
A Survey of Solving SVP Algorithms and
Recent Strategies for Solving the SVP
Challenge

Masaya Yasuda

Abstract Recently, lattice-based cryptography has received attention as a candidate
of post-quantum cryptography (PQC). The essential security of lattice-based cryp-
tography is based on the hardness of classical lattice problems such as the shortest
vector problem (SVP) and the closest vector problem (CVP). A number of algorithms
have been proposed for solving SVP exactly or approximately, and most of them are
useful also for solving CVP. In this paper, we give a survey of typical algorithms for
solving SVP from a mathematical point of view. We also present recent strategies
for solving the Darmstadt SVP challenge in dimensions higher than 150.

Keywords Shortest vector problem (SVP) · Enumeration · Sieve · Lattice basis
reduction · LLL · BKZ · Random sampling · Sub-sieving

1 Introduction

There has recently been a substantial amount of research for large-scale quantum
computers. On the other hand, if such computers were built, they could break cur-
rently used public-key cryptosystems such as the RSA cryptosystem and the elliptic
curve cryptography. (See Shor 1994 for Shor’s quantum algorithms.) In order to pre-
pare information security systems to be able to resist quantum computing, the US
National Institute of Standards and Technology (NIST) began a process to develop
new standards for PQC in 2015 and called for proposals in 2016. It has rapidly accel-
erated to research lattice-based cryptography as a candidate of PQC. Specifically, at
the submission deadline of the end of November 2017 for the call, NIST received
more than 20 proposals of lattice-based cryptosystems. Among them, more than 10
proposals were allowed for Round 2 submissions around the end of January 2019.
(See the web page of NIST 2016.) The security of such proposals relies on the hard-

M. Yasuda (B)
Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku Fukuoka
819–0395, Japan
e-mail: yasuda@imi.kyushu-u.ac.jp

© The Author(s) 2021
T. Takagi et al. (eds.), International Symposium on Mathematics,
Quantum Theory, and Cryptography, Mathematics for Industry 33,
https://doi.org/10.1007/978-981-15-5191-8_15

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5191-8_15&domain=pdf
mailto:yasuda@imi.kyushu-u.ac.jp
https://doi.org/10.1007/978-981-15-5191-8_15

190 M. Yasuda

ness of cryptographic lattice problems such as learningwith errors (LWE) andNTRU.
Such problems are reduced to approximate-SVP or approximate-CVP. (For exam-
ple, see Albrecht et al. 2018 for details.) Therefore, it is becoming more important
to understand classical lattice problems for evaluating the security of lattice-based
PQC candidates.

For a positive integer n, a (full-rank) lattice L in Rn is the set of all integral linear
combinations of linearly independent vectors b1, . . . ,bn in R

n . (The set of the bi ’s
is called a basis of L .) Given a basis of a lattice L , SVP asks to find the non-zero
shortest vector in L . In this paper, we give a survey of typical algorithms for solving
SVP from a mathematical point of view. These algorithms can be classified into two
categories, depending on whether they solve SVP exactly or approximately. Exact-
SVP algorithms perform an exhaustive search for an integer combination of the basis
vectors bi ’s to find the non-zero shortest lattice vector v = ∑n

i=1 vibi ∈ L , and their
cost is expensive. In contrast, approximate-SVP algorithms are much faster than
exact algorithms, but they find short lattice vectors, not necessarily the shortest ones.
However, exact- and approximate-SVP algorithms are complementary. For example,
exact algorithms apply an approximation algorithm as a preprocessing to reduce
their expensive cost, while several approximate-SVP algorithms call many times an
exact algorithm in low dimension as a subroutine to find a very short lattice vector.
In this paper, we also introduce recent strategies for solving the Darmstadt SVP
challenge Darmstadt (2010), in which sample lattice bases are presented in order to
test algorithms solving SVP. In particular, these strategies combine approximate- and
exact-SVP algorithms to efficiently solve SVP in high dimensions such as n ≥ 150.

Notation. The symbols Z, Q, and R denote the ring of integers, the field of
rational numbers, and the field of real numbers, respectively. Let �z� denote the
rounding integer of an integer z. We represent all vectors in column format. For
a = (a1, . . . , an)

� ∈ R
n , let ‖a‖ denote its Euclidean norm. For a = (a1, . . . , an)

�
and b = (b1, . . . , bn)

�, let 〈a,b〉 denote the inner product
∑n

i=1 ai bi . Denote by
Vn(R) the volume of the n-dimensional ball of radius R > 0 centered at the origin. In
particular, we let νn = Vn(1) denote the volume of the unit ball. Then Vn(R) = νn Rn

and

νn = πn/2

�(1 + n/2)
∼ 1√

πn

(
2πe

n

)n/2

using Stirling’s formula, where �(s) = ∫ ∞
0 t s−1e−t dt denotes the Gamma function.

2 Mathematical Background

In this section, we introduce basic definitions and properties on lattices, and present
famous lattice problems whose hardness ensures the essential security of lattice-
based cryptography. (For example, see Galbraith 2012, Part IV or Nguyen 2009 for
more details.)

A Survey of Solving SVP Algorithms and Recent Strategies … 191

2.1 Lattices and Their Bases

For a positive integer n, let b1, . . . ,bn be n linearly independent (column) vectors
in Rn . The set of all integral linear combinations of the bi ’s is a (full-rank) lattice

L = L(b1, . . . ,bn) =
{

n∑

i=1

vibi : vi ∈ Z for all 1 ≤ i ≤ n

}

of dimension n with basis B = (b1, . . . ,bn) ∈ R
n×n . (A basis is regarded not only

as a set of vectors, but also as a matrix whose column vectors span a lattice.) Every
lattice has infinitely many bases if n ≥ 2; if two bases B1 and B2 span the same
lattice, then there exists an n × n unimodular matrix U ∈ GLn(Z) with B1 = B2U.
The volume of L is defined as vol(L) = | det(B)|, independent of the choice of bases.

The Gram–Schmidt orthogonalization for an (ordered) basis B is the orthogonal
familyB∗ = (b∗

1, . . . ,b
∗
n) ∈ R

n×n , recursively defined by b∗
1 = b1 and for 2 ≤ i ≤ n

b∗
i = bi −

i−1∑

j=1

μi, jb∗
j , where μi, j = 〈bi ,b∗

j 〉
‖b∗

j‖2
for 1 ≤ j < i ≤ n.

Notice that the Gram–Schmidt vectors b∗
i ’s depend on the order of basis vectors inB.

For convenience, setμ = (μi, j) ∈ R
n×n where letμi, j = 0 for all i < j andμk,k = 1

for all k. Then B = B∗μ, and thus vol(L) = ∏n
i=1 ‖b∗

i ‖ from the orthogonality of
Gram–Schmidt vectors. For 2 ≤ � ≤ n, let π� denote the orthogonal projection over
the orthogonal supplement of the R-vector space 〈b1, . . . ,b�−1〉R as

π� : Rn −→ 〈b1, . . . ,b�−1〉⊥R = 〈b∗
�, . . . ,b

∗
n〉R, π�(x) =

n∑

i=�

〈x,b∗
i 〉

‖b∗
i ‖2

b∗
i .

Every projection map depends on a basis. We also set π1 = id for convenience.

2.2 Successive Minima, Hermite’s Constants, and Gaussian
Heuristic

For every 1 ≤ i ≤ n, the i th successive minimum of an n-dimensional lattice L ,
denoted byλi (L), is defined as theminimumofmax1≤ j≤i ‖v j‖over all i linearly inde-
pendent vectors v1, . . . , vi ∈ L . In particular, the first minimum λ1(L) is the norm of
the shortest non-zero vector in L . We clearly have λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) by
definition.Moreover, for any basisB = (b1, . . . ,bn) of L , its Gram–Schmidt vectors
satisfy λi (L) ≥ mini≤ j≤n ‖b∗

j‖ for every 1 ≤ i ≤ n. (See Bremner 2011, Proposition
3.14 for proof.)

192 M. Yasuda

Hermite (1850) first proved that the quantity λ1(L)2

vol(L)2/n is upper bounded over all
lattices L of dimension n. Its supremum over all lattices of dimension n is calledHer-
mite’s constant of dimension n, denoted by γn . This implies λ1(L) ≤ √

γnvol(L)1/n

for any lattice L of dimension n. As its extension, it satisfies

(
r∏

i=1

λi (L)

)1/r

≤ √
γnvol(L)1/n for 1 ≤ r ≤ n.

This is known as Minkowski’s second theorem. (See Martinet 2013, Chap.2 for
proof.) It is important to know the value of γn in order to obtain an upper bound of
λ1(L); Minkowski’s convex body theorem implies γn ≤ 4ν−2/n

n . (SeeMartinet 2013,
Chap.2 for proof.) This shows that

λ1(L) ≤ 2ν−1/n
n vol(L)1/n (1)

for any lattice L of dimension n. Moreover, it satisfies γn ≤ 1 + n
4 from well-known

formulas for νn . It is very difficult to find the exact value of γn , and such values are
known for only a few integers n. However, every γn is known as essentially linear
in n. It also satisfies Mordell’s inequality γn ≤ γ

(n−1)/(k−1)
k for any n ≥ k ≥ 2. (See

Nguyen 2009 for more details on Hermite’s constants.)
Given a lattice L of dimension n and a measurable set S in R

n , the Gaus-
sian Heuristic predicts that the number of vectors in L ∩ S is roughly equal to
vol(S)/vol(L). By applying the ball of radius λ1(L) centered at the origin in R

n ,
it leads to the prediction of the norm of the shortest non-zero vector in L . Specifi-
cally, the expectation of λ1(L) according to the Gaussian Heuristic is given by

GH(L) = ν−1/n
n vol(L)1/n ∼

√
n

2πe
vol(L)1/n.

This is tight compared to Eq. (1). Note that this is only a heuristic. But for “random”
lattices,λ1(L) is asymptotically equal toGH(L)with overwhelming probabilityAjtai
(1996).

2.3 Introduction to Lattice Problems

The most famous lattice problem is given below.

•? The Shortest Vector Problem (SVP)

Given a basis B = (b1, . . . ,bn) of a lattice L , find the shortest non-zero vector in
L , that is, a vector s ∈ L such that ‖s‖ = λ1(L).

A Survey of Solving SVP Algorithms and Recent Strategies … 193

It was proven by Ajtai (1996) that SVP is NP-hard under randomized reductions.
SVP can be relaxed by an approximate factor: Given a basis of a lattice L and an
approximation factor f ≥ 1, find a non-zero vector v in L such that ‖v‖ ≤ f λ1(L).
Approximate-SVP is exactly SVP when f = 1. It is unlikely that one can efficiently
solve approximate-SVP within quasi-polynomial factors in n, while approximate-
SVP within a factor

√
n/ log(n) is unlikely to be NP-hard. (See Nguyen 2009 for

more details.)
Another famous lattice problem is given below.

•? The Closest Vector Problem (CVP)

Given a basis B = (b1, . . . ,bn) of a lattice L and a target vector t, find a vector in
L closest to t, that is, a vector v ∈ L such that the distance ‖t − v‖ is minimized.

CVP is at least as hard as SVP. As in the case of SVP, we can define an approximate
variant of CVP by an approximate factor. Approximate-CVP is also at least as hard
as approximate-SVP with the same factor. From a practical point of view, both
are considered equally hard, due to Kannan’s embedding technique Kannan (1987)
which can transform approximate-CVP into approximate-SVP. (See also Galbraith
2012 for the embedding.)

The security of modern lattice-based cryptosystems is based on the hardness of
cryptographic lattice problems, such as the LWE and the NTRU problems. (For
example, see NIST 2016 for NIST post-quantum candidates.) Such lattice problems
are reduced to approximate-SVP or approximate-CVP. (For example, see Albrecht
et al. 2018 for details.)

3 Solving SVP Algorithms

In this section, we present typical algorithms for solving SVP. These algorithms
can be classified into two categories, depending on whether they solve SVP exactly
or approximately. However, both categories are complementary; exact algorithms
first apply an approximation algorithm as a preprocessing to reduce their cost, while
blockwise algorithms (e.g., the BKZ algorithm presented below) call many times an
exact algorithm in low dimension as a subroutine to find a very short lattice vector.

3.1 Exact-SVP Algorithms

Exact-SVPalgorithmsfind the non-zero shortest lattice vector, but they are expensive.
These algorithms perform an exhaustive search of all short vectors, whose number
is exponential in the dimension (in the worst case). These algorithms can be split in
two categories; polynomial-space algorithms and exponential-space algorithms.

194 M. Yasuda

3.1.1 Polynomial-Space Exact Algorithms: Enumeration

They are based on enumeration, which dates back to the early 1980s with work
by Pohst (1981), Kannan (1983), and Fincke–Pohst (1985). Enumeration is simply
an exhaustive search for an integer combination of the basis vectors such that the
lattice vector is the shortest. An enumeration algorithm takes as input an enumeration
radius R > 0 and a basis B = (b1, . . . ,bn) of a lattice L , and outputs all non-zero
vectors s in L such that ‖s‖ ≤ R (if exists). The radius R is taken as an upper bound
of λ1(L), like

√
γnvol(L)1/n , to find the shortest non-zero lattice vector. It goes

through the enumeration tree formed by all vectors in the projected lattices πn(L),
πn−1(L), · · · , π1(L) = L with norm at most R. More precisely, the enumeration
tree is a tree of depth n, and for each 1 ≤ k ≤ n + 1, the nodes at depth n + 1 − k
are all the vectors in the projected lattice πk(L) with norm at most R. In particular,
the root of the tree is the zero vector because πn+1(L) = {0}. The parent of a node
u ∈ πk(L) at depth n + 1 − k is the node πk+1(u) at depth n − k. The child nodes
are arranged in order of norms.

Here we introduce the basic idea of the Schnorr–Euchner algorithm Schnorr and
Euchner (1994), which is a depth first search of the enumeration tree to find all
leaves in practice. (cf. Kannan’s algorithm 1983 is asymptotically superior in the
running time, but it is not competitive in practice due to a substantial overhead of
recursive procedures. See also Micciancio and Walter 2014 for such discussion.)
We represent the shortest non-zero vector as s = v1b1 + · · · + vnbn ∈ L for some
unknown integers vi ’s. With Gram–Schmidt information of B, it is rewritten as

s =
n∑

i=1

vi

⎛

⎝b∗
i +

i−1∑

j=1

μi, jb∗
j

⎞

⎠ =
n∑

j=1

⎛

⎝v j +
n∑

i= j+1

μi, j vi

⎞

⎠b∗
j .

Due to the orthogonality of Gram–Schmidt vectors b∗
j ’s, the squared norms of pro-

jections of the vector s are given as for every 1 ≤ k ≤ n

‖πk(s)‖2 =
n∑

j=k

⎛

⎝v j +
n∑

i= j+1

μi, j vi

⎞

⎠

2

‖b∗
j‖2.

If s is a leaf of the enumeration tree, then its projections all satisfy ‖πk(s)‖2 ≤ R2 for
all 1 ≤ k ≤ n. These n inequalities together with above equations enable to perform
an exhaustive search for the integral coordinates vn, vn−1, . . . , v1 of s:

(

vk +
n∑

i=k+1

μi,kvi

)2

≤
R2 − ∑n

j=k+1

(
v j + ∑n

i= j+1 μi, j vi

)2 ‖b∗
j‖2

‖b∗
k‖2

(2)

A Survey of Solving SVP Algorithms and Recent Strategies … 195

for every 1 ≤ k ≤ n. We start with k = n in Eq. (2), that is, 0 ≤ vn ≤ R
‖b∗

n‖ , because
we can restrict to “positive” nodes due to the symmetry of the enumeration tree.
Choosing a candidate of vn , we move to the next index k = n − 1 in Eq. (2), that

is, (vn−1 + μn,n−1vn)
2 ≤ R2−v2n‖b∗

n‖2
‖b∗

n−1‖2 to find a candidate of vn−1. By repeating this
procedure, assume that the integers vn, . . . , vk+1 are found for some 1 < k < n.
Then Eq. (2) enables to compute an interval Ik such that vk ∈ Ik , and thus to perform
an exhaustive search for the integer vk . A depth first search of the tree corresponds
to enumerating the interval from its middle, namely, a zig-zag search like

vk = �ck� , �ck� ± 1, �ck� ± 2, · · · ,

where ck = −∑n
i=k+1 μi,kvi . The basic Schnorr–Euchner enumeration algorithm

Schnorr and Euchner (1994) is as below (see Gama et al. 2010, Algorithm 2 for the
algorithm with some improvements).

Algorithm: The basic Schnorr–Euchner enumeration Schnorr and Euchner
(1994)

Input: A basis B = (b1, . . . ,bn) of a lattice L and a radius R with λ1(L) ≤ R
Output: The shortest non-zero vector s = ∑n

i=1 vibi in L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of B
2: (ρ1, . . . , ρn+1)=0, (v1, . . . , vn)=(1, 0, . . . , 0), (c1, . . . , cn)=0, (w1, . . . , wn)=

0
3: k = 1, last_nonzero = 1 // largest i for which vi �= 0
4: while true do
5: ρk ← ρk+1 + (vk − ck)

2 · ‖b∗
k‖2 // ρk = ‖πk(s)‖2

6: if ρk ≤ R2 then
7: if k = 1 then R2 ← ρk , s ← ∑n

i=1 vibi ; // update the squared radius
8: else k ←k−1, ck ← −∑n

i=k+1 μi,kvi , vk ← �ck�, wk ← 1;
9: else
10: k ← k + 1 // going up the tree
11: if k = n + 1 then return s;
12: if k ≥ last_nonzero then last_nonzero ← k, vk ← vk + 1;
13: else
14: if vk > ck then vk ← vk − wk ; else vk ← vk + wk ; // zig-zag search
15: wk ← wk + 1
16: end if
17: end if
18: end while

The running time of the enumeration algorithm fully depends on the total num-
ber of tree nodes N . An estimate of N can be derived from the Gaussian Heuristic.
More precisely, the number of nodes at level � is exactly half the number of vectors
in the projected lattice πn+1−�(L) with norm at most R. Since vol(πn+1−�(L)) =

196 M. Yasuda

∏n
i=n+1−� ‖b∗

i ‖, the Gaussian Heuristic predicts the number of nodes at level �

scanned by the Schnorr–Euchner algorithm to be close to

H� ≈ 1

2
· V�(R)
∏n

i=n+1−� ‖b∗
i ‖

.

Then N ≈ ∑n
�=1 H�. For a “good” basis (reduced by LLL or BKZ, introduced in

the next subsection), we have ‖b∗
i ‖/‖b∗

i+1‖ ≈ q for some constant q. This is called
the geometric series assumption (GSA),1 first introduced by Schnorr (2003). The
constant q depends on the reduction algorithm. For example, we experimentally have
q ≈ 1.04 by LLL and q ≈ 1.025 by BKZ with blocksize 20 for high-dimensional
lattices (see Gama and Nguyen 2008 for details.) Now we take the enumeration
radius R = √

γnvol(L)1/n , which is optimal in the worst case. With the constant q,
we estimate

H� ≈ q(n−�)(n−1)/2V�(
√

γn)

2q(n−�−1)(n−�)/2
= q�(n−�)/22O(n)

since we can roughly estimate V�(
√

γn) = 2O(n) from
√

γn = 	
(√

n
)
Gama et al.

(2010). The right-hand term is maximized for � = n
2 , and it is less than qn2/82O(n).

Thus the maximum of H� is super-exponential in n and is reached for � ≈ n
2 . (See

Gama et al. 2010, Fig. 1 for the actual number of nodes, which is very close to this
prediction.) Since smaller q is obtained for a more reduced basis, it shows that the
more reduced the input basis is, the less are the nodes in the enumeration tree, and
the cheaper the enumeration cost.

It is possible to obtain substantial speedups using pruning techniques by Gama
et al. (2010). Their idea is tempting not to enumerate all the tree nodes, by dis-
carding certain branches. (See Aono et al. 2018 for a lower bound of the time
complexity of pruned enumeration.) However, it decreases the success probabil-
ity to find the shortest non-zero lattice vector s. For instance, one might intu-
itively hope that ‖πn/2(s)‖2 � ‖s‖2/2, which is more restrictive than the inequality
‖πn/2(s)‖2 ≤ ‖s‖2. Formally, pruning replaces each of the n inequalities ‖πk(s)‖2 ≤
R2 by ‖πk(s)‖2 ≤ R2

n+1−k , where R1 ≤ · · · ≤ Rn = R are n real numbers defined
by a pruning strategy. A pruning parameter is set in the fplll library The FPLLL
development team (2016), and a pruning function for setting Ri ’s is implemented in
the progressive BKZ library Aono et al. (2016).

3.1.2 Exponential-Space Exact Algorithms: Sieve

These algorithms have a better asymptotic running time, but they all require exponen-
tial space 2	(n). The first algorithm of this kind is the randomized sieve algorithm
proposed by Ajtai, Kumar, and Sivakumar (AKS) Ajtai et al. (2001). The AKS

1This assumption states that for a reduced basis B = (b1, . . . ,bn), the plots of its Gram–Schmidt
log-norms log ‖b∗

i ‖ for 1 ≤ i ≤ n are on a straight line. (For example, see Schnorr 2003, Fig. 1.)

A Survey of Solving SVP Algorithms and Recent Strategies … 197

algorithm outputs the shortest lattice vector with overwhelming probability, and its
asymptotic complexity is much better than deterministic enumeration algorithms
with 2O(n2) time complexity. The main idea is as follows (see also Nguyen 2008,
Sect. 3 or Nguyen 2009): Given a lattice L of dimension n, consider a ball S centered
at the origin and of radius r with λ1(L) ≤ r ≤ O(λ1(L)). Then #(L ∩ S) = 2O(n)

based on the Gaussian Heuristic. If we could perform an exhaustive search for all
vectors in L ∩ S, we could find the shortest lattice vector within 2O(n) polynomial-
time operations. Enumeration enables to perform an exhaustive search of L ∩ S,
but it requires to go through all the vectors in the union set S̃ = ⋃n

k=1 (πk(L) ∩ S),
whose total number is much larger than #(L ∩ S). In contrast, the AKS algorithm
performs a randomized sampling of L ∩ S, without going through the set S̃. If it
was uniformly sampled over L ∩ S, a short lattice vector would be included in N
samples with probability close to 1 for N � #(L ∩ S). Unfortunately, it is unclear
whether the uniform property is satisfied by the AKS sampling. However, it can be
shown that there exists a vector w ∈ L ∩ S such that w and w + s can be sampled
with non-zero probability for some shortest lattice vector s. Thus the shortest lattice
vector is obtained by computing the shortest difference of any pairs of the N sampled
vectors in L ∩ S.

There are several heuristic variants of the AKS algorithm with time complexity
2O(n) and space complexity exponential in n for an n-dimensional lattice L Baiet al.
(2016), Herold and Kirshanova (2017), Micciancio and Voulgaris (2010), Nguyen
(2008). Given a basis of L , these algorithms build databases of lattice vectors with
norms at most R · GH(L) for a small constant R > 0 such as R2 = 4

3 . In generic
sieves, it is checked whether the sum or the difference of any pair of vectors in
databases becomes shorter. The basic sieve algorithm is as below.

Algorithm: The basic sieve

Input: A basisB = (b1, . . . ,bn) of a lattice L and a size parameter N = (
4
3

)n/2+o(n)

Output: A database of N short vectors in L
1: Take a set D of N random vectors in L (with norm at most 2nvol(L)1/n)
2: while ∃(v,w) ∈ D2 such that ‖v + w‖ < ‖v‖ (resp., ‖v − w‖ < ‖v‖) do
3: v ← v + w (resp., v ← v − w) // update vectors in the database D
4: end while
5: return D

In Step 1 of the above algorithm, the initialization of the database D can be
performed by first computing an LLL-reduced basis (see the next subsection for
the LLL reduction), and taking random small integral combinations of the basis
vectors. (A natural idea is to use a stronger reduction algorithm such as BKZ in
order to generate shorter initial vectors.) The Nguyen–Vidick sieve (2008) finds
pairs of vectors (v1, v2) from D, whose sum or difference gives a shorter vector, that
is, ‖v1 ± v2‖ < maxv∈D ‖v‖. Once such a pair is found, the longest vector from the
database gets replaced by v1 ± v2. The database size is a priori fixed to the asymptotic

198 M. Yasuda

heuristic minimum 20.2075n+O(n) in order to find enough such pairs. The running time
is quadratic in the database size. The Gauss sieve (2010) is a variant of the Nguyen–
Vidick sieve with substantial improvements; the main improvement is to divide the
database into two parts, the so-called “list ” part and the “queue” part. Both parts
are separately sorted by Euclidean norm in order to make early reduction likely. In
updating vectors, the queue part enables to avoid considering the same pair several
times. The running time and the database size for the Gauss sieve are asymptotically
the same as for the Nguyen–Vidick sieve, but its performance is better in practice.
The 3-sieve Baiet al. (2016), Herold and Kirshanova (2017) searches for triples of
lattice vectors whose sum gives a shorter vector. (cf. the Nguyen–Vidick and the
Gauss algorithms are a kind of 2-sieve.) There are more possible triples than pairs to
shorten vectors in the database, but a search for such triples is more costly. (Filtering
techniques Herold and Kirshanova 2017 are required to speed up such a search.)
Several tricks and techniques have been proposed to improve sieve algorithms, such
as the SimHash technique Charikar (2002), Ducas (2018), Fitzpatrick et al. (2014).
Several practical sieve algorithms also have been implemented in the fplll library The
FPLLL development team (2016).

3.2 Approximate-SVP Algorithms

These algorithms are much faster than exact algorithms, but they output short lattice
vectors, not necessarily the shortest ones.

3.2.1 LLL Reduction

The first efficient approximate-SVP algorithm is the celebrated algorithm by Lenstra,
Lenstra, and Lovász (LLL) Lenstra et al. (1982). Nowadays it is known as the most
famous algorithm of lattice basis reduction, which finds a lattice basis with short
and nearly orthogonal basis vectors. Such a basis is called reduced or good. We
introduce the notion of LLL reduction. Let B = (b1, . . . ,bn) be a basis of a lattice
L , and B∗ = (b∗

1, . . . ,b
∗
n) its Gram–Schmidt vectors with coefficients μi, j . For a

parameter 1
4 < δ < 1, the basis B is called δ-LLL-reduced if it satisfies two condi-

tions: (i) (Size-reduction condition) |μi, j | ≤ 1
2 for all 1 ≤ j < i ≤ n. (ii) (Lovász’

condition) δ‖b∗
k−1‖2 ≤ ‖πk−1(bk)‖2 for all 2 ≤ k ≤ n. This can be rewritten as

‖b∗
k‖2 ≥ (δ − μ2

k,k−1)‖b∗
k−1‖2. Any δ-LLL-reduced basis satisfies the below proper-

ties (see Bremner 2011 for proof):

• ‖b1‖ ≤ α(n−1)/4vol(L)1/n , where α = 4
4δ−1 > 4

3 .
• ‖bi‖ ≤ α(n−1)/2λi (L) for 1 ≤ i ≤ n, and

∏n
i=1 ‖bi‖ ≤ αn(n−1)/4vol(L).

Given any basis of L , the LLL algorithm finds a δ-LLL-reduced basis of L . As seen
from the above second property, it can solve approximate-SVP with factor α(n−1)/2.
The basicLLLalgorithm is given below (see alsoGalbraith 2012,Chap. 17 orNguyen
2009).

A Survey of Solving SVP Algorithms and Recent Strategies … 199

Algorithm: The basic LLL Lenstra et al. (1982)

Input: AbasisB = (b1, . . . ,bn) of a lattice L , and a reduction parameter 1
4 < δ < 1

Output: A δ-LLL-reduced basis B of L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of the input basis B
2: k ← 2
3: while k ≤ n do
4: Size-reduce B = (b1, . . . ,bn) // At each k, we recursively change bk ← bk −

�μk, j�b j for 1 ≤ j ≤ k − 1 (e.g., see Galbraith 2012, Algorithm 24)
5: if (bk−1,bk) satisfies Lovász’ condition then
6: k ← k + 1
7: else
8: Swap bk with bk−1, and update Gram–Schmidt information of B
9: k ← max(k − 1, 2)
10: end if
11: end while

In the LLL algorithm, a pair of adjacent basis vectors (bk−1,bk) is swapped if
it does not satisfy Lovász’ condition. Thus the output basis is δ-LLL-reduced if the
algorithm terminates. The quantity Pot(B) = ∏n−1

i=1 ‖b∗
i ‖2(n−i) is called the potential

of a basis B. Every swap in the LLL algorithm decreases the potential of an input
basis by a factor at least δ < 1. (cf. the size-reduction procedure does not change
the potential.) This guarantees the termination of the LLL algorithm in polynomial
time in n. Furthermore, the LLL algorithm is applicable also for linearly dependent
vectors to remove their linear dependency. (See Bremner 2011, Chap. 6, Cohen 2013,
Sect. 2.6.4, Pohst 1987 or Sims 1994, Sect. 8.7 for details.)

3.2.2 Variants of LLL

LLL with Deep Insertions (DeepLLL)

This variant is a straightforward generalization of LLL, in which non-adjacent basis
vectors can be changed. Specifically, a basis vector bk is inserted between bi−1 and bi

as σi,k(B) = (. . . ,bi−1,bk,bi , . . . ,bk−1,bk+1, . . .), called a deep insertion, if the
so-called deep exchange condition ‖πi (bk)‖2 < δ‖b∗

i ‖2 is satisfied for 1
4 < δ < 1.

In this case, the newGSO vector at the i th position is given by πi (bk), strictly shorter
than the old GSO vector b∗

i . A basis B = (b1, . . . ,bn) is called δ-DeepLLL-reduced
if it satisfies two conditions: (i) it is size-reduced, (ii) ‖πi (bk)‖2 ≥ δ‖b∗

i ‖2 for all 1 ≤
i < k ≤ n. (The case i = k − 1 is just Lovász’ condition.) Any δ-DeepLLL-reduced
basis satisfies the below properties Yasuda and Yamaguchi (2019), Theorem 1:

• ‖b1‖ ≤ α
n−1
2n

(
1 + α

4

) (n−1)(n−2)
4n vol(L)

1
n , where α is the same as in LLL.

• ‖bi‖ ≤ √
α

(
1+ α

4

) n−2
2 λi (L) for 1 ≤ i ≤ n, and

∏n
i=1 ‖bi‖ ≤ (

1 + α
4

) n(n−1)
4 vol(L).

200 M. Yasuda

These properties are strictly stronger than the case of LLL. The basic DeepLLL algo-
rithm Schnorr and Euchner (1994) is given below (see also Bremner 2011, Fig. 5.1
or Cohen 2013, Algorithm 2.6.4).

Algorithm: The basic DeepLLL Schnorr and Euchner (1994)

Input: AbasisB = (b1, . . . ,bn) of a lattice L , and a reduction parameter 1
4 < δ < 1

Output: A δ-DeepLLL-reduced basis B of L
1: Compute Gram–Schmidt information μi, j and ‖b∗

i ‖2 of the input basis B
2: k ← 2
3: while k ≤ n do
4: Size-reduce B as in LLL
5: C ← ‖bk‖2, i ← 1
6: while i < k do
7: if C ≥ δ‖b∗

i ‖2 then
8: Compute C ← C − μ2

k,i‖b∗
i ‖2 and i ← i + 1 // C = ‖πi (bk)‖2

9: else
10: B ← σi,k(B) // a deep insertion
11: Update the Gram–Schmidt information of B, and k ← max(i, 2) − 1
12: end if
13: end while
14: k ← k + 1
15: end while

ComparedwithLLL, it is complicated to update theGram–Schmidt information of
B after every deep insertion. (SeeYamaguchi andYasuda 2017.) Every deep insertion
does not always decrease the potential of an input basis, and thus the complexity
of DeepLLL is no longer polynomial-time but potentially super-exponential in the
lattice dimension. However, DeepLLL often finds much shorter lattice vectors than
LLL in practice Gama and Nguyen (2008).

Block Korkine–Zolotarev (BKZ) Algorithm

Let us first introduce a strong notion of reduction: A basis B = (b1, . . . ,bn) of a lat-
tice L is called HKZ-reduced if it is size-reduced and it satisfies ‖b∗

i ‖ = λ1(πi (L))

for all 1 ≤ i ≤ n. For 1 ≤ i ≤ j ≤ n, denote by B[i, j] the local projected block
(πi (bi), πi (bi+1), . . . , πi (b j)), and by L [i, j] the lattice spanned by B[i, j]. The notion
of BKZ-reduction is a local block version of HKZ-reduction Schnorr (1987),
Schnorr (1992), Schnorr and Euchner (1994). For a blocksize 2 ≤ β ≤ n, a basis
B = (b1, . . . ,bn) of a lattice L is called β-BKZ-reduced if it is size-reduced and
every local block B[j, j+β−1] is HKZ-reduced for 1 ≤ j ≤ n − β + 1. The second
condition means ‖b∗

j‖ = λ1(L [j,k]) for 1 ≤ j ≤ n − 1 with k = min(j + β − 1, n).

Every β-BKZ-reduced basis satisfies ‖b1‖ ≤ γ
(n−1)/(β−1)
β λ1(L) Schnorr (1992). The

A Survey of Solving SVP Algorithms and Recent Strategies … 201

BKZalgorithmSchnorr andEuchner (1994) finds aβ-BKZ-reduced basis, and it calls
LLL to reduce every local block before finding the shortest vector over the block
lattice. (As β increases, a shorter lattice vector can be found, but the running time is
more costly.)

Algorithm: The basic BKZ Schnorr and Euchner (1994)

Input: A basis B = (b1, . . . ,bn) of a lattice L , a blocksize 2 ≤ β ≤ n, and a reduc-
tion parameter 1

4 < δ < 1 of LLL
Output: A β-DeepBKZ-reduced basis B of L
1: B ← LLL(B, δ) // Compute μi, j and ‖b∗

j‖2 of the new basis B together
2: z ← 0, j ← 0
3: while z < n − 1 do
4: j ← (j mod (n − 1)) + 1, k ← min(j + β − 1, n), h ← min(k + 1, n)

5: Find v ∈ L such that ‖π j (v)‖ = λ1(L [j,k]) by enumeration or sieve
6: if ‖π j (v)‖2 < ‖b∗

j‖2 then
7: z ← 0 and call LLL((b1, . . . ,b j−1, v,b j , . . . ,bh), δ) // Insert v ∈ L and

remove the linear dependency to obtain a new basis
8: else
9: z ← z + 1 and call LLL((b1, . . . ,bh), δ)

10: end if
11: end while

It is customary to terminate the BKZ algorithm after a selected number of calls
to an exact-SVP algorithm over block lattices. (See Hanrot et al. 2011 for analysis.)
Efficient variants such as BKZ 2.0 Chen (2011) have been proposed, and some of
them have been implemented in The FPLLL development team (2016). The Hermite
factor is a good index tomeasure the practical output quality of a reduction algorithm.
(See Gama and Nguyen 2008 for their experiments.) It is defined by γ = ‖v‖

vol(L)1/n ,
where v is the shortest basis vector output by a reduction algorithm for a basis of a
lattice L of dimension n. Under the Gaussian Heuristic and GSA, a limiting value of
the root Hermite factor of BKZ with blocksize β is predicted in Chen (2013) as

lim
n→∞ γ

1
n =

(

ν
− 1

β

β

) 1
β−1

∼
(

β

2πe
(πβ)

1
β

) 1
2(β−1)

.

There are experimental evidences to support this prediction for high blocksizes such
as β > 50. (Note that the Gaussian Heuristic holds in practice for random lattices
in high dimensions, but unfortunately it is violated in low dimensions.) In a simple
form based on the Gaussian Heuristic, the GSA shape of a β-BKZ-reduced basis of

volume 1 is predicted as ‖b∗
i ‖ ≈ α

n−1
2 −i

β , where αβ =
(

β

2πe

)1/β
. This is reasonably

accurate in practice for β > 50 and β � n. (See Chen 2013, 2011; Yu and Ducas
2017.) Other variants of BKZ have been proposed such as slide reduction Gama
and Nguyen (2008), self-dual BKZ Micciancio and Walter (2016), and progressive-

202 M. Yasuda

BKZ Aono et al. (2016). As a mathematical improvement of BKZ, DeepBKZ was
recently proposed in Yamaguchi and Yasuda (2017), in which DeepLLL is called a
subroutine alternative to LLL. In particular, DeepBKZ finds a short lattice vector by
smaller blocksizes than BKZ in practice. (Dual and self-dual variants of DeepBKZ
were also proposed in Yasuda (2018), Yasuda et al. (2018).)

4 The SVP Challenge and Recent Strategies

To test algorithms solving SVP, sample lattice bases are presented in Darmstadt
(2010) for dimensions from 40 up to 200. (The lattices are random in the sense of
Goldstein and Mayer Goldstein and Mayer (2003).) For every lattice L , any non-
zero lattice vector with (Euclidean) norm less than 1.05GH(L) can be submitted to
the hall of fame in the SVP challenge. To enter the hall of fame, the lattice vector
is required to be shorter than a previous one in the same dimension (with possibly
different seed). Note that not all lattice vectors in the hall of fame are necessarily
the shortest. In this section, we introduce two recent strategies for solving the SVP
challenge in high dimensions such as n ≥ 150.

4.1 The Random Sampling Strategy

Early in 2017, a non-zero vector in a lattice L of dimension n = 150 with norm
less than 1.05GH(L) was first found by Teruya and Kashiwabara using many high-
performance servers. (See Teruya et al. 2018 for their large-scale experiments.) Their
strategy is based on the work of Fukase and Kashiwabara (2015), which is an exten-
sion of Schnorr’s random sampling reduction (RSR) Schnorr (2003). Here we review
random sampling (SA) and RSR. For a lattice L of dimension n, fix 1 ≤ u < n to
be a constant of search space bound. Given a basis B = (b1, . . . ,bn) of L , SA sam-
ples a vector v = ∑n

i=1 νib∗
i in L satisfying νi ∈ (−1/2, 1/2] for 1 ≤ i < n − u,

νi ∈ (−1, 1] for n − u ≤ i < n and νn = 1. Let Su,B denote the set of such lattice
vectors. Since the number of candidates for νi with |νi | ≤ 1/2 (resp. |νi | ≤ 1) is 1
(resp. 2), there are 2u lattice vectors in Su,B. By calling SA up to 2u times, RSR gen-
erates v satisfying ‖v‖2 < 0.99‖b1‖2 Schnorr (2003), Theorem 1. Two extensions
are proposed in Fukase and Kashiwabara (2015) for solving the SVP challenge;
the first one is to represent a lattice vector by a sequence of natural numbers via
the Gram–Schmidt orthogonalization, and to sample lattice vectors on an appropri-
ate distribution of the representation. The second one is to decrease the sum of the
squared Gram–Schmidt lengths SS(B) := ∑n

i=1 ‖b∗
i ‖2 to make it easier to sample

very short lattice vectors. The effectiveness of their extensions is guaranteed by their

A Survey of Solving SVP Algorithms and Recent Strategies … 203

statistical analysis on lattices. Specifically, under the randomness assumption (RA),2

they roughly estimate that the distribution of the squared length of a sampled vector
‖v‖2 = ∑n

i=1 ν2
i ‖b∗

i ‖2 follows the normal distribution N (μ, σ 2) with

μ =
∑n

i=1 ‖b∗
i ‖2

12
and σ =

(∑n
i=1 ‖b∗

i ‖4
180

)1/2

.

This implies that shorter lattice vectors are sampled as the squared-sum SS(B)

becomes smaller. Then the basic strategy in Fukase and Kashiwabara (2015); Teruya
et al. (2018) consists of the following two steps: (i) We reduce an input basis so that
it decreases the sum of its squared Gram–Schmidt lengths as small as possible, by
using LLL and insertion of sampled lattice vectors like BKZ. (See also Yasuda et al.
2017 for such procedure). (ii) With such reduced basis B, we then find a short lattice
vector by randomly sampling v = ∑

i=1 νib∗
i .

As a sequential work, Aono and Nguyen (2017) introduced lattice enumeration
with discrete pruning to generalize random sampling, and also provided a deep anal-
ysis of discrete pruning by using the volume of the intersection of a ball with a box. In
particular, under RA, the expectation of the length of a short vector generated by lat-
tice enumeration with discrete pruning from the so-called tag t = (t1, . . . , tn) ∈ Z

n

is roughly given by E(t) = ∑n
i=1

(
t2i
4 + ti

4 + 1
12

)
‖b∗

i ‖2,which is a generalization of
the above mean μ. However, it is shown in Aono and Nguyen (2017) that the empir-
ical correlation between E(t) and the volume of ball-box intersection is negative.
This is statistical evidence why decreasing SS(B) is important instead of increas-
ing the volume of ball-box intersection. Furthermore, the calculation of the volume
presented in Aono and Nguyen (2017) is much less efficient than the computation
of SS(B). In 2018, Matsuda et al. (2018) investigated the strategy of Fukase and
Kashiwabara (2015) by the Gram–Charlier approximation in order to precisely esti-
mate the success probability of sampling short lattice vectors, and also discussed the
effectiveness of decreasing SS(B) for sampling short lattice vectors.

4.2 The Sub-Sieving Strategy

Around the end of August 2018, many records for the SVP challenge in dimensions
up to 155 had been found by the sub-sieving strategy of Ducas (2018). (See Albrecht
et al. 2019 for their experiments report.) The basic idea is to reduce SVP in high
dimensions to the bounded distance decoding (BDD) problem in low dimensions, a
particular case of CVP, in which the target vector is known to be somewhat close to
the lattice. It enforces us to find an enormous number of short vectors in projected

2RA states that the coefficients νi of v = ∑n
i=1 νib∗

i sampled by SA are uniformly distributed in
[−1/2, 1/2] for 1 ≤ i < n − u and in [−1, 1] for n − u ≤ i < n. It does not hold strictly in practice.

204 M. Yasuda

lattices, and the sieve is useful to collect such vectors. In particular, the sieve is
performed in projected lattices instead of the full lattice.

The specific strategy is as follows Ducas (2018), Section3. Given a basis B =
(b1, . . . ,bn) of a lattice L of high dimension n, we fix an integer d with 1 ≤ d ≤ n,
and perform the sieve in the projected lattice πd(L) to obtain a list of short lattice
vectors

D :=
{

v ∈ πd(L) | v �= 0 and ‖v‖ ≤
√
4

3
GH (πd(L))

}

.

We hope that the desired shortest non-zero vector s in the full lattice L projects
to a vector in the above list D, that is, it satisfies πd(s) �= 0 and ‖πd(s)‖ ≤√

4
3GH(πd(L)). (Note that πd(s) = 0 means that the vector s is in the sub-lattice

L(b1, . . . ,bd−1) of L . Here we do not care about the case.) Since ‖πd(s)‖ ≤ ‖s‖ ≈
GH(L), the condition

GH(L) ≤
√
4

3
GH (πd(L)) (3)

is sufficient to satisfy our hope. This condition is not tight, since the projected vector
πd(s) becomes shorter than the full vector s as the index d increases. By exhaustive
search over the list D, we assume that the projected vector sd := πd(s) ∈ D is known.
We need to recover the full vector s from sd . Write s = Bx for some x ∈ Z

n , and split
x as (x1 | x2)with x1 ∈ Z

d−1 and x2 ∈ Z
n−d+1. Then sd = πd(Bx) = Bdx2 and hence

x2 is known, where Bd = (πd(bd), . . . , πd(bn)). Now we need to recover x1 so that
s = B1x1 + B2x2 is small (or the shortest),whereB = (B1 | B2). This is an easyBDD
instance over the d-dimensional lattice spanned by B1 for the target vector B2x2. A
sufficient condition to solve this problemusingBabai’s nearest plane algorithmBabai
(1986) is that |〈b∗

i , s〉| ≤ 1
2‖b∗

i ‖2 for all 1 ≤ i < d. (See also Galbraith 2012, Chap.
18 for Babai’s algorithms.) Since |〈b∗

i , s〉| ≤ ‖b∗
i ‖‖s‖, a further sufficient condition

is that GH(L) ≤ 1
2 mini<d ‖b∗

i ‖. This condition is far from tight, and it should not
be a serious issue in practice. Indeed, even for a strongly reduced basis, the d first
Gram–Schmidt lengthswon’t bemuch smaller thanGH(L), say bymore than a factor
2. (The BKZ-preprocessing with blocksize β = n

2 is assumed in Ducas (2018).) A
concrete maximal value of d satisfying the condition (3) depends on the shape of
a basis B. It is estimated in Ducas (2018) that d = 	(n/ log n) is suitable over a
quasi-HKZ-reduced basis.

In 2019, Albrecht et al. (2019) proposed the General Sieve Kernel (G6K), an
abstract stateful machine supporting a variety of advanced lattice reductions based
on sieving algorithms. They have provided a highly optimized, multi-threaded, and
tweakable implementation of G6K as an open-source C++ and Python library. A
number of records in the hall of fame for the SVP challenge were found by the
sub-sieving strategy on G6K. (In June 2019, the highest dimension to be solved in
the SVP challenge is 157, using G6K.) Specifically, their experiments imply that in
average d = 11.46 + 0.0757n is a suitable free dimension of the sub-sieving strategy
for the SVP challenge in high dimensions n. Furthermore, their solution for the SVP

A Survey of Solving SVP Algorithms and Recent Strategies … 205

challenge in dimension 151 was found 400 times faster than the times reported for
the SVP challenge in dimension 150, which was solved early in 2017 by the random
sampling strategy.

Acknowledgements This work was supported by JST CREST Grant Number JPMJCR14D6,
Japan. A part of this work was also supported by JSPS KAKENHI Grant Number JP16H02830.

References

M. Ajtai, Generating hard instances of lattice problems, in Symposium on Theory of Computing
(STOC 1996) (ACM, 1996), pp. 99–108

M. Ajtai, R. Kumar, D. Sivakumar, A sieve algorithm for the shortest lattice vector problem, in
Symposium on Theory of Computing (STOC 2001) (ACM, 2001), pp. 601–610

M. Albrecht, L. Ducas, G. Herold, E. Kirshanova, E.W. Postlethwaite, M. Stevens, The general
sieve kernel and new records in lattice reduction. Advances in Cryptology–EUROCRYPT 2019,
Lecture Notes in Computer Science, vol. 11477 (Springer, Berlin, 2019), pp. 717–746

M.R. Albrecht, B.R. Curtis, A. Deo, A. Davidson, R. Player, E.W. Postlethwaite, F. Virdia, T.
Wunderer, Estimate all the LWE, NTRU schemes! Security and Cryptography for Networks
(SCN 2018), Lecture Notes in Computer Science, vol. 11035 (2018), pp. 351–367

Y. Aono, P.Q. Nguyen, Random sampling revisited: Lattice enumeration with discrete pruning.
Advances in Cryptology–EUROCRYPT 2017, Lecture Notes in Computer Science, vol. 10211
(Springer, Berlin, 2017), pp. 65–102

Y. Aono, P.Q. Nguyen, T. Seito, J. Shikata, Lower bounds on lattice enumeration with extreme
pruning.Advances in Cryptology–CRYPTO 2018, LectureNotes in Computer Science, vol. 10992
(Springer, Berlin, 2018), pp. 608–637

Y. Aono, Y. Wang, T. Hayashi, T. Takagi, Improved progressive BKZ algorithms and their precise
cost estimation by sharp simulator. Advances in Cryptology–EUROCRYPT 2016, Lecture Notes
in Computer Science, vol. 9665 (Springer, Berlin, 2016), pp. 789–819. Progressive BKZ library
is available from https://www2.nict.go.jp/security/pbkzcode/

L. Babai, On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1),
1–13 (1986)

S. Bai, T. Laarhoven, D. Stehlé, Tuple lattice sieving. LMS J. Comput.Math. 19(A), 146–162 (2016)
M.R. Bremner, Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications
(CRC Press, Bocca Raton, 2011)

M.S. Charikar, Similarity estimation techniques from rounding algorithms, in Symposium on Theory
of Computing (STOC 2002) (ACM, 2002), pp. 380–388

Y.Chen, Réduction de réseau et sécurité concrete du chiffrement completement homomorphe. Ph.D.
thesis, Paris 7 (2013)

Y. Chen, P.Q. Nguyen, BKZ 2.0: Better lattice security estimates. Advances in Cryptology–
ASIACRYPT 2011, Lecture Notes in Computer Science, vol. 7073 (Springer, Berlin, 2011), pp.
1–20

H. Cohen, A Course in Computational Algebraic Number Theory, vol. 138, Graduate Texts in
Mathematics (Springer Science & Business Media, Berlin, 2013)

T. Darmstadt, SVP challenge. (2010) https://www.latticechallenge.org/svp-challenge/
L. Ducas, Shortest vector from lattice sieving: a few dimensions for free. Adavances in Cryptology–

EUROCRYPT 2018, Lecture Notes in Computer Science, , vol. 10820 (Springer, Berlin, 2018),
pp. 125–145

U. Fincke, M. Pohst, Improved methods for calculating vectors of short length in a lattice, including
a complexity analysis. Math. Comput. 44(170), 463–471 (1985)

https://www2.nict.go.jp/security/pbkzcode/
https://www.latticechallenge.org/svp-challenge/

206 M. Yasuda

R. Fitzpatrick, C. Bischof, J. Buchmann, Ö. Dagdelen, F. Göpfert, A. Mariano, B.Y. Yang, Tuning
Gauss Sieve for speed. Progress in Cryptology–LATINCRYPT 2014, Lecture Notes in Computer
Science, vol. 8895 (Springer, 2014), pp. 288–305

M. Fukase, K. Kashiwabara, An accelerated algorithm for solving SVP based on statistical analysis.
J. Inf. Process. (JIP) 23(1), 67–80 (2015)

S.D. Galbraith,Mathematics of Public Key Cryptography (CambridgeUniversity Press, Cambridge,
2012)

N. Gama, P.Q. Nguyen, Finding short lattice vectors within Mordell’s inequality, in Symposium on
Theory of Computing (STOC 2008) (ACM, 2008), pp. 207–216

N. Gama, P.Q. Nguyen, Predicting lattice reduction, Advances in Cryptology–EUROCRYPT 2008,
Lecture Notes in Computer Science, vol. 4965 (Springer, Berlin, 2008), pp. 31–51

N. Gama, P.Q. Nguyen, O. Regev, Lattice enumeration using extreme pruning, Advances in
Cryptology–EUROCRYPT 2010, LectureNotes inComputer Science, vol. 6110 (Springer, Berlin,
2010), pp. 257–278

D. Goldstein, A. Mayer, Forum Mathematicum, vol. 15, On the equidistribution of Hecke points
(De Gruyter, Berlin, 2003), pp. 165–190

G. Hanrot, X. Pujol, D. Stehlé, Analyzing blockwise lattice algorithms using dynamical systems,
Advances in Cryptology–CRYPTO 2011, LectureNotes inComputer Science, vol. 6841 (Springer,
Berlin, 2011), pp. 447–464

C. Hermite, Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des
nombres: Deuxième lettre. Journal für die Reine und Angewandte Mathematik (1850), pp. 279–
315

G. Herold, E. Kirshanova, Improved algorithms for the approximate k-list problem in Euclidean
norm, Public Key Cryptography (PKC 2017), Lecture Notes in Computer Science, vol. 10174
(Springer, Berlin, 2017), pp. 16–40

R. Kannan, Improved algorithms for integer programming and related lattice problems, in Sympo-
sium on Theory of Computing (STOC 1983) (ACM, 1983), pp. 193–206

R. Kannan, Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

A.K. Lenstra, H.W. Lenstra, L. Lovász, Factoring polynomials with rational coefficients. Mathe-
matische Annalen 261(4), 515–534 (1982)

J. Martinet, Comprehensive Studies in Mathematics, vol. 327, Perfect lattices in Euclidean spaces
(Springer Science & Business Media, Berlin, 2013)

Y. Matsuda, T. Teruya, K. Kashiwabara, Estimation of the success probability of random sampling
by the Gram-Charlier approximation. IACR ePrint 2018/815 (2018)

D. Micciancio, P. Voulgaris, Faster exponential time algorithms for the shortest vector problem, in
Symposium on Discrete Algorithms (SODA 2010) (ACM-SIAM, 2010), pp. 1468–1480

D. Micciancio, M. Walter, Fast lattice point enumeration with minimal overhead, in Symposium on
Discrete algorithms (SODA 2014) (ACM-SIAM, 2014), pp. 276–294

D. Micciancio, M. Walter, Practical, predictable lattice basis reduction, Advances in Cryptology–
EUROCRYPT 2016, Lecture Notes in Computer Science, vol. 9665 (Springer, Berlin, 2016), pp.
820–849

P.Q.Nguyen,The LLL Algorithm, Hermite’s constant and lattice algorithms (Springer, Berlin, 2009),
pp. 19–69

P.Q. Nguyen, T. Vidick, Sieve algorithms for the shortest vector problem are practical. J. Math.
Cryptol. 2(2), 181–207 (2008)

M. Pohst, On the computation of lattice vectors of minimal length, successive minima and reduced
bases with applications. ACM Sigsam Bull. 15(1), 37–44 (1981)

M. Pohst, A modification of the LLL reduction algorithm. J. Symb. Comput. 4(1), 123–127 (1987)
C.P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput.
Sci. 53(2–3), 201–224 (1987)

C.P. Schnorr, BlockKorkin-Zolotarev bases and successiveminima. InternationalComputer Science
Institute (1992)

A Survey of Solving SVP Algorithms and Recent Strategies … 207

C.P. Schnorr, Lattice reduction by random sampling and birthday methods, Symposium on Theoret-
ical Aspects of Computer Science (STACS 2003), Lecture Notes in Computer Science, vol. 2607
(Springer, Berlin, 2003), pp. 145–156

C.P. Schnorr, M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset
sum problems. Math. Program. 66, 181–199 (1994)

Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring, in Symposium
on Foundations of Computer Science (FOCS 1994) (IEEE, 1994), pp. 124–134

C.C. Sims, Computation with Finitely Presented Groups, vol. 48 (Cambridge University Press,
Cambridge, 1994)

T. Teruya, K. Kashiwabara, G. Hanaoka, Fast lattice basis reduction suitable for massive paralleliza-
tion and its application to the shortest vector problem, Public Key Cryptography (PKC 2018),
Lecture Notes in Computer Science, vol. 10769 (Springer, Berlin, 018), pp. 437–460

The FPLLL development team: fplll, a lattice reduction library (2016), https://github.com/fplll/fplll
The National Institute of Standards and Technology (NIST): Post-quantum cryptography.
(2016) https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-
standardization

J. Yamaguchi, M. Yasuda, Explicit formula for Gram-Schmidt vectors in LLL with deep insertions
and its applications, Number-Theoretic Methods in Cryptology (NuTMiC 2017), Lecture Notes
in Computer Science, vol. 10737 (Springer, Berlin, 2017), pp. 142–160

M. Yasuda, Self-dual DeepBKZ for finding short lattice vectors. J. Math. Cryptol. 14(1), 84–94
(2020)

M.Yasuda, J.Yamaguchi,Anewpolynomial-timevariant ofLLLwith deep insertions for decreasing
the squared-sum of Gram-Schmidt lengths. Des. Codes Cryptogr. 87, 2489–2505 (2019)

M. Yasuda, J. Yamaguchi, M. Ooka, S. Nakamura, Development of a dual version of DeepBKZ
and its application to solving the LWE challenge, Progress in Cryptology–AFRICACRYPT 2018,
vol. 10831, Lecture Notes in Computer Science (Springer, Berlin, 2018), pp. 162–182

M. Yasuda, K. Yokoyama, T. Shimoyama, J. Kogure, T. Koshiba, Analysis of decreasing squared-
sum of Gram-Schmidt lengths for short lattice vectors. J. Math. Cryptol. 11(1), 1–24 (2017)

Y. Yu, L. Ducas, Second order statistical behavior of LLL and BKZ, Selected Areas in Cryptography
(SAC 2017), Lecture Notes in Computer Science, vol. 10719 (Springer, Berlin, 2017), pp. 3–22

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://github.com/fplll/fplll
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
http://creativecommons.org/licenses/by/4.0/

	 A Survey of Solving SVP Algorithms and Recent Strategies for Solving the SVP Challenge
	1 Introduction
	2 Mathematical Background
	2.1 Lattices and Their Bases
	2.2 Successive Minima, Hermite's Constants, and Gaussian Heuristic
	2.3 Introduction to Lattice Problems

	3 Solving SVP Algorithms
	3.1 Exact-SVP Algorithms
	3.2 Approximate-SVP Algorithms

	4 The SVP Challenge and Recent Strategies
	4.1 The Random Sampling Strategy
	4.2 The Sub-Sieving Strategy

	References

