabolene at high titers. Chemical hydrogenation of biosynthetic bisabolene
leads to bisabolane (2), a biosynthetic alternative to D2 diesel. (Source: Peralta-Yahya, P.P.,
Ouellet, M., Chan, R., Mukhopadhyay, A., Keasling, J.D. and Lee, T.S. (2011). Identification
and microbial production of a terpene-based advanced biofuel. Nature Communications 2:
483–488. https://doi.org/10.1038/ncomms1494. This is an open-access article distributed under
the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited)
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Isobutanol which is a promising second-generation biofuel candidate is already
formed as a by-product in fermentations with the yeast Saccharomyces cerevisiae,
although only in very small amounts (Hammer and Avalos 2017; Wess et al. 2019).
Wess et al. (2019) reported that overexpressing a cytosolic isobutanol synthesis
pathway and by blocking non-essential isobutanol competing pathways, they could
achieve the highest yield ever obtained with S. cerevisiae in shake flask cultures.

Fig. 11.7 Simplified schematic representation of key fluxes in lycopene biosynthesis coupled with
TAG metabolism in S. cerevisiae. The acetyl-CoA-producing pathway is highlighted in a yellow
rectangle. Reactions associated with TAG synthesis are highlighted in a red rectangle. Lycopene-
biosynthetic flux is highlighted in a green rectangle. PDC pyruvate decarboxylase, ADH2 alcohol
dehydrogenase, ALD6 acetaldehyde dehydrogenase, ACS acetyl-CoA synthetase, tHMG1 truncated
3-hydroxy-3-methylglutaryl-CoA reductase, CrtE geranylgeranyl diphosphate synthase, CrtB
phytoene synthase, CrtI phytoene desaturase, ACC1 acetyl-CoA carboxylase, FAS fatty acyl-CoA
synthetases, PAP phosphatidate phosphatase, DGAT acyl-CoA: diacylglycerol acyltransferase,
HMG-CoA 3-hydroxy-3-methyl-glutaryl-CoA, IPP isopentenyl diphosphate, DMAPP
dimethylallyl diphosphate, FPP farnesyl diphosphate, GGPP geranylgeranyl diphosphate, PA
phosphatidic acid, PLs phospholipids, DAG diacylglycerol, TAG triacylglycerol. (Source: Ma, T.,
Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y. & Nielsen, J. (2019). Lipid engineering combined with
systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lyco-
pene. Metabolic Engineering 52: 134–142. https://doi.org/10.1016/j.ymben.2018.11.009.
Reproduced under license number 4651230668162)
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11.5.2 Production of Fatty Acid- and Polyketide-Derived Biofuels

Recently, with the development of metabolic engineering and synthetic biology,
microbial production of fatty alcohols from renewable feedstock has been achieved
successfully in E. coli. Metabolic pathways used for the production of fatty acid- and
polyketide-derived biofuels have been presented by Peralta-Yahya et al. (2012)
(Fig. 11.9).

Lycopene

Fatty acyl-CoA

Acetyl-CoA
MVA

TAG

o R

R

R
o

o

o

o

o

Glucose

NADPHGalactose

Lipid droplets

Fig. 11.8 Lycopene biosynthesis in S. cerevisiae. S. cerevisiae takes up glucose from the extra-
cellular environment, and glucose metabolism results in acetyl-CoA accumulation and the release of
NADPH. For lycopene production, acetyl-CoA is used in the endogenous MVA pathway and
heterologous carotenoid pathway. Lycopene is distributed in lipid structures (e.g., phospholipid
membranes and LDs). For TAG production, acetyl-CoA is used for endogenous fatty acid biosyn-
thesis. TAGs are incorporated into LDs to store energy and dissolve lycopene crystals. Purple
spheres represent glucose particles, pink spheres represent galactose, green spheres represent
NADPH, and blue spheres represent LDs. Dotted lines represent multiple reactions. (Source: Ma,
T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., and Nielsen, J. (2019). Lipid engineering combined
with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of
lycopene. Metabolic Engineering 52: 134–142. https://doi.org/10.1016/j.ymben.2018.11.009.
Reproduced under license number 4651230668162 from RightsLink)
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11.5.3 Synthetic Enzymatic Pathways for the Production
of High-Yield Hydrogen

Natural and genetically modified microorganisms cannot produce hydrogen with a
yield of more than 4 H2 per glucose, that is, the Thauer limit (Thauer et al. 2008;
Zhang 2011, 2015) (Fig. 11.10), although a theoretical yield is 12 H2 per glucose.
Nature cannot evolve such high-yield hydrogen generation pathways due to two
reasons. First, the theoretical yield of hydrogen production is an endothermic
reaction so that it cannot co-generate ATP. Second, if a small fraction of reduced

Fig. 11.9 Metabolic pathways used for the production of fatty acid- and polyketide-derived
biofuels. The fatty acid biosynthetic cycle is in red, the reversal of the β-oxidation cycle is in
green, and polyketide synthase is in blue. AAR acyl-ACP reductase, ACC acetyl-CoA carboxylase,
Acr1 acyl-CoA reductase, ADC aldehyde decarbonylase, AtfA wax ester synthase, FabB β-keto-
acyl-ACP synthase I, FabD malonyl-CoA:ACP transacylase, FabF β-keto-acyl-ACP synthase II,
FabG β-keto-acyl-ACP reductase, FabH β-keto-acyl-ACP synthase III, FabA and FabZ
β-hydroxyacyl-ACP dehydratase, FabI enoyl-acyl-ACP reductase, FadB enoyl-CoA hydratase/3-
hydroxyacyl-CoA dehydrogenase, FadD acyl-CoA synthase, FAMT fatty acid methyltransferase,
OleTJE Jeotgalicoccus sp. terminal olefin-forming fatty acid decarboxylase, PKS polyketide
synthase, TesA acyl-ACP thioesterase, YdiO enoyl-CoA reductase, YqeF thiolase. (Source:
Peralta-Yahya P.P. et al.(2012). Microbial engineering for the production of advanced biofuels.
https://doi.org/10.1038/nature488320-328. Reproduced with license no. 4643340791481)
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Fig. 11.10 Scheme of in vitro synthetic enzymatic pathways for the production of high-yield
hydrogen from a variety of carbohydrates—starch, cellodextrin, sucrose, glucose, fructose, and
xylose as well as water. The pathways are compiled and modified from References: Martín del
Campo et al. 2013; Myung et al. 2014; Rollin et al. 2016; Ye et al. 2009; Zhang et al. 2007). The
enzymes are αGP, alpha-glucan phosphorylase; CDP, cellodextrin phosphorylase; CBP, cellobiose
phosphorylase; SP, sucrose phosphorylase; GI, glucose isomerase; XI, xylose isomerase; PPGK,
polyphosphate glucokinase; PPXK, polyphosphate xylulokinase; PGM, phosphoglucomutase;
G6PDH, glucose-6-phosphate dehydrogenase; 6PGDH, 6-phosphogluconate dehydrogenase; RPI,
ribose 5-phosphate isomerase; RPE, ribulose-5-phosphate 3-epimerase; TK, transketolase; TAL,
transaldolase; TIM, triose phosphate isomerase; ALD, (fructose-bisphosphate) aldolase; FBP,
fructose bisphosphatase; PGI, phosphoglucose isomerase; and H2ase. Pi and (Pi)n are inorganic
phosphate and polyphosphate with a degree of polymerization of n. The metabolites are g1p,
glucose-1-phosphate; g6p, glucose-6-phosphate; ru5p, ribulose 5-phosphate; x5p, xylulose
5-phosphate; r5p, ribose 5-phosphate; s7p, sedoheptulose 7-phosphate; g3p, glyceraldehyde
3-phosphate; e4p, erythrose 4-phosphate; dhap, dihydroxyacetone phosphate; fdp, fructose-1,6-
diphosphate; and f6p, fructose 6-phosphate. (Source: Zhang, Y. P. (2015). Production of biofuels
and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnology
Advances 33(7): 1467–1483. https://doi.org/10.1016/j.biotechadv.2014.10.009. Reproduced with
license number 4652950482642)
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NAD(P)H was used to generate ATP via oxidative phosphorylation (Swartz 2013),
the presence of oxygen would inhibit oxygen-sensitive hydrogenase activity greatly.

Woodward and his coworkers (Woodward et al. 2000) produced nearly 12 H2

from the costly glucose 6-phosphate (G-6-P). This pathway comprised three
modules: (1) two NADPH generation from G-6-P mediated by two dehydrogenases,
(2) hydrogen generation from NADPH mediated by hydrogenase, and (3) regenera-
tion of G-6-P from ribulose 5-phosphate. However, costly substrate G-6-P prevents
its potential application so that Woodward did not file a patent for this in vitro
synthetic pathway.

11.5.4 Synthetic Biology Tools and Methodologies

Synthetic biology today encompasses an increasing number of tools and
methodologies to facilitate strain construction and optimization. Synthesizing,
sequencing, and introducing DNA sequences into living cells are cheaper and easier
than ever (DiCarlo et al. 2013). Codon optimization, directed evolution (Korman
et al. 2013), screening enzyme libraries, and incorporating non-natural amino acids
(Cirino et al. 2003) all provide ways of improving or generating novel enzymatic
activities (see also Jagadevan et al. 2018) (Fig. 11.11).

Fig. 11.11 Pictorial representation of the overall process toward biofuel production in microalgae
using synthetic biology approach (i.e., isolation, selection of an ideal strain, redirecting the
metabolism to maximize synthesis of the targeted biofuel). (Source: Jagadevan, S., Banerjee, A.,
Banerjee, C., Guria, C., Tiwari, R., & Baweja, M. (2018). Biotechnology for Biofuels Recent
developments in synthetic biology and metabolic engineering in microalgae towards biofuel
production. Biotechnology for Biofuels 11: 1–21. https://doi.org/10.1186/s13068-018-1181-1.
Used under creative commons license)
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The major challenge of the modern era is the transition to a bio-based economy.
Biofuels are a key part of this landscape, but challenges to efficiently and cost-
effectively produce biofuels still remain (Tyner 2012; Taheripour et al. 2012).

The standard of skill and expertise in synthetic biology and metabolic engineering
has made significant strides over the past 25 years, and now the production of
numerous chemical products with a range of market applications is available
(Lynch 2016). Tatsis and O’Connor (2016) demonstrated with examples how the
metabolic pathways of plants can be successfully harnessed using several metabolic
engineering approaches. According to O’Connor (2015), one approach to harness
plant metabolic pathways is to reconstitute the biosynthetic genes into a heterolo-
gous organism.

Hybrid processes: Hybrid processes combine the biochemical and chemical
processes to enhance competitiveness of bio-based products (Beerthuis et al. 2015)
such as polymers, and bioplastics will grow their market share by synergizing and
collaborating with the chemical process industry (Babu et al. 2013). Creating the
necessary process flow sheets, assessing cost sensitivities, and identifying
bottlenecks upfront by the use of modeling, simulation, and techno-economic
analysis will aid in a successful scale-up (Earhart et al. 2012; Claypool and
Ramon 2013; Claypool et al. 2014; Harrison et al. 2015).

Reducing cell wall digestibility: Lignin concentration also increases with the
maturation of plants and is associated with reduced cell wall digestibility (Jung and
Deetz 1993). Cell wall lignification creates an access barrier to potentially digestible
wall material by microorganisms if cells have not been physically ruptured. Tradi-
tional breeding has focused on increasing total dry matter digestibility rather than
cell wall digestibility, which has resulted in minimal reductions in cell wall lignifi-
cation (see Kumar et al. 2018). While major reductions in lignin concentration have
been associated with poor plant fitness, smaller reductions in lignin provided
measurable improvements in digestibility without significantly impacting agronomic
fitness (Jung et al. 2012; see also Kumar et al. 2018).

The engineering of proteins along with pathways is the key strategy in achieving
microbial biosynthesis and overproduction of pharmaceutical, chemical products,
and biofuels.

11.5.5 Exploiting Diversity and Synthetic Biology for the Production
of Algal Biofuels

Engineering of algal metabolism has an important role in the improvement of growth
and biomass accumulation (Angermayr et al. 2009; US DOE 2010; Georgianna and
Stephen 2012; Case and Atsumi 2016; Meyer et al. 2016; Shih et al. 2014).
Manipulating the primary carbon-fixing enzyme Rubisco could also increase effi-
ciency. The cultivation of algae in industrial photobioreactors or agricultural ponds
aims to harvest as much solar energy as possible (Figs. 11.13 and 11.14) Efforts to
improve photosynthetic efficiency have not been specific to algae; as a strategy, it
has been proposed for increasing the yield of land plants to keep pace with increasing
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food demand where usable cropland is limited (US DOE 2010). Jagadevan et al.
(2018) reviewed the upcoming field of microalgae employed as a model system for
synthetic biology applications and highlighted the importance of genome-scale
reconstruction models and kinetic models, to maximize the metabolic output by
understanding the intricacies of algal growth (see also Georgianna and Stephen
2012) (Figs. 11.12, 11.13, and 11.14).

11.5.6 Biofuel from Protein Sources

According to Huo et al. (2011), biofuels are currently produced from carbohydrates
and lipids in the feedstock. They suggested the use of proteins to synthesize fuels.
Huo et al. (2011) applied metabolic engineering to generate Escherichia coli that can
deaminate protein hydrolysates, enabling the cells to convert proteins to C4 and C5
alcohols at 56% of the theoretical yield (Huo et al. 2011) (Fig. 11.15).

Liu et al. (2017) reviewed the production of organic acids, especially carboxylic
acids, as renewable sources of chemical products to substitute fossil fuels. They have
been applied in a wide range of industries, including pharmaceutical, food, cosmetic,
polymer, detergent, and textile (Becker and Wittmann 2016; Huo et al. 2011). The
more economical and sustainable production of organic acids can be expected with
the combination of these modern engineering techniques (Liu et al. 2017; Giessen
and Silver 2017).

Fig. 11.12 Comparison of oleaginous crops. The United States consumes 25% of the world’s
petroleum. The land area needed to replace all domestic and imported petroleum used in the United
States is shown as a percentage relative to the land area of the United States. The area required for
algae is estimated to be significantly less than for any other biomass source (Dismukes et al. 2008).
(Source: Georgianna, D. R. & Stephen, P. (2012). Exploiting diversity and synthetic biology for the
production of algal biofuels, Nature 488: 330–335. https://doi.org/10.1038/nature11479.
Reproduced under license number 4646381493445 from RightsLink)
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Fig. 11.14 Algae cultivation methods: (a) Algal ponds of 0.5 ha and 1 ha are part of the first
commercial-scale algal biofuel facility in the United States at Sapphire Energy’s Integrated Algal
BioRefinery. They cover an area of 400 m wide by 1600 m long at a location near Columbus, New
Mexico. (b) A single one-million-liter paddle-wheel-driven pond from the Columbus facility. (c) A
pilot-scale flat panel photobioreactor developed at the Laboratory for Algae Research and Biotech-
nology at Arizona State University in Mesa (image courtesy of Q. Hu). (d) A commercial-scale
tubular photobioreactor designed and constructed by IGV and operated by Salata in Germany
(image courtesy of C. Grewe). (e) An industrial-scale fermentation tank for heterotrophic cultiva-
tion of microalgae at Martek Biosciences, part of DSM in Heerlen, the Netherlands (image courtesy
of D. Dong). (Source: Georgianna, D. R. and Stephen, P. (2012). Exploiting diversity and synthetic
biology for the production of algal biofuels. Nature 488: 330–335. https://doi.org/10.1038/
nature11479. Reproduced under license number 4646381493445 from RightsLink)

Fig. 11.13 Algal biofuel production: Light, water, and nutrients (yellow, blue, and red arrows) are
required for algal growth in ponds. Some of the processes involved in algal biofuel production are
common to most systems (green arrows). After fuel molecule extraction, there are alternative uses
for algal biomass (dashed arrows); many of these can produce co-products that are beneficial for
economic and life cycle analysis considerations. (Images courtesy of Sapphire Energy, San Diego,
California). (Source: Georgianna, D. R., & Stephen, P. (2012). Exploiting diversity and synthetic
biology for the production of algal biofuels, Nature 488: 330–335. https://doi.org/10.1038/
nature11479. Reproduced under license number 4646381493445 from RightsLink)
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Fig. 11.15 Biofuel production and biorefining scheme from algal or bacterial protein sources: (a)
The proposed protein-based biorefinery scheme. Amino acids are deaminated to various keto acids,
which are then used to produce fuels, chemicals, and pharmaceutical intermediates. The colors link
products and intermediates to the amino acids from which they are derived. (b) Biofuel (EtOH,
iBOH, 2 MB, 3 MB) produced from the engineered E. coli strain YH83 grown in flasks using algal
or bacterial cell hydrolysates. Small laboratory-scale reactors (1 L or 30 L) were used to grow
bacterial and algal cells individually. The algal biomass mixture includes C. vulgaris,
P. purpureum, S. platensis, and S. elongatus. All protein sources were adjusted to contain 21.6 g/
L peptides and amino acids. Error bars indicate s.d. (n ¼ 3). OAA oxaloacetate, 2-KB
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11.5.7 Metabolic Engineering in Methanotrophic Bacteria

Methane is 38-fold more effective at promoting global warming than carbon dioxide
on a molar basis over a span of 20 years (Howarth 2015). Thus, harnessing methane
is one of the most important near-term goals for biochemical engineering (Lee and
Kim 2015). Methane as natural gas or biogas is the least expensive source of carbon
for (bio)chemical synthesis (Kalyuzhnaya et al. 2015).

Methanotrophs are bacteria that grow on methane as their sole carbon and energy
source. Methanotrophic bacteria and microbes converting methane into value-added
products are both promising approaches for taking advantage of methane as a future
bio-feedstock. There is resurgent interest in mitigating methane in the atmosphere as
a greenhouse gas (Shindell et al. 2012) and in part its abundance, its low cost, and its
potential to create liquid value-added products (Conrado and Gonzalez 2014). The
activation of methane by a single species, Methanosarcina acetivorans, creates
possibilities for metabolic engineering for anaerobic methane conversion to other
products (Santos et al. 2011; Fei et al. 2014; see review Kalyuzhnaya et al. 2015; Soo
et al. 2016; Mcanulty et al. 2017). It might also be possible to engineer strains that
grow directly on cellulosic biomass, or other abundant and inexpensive substrates,
such as methane or CO2 (Espaux et al. 2015).

Despite these optimistic signs, a significant number of gaps in the fundamental
knowledge of methanotrophy need to be filled to allow the potential of these systems
to be fully reached (Kalyuzhnaya et al. 2015).

11.5.8 EngineeredMicrobial Biofuel Production and Recovery Under
Supercritical Carbon Dioxide

Supercritical carbon dioxide (scCO2) has been used for the depolymerization of
lignocellulosic biomass to release fermentable sugars (Luterbacher et al. 2010).
Brock et al. (2019) proposed a high-pressure fermentation strategy, coupled with
in situ extraction using the abundant and renewable solvent supercritical carbon
dioxide (scCO2), which is also known for its broad microbial lethality to avoid
end-product toxicity, culture contamination, and energy-efficient product recovery.
They reported the domestication and engineering of a scCO2-tolerant strain of
Bacillus megaterium, to produce branched alcohols that have potential use as
biofuels (Brock et al. 2019).

�

Fig. 11.15 (continued) 2-ketobutyrate. (Source: Huo, Y.-X., Cho, K. M., Rivera, J. G. L., Monte,
E., Shen, C. R., Yan, Y. & Liao, J. C. (2011). Conversion of proteins into biofuels by engineering
nitrogen flux. Nature Biotechnology 29(4): 346–351. https://doi.org/10.1038/nbt.1789. Reproduced
with permission under license number 4646190098001 from RightsLink)
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11.5.9 Solar-to-Chemical and Solar-to-Fuel Technology

Recent researches in solar-to-chemical and solar-to-fuel technology describe the use
of solar energy to convert CO2 to desired chemicals and fuels. The direct conversion
of carbon dioxide to chemicals and fuels presents a sustainable solution for reducing
greenhouse gas emissions and sustaining our supply of energy (Liao et al. 2016).
According to Woo (2017), ultimately solar energy must be used for CO2 reduction
and conversions to provide a sustainable system, and this system is now available in
the forms of solar-to-chemical (S2C) and solar-to-fuel (S2F) technologies. The S2C
and S2F technology must be developed to capture and convert the essential
feedstocks using only three inputs (CO2, H2O, and solar energy) to produce the
desired value-added chemicals and fuels. Woo (2017) reviewed carbon capture
utilization (CCU) for the reduction of greenhouse gas emissions.

Photoautotrophic cyanobacterial platforms have been extensively developed on
this principle, producing a diverse range of alcohols, organic acids, and isoprenoids
directly from CO2 (Savakis and Hellingwerf 2015). Recent breakthroughs in the
metabolic engineering of cyanobacteria, adoption of the light-harvesting
mechanisms from nature, photovoltaics-derived water-splitting technologies have
been integrated with microbial biotechnology to produce desired chemicals (Woo
2017).

Photosynthetic organisms (including cyanobacteria) have been engineered to
produce value-added chemicals, providing a number of promising S2C and S2F
platforms. Thus, hybrid systems comprising an electrochemical in situ hydrogen-
evolution reaction at the electrode and the biological CO2 fixation using autotrophic
bacteria have been suggested as an alternative S2C and S2F platform.

11.5.10 Implementing CRISPR–Cas Technologies for Obtaining
High-Value Products

Several approaches of rebalancing or rewiring of the metabolic network and the use
of dynamic metabolic control strategies to conditionally reduce essential competitive
fluxes have yielded better results. Liu et al. (2013) reviewed recent advances that
allow more precise regulation of gene expression in plants, including synthetic
promoters, transcriptional activators, and repressors.

The use of newer gene silencing technologies, including CRISPR interference,
makes transcriptional tuning an attractive platform for any desired microbe (Lynch
2016). Success in using CRISPR–Cas9 for gene targeting in laboratory S. cerevisiae
strains was first demonstrated in 2013 (DiCarlo et al. 2013) Estrela and Cate (2016)
reviewed the use of CRISPR–Cas9 technology for energy biotechnology in
S. cerevisiae. They further reported that recently, other bacteria have been success-
fully edited, such as Streptomyces (Cobb et al. 2015; Huang et al. 2015; Tong et al.
2015), Lactobacillus reuteri (Oh and van Pijkeren 2014), Taumatella citrea (Jiang
et al. 2015), Streptococcus pneumoniae, and E. coli (Jiang et al. 2015).
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In metabolic engineering, of photosynthetic, cyanobacteria can use CO2 as a
building block to synthesize carbon-based chemicals. In recent years, clustered
regularly interspaced short palindromic repeats (CRISPR)-dependent approaches
have rapidly gained popularity for engineering cyanobacteria. Behler et al. (2018)
reviewed CRISPR-based tools for the metabolic engineering of cyanobacteria.
Rather than utilizing CRISPR-based genome editing, CRISPR interference
(CRISPRi) offers an alternative, viable approach for cyanobacterial engineering
which relies on an enzymatically inactive dead Cas9 (dCas9) (Yao et al. 2016).
Increased understanding of various CRISPR mechanisms and systems will undoubt-
edly inspire more advanced approaches for the engineering of biological hosts such
as cyanobacteria (Behler et al. 2018).

Yeasts are widely used host organisms in biotechnology to produce fine
chemicals, industrial biocatalysts, biopharmaceuticals, food additives, and renew-
able biofuels (Kim et al. 2015). Within 5 years, the CRISPR–Cas system has
emerged as the dominating tool for genome engineering while also changing the
speed and efficiency of metabolic engineering in conventional
(Schizosaccharomyces pombe and Saccharomyces cerevisiae) and
non-conventional (Candida albicans, Yarrowia lipolytica, Pichia pastoris syn.
Komagataella phaffii, Kluyveromyces lactis, and C. glabrata) yeasts (Raschmanová
et al. 2018).

11.6 Discussion

Metabolic pathway optimization is generally a very challenging endeavor because of
the complex regulation that cells have evolved to maintain homeostasis and robust-
ness (Nielsen and Keasling 2016: Wang et al. 2017). In vitro synthetic biosystems
provide several other biomanufacturing advantages, such as easy product separation,
open process control, fast reaction rate, broad reaction condition, tolerance to toxic
substrates, etc. According to Lynch (2016), many challenges still remain; these
recent efforts further support the potential of this discipline in making a significant
impact in the production of high-volume industrial products, with the potential to
displace petroleum with more sustainable alternatives. According to Woo (2017),
synthetic biology-inspired metabolic engineering of next-generation microbes will
be established to accommodate more efficient S2C and S2F platforms.

Hence, rather than trying to understand how synthetic biology is shaped by
commercial forces, it might be better to understand sciences like synthetic biology
as co-emerging with new market regimes and forms. Energy-rich parts of the world
look to the Global South. As many observers have pointed out, biofuel crops
compete with food crops and through deforestation reduce biodiversity more gener-
ally (Chakravorty et al. 2009; Shaik and Kumar 2014; Kumar et al. 2018).

According to Mackenzie (2013), in synthetic biology, this conflict between food
and fuel is mentioned as something that must be avoided in the development of
advanced biofuels by using microbes to produce fuel without relying too heavily on
feedstocks or other inputs that compete with agriculture.
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11.7 Conclusion

Sustainable large-scale production of biofuels will require the integration of knowl-
edge across many disciplines. In the short term, the major research opportunities for
plant biologists seem to be in identifying promising species, knowing paths of
biofuel production, and altering genes to produce more or insert missing links or
synthesize required protein into organisms. Large parts of next-generation biofuels
exist in partial realizations: metabolic models, research projects, pilot plants, and
various other technologies in testing. As the industrial reality of synthetic biology,
next-generation biofuels can also prompt us to consider synthetic biology less from
the perspective of epistemic value and more from the perspective of the mode of
existence of technical objects.
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