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Introduction to Cancer Stem Cells 1
Anisur Rahman Khuda-Bukhsh, Asmita Samadder,
and Santu Kumar Saha

Abstract

Cancer is a persistent public health-care issue of modern life that poses a global
challenge. It comprises several diseases that basically involve abnormal cell
growth and have a potential to invade or metastasize to other distant organ
systems, spreading the disease to other part(s) of the body. Development of
resistance to conventional therapies and disease recurrence are some common
phenomena encountered in almost all types of cancer. Understanding “hallmarks
of cancer” and “tumor microenvironment” is therefore important for development
of successful therapy for cancer. Numerous drugs have been designed and tested
for their anticancer efficacy over decades to find out a complete cure for this lethal
disease, but without desirable success so far. The concept and role of “stem cell”
therapy in oncology research have drawn considerable interest in recent years.
Thus, emphasis has been given on proper identification and characterization of
the “cancer stem cells” and “other stem cells” for elucidation of the signaling
cascades involved in the process of cancer limitation and progression (and
resurgence). In the introductory part of this book, an attempt has been made to
provide an overall idea on different aspects of cancer stem cells, optimization of
rate and type of cell growth, and their associative cure strategy by adopting a
well-defined scientific perspective.
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Abbreviations

AML Acute myeloid leukemia
CSC Cancer stem cell (CSC)
DNA Deoxyribonucleic acid
EMT Epithelial to mesenchymal transition
EPC Endothelial progenitor cell
FACS Fluorescence-activated cell sorter
HSC Hematopoietic stem cell
HSCT Hematopoietic stem cell transplant
MET Mesenchymal-epithelial transition
MSC Mesenchymal stem cell
NSC Neural stem cell
ROS Reactive oxygen species
SSC Somatic stem cell
TSG Tumor suppressor gene
HSCTs Hematopoietic stem cell transplants

1.1 Cancer and Cancer Stem Cells

Cancer is a global public health challenge, and according to the latest GLOBOCAN
report in 2018, approximately 18.1 million new cases and 9.6 million deaths were
recorded [1]. Epidemiological studies showed smoking, alcohol, irregular and unhy-
gienic food habits, lifestyle, genetic polymorphism, susceptible alleles, oncogene
regulation, chromatin remodeling, and environmental and genotoxic stress to be the
major causes of developing cancer. The knowledge of cancer has now extended
toward understanding of “tumor microenvironment,” and over the years, genomic,
epigenomic, transcriptomic, and proteomic databases of around 33 cancer types have
also been established [2]. Overall findings of the pan-cancer atlas reflect the six
“hallmarks of cancer” [3] and role of ~140 driver genes which are classified into
12 major cancer signaling pathways [4]. Hence, this new era of translational cancer
research is focused on early diagnosis and targeted cancer treatment. For targeted
therapy, the aim is to employ single molecule or pathway inhibitors with or without
conventional treatment.

The conventional treatments for cancer are surgery, chemotherapy, radiotherapy,
and hormone therapy. On the initial stage of chemoradiotherapy treatment, tumor
shrinkage commonly takes place, but sooner or later tumor growth is reestablished at
the original and/or in new sites [5]. Further, when cancer is diagnosed at its advanced
stages, most of the conventional therapies fail, and most patients in due course of
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treatment develop chemoradiotherapy resistance with the ultimatum toward death
[6]. This alarming situation necessitates the immediate attention for understanding
the “hidden mechanism” of disease recurrence for better treatment and management
of therapy resistance.

Cancer is a heterogeneous disease phenotypically and genotypically controlled.
The heterogeneous nature of this disease is evident even within a single patient. It is
evident that the intra- and inter-tumor heterogeneity is due to mutational landscapes in
the “driver genes.” These driver genes are either tumor suppressor genes (TSGs) or
oncogenes. The TSGs are functionally involved in transcription regulation, signal
transduction, and angiogenesis. In cancer, the TSGs are inactivated due to genetic and
epigenetic alterations. The genetic alterations of TSGs include (1) mutation and
(2) deletion [7]. The epigenetic inactivating events are (1)methylation, (2) deregulated
imprinting, (3) altered splicing, (4) histone modification, and (5) decreased mRNA
stability through miRNA or other processes [3, 4, 7]. Therefore, it can be said that
“loss-of-function” mutations in TSG contribute to cancer development. Retinoblas-
toma is a classic example which occurs due to loss of function of Rb-TSG gene.

An oncogene is capable of transforming normal cells into cancerous one, both for
cells growing in cell culture in vitro or in animal models in vivo. Oncogenes are said
to be derived from their normal cellular counterparts called proto-oncogenes. A
classic example is the Ras gene (a proto-oncogene) that encodes for an intracellular
signal transduction. The mutant form called the rasD gene (oncogene) is derived
from the original Ras. In this way, the encoded mutant protein thus produced is
responsible for uncontrolled cell growth [8]. Cellular transformation of a proto-
oncogene into an oncogene occurs due to “gain-of-function” mutation by following
any of the mechanisms, namely, (1) point mutation, (2) chromosomal translocation
and (3) amplification [8].

According to the “Clonal Evolution Model” of cancer development, the driver
gene mutations stimulate cell dedifferentiation and phenotypic regression with loss
or gain of function, uncontrolled proliferation, and inability to activate cell death
pathways. Whereas the “Alternative Model” of cancer development says, every
tumor comprises a rare population of cells termed as cancer stem cells (CSCs) or
cancer-initiating cells. The CSC hypothesis also says, within the tumor microenvi-
ronment, only a subpopulation of cells with self-renewing and tumorigenic
properties are responsible for the generation of cancer cells and their hierarchical
organization [9].

The CSCs were first identified in acute myeloid leukemia (AML) by Bonnet and
Dick [10]. The population of AML-CSCs (~0.1–1% of the overall tumor population)
identified with surface marker CD34 + CD38 was found to develop cancer in mice
[10]. The CSCs are identical in nature with normal stem cells in respect of their
common self-renewal and differentiation properties [10, 11]. The CSCs were also
demonstrated to have the role in developing resistance to conventional cancer
therapies and may play a role in developing metastasis [12]. Epigenetic
reprogramming mechanism can lead to the metabolic and phenotypic changes to
convert non-CSC population into CSC to develop therapy resistance [13]. For tumor
invasion, the mechanism of epithelial to mesenchymal transition (EMT) can be a
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major factor in which epithelial cells lose their original characteristics and gain
mesenchymal properties [14]. The EMT has also been suggested to have the ability
to induce intravasation, the process by which cancer cells enter the bloodstream for
invading healthy tissue. The reverse program of EMT that is called mesenchymal to
epithelial transition (MET) can promote new tumor formation [15, 16]. Therefore,
understanding these molecular events associated with CSC is very important for
targeted cancer therapy [17].

CSCs are a small proportion of cells within a tumor that is self-sufficient to trigger
tumorigenesis. These cells have the ability of self-renewal and can produce different
lines of cancer cells [18]. In support of the molecular events associated with CSC as
mentioned above, the loss of E-cadherin with a concomitant rise of N-cadherin,
expression of transcription factors like Snail and Twist and signal proteins VEGF
and TGFβ, and overexpression of Sox2, Oct4, and Nanog are the induction factors to
initiate EMT, believed to be a major driving force for metastasis [19]. The stemness
pathways like Wnt/β-catenin, JAK-STAT, Notch, etc., are abnormally regulated
contributing to resistance to apoptosis, progression, and propagation of cancer
cells. In addition to maintaining the ends of chromosomes by expressing the
hTERT gene, their microenvironment composed of blood vessels and stromal cells
supports the multiplication of tumor cells [20, 21]. Further, the potentiality to
produce free radical scavengers to scavenge the reactive oxygen species (ROS)
and combat oxidative stress is of prime importance for the sustenance of cells by
avoiding DNA damage.

Cell surface markers like CD34+ and intracellular markers like aldehyde dehy-
drogenase 1 have shown a light to detect their presence and distinguish them from
normal stem cells [22, 23]. Methods such as DNA barcoding for tracing CSCs using
FACS provide an attempt to separate CSCs from the heterogeneous population of
cells. Detecting circulating CSCs to determine the recurrence in patients suffering
from cancer, transplanting the isolated CSCs into the mouse model, and colony
formation assay are other ways to characterize their nature [10]. Researchers have
also found strategies to knock down the gene encoding TERT proteins that lead to
cell cycle arrest and modified T cells called chimeric antigen receptors for detecting
CSCs which direct another way of evoking our immune system to fight infections
[24]. To end the deep-rooted cause of progression of cancers, nowadays, clinical
trials are underway to target the stemness pathways for long-term outcomes.

In this short introductory section, we will endeavor only to focus briefly on an
overall idea about CSCs and how these are different from the normal stem cells.

“Stem cell,” as the name indicates, may be defined as the cell characterized by the
unique ability of self-renewal for an indefinite period of time. These cells are
endowed with the capability to form single cell-derived clonal cell population.
These cells can also differentiate into several other cell types. The property of self-
renewal in the stem cell pools plays pivotal roles in tissue regeneration and homeo-
stasis [25, 26]. Stem cells can further be categorized as “embryonic stem cells”
(ESCs) or “somatic stem cells” (SSCs). The SSCs, also called adult stem cells, are
multipotent in nature and bear the potentiality to differentiate into any other cell type
of particular lineage. These might include neural stem cells (NSCs), hematopoietic
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stem cells (HSCs), mesenchymal stem cells (MSCs), endothelial progenitor cells
(EPCs), and many others [27].

Embryonic stem cells (ESCs), just like that of pluripotent cells, can differentiate
into many cell types and are thus immensely used as standards for detection of
pluripotent cultured cells in vitro with some restriction of usage in scientific studies
and clinical trials in human pertaining to ethical considerations [28]. ESCs are now
being replaced by induced pluripotent stem cells (iPSCs). These iPSCs are
reprogrammed adult somatic cells which have enforced expression of pluripotency
factors. Embryo destruction is not required for iPSC establishment. iPSCs are like
ESCs, except for the fact that they lack immunogenic or ethical limitations, and
therefore, they bear the possibility for clinical application more than ESCs [29].

Neural stem cells (NSCs) are a type of stem cells which can self-renew and
differentiate into neurons, astrocytes, oligodendrocytes, etc., and express Sox2,
nestin, and other classic markers and have been deployed to treat brain, breast,
prostate, and lung tumors [30–32].

Mesenchymal stem cells (MSCs), known to be derived from bone marrow, are
able to differentiate into mesodermal cells, including bone, cartilage, muscle, stroma,
adipose tissue, connective tissue, and tendon. MSCs can be isolated easily, and they
are known to propagate in vitro and have huge application in cancer therapy.

Hematopoietic stem cells (HSCs) belong to the most primitive of all the blood
lineage cells. They are predominantly found in bone marrow and generally known to
produce mature blood cells by proliferation and differentiation of lineage-restricted
progenitor cells. HSC transplantation has clinical implication over the last four
decades.

Endothelial progenitor cells (EPCs) are primarily concerned with vascular regen-
eration and thereby have potentiality in cancer therapy by coupling with antitumor
drugs or performing transfection or acting with angiogenesis inhibitors [33].

Parthenogenetic stem cells, pluripotent stem cells (PSCs), have now been derived
parthenogenetically from activated human oocytes. These cells represent similar
characteristics as displayed in the human embryonic stem cells (hESCs) which
include the infinite division and in vitro and in vivo modes of differentiation into
germ cell lineages [34]. The human parthenogenetic ESCs (pESCs) consisting of
homozygous human leukocyte antigen (HLA) are known to strongly increase the
degree of matching and significantly increase the histocompatibility among cohorts
of cells in human population [35]. The main strategy lies therein is to activate the
oocyte artificially without the ample extrusion of second polar body. Further, the
events of early recombination in oocyte also results in heterozygous pESC
formation.

Now, the question is: how and what properties distinguish the normal stem cells
from CSCs? The cellular niche or the surrounding cellular environment helps to
maintain the “stemness” property. When a normal stem cell divides to give rise to
two daughter cells, a balance is maintained. Among the two daughter cells, one
acquires the “self-renewal” property and remains as the stem cell, whereas the other
one goes for expansion and differentiation to develop into mature cell. In both cases,
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the cells prevent to acquire “tumorigenic” property by sustaining a fine balance of
“proliferation inhibition” and “proliferation promotion” [36]. The imbalance may be
caused due to mutational “hit” that makes a normal cell to acquire the CSC
phenotype. Mutation is a random process, and the frequency to generate a normal
stem cell into CSC phenotype varies from cell to cell and organ to organ. It can be
said that the greater the number of stem cells, the higher the chances of developing
CSC phenotype as well as cancer [37]. Further, as said earlier, the cellular niche or
the surrounding cellular environment is also associated with developing the CSC
phenotype. Cancer is not just a mass of malignant tumor cells but a complex mix of
several components which contribute to its development. This includes the immune
cells, cancer-associated fibroblasts, endothelial cells, and blood vessels. These
nonmalignant components can comprise up to >50% of the primary or metastatic
tumor mass which play a major role as “microenvironment” and in acquiring the
CSC phenotype [3]. Some important features of CSCs are their expressivity of the
stemness genes, their self-renewal property, and their ability to differentiate and
proliferate into other non-stem cancer cells and resist traditional mode of cancer
treatment. Non-CSCs in the tumor have been reported to proliferate at a faster rate
than that of CSCs but have little tumor-initiating potential [38].

1.2 Identification and Characterization of Cancer Stem Cells

CSCs are cancer cell subpopulation having stem-like properties that can be identified
by cell surface markers. The CSCs can be isolated following standard practice from
tissues of a patient and cell lines derived from different cancer types. Some of the key
features of CSCs for identification, isolation, and characterization can be
summarized as follows:

(a) CSC sorting based on biomarkers: CSC subpopulations can be distinctly sorted
out from other cancer cells based on their surface markers. Flow cytometric
sorting of CSCs is done from the total cancer cell population of a patient’s
primary tissue as well from cancer cell lines by specific markers, e.g., CD44+,
CD133+, Cd117, ALDH1+, Pakt+, Oct4, Sox2, Nanog, ABCG2, ABCC1,
Mrp1, Nrf2, BMI 1, etc. The sorted cell populations can be grown in ultralow
attachment plates with Matrigel embedded conditions (3D culture condition) for
sphere forming assay [39]. In breast cancer of non-responding cases, after
neoadjuvant chemotherapy, prevalence of CSCs having CD44+ and CD24�/
low has been reported [40]; further, these cells showed CSC renewal and
mesenchymal features [41].

(b) Tumor growth study in mice: The flow cytometry-based sorted cell populations
can be transplanted in immunodeficient mice (tumor xenograft). The CSCs have
the tumorigenic potential and develop tumor when transplanted into immuno-
deficient mice. The CSCs when they form tumors contain both the tumorigenic
and non-tumorigenic cells [38]. In head and neck squamous cell carcinoma
(HNSCC), CD44 molecule was first identified as the surface marker of CSC, and
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it was also found in only <10% CD44-positive cells with tumorigenic potential
but not in the CD44-negative cells [42].

1.3 Cancer Stem Cell Signaling Pathways

Like normal stem cells, CSC follows three major self-renewal pathways, namely,
Hedgehog, Wnt, and Notch. Key regulatory genes of these signaling pathways are
associated with cancer, and targeting these pathways can be one of the important
strategies for cancer therapy [43]. Key regulatory genes of these signaling pathways
can be summarized as follows. The Hedgehog pathway genes are HHIP, PTCH1,
Smo, SuFu, and Gli-1. The Wnt pathway genes are DKK1, Wnt, β-catenin, Axin-2,
GSK-3β, and APC. The Notch pathway genes are Jag1/2, Hey 1, Hes 1, Tace, and
presenilin. Increased expression of Gli-1 was observed in HNSCC tumors after
developing resistance due to long-term treatment of epidermal growth factor receptor
(EGFR) inhibitor [44]. In HNSCC cell line after chemotherapeutic treatment
(bortezomib and etoposide), increased frequency of CSC population and
overexpression of Wnt signaling proteins DKK1 and AXIN2 were found [45]. Simi-
larly, overexpression of SMO has been recorded in a HNSCC cell line after treatment
with cyclopamine [46]. The accumulating data indicates that there is preferential
selection of CD44+ CSC populations after treatment with neoadjuvant chemother-
apy in HNSCC along with alterations of these self-renewal pathways, particularly
Hedgehog and Wnt. Development of chemoresistance in HNSCC might be due to
alterations in these CSC pathways. It also seems likely that the prevalence of CD44+
CSCs may be the indicator or biomarker of chemoresistance after neoadjuvant
chemotherapy. Increased expression of CD44 might be due to overexpression of
Gli/β-catenin, the effector protein of Hedgehog/Wnt pathways [47, 48]. High expres-
sion of a Notch signaling ligand DLL4 was reported from HNSCC patients
undergoing radio-chemotherapy [49]. Agrawal and his research group have
identified mutation in Notch1 mutation in HNSCC patients. Their study further
revealed in HNSCC types that Notch1 acted as tumor suppressor rather than
oncogene [50].

1.4 Role of Stem Cell and CSC in Developing Disease
and Therapy Resistance: Therapeutic Implications
and Future Directions

Stem cell therapy is generally based on transplantation of living cells into an
organism either to repair a tissue/organ or to restore their optimal functioning
which might have been lost completely. Human embryonic stem cells (hESCs) are
in use for several cell therapy procedures which accounts for 13% of cases reported
so far. However, on the contrary, fetal stem cells (fESC) are used only in 2% of
cases. Further, record of usage of umbilical cord stem cells is only 10%, and adult
stem cells are in use for treating 75% of cases [51]. Cardiovascular and ischemic
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diseases, diabetes, diseases related to liver and hematopoietic organs (more than
25,000 cases of Hematopoietic stem cell transplants (HSCTs)/year and counting),
orthopedics, etc., are a few types among myriads of other diseases which are being
treated with stem cell transplantation globally [52, 53].

The most common stem cells that are modified by multiple mechanisms for
potential use in cancer therapies are NSCs and MSCs which may vary from
including the therapeutic enzyme/prodrug system or using a nanoparticle or
introducing an oncolytic virus delivery on tumor site. Enzyme/prodrug therapy/
suicide gene therapy is one of the promising applications of stem cell against cancer.
The NSCs and MSCs can express enzymes which can convert nontoxic prodrugs
into cytotoxic products by bioengineering. These modified stem cells, when
transplanted into tumor-bearing models, quickly localize to tumor tissues where
the exogenous enzyme aided prodrug conversion to cytotoxic molecules ultimately
damages the tumor cells [54]. Further, stem cells can overcome the limitations of
common cancer therapy and function as in situ drug factories by secreting antitumor
agents [55] and through delivery of virus by MSCs toward bio-targets by combining
the oncolytic activity with that of the immunoprivileged and tumor-tropic properties
of the MSCs [56].

The use of nanoparticles as potent drug delivery systems is now the current trend
of treatment of different diseases like diabetes [57–60], cancer [61–65], cardiomy-
opathy [66, 67], anti-genotoxic [68] and anti-inflammatory [69], based on their
bioactive targeted delivery, increased penetration, reduction in drug-dose ratio,
sustainable release, faster action, and protection against degradation due to harsh
biological environment at administration. However, the efficacy of stem cells as
nanoparticle delivery agents has now been a futuristic approach owing to the
reduction in unrestricted uptake of different nanoparticles by them, increase in
intra-tumor drug distribution, and protecting the drugs from host immunologic
reactions [70].

Traditional therapies of cancer cannot eliminate CSCs while they can kill
non-stem cancer cells. Chances of relapse of tumors remain usually high when the
CSCs which had not been killed during therapeutic processes proliferate and differ-
entiate. Thus, strategies for targeting CSCs may solve several clinical issues of drug
resistance and recurrence [71, 72]. Evidences from several studies indicate that the
CSCs can develop and maintain different categories of human malignancy which
imply great opportunities for assessment of oncologic therapeutic strategies to
impart a better life to cancer patients. There exists a minute analysis and comparison
between CSC and cells derived from normal tissue. The CSC-targeted therapeutic
arsenal often comes across several potential hurdles, like normal stem cell cytotox-
icity and acquisition of resistance against the treatment, which need to be addressed
to maximize the chances of success [73].

The CSCs have different mechanisms of defense against chemotherapy and
radiation. Here, we have highlighted two major mechanisms. CSCs produce antioxi-
dant enzymes to protect against radiation-induced damages. One of the routine
treatments of cancer is radiotherapy that produces free radical as a natural byproduct
of oxygen metabolism. This oxidative damage causes the damage to DNA to kill
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cancer cells. In some studies, increase of resistance to radiotherapy has been
accompanied with enhanced DNA repair, less damage to DNA, reduced apoptosis,
and increase of angiogenesis [74].

The other mechanism of CSC is through detoxification enzymes which play a role
in resistance to chemotherapy. Drug detoxification is done in three stages; in the first
stage, detoxification is done through cyto p450, which removes OH� and free radical
O2

∙� species. In the second stage, toxins are conjugated using glutathione,
glucuronic acid, or sulfate catalyzed by glutathione S-transferase, uridine disulfate,
glucuronosyltransferase, and sulfatase. Finally, drug and toxin are also pumped out
of the cell through intermembrane channels [74].

Identification of similarities and dissimilarities between normal stem cells, CSCs,
non-tumorigenic cells, and normal differentiated cells based on differences in their
immunophenotype shall allow the development of CSC-targeted therapeutic
strategies which shall definitely impart a relatively low risk toward normal cellu-
lar/tissue level cytotoxicity. Evaluating the efficacy of such targeted molecule
treatments shall require the advent of modern approaches to determine the CSC
frequency and their degree of viability within tumor mass. However, resistance due
to clonal selection and tumor microenvironment such as hypoxia might pay hin-
drance toward the development of the cure and needs utmost care and precautions.

In view of the tremendous importance of CSCs in the management and control of
cancer, subsequent chapters of this book have been assigned to deal elaborately and
critically with several important aspects, such as types of CSCs, how CSCs can
contribute to the development of different types of cancer, isolation and characteri-
zation of CSCs, role of other tumor microenvironmental factors in association with
CSCs in cancer development, controversies of acceptance for the CSC hypothesis,
new strategies or alternative therapies for targeting CSCs for cancer treatment, and
some other emerging issues.
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The discovery of cancer stem cells (CSCs) has revolutionized the field of cancer
biology due to the intrinsic role of CSCs in the initiation, progression or relapse of
cancers. The identification of different types of CSCs has given a great opportu-
nity to researchers and clinicians, to understand the basic biology of various types
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of CSCs or cancers, and has also added an extra dimension in the development
of innovative approaches or therapeutics to specifically target CSCs. The mor-
bidity and mortality caused by various cancers have started to decline rapidly in
the past couple of decades. Furthermore, the life expectancy of cancer patients
have increased with the invention of modern state-of-the-art technologies, besides
rapid advances in the development and preclinical testing of new drugs that target
CSCs. Additionally, more insights into the molecular biology of CSCs was made
possible, when unique cell markers, which are specific to a particular type of
tumor was deciphered. Importantly, the characterization and evaluation of key
signalling pathways in CSCs are critical, as emerging evidence indicate that CSCs
play a key role in dissemination during cancer metastasis or relapse. In this
chapter, we discuss about CSCs that are specific to ovarian, thyroid, melanoma
and pancreatic cancers. We also discuss about the key CSC signalling pathways,
as understanding them will advance the therapeutic strategies, or evaluation
of efficacy of novel CSC-targeting drugs that could be used in the treatment
of cancer patients.

Keywords

Cancer stem cells (CSCs) · Cell surface markers · Drug targets · Ovarian cancer
stem cells (OCSCs) · Thyroid cancer stem cells (TCSCs) · Melanoma cancer stem
cells (MCSCs) · Pancreatic cancer stem cells (PCSCs) · CSC signalling pathway ·
Hedgehog (Hh) · Notch · Wingless-type (Wnt)/β-catenin · Transforming growth
factor-β (TGF-β) · Nuclear factor-κB (NF-κB) · Insulin-like growth factor
1 (IGF1) · Cluster of differentiation (CD)

2.1 Introduction

Cancer stem cells (CSCs) or tumor-initiating cells (TICs) were brought to the
limelight after the identification and characterization of a subpopulation of cells,
which possess the properties of stem cells in several types of malignant tumors. The
comprehensive studies on CSCs gained momentum after the discovery of stem-like
cells that can form heterogenous population of cells in the development and pro-
gression of cancer [1]. The cancer stem-like cells were initially identified in acute
myeloid leukemia (AML), which attracted the attention of many researchers across
the world, and later, it was discovered that CSCs/TICs are responsible for the relapse
and metastatic potential of various cancers due to their self-renewing capacity [2].

Available reports suggest that CSCs are involved in the initiation and progression
of carcinomas; however, the provenance of CSC is equivocal [1]. Since CSCs are
responsible for the most lethal events that lead to more cancer mortality such as
metastasis and relapse, it is imperative to find the origin of CSCs [3]. There are
various theories that have been postulated by scientists during different time points
on the origin of CSCs. The origin and the biology of CSCs require better under-
standing to develop efficient therapeutics, and therefore, several theories including
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cell fusion, horizontal gene transfers, genetic instability, and the influences of
cellular microenvironment have been hypothesized [4].

Recent studies on CSCs suggest that oncogenic hit or mutation in the stem cells
along with the dysfunction of proto-oncogenes, apoptotic factors, and various genes
involved in DNA repair during mitosis may result in the formation of CSCs/TICs
[5]. The mutation depends on both extrinsic and intrinsic factors including smoking,
alcohol and substance abuse, unhealthy lifestyle, and dysfunctional DNA repair
machinery due to the epigenetic alterations in the oncogenes and/or tumor
suppressors. Current developments in molecular biology have led to the discovery
of unique cell surface markers, which can be used in the identification and charac-
terization of different types of tumors [6]. CSCs possess the characteristics of
sustained self-renewal and the ability to differentiate into heterogenous population
of cells, which promote initiation, progression, and dissemination of carcinomas.
Importantly, the isolation of CSCs using cell surface markers has opened the
opportunity to categorize the subtypes of different tumors [7]. In this chapter, we
discuss the strategy to identify and isolate the CSCs, their cell surface markers, and
key CSC signalling pathways in ovarian, thyroid, melanoma and pancreatic cancers.

Among the several cancers, ovarian cancer contributes to most cancer deaths in
women, and the 5-year survival rate of patients with locally advanced and metastatic
stages is 26% [8]. Though, both extrinsic and intrinsic factors are involved in the
initiation of ovarian carcinogenesis, the loss of heterozygosity (LOH) in the breast
cancer type 1 or 2 (BRCA1 or BRCA2) gene, and the dysregulation of different
intrinsic signalling mechanisms, namely, Wingless type (Wnt)/β-catenin, Hedgehog,
Notch, and transforming growth factor-β (TGF-β) pathways, are mostly responsible
for the progression of ovarian cancers [9]. The early identification of ovarian
CSCs (OCSCs) using a combination of various stem cell markers, namely, cluster
of differentiation 133 (CD133), CD117, CD44, CD24 and aldehyde dehydrogenase
1 (ALDH1) or ALDH1 family member A1 (ALDH1A1) could help in the diagnosis
or prognosis of cancer, or better treatment outcomes for patients with metastatic
ovarian cancers [10, 11].

Thyroid cancer is the most prevalent endocrine cancer that is responsible for high
morbidity and mortality among other endocrine-related cancer cases combined.
Amid various causative factors, a subpopulation of thyroid CSCs play a pivotal
role in the initiation and progression of thyroid malignancy due to the unlimited
replication potential of these CSCs [12]. The thyroid CSCs (TCSCs) seize the
control of multiple distinctive signalling cascades for their survival and develop-
ment. In thyroid carcinoma, the thyroid CSCs are used as morphological markers, to
define the tissue characteristics of both well-differentiated thyroid tumors like
follicular and papillary cancers as well as more aggressive undifferentiated tumors,
including anaplastic thyroid tumors. Several biomarkers such as CD13, CD133,
epithelial cell adhesion molecule (EpCAM), ALDH, and stage-specific embryonic
antigen 1 (SSEA-1) are identified and used as diagnostic markers as they account for
poor prognosis in metastatic and chemoresistant thyroid tumors. Aberrant activation
of the key signalling such as insulin-like growth factor 1 (IGF1), Hedgehog, Notch,
signal transducer and activator of transcription 3 (STAT3) and
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Wnt/β-catenin pathways, plays a critical role in the maintenance of thyroid CSCs
that promote the initiation and progression of different subtypes of thyroid cancers.

The 5-year survival rate for melanoma is 98% during its localized stages;
however, the percentage substantially drops to 64% for regional and 23% for distant
metastatic melanoma lesions [13]. Dysregulation of various signalling pathways
such as Notch, Hedgehog and bone morphogenetic proteins (BMPs) are involved
in the carcinogenesis. These signalling pathways regulate multiple stem cell markers
that are used in the identification of melanoma CSCs (MCSCs) such as CD133, and
ATP binding cassette (ABC) transporter family members like multidrug resistance
1 (MDR1), ABC subfamily G member 2 (ABCG2) and ABC subfamily B member
5 (ABCB5). CD133 marker is highly expressed during the metastatic dissemina-
tion of cancer, whereas ABCG2 and ABCB5 serve as markers of tumor
progression [14].

Pancreatic cancer is the fourth common cause of death amongst all the
carcinomas. It is an aggressive cancer that is mostly asymptomatic in nature, until
the cancer has metastasized to distant sites. The patient survival rate for pancre-
atic carcinoma is as low as 80%, because most often the cancer is diagnosed only at a
very advanced stage in pancreas or metastatic stage in distant organs [15]. Although
extensive research on different carcinomas has led to new therapeutics, some
improvement in patient survival or treatment outcome, the average survival time of
patients with metastatic pancreatic cancer is merely 2–3 months. Recently, the
identification of CSC markers such as CD44, CD24 and epithelial-specific antigen
(ESA) in pancreatic tumors have led to the identification of pancreatic CSCs
(PCSCs) and have increased the chances of early diagnosis. The CD44+, CD24+

and ESA+ cells have multifold tumorigenic potential in pancreatic cancers as they
favour the survival of CSCs and promote the progression of tumors [16]. There are
multiple signalling pathways, including Wnt/β-catenin, HH, Notch and
phosphoinositide 3-kinase (PI3K)/RAC-alpha serine/threonine-protein kinase
(AKT)/mammalian target of rapamycin (mTOR), which are hyperactivated in pan-
creatic cancers, and they enable the CSCs to self-renew and differentiate into
different types of tumour cells [17]. In the subsequent sections, we discuss more
about these CSCs, their markers in different carcinomas and the signalling
mechanisms that drive the tumor progression and metastasis.

2.2 Ovarian Cancer Stem Cells (OCSCs)

2.2.1 Origins and Markers of OCSCs

Ovarian cancer is one of the deadliest cancers amongst gynecological malignancies,
and accounts for most cancer deaths in women globally, because of its high rate of
relapse after treatments. It is also one of the widely studied cancers. Ovarian cancer
study has lead to the discovery that CSCs, which are a small subpopulation of cells in
tumour were responsible for the metastasis, drug resistance, cancer relapse and high
mortality rates [18]. CSCs are found in most of the primary ovarian tumors and
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ovarian cancer cell lines. The study by Stewart et al. [19] reported that freshly
isolated cells from the ovarian cancer ascites express high levels of CSC markers,
which represent the CSC population in the malignant ovarian ascites.

There are a diverse number of CSC markers that are distinct to ovarian cancers,
which are clinically used to predict the nature and the invasiveness of the tumours.
The OCSC markers such as CD24, CD44, CD117, CD133 and ALDH1/ALDH1A1
are used to define the identity and classification of the tumor subtypes, which help in
the prognosis, and to determine the clinical outcomes of cancer patients, when
using more precise treatment strategies to target the CSCs and tumor [20]. CD44+

and CD117+ cells are isolated from the human ovarian adenocarcinomas, using the
cell surface markers CD44 (hyaluronic acid receptor) and stem cell factor recep-
tor (SCFR) also known as CD117 or c-KIT. These subpopulations of cells, i.e., the
OCSCs that were isolated from the ovarian adenocarcinomas, upon injection into
mice were able to form full blown tumors, due to their tumor-initiating capacity [21].

CD44+ and myeloid differentiation primary response 88 (MYD88)+ cells isolated
from the ovarian tumor ascites or the tumor itself, and EpCAM+ and CD24+ cells
from the ovarian cancer cell lines manifest the molecular characteristics of CSCs/
TICs. Interestingly, CD24+ cells isolated from the tumor samples of the malignant
ovarian cancer patients showed enhanced properties of CSCs, i.e, a higher metastatic
and cancer relapse potential due to their self-renewing capacity, which doubles the
rate of progression of tumours [22]. Furthermore, these cancer patients showed
increased resistance to conventional chemotherapy, which resulted in inefficient drug
treatments in these malignancies. Importantly, CD133+ and ALDH1+ cells are
associated with ovarian carcinogenesis, particularly in the development of tumor
during the initial stages, and these markers correlate with poor prognosis of cancers
in patients and their overall disease-free survival rates [23].

2.2.2 Identification, Isolation and Characterisation of OCSCs

The OCSCs are extremely plastic in nature due to their distinct gene expression
pattern and molecular phenotype. The OCSCs possess the characteristics of normal
stem cells, but do not follow established pathways or signalling mechanisms
[24]. Hence, CSCs can self-renew which promotes carcinogenesis. Additionally,
CSCs can also undergo differentiaton to give rise to different cell types in the
tumour, resulting in tumour heterogeneity and increased resistance to therapies.
Besides, OCSCs have the capacity to survive and resist hypoxia, and proliferate
under nutrient starvation (e.g., without glucose) [25]. Researchers have started to
better understand about the role of OCSCs in tumor initiation and progression, after
their isolation from the ovarian tumours or ascites using multiparametric flow
cytometry [26]. The ascitic fluid of patients with ovarian cancer served as a source
for the isolation of OCSCs [27]. The mixture of OCSCs and primary ovarian cancer
cells in the stem cell medium was separated on a ficoll density gradient by centrifu-
gation [28]. Then, the OCSCs fraction was purified by fluorescence-activated cell
sorting (FACS) using the cell surface markers CD117, CD133, EpCAM, ROR1,
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ALDH, SOX2, octamer-binding transcription factor 4 (Oct4), Nanog, MYC,
ABCB1 and ABCG2 [29–31]. Additionally, Lin28 and Oct4 were identified as
molecular targets, and then used for the isolation of OCSCs [32]. Dye exclusion
assays, cell surface antigen identification, tumour sphere assay and clonogenic
assays were used for in vitro characterisations of OCSCs [33].

An in-depth knowledge about CSCs surface markers and their unique ability to
express in accordance with the tumor types, have opened up the possibilities of
targeting specific-tumours with higher precision. The expertise gained
from immuno-phenotyping of normal stem cells in tissues or organs has immensely
helped in standardizing the optimal protocols in the isolation and identification of
CSCs [34]. The highly plastic and multi-potency of OCSCs provide them the ability
for chemoresistance against different mono or combination therapies. OCSCs
can evade cellular apoptosis mechanisms, and enter the phase of active proliferation,
by activating the pathways responsible for maintaining adult stem cell
homeostasis [35].

Under normal physiological conditions in cells, a fine balance is maintained in the
expression of oncogenes versus tumour suppressors or signalling by pro-apoptotic
versus anti-apoptotic pathways. But, in ovarian CSCs/TICs, the fine balance
between pro-apoptotic versus anti-apoptotic signalling is altered, thereby prolonging
the survival of tumour cells or leading to relapse or recurrence of cancers. Notably,
OCSCs possess an innate ability to undergo dormancy. The quiescent state increases
OCSC’s chance of survival and helps to maintain their altered genomes, which
establishes their metastatic niche to support ovarian tumour growth. Conversely,
OCSCs can reverse their self-induced quiescence or dormancy, which accounts for
their metastatic secondary tumours or tumour recurrences and increased mortality
rates of ovarian cancer patients [36]. Moreover, OCSCs unlimited differentiation
potential and aggressive invasiveness sustain the tumour growth in an extremely
stressful alien-metastatic-environment, to establish themselves and their secondary
tumours by actively proliferating and also releasing chemokines and growth factors,
an indicator of their own better survival [37].

2.2.3 Signalling, Self-Renewal, Metastasis and Differentiation
in Ovarian Cancer

Various signalling pathways such as Wnt/β-catenin, HH, Notch, and TGF-β are
involved in regulating the self-renewability and maintenance of CSCs/TICs. The
inhibition of specific targets in these pathways using specific molecules/inhibitors
was shown to be of potential therapeutic value for recurrent malignancies.
Dysregulated Notch signalling is highly correlated with poor prognosis of ovarian
cancer patients, and in most cases, the Notch signalling molecules are
highly expressed in OCSCs. The overexpression of critical Notch signalling
molecules, can initiate dysregulation of the pathway and lead to ovarian
tumourigenesis. Multiple Notch signalling target genes such as peroxisome
proliferator activated receptor gamma (PPARG), cyclin D1 (CCND1), and runt-
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related transcription factor 1 (RUNX1) undergo epigenetic modifications, including
DNA methylation in most of the high-grade ovarian serous adenocarcinomas
[38]. Unlike the knowledge available on signalling pathways in CSCs from other
organs/tisues, the core OCSC’s signalling is still unclear [39]. Therefore, in this
section we have discussed primarily on signalling pathways in ovarian cancer.

Aberrant activation of the Hedgehog signalling pathway is involved in the
development of several cancers, including different grades of ovarian cancers.
Hedgehog signalling is highly implicated in the regulation and growth of spheroid
forming cells/OCSCs, and in the progression of ovarian tumours [40]. Notably, the
inhibition of Hedgehog signalling resulted in the suppression of spheroid-forming
capacity in ovarian cancer cells. Interestingly, the molecules of HH signalling path-
way were shown to cross-talk with Wnt signalling pathway, and upregulate the key
WNT molecules such as WNT2B and WNT5A. The target genes of Hedgehog
signalling pathway such as leucine-rich repeat-containing G-protein coupled recep-
tor 5 (LGR5), CD44, CD133, and other Wnt genes were reported to facilitate the
process of tumor growth and progression [41].

The inflammatory cytokine pathway mediated by Nuclear Factor - κB (NF-κB)
signalling, is essential for the survival of OCSCs. The inhibition of NF-κB signalling
pathway through the tumour necrosis factor-alpha (TNF-α) mediated blockage
resulted in apoptotic death of CD44+ ovarian cancer cells. The activation of
TGF-β signalling in OCSCs was shown to induce epithelial to mesenchymal transi-
tion (EMT) and promotes metastasis [42].

2.2.3.1 Wnt/b-Catenin Signalling Pathway in Ovarian Cancer
Wnt/β-catenin signalling is one of the evolutionarily conserved signalling pathways
that regulates the process of embryogenesis, cell proliferation and maintenance of
adult stem cell homeostasis [43]. It has wide range of functions, and it is also impor-
tant for CSCs renewability, as it has to maintain the mesenchymal phenotype in
order to differentiate into various other subset of cells [44]. The
Wnt/β-catenin canonical pathway has multiple key signalling molecules, and the
pathway is activated by binding of Wnt ligand to its receptor for the initiation of the
downstream signalling mechanism. The destruction complex in the cytoplasm
is comprised of different proteins such as AXIN, adenomatous polyposis coli
(APC) and glycogen synthase kinase-3β (GSK-3β), which phosphorylates
β-catenin, followed by ubiquitin-mediated proteosomal degradation. During the
activation of the pathway, the unphosphorylated β-catenin accumulates in cyto-
plasm, which then enters the nucleus and binds to the T-cell specific transcription
factor/lymphoid enhancer binding factor (TCF/LEF) family of transcription factors
to induce its target genes expression [45]. Wnt/β-catenin pathway regulates cancer
stemness, invasion and growth, and plays a key role in various cancers [46, 47] includ-
ing ovarian cancer, as it regulates OCSCs by enhancing their self-renewal capac-
ity and plasticity to differentiate into heterogenous tumor cell types [48]. The
Wnt/β-catenin signalling pathway involves several proteins that regulate key cellular
events, and the expression of most of these proteins are altered
during carcinogenesis [49].
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The Wnt/β-catenin signalling is activated when the WNT ligand binds to the
Frizzled receptor (FZD) and low-density lipoprotein receptor-related protein 5/6
(LRP5)/LRP6. In most of the malignant ovarian cancer cases, the FZD is
overexpressed than in the normal ovary, and the survival rate of cancer patients
with FZD-positive tumors was worse [50]. Furthermore, Wnt/β-catenin pathway can
be inhibited by various antagonists such as Wnt inhibitory factor 1 (WIF1),
Dickkopf family (DKK) proteins and secreted frizzled-related protein (SFRP).
Importantly, SFRP5 directly binds to the WNT ligand or FZD receptor and inhibits
its action, but the low expression of SFRP5 is associated with chronic aberrant
activation of Wnt/β-catenin pathway and progression of aggressive ovarian
cancers [51].

The cytoplasmic and nuclear accumulation of β-catenin is considered as the
hallmark of Wnt pathway activation, and higher levels of β-catenin are
often observed in multiple cancers. Likewise, mutations in the β-catenin
(CTNNB1) gene is frequently observed in endometrioid ovarian cancers, and
overexpression of β-catenin in the nucleus showed significant positive correlation
with high-grade serous ovarian cancers [52]. APC, AXIN1 and AXIN2 are the key
cytoplasmic proteins that encompass the destruction complex and regulate the Wnt
pathway upon phosphorylation. Importantly, mutations in APC, AXIN1 and
AXIN2 genes are observed in multiple cases of ovarian endometrioid
adenocarcinoma [53].

2.2.3.2 Notch Signalling Pathway in Ovarian Cancer
Notch signalling was initially discovered inDrosophila, and later, it was identified to
have roles during embryogenesis and neural development in many species, including
mammals [54]. Notch pathway has important function in mammalian cells ranging
from cellular proliferation to apoptosis. It is responsible for cell fate determination
and differentiation, and is also shown to influence cell division. Notch is a cell-
surface transmembrane receptor that transduces its downstream signalling by bind-
ing to the ligands such as Delta-like (DLL1, DLL3, DLL4) and Jagged (JAG1,
JAG2) on neighboring cells. There are basically four types of Notch receptors that
are expressed in humans: NOTCH1, NOTCH2, NOTCH3, and NOTCH4 [55]. The
binding of a ligand to its Notch receptor causes a conformational change in the
receptor, which induces proteolytic cleavage of the receptor by TNF-α-converting
enzyme (TACE) and γ-secretase, followed by release of the Notch intracellular
domain (NICD) that leads to the downstream signalling and gene regulation. The
Notch signalling regulates several genes of the Hairy/Enhancer of Split (HES)
family, and the HES protein is related to YRPW motif-like protein (HEY) family
of basic helix-loop-helix (bHLH) transcription factors, such as cyclin D1 and
c-MYC that regulate the differentiation and survival of cells.

Recent insights into dysregulation of Notch signalling are highly correlated with
many cancers, and genomic alterations in Notch pathway is prevalently seen in
ovarian carcinomas [56]. Both in vitro and in vivo studies on inhibiting this pathway
using small molecules and other blockers like γ-secretase inhibitors (GSIs) have
demonstrated significant antitumor effects. Notch pathway plays a wide-range of
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role in ovarian cancer progression. The dysregulation of this pathway is linked to
poor patient survival, and it promotes metastasis and angiogenesis. Notch path-
way influences, C-X-C motif chemokine receptor 4 (CXCR4) also called as stromal
cell-derived factor-1α receptor (SDF1α), which mediates its signalling to enhance
the proliferation and migration of ovarian cancer cells [57]. NOTCH1 and HES1
proteins are overexpressed in most of the ovarian tumours studied. While the
overexpression of JAG2, DLL1, Manic Fringe (MFNG) and transducin-like
enhancer of split-1 (TSL1) were frequently observed in ovarian adenocarcinomas,
the Deltex, Mastermind (MAM), and Radical Fringe (RFNG) were often
overexpressed in adenomas [58, 59]. γ-Secretase inhibitors (GSIs) are used to inhibit
the Notch signalling pathway, and is therefore, tested in many clinical trials of
different cancers, including ovarian cancers (Table 2.1).

2.2.3.3 Hedgehog Signalling Pathway in Ovarian Cancer
Hedgehog signalling pathway contributes to ovarian tumorigenesis along with the
Wnt signalling pathway [60]. Aberrant activation of Hedgehog signalling is
observed in most of the ovarian carcinomas. In the serous ovarian tumor samples,
the Wnt target gene, AXIN2, was significantly expressed along with the
overexpression of Hedgehog receptor patched homolog 1/2 (PTCH1/2), ligands
such as Indian Hedgehog (IHH), Sonic (SHH) and several transcription factors.
These over expression of the various signalling and target components of HH
pathway are responsible for the hyperactivation of Hedgehog signalling, which
also enhances the apparent cross-talk with the Wnt pathway [60]. Glioma-associated
oncogene 1 (GLI1), a transcription factor and patched receptor (PTCH) are the

Table 2.1 Clinical trials using different signalling pathway inhibitors of ovarian cancer

Signalling pathways/inhibitors
used Mode of action

Phase of clinical
trial

1. Sonic hedgehog

Cyclopamine SMO inhibitor Phase I

Sonidegib Inhibits dissemination of metastatic
cells

FDA approved

Vismodegib (GDC-0449) Inhibits the function of SMO Phase II

2. Notch

LY900009 Inhibits tumor progression Phase I

Cediranib maleate Prevents angiogenesis Phase I

3. Wnt

Ipafricept (OMP-54F28) Acts as a decoy receptor of Wnt ligands Phase I

4. EpCAM

Catumaxomab Decreases tumor development and
invasion

Phase III
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major molecular components of this crucial pathway. Liao et al. [61] reported that
overexpression of GLI1 and PTCH1/PTCH2 proteins in ovarian cancers correlated
with poor patient survival. Smoothened (SMO) is an important receptor that
regulates Hedgehog signalling. Notably, the treatment of ovarian cancer cells
in vitro with SMO inhibitor, cyclopamine, resulted in the suppression of cell growth
and invasion, but lead to accelerated apoptosis. The altered regulation of Hedgehog
signalling contributed to rapid invasiveness and metastasis. Furthermore, Hedgehog
signalling along with Notch signalling facilitated tumor growth via neoangiogenesis
and epithelial to mesenchymal transition (EMT), and increased the potential for
tumor relapse. Studies on Hedgehog signalling have unraveled the basic understand-
ing of this pathway and its role in cancer progression, leading to the identification of
specific therapeutic targets, and the development of several inhibitors targeting the
pathway for ovarian cancer treatments [62].

2.2.3.4 Transforming Growth Factor (TGF)-b Signalling Pathway
in Ovarian Cancer

Hypersignalling of TGF-β plays an essential role in the dissemination of ovarian
cancers. TGF-β signalling promotes tumor progression via immune evasion,
neoangiogenesis and enhanced EMT [63]. TGF-β superfamily has diverse members,
and they play an essential role in the normal physiology of the ovaries, and also aid
in the development of follicles. It also mediates important communication between
different cell types in the ovary such as the oocyte, granulosa and theca cells
[63]. The depletion of forkhead box protein O1/3 (FOXO1/3) and phosphatase and
tensin homolog (PTEN) in granulosa cells increased the level of activin, and that
resulted in the increased phosphorylation and activation of Sma- and MAD (mothers
against decapentaplegic) homolog 2/3 (SMAD2/3), resulting in the active prolifera-
tion of granulosa cells and formation of tumors in the ovary. Furthermore, condi-
tional SMAD1 and SMAD5 double or SMAD1, SMAD5, and SMAD8 triple
knockout mice developed metastatic granulosa cell tumors, substantiating the
involvement of BMP-SMAD1/5/8 signalling in the initiation and formation of
ovarian cancers [64]. Interestingly, the inhibition of the ligand-receptor binding
using TGF-β receptor type I and II (TGFβRI and TGFβRII) dual inhibitors resulted
in decrease in the size of tumors, highlighting the importance of this pathway. The
TGFβRII and SMAD signalling are regulated by cancer-associated fibroblasts
(CAFs), which promotes the invasiveness of ovarian cancer cells through the
activation of NF-κB signalling pathway and other factors such as CD44 and matrix
metalloproteinase 9 (MMP9) [65].

2.2.3.5 Nuclear Factor (NF)-kB Signalling Pathway in Ovarian Cancer
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF)-κB, also known
as nuclear factor (NF)-κB, is a transcription factor that has been shown to mediate
proinflammatory signalling in many cancers [66, 67]. The activation and
dysregulation of key molecules in the NF-κB signalling are responsible for the
promotion of chemoresistance, immune evasion, metastasis in ovarian cancers, and
most importantly, the maintenance of OCSCs. It is reported that hypersignalling of
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TGF-β and its cross-talk with NF-κB signalling results in the dissemination and
metastasis of ovarian cancers [68]. The role of NF-κB signalling in anti-apoptotic
and pro-angiogenic pathway in many different cancers is well-established, and is
also shown to be pivotal in ovarian cancer progression. The inflammatory
chemokines or cytokines in the tumor microenvironment (TME) activate the canon-
ical NF-κB signalling through the V-Rel avian reticuloendotheliosis viral oncogene
homolog A (RELA), also called as NF-κB 65-kilodalton (kDa) subunit (p65) protein
[69]. Moreover, increased p65 phosphorylation and pro-tumor macrophage type
2 (M2) infiltration drives the activation of the canonical NF-κB signalling, and
thereby induce the advancement of ovarian tumors as observed in the mouse
model. Importantly, inhibition of the NF-κB signalling regresses the tumor
along with a decrease in the M2 and an increase in the antitumor macrophage type
1 (M1) infiltrations [70]. Importantly notably, the loss of p65 in the xenograft mouse
model significantly inhibited spheroid formation, ALDH expression and activity,
chemoresistance and tumorigenesis. These studies suggest that canonical NF-κB
signalling can be utilized by the OCSCs for their self-renewal, and therefore, the
inhibition of ALDH expression can potentially shutdown NF-κB pathway
[71]. Therefore, molecules that are involved in the NF-κB pathway can serve
as therapeutic targets to develop novel and potent inhibitors/regulators to treat or
cure therapy-resistant ovarian cancers.

2.2.4 Ovarian Cancer/OCSC-Specific Therapeutics and Outcomes

Most of the available therapies such as chemotherapy and radiotherapy do not target
the OCSCs; rather, they target the differentiated cells among the heterogenous
population of ovarian cancer cells. Additionally, surgical debulking of the tumor is
only possible with the lower-grade ovarian tumors. In the case of metastatic ovarian
cancer, surgical debulking is not an option. It is not possible to get a clear margin of
the ovarian cancer, just from morphological observation to excise all of the cancer
cells, even with advanced precision surgical instruments and debulking procedure.
The conventional therapies are designed to target only the differentiated ovarian can-
cer cells, but not the OCSCs, because of their tumor niche [72]. The OCSCs are
tightly encapsulated and well protected within their TME making it arduous to target
OCSCs with conventional therapies and eliminate them to treat or cure ovarian
cancer. While the tumor shrinks initially upon treatment with chemo- or/and radio-
therapy, the OCSCs that are protected in their niche may revert from their quiescence
or dormant state after prolonged chemo- or radiotherapy, which ultimately leads to
the development of chemoresistance or radioresistance in ovarian cancer [73].

Cancer relapse is the critical issue in any type of cancer treatment, but its
significance could depend on various factors. CSCs are responsible for the cancer
relapse in most cancers, including ovarian cancer. Although the 5-year survival rate
for ovarian cancer is comparatively high, the survival rate declines dramatically
in metastatic and relapsed ovarian cancers [74]. The relapsed ovarian cancers are
often chemoresistant because of their earlier drug treatment regimes. Therefore, a
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comprehensive understanding of the ovarian CSCs/TICs will throw more light in
combating ovarian cancer metastasis and relapse. Hence, targeting the ovarian
CSCs/TICs will be a better therapeutic strategy (Fig. 2.1) than the conventional
therapies, and therefore, could serve as a novel therapeutic option for the treatment
of ovarian cancer patients in the future. In Chap. 16 of this book, “Targeting
Therapies for Cancer Stem Cells” are discussed in more detail.

2.2.5 Clinical Trials for Ovarian Cancers

At present, there are numerous therapeutic approaches available for the treatment of
ovarian cancer. Apart from the conventional treatments such as chemo- and radio-
therapy, immunotherapy is also currently being used in the treatment of ovarian
cancer. The conventional therapies do not target the CSCs, and hence, metastasis and
cancer relapse are still a major issue in ovarian cancer treatment. Therefore, new
strategies are being devised to target various signalling pathways that are involved in
ovarian carcinogenesis. The signalling pathways are inhibited using knockout/
knockdown strategies, aptamers or small molecule inhibitors. The clinical trials
conducted using different inhibitors for ovarian cancer are listed in Table 2.1
[75, 76].

Fig. 2.1 Schematic representation of the strategy for potential combined therapies for diagnosis/
prognosis of targeted-treatment of ovarian cancer. Since the discovery of cancer stem cells (CSCs)/
ovarian cancer stem cells (OCSCs) and demonstration of their roles in tumorigenesis by scientists,
CSCs/OCSCs are now being isolated, characterized, and used by clinicians in the diagnosis/
prognosis of different types of cancer, including ovarian cancer. Though, OCSCs are already
used in the diagnosis/prognosis, targeting the OCSCs in combination with other conventional
therapies for ovarian caner treatment, may provide some advantages. It may likely lower the rate
or chance of ovarian cancer relapse and/or resistance, and thereby increase the survival rate of
patients
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2.3 Thyroid Cancer Stem Cells (TCSCs)

2.3.1 Origins and Markers of TCSCs

Thyroid cancer is the most prevalent endocrine cancer worldwide, and it is classified
based on the histopathological characteristics [77]. According to the World Health
Organization (WHO) classification, thyroid cancer is diversified into four subtypes,
namely, follicular thyroid carcinoma (FTC), papillary thyroid carcinoma (PTC),
medullary thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC).
PTC and FTC are differentiated thyroid cancers (DTC) and are responsible for
almost 90–95% of cases among the other subtypes [78]. MTC originates from the
parafollicular cells or C cells of the thyroid gland. The prognosis of MTC is
comparatively worse than the DTC (PTC and FTC). Moreover, the MTC patients
with distant metastases have poor survival. Apart from various environmental carci-
nogenic factors and contributions from genetics, TCSCs are involved in the active
differentiation of heterogenous population of cells due to their mesenchymal
properties and facilitate rapid tumor growth and adversity. The role of TCSCs in
the progression of thyroid cancer is well documented, and it was shown to be
responsible for malignancy, resistance toward various therapies, and cancer relapse
[79]. Different theories have been hypothesized, to explain the two different pro-
posed models on the origin of the thyroid CSCs: multistep carcinogenesis model, and
fetal cell carcinogenesis model. The theory for the multistep carcinogenesis
model postulates that the thyroid cancer cells originate from the thyrocytes, which
had undergone epigenetic mutation due to exposure to multiple carcinogenic
factors or xenobiotics (Fig. 2.2a). However, the theory for the fetal cell carcinogen-
esis model states that fetal thyroid cells such as thyroid stem cells, thyroblasts, and
prothyrocytes acquire the plasticity and the properties of CSCs due to oncogenic
mutations (Fig. 2.2b) [80].

The thyroid CSCs can be identified by their ability to form thyrospheres in an
in vitro study and tumors in in vivo study. Several biomarkers are used to identify
different types of tumor, and they help in better therapeutic treatment [12]. The
thyroid CSCs are distinguished from the non-cancer cells based on the different
biomarkers such as CD133 (prominin-1), Oct-4, Sox2, Nanog, and ALDH. Further,
there are different stemness genes that drive the intrinsic signalling pathways in the
maintenance of these thyroid CSCs, which include Notch (HES1, JAG1) and Wnt
(MYC, JUN, and FZD5) signalling pathways [81]. Although the identification of
these markers has shown a clear outline in the detection of thyroid tumors, these
thyroid CSCs acquire their invasive phenotype during the EMT. The thyroid CSCs
lose the properties of cellular adhesion and polarity and gain their mesenchymal
characteristics that give them the plasticity. The decrease in E-cadherin expression
and increased expression of N-cadherin and other markers like Snail, Slug, and zinc
finger E-box binding homeobox 1 and 2 (ZEB1, ZEB2) are highly associated with
the EMT process [82].
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Fig. 2.2 Origin of thyroid cancer stem cells (TCSCs). Different theories have been put forward to
explain the two models on the origin of TCSCs, viz., multistep carcinogenesis model and fetal cell
carcinogenesis model. (a) Multistep carcinogenesis model—To explaind this model, the theory
hypothesizes that the differentiated thyroid follicular cell undergoes epigenetic alteration(s) due to
various factors leading to the deregulation and activation of diverse key signalling pathways, which
actively promote the progression of normal differentiated thyroid cells to thyroid cancer cells. The
intial tumour that is formed can be cancerous or benign like a follicular adenoma. However, aberrant
activation of key signalling pathways in the initial tumour can induce it to quickly progress and
develop into a differentiated carcinoma including the follicular or papillary thyroid carci-
noma (FTC/PTC). Furthermore, these differentiated cancers can undergo genetic mutation(s) and
dedifferentiation to develop into an aggressive and undifferentiated form of cancer called anaplastic
thyroid carcinoma (ATC). (b) Fetal cell carcinogenesis model—To explain this model, the theory
postulates that there are different types of thyroid gland cells, which regulate the normal physiolog-
ical processes of an adult thyroid gland. During these processes, the adult thyroid gland gives rise to
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2.3.2 Identification, Isolation and Characterisation of TCSCs

Different methods are used in the identification and isolation of the thyroid CSCs
among other heterogenous population. Shimamura et al. [83] demonstrated that there
are no common CSCs in the eight different thyroid cancer cell lines they studied.
Despite that fact, there are various other markers such as CD326 (also
called EpCAM), 166, 133, 117, 90, 44, 44v, 24, 15 (also called SSEA-1), 13, and
ALDH which are identified as potential candidates to characterize thyroid CSCs, and
there are diverse techniques that are involved in the isolation and their
characterization [84].

FACS is the most common technique employed in the isolation of a distinct cell
type from a heterogenous population of cells using the cell surface markers [85]. In
addition to that, Hoechst dye efflux is also used to exclude the side population of the
cells (differentiated cells) as these cells are capable of excluding the DNA binding
dye Hoechst 33342 using the ABCG2 drug transporter. But this technique has its
own limitation due to the toxicity of the dye. The sorted and separated cells from the
FACS and Hoechst dye efflux are further subjected to in vitro and in vivo studies,
and the cells were able to form spheroids in vitro and tumors when injected into the
immunocompromised mice [86]. ALDH plays a key role in developing resistance
against chemotherapy and increasing the metastatic potential of the thyroid tumors.

There are specific biomarkers that are expressed at various time points during the
cancer progression. MDR1, ATP-binding cassette super-family G member
2 (ABCG2), and multidrug resistance-associated protein 1 (MRP1) are other
biomarkers based on which the cells can be isolated and characterized among the
therapeutic resistant tumors. Using fine needle aspiration (FNA) biopsy, the tumor
cells are analyzed for these biomarkers for the detection of multidrug-resistant
tumors [86]. In an in vitro study, prolonged culture of HTh74R cell line with low
concentrations of anticancer drug, doxorubicin, resulted in the development of
resistance in these cells when compared to the parental cell line. Interestingly, the
parental cell line showed no significant expression of these multidrug-resistant
biomarkers [87]. Among the other markers, CD15, 24, 44, and 133 are widely
used in the detection of thyroid CSCs. The CD15/SSEA-1 is used as a marker for
the EMT as the SSEA-1+ cells are predominantly expressed during this transition.
The CD24+ and CD44+ cells are responsible for spherogenic/tumorigenic potential,
and they were significantly expressed in most of the aggressive thyroid cancer cell
lines. CD133+ cells express high levels of intrinsic stemness genes (Oct-4, Sox2, and
Nanog) and drug-resistant genes (ABCG2, MDR1, andMRP), which are responsible
for the self-renewability and chemoresistance of thyroid CSCs [88].

�

Fig. 2.2 (continued) precursors of fetal thyroid stem cells, fetal thyroblasts and prothyrocytes.
These three types of cells can undergo spontaneous genetic mutations and develop into three differ-
ent types of thyroid carcinomas. An oncogenic hit on the fetal thyroid stem cells can progress to
ATC, and further mutation in the fetal thyroblasts and prothyrocytes can form papillary and
follicular thyroid cancers, respectively
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2.3.3 Signalling, Self-Renewal, Metastasis and Differentiation
of Thyroid Cancer

Multiple signalling mechanisms such as insulin-like growth factor 1 (IGF1), Hedge-
hog, Notch, and Wnt/β-catenin play a pivotal role in the maintenance of thyroid
CSCs, which support the initiation and progression of thyroid carcinomas. These
signalling pathways are responsible for the maintenance of normal cellular physiol-
ogy; however, aberrant activation of these pathways enhances the survival of CSCs
and thus the development and progression of tumors [89]. Similar to OCSCs, the
core TCSCs signalling pathways are yet to be understood well. Hence, in this section
we have discussed mainly on signalling pathways in Thyroid cancer.

2.3.3.1 Insulin-Like Growth Factor (IGF)1 Signalling Pathway in Thyroid
Cancer

IGF1 signalling pathway promotes the growth of thyroid cancer due to its mitotic
and antiapoptotic properties. IGF1 is an endogenous hormone which is produced by
various organs and has predominant role in the metabolism and growth [90]. On the
contrary, the elevated levels of IGF1 in the circulation are highly correlated to
various kinds of carcinomas including thyroid, breast, and prostate. It is also well-
established that IGF1 is indeed involved in the formation of differentiated thyroid
cancers. The IGF1 ligands and receptors (IGF1R) are overexpressed in the thyroid
cancer cells which leads to the hyperactivation of this pathway [91]. In normal
condition, the binding of the ligand to the receptor activates the downstream
signalling molecules and stimulates the thyrocyte proliferation. Contrarily, the
altered regulation of this IGF1 signalling pathway results in the rapid proliferation
of thyrocytes, evading the cellular checkpoints during cell division and forming
neoplasm in the thyroid gland. Further, the cross-talk between the IGF1R and
thyroid-stimulating hormone (TSH) enhances the activation of IGF axis. In fact,
the tumor-initiating potential of TSH is countered by other growth factors, but IGF1
stimulates the pro-tumorigenic effect [92]. Furthermore, the PTC spheres showed
increase in IGFIR and IGF1/2 expressions, and interestingly, the activation of IGF1
pathway enhanced the size and number of the spheroids [93].

2.3.3.2 Hedgehog Signalling Pathway in Thyroid Cancer
Hedgehog (HH) signalling contributes to the chemoresistance and radioresistance in
several cancers, and this signalling is critical in maintaining the thyroid CSCs
[94]. Hedgehog signalling pathway renews the thyroid CSCs through the expres-
sion of SNAIL protein, and use of HH inhibitors in ATC cell line resulted in
increased sensitivity toward the chemotherapy and radiotherapy due to decreased
CSC renewal [95]. Furthermore, the Hedgehog signalling is shown to increase the
aggressiveness of thyroid cancers by activating different pathways such as AKT and
c-MET through cross-talk mechanism [96].

30 G. Chengizkhan et al.



2.3.3.3 Notch and JAK-STAT3 Pathways in Thyroid Cancer
The Notch signalling’s crucial target gene, Hes1, a bHLH transcriptional repressor,
is significantly expressed in the thyroid and regulates the expression of sodium/
iodide symporter (NIS) [97]. Different levels of Notch signalling genes are
expressed in the normal and cancerous thyroid. In thyroid cancer, NOTCH1 expres-
sion differs among tumor subtypes. The expression of NOTCH1 was higher in
human PTCs (classic and follicular variants, microcarcinomas) when compared
with the normal thyroid and peritumoral tissues [98]. However, NOTCH1 expres-
sion was decreased in human ATC [99]. Importantly, several components of Notch
signalling pathway were upregulated in human PTC as determined by microarray
analysis [100]. Furthermore, Yamashita et al. [101] demonstrated an upregulation of
NOTCH1 expression in PTC samples derived from human as well as transgenic
animals. Interestingly, they showed that treatment of PTC cells with siRNA
for NOTCH1 or GSI significantly reduced the cell proliferation and increased the
apoptosis.

CD133+ ATC cells showed activation of the Janus Kinase (JAK)-STAT3 path-
way, which regulates the process of tissue development and homeostasis. Some
functions of JAK-STAT3 pathway are mostly similar to that of Notch signalling
except for most critical functions like hematopoiesis, immune development, mam-
mary gland development and lactation, adipogenesis, and sexually dimorphic
growth. Shiraiwa et al. [102] demonstrated that treatment of ATC cells with
cucurbitacin I, a STAT3 inhibitor, suppressed the thyrosphere-forming ability
in vitro and tumor growth in nude mice, highlighting this pathway as one of the
therapeutic targets.

2.3.3.4 Wnt/b-Catenin Signalling Pathway in Thyroid Cancer
The higher expression of β-catenin in the cytoplasm and nucleus is observed in most
of the carcinomas including thyroid carcinomas. The mutation and deregulation of
the genes such as APC and AXIN1 and the accumulation of β-catenin in cytoplasm
and nucleus are seen in well-differentiated PTC and FTC. Higher incidences of
thyroid cancer recurrence and metastasis rates are positively correlated with the
constitutive activation of this specific pathway as Wnt/β-catenin pathway supports
the survival of thyroid CSCs. Furthermore, continuous activation of the pathway
along with the downregulation of E-cadherin has significant positive correlation with
increased migration capacity of cancer cells and metastasis in most of the undiffer-
entiated thyroid tumors. Importantly, Wnt/β-catenin pathway plays a key role in
thyroid cancer aggressiveness [103]. For additional information on cancer
aggressiveness refer to “Chap. 8: CSCs and Tumour Aggressiveness” in this book.

2.3.4 TCSC-Specific Therapeutics and Outcomes

The identification and the isolation of the TCSCs using diverse biological markers
specific to thyroid cancer have led to the discovery of numerous therapeutic targets
in order to completely regress the tumor and prevent the tumor relapse [104]. From
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the above discussed topics, it is obvious that there are multiple signalling cascades
and genes that are altered in the process of carcinogenesis. Various kinds of
therapeutic approaches including small molecule inhibitors, blockers, aptamers,
and conditional knockout strategies are currently used to shut down different
pathways that fuel and drive the TCSCs and thereby target the tumors [105]. The
current therapies do not directly target the TCSCs as they are tightly encapsulated in
the TME. The critical reason for the tumor relapse after the chemo- and radiotherapy
is that these therapies fail to target the CSCs in the course of treatment. The CSCs
repopulate the heterogenous population of cells, and regrowth of the tumor at the
primary site occurs, which further complicates along with resistance toward these
therapies [106].

2.3.5 Clinical Trials for Thyroid Cancers

Thyroid cancer is one of the dreadful cancers which accounts for most death among
endocrine cancers. The disease progresses rapidly as it is mostly asymptomatic or it
starts to present itself only during the locally advanced or metastatic stage, making it
arduous to decide on the treatment regime [107]. Tumor resection is one of the
common clinical procedures that is done for the early stages of this carcinoma and
followed by the conventional chemo- and radiotherapy. But still the patient survival
rate declines as there is high chance of thyroid cancer recurrence and
chemoresistance due to the TCSCs. Current insights into the nature of CSCs in the
tumor development have opened various channels of research in targeting the
TCSCs for complete regression of tumor and to curb the chances of recurrence
[108]. As discussed previously, multiple signalling cascades and diverse number of
genes are involved in the thyroid cancer initiation and progression. Therefore,
targeting those crucial genes will eventually shut down the pathway and could be
a strategy to develop therapeutics. There are different types of compounds that are
being researched in targeting the pathways, and few of them have given promising
results in the thyroid cancer cure. The drugs that are tested in the clinical trials are
given in Table 2.2 [109–111].

2.4 Melanoma Cancer Stem Cells (MCSCs)

Melanoma is one of the severe subtypes of skin cancer. The discovery of melanoma
cancer stem cells (MCSCs) has helped the researchers to have a greater understand-
ing of the underlying signalling mechanisms that lead to the tumorigenic transfor-
mation of normal melanocytes into melanoma (Fig. 2.3). MCSCs or melanoma-
initiating cells were discovered by Fang group using the sphere-forming assay, in
which CD20+ cells were isolated from metastatic human melanomas with stem cell-
like properties [112]. Later, Schatton et al. [113] reported that the MCSC population
expresses ABC transporter ABCB5. The prevailing theory suggests that therapeutic
targeting of MCSCs could eliminate tumor progression to melanomas
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[114]. Specific-targeting of MCSCs in melanomas is challenging because of the low
number of MCSCs with specific markers, intratumoral and intertumoral heterogene-
ity in MCSCs population, immune evasion, and chemoresistance properties of
MCSCs. A proper understanding of the molecular biology, signalling mechanisms,
and underlying epigenetic regulation will facilitate the specific targeting of MCSCs
and therefore the development of effective melanoma-targeting therapeutics [115].

2.4.1 Origins and Markers of MCSCs

Several biomarkers for MCSCs have been reported, but CD271 (neural crest nerve
growth factor receptor) is the most significant marker [116]. Other MCSC markers
that are prominent in the 3D culture conditions are Nanog, Sox-10 and Oct-3/4
transcription factors, CD20 and CD133 cell surface receptors, and ALDH1. ABCB1,
ABCB5, and ABCG2 were also reported to mark MCSCs in a study that used 3D
melanospheres and cell lines [117]. Another important marker for MCSCs is the
H3K4 demethylase JARID1B. Musashi-1 (Msi-1), Nestin, CD30, and Tenascin-C
are biomarkers that are often associated with highly proliferative JARID1B+ mela-
noma cells [118, 119]. PD-1, VEGFR1, and CXCR6 are some additional surface
markers involved in self-renewal, immune evasion, and vascular mimicry [120].

2.4.2 Identification, Isolation and Characterisation of MCSCs

MCSCs are an extremely small sub-population of cells in the melanoma, which
show self-renewal, tumour initiation and metastasis or drug resistance. Hence, the
isolation and characterisation of MCSCs are essential to understand the melanoma’s
development, metastasis, relapse, drug resistance and therapeutics. The very few
number of MCSCs in a melanoma and limited amount of melanoma tissue biopsy
materials available have made the isolation and characterisation of MCSCs as an

Table 2.2 Clinical trials using different signalling pathway inhibitors of thyroid cancer

Drug
Type(s) of thyroid
cancer Role of the drug

Phase of
clinical
trial

1. Axitinib MTC, DTC Inhibits VEGF-R, PGDF-R, and c-Kit Phase II

2. Cabozantinib MTC Inhibits VEGF-R, c-Kit, RET, and
MET

Phase III

3. Lenvatinib DTC Inhibits RET-KIF5B, CCDC6-RET,
and NcoA4-RET

Phase III

4. Motesanib MTC Targets VEGF receptors and RET Phase II

5. Sorafenib DTC, ATC Targets VEGF receptors, RET, and
BRAF

Phase III

6. Imatinib ATC Blocks BCR-ABL, PDGF, c-KIT, and
RET

Phase II
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extremely challenging task in melanoma research. Therefore, many different
techniques have been tried and employed in the isolation and characterisation of
MCSCs [121, 122]. In the direct labelling technique, a cocktail of fluorescent-
labelled specific-antibodies was used to bind to various cell surface marker antigens
such as ABC transporters, CD20, CD133 (prominin-1), CD271 (NGFR/p75
neurotrophin receptor), JARID1B, etc., and then sorted by FACS to highly enrich
for MCSCs. Another method employed was the magnetic bead cell-sorting tech-
nique, in combination with a unique subtractive or elimination approach. In this
technique, an antibody cocktail was used to bind to haematopoietic cells including
red blood cells (RBCs), endothelial cells, etc., and their cellular debris, to remove
unwanted contaminants from MCSCs, leading to the enrichment (of pure popula-
tion) of MCSCs for (use in) downstream applications or analysis [123].

2.4.3 Signalling Pathways Regulating MCSCs

Melanoma is the most aggressive and lethal subcategory among skin cancers, and
treatment against it continues to remain elusive. The signalling pathways in MCSCs
are being intensely investigated to dissect the molecular mechanisms associated with
the tumorigenesis of melanomas. MCSCs share common embryonic stem cell
pathways similar to that of normal stem cells in regulating self-renewal and differ-
entiation. TGF-β maintains the plasticity of the MCSCs. TGF-β binds to the type
II TGF-β receptor (TGFBR2), which then binds to type I TGF-β receptor (TGFBR1)
and forms a heterodimeric complex. The activated TGFBR1 phosphorylates the
SMAD proteins that result in cascade of events resulting in the activation
of TGF-β-responsive genes (Fig. 2.3). Hedgehog (Hh) pathway plays an essential
role in the initiation and progression of melanoma [124], and inhibition of this
pathway suppresses the self-renewal of ALDH+ MSCS [125]. GLI1/2 is implicated
in the regulation of transcription of E2F1, which is critical for MCSC cell prolifera-
tion and progression to melanomas [126]. MCSCs show enhanced expression of the
Wnt receptor and are often associated with increased metastasis [127].

Notch signalling exerts a key role in MCSC proliferation. Kumar et al. [128]
showed an increased Notch1 activation and signalling in the CD133+ MCSC
population. Inhibition of Notch signalling pathway with inhibitors of γ-secretase
and TNF-α-converting enzyme (TACE) led to the downregulation of NICD2 and
Hes, which in turn inhibited the proliferation of MCSCs [129, 130]. Notch4 is
responsible for the invasion and metastasis of MCSCs [131]. Several signalling
cascades including the TGF-β and PI3K/AKT pathways are reported to induce EMT
in MCSCs [132]. The summary of all the key molecular signalling pathways that
play essential roles in MCSCs and in tumor progression to melanomas is depicted in
Fig. 2.3.
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2.4.4 MCSC-Specific Therapeutics and Outcomes

Surgical resection, radio- and chemotherapy, and immunotherapy are the currently
available treatment options for melanoma. As melanoma could be lethal, there is an
urgent need to develop effective MCSC-specific targeting strategies to treat and cure
melanoma patients. One strategy that targets MCSCs (expressing CD133, CD20,
ABCB5, CD271, and ALDH1 markers), with monoclonal antibodies, showed some
success as they significantly reduced melanoma growth. Another therapy that
involved combination treatment with bevacizumab and etoposide was able to signif-
icantly induce apoptosis and abolished the sphere-forming ability of CD133+

MCSCs [133, 134]. Additionally, targeting MCSC-specific signalling pathways
(Fig. 2.3) with inhibitors such as DAPT (Notch inhibitor), cyclopamine
(Hh signalling inhibitor) and XAV939 (Wnt signalling inhibitor) could serve as
alternative strategies to treat melanoma patients [135, 136].

2.4.5 Clinical Trials for Melanomas

The drugs that are in clinical trials for melanomas are (1) XmAb20717 (Phase I), (2)
entrectinib (Phase I/II), (3) encorafenib (Phase I/II), (4) binimetinib (Phase I), (5)
DCC-2618 (Phase I), (6) LGK974 (Phase I), (7) Nivolumab (Phase II), etc. Although
there have been some advancements in the last few years in the FDA-approved
therapies (dacarbazine, cobimetinib, pembrolizumab, vemurafenib, tipifarnib, etc.)
for melanomas, more effective and further major advancements in immunotherapies
to treat melanomas are anticipated in the coming years. The reader can refer to the
recent articles on this topic for additional information [137, 138].

2.5 Pancreatic Cancer Stem Cells (PCSCs)

Pancreatic cancer stem cells (PCSCs) were identified by Li group using the xenograft
mouse model [16]. Like normal stem cells, the PCSCs display the potential to
undergo self-renewal and differentiation. The PCSCs represent only a very small
fraction of the tumor (0.2–0.8% of the pancreatic cancer cell population), and were
distinguishable from the bulk tumor population based on a unique cell surface
marker signature (CD44+CD24+ESA+) [139]. In a parallel study, Hermann group
identified CD133+ as an additional cell surface marker for PCSCs and also showed
that CD133 had 14% overlap with pancreatic cancer cells expressing
CD44+CD24+ESA+ [140]. Although PCSCs constitute a small portion of the
tumor, they mostly contribute to the invasive and metastatic potentials of pancreatic
cancers, and resistance to conventional cancer therapies or cancer relapse after
treatment.
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2.5.1 Origins and Markers of PCSCs

To evaluate the efficacy of PCSCs in tumor initiation and growth, PCSCs were either
flow or magnetically sorted, and then, injected into immunocompromised mice
[141]. CD133, CD44 and CD24 are the most widely accepted markers of PCSCs.
There are also other markers such as OCT4, sex-determining region Y-box
2 (SOX-2), tyrosine-protein kinase KIT (c-KIT) or CD117, homeobox protein
NANOG, ATP binding cassette (ABC) subfamily B member 1 (ABCB1), ABC
subfamily G member 2 (ABCG2), CD3, integrin α6β4, claudin-7, epithelial-specific
antigen (ESA), Nodal/Activin, doublecortin and CaM kinase-like 1 (DCLK1),
nestin, C-X-C motif chemokine receptor type 4 (CXCR4) and leucine-rich repeat-
containing G-protein coupled receptor 5 (LGR5) [142]. Additionally, ALDH1 is
reported to mark the stemness of PCSCs, and ALDH+ cells are reported to have
enhanced tumorigenic potential than ALDH� cells. Furthermore, CD133+/CXCR4+

PCSCs have been shown to exhibit enhanced invasiveness [143]. Although many
different markers of PCSCs have been discovered so far, still there is a lack of one or
a group of unique markers to detect all of the PCSCs in a tumor. However, CD24+/
CD44+/ESA+/CD133+/CXCR4+ and ALDH1high are the most widely accepted
markers that are used to enrich the PCSCs population “from the bulk
pancreatic cancer”.

2.5.2 Identification, Isolation and Characterisation of PCSCs

To characterize PCSCs, they were first isolated from patient tumour tissue samples
by incubating with dissociation buffer consisting of type IV collagenase and dispase,
and then, the digested mixture containing tumour cells was subjected to centrifugal
separation on a ficoll density gradient [144]. Subsequently, PCSCs were enriched
from the gradient cell fraction using several PCSC markers (e.g., ABCB1, CD24,
CD44, CD133, CXCR4, DCLK1, EpCAM and OCT4) by FACS [145]. The mor-
phology of PCSCs expressing the cell surface markers such as CD44 and CD24 is
different from pancreatic cancer and was used for characterisation of PCSCs [146].
In addition to these protein markers, the pancreatic cancer stemness-specific miRNA
markers (miR-17-92, miR-335, miR-1181 and miR-1246) were used for additional
characterisation of PCSCs [141].

2.5.3 Signalling Pathways Regulating PCSCs

Studies on the signalling pathways and their complex interactions in normal stem
cells have provided a framework, to understand the molecular biology of the cellular
signalling mechanisms in PCSCs. Some of the well-studied signalling
mechanisms that regulate the maintenance of PCSCs population include the
Wnt/β-catenin, Hedgehog, NF-κB, Notch, and PI3K/AKT/mTOR pathways
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[146]. A list of generally used compounds that inhibit different signalling pathways
in PCSCs are depicted in Fig. 2.4.

2.5.3.1 Wnt/b-Catenin Signalling Pathway in PCSCs
Wnt/β-catenin signalling pathway plays an important role in the pancre-
atic tumorigenesis and therapeutic resistance. Wnt signalling pathways can either
be β-catenin dependent (i.e., canonical) or β-catenin independent (i.e., noncanoni-
cal). Abnormal activation of the canonical Wnt/β-catenin signalling contributes to
the pancreatic adenocarcinoma [148]. WhenWNT ligands are available, they bind to
the Wnt-receptor complex. The Wnt-receptor complex is comprised of a seven-
transmembrane receptor of the Frizzled (FZD) family and a single-pass low-density
lipoprotein receptor-related protein 5/6 (LRP5/6). The WNT ligand-receptor com-
plex then interacts with the destruction complex, which contains
AXIN, APC and GSK-3β, leading to the repression of β-catenin activity, while the
AXIN-binding molecule Dishevelled (DVL) represses β-catenin phosphorylation
(Fig. 2.4). This causes β-catenin accumulation and nuclear translocation, followed
by binding to TCF/LEF family of transcription factors, and activation of target genes
that can lead to tumorigenesis (Fig. 2.4). However, in the absence of Wnt ligands,
β-catenin gets phosphorylated at serine (Ser) and threonine (Thr) amino acid residues

Fig. 2.4 Schematic representation shows the stepwise progression of normal cells to pancreatic
intraepithelial neoplasia (PanIN) and to pancreatic tumor, and the pathways regulating PCSCs. Left
figure: A model showing progression of pancreatic cancer. Stepwise progression of normal epithe-
lial cells to different grades of PanIN. PanIN-1 is the lowest grade, and it can extends to the highest
grade PanIN-3 lesion, which is characterized by a loss of cell polarity, extension of cells into the
duct lumen and considerable nuclear aberrations. Right figure: Potential signalling pathways that
drive PCSCs, and its targetable cell surface markers are depicted in the schematic figure. A list of
inhibitors (shown in red) play a specific role in targeting different pathways associated with PCSC
signalling and are potential therapeutics
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by casein kinase 1 (CK1) and GSK3β, which form a complex with APC and axin,
leading to the destruction of β-catenin [149]. The expressions of Wnt genes
are upregulated in pancreatic tumor cells. Hence, more studies are warranted to
develop novel Wnt pathway inhibiting molecules that could be used to attenuate the
proliferation of PCSCs and target pancreatic cancers.

2.5.3.2 Hedgehog Signalling Pathway in PCSCs
Hedgehog (HH) pathway plays a critical role in the maintenance of human PCSCs.
Aberrant activation of Hh signalling is reported in pancreatic cancer [149]. There are
three ligands for HH signalling, namely, Indian (I), Desert (D), and Sonic (S) HH.
These ligands bind to the receptors called Patched (PTCH1 and 2). Binding of HH to
its receptor inhibits the activation of a seven-transmembrane protein named Smooth-
ened (SMO), which in turn activates the GLI protein to translocate into the nucleus
(Fig. 2.4). Lee et al. [150] reported that the CD44+CD4+ESA+ PCSCs showed a
46-fold increased expression of SHH transcripts compared to the normal pancreatic
epithelial cells or the CD44�CD24�ESA� pancreatic cancer cells. Moreover, inhi-
bition of HH ligands with cyclopamine (Hh antagonist) leads to the inhibition of
metastasis (Fig. 2.4). Similarly, treatment with inhibitor IPI-269609 (not indicated in
Fig. 2.4) was reported to decrease the metastasis of human pancreatic adenocarci-
noma cell lines [151].

2.5.3.3 Notch Signalling Pathway in PCSCs
Notch signalling is a critical determinant in the regulation of cell fate determination
via cell-cell interaction, stem cell maintenance and differentiation. Hyperactivation
of the notch pathway resulted in enhanced self-renewal of the CSCs in pancreatic
adenocarcinoma [152]. Notch signalling is turned-on, when any of the four
NOTCH (NOTCH1–4) membrane anchored receptor proteins interact with any of
the five canonical transmembrane ligand family members, Delta-like (DLL1, DLL3,
DLL4) and Jagged-1 (JAG1, JAG2). The interaction between the NOTCH receptor
and the ligand induces conformational changes leading to proteolytic cleavages of
NOTCH receptors by TNF-α-converting enzyme (TACE), a member of a disintegrin
and metalloprotease domain (ADAM) family of metalloproteases (not shown in
Fig. 2.4) and γ-secretase (Fig. 2.4). The cleavage releases the intracellular domain
of NOTCH (NICD), followed by nuclear translocation and subsequent activation of
the target genes; Hey and Hes heterodimerize with the DNA-binding protein CSL
(RBP-Jk) and co-activators. Inhibition of the Notch pathway in pancreatic ductal
adenocarcinoma (PDAC) cells led to a significant decrease in the percentage of
PCSCs and the overall tumor formation. A significant challenge in developing an
efficient NOTCH inhibitor-based strategy for cancer treatment is to develop a
CSC-specific targeted inhibition of NOTCH without perturbing the signalling and
physiology of the normal somatic stem cell population [152].
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2.5.3.4 PI3K/AKT/mTOR and Other Signalling Pathways in PCSCs
Phosphoinositide 3-kinase (PI3K)/RAC-alpha serine/threonine-protein
kinase (AKT)/mammalian target of rapamycin (mTOR) signalling pathway
(Fig. 2.4) play an important role in PCSC proliferation. CD133high PCSCs showed
elevated levels of mTOR signalling; however, the inhibition of mTOR signalling
using rapamycin (not shown in Fig. 2.4) inhibited the PCSC proliferation [153].

In addition, to the embryonic signalling networks mentioned above, there are
different other signalling pathways involved in autophagy, interleukin
8 (IL8/CXCR1), forkhead box protein M1 (FOXM1) signalling, Nodal/Activin,
and the K-RAS/c-Jun-NH2-kinase (JNK) signalling pathways that are reported to
be involved in the regulation of PCSCs function. However, future investigations are
required to clarify and explore the interactions between these pathways in PCSCs to
better understand the significance of complex signalling networks during pancreatic
tumorigenesis [154].

2.5.4 PCSC-Specific Therapeutics and Outcomes

Strategies involving targeting PCSCs were shown to involve interruption of critical
stem cell survival and functioning pathways [154]. Targeting pancreatic stem cell
niche by changing the TME to overcome drug resistance or targeting cell surface
markers or disruption of the supportive vascular niche could sensitize CSCs to the
effects of conventional cytotoxic radio- or chemotherapy and/or potentiate the
effects of other CSC-targeted therapies. Numerous nonclassical drugs or inhibitors
or other molecules indicated in Fig. 2.4 have been shown to inhibit the various
signalling pathway components or other stemness-related proteins in PCSCs at
varying degrees.

2.5.5 Clinical Trials for Pancreatic Cancers

In addition to many chemotherapeutics that are currently used to treat pancreatic
cancer, there are several recently developed new drugs, which are being tested for
pancreatic cancer treatment. These drugs that are being tested for safety and efficacy
will have to undergo different phases of various trials, before it is approved by the U.
S. Food and Drug Administration (FDA) or other similar agencies in different
countries, before it is available commercially to health care providers to treat
pancreatic cancer patients. Some of the promising drug candidates being tested for
pancreatic cancer are (1) Gemcitabine/nab-paclitaxel (Phase II), (2) GVAX pancreas
vaccine (with Cyclophosphamide) +/� nivolumab and urelumab (Phase I & II), (3)
nal-IRI/5-FU/LV and oxaliplatin (Phase II), (4) Pembrolizumab (Phase II), (5)
Niraparib (Phase II), etc. [155, 156]. Furthermore, novel nucleic drugs that could
potentially be used as a monotherapy or combination therapy to target pancreatic
cancer are also being developed with the help of next generation sequencing
technology based genetic screening or diagnosis.
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2.6 Conclusions

Cancer is a complex disease in which alteration of genetic, epigenetic or inflamma-
tory factors can contribute to the process of carcinogenesis. Impaired DNA repair
mechanisms or suppressed immune system or activation of oncogenes or inactiva-
tion of tumour suppressor genes can initiate or promote the growth of cancer. CSCs
possess the characteristic of stemness, which provides them the self-renewal capac-
ity and high plasticity. Hence, CSCs exhibit tumour aggressiveness, and after
metastasis from the primary tumour, CSCs can initiate tumours at distant secondary
sites in organs/tissues and also cause cancer relapse post-treatment. CSCs can
differentiate into different types of tumour cells and this contributes to tumour
heterogeneity. Furthermore, CSC’s role in metastatic dissemination, tumourigenesis
and tumour relapse is attributed to the hyperactivation of key signalling pathways
such as Hedgehog, Notch, TGF-β and Wnt/β-catenin. CSCs utilize these signalling
pathways for their self-renewal and survival, and hence, these pathways are critical
for CSCs. Importantly, these hyperactivated CSC signalling pathways are shown to
alter the expression and function of crucial genes, including the oncogenes and
tumour suppressor genes, and thus, favour tumourigenesis. The discovery of the
CSC markers and more focused research on them over the past two decade has
enhanced our understanding about the CSC types. Nonetheless, emerging evidence
indicates that CSCs are well nurtured and protected within their TME, making CSC-
specific targeted therapy to eliminate CSCs, an arduous task in many different cancer
treatments. Hence, improvements in CSC-specific stem cell markers or signalling
pathways targeting therapy or other innovative approaches, followed by rigorous
experimental and clinical studies are vital for the development of future cancer
treatments to improve the life expectancy of the cancer patients or cure cancers.
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Isolation and Characterization of Cancer
Stem Cells (CSCs) 3
Namasivayam Nalini and Bichandarkoil Jayaram Pratima

Abstract

The tumour-initiating cancer stem cells (CSCs) are neoplastic cells which pro-
duce self-renewable and heterogeneous population of pluripotent stem cells. The
exploration on stationary and coursing CSCs because of protection from regular
treatments and powerlessness in complete annihilation of malignant growth is
basic for creating novel helpful systems for a progressively successful decrease in
the danger of tumour metastasis and disease repeat. This chapter incorporates data
about various strategies for discovery and separation, side population, cell
markers and establishment of CSC culture, as well as attributes of CSCs, for
example, tumorigenicity, and pathways related with self-restoration and the
ability of the histological tumour recovery in different malignant growths.

Keywords

Cancer stem cells · Cellular markers · Self-renewal · Side population ·
Tumorigenicity

3.1 Introduction

Malignant growth of cancer stem cells (CSCs) has been recommended as the
primary cause of cancer. The hypothesis of the presence of CSCs in a tumour
populace was first proposed by Bonnet et al. In leukaemia, they distinguished a
small cloning cell populace with comparative attributes to the immature
microorganisms of the circulatory system. CSCs are motile tumour cells with
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moderate cell cycles, have the capacity to self-renew (boundless cell division and
upkeep of the undifferentiated cell pool), and have separate tumour prognosis
(tumorigenicity). These cells make up a couple of level of the malignant cells inside
a tumour, regularly 0.01–1.0% [1]. Breast, colon, ovarian, lung, and head and neck
carcinomas and also few other tumours contain CSCs [2]. CSCs are responsible for
protecting the body against tumour growth after chemotherapy and also tumour
entry into vessels and neighbouring organs. The origin of CSCs stays a disputable
issue so far [3]. Three primary speculations have been raised about the starting point
of CSCs: the arrangement of typical undifferentiated stem cells, transition of grown-
up but undeveloped cells into pluripotent malignant cells through an epithelial-to-
mesenchymal transition [4]. Considering the significant highlights of CSCs, they
extraordinarily tranquilize obstruction, have obtrusive and metastatic capacity and
tumorigenicity and are self-renewable. CSCs are segregated depending on properties
that separate these cells from different cells in tumour mass chiefly from two sources:
malignant growth cell lines and tumour tissues. The grown malignant cell lines are
widely applied for CSC separation and isolation [5, 6]. As a result of culture
adjustment and hereditary modifications occurring through subculturing of the
cells, the biological features of primary CSCs are not reflected under hyperoxic
conditions [7]. Applying powerful systems for producing such essential cell lines
from tumour tissues may provide important methods to advance the investigations
[6, 8–18]. With advancement in the available biomarkers, it is easy to target the
CSC-associated pathways using this cell line with diverse drugs [9, 19]. Various
strategies are utilized to separate these malignant stem cells. Some of them are set up
dependent on the utilization of cell surface markers. Isolation and separation of these
CSCs utilizing putative surface markers have been a need of research in cancer.
Other strategies rely for the most part upon the functional aspects of CSCs [10–
14]. This chapter will provide current approaches for isolation and identification
of CSCs.

3.2 Features of Malignant Stem Cells

CSCs are vigorous cells which may have procured attributes like their typical tissue.
The ABC transporter outflow with increased telomerase and glutathione synthetase
is a prominent feature of typical CSCs that is copied to their offspring [20–25] that
consider cell endurance and multiplication even after introduction to anticancer
therapeutics. For instance, certain gastrointestinal disease cell lines show expanded
protection from oxidative pressure by means of communications among CD44 and
cell surface cysteine–glutamate trade transporters which bring about expanded
combination of diminished glutathione, a key particle included in the balance of
responsive oxygen species [15]. The CSCs are involved in metabolic
reprogramming and also [16, 26] rapid repair of DNA damage [17, 27], with
enhanced ABC transporters involved in drug excretion [28] of chemotherapeutic
agents and also other anticancer drugs. Even the small populace of these cells,
bypass anticancer treatment and stay undetected even when there is a tumour mass
relapse leading to the recoverywhole tumor [29, 30]. Kurtova et al. discovered that
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apoptosis was activated in healthy cells via certain chemotherapeutic drugs
discharging prostaglandin E2, instigating the dormant keratin 14+ CSCs in bladder
for multiplication [31]. Overcoming the hyper-aggressive nature of CSC, found after
incomplete therapy, is the need of the hour for development of novel therapeutics.

3.3 Identification of CSCs Through Specific Biomarkers

No specific or sensitive biomarkers have been developed to detect CSCs. Table 3.1
shows the CSCs and their corresponding markers in various cancers.

3.4 Surface Markers for CSC Isolation

The CSCs are characterized by few proteins outflow. Diverse cell surface markers
act as important contender for CSCs identification and targeting in various diseases.
The articulation designs of these markers and their degree of articulations fluctuate
among various tumor mass; in any case, no unmistakable markers have been
presented. In malignant growth investigate; the markers of CSC subset such as
proteins are most of the time used to construct a profile for separating the CSC
populace from the mixed population of cells [51]. These markers generally have a
place with the characterization of layer proteins [52]. For recognizing and
disconnecting CSCs, choice of proper CSC surface markers is the principal need.
At that point, these markers are utilized to detach potential CSCs by fluorescence-
initiated cell arranging (FACS) or attractive enacted cell arranging (MACS)
procedures [53]. Several surface markers, for example, prominin-1 (otherwise called

Table 3.1 CSCs and their corresponding markers in various cancers

Cancer class Markers References

Leukaemia/lymphoma CD34+, CD47+, CD96+, CD25+, CCL-1+,
CD38�

[5, 32–36]

Head and neck squamous cell
carcinoma

CD44+, BMI1+, CD24+, CD133+ [37–39]

Glioblastoma CD133+, CD49f+, JAM-A, HER2+,
EGFRvIII+

[40–44]

Lung CD44+, CD133+ [45, 46]

Breast CD44+CD24�/low and ALDH1+, CD133+,
CD61+

[44–52]

Ovarian CD44+, CD117+ [53]

Pancreas CD44+, CD24, ESA+ [54, 55]

Gastric CD44+, CD133+, ABCB1+, ABCG2+ [56, 57]

Colorectal CD44+, CD133+, CD166+, CD24+ [58–61]

Prostate CD44+, CD133+, ALDH+ [62–64]

Bladder CD44+, CD90+, CD49f+ [65–67]

Melanoma CD20+, CD271+, ABCB5+ [68–70]

3 Isolation and Characterization of Cancer Stem Cells (CSCs) 53



CD133), CD24, CD16, CD13, CD44, CD38, CD34, epithelial-explicit antigen
(EpCAM/ESA), CD20, CD176 and CD66c alone or in combination, have been
used for sorting CSCs distribution in various malignancies [54]. Huge numbers of
the surface receptors applied for CSC arranging have been distinguished observa-
tionally which were recognized on ordinary undifferentiated cells (SCs, for example,
embryonic stem cells ESCs) and adult stem cells (ASCs) [54]. Additionally, separa-
tion of the tumor tissue into a solitary suspension of cells may prompt disability of
antigen on the surface and reduced productivity of CSC detachment [55]. Besides,
the cells may become unavailable upon protein treatment and in the wake of
arranging forms. Cell arranging itself has affirmed to be wrong technique in which
1–3% of tumorigenic cells debasing the non tumorigenic populace [56]. One of the
powerful techniques is the way towards creating mono suspension of cells from
tumour tissues followed by immunizer based stream cytometric measure. In correla-
tion with different techniques, separation dependent on cell markers is more explicit
than the side population (SP) measure and the development of spheroids, be that as it
may, there are a few disadvantages including predetermined number of detached
cells and conceivable harm of surface markers during test handling utilizing protein
lysing compounds. Complex, tedious and costly handling alongside low feasibility
of confined cells is an inconveniences of surface marker–-subordinate separation of
CSCs, which is a limiting factor for utilization of this technique [57–63]. The
utilization of CSC markers is famous in the guess of disease. As, most of the
inadequately separated tumors have the most noteworthy weight of breast CSCs,
in their malignant growth [61]. Additionally, in colon malignant growth, CD133
articulation is a marker of poor visualization which is connected to metastasis of the
liver [64–66]. Raised CD133, an antagonistic marker of prognosis in the cancer of
pancreas, is related with lymph hub attack [67, 68]. CD133 articulation is related
with poor clinical result in ovarian disease [69]. Additionally, CD44 over articula-
tion was connected with poor prognosis in pancreatic cancer patients [71–73].

3.4.1 Magnetic-Activated Surface Antigen-Based Cell Sorting
(MACS)

MACS technique permits the enrichment and isolation of stem cells without
staining. Cells that are labelled and conjugated to magnetic nanomaterials with
antibodies are transmitted upon a section of highly compatible magnetic field. All
through this procedure, cells the antigen expressing cells are attracted to the mag-
netic dots and stay attached to the column, yet the various negative cells for the
antigen will fall off the column [74]. Consequently, the cells of interest will be eluted
from the column from varied populations of the cells. This method relies on mono
parameter separation requiring cell suspension. However MACS is a simple strategy
in CSC disengagement with the ability of isolating Small populace of the tumour
mass cells [75–77].
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3.4.2 Fluorescence-Activated Cell Sorting (FACS)

FACS is another cell confinement technique which can separate the cells utilizing
fluorescent labelled markers focusing on specific surface proteins or intracellular
surface markers through immune staining. This strategy permits a cellular sample or
particles in suspension to be isolated through a limited fluid stream. As the sample
goes through a laser, it takes into account the recognition of granularity, size and
fluorescent properties of individual cells/particles [78]. For the most part, FACS
partition utilizes fluorochromes straightforwardly conjugated with either essential or
optional antibodies with various emanation wavelengths. FACS commonly requires
more cells, as a huge division of the sample might be lost. In many cases, the total
number of CSCs available for a biopsy test or in the patient blood might be
exceedingly low. Therefore, an increasingly effective procedure to advance CSCs
from an uncommon example is required. FACS is multiparametric strategy
contrasted with MACS. Despite the fact that MACS is less difficult and requires
less complicated instrument than FACS, it is mono-parametric and cannot isolate
cells by means of numerous markers at the same time [79, 80]. Additionally, the
adequacy of CSC disengagement by FACS is respectably satisfactory.

3.5 Functional Assays to Identify CSCs

CSCs have some natural properties, including self-reestablishment, tranquillity, and
uneven cell division, slow multiplication phenotype, high ABC transporter articula-
tion, aldehyde dehydrogenase 1 (ALDH1) action, and diminished mitochondrial
action in many malignant growths. These useful highlights are utilized to allow
productive CSC separation and create recognizable proof methods as depicted in
Fig. 3.1.

3.5.1 Spheroid Formation Assay

Screening cancer medication in vitro is usually done via 2D cell culture model which
cannot duplicate the 3D microenvironment of the tumour in the human body, for
example, cellular interactions and other matrix interactions between cell and the
extracellular matrix (ECM), tissue-explicit engineering and various other signs that
are fundamental for tissue explicit capacities. These issues have been overcome
through copying of tumour tissue properties over 3D tissue cultures. The metabolic
spherical culture status has undergone developmental changes in the layers of the
culture, namely, inward layer with hypoxia and acidic conditions with necrotic cells,
intermediate layer that included quiet cells, and outer layer with high multiplication
cells due to excess supply of oxygen and other nutrients [81]. It is demonstrated that
generation and testimony of matrix proteins are higher in spheroids when contrasted
with two-dimensional culture [68, 82, 83]. The capability of spheroid coculturing of
malignant growth cells with various kinds of cells in tumour expanded cell-to-cell
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association through cell–cell connection and development factors [69, 70]. These
attributes make spheroid development test perhaps the best contender for assessment
of cutting edge anticancer medications in decades ago. Four principal circular
malignant growth models dependent on culture techniques have been created:
tumour spheroids with multiple cells, tumour circles, tissue-determined tumour
circles and organotypic multicellular spheroid models. Multicellular spheroids are
characterized as the whole of mono diseased cellular spheroids or coculturing of
malignant cells with other cell types, which is referred to as multitypic spheroids or
embedded cells developed in frameworks in a 3D culture. Circle size contingent
upon cell type and circle age techniques can be fluctuated between under 100 μm and
3 mm in width with an enhanced size of 200–500 μm in distance across. Single cell
suspension culture is used for creating spheroids within the sight of fetal bovine
serum (FBS) and with no external matrix protein [84]. At present, a few multicellular
tumor spheroid (MCTS) strategies are accessible for creation of spheroid, including
hanging drop, spinner cups, fluid overlay and cellulose-based microparticles. In
spheroid tumour examination, the tumour tissue sample to be tested is separated to
mono cell suspension through compound or mechanical power. From the mono cell
suspension the platelets are removed for further processing. After this, the

Functional 

Assays

Side Population Assay
Density gradient 

centrifugation ALDH Assay

Tumorigenicity Immune selection
by NK cells Spheroid formation Assay

Fig. 3.1 Functional assays to identify CSCs
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suspension of cells is cultured in media without serum which is enhanced by
including epidermal growth factor (EGF) for development of thecells and basic
fibroblast growth factor (b-FGF) in less amount. All these conditions are essential
for the growth of cells as clonal round groups [48, 49, 85]. Despite the fact that
tumour sphere science is not notable, it has been indicated that tumorsphere model
does not completely imitate in vivo tumour structure and microenvironment. Age of
organotypic multi-cell spheroids rather than tissue-determined tumour circles
(TDTSs) does not have disassociation step. Tumour tissue in the wake of cutting
into pieces with 0.3–0.8 mm width is refined in tissue culture cups covered with
0.75% agar in moulded media enhanced with 10% FBS and superfluous amino acids.
It has been indicated that after cryopreservation of glioma spheroids, their histologi-
cal attributes stayed steady and just minor genotypic and phenotypic changes were
seen subsequent to defrosting. Recognizable proof of stem and ancestor cells from
strong tumour presents remarkable difficulties to getting a functional single cell
suspension. Since immature microorganisms are regularly rather uncommon popu-
lace of a strong tumour, it is basic to upgrade every confinement venture to augment
result [71–75].

3.5.2 Clonogenic Assay

Colony formation assay is a quantitative strategy in vitro to assess the self-
restoration limit of a cell in a colony of at least 50 cells through clonal development
[76]. This assay is a strategy for recognizable proof of CSCs which is broadly used to
assess adherent cells in a two-dimensional culture [77]. To assess clonogenic
capacity, the colonies derived from CSCs are plated as single cell in a soft agar
which is incubated for 21 days and are stained with crystal violet or nitro-blue
tetrazolium (NTB). The total number of colonies obtained is isolated and determined
with colonies got from the non-CSC portion. The colonies derived from CSCs have a
larger size than the colonies derived from the non-CSCs. Many technical changes
can affect clonogenic assay, namely, the autoclaved medium must contain diluted
cells when the temperature is cool enough not to kill cells, yet at the same time warm
adequate to be filled wells; appropriate dilution is hazardous to affirm that every
colony results from a solitary cell; additionally, the toxicity of agar to the cells must
be considered or it may impact the result. In spite of the fact that the component by
which CSCs explicitly structure clonal circles is commonly obscure, the investiga-
tion is made on a serum-free suspension for estimating the self-renewal populace of
tumour cells [78–81].

3.5.3 Tumorigenicity

Tumorigenicity is the most effective and popular gold standard method for identifi-
cation of therapeutically responsive CSCs in biology [75–77]. Limiting dilution
assay (LDA) is the best tumorigenicity strategy that is ordinarily utilized for
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assessment of dynamic CSC recurrence [82, 86]. In this test, the valuable extreme
limiting dilution analysis (ELDA) programming is utilized; it is conceivable to
register subpopulations with 0–100% reactions [83]. In any case, the aftereffects
of this strategy are influenced by the cellular quantity, the cell carrier, the site and
time of incubation and implantation [86]. High-throughput screening cannot be
utilized in this technique [87–90]. In rats, it is hard to examine the microenvironment
impacts on the CSC work since the vasculature is the controller of human CSC
development [83, 86, 87].

3.5.4 Lipophilic Dye Retaining Method

PKH26 and PKH6 are lipophilic fluorescent cell membrane connecting dyes which
after cell division separate similar daughter cells. Holding a fact that a moderate cell
division can proficiently hold the dye, there is an instantaneous dilution in the dye
from the membrane of rapidly dividing cells. The dye retaining labelling technique
via PKH26 has been utilized to distinguish CSCs. These labels remain to the CSCs
because of their longer asymmetric divisional period to form daughter cells. The
osteosarcoma and breast cancer CSCs are segregated utilizing this procedure
[91, 92]. Bromodeoxyuridine (BrdU) labelling depends on a similar label mainte-
nance approach. When contrasted with differentiated cells, CSCs hold more BrdU
than the dividing cells [93]. Carboxyfluorescein succinimidyl ester (CFSE) dye has
also been utilized to follow the cell division recurrence in few solid tumours. Current
examinations have discovered that CFSE labelling can be utilized for recognizing
and confining moderate dividing cells from glioblastomas [93–99]. The cerebral
tumour pathology can be successfully studied through these dyes because of their
retention property [96–98].

3.5.5 Activity of Aldehyde Dehydrogenases (ALDHs)

These isoenzymes of cytosolic origin are engaged in oxidation of intracellular
aldehyde [100]. ALDH isoforms in human have 19 different types. ALDH1
catalyses the conversion of retinol to retinoic acid during malignant transformation,
and it also affects the proliferation and differentiation of these malignant stem cells
[101–103]. ALDH1 enzyme additionally actuates Wnt/β-catenin movement through
activation of Akt signalling pathway. CD44 expression is related with ALDH1
which, on the other hand, protects normal cells from chemotherapy due to
overexpression of ALDH1. From the outset of cells, the immature stem cells can
be separated using ALDH1 for regenerative medicine with potential applications.
The proteins from CSCs act as reliable markers in various solid tumours due to the
movement of cytosolic ALDH1. Cell populace with high ALDH1 levels can be
distinguished by ALDEFLUOR assay or utilizing FACS examination [104]. Investi-
gation of the ALDH1-positive cells utilizing these two strategies showed expanded
spherical arrangement ability, self-reestablishment properties, tumorigenicity and
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high expression of stemness qualities contrasted with negative ALDH1 cells
[105]. The reaction product of ALDEFLUOR assay collects in undifferentiated
cells that are associated with ALDH movement [106–109]. The response allows
viable cells to incorporate changing of ALDH substrate, BAAA (BODIPY-
aminoacetaldehyde), into the fluorescent product BAA (BODIPY-amino acetic
acid derivation). Significant levels of ALDH1 inside the cells become splendidly
fluorescent and recognized by flow cytometry [110]. The ALDH1 specific substrate
is reacted upon by ALDEFLUOR forming an immune reaction specific for the
recognition of CSCs. The ALDEFLUOR test discovers epithelial tumour CSCs
[111–113]. The other impediment utilizing this assay is that the osteosarcoma
ALDH1-positive cells are enriched in the sphere formation with an obtrusive
population of cells under investigation [93, 103]. Poor prognosis of various tumours
is associated with increased expression of ALDH1 [83].

3.5.6 Side Population Assay

The response incorporates changing of a substrate into fluorescent product which is
held in viable cells. Brightly fluorescent high ALDH-containing cells are distin-
guished by flow cytometry or improved by cell arranging for more purification
[110]. The substrate for ALDH1 reaction is provided by ALDEFLUOR reagent to
which an ALDH1 specific antibody can be utilized to recognize CSCs in clinical
examples [111]. ALDH1 may not be an appropriate CSC marker for all tumour
types, for example, liver and pancreas [112, 113]. The other impediment utilizing
this measure has been exhibited in bone cancer ALDH1-positive cells enhanced in
the circle framing division and related with a progressively intrusive populace [32–
34]. The absence of a tumour-explicit phenotype has made trouble in the recognition
of CSCs [84, 93]. SP segregation is a promising strategy for recognizing undifferen-
tiated cells and various malignant growths. Mouse bone marrow cells for side
population assay were measured using FACS. This strategy distinguishes CSCs by
efflux of organic DNA binding dyes such as Hoechst 33342 and Rh123. This is
achieved by ABC transporters and multidrug resistance (MDR) mechanism situated
inside the cell. Cells inside this population were designated “SPs” due to their area in
the flow cytometry peak plot. The outflow of ABC multidrug efflux transporters in
stem cells is raised as a vital defensive component against cytotoxic substances.
Fundamental individuals from this family are ABCB1 (Multidrug Resistance-1,
MDR1), ABCC1, ABCF2, ABCB2, ABCC7, ABCG2 and ABCA5, which are
upregulated in various tumours. The SP cells have some striking highlights that
contrast them from other cell populace. They can initiate tumour formation at a high
recurrence with the capacity to experience deviated division to build detachment
amount in both SP part and non-SP portion. These cells have clonogenic limit,
tumorigenicity, multipotency and chemoresistance [14]. Recognizable proof and
confinement of stem cells through SP assay have superior goals than ordinary
immunostaining measure with antibodies against ABC transporters that gives the
exact discovery of uncommon SP portions (<0.5% of the absolute cell populace)
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inside heterogeneous examples. In addition, utilitarian portrayal of the cells in vitro
and in vivo utilizing different DNA-restricting dyes is troublesome; however, the SP
test being performed on practical cells gives simpler and dependable strategy to
describe the cell populace [103].

3.5.6.1 Hoechst 33342 Dye
The stem cell isolation relies on the Hoechst SP assay strategy. The fluorescent
Hoechst dye binds to AT-rich areas of the nucleic acids particularly to the minor
groove of DNA. The cell plasma membrane can also be accessed via Hoechst
staining of the living cells [73]. Upon excitation, Hoechst at 405 nm transmits a
blue signal that is gathered with a 450/40 nm band and passes through filter with
excitation as red fluorescence at 610/20 nm filter. The SP can be characterized as the
number of cellular population with negative for both Hoechst blue and red [59]. As
indicated by an examination of STA-ET-1 cell line of Ewing sarcoma, there is a
relationship between the grouping of Hoechst colour and also the distinguishing
ability to disconnect the undifferentiated cells [48].

3.5.6.2 Rhodamine 123 (Rh123)
Rh123 is a mitochondrial dye which is utilized in SP measure that stains activated
cells with higher resolution than the other cells. The force of fluorescence of Rh123
shows the activation state as well as the multidrug efflux pump activity related with
the mass of mitochondria. Expanding efflux of Rh123 prompts the lesser dye
accumulation inside cells [93]. Lesser cytotoxicity and excitation at 488 nm is
effective for practical use of Rh123. A double colour efflux procedure utilizing
Hoechst 33342 and Rh123 might be appropriate to separate cells with the high action
of hematopoietic undifferentiated cell. Point mutation carrying cells at the R482
position are more resistant to chemotherapeutics with elevated Rh123 efflux which
limits their utilization by these cells [103].

3.5.6.3 Other Fluorescent Dyes
SP examination can also be done with other fluorescence colours, for example, dye
cycle violet (DCV), a cell-porous and DNA-binding dye which is excited by a violet
laser at a wavelength of 395–410 nm. Contrasted with the violet laser which is
accessible on most flow cytometry instruments, UV lasers are not accessible.
Accordingly, this dye alternates other organic dyes like Hoechst used in SP assay
[80–84]. Indoline colour ZMB793 is another dye with fluorescent nature, which is
energized at 488 nm and emitted at wavelengths of 600 nm and longer. The limiting
factor is that this dye cannot be utilized in certain higher instruments apart from flow
cytometer [100–104].

3.5.7 Identification of CSCs Through Centrifugation

Gradient centrifugation using density as a factor is a strategy of partition for different
types of cells and confinement of physical properties dependent on CSCs. This
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strategy utilizes distinctive density gradient media which will influence the viability
based detachment of cells [112]. For an hepatocellular carcinoma (HCC) model, at
the end of centrifugation depending on the thickness of the cells, four portions with
assorted properties and levels of biomarker articulation were obtained utilizing
percoll consistent gradient centrifugation. Among the acquired portions the presence
of malignant stem cells was confirmed, the part which has higher nuclear to
cytoplasm proportion and furthermore high expression levels of SC markers.
There are comparable outcomes for the segregation of stem cells utilizing this
strategy. For instance, progenitor bone marrow cells from are more confined to
percoll gradient using this strategy [75–79].

3.6 Controversies of Cancer Stem Cells

As depicted above, developing proof has been collected to support the CSC model.
In many cases, there is still debate with respect to CSCs. It is as yet vague how CSCs
are created. It has been hypothesized that typical undifferentiated cells in different
tissues are malignantly changed by various factors, for example, hereditary and
epigenetic transformations [49, 53]. It isn’t comprehended whether tumour move-
ment driving hereditary occasions aggregates just in CSCs. Although most strong
tumours show broad genomic instability, there is no data with respect to genomic
soundness in CSCs. An ongoing report recommends transformation among CSCs
and non-CSCs [73]. These authors showed the likelihood that the dedifferentiation
of malignant cells brings about the generation of CSCs. This versatility may
represent the present irregularities observed in the CSC model.

Another irregularity generally seen is that CSCs are constantly uncommon; this
view depends on the first information on acute myeloid leukemia (AML) stem cells
[106]. Nonetheless, the mice microenvironment of mice is inappropriate for human
malignant cells growth causing tumour relapse, limiting the life expectancy to
2 years. A few examinations have announced intends to conquer the underlying
issue of xeno-transplantation. In the HCC mouse model, CD133 + CD45� subpop-
ulation caused cancer in naked mice strain [67]. Different animal model has to be
developed for further examination and elucidation of malignant stem cells.

3.7 Concluding Remarks

These stem cells are evident in cancer biology for causing tumour genesis. CSC
chosen through chemical screening methods from established cell lines is useful for
performing and analyzing in vitro experiments. Since the mechanisms of action of
CSCs on patients remain unexplored, future studies are required to investigate them
through clinical specimens. Although the contributions of CSCs to cancer develop-
ment remain unclear, the conventional chemotherapies are not able to eliminate
CSCs. Targeting CSCs may pave a new way in drug development for treating
metastasis and recurrence.
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Lung and Prostate Cancer Stem Cells 4
Sudeep Bose, Valentina Sain, Sartaj Khurana, and Rajat Gupta

Abstract

The most prominent cause of deaths due to cancer is lung cancer that typically
includes the failure of treatment, reoccurrence of cancer, and dispersion that is
only possible due to the existence of cancer stem cells (CSCs). The current
development in translational and molecular investigation on lung cancer
postulates the unique data and detailed comprehension of lung cancer biology
and various treatment approaches. Targeting lung CSCs with detailed focus on
specific markers of lung CSCs may give a conception to eliminate lung cancer
without reoccurrence and may finally improve long-lasting clinical outcome.
Prostate cancer (PCa) is the most prevalent type of cancer and the major cause
of mortality in males around the globe. It is a heterogenous condition attributed to
instability of genome and mechanisms related to epigenetics resulting in cellular
differentiation. The previous decade has seen evidences that have clearly revealed
the critical role of PCa stem cells (PCSCs) in PCa. Metastasis, till date, remains a
big challenge in the treatment of these cancer types due to limited survival
advantage of the second-generation drugs as observed in sufferers. Molecular
mechanisms reveal that mutations in tumor suppressors together with oncogenic
activation are capable of inducing a major mechanism termed as partial
epithelial–mesenchymal transition (EMT), which provides plasticity to cancer
stem cells (CSCs) and eventually contributes to metastasis. Thus, a clearer
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understanding of fundamental stem cell mechanisms pointing toward the various
signaling pathways that regulate the fate of cell during development is crucial to
improve stem cell-based regenerative medicine and anticancer strategies for both
PCa and lung cancer.

In this chapter, we encapsulate our present understanding of normal stem/
progenitor cells of prostate and lung cancer that highlight the recent progress that
has been made on CSCs and discuss the properties and hallmarks of biology of
prostate and lung CSCs and their involvement in resistance to therapy, tumor
progression, and metastases.

Keywords

Prostate cancer · Lung cancer · Cancer stem cells · Metastasis · Cancer stem cell
markers · Signaling pathways · EMT · Drug resistance

4.1 Introduction

Cancer is one of the leading causes of mortality worldwide. The most life-
threatening among all cancer types is lung cancer, which is responsible for 20% of
cancer-related deaths globally with unfavorable diagnosis mostly due to late stage
disease presentation. This cancer is now contemplated as a pandemic which is
accountable for highest mortality rate among all the types of cancers, i.e., one in
four cancer deaths with major social and financial consequences [1]. This cancer has
been categorized into two groups based on its pathological features: (a) small cell
lung cancer (SCLC) found in 20% of all types of lung cancers and (b) non-small cell
lung cancer (NSCLC) found in about 80% of lung cancers [1]. NSCLC is found to be
very lethal which is again categorized into large cell carcinoma, adenocarcinoma,
and squamous cell carcinoma that revealed the 5-year survival rate of about 17.8%
only, and high incidence of new cases is diagnosed annually with low survival rate
[2]. Today, it is a well-known fact that the continuous buildup of multiple alteration
in genes of normal cells leads to malignant phenotypes, and also various theories
have been anticipated to elucidate the origin of cancer. Cancer stem cells (CSC) are
considered as a seed of cancer that exhibit high tumorigenic potential, expression of
specific markers and genes, resistance to chemotherapy, and high migration and
invasion characteristics and also share some specific characteristics of normal stem
cells like differentiation capability (asymmetric cell division) and self-renewal and
utilization of common signaling pathways. Based on aforesaid descriptions of the
CSC population, CSCs becomes a leading reason of disease reversion and sows the
barriers in all the present-day used curative approaches involving surgery and
chemo-, radio-, and targeted therapy for lung cancer management.

Another major type of cancer is prostate cancer (PCa) which has been consistent
in holding the banner for the most prevalent cancer identified in males and also the
second important malignancy of cancer-associated morbidity in the United States
and Europe [3]. The prostate gland comprises three essential types of cells: luminal
(secretory), basal, and neuroendocrine cells with each type identifiable by a
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characteristic expression of markers. Moreover, there is a tiny group of intermediary
cells that express both basal and luminal cell markers [4]. These cell types possess
diverse characteristics. Most of the luminal epithelial cells have been shown to
manifest the androgen receptor (AR), secrete prostate-specific antigen (PSA) along
with prostatic acid phosphatase (PAP), and need AR signaling for sustenance. Basal
epithelial cells are AR negative and therefore not subtle to castration [5]. In the
luminal epithelial layer, there are neuroendocrine cells which are rare cells and are
distributed in prostatic glands constituting less than 1% of prostatic epithelium.

High-grade prostatic intraepithelial neoplasia (HGPIN) develops PCa that
progresses to locally invasive carcinoma and then to metastatic cancer [6]. Early-
stage PCa cells are primarily composed of differentiated glandular structures positive
for androgen receptor (AR) and prostate-specific antigen (PSA); however, undiffer-
entiated or poorly differentiated cells are largely negative for PSA and AR expres-
sion. Also, a distinct cell subpopulation, i.e., PSA+ AR+, PSA+ AR�, PSA� AR+,
and PSA� AR�, has been found to be well documented [7].

4.1.1 Features of Cancer Stem Cells

Characterization and identification of human CSCs are based on numerous
characteristics: capability to (a) differentiate, (b) self-renew, and (c) form secondary
or tertiary tumors when these CSCs are transferred to immunodeficient rodent
[8]. Figure 4.1 represents the different properties of cancer stem cells. Like normal
cells, tumors are made up of diverse populations that are dissimilar in relation to
phenotypic and morphological profiles that also include differentiation and prolifer-
ation capabilities [9]. Inside the tumor, the development of every cell differs

Fig. 4.1 Cancer stem cells (CSCs) properties. CSCs (red) can dedifferentiate and selfrenew within
tumours to form CSCs pool again and non-tumorigenic cancer cells (blue) have restricted
proliferative ability. With the tumour growth, CSCs can either have reduced benign growth or
dispersed malignancies and are chemotherapy resistant that leads to cancer relapse
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independently; for example, some cells are categorized into the cycling or
non-cycling tumor cells, and some cells may be in dormant state [10]. Therefore,
the targeting of specific CSCs becomes a challenging task due to the diversity of
tumor heterogeneity that urges to look for exclusive lung markers that can recognize
the CSC population only in lung cancers.

Lung cancer is the most complicated type of cancer due to the production of
different histological and genotypic tumors within the same tissue by lung CSCs
which needs to be explored further. The proposed origin of CSCs of lung cancer
includes several places like from airway stem cells, basal/mucous secretary bron-
chial progenitor cells, neuroendocrine progenitor cells, and bronchiole alveolar
progenitor cells, which consequently resulted into the formation of region-specific
lung cancers or cancer subtypes having specific CSCs [11].

Similarly, PCa displays heterogeneity similar to other types of cancer. Out of the
different cell types, a little cell population is critical in progression and PCa
formation, and therefore, it results in the development of the heterogeneous PCa
cell mass. This distinctive population of cell is defined as PCa stem cells (PCSCs).
Normal stem cells that are found in the basal layer of prostate gland give rise to
prostate cancer stem cells as shown in Fig. 4.2. In the usual condition, the second
population of cells is generated by the stem cells which then differentiate into mature
secretory cells [12]. In previous literature, it has been suggested that during the

Fig. 4.2 The figure depicts developmental differences between luminal cells and cancer stem cells.
Tissue stem cells undergo regular differentiation into luminal cells. Stem cells are transformed into
cancer stem cells for further self-renewal to evade various tumor suppressor pathways. Mutations in
various genes leads to irregular characteristics. The cells thereafter undergo de-differentiation and
enter a state of rapid division
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process of carcinogenesis, the normal stem cells go through mutations to form
metastasis—initiating cancer stem cells and highly tumorigenic cells [13]. However,
out of the number of basal subtype cells found in the prostate, determining which
basal subtype cell contains the chief stem cell niche in the prostate of an adult is still
elusive. A study by Goldstein et al. [14] reported that a certain panel of specific
markers functionally discriminate between the two diverse subpopulations of basal
cells. The elevated levels of Trop2 were expressed only in basal cells, and they
possessed stem cell type features in the human and murine prostate. The expression
of CD133 (also known as Prominin-1) is the characteristic of stem-cell populations
in the adult human prostate [15]. Similarly, Wang et al. identified a small subset of
luminal cells that survive castration (thus called CARNs for castration-resistant
Nkx3.1-expressing cells), which possess self-renewal properties in vivo and rede-
velop a prostate in renal grafts [16].

In the current scenario, the debate is: which subpopulation of the cells represents
the real PCa cell of origin? Approximately 95% of histopathology data reveals that
untreated primary PCa (i.e., adenocarcinoma) is confined to luminal AR and PSA
expressing cells predominantly and basal-like cells are rare [4]. So normal prostate
luminal cells may serve as a driving force for oncogenic transformation for PCa.
Shen’s group demonstrated that PTEN-deleted prostate cells in a mouse model give
rise to high-quality PIN and carcinoma after castration [16]. Pooled together, these
studies indicate that prostate luminal cells are the cells of origin for PCa. Interest-
ingly, a current study showed that fibroblast cells associated with cancer expressing
integrin α2β1 derived from prostate basal cells of human regenerate tumor grafts
[17]. All these evidences suggest that both human and mouse prostate basal cells can
also serve as cells of origin for PCa. Figure 4.2 depicts the generation of prostate
cancer stem cells.

4.1.2 Origin and Biology of CSC

Many theories have been suggested to elucidate the origin and exact function of
CSCs in cancer including horizontal gene transfer, cell fusion, cell microenviron-
ment and mutations, autoreactive T-cells, etc. [18].

4.1.2.1 Cell Fusion Theory
Cell fusion theory describes that the CSCs are formed by the fusion between tumor
cell and bone marrow-derived cells (BMDC). These BMDCs arise from tissue
distress with chronic inflammation. These consequential hybrid cells generate cells
which are radiotherapy resistant and with upgraded cell repair mechanisms. This
concept was supported by outcomes of an animal model study in vivo [19].

4.1.2.2 Horizontal Gene Transfer (HGT) Theory
HGT theory revolves around the fact that DNA outside the cell is capable of flowing
in the eukaryotes until it finds its appropriate recipient cell. CSCs can add more
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genetic alterations that powered up the cancer through environmental carcinogens,
inheritance, errors in DNA replication, and resistance through HGT [20].

4.1.2.3 Cell Microenvironment
Cell microenvironment comprises the extracellular matrix (ECM), neighboring cells,
hormones, and varied forces due to the movement of the host that affect the cell
environments and performance directly or indirectly [21]. The control on microen-
vironment of stem cells plays an important role in keeping the agility of the cell. Any
faults in this control could be responsible for dedifferentiation of stem cells, thus
causing cancer. According to some reports, inflammatory microenvironments help in
developing precancerous lesion growth and tumorigenesis. Microenvironments of
tumor hold such factors that can indirectly assist the tumor heterogeneity and
chemotherapy resistance [22].

4.1.2.4 Autoreactive T-Cells
Autoreactive T-Cells may develop CSCs if these T-cells manage to evade the weak
immune system of host [23]. This concept gives us new insights in cancer treatment
where we should concentrate on augmenting the immune system instead of
diminishing it.

4.2 Cancer Stem Cells in Lung Cancer

The role of CSC in lung biology is still less studied; some of the CSCmarkers related
with resistance to anticancer therapies have been studied, which include CD133,
aldehyde dehydrogenase 1 (ALDH1), CD44, CD117, CD87, and side population
(Hoechst negative). The variability of CSC phenotype and relapse of markers on cell
surface due to intertumoral heterogeneity and plasticity becomes a great obstacle in
identification of novel lung CSC markers.

4.2.1 Different Methods of Identification of CSCs

The isolation and identification of CSCs can be done by using functional experiment
like side population (SP) assay and by CSC surface marker expression.

4.2.2 Side Population (SP) Assay

In SP analysis, the cells are distinguished on the basis of cellular differential
potential to outpour a DNA-binding dye (fluorescent Hoechst) through the
ATP-binding cassette (ABC) transporters [24]. The SP cells taken from cell lines
of lung cancer exhibit boosted invasive ability compared to the non-SP cells, are
more tumorigenic, show high expression of ABCG2 and other ABC transporters, are
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resistant to multiple chemotherapeutic drugs, and present the self-renewal feature
with the capability to produce floating spheres with high proliferative potential [25].

4.2.3 Surface Marker Expression

Only limited lung CSC markers have been authenticated till now, although extensive
studies have reported identification of numerous CSCs that vary from other cells in
the tumor. Most CSCs exhibit various markers at the same time, and using only one
marker to define particular CSC is not promising as seen in Table 4.1.

4.2.3.1 CD133
CD133 is a glycoprotein of cell surface and is made up of two large glycosylated
extracellular loops and five transmembrane domains. It is considered an important
stem cell marker of nervous system and the hematopoietic system. CD133+ cells
showed better capability of drug resistance, tumor initiation, and self-renewal. In
other study by Chen et al., it was established that in CD133+ cells derived from lung
cancer, expression of Oct-4 maintained the cancer stem-like features. Oct-4
manifestations are generally seen in pluripotent and totipotent stem cells of
pre-gastrulation embryos. It signifies that Oct-4 shows a critical role in keeping
cancer stem-like and chemo, radioresistant features in CD133+ cells derived from
lung cancer [26].

4.2.3.2 CD90
GPI-anchored glycoprotein CD90 (Thy-1) expression is primarily seen in leukocytes
and also in the cell-matrix and cell-cell connections. In one experimental study by
Yan et al., CD90 was used as a marker for probing the lung CSCs and established
sturdier proliferation and self-renewal capabilities and high level of expression in
cell lines [27].

Table 4.1 List of markers used for identification of CSC in various tumour

Markers Tumour

CD133 (prominin-1) Lung, colon and brain

CD133+ ESA Lung

CD44 (membrane-bound
glycoprotein)

Lung

Aldehyde dehydrogenases Lung, liver, leukemia, breast, pancreas and colon
cancers

CD90 Lung

CD87(uPAR) Lung

Side population Lung

CD166+ EpCAM+ and CD166+
CD44+

Lung
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4.2.3.3 CD44
CD44 is another membrane-bound glycoprotein and is a CSC marker initially
suggested for colorectal cancer that plays imperative roles in cell adhesion, modula-
tion of cell-matrix interaction and cell migration and shows association with various
signaling pathways that explain its involvement in cancer initiation and enhance-
ment [28, 29]. Furthermore, it has been stated that CD44 augments cancer cell
invasiveness and multidrug resistance. It is also found that CD44+ functions like a
tumor initiator marker in cells of lung cancer when examined both in vivo and
in vitro [30].

4.2.3.4 CD166
CD166 is a CSC marker for lung cancer in addition to other solid tumor in which this
marker is extensively studied, but CD166 expression and its role in lung cancer are
not much studied. One comprehensive study by Zhang et al. showed the function of
CD166 as a marker in lung CSCs and its potential for the determination of CSCs in
NSCLC [31]. CD166 shows high self-renewal potential and high in vivo tumor-
initiating capability as compared to CD44+ and CD133+ isolated from the same
cells. Therefore, the marker CD166 is contemplated as the sturdiest CSC marker in
determination of lung cancer.

4.3 What Is Stem Cell Niche?

Several studies suggest the presence of microenvironments that are capable of
supporting CSCs known as the CSC niche. This tumor niche generates the signals
that are responsible for survival, self-renewal, ability to invade tissues, and the
metastasis of CSCs. Interestingly, attenuated total reflection-Fourier transform infra-
red (ATR-FTIR) spectroscopy analysis by Günnur Güler et al. demonstrated that the
lipid composition and dynamics of prostate CSCs are different as compared to other
cell types such as differences in their major cellular macromolecules, including
protein content and abundance of nucleic acids (DNA/RNA), altered nucleic acid
conformation, and carbohydrate composition [32]. Collins et al. [33] identified
prostate CSCs derived from primary human PCa such as CD44+/ α2β1 hiCD133+.
Reports also suggest that PCSCs that originated from primary human PCa express
the cancer resistance protein ABCG2 of breast. PCSCs have also been spotted in cell
lines of PCa with the help of cell surface markers from epithelial cells of
immortalized human prostate and xenograft tumors and demonstrated upregulations
in stemness genes, including OCT3/4, BMI1, and β–catenin.

A recent study by Mateo et al. [34] found out that the invasiveness of a cancer
stem cell is determined by a subpopulation of non-CSC resulting in a significant
increase in tumorigenicity and metastasis of cancer stem cells. Thus, the
subpopulations of cancer cell can start networking with other normal cells which
are existing in the environment of tumor and assisting with them for benefits.
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4.3.1 Signal Transduction Guided Lung Cancer Stem Cell Activity

Hedgehog pathway (HH), Notch pathway, and Wnt pathway that control differenti-
ation and proliferation during the process of embryogenesis are also related with the
CSC self-renewal.

4.3.1.1 Hedgehog (HH) Pathway
The Hedgehog (HH) signaling pathway helps in controlling homeostasis, morpho-
genesis, and repair of stem cells in the human body. In one study, it was found that
this pathway was triggered in both small cell lung cancer and non-small cell lung
cancer [2]. HH pathway can intensify the chemo-resistance, thus triggering chemo-
therapy breakdowns in lung cancers. HH pathway with continuous accumulation of
mutations gives way in progression and activation of tumorigenic path and CSC
ultimately commanding the development of cancer [35]. The three ligands that take
part in HH pathway are Sonic Hedgehog (SHH), Indian Hedgehog (IHH), and
Desert Hedgehog (DHH) that have numerous temporal and spatial manifestation
levels along with their role as mitogens and stimulate differentiation and cell division
[36]. The key ligand receptor in this pathway is the Patched receptor that is expressed
around nearby origin place of the HH signals and represses the action of other
transmembrane protein known as Smoothened (Smo) when HH signals are not
present there [37]. On interaction with any of the three ligands to the Patched
receptor, accumulation of Smo occurs that stimulates the GLI family transcriptional
factors which will then go inside the nucleus and finally trigger the HH target genes
as represented in Fig. 4.3.

4.3.1.2 Wnt Signaling Pathway
The pathway of Wnt signaling is very complicated in mammalian cells in which the
ligands of Wnt bind to a receptor complex on a cell surface triggering the Dishev-
elled family protein (Dsh) phosphorylation. This, in turn, stimulates GSK-3 or
glycogen synthase kinase 3 and CK1 or casein kinase 1, which helps in deprivation
and buildup of β-catenin molecules in the cytoplasm from where a certain amount of
β-catenin is capable of moving inside the nucleus and starts interacting with the
transcription factor/lymphoid enhancer-binding factor 1 (TCF/LEF) family tran-
scription factors to stimulate the expression of specific gene. It is demonstrated in
some earlier reports that Wnt1 and Wnt2 are overexpressed in the primary tumors
and NSCLC cell lines [38].

4.3.1.3 Notch Signaling Pathway
An evolutionarily conserved Notch signaling pathway plays distinct roles in normal
tissue development and homeostasis. This pathway includes four receptors
(Notch1–4) and five ligands, JAG1, JAG2, DLL1, DLL3, and DLL4 in humans.
Several evidences suggested the Notch pathway is linked to cancer in some way
which includes that triggering mutations in Notch1 can cause T-cell leukemia and
various factors involved in this pathway are related to the advancement and metas-
tasis of solid tumors [39].
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4.3.2 Signal Transduction Guided PCSC Activity

Evidences of signal transduction pathways involved in regulation of PCSC activity
are emerging. For example, Nanog which is a homeodomain transcription factor is
vital for PCSC activity and tumorigenicity. Related studies reveal that miR-34a
negatively regulates CD44+ and tumorigenic and metastatic PCSCs [40]. PCSC
stemness might also be controlled by the NF-κB and PTEN/PI3K/AKT pathways
[41]. Thus, these regulators of PCSCs reported earlier may all become remedial
targets or tools for the treatment of PCa, especially in the perspective of castrate-
resistant prostate cancer (CRPC).

4.3.2.1 Metabolic Reprogramming of PCSC
Emerging evidence on PCa reveals that metabolic reprogramming in PCa stem cells
is one of the hallmarks of PCa progression. In prostate tumors, cancer-associated
fibroblasts (CAFs) are responsible for inducing reprogramming of common metabo-
lism in stroma and tumor cells. This all comprises a shift in metabolism of CAFs
toward glycolysis with accelerated manifestation of glucose transporter GLUT1
along with added secretion and production of lactic acid. In turn, CAF-generated
lactate is involved in stimulating biogenesis in mitochondria and aerobic metabolism
in PCa cells, also known as the reverse Warburg effect, and is related with a decline

Fig. 4.3 Hedgehog (Hh) signalling pathway. (a) Without ligand, patch receptor inhibits SMO
accumulation and allows the phosphorylation of GLI2 and GLI3 by PKA, CK1 and GSK3β that
generates the binding site for E3 ubiquitin ligase β-TrCP and finally generates the repressor form
(GLI3/2

R) which go inside the nucleus and starts inhibiting the transcription of HH target genes and
(b) With ligand, patch receptor relives the SMO repression and allows the accumulation of GLIFL
(full length form) and activation of signalling cascade and GLIA (active form) inside the nucleus
induce transcription of HH target genes
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in expression levels of GLUT1 transporter and stimulation of lactate upload
[42]. Various evidences propose that CAFs induce EMT and stemness in PCa
through the upregulation of inflammation gene signature in PCSCs, and chronic
inflammation plays a key role in the development of aggressive PCa [43].

4.3.2.2 Hallmarks of PCSC Metabolism
Reprogramming of cellular energy metabolism is vital for tumor initiation, progres-
sion, and resistance to therapy. Compared to healthy epithelial cells, PCa cells have a
high level of citrate oxidation followed by oxidative phosphorylation (OXPHOS),
controlled by AR signaling [44, 45]. In order to meet high energetic demands,
rapidly proliferating tumor cells also follow Warburg effect. Moreover, mutations
in mitochondrial DNA and tumor suppressor genes like PTEN and TP53 result in a
metabolic shift from OXPHOS to aerobic glycolysis [46]. This metabolic
reprogramming and maintenance of embryonic stem cells and PCSCs require
enhanced MYC expression [47]. Recent findings shed light on the fact that targeting
MYC has been seen to inhibit PCSCmaintenance and tumorigenicity [48]. Figure 4.4
represents the hallmarks of PCSC metabolism.

Fig. 4.4 Detailed description of how reprogramming of cellular energy metabolism play crucial
role in tumor initiation and progression. Citrate oxidation and AR signaling regulates oxidative
phosphorylation in the mitochondria. Tumor cells exhibit Warburg effect to, promote cell prolifer-
ation. Moreover, mutations in mitochondrial DNA and tumor suppressor genes like PTEN and
TP53 causes metabolic shift, further enhancing tumor progression. MYC over-expression promotes
glucose transporter GLUT1, promoting production of Lactate and also controls Glutamine metabo-
lism produces malate, and converts to pyruvate and further to lactate

4 Lung and Prostate Cancer Stem Cells 79



4.3.2.3 PCSC and Tumor Microenvironment
Epithelial-mesenchymal transition (EMT) is a phenomenon of interchanging from
the characteristics of epithelial cell to mesenchymal phenotype which is more
migratory that is related with thrashing of the epithelial markers (e.g., E-cadherin)
and addition of mesenchymal signatures (e.g., vimentin, fibronectin, N-cadherin).
EMT is a crucial process for embryogenesis and wound healing; it is newly
documented as one of the drivers of metastases and tumor progression [49]. Increas-
ing evidences corroborate that EMT plays a crucial role in the PCSC regulation,
metastatic ability, and therapy resistance of PCa cells [50].

4.3.2.4 Prostate Cancer Bone Metastasis
Most of the sufferers of advanced PCa develop bone metastases. The development of
bone metastases occurs when the bone microenvironment releases a wide range of
cytokines and growth factors that bind to the prostate tumor cell receptors and are
responsible for regulating their growth and survival [51]. In turn, bone PCa cells can
generate pro-osteolytic factors like IL-1, IL-6, parathyroid hormone-related protein
(PTHrP), and PSA that activate the osteoclast formation and stimulate bone matrix
resorption [52]. Metastasis is held accountable for more than 90% of cancer-
associated mortality and continues to be a great deal in cancer research. Stromal
cell-derived factor-1 (SDF-1) and chemokine receptor (CXCR4) directs PCa metas-
tasis to the bone. In hTERT-immortalized human prostate CD133+ epithelial cells,
cells displayed stemness accompanied by the increase in expression of CXCR4.

Recent pieces of evidence pooled together demonstrate the CSC’s role in general
and specifically PCSCs as “seeds” of metastasis, in part via the SDF-1/CXCR4 axis.
Interestingly, elevated levels of SDF-1 are observed in bone marrow, liver, lung, and
lymph nodes which are the common organs of metastasis.

4.3.2.5 Role of PCSCs in Castrate-Resistant Prostate Cancer (CRPC)
CRPC represents one of the major clinical challenges, but the underlying mechanism
of its origin remains elusive. PCSCs may throw some light on CRPC development.
The emergence of CRPC mainly involves AR and AR signaling and increased
AR-independent and survival pathways [53]. PCa stem cells are resistant to radio-
therapy, chemotherapy, and hormonotherapy. Therefore, the cancer reoccurrence
may be due to killing of preferential and more differentiated cells while leaving the
undifferentiated cancer stem cells. Various mechanisms responsible for the CRPC
development have been explained; many of them are centered on the regulation of
AR signaling. Thus, directing toward the dysregulation of AR signaling in PCa cells
has been among the chief interests in PCa research.

The main reason behind cell survival post androgen deprivation therapy but
eventually leading to tumor relapse is elusive as well as intriguing. Tumor relapse
along with metastatic potential has been associated with epithelial-to-mesenchymal
transition (EMT) phenotype. Furthermore, EMT phenotype is associated with appli-
cation of androgen deprivation therapy [54].

The discovery of a more effective and promising therapy for advanced PCa
capable of targeting CSCs is the need of the hour. Interestingly, metformin, a
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common orally administered drug used in the treatment of type 2 diabetes, has been
established to possess anticancer effects as well. Metformin acts by reducing the
production of ATP in the mitochondria by oxidative phosphorylation, which is the
major source of in CSC energy Liu et al. [48].

4.4 Challenges and Perspectives

The CSC idea has been drawing a lot of interest, and CSCs have been examined in
different tumor systems, including PCa and lung cancer. One of the strategies in
increasing the cancer therapeutics is to overcome the lung CSCs as it is related to
poor diagnosis. The CSC heterogeneity has now become a great challenge in
recognizing conspicuous CSC subpopulation in lung as it comprises complex
structure with various morphologies that function differently and are responsible
in balancing the fluid in lung, in facilitating gas exchange, in detoxifying foreign
materials, and stimulation of inflammatory responses due to damage [55]. Further-
more, we cannot always rely on available surface markers to identify CSCs because
some markers may not be precise in affecting the CSC, and this is revealed in one
study in which single marker of CD133+ and CD133� displayed similar CSC
features like self-renewal, differentiation, colony formation, and invasion. In addi-
tion, heterogeneity of the cells and involvement of various genomic pathways also
cause a challenge in targeting lung CSCs. Therefore, our present exploration is in
struggling phase in sighting selective approach to constrain the CSCs and their
characteristics because CSCs share a comparable feature with the normal stem
cells, where targeting the CSCs might also influence the normal stem cells that can
be noxious to human health.

Similarly, a thorough understanding of the functional and phenotypic properties
along with the PCSC molecular regulators would help us to better apprehend the
mechanisms and etiology responsible for the development of PCa. Majority of the
evidences of PCSCs that have been reported so far are a result of studies on xenograft
models, long-term cultured cell lines, or murine PCa models. For instance, in various
well-characterized xenograft models, specific PCa cell subpopulations have been
stated that are augmented in the activity of PCSC including PSA�/lo, CD44 + α2β1
+, and CD44+ cells. Till now, less reports are available on whether different patient’s
tumors may have distinct PCSCs and whether the human primary PCa also ports
tumorigenic SC-like cancer cells. In PCa treatment, CRPC signifies one of the major
challenging stages. Current studies have provided evidences that some
subpopulations of PCSC may express low levels of AR and intrinsically be resistant
to castration, although PCSCs that are castration resistant have not yet been revealed
in samples of primary human PCa. The expansion of such cells may promote
development of CRPC that is quite feasible. Consequently, these PCa cells that are
castration resistant may signify potential cellular targets for development of novel
drug. To detect castration-resistant PCSCs in patient tumors at different clinical
stages, there is a need for scientific research with improved tumor-reconstitution
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protocols and model systems, and the accomplishment of which will aid the future
therapeutic development and benefit the patients with PCa.

4.5 Conclusions

Due to chemodrug resistance and relapse of cancer, it becomes very complicated to
treat lung cancer with an ease. Therefore, it is a crucial requisite to know the basics of
CSC development and maintenance so that appropriate step can be taken against
cancer progression, tumorigenicity, and chemotherapeutic resistance before it would
be too late. Consequently, CSCs are now becoming an important clinical target in
cancer therapeutics in modern time. Although, it is not an easy assignment to target
CSCs and get rid of any type of cancers forever. We have to bear in mind the fact that
every type of tumor involvesdistinct types of stem cell which is controlled by various
molecular based pathways, and it is much more complicated in case of lung cancer
due to the existence ofdifferences in the manifestations of the markers in the lung
cancer subtypes. Therefore, this chapter focusses on understanding the origin, CSC
properties, markers of lung CSC, role of signaling pathways, and the novel
therapeuticapproaches which all conclude that a detailed knowledge of basics in
cancer biology and gene expression of these stem cells is needed with respect to
targetedtherapy in combination with conventional therapy, ultimately boost the
efficacy.

Similarly, recent pieces of evidence support a better understanding of the role of
PCa stem cells in tumorigenesis. Although the stem cell therapy has unraveled
mysteries of cancer cell heterogeneity within tumor mass, a thorough knowledge
of the properties and characteristics of PCa cells is warranted to provide new insights
into the origin of PCa. However, there still is an urgent requirement for the identifi-
cation of exclusive markers for cancer stem cell in order to distinguish the normal
stem cells from the cancer stem cells. But the most crucial requirement in the
forthcoming years would be the development of novel and efficient stem cell-
directed drugs and reduction of the threat of relapse.
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A Differential Role of miRNAs in Regulation
of Breast Cancer Stem Cells 5
Shreetama Bandyopadhayaya and Chandi C. Mandal

Abstract

Breast cancer is one of the most frequently occurring cancers in women world-
wide. Enormous evidences emphasized that tumorigenesis is steered by a sub-
population of tumor cells known as cancer stem cells (CSCs). These CSCs play a
pivotal role in cancer cell growth and metastasis. They show resistance to
therapies and are also responsible for tumor recurrence. Substantial studies
revealed a crucial role of microRNAs (miRNAs) in modulation of tumorigenic
potential. This chapter emphasizes mainly on those miRNAs which modulate the
stemness property of breast cancer stem cells (BCSCs). miRNAs are a class small
non-coding single-stranded RNAs (~20–24 nucleotides) which usually bind to
30UTR of target mRNAs. This binding eventually inhibits protein synthesis by
repressing translation and/or decaying the target mRNAs. This chapter elabo-
rately discusses the various miRNAs (e.g., miR-200c, miR-34c, miR-214,
miR-21, etc.) which not only act as either oncomirs or tumor suppressors but
also regulate stemness property along with epithelial-mesenchymal transition,
invasion, and metastasis. This study also enlightens the involvement of various
crucial signalling pathways (e.g., Notch, Wnt, and PI3K-Akt) in miRNA-
mediated regulation of BCSCs. Thus, expression profile of a specific miRNA or
a set of specific miRNAs could be used as a diagnosis and/or prognosis marker for
breast cancer. Moreover, targeting these specific miRNAs (e.g., miR-200c,
miR-34c, miR-21, etc.) either by antagomir or mimic miRNA seems to be a
promising therapeutic strategy for breast cancer treatment.
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5.1 Introduction

Tumors are heterogeneous in nature, and they exhibit stem cell-like properties. The
ability of self-renewal is a hallmark of stem cells. The stem cells divide asymmetri-
cally, and thus, out of two of the daughter stem cells, only one becomes capable of
differentiation. There are numerous factors which govern these complex
mechanisms including various transcription factors, epigenetic alterations, and
other associated hormones. Stem cells are broadly classified into two types: the
embryonic stem cells (ESCs), which are present in the early onset of development,
and the somatic or adult stem cells, which persist all throughout. The ESCs are
pluripotent in nature, thereby enabling the cells to differentiate into all three germ
layers. On the other hand, the somatic stem cells are multipotent in nature and have
the capability to divide into specific cell types, originating from specific tissue or
organ [1]. There is a concept that initiation of cancer occurs due to a certain type of
stem cells called cancer stem cells (CSCs). CSCs are malignant in nature, and they
are highly resistant to drugs, thereby facilitating the tumor progression and metasta-
sis [2]. Recent advances highlight that stem cells possess distinct miRNA profiles.
These miRNAs have a major role in the reprogramming of cells, maintenance of
pluripotency, and self-renewal and in many more aspects contributing to the regula-
tion of stem cells. The miRNA profiles vary largely when considered in CSCs as
compared to the normal non-tumorigenic stem cells. Some miRNAs are upregulated,
while some are downregulated in the normal stem cells. This chapter throws light
into the role of the miRNAs in affecting the human breast cancer stem cells
(BCSCs). It focuses on the dysregulation of the miRNAs in human BCSCs and
how it targets the genes disrupting different signalling pathways associated with
it. Thus, the expression levels of certain miRNAs seem to be used as a potential
biomarker for cancer prognosis and diagnosis. This book chapter not only
summarizes the stem cell markers of breast cancer stem cells (BCSCs) but also
highlights those miRNAs which can modulate the stemness property.

5.2 Breast Cancer Stem Cells and Their Biomarkers

Identification of CSCs is a very important and basic requirement to study the
characteristics of CSCs and also a difficult task to distinguish it from the rest of
the heterogenous tumor population. The CSC population constitutes a very limited
proportion of the total tumor cell population, and hence, it becomes very challenging
to mark them specifically. Therefore, keeping in mind about the fundamental
characteristics of the CSCs, scientists have developed various in vitro and in vivo
assays to recognize the CSCs. In order to identify the BCSCs, there are various
techniques which include the aldehyde dehydrogenase assay, specific cell surface
markers, side population dye exclusion, and culture of tumorsphere and label-
retention assays like PKH staining. For the recognition of BCSCs in vivo, serial
transplantation assays are useful to assess the differentiation and self-renewal capac-
ity. It is reported that when the dye exclusion assay is performed, some populations
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of cells have the capability to efflux dyes like Rhodamine or Hoechst because these
populations of cells feature high expression of the ATP-binding cassette transporter
proteins like ABCG2/BCRP1. Now, this dye exclusion activity exhibited by a small
population of stem cells (also known as the side population, SP fraction) can be
quantified with the help of flow cytometry [3]. These SP populations were then
studied in detail and were found out to have stem cell-like property, predicted to be
present in different human breast cancer types [4–6]. There are several cell surface
markers which are present in the BCSCs, and they can be easily identified by flow
cytometry. The most common among the different cell surface markers elaborated in
Table 5.1 and Fig. 5.1 are CD24 and CD44 [7]. These cell surface antigens seem to
be used extensively to identify and/or isolate the BCSCs from the tumorigenic

Table 5.1 Different
markers of breast cancer
stem cells

Stem cell markers References

CD44 [7, 18–24]

CD24 [7, 18–24]

ALDH1 [7, 18–22, 24]

CD133/Prominin1 [20, 23–25]

ITGA6 [19]

CD49f [20, 21, 23, 24]

CD90 [20]

SOX2 [21]

CD29 [23]

CD34 [23]

CD61 [24]

PROCR [26, 27]

ESA [26]

CD cluster of differentiation, ALDH aldehyde dehydrogenase,
PROCR protein C receptor, ESA epithelial specific antigen

Fig. 5.1 Different cell
surface breast cancer stem cell
(BCSC) markers
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population [7]. A study conducted in 2010 reported that other than the CD24�/
CD44+ and CD24+/CD44+ cell population, another population of tumor cells
consisting of CD44+ CD49f hi CD133 hi showed high level of tumorigenicity and
stemness property in vivo [8]. Other cell surface markers like CD29 and CD49f
together with CD24 or EpCAM show more specificity in identifying the mammary
stem cells [9, 10]. The aldehyde dehydrogenase (ALDH) activity is another reliable
way to detect the BCSCs from the bulk tumor population. ALDH is an enzyme
involved in the intracellular oxidation of aldehydes playing a crucial role in the
differentiation of stem cells following the retinoic acid metabolism pathway
[11]. Aldefluor assay measures the ALDH activity for various types of cancer, breast
cancer being one of its eminent types [12]. Tumorsphere assays are another way of
detecting the BCSCs setting up gold standards. This assay is performed by plating
the cells in either petri dishes or flasks in serum-free media consisting of B27,
insulin, hydrocortisone, epidermal growth factor (EGF), and fibroblast growth factor
(FGF) under low attachment criteria. Those cells only grow in the media which have
the potential to self-renew and hence form tumorspheres and therefore can be
identified as the BCSCs [13]. Another well-established procedure to determine the
BCSCs is the cell membrane label-retaining assay [14]. A PKH fluorescent dye
is used in this assay which binds to the lipid bilayer of the cell membranes, and it is
determined that the stem cells have the potential to retain this PKH dye which is
further detected by flow cytometry [15, 16]. The PKH26 dye stains both the normal
and malignant mammary epithelial cells, but later in the mammosphere culture, the
PKH26high cell populations when sorted determine the stem cell-like properties
[14, 17].

5.3 Biogenesis of miRNAs

MicroRNAs are described as a class of conserved non-coding regulatory RNAs of
20–24 nucleotides which are expressed in both animals and plants and are known to
regulate various biological processes [28]. miRNAs recruit the RNA-induced silenc-
ing complex (RISC) to its appropriately related target sites and regulate the mRNA
stability and production of proteins. Mainly the miRNAs play a role in the post-
transcriptional gene expression and its regulation. The regulation of these mRNA by
a well-organized process where the miRNAs recognize the target sites of the mRNA
which are located on the 30 untranslated region (30UTR) and base pairing occurs
between 2 and 8 bps of the miRNA, called the seed sequence and the cognate mRNA
sequence [29, 30]. The change in the expression of miRNAs also contributes to the
rise of various human diseases, one of the crucial diseases being cancer [1]. miRNAs
initially exist as primary transcripts (pri-miRNAs) that are long and are produced in
the nucleus by either of the RNA polymerases, which are RNA polymerases II and
III. A hairpin structure of the pri-miRNA is formed in most mammalian miRNAs.
This hairpin structure is later identified by the RNase III processing complex formed
by Drosha which is an RNase III enzyme and the other being an important factor of
Drosha, Dgr8, finally giving rise to the formation of pre-miRNA hairpin inside the
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nucleus [31]. For this whole molecular event to be carried out, specific proteins
regulate every specific miRNA such as p53, SMAD, hnRNPA1, and Lin28 [29]. The
pre-miRNA hairpin is transported to the cytoplasm by a nuclear RNA-export factor,
exportin 5 (Exp5) which is further cleaved by Dicer, another RNase III enzyme
producing a short double-stranded duplex of 22–24 nucleotides [32]. A RISC
complex is then formed along with the Argonaute proteins. The RISC complex
charged with specific miRNA targets the appropriate mRNA by the miRNA-seed
sequences and inhibits translation and mRNA degradation [29].

5.3.1 miRNA and Stem Cells

Recent findings have thrown light on the fact that miRNA plays a role in the
regulation of stem cell functions, and this had led to the identification of different
stem cell-specific miRNAs [33]. Depending on the functions of the miRNA on
translation inhibition, miRNAs have been noted to play a significant role in
regulating the fate of stem cells and various other functions associated with
it. Distinct pattern of expression of miRNA is seen in embryonic stem cells
(ESCs). It is reported that around 60,000 copies/cell or more miRNAs are expressed
in the ESCs [1]. Out of these, the most abundantly expressed miRNAs in ESCs are
miR-290-295, miR-302, miR-17-92, miR-106b-25, and miR-106a-363 which cover
almost 70% of the total miRNAs expressed in the ESCs [1]. Lin-4 and let-7, the key
regulators that are responsible for the proper maintenance of the developmental
lineage, are known to be the founder of the miRNA family and are the first source of
evidence depicting the essential role of miRNAs in the developmental processes
[29]. The fact that miRNAs play a role in the stem cell regulation was first found out
when a knockout experiment was performed where Dicer and DGCR8, the two most
crucial genes responsible for the mature miRNA generation, were knocked out, as
the ablated Dicer�/� or Dgcr8�/� ESCs showed abnormal differentiation of stem
cells [2, 29, 34]. It was noted that the Dgcr8�/� ESCs did not differentiate into the
germ layers when experimented on mouse models and remained arrested in the G1
phase with a downregulation of the differentiation and proliferation markers.
Another evidence that proves the involvement of miRNA in stem cell regulation is
the expression level of the self-renewal genes that include SOX2, OCT4, and
NANOG which generally have low expression during the differentiation but in
Dgcr8�/� ESCs are found to be highly expressed [2]. The genes OCT4, SOX2,
cMYC, and KLF4 are the four major transcription factors, also known as Yamanaka
factors, facilitating reprogramming and also are primarily responsible for the pro-
duction of iPSCs (induced pluripotent stem cells) [35]. miRNA is noted to play a role
in both self-renewal and differentiation which eventually leads to the identification
of cell fate; for example, in self-renewing human ESCs, there is a low expression of
miR-145, but its expression increases during the differentiation process [29]. Stem
cell reprogramming is governed by the miRNAs. It mainly is associated with the
regulation of the reprogramming efficiency of the iPSCs. The miR-290 and miR-302
family incites the reprogramming of the iPSCs by its overexpression. Even the
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human orthologs of the miR-290 and miR-302 family referred to as miR-372 are also
reported to increase the reprogramming efficiency of stem cells [34]. miRNAs are
potent enough to reprogram the somatic cells into iPSCs directly, for instance, the
cluster of miR-302 reprograms the human skin cancer cells into a pluripotent
cell [34].

5.3.2 miRNA and Cancer Stem Cells

A subgroup of cancer cells that possess the potential of self-renewal, promote the
growth of cancer cells, and help in metastasis and the recurrence of tumor, thereby
making the cancer cells resistant against drugs, are known as cancer stem cells
(CSCs). The microRNAs are known to be dysregulated in many human cancers, and
recent advances suggest that the miRNAs have gained a potency of stem cell-like
properties and are also showing a wide association in the reprogramming and
regulation of CSCs during tumorigenesis. Studies suggest the well-known fact that
the cancer cells are known to express miRNAs, and it has been reported that if cancer
cells are cultured under hypoxic condition, they express an elevated level of ESC
with more miRNAs than it does in normal conditions [36]. This gives further insight
to the researchers to keep a check on the miRNAs and use them as a therapeutic tool
to target the CSCs, thereby leading to the reduction of tumorigenesis. miRNAs not
only act as oncogenes which promote rapid cell proliferation but also are responsible
for controlling growth acting as tumor suppressors [37]. For example, miR-21 acts as
a tumor promoter, whereas miR-200c blocked cell proliferation, and miR-214
showed a dual role in tumorigenesis [38]. Some statistical evidences and miRNA
profiling have suggested that there are many miRNAs which are present in the
nearby chromosomal breakpoints, some genomic regions associated with cancer,
and some fragile sites where mutations/deletions can occur. Therefore, miRNAs are
believed to be very closely associated with an important role in the generation of
CSCs [39]. The miRNAs that are playing a role in the process of differentiation can
perform their role in two ways. First, it can subdue the state of self-renewal directly,
or it can suppress the pluripotency markers like Nanog, POU5f1, commonly known
as Oct4, and Klf4 which are responsible for the maintenance of pluripotency of the
ESCs. Second, it can stabilize the cell fate of the differentiated cells by aiming at the
transcripts regulated by the transcription factors of pluripotency which include
Nanog, Oct4, Tcf3, and Sox2 [39]. A miRNA associated with tumorigenesis,
miR-17-92 polycistron, regulates the expression of c-Myc and speeds up the tumori-
genic process in different types of cancer such as prostate, stomach, colon, lung,
pancreatic, and breast cancer. Some clusters of miRNAs such as miR-290, miR-302/
367, and miR-371 alter the cell cycle in the human ESCs and thereby inhibit the
transition from the state of self-renewal to the differentiated state. The miR-302
family reprograms the human skin carcinoma cells into the pluripotent ESC-like
state [36, 39]. In hepatocellular carcinoma, miR-371-373 cluster is found to be
upregulated, while in breast cancer, the miR-371-373 and the C19MC clusters are
reported to target CD44 and become very aggressive promoting the tumor metastasis
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and invasion [36]. The tumor growth of human pancreatic cancer cells with the CSC
biomarkers CD44+ and CD133+ was reported to be suppressed when the miR-34
was restored; the tumor growth was inhibited both in vitro and in vivo. These
pancreatic CSCs lack the expression of miR-34 normally, and therefore, the expres-
sion of Bcl-2 and Notch, the genes targeting the p53 tumor suppressor, becomes high
as it is reported that miR-34 regulates the Bcl-2 and Notch target genes and further
activates caspase-3 and brings on apoptosis [36, 37, 39].

The miR-130b is found to be elevated in the liver cancer stem cells that are
CD133+, while the overexpression of miR-130b enhances the tumorigenic potential
and heightens the resistance to chemotherapeutic drugs [36]. The tumor suppressive
role of miRNA was evidenced when the E2F3 level was reduced on the artificial
elevation of miR-34 in neuroblastoma inhibiting the cell proliferation, depicting a
tumor suppressive role of miR-34 [37]. Studies conducted in 2013 suggested that
there are 43 miRNAs whose differential expression targets different genes like p53,
Notch, ErbB1, TGF-β, and Wnt which are involved in different crucial signalling
pathways of the stem cells, thereby regulating cell death, cell proliferation, and
development and functioning of cancer and stem cells, especially in
glioblastoma [39].

The ESC-enriched miRNA plays a significant role in the CSC functioning, but it
also shows an inhibitory effect on CSCs by suppressing the pluripotency. The
members of the let-7 family possess a tumor suppressor role; it targets K-Ras and
c-Myc and represses their expression in different CSCs such as breast, lung, head,
neck, and liver. Let-7 regulates the breast CSCs, when it is overexpressed; it reduces
the stemness property of the CSCs and upregulates their chemosensitivity and
decreases the proliferation, tumor formation, and metastatic potential [36]. The
miR-200 family plays an important role in the induction of iPSCs and is found to
be downregulated in CSCs isolated from ovaries, lung, head and neck, pancreas,
breast, and liver cancer stem cells. miR-200 majorly activates the MET (mesenchy-
mal to epithelial transition) by targeting the mesenchymal markers, thereby
downregulating the expression of EMT (epithelial to mesenchymal transi-
tion) markers [36]. Recent advances have pointed that there are similar properties
shared between the CSCs and the cells undergoing EMT [40]. Notch1 inhibits
miR-200b and miR-200c and enhances the induction of EMT with the constant
expression of the CSC markers in the case of pancreatic cancer cells. Considering
breast cancer and ovarian cancer, miR-200 family also restrains migration, metasta-
sis, and invasiveness in these cancer types as well [36].

5.3.3 miRNAs and Breast Cancer Stem Cells

Among all the types of cancer, breast cancer is reported to be the most prevalent
cancer to be diagnosed, and it is one of the leading causes of cancer death worldwide.
The human breast tumors are heterogeneous in nature; hence, they possess different
histological patterns and can be classified broadly into various types and subtypes
based on their different gene expression profiles, and this heterogeneity of the breast
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tumors can be explained well in the cancer stem cell models [41]. The existence of
stem cell-like property in human solid tumors is difficult to find; however, the breast
cancer stem cells are the cancer stem cells which were found first from the solid
human tumors [42]. Breast cancer stem cells possess certain characteristics which
include differentiation, self-renewal capacity, capability to metastasize and show
tumorigenic potential, and resistance to chemotherapies [43]. Al-Hajj et al. in 2003
were the first to specifically describe the breast cancer stem cells (BCSCs) [41]. Iso-
lation of the cancerous subset of the human breast tumors led to the identification of
certain cell surface markers: CD44+, CD24, and ESA (epithelial specific antigen)
[41, 43, 44]. This was the first strong evidence evicting the fact that there is an
existence of the CSCs in breast cancer, and it proposed that only a small proportion
of the breast cancer cells possessing a CD44+, CD24, and ESA expression are
capable of generating new tumors [43, 44]. Another cell surface marker known as
aldehyde dehydrogenase 1(ALDH1) was later found out in 2007 by Ginestier et al.
which is later claimed to be a characteristic for breast CSCs along with the other
above-mentioned crucial cell surface markers [43, 45]. Other than these prominent
breast cancer stem cell markers, there are many other markers associated in the
identification of the BCSCs, and they are listed in Table 5.1. Few researchers
established a cell culture system in vitro where they cultured the non-adherent
human mammary epithelial cells and they discovered that under these conditions,
the cells which possessed the stem cell-like properties were only capable to survive.
These cells which survived proliferate to form mammospheres, which are defined as
the multicellular structures that possess both cells having properties of stem cells and
progenitor cells [41]. Later, researchers claimed that some markers which are used to
identify the breast cancer-initiating cells in vitro do not complement with the in vivo
system [46, 47].

Hence, in order to determine the specific markers of BCSCs, it was found that
miRNAs play a role in breast cancer progression by changing their stemness
property, further leading to tumor formation, differentiation, metastasis, self-
renewal, and resistance to chemotherapy, and they can be targeted to treat breast
cancer. Since cancer cells are heterogeneously found in a tumor and the miRNA
expression in the tumorigenic population is also differential between the cancer stem
cells (CSCs) and the non-tumorigenic cancer cells, the CSCs are found in minor
proportion in the human breast cancer population. When the breast CSCs were
isolated from the breast cancer patients surgically, there were different types of
miRNAs which got identified. The major families of miRNAs involved in human
breast cancer with their prominent roles in BCSC regulated are listed in Table 5.2.
The most critically occurring miRNAs, some of which are upregulated while some
are downregulated in breast cancers, are described below.

5.3.3.1 Let-7 Family
The expression of miRNAs in BCSCs was identified in 2007, and the expression
profiles of the miRNAs were compared between the differentiated BCSCs and the
self-renewing BCSCs that were obtained from the breast cancer samples derived
from the primary breast tumors. The researchers injected the breast cancer cell line
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Table 5.2 miRNAs involved in BCSC formation, self-renewal, and differentiation

S. no. miRNAs
Target gene(s)/
transcription factors

Signalling
pathways Role References

1. miR-200 ZEB1 and ZEB2 Notch Inhibits the BCSC
growth and tumor
progression

[71–74]

2. miR-
200c/
141

ZEB1, BMI1 Wnt/β-catenin Inhibits the BCSC
phenotype

[74–77]

3. miR-140 SOX9, ALDH1 Targets the
phenotypic
markers of
BCSCs

Reduces BCSC
formation

[78]

4. miR-34a p53, Notch1,
ALDH1, CD44

Notch and the
phenotypic
markers of
BCSCs

Suppresses BCSC
formation

[79–82]

5. miR-205 Ligand jagged1,
Hairy and enhancer
of split-1, Notch1,
Notch2, CD44,
ALDH1

Notch and the
phenotypic
markers of
BCSCs

Inhibits the BCSC
phenotypes and
stemness

[83–85]

6. miR-7 STAT3, SETDB1 STAT Decreases BCSC
formation

[86]

7. miR-29 KLF4, SPIN1 Wnt/β-catenin Inhibits the
reprogramming
and maintenance
of BCSCs

[87, 88]

8. miR-34c Notch 4 Notch Inhibits BCSC
formation

[89]

9. miR-93 STAT3, JNK1,
HMGA2, SOX4,
EZH1

STAT Depletion of
BCSCs

[90]

10. miR-99a Rapamycin
(mTOR), HIF1

PI3K/AKT Reduces the self-
renewal capacity
of BCSCs

[91]

11. Let-7 E2F2, c-Myc,
KRAS

Targets
directly

Inhibits
proliferation of
BCSCs

[92]

12. miR-33b SALL4, Twist1,
HMGA2

Not
specifically
known

Inhibits stemness
of BCSCs

[93]

13. miR-16 Wip1 DNA damage
signalling

Inhibits
proliferation and
differentiation of
BCSCs

[94]

14. miR-600 SCD1 Wnt/β-catenin Inhibits stemness
of BCSC

[95]

(continued)
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Table 5.2 (continued)

S. no. miRNAs
Target gene(s)/
transcription factors

Signalling
pathways Role References

15. miR-128 BMI1, ABCC5,
SNAIL, CSF1,
KLF4, LIN28A,
NANOG

TGF-β,
STAT, PI3K/
AKT

Inhibits the
clonogenicity and
tumorigenicity of
BCSCs

[63, 96]

16. miR-181 ATM TGF-β Increases the
BCSC phenotype

[97]

17. miR-183 SNAI2, SMAD4,
β-catenin, and
BMI1

Wnt/β-catenin Activates EMT
and the self-
renewal in BCSCs

[61, 98,
99]

18. miR-142 APC Wnt/β-catenin Promotes BCSC
proliferation

[100]

19. miR-495 E-cadherin,
REDD1, JAM-A

TGF-β Promotes invasion
and metastasis to
maintain BCSC
properties

[101–103]

20. miR-214 Ezh2, p53, TFAP2,
PTEN, BIM, and
β-catenin

Wnt/β-catenin Enhances cell
differentiation,
stemness,
apoptosis, and
invasion of
BCSCs

[38, 55]

21. miR-221 Ataxin-1 Targets the
phenotypic
markers of
BCSCs

Stimulates the
stemness of
BCSCs

[104]

22. miR-
125a

LIFR Hippo Targets the
phenotypic
markers of BCSCs

[105]

23. miR-
146a

KLF8, NUMB,
CD44, and ALDH1

Notch Increases BCSC
traits

[106]

24. miR-21 HIF1-α AKT, ERK1/
2, TGF-β

Induces BCSCs [107]

25. miR-
221/222

ZEB1 PI3K/AKT Causes BCSC
formation

[59, 108]

26. miR-
106b-25

SMAD7 TGF-β Promotes tumor
initiation

[109]

ZEB Zinc finger E-box-binding homeobox 1, TGF-β transforming growth factor-β, SOX
sex-determining region Y-box, ALDH1 aldehyde dehydrogenase 1, STAT signal transducer and
activator of transcription, SETDB1 SET domain bifurcated 1, KLF Krüppel-like factor, LIFR
leukemia inhibitory factor receptor, JNK Janus kinase 1, HMGA2 high mobility group AT-hook
2, EZH1 Enhancer of zeste 1 polycomb repressive complex 2 subunit, SALL4 Sal-like protein
4, TWIST1 Twist-related protein 1, REDD1 DNA damage-inducible transcript 4 protein, WIP1
wild-type p53-induced phosphatase 1, BMI1 B cell-specific Moloney murine leukemia virus
integration site 1, SCD Stearoyl-CoA desaturase, ATM Ataxia telangiectasia mutated, ABCC5
ATP-binding cassette subfamily C member 5
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SKBR3 possessing BCSCs into NOD/SCID mice and treated them with chemother-
apeutic agents. When they isolated the tumor cells from the mice, they found that the
tumors contained a high level of CD44+/CD24 and the cells had a mammosphere
forming capability as well [48]. With the study of the miRNAs, they found that the
miRNA let-7 is to be the most promising miRNA, since it was downregulated in the
tumor-initiating population of cells compared to the cells having a self-renewing
capacity. Let-7 that acts as a tumor suppressor targeting the oncogene RAS was first
identified in C. elegans, which involved in the regulation of the larval stage to adult
stage of C. elegans [42]. An increased expression of let-7 is noted in the cells
differentiating to non-tumorigenic cancer cells. The tumor suppressive potential of
let-7 is well identified, as when it was introduced lentivirally, it resulted in dimin-
ished mammosphere formation, less proliferation, and less stem cell differentiation,
and it also reduced the tumorigenic and metastatic potential of NOD/SCID mice
in vivo [41]. So, let-7 being a tumor suppressor has been reported to be
downregulated in many cancers, and its restoration helps in inhibiting cancer,
thereby establishing it as a potential molecular marker and a therapeutic target for
BCSC. Lin-28 protein, a member of the let-7 family, blocks the generation of let-7,
thereby increasing the chances of tumorigenicity in breast cancer cells. This Lin-28
targets the let-7 via STAT3 signal transducer and activator of transcription factor
3 pathway, and let-7 further targets HMGA2 which enhances the expression of
mesenchymal markers, thereby causing EMT. Therefore, it can be concluded that
this let-7 miRNA is involved in the regulation of self-renewal and differentiation of
breast cancer cells [41].

5.3.3.2 miR-200 Family
miRNAs also occur in the genome in the form of clusters and then are later
transcribed into multi-cistronic primary transcript. The genes of miRNA occur in
the form of clusters as well, usually having two to three miRNA genes in a cluster,
but there are larger clusters of genes also present in some, for example, clusters of
miR-17-92 and miR-106a-363 consisting of six members [42]. miR-17-92 cluster
was the first polycistronic miRNA cluster which was reported to play a role in
tumorigenesis [49]. The most extensively studied miRNA cluster in the human
genome is miR-200. miR-200 family is the most conserved family of miRNAs of
the animal kingdom [50]. There are five members in the family of miR-200:
miR-200a, miR-200b, miR-200c, miR-141, and miR-429 [41, 42]. Based on the
different gene clusters, the family of miRNAs can be subdivided into different
locations on two different chromosomes: miR-200b/miR-200a/miR-429 is located
on chromosome 1 in human and on chromosome 4 in mouse, while on chromosome
12 in human and chromosome 6 in mouse lies the miR-200c/miR-141 gene cluster
[41, 42]. It is reported that the miR-200 family has a close association in the
maintenance and regulation of BCSCs. When a comparison was made between the
tumorigenic and non-tumorigenic population of human breast cancer cells, it was
found that out of the different miRNA expression levels, the miRNA clusters that
remained downregulated were miRNA-200c-141, miR-200b-200a-429, and
miR-183-96-182, thereby suggesting their role in the self-renewal and differentiation
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of cancer stem cells. In fact, miR-200c was also reported to suppress the
clonogenicity of BCSCs in vitro and inhibited the formation of mammary ducts
and tumorigenic potential of BCSCs, suggesting that the downregulation of
miR-200c has a role in cancer stem cell regulation [41]. The expression of
miR-200 which is depicted in mammospheres is reported to be regulated epigeneti-
cally, and it is predicted that when miR-200 is re-expressed in those stem cells which
have downregulated expression of miR-200, it led to the introduction of non-stem
cell-like phenotype and the cells also became capable of performing mesenchymal-
to-epithelial transition (MET) [51].

miR-214
miR-214 is evinced to have an important role in proliferation, stemness, metastasis,
invasion, and apoptosis. miR-214, present in the human chromosome 1, is reported
to be either upregulated or downregulated in human tumors [38, 42]. However, in
human breast CSCs, miR-214 is found to be upregulated, especially in the luminal A
and triple-negative types. The ablation of miR-214 in mice though is found fertile
and viable but hampers proper cardiac function and leads to cardiac failure
[42]. miR-214 has a varying role in different types of cancer, for example, in
ovary cancer, it enhances the CSC property by targeting the Nanog expression
[52] while in hepatocellular carcinoma, it represses the stem cell-like properties
[53]. In breast cancer, it was documented that a low level of miR-214 increases the
expression of oncogenic EZH2, which is a component responsible for the catalysis
of PRC2, a causative of breast cancer malignancy [54]. MiR-214 downregulates p53
and causes and increases the invasion in breast cancer [55].

miR-221-222 Cluster
The cluster of miR-221-222 comprises miR-221 and miR-222 and is found on
chromosome Xp11 in human [56]. The seed sequence of miR-221 and miR-222 is
the same, and they behave as both oncogenes and tumor suppressors in different
human tumors, for example, as oncogenes in human epithelial tumors and as tumor
suppressor in erythroleukemia. The miR-221-222 cluster is found to be upregulated
in many cancer types like human breast CSCs and pancreas and glioblastoma cells
[42, 57, 58]. miR-221-222 inhibits PTEN and helps in the formation of BCSCs
[59]. So, this suggests that miR-221-222 has a significant role in regulating
stemness, cell cycle progression, migration, and apoptosis.

5.3.3.3 miR-30 Family
In the mammospheres, alongside the let-7 family, it is detected that the miR-30
family is downregulated in the tumor-initiating human BCSCs. In the miR-30
family, miR-30e particularly plays an important role. It is shown that the
downregulation of miR-30e leads to the enhancement of the self-renewal capacity
not only in breast cancer but also in lung cancer. Other studies conducted on breast
cancer suggest a significant role of miR-30 in both adhered and non-adherent
mammospheres. miR-30a plays an effective role in the regulation of the growth of
non-attachment mammospheres [60]. It is noted that the overexpression of miR-30a
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led to the reduction of the mammosphere formation ability while when inhibited, it
increased the number of mammospheres. These evidences from literatures suggest
that miR-30 family plays an important role in cell proliferation and apoptosis of
BCSCs [41].

miR-142
The expression of miR-142 is detected largely in the hematopoietic lineages playing
a crucial role in hematopoiesis; however, it is found to be expressed highly in human
BCSCs and not detectable in normal stem cell population. The miR-142 follows the
canonical Wnt signalling pathway targeting the APC, and it leads to the further
activation of miR-150 which is also simultaneously upregulated in human breast
CSCs [42].

miR-16
Another family of miRNA responsible for the maintenance of the proliferation,
differentiation, and stemness potential of mammary CSCs is the miR-16 family. A
low level of miR-16 is detected in human breast cancer as depicted by the number of
mammospheres formed. miR-16 is regulated by the Wip1 (wild-type p53-induced
phosphatase 1) oncogene, thereby leading to the increase of the Wip1 protein in the
mammospheres. Overexpression of miR-16 leads to the repression of cell prolifera-
tion in MCF-7 human breast cancer cell line [41].

miR-183
The miR-183 cluster of miRNAs is reported to be upregulated incessantly in
different types of cancer, though mainly it plays a role in the maturation of sensory
organs [61]. However, literature reports that there is a downregulation of miR-183
cluster in human BCSCs which suggests that this downregulation is responsible to
maintain the stem cell property of cancer cells [42]. This miR-183 cluster consists of
miRNA-183,-96,-182 bearing a homology in their sequence and is mainly located on
chromosome 7 in human and on chromosome 6 in mouse [62]. The suppression of
miR-183 cluster in the human BCSCs drives the EMT activation and self-renewal
property targeting the Wnt signalling [42].

miR-34c
miR-34c is basically a tumor suppressor, and it is reported to have a reduced
expression in human breast cancer cell lines such as MCF-7 and SK-third which
are enriched for BCSCs. Hypermethylation occurs in the promoter sites of BCSCs
which leads to the downregulation of miR-34c, thereby leading to the increment of
EMT and stemness property of the breast cancer cells. In fact, when this miR-34c is
expressed in the BCSCs ectopically, it leads to the inhibition of EMT and stemness
property, and also the mammosphere formation was also reduced. Migration was
also reported to be hindered, which further strengthened the idea that miR-34c can be
a positive target for BCSCs [41].
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miR-181
The level of miR-181 in different breast cancer cell lines such as MDA361, MCF-7,
and BT474 was found to be high in the mammospheres of tumor origin rather than
those which are non-tumorigenic in origin. miR-181 targets the TGF-β and plays a
crucial role in the regulation of BCSC and helps in the formation of
mammospheres [41].

miR-128
In BCSCs, both isolated from breast cancer patients and the breast cancer cell lines
like SK-third and MCF-7, the level of miR-128 is reported to be reduced, and this
reduction of miR-128 increases the expression of its target genes, Bmi-1 and
ABCC5 (ATP-binding cassette subfamily C member 5) [41]. In fact, it is noted
that when miR-128 is expressed ectopically, it leads to the decrease in the Bmi-1 and
ABCC5 levels in BCSCs, thereby depicting the therapeutic potential of miRNA.
There are many literatures in support of this fact that forced or ectopic expression of
miR-128 leads to the reduction of tumor growth and induces apoptosis in vivo and
decreases the mammosphere size in in vitro cell culture model, respectively [41, 63].

miR-495
The upregulation and/or downregulation of different miRNAs are involved in the
BCSC regulation, it was reported that miR-495 is upregulated, thereby predicting a
significant role of its involvement in BCSC regulation. To predict its role, literatures
suggest that the overexpression of miR-495 led to the enhanced colony formation
in vitro and also reduced the tumor forming potential in vivo in human BCSCs. The
upregulation of miR-495 targets those genes which downregulates the genes
involved in EMT like E-cadherin and REDD1 (short for regulated in development
and DNA damage responses) and maintains the stemness property in breast
cancer [41].

5.4 Signalling Pathways Involved in miRNA-Mediated
Regulation of BCSCs

Till now, the crucial role of various miRNAs associated with BCSCs was discussed
where in some cases, the miRNAs enhanced the tumorigenic potential while in some
cases, they acted as a tumor suppressor. Now, the target genes and their signalling
pathways which are regulated by various miRNAs which are discussed below.

5.4.1 Notch Signalling Pathway

The Notch signalling pathway plays a significant role in self-renewal and apoptosis
of BCSCs. It is well involved in the cell fate regulation in the development of
mammary gland and shows a strong association with tumor initiation and prolifera-
tion. The Notch receptors bind to different Notch ligands like the Delta-like

100 S. Bandyopadhayaya and C. C. Mandal



1 (DLL1), Delta-like 3 (DLL3), and Delta-like 4 (DLL4), Jagged1 (JAG1), and
Jagged2 (JAG2) and activate the Notch signalling. After the activation, the intracel-
lular domain of Notch localizes in the nucleus of the cell, thereby activating its target
gene expression which includes the cell cycle progression genes like cyclin D1 and
p21 [64]. It is reported that if the Notch pathway is inhibited, it reduces the number
of BCSCs significantly and also the metastasis of breast cancer to brain
[65]. Literatures report that miR-34a helps in the downregulation of the Notch1
receptor and inhibits the stemness property in breast cancer as noticed in MCF-7
cells. miR-200 inhibits the Notch signalling by means of targeting the Notch ligands
like JAG1 and other important co-activators, MamI2 and MamI3 [42, 65]. miR-9
and miR-34c expression when induced leads to the suppression of the Notch
signalling, and it helps in the reduction of the metastatic potential of the triple-
negative breast cancer cells (TNBC) [66]. Upregulation of miR-146a in human
BCSC is also associated with the suppression of the Notch signalling, thereby
proving the fact that Notch signalling is one of the most essential signalling
pathways involved in the regulation of human BCSC [42].

5.4.2 WNT Signalling Pathway

Wnt signalling (canonical and noncanonical) plays a crucial regulatory role in the
cell proliferation, differentiation, migration, adhesion, and the renewal of stem cells
[67]. The development of the mammary glands is governed by the Wnt signalling
pathway, and simultaneously, it also plays a role in the regulation of the differentia-
tion of stem cells. It also plays a role in stabilization of the quantity of the BCSCs
[68]. There are several miRNAs which are involved in targeting the Wnt signalling
pathway and disrupt its signalling by targeting APC such as miRNAs like miR-125,
miR-135, miR-129, miR-27, miR-663, miR-142, let-7, miR-155, and miR-106b.
When TNBC is taken into consideration, it is reported that miR-29b expression is
correlated negatively to the BCSC potential and it inhibits the proliferation,
stemness, and invasion of the TNBC cells by downregulating the Wnt signalling
pathway [42]. The miR-29 targets Dikkopf-1 (Dkk1), secreted frizzled-related
protein 2 (sFRP2), and Kremen2, which are the negative regulators of Wnt signalling
[65]. Let-7, another important family of miRNAs, has a downregulated expression in
the BCSCs and targets the Ras oncogene and MYC proto-oncogene, thereby having
a feedback effect on LIN28 gene expression, which is known to be the downstream
effector gene in the Wnt pathway, hence affecting the self-renewal process [65]. The
human breast CSC also expresses miR-142, and it targets APC and it activates the
canonical Wnt signalling pathway [42]. Another miRNA, miR-150, though specifi-
cally expressed in the mature lymphocytes [69], is also identified to be expressed
highly in the breast CSCs. The upregulation of miR-142 is linked with the higher
expression of miR-150 as the Wnt signalling is activated by the upregulation of
miR-142 which results in the miR-150 expression [42]. The differentiation of
BCSCs is enhanced by another family of miRNA, miR-600, involving the modifi-
cation of Wnt pathway proteins, further inhibiting the Wnt signalling [70]. miR-146
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has been predicted to be one of the promising diagnostic markers of human breast
CSCs following the Wnt pathway which is stabilized by miR-146a by the help of
Snail and β-catenin [42]. miR-200 family which is downregulated in the human
BCSCs also functions as the suppressor of the Wnt signalling pathway by targeting
β-catenin [42].

5.4.3 PI3K/AKT Signalling Pathway

miR-221/222 as mentioned earlier is one of the miRNAs responsible for the increase
of BCSCs. It suppresses the PTEN (phosphatase and tensin homolog) protein and
thereby inhibits the phosphorylation of AKT and thus enhances the cell stemness.
miR-99a and miR-30a are also responsible for targeting the PTEN-PI3K/AKT
signalling pathway in BCSCs [65]. Another miRNA, miR-595, promoted the breast
cancer progression following the PI3K/AKT signalling pathway [43]. So, these
miRNAs can be believed to be the potential target of the PTEN-PI3K/AKT signal-
ling pathway involved in the human BCSCs (Fig. 5.2).

Fig. 5.2 Various miRNAs and their signalling pathways involved in the regulation of breast cancer
stem cell (BCSC) markers
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5.5 miRNAs as Cancer Therapeutics

As discussed previously in this chapter, that the miRNAs are a potential therapeutic
target in treating cancer, it is noted that there are numerous small RNA-based drugs
which have undergone clinical trials, one of which is fomivirsen. Fomivirsen, an
example of an RNA-based FDA-approved drug, was used to treat cytomegalovirus
retinitis [110]. Similarly, MRX34, a drug designed to mimic the tumor suppressor
miRNA, miR-34, was discovered [111]. Mimic miR which stimulates the miR
and/or the antagomir is a new measure of immense potential to fight cancer. There
are certain chemically available molecules, for example, 20-O-methoxyethyl
oligonucleotides, peptide nucleic acids, and locked nucleic acids, which protect
the in vivo action of the mimic miR [111]. In vivo delivery of the miRNAs seems
to be a difficult task, and therefore, liposomes and synthetic polymers such as
nanoparticles made up of biodegradable polymers of chitosan and polylactate-co-
glycolate came into use [112]. Another method of miR delivery is the use of
dendrimers, which are very toxic delivery vehicles having positive charge, thus
enabling cell lysis and disability [38]. Exosome-mediated delivery of miRNA has
been evidenced to be more effective than the other methods of delivery. miRNA
let-7a is successfully delivered to breast cancer expressing EGFR via exosomes with
GE11 peptide or EGF [113]. Exosomal delivery of miRNA lessens the chances of
immunogenic responses in patients and is highly efficient. Though there is progress
in the field of miRNA therapeutics, still there is an enormous scope for improvement.
For better prognosis of breast cancer, the CSC-targeting therapy needs to be more
polished, and it should be seen that these drugs are particularly targeting the BCSCs
rather than the normal stem cells. This budding miRNA therapeutics approach to
treat cancer will lead to immense positive effect in eradicating cancer progression
and metastasis in the near future.

5.6 miRNA Resistance to Chemotherapy

The study of miRNAs and their strong association with the CSCs discussed so far
thus throws light into the fact that they can be a potential therapeutic target helpful to
diagnose cancer. Targeting the miRNAs can help put an end to the CSC self-renewal
capacity and anti-apoptosis, thereby essentially improving the resistance against
tumorigenesis. The major obstacle in the treatment of breast cancer is its resistance
to chemotherapy, and the main responsible factor is the BCSCs. miRNAs play a
crucial role in the regulation of the BCSCs; therefore, they generate chemoresistance
against breast cancer. For example, the downregulation of BMI1 in breast cancer
cells leads to the reduction of the CD44+/CD24- cells in the BCSC population by
means of miR-200c. This induces apoptosis and also increases the sensitivity of
breast cancer cells to 5-fluorouracil [114]. The proliferation of BCSCs is suppressed
by the chemosensitivity to paclitaxel (PTX), an anticancer chemotherapeutic drug
with the overexpression of miR-34a, targeting the Notch pathway [43]. MiR-125b
which induces the activation of the Akt signalling enhances the sensitivity toward
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letrozole and facilitates the letrozole resistance. Chemotherapeutic resistance toward
doxorubicin which leads to enhanced cell viability and anti-apoptosis is governed by
the downregulation of miR-128 [43, 65]. Similarly, the overexpression of miR-16
creates resistance to doxorubicin in MCF-7 cells [43, 65]. The BCSCs exhibit a high
expression of ALDH1, and based on this idea, when a cohort of breast cancer
samples were treated with paclitaxel and epirubicin-based chemotherapy sequen-
tially, it was found out that those expressing high ALDH1 expression showed low
response pathologically and resistance to chemotherapy [115]. The BCSCs are
believed to be the essential drivers of breast cancer progression and invasion,
while the miRNAs are the critical regulators of BCSCs. Out of the variety of
miRNAs, some behave as onco-miRNAs such as miR-146a, miR-125, miR-526b,
miR-106b-25, miR-888, and miR-22, while some as tumor suppressive miRNAs
(anti-onco-miRNAs) such as miR-99a, miR-200, miR-34, miR-140, miR-16, miR-7,
and miR-93. Those miRNAs behaving as oncogenes can be inhibited, while those
behaving as tumor suppressors can be enhanced to inhibit breast cancer [43].

5.7 Future Direction

At present, scientists have paid their attention to miRNAs for their use as diagnosis
and prognosis markers for cancer. Targeting CSCs is still a huge challenging task to
the cancer researchers. Thus, the researchers are now inclined to focus on those
miRNAs which especially regulate the function of CSCs. It is more important to
identify those miRNAs that are dysregulated in CSCs and also play a vital role in
cancer metastasis, therapy resistance, and tumor recurrence. For example, miRNAs
like miR-200c, miR-34c, miR-214, and miR-21 regulate the stemness property,
metastasis, and therapy resistance. Some miRNAs like miR-214 show dual nature
in tumorigenesis depending on tissue types. Similarly, miR-200c prevents EMT of
cancer cells; however, the role of this miRNA in cell proliferation is also context
dependent. Thus, we should identify a set of miRNAs which are dysregulated in
CSCs, instead of a particular one or two miRNAs. The change of a set of miRNAs
profile will definitely give a better prediction for diagnosis and/or prognosis of the
diseases.

Based on this miRNA profile and their functional activity, a set of specific
miRNAs can be targeted together by antagomir and/or mimic miRNA for enhancing
the anticancer potential. In addition, specific drug which targets the key signalling of
CSCs may be combined with antagomir/mimic miRNA to improve further treatment
efficacy.
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Skin Stem Cells in Cancer 6
Monica Piccione and Rosa Di Liddo

Abstract

Stem cells (SCs) are responsible for maintaining and regenerating tissues and
show unique defining characteristics, including self-renewal, asymmetrical cell
division, low proliferation rate, and clonogenic potential. Niches of epidermal
SCs have been identified in the bulge of hair follicles, the basal layer of the
interfollicular epidermis, and the base of sebaceous glands. Accumulating evi-
dence suggests that multipotent bulge cells generate hair follicles under physio-
logical conditions and regenerate the epidermis and sebaceous glands in response
to skin injury. In contrast, SCs of the interfollicular epidermis and sebaceous
glands are lineage specific and generate their respective tissues without recruiting
SCs from the bulge compartment. Cancer stem cells (CSCs) represent a class of
tumor cells exhibiting stem cell-like properties and ability to initiate tumors. They
are derived from SCs or from non-stem cells that acquire self-renewal potential.
Likely SCs, CSCs express regulatory factors of self-renewal, such as SOX2,
MYC, and OCT4, and some common “stemness” pathways, such as Wnt signal-
ing. In contrast, they could not be multipotent and lead to single lineage tumors,
such as squamous cell carcinoma (SCC) (epidermal lineage), various follicular
tumor types (hair follicle lineage), and sebaceous gland tumors (sebaceous
lineage). Currently, several studies on CSC biology have been performed to
develop new targeted therapies for patients with skin tumors with poor prognoses.
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6.1 Introduction

In the last decade, excellent and pioneering studies have been performed to charac-
terize the role of epidermal and dermal stem cells (SCs) in melanoma and
non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC). The epidermis is a stratified squamous epithelium
that is continuously replenished by heterogeneous populations of tissue-resident
stem cells in follicular region (HF), which is the epidermis enriched of
pilosebaceous units, and interfollicular compartment (IFE) [1]. HF and IFE have
been demonstrated to be differently involved into tissue homeostasis or restoration
of wounded skin. HF bulge stem cells give rise to transit-amplifying (TA) cells, that
are committed progenitors that remain undifferentiated, subsequently dividing to
expand the progenitor cell population while sparing continued SC division. These
multipotent slow-cycling and label-retaining cells (LRCs) contribute to the anagen
phase of the hair growth and to the repair/regeneration of damages. In contrast, IFE
exerts an active role during routine epidermal cell renewal but not under injury [2]. A
balance of proliferation and differentiation between stem and progenitors guarantees
a normal epidermal cell turnover every 2–4 weeks [3]. The disruption of it is reported
as a hallmark of skin cancer.

6.2 Epidermal Stem Cells (ESCs)

ESCs are present in the hair follicle bulge, the basal layer of interfollicular epidermis,
and the base of sebaceous glands [4]. Like stem cells of other tissues, they play a
central role in homeostasis and wound repair, while under pathological conditions,
they exert a key role in tumor initiation. According to the most universally accepted
criteria, keratinocyte stem cells are slow or rarely cycling and showing self-renewal
potential, proliferative activity, and ability to preserve skin integrity. Based on long-
term labeling of skin cells with a DNA precursor such as [3H]Thymidine or
bromodeoxyuridine (BrdU), the slow-cycling stem cells have been identified as
label-retaining cells (LRCs) [1]. According to Watt and co-workers [5], stem cells
within interfollicular epidermis express integrin β1, have high clonogenic potential-
ity, and are more vulnerable to environmental insults than basal cells present at the
bottom of the deep rete ridges [6]. In contrast, Kaur and co-workers [7] report that α6
integrin is more specific for keratinocyte basal cells and is a useful marker to purify
stem cells from transit-amplifying cells (TAC), which rapidly amplify the pool of
differentiated cells produced at each stem cell division [3]. Currently, it is not known
whether each TAC is committed to differentiate along one specific lineage or various
lineages. Under normal conditions, SCs from interfollicular epidermis and seba-
ceous glands are lineage specific and generate their respective tissues without
recruiting bulge stem cells. Besides generating hair follicles, the follicular SCs
from hair bulge regenerate the epidermis and sebaceous glands in response to skin
injury [4]. A requirement for the survival of stem cells is that the quiescent state is
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strictly controlled by signaling cascades, including sonic hedgehog (SHH) and Wnt
pathway.

Under resting conditions, SHH ligand binds to its membrane-spanning receptor,
called Patched (Ptch), inhibiting Smoothened (Smo), a transmembrane protein. SHH
is an important regulator of HF bulge stem cells and dermal papilla [8]. Mutations in
human Ptch are implicated in the basal cell nevus syndrome, which is a dominant
autosomal condition characterized by a complex set of developmental defects and
high incidence of basal cell carcinomas [9].

Wnt ligands are secreted glycoproteins that bind to Frizzled receptors for trigger-
ing the displacement of GSK-3β from the APC/Axin/GSK-3β complex, leading to
β-catenin stabilization, Rac1 nuclear translocation, and recruitment of LEF/TCF
DNA-binding factors [10]. Wnt signaling controls the commitment of HF bulge
cells in mouse to maintain the stem state or permit entry into a differentiation
pathway. Notch and epidermal growth factor receptor (EGFR) signaling contribute
to the development of IF epidermis. In particular, Notch signaling is active within
epidermal basal layer and regulates the differentiation process of keratinocytes
[11]. Several miRNAs, which are small (~19–24 nucleotides) noncoding RNAs,
are demonstrated to exert specific functions in skin. For instance, miR-203 is
expressed at high levels only in the suprabasal epidermis or the inner root sheath
of the HF, but not in progenitor/stem cells of HF epidermis, in both HF bulge and HF
matrix [12]. Using transgenic mice, it has been demonstrated that the primary role of
miR-203 in the epidermal basal layer is related to the differentiation of the transit-
amplifying cells or to limit their proliferative life span. Interestingly, miR-203 has
been shown to repress the expression of tumor protein p63 (p63), a putative stem cell
marker of epidermal keratinocytes, promoting cell cycle arrest during the transition
of cells to suprabasal layers [12] through the transcriptional regulation of Dicer and
miR-130b [13]. Moreover, knocking down miR-125b in transgenic mice results into
the alteration of stem cell differentiation provoking enlarged sebaceous glands,
thickened epidermis, and lacking of hair coat [14]. Potential targets of miR-125b
include vitamin D receptor (VDR) [14].

6.2.1 Hair Follicle Stem Cells

The hair follicle is a structure that projects down into the dermis and undergoes
intermittent cycles of growth, regression, and quiescence [15]. During each cycle of
growth, the follicle is generated from stem cells that are located in the hair bulge,
which is a not well recognizable structure in human. The human hair follicle cycle
takes about a decade and expresses CD200 (cluster of differentiation 200), a type I
membrane glycoprotein containing two immunoglobulin domains [16]. In contrast,
keratin 15 (K15) is a reliable marker in mouse bulge cells, but not in human
[17]. Two different bulge K15-positive stem cell subpopulations have been
identified in human epidermis: CD200+/CD34�/K15bri (basal), forming larger
clonal growth colonies, and CD200+/CD34�/K15dim (suprabasal) [18]. CD34
(cluster of differentiation 34), a single-pass transmembrane sialomucin protein, has
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been not identified in human bulge tissue [19], but only in murine follicles, wherein
CD34+ cells are label retaining and clonogenic [20]. Keratin 19 (K19) and K15
promoter are also detected in mouse LRCs [21]. The region between the bulge and
the IF epidermis in murine epidermis also contains putative stem cells that are
MTS24+/Lrig1+/α6dim cells and highly clonogenic [22]. Sca-1+ cells are present
in the infundibulum [23] and repopulate the IF epidermis. Lrig1+ cells are quiescent
in the junctional zone [24] and are demonstrated in reconstitution assays to give rise
to all epidermal cell lineages [24].

6.2.2 Sebaceous Gland (SG) Stem Cells

SG is an important structure of epidermis that is produced in mouse from stem cells
located at HF above the CD34+/K15+ bulge region and expressing LGR6 [25]. This
population is multipotent and is able to replace epidermis (HF and IF) and SG
structures in mouse [25]. However, they are not label retaining and can renew the
sebaceous gland and sebaceous gland stem cells Blimp-1 positive [26]. The bulge
area also contains melanocyte stem cells and stem cells with neural crest
properties [27].

6.2.3 Other Epidermal Stem Cells

Bone marrow-derived stem cells (BMSCs) are found in the epidermis during
epidermal regeneration. Several studies suggest that BMSCs are able to derive
in vivo from both dermal and epidermal cells [28] and, only under ex vivo settings,
fuse with keratinocytes [29].

6.3 Skin Cancer Stem Cells

Cancer stem cells (CSCs) are tumor cells exhibiting self-renewal potential, stem cell-
like properties, and abilities to initiate tumors. To date, CSCs from skin are
hypothesized to originate from immature compartments [30] or from reprogrammed
differentiated cells [31]. Genic alterations in hair follicle bulge potentially promote
the development of tumors representing lineages of epidermis, hair follicles, and
sebaceous glands, while lineage-committed mutant stem cells generate only tumors
from that lineage. For instance, interfollicular SCs typically generate squamous cell
carcinomas (SCCs), while transit-amplifying cells of the hair follicles and mutant
sebaceous gland SCs promote sebaceous tumors and cause hair follicle tumors
[32]. The fate of CSCs is reported to be strictly controlled by stromal niche signals
and cell-cell interactions with immune cells, cancer-associated fibroblasts, and
endothelial cells [33]. The niche has been recently defined as a stromal template
that acts not only to maintain the “stemness” grade of skin [34] but also for the
epithelial organ maintenance and regeneration through the simultaneous release of
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proliferative and differentiative cues [35]. Hedgehog signaling pathway is known to
be active in stromal niches and specifies the expression of secreted chemical signals.
Notably, mutations leading to cell-autonomous activation of the Hedgehog pathway
in primary tumor cells drive the development of basal cell carcinoma (BCC) [36]. In
squamous cell carcinoma (SCC), distinct CSC populations coexist, and their tumor
initiation and metastatic potential may be uncoupled. Cancer cells become
hyperproliferative [37] due to the stimulation of niche factors, such as transforming
growth factor-β (TGFβ) [38] and vascular endothelial growth factor (VEGF) [39], or
due to an upregulated expression of SOX2 [40] or mutations in Kras and Smad4
genes [41]. White et al. [41] demonstrated that CSCs are rare in primary SCCs, but
their number dramatically increases in metastatic SCCs or tumors showing epithelial
to mesenchymal transition. Depending on tumor type, cancer stem cells express
putative cell surface markers that can be either shared with or distinct from normal
stem cells (Table 6.1), such as CD34, a cell surface marker of bulge SCs or
SCCs [53].

Table 6.1 Skin stem cell markers

Structural
proteins

Epidermal stem cells
(basal layer)

Epidermal stem cells
(hair follicle bulge)

Mesenchymal stem cells
(dermis)

K5 + Fuchs [42] + Bose and Shenoy
[43]

�

K14 + Fuchs [42] + Bose and Shenoy
[43]

�

K15 � + Bose and Shenoy
[43]

+ Forni et al. [44]

E-cadherin + Jamora et al. [45] + Jamora et al. [45] �
LGR5 � + Kretzschmar and

Watt [46]
�

LGR6 � + Snippert et al.
[25]

�

CD29 + Martin et al. [47] + Inoue et al. [18] �
CD34 + Kretzschmar and

Watt [46]
+ Jang et al. [48] + Wong et al. [49]

CD49f + Yang et al. [50] + Jang et al. [48] �
CD44 � � + Klimczak and

Kozlowska [51]

CD73 � � + Klimczak and
Kozlowska [51]

CD90 � � + Forni et al. [44]

CD105 � � + Forni et al. [44]

CD117 � + Jang et al. [48] + Kang et al. [52]

CD200 � + Jang et al. [48] �
CD271 � + Inoue et al. [18] + Klimczak and

Kozlowska [51]
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6.3.1 Skin Cancer Niches

The epidermis renewal under physiological conditions is commonly attributed to a
single type of stem cells. When external insults, genic mutations, impairment of
immune system, and skin barrier occur (Fig. 6.1), the proliferation and differentia-
tion processes could be affected and skin cancers are developed. Both BCC and SCC
are reported to arise from a self-renewing cancer-initiating cell (CIC), a stem or
progenitor cell that, showing innate self-renewal, is primed by minor genetic
alterations for transformation into a self-renewing cancer SC (CSC).

Besides HF and IFE SCs, more differentiated cell populations can undergo
malignant transformation with a “progenitor-like” signature. In the epidermis,
benign tumors, rather than carcinomas, readily form in response to oncogenic
mutations arising in committed cells. Malignant conversion of skin papillomas
originating from differentiated cells to carcinomas is a rare event that is characterized
by the altered expression of markers, such as TGF-β, Keratin-13, and α6β4 integrin
[54]. Benign tumors showing high risk of malignant conversion are primarily
derived from cells located within HF, although the nature of CICs remains the
major determinant of malignant potential. Research findings have reported the
implication of Grainyhead-like 3 (Grhl3) gene in the formation of SCC from
differentiated cells. Grhl3 is a transcription factor that is involved in the expression
of structural proteins and lipid metabolizing enzymes (e.g., Transglutaminase 1;
TGase1) related to epidermal barrier formation and terminal differentiation
[55]. Grhl3 deficiency has been demonstrated in mice to cause the loss of TGase1
expression, epidermal acidification, altered organization of stratum corneum, pup
dehydration, and death immediately after birth [56]. Moreover, the induction of
epithelial-to-mesenchymal transition (EMT) is also observed in differentiated
suprabasal epithelial cells. Interestingly, the regression of epidermal barrier does

Fig. 6.1 Inherited and environmental factors related to the onset of melanoma and non-melanoma
skin cancer
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not occur in adults when Grhl3 is deleted, suggesting that, although Grhl3 is
essential for barrier establishment, it is not required for maintaining epithelium
integrity [57].

6.3.2 Plasticity and Heterogeneity of Skin Cancer Cells

CSCs display functional heterogeneity and ability to rapidly respond to environmen-
tal cues acquiring specific genic and immunophenotypic profile. Because of their
“dynamic stemness,” SCC tumors demonstrate to contain multiple CSC populations
with a proliferative (Side Population/SP) or migratory phenotype (CD34+/CD49f+).
Although both SP and CD34+/CD49f+ populations are tumorigenic, only tumors
originated from SP cells undergo EMT and metastasize [41]. A substantial amount of
literature recognizes among CSCs a great heterogeneity for the expression of CD44
glycoprotein, metabolites, and growth factors impacting on the effectiveness of
antitumoral drugs. In the past few years, the development of non-melanoma skin
cancers has been reported as dependent on a “bottom-up” and “top-down” mecha-
nism of tumorigenesis. The “bottom-up”model involves a cancer stem cell arising in
the basal epidermis, which houses progenitor cells contributing to wound healing
and normal cell turnover of overlying epidermal layers. The “top-down” concept
involves a more differentiated cell that undergoes genetic modifications and
dedifferentiates to CICs. BCC derives from pluripotent keratinocytes presumably
located in the basal layer of the hair follicles, while SCC seems to originate from
keratinocytes possibly located in the suprabasal layers of the epidermis. UV radia-
tion suppresses the immune response in the skin, starting the malignant transforma-
tion of epidermal cells. Upon light exposure, keratinocytes upregulate the expression
of RANK ligand, a receptor activator of NF-kB ligand, that, in turn, induces the
proliferation of immunosuppressor T-cells (Tregs). UV light is known to induce
DNA breaks in exposed cells. Most DNA breaks or local DNA damages are repaired
by the p53 tumor suppressor gene, which is regarded as the “guardian of the
genome.” When DNA damage is not restored, keratinocytes undergo apoptosis
activated by p53 protein and BCL2 family proteins. Under pathological conditions,
some individuals show a lower DNA repair capacity and thus develop precancerous
skin lesions leading to malignant transformation. Unfortunately, p53 gene could be
itself mutated by UV irradiation promoting an uncontrolled cell proliferation and
loss of apoptosis in mutated cells. Loss-of-function mutation of p53 has been
detected in about 56% of BCC and in >90% of SCC [58].

6.3.3 Molecular Profiling of Skin Cancer Stem Cells

According to cancer stem cell theory, tumor stem cells are slow cycling and not
impacted by anticancer agents [59]. Mutations in rarely dividing long-lived stem
cells lead to the accumulation of genetic changes that overcome cell control and lead
to cancer growth. To date, the molecular profile of tumor stem cells is still lacking
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although accumulating body of evidence suggests that the tumor-initiating cells
express CD133, and the cancer stem cells located along the dermal/tumor interface
are integrin positive and CD34bright/dim [60]. Other protein markers identify
putative cancer stem cells, such as Aldehyde dehydrogenase (ALDH) in melanoma
cells [61] and CD44 (hyaluronic acid receptor) in squamous cell cancer stem cells
[62]. Negative expression of CD24 is observed in postmitotic human keratinocytes
[63]. The marker protein profile observed in BCC is consistent with a hair follicle
origin of the tumors [64]. Moreover, the level of LGR5, an HF stem cell marker, is
increased in most BCCs [65] (Table 6.2).

Table 6.2 Relevant markers in melanoma and non-melanoma cancer stem cells (CSCs)

Melanoma stem cells
(Me-SCs)

Basal cell carcinoma
stem cells (BCC-SCs)

Squamous cell
carcinoma stem cells
(SCC-SCs)

Molecular
markers

NANOG Perego et al.
[66]

K14 Peterson
et al. [67]

TGFβ Schober and
Fuchs [68]

OCT3 Perego et al.
[66]

K15 Sellheyer
[64]

MYC Jian et al. [69]

OCT4 Perego et al.
[66]

K17 Peterson
et al. [67]

OCT4 Kim et al.
[70]

CD20 Lang et al.
[71]

K19 Al-Garf
et al. [72]

CD34 Trempus et al.
[20]

CD133 Roudi et al.
[61]

CD29 Sellheyer
[64]

CD44 Lapouge et al.
[73]

CD271 Civenni
et al. [74]

CD200 Peterson
et al. [67]

CD49f White et al.
[41]

Wnt Katoh [75] P63 Al-Garf
et al. [72]

CD133 Olivero et al.
[76]

Notch Venkatesh
et al. [77]

LGR5 Jang et al.
[48]

CD200 Stumpfova
et al. [78]

SHH Kumar et al.
[79]

LGR6 Zhang
et al. [14]

Wnt Jian et al. [69]

ALDH1 Roudi et al.
[61]

SHH Callahan
et al. [80]

SOX2 Boumahdi
et al. [81]

SOX2 Santini et al.
[82]

PDGF Sellheyer
[64]

SOX9 Sellheyer
[64]

Tenascin-
C

Sellheyer
[64]

Bmi-1 Sellheyer
[64]

Follistatin Sellheyer
[64]
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6.4 Skin Cancers and Immunosuppression

Immunosuppression exerts a pivotal role in skin carcinogenesis [83]. NMSCs are
frequently infiltrated by immune cells, but the immune system often shows to be
unable to eradicate the tumor. In SCC, the local tumor-specific immunity is
compromised by the downregulation of E-selectin, recruited regulatory T cells,
and malfunctioning intratumoral myeloid dendritic cells. In BCC, the absence or
downregulation of MHC-I and the presence of regulatory T cells are observed. Due
to the heterogeneous expression of class I HLA proteins in SCC, immunosuppres-
sion increases the SCC risk 65-fold, while BCC risk only tenfold [84]. Yesantharao
et al. [85] proposed SCC cancer cells have an abnormal membrane expression of
HLA-G protein in immunosuppressed patients allowing tumoral cells to negatively
regulate Natural Killer- and T lymphocyte-mediated destruction and cytotoxic
response, as already demonstrated in other cancers (melanoma, breast, colon, lung,
and renal). In addition, suppressive effects on skin immunity have been reported by
UV irradiation. Indeed, it has been reported that UV radiation-induced photolesions
such as cyclobutane pyrimidine dimers (CPDs) affect immune system, inhibiting
mast cells, cytotoxic T cells, and memory T cells and activating regulatory B
lymphocytes, T lymphocytes, and natural killer cells [86]. Furthermore, molecules
with immunosuppressive properties such as IL-10, prostaglandins, platelet-
activating factor, and ROS are also stimulated. In addition, UV radiation also affects
Langerhans cells (LC), lowering the number of LC in the skin promoting LC
migration to the draining lymph nodes [87].

6.5 Concluding Remarks

Skin tumors are the most common malignancy worldwide. Current therapies based
on chemotherapeutic agents, or surgical methods, are not specific and limited by
high economic burden and uncontrolled side effects. To date, the univocal molecular
signature of the cell of origin (Table 6.2) is the main goal for the development of
targeted therapies for more effective treatment of melanoma and non-melanoma skin
cancers.
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Ocular Cancer Stem Cells: Advances
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Abstract

Cancers affecting the eye are rare and can be either initiated in the eye, primary
intraocular cancers, or invaded into the eye as a malignant tumor started elsewhere,
secondary intraocular cancers.Melanoma and non-Hodgkin lymphoma in adults and
retinoblastoma andmedulloepithelioma in children are themost common intraocular
cancers. Similar to other cancers, cancer stem cells are reported among retinoblas-
toma, lymphoma, andmelanomas that can bemalignant even though are very rare in
occurrence. Here, we explore the cancers of the eye and cancer stem cells with the
perspective of advanced therapeutic applications for vision and globe salvage.
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7.1 Introduction

Despite the current advancements in cancer treatment, the recurrence and metastasis of
tumor at site or at distant site is prevalent. The available treatment options besides
eliminating the cancer cells also target the normal healthy cells, resulting in the tissue
damage and recurrence of the tumor due to residual cancer cells. Similar to the stem
cell population, existence of cancer stem cell (CSC) subpopulation initiating the tumor
and driving its proliferation are widely reported. Like normal stem cells, CSCs have
the ability to self-renew, preserve the undifferentiated stem cells, and regulate their
quantity, generate a range of tumor cells at different stages of differentiation. Within
the tumors, the CSC can be characterized using specific markers and differentiated
from those of normal stem cell population. These CSC subpopulations exhibit similar
pluripotency and proliferation characteristics mimicking normal stem cells [1]. The
current approach to chemotherapy demands a strategy inclined toward targeting
specifically the CSC population to prevent the recurrence of the tumor. The CSC
differentiates into different tumor components through the stemness pathways that
control many important biological processes. In CSC these stemness pathways are not
strictly regulated resulting in differentiation of various tumor components [2, 3].

This book chapter outlines ocular stem cells and cancer stem cells emphasizing on
marker characterization with genetic mutations affecting cancer stem cells, their
regulation via various signaling pathways, and resistance to chemotherapy.

7.2 Stem Cells

Stem cells are ascribed for their extensive self-renewal, differentiation, and clonally
regeneration properties within tissues they inhabit [4, 5]. Stem cells undergo
repeated divisions producing undifferentiated stem cell and differentiated progenitor
cells with not all stem cells having infinite self-renewal potential (see [6]). Like stem
cells from trabecular meshwork, orbital and sclera whose regeneration potential
is not completely understood experimentally. On the other hand, limbal, corneal,
conjunctival, and retinal stem cells have been exploited for their application in
regeneration and treating degenerative disorders in animal and human clinical trials
[1]. Limbal stem cells are widely recognized for their repair and regeneration of
cornea-related diseases [7].

The repair and regeneration process of stem cells involves replenishing the lost
cells with healthy regenerated cells. The injury caused at the site reduces stem cell
population resulting in many diseases associated to its deficiency [8]. Stem cell
population involves many intricate interactions of cytokines and growth factors
regulating modulation of fibroblasts and epithelial cells.
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7.3 Cancer Stem Cells (CSCs)

A tumor is an abnormal indefinite growing mass of cells. The rapid indefinite
proliferating ability of cancer stem cells through accumulation of mutations leads
to tumor development [9]. CSCs exhibit similarities of normal stem cells with regard
to ability to proliferate, self-renew, and trigger epithelial to mesenchymal transition,
giving rise to differentiated cells. Similar to normal cells, CSCs also undergo
aberrant differentiation due to continuous accumulation of mutation leading to
heterogeneity of cells. The heterogeneity also arises through the clonal origin with
diverse phenotypic expression of tumorigenic cells. The phenotypically variable
expression of tumorigenic cells with CSCs to possess indefinite as well as limited
or no proliferative potential explains the self-renewal and differentiation properties,
respectively, as retained by the normal stem cells [10]. The occurrence of such
combined subpopulation of CSCs in a tumor makes tumor targeting difficult and
thus leaving the subpopulations of CSC’s undisturbed during chemotherapy
sessions. Thus the CSC subpopulation retained would maintain and reinitiate the
tumor growth exhibiting metastasis to distant areas and attaining resistance to
chemotherapy [11] (Table 7.1).

7.4 The Types of Eye Cancer

In this chapter, the types of ocular cancer shall be broadly categorized into the
following:

1. Eyelid tumors.
2. Conjunctival tumors.
3. Corneal tumors.
4. Orbital tumors.
5. Intraocular tumors.
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Table 7.1 Markers of ocular stem cell and cancer stem cell of the eye

Ocular cancers
(name the cancer
and CSC
associated) Stem cell markers Differentiation markers

Cornea (limbus
and stroma)

Limbus: ABCG2 (ATP binding
cassette subfamily G member 2)
[12], α-enolase, cytokeratin
(CK) 19, Musashi-1, vimentin [13]

CK 3/12, connexin 43, and
involucrin [14]

Stroma: ABCG2, Bmi 1, CD166,
C-kit, Pax6, Six2, and notch 1

Upon differentiation, stromal stem
cells expressed keratocan,
ALDH3A1, CXADR, PTDGS, and
PDK4 [15]

Conjunctiva CK19 positive
CK3 AND CK12 negative [16]

Iris Expression for nestin, Msi, Pax6,
Chx10, rho, Otx2, and Olig2 [17]

Ciliary body Expresses neuronal/retinal markers
nestin, Chx10, Pax6, Sox2, Lhx2,
Dach1, and Six3 [18]

Trabecular
meshwork

Expresses mesenchymal cell-
associated markers CD73, CD90,
and CD105 [19] and stem cell
markers ABCG2, notch 1, OCT-3/
4, AnkG, and MUC1. AQP1,
CHI3L1, and TIMP3 have been
differentiation markers [20]

Retina Retinal pigment epithelium (RPE)-
derived positive markers include
nestin, notch 1, CHX2, Map2,
CRALBP, tyrosinase, and tyrosine-
related protein 1 and 2 [21]

Choroid Expressing markers Sca-1,
CD90.2, CD44, CD105, CD73,
ABCG2, six 2, notch 1, and Pax
6 [22]

Sclera Expresses ABCG2, Six2, PAX6,
and notch 1 [22]

Orbit Epithelial cell markers CD34 and
zonal occludin-1 and
differentiation markers CK3 and
CK19 [23]

Eye lid (sebaceous
gland carcinoma)

ALDH1, CD133, CD44, ABCG2
(cytoplasmic marker)
Sox4, Sox9, and slug (nuclear
marker) [24]
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7.4.1 Eyelid Tumors

Eyelid tumors are of various types and are the most common type of ocular-related
cancers [25]. Most of the neoplasms that originate in the eyelids (between 65% and
85%) are reported benign in nature [25–28]. Eyelid tumors affect all population
demographics across the world. Eyelid tumor is a very broad category containing
multiple different types of cancers which can be divided on the basis of tissue/cell of
origin and as benign or malignant [26]. Some of the benign epithelial tumors are
squamous papilloma, seborrheic keratosis, inverted follicular keratosis, etc. Basal
cell carcinoma and squamous cell carcinoma are some of the malignant-type epithe-
lial tumors [29]. Many other types of tumors exist which are categorized as eyelid
tumors too.

7.4.1.1 Metastasis of Eyelid Tumors
Metastasis of eyelid tumors is very rare. Different reports have studied the occur-
rence of these tumors and traced it to the point of origin. Most of these reports agree
that the most common primary site is breast cancer [30, 31] but list other sites which
too cause eyelid metastasis like the lungs [30], gastrointestinal tract, and kidneys
[32]. These metastatic eyelid tumors clinically appear as cutaneous nodules and
swellings. It is also noted that the upper and lower eyelid may be equally affected
[33]. Eyelid metastasis seems to have problems of diagnosis associated with them
such as cases where the eyelid tumor became symptomatic before the primary breast
tumor was even detected [34] as reported by Ian Hood et al. and issues of misdiag-
nosis as a chalazion as reported by both J. Kanitakis et al. and G. W. Weinstein et al.
[30, 35].

On the other hand, the spread of eyelid cancer has been researched extensively
too. Retrospective studies have shown that basal cell carcinoma has very low
chances to metastasize with less than 0.5% of cases showing spread [36]. The
metastasis is as high as 24% in squamous cell carcinoma of the eyelid or periocular
skin with very high incidence of local recurrence (35%), moderate number of
regional nodal metastasis (24%), and very few distant metastasis (6%) [37].

7.4.2 Conjunctival Tumors

A thin membrane which covers the eye and the inner layer of the eyelid is called the
conjunctiva. Tumors which grow on this membrane are called the conjunctival
tumors. The most common of these diseases are squamous carcinoma, malignant
melanoma, and lymphoma [38]. These tumors occur in older individuals who have
long exposure to sunlight due to outdoor activities [39]. Important factors which
seem to play a vital role in the development of this type of tumor include ultraviolet
radiation exposure, vitamin A deficiency, ocular injury, exposure to petroleum
products, and chronic HIV, HPV, or hepatitis B infection [40].
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7.4.3 Corneal Tumors

The sclera and cornea are important barriers which prevent spread of neoplasms to
other parts of the body. It is very rare for corneal tumors to arise [41, 42]. Even
among the corneal tumor types, epithelial tumors are more common than corneal
stromal tumors [43]. These tumors, though rare, are of two types, the congenital and
the acquired lesions. Acquired lesions are further subdivided based on the origin of
the mass like epithelial, vascular, fibrous, neural, etc. [44]. Exposure to ultraviolet
radiation causes growth of carcinoma in the eyelids and neoplasms [45, 46] on the
corneal region and is considered the primary cause for acquired lesions.

7.4.3.1 Metastasis of Conjunctival and Corneal Tumors
Metastatic tumors rarely occur in the conjunctiva [43]. Primary sites which cause
metastatic conjunctival tumors are again mainly the breast and lung cancer appearing
over a very wide window ranging from 8 to 100 months [47]. In cases of advanced
stage of organ metastasis, conjunctival masses appear. A study carried out by C. L.
Shields showed that the conjunctival primary-acquired melanosis or nevus has lower
risk of death and metastasis than de novo melanoma [48].

Conjunctival malignant melanoma is a fatal tumor with recurrence rates at 35%,
metastasis reported in 25% patients, and nearly 15% deaths [49]. The same study
used the Kaplan-Meier survival estimates, and at 10- and 15-year follow-ups,
recurrence rose to 51% and 65%, respectively. The patients who did develop
metastasis showed growth in the facial lymph nodes, lungs, brain, and liver. Other
research which studied the conjunctival squamous cell carcinoma reported deep
corneal invasion, intraocular extensions, and orbital invasions [50]. Hence conjunc-
tival tumors show aggressive capabilities to metastasize.

Very few reports mention any form of corneal metastasis at all. Most studies,
which do analyze corneal tumors, mention clearly that no evidence of metastasis
ever surfaced in the patients.

7.4.4 Orbital Tumors

Orbital tumors are rare, and metastatic orbital tumors can spread from a variety of
different sites like the breast, lung, melanoma [51], etc. Jerry A. Shields et al. have
shown that reports which study the orbital tumors are biased toward the interest of
the reviewer. For example, neural tumors like meningioma and optic pathway
glioma will appear under neurosurgical study. On the other hand, reports from
otolaryngology will include mucocele, paranasal sinus neoplasms, and other sec-
ondary lesions [52]. Even orbital bone cancer, which constitute between 0.5% and
2.0% of total orbital cancer, is studied under orbital tumors [53]. In this chapter, we
shall focus mainly on those tumors which affect the stem cell present in the orbit.

Orbital tumors are a heterogeneous group of neoplasms [54, 55] including cystic
lesions, neural tumors, histiocytic tumors, bone and cartilage tumors, etc. and hence
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require diagnosis based on clinical analysis, imaging, and other studies before the
suitable treatment is administered.

7.4.4.1 Metastasis of Orbital Tumors
Orbital metastasis occurs mainly due to primary growth in the breasts, lungs,
gastrointestinal tract, and prostate [30, 56, 57] with nearly 45% of orbital tumor
cases presenting signs of systemic cancer. The orbital tumor conditions in children
are shown to be very different by a case study done by Daniel M. Albert et al. They
found that children with orbital tumor metastasis were either suffering from neuro-
blastoma or Ewing sarcoma which affects bones and had no occurrence of intraocu-
lar metastasis from a solid tumor [58]. The findings were very different in adults,
who frequently had cases of intraocular metastasis [59, 60].

The metastasis of orbital tumors is well documented by multiple studies. Robert
A. Goldberg et al. found that in around 25% patients, the onset of ocular cancer is the
manifestation of systemic disease and displacement of the eyeball due to change in
its volume (enophthalmos) was frequently seen in patients [51]. A study done by
Gunalp et al. showed that the average detection time for secondary site was shortest
for lung cancer (2 months) and longest for breast cancer (34 months) making follow-
up checks extremely important for these patients [61]. In senior adult population,
orbital tumors were malignant in up to 65% of the cases with 25% developing
systemic problems.

7.4.5 Intraocular Tumors

Intraocular melanoma is a malignant form of cancer which happens in the tissues of
the eye. These occur in the wall of the eye. The wall comprises of three parts, the
sclera (outer layer), the uvea (middle layer), and the retina (inner layer).

The uveal tract is divided into three parts too, the iris, ciliary body, and choroid.
Iris melanoma is generally a small neoplasm and hardly ever spreads. These are very
rare with occurrences as low as 3% of all uveal melanomas, and reports show that an
elevated intraocular pressure influences the iris melanomas [62]. The ciliary body
gives rise to neoplasms which are larger and more capable of spreading, while the
choroidal neoplasms are the largest and most likely to spread [63, 64].

Retinal neoplasms are of different types. The most common of these is retino-
blastoma, an aggressive childhood affliction with occurrence 1 per 15,000 to 20,000
children [64, 65]. Other retinal cancers exist like vasoproliferative retinal tumor
which typically manifests at ages 20 to 25 [66] and retinal hemangioblastoma which
is usually detected between ages 40 and 60 [67]. Exposure to sunlight and ultraviolet
rays seem to be the primary reason for the cause of these intraocular malignant
melanomas [68].

7.4.5.1 Metastasis of Intraocular Tumors
Intraocular tumors usually arise in the uveal tract and the choroid due to their high
vascularity, making uveal and choroidal neoplasms the most common malignancy in
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adults. Patients with this kind of posterior choroidal metastasis have low life
expectancy, but over the last few decades life expectancy has progressively
improved [59, 60]. Primary cancers which lead to choroidal metastasis are mainly
breast (40–47%) and lung (21–29%) cancer [59, 69, 70] which cover two third of
reported cases. The remaining one third of patients shows no sign of primary cancer
at the time of diagnosis [70].

As for spread of intraocular tumors, 45% of patients develop metastasis in the
liver, often many years later. Most cases show the liver growth within 5 years, but
frequently the cases arise 20 years after the initial diagnosis [71]. The progress of this
metastasis is rapid, and hence this remains the most common cause for death in
patients with uveal melanoma [60, 71]. In cases of retinoblastoma, if the patient
shows optic nerve invasion, then metastasis is expected. If invasion is beyond the
lamina cribrosa layer, there is a far greater risk of metastasis [72, 73].

7.5 Regulation of Stem Cells and Cancer Stem Cells

Normal stem cells and cancer stem cells have the self-renewal capability with many
common classical pathways regulating the stem cell and cancer stem cell develop-
ment [10]. Signaling pathways such as Notch, Sonic hedgehog, and Wnt associated
with tumor regulation and development are also associated with normal stem cell
regulation [74]. These signaling pathways when dysregulated result in
tumorigenesis. The CSC attracts the normal stem cells through cytokine secretion,
further enhancing the cancer cell metastatic movement and risk of tumor formation
[75].

Signaling
pathway

Normal stem cell/progenitor cells—
pathway regulated

Cancer stem cells—pathway
dysregulated

Wnt Development of epidermal and other tissue Epidermal tumors

Sonic
hedgehog

Neural development Basal cell carcinoma

Notch Neural development

7.6 Conclusions

Compared to other cancers in the rest of the organs, cancers related to the eye are at
lower percentage, and the metastasis both intraocular and spread to other organs is at
lower percentage. While melanomas constitute melanomas among eye cancers, other
cancers such as retinoblastoma, eye lid cancers, and choroidal cancers are also
frequently observed. The presence of cancer-specific stem cells among eye cancers
as of now reported is very few except for the retinoblastoma, melanoma, and
squamous carcinoma. While common markers CD44, CD133, and SOX2 and
other cancer stem cell-specific markers are reported, further studies are needed to
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propose the aggression of tumors and the ambivalence of the currently established
markers in tumor progression in eye cancers.
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Cancer Stem Cells and Tumour
Aggressiveness 8
Gautham Chengizkhan, Natarajan Bhaskaran, R. Ileng Kumaran,
and Ilangovan Ramachandran

Abstract

Tumours are groups of cells, consisting of heterogeneous types of cells that
exhibit abnormal cellular characteristics and behaviours. The molecular
characteristics of tumour cells can be used to classify the tumour types. In a
tumour, the complexity of the population of cell types involved and their diverse
gene expression patterns, contribute significantly to tumour heterogeneity,
growth, metastasis and aggressiveness. Cancer stem cells (CSCs) are a small
population of cells in a tumour that are highly plastic in nature and possess self-
renewing capacity. The CSCs can differentiate into different cell types, and play
crucial roles in tumour initiation, growth and progression. CSCs drive metastasis,
therapeutic resistance and recurrence of cancers, and thus act as the key regulators
of tumour aggressiveness. The CSCs trigger the epithelial to mesenchymal
transition (EMT) of cells in the tumour, which leads to increased invasiveness of
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these cells. These unique subpopulations of cells can communicate with their
tumourmicroenvironment (TME) or niche, and stimulate their niche to secrete sev-
eral intrinsic factors, which triggers neoangiogenesis to promote metastasis. The
multipotent and tumour-initiating abilities of CSCs stimulate or alter various
signalling networks to cause extravasation of primary cancer cells that result in
cancer metastasis. Consequently, the CSCs promote tumour aggressiveness,
which can lead to relapse of cancers after various treatments, and thus, pose
critical problems in designing novel therapeutics to specifically target and elimi-
nate CSCs. Therefore, CSCs and tumour aggressiveness still remain as one of the
major challenges in curing cancer, despite recent advancements in therapeutic
approaches to treat various cancers. Here, we discuss the key roles of CSCs in the
regulation of EMT,metastasis, cancer metabolism and critical signalling pathways
that influences tumour aggressiveness.

Keywords

Cancer stem cells · Self-renewal · Tumour initiation · Epithelial to mesenchymal
transition · Invasiveness · Angiogenesis · Metastasis · Tumour aggressiveness

8.1 Introduction

Cancer is a major lethal and universal ailment that kills millions of people every year
throughout the world. In cancer, there is alteration of cell and tissue architecture [1],
and if cancer is not treated at an early stage, it spreads from the primary site of
tumour to various organs, which acts as its secondary site [2, 3]. This progression by
which cancer cells disseminate to other parts of the body is called metastasis. There
are various factors and processes involved in metastasis.

Cancer cells can spread to different parts of the body through various steps such
as by simple invasion into neighbouring normal tissues or migration via the lym-
phatic or blood vessels from the primary site of tumour to distant secondary sites (i.e.
different organs or tissues) for colonization. The formation of new blood vessels
(neoangiogenesis) provides additional blood supply for more nutrients and growth
factors, which would help in tumour growth or metastasis [4, 5]. The tumour is
complex in nature as it contains a heterogeneous population of cells encapsulated
inside the tumour that is surrounded by blood vessels, extracellular matrix (ECM),
fibroblasts, immune cells, etc., which forms a distinct tumour microenvironment
(TME), called niche [6]. The emergence of the existence of the cancer stem cells
(CSCs) and recent evidence have widely opened a whole new approach in the
understanding of this heterogeneous disease. The initiation and the development of
the tumour are driven by these CSCs, the specialised cell subtypes, which are
multipotent in nature and also possess self-renewing capacity [7]. CSCs are respon-
sible for the differentiation and migration of the cancer cells along with the tumori-
genicity. The CSC subpopulations are protected inside their niche, which acquires
the necessary growth factors, and derive energy in the form of ATP from the
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glycolytic pathway and oxidative phosphorylation (OXPHOS) depending on their
necessity.

In most cancer types, the unifying process that accounts for increased mortality is
metastasis. Metastasis is a multi-step process. It involves different phases of cells,
and it initially starts with mutation at a molecular level by an oncogenic hit due to
genetic or environmental cause [4]. Recent insights in the field of cancer biology
highlight the complex nature of this biological process, and helped in organising the
intricacy based on defined principles called cancer hallmarks [8]. The hallmarks of
cancer are depicted in Fig. 8.1.

Cancer cells rarely metastasise to skeletal muscle, and specific factors encourage
comprehensive muscle wasting, which results in a condition known as cachexia,
wherein the zinc gets hoarded in skeletal muscles through abnormal upregulation of
the metal ion transporter ZRT- and IRT-like protein 14 (ZIP14). This phenomenon is
the critical mediator of metastatic cancer-induced muscle wasting [9]. Epithelial to
mesenchymal transition (EMT) is a process by which the CSCs obtain their mesen-
chymal phenotype, which favours the progression and aggressiveness of the
tumours, resulting in metastasis.

Most of the tumours are comprised of normal cells along with other different cell
types which help in driving the phenotypic heterogeneity and malignancy of cancer.
An important part of the cancer cells and the so-called metastasis inducers are
characterised by CSCs [10]. In the tumour mass, these cells are capable of self-
renewal and differentiation. CSCs are also responsible for the metastatic properties
of cancer cells [11]. The CSCs secrete cytokines which are important in preparing

Fig. 8.1 Hallmarks of cancer. This illustration explains the unique characteristics of cancer during
its initiation and growth. An extensive study on the hallmarks of cancer have been performed in the
past decade, and has led to a better understanding of various steps in oncogenesis
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the tumour microenvironment (TME) and employing the myeloid cells to strengthen
the cancer progression. Cancer-associated fibroblasts (CAFs) and activated tumour-
associated macrophages (TAMs) release high amounts of matrix metalloproteinases
(MMPs), growth factors and cytokines to withstand angiogenesis and to encourage
the CSC invasion [12–14].

The cytokines, chemokines and growth factors secreted in the TME boost the
migration capability of cancer cells and enhance the angiogenesis [15]. Also, CSCs
can easily escape from the immune system [16] by altering the protein expres-
sion of intrinsic molecules including programmed cell death ligand 1 (PD-L1)
[17], which further ensures the formation of the immunosuppressive microenviron-
ment [18]. Also, most importantly, the cell surface markers of CSCs, like CD44 and
CD133, are very vital molecules that confer the specificity in CSCs’ binding and
targeting properties on the other tumour cells [19]. CSCs share genetic and epige-
netic intricacy along with other cancer cells but adapt to survival challenges which is
a vital property of these cells in escaping the cancer chemotherapy. Moreover, with
their slow cell proliferation rate, when compared to other cancer cells, CSCs are
believed to gain survival tactics, while the fast-growing cancer cells are destroyed by
the various therapeutic treatments [20].

CSCs possess the ability to hijack the intrinsic signalling pathways such as
Wnt/β-catenin, Hedgehog and Notch pathways [21]. These pathways are the key
regulators of the adult stem cell homeostasis, and the CSCs impede the normal
mechanism of the pathway and exploit its function over maintaining its own
plasticity [22]. Interestingly, these subpopulations of cells evade apoptosis and
take control of the immune system by inhibiting the function of the immune cells.
Although it is potentially possible to treat cancers in its early stages, the metastasis
and the cancer relapse are still the major issues even with all the cutting-edge state-
of-the-art technology. CSCs undergo dormancy after they form a colony at a distant
site, and are well protected inside their TME. Hence, the current therapies that target
only actively proliferating cancer cells are unable to target and eliminate
CSCs [23]. The tumour has heterogeneous populations of cells, and therefore, the
treatment regimes fail to target CSCs. Eventually, the tumour regresses responding
to treatment, but it relapses with high metastatic ability along with resistance towards
the therapies, which leads to the high mortality rate in cancer patients. CSCs are
resistant to many therapies because of their chemoresistance, radioresistance and
immunosuppressive properties. Numerous laboratories and pharmaceutical
companies are currently focusing on developing therapies to specifically target
CSCs. Significant ways aimed at eliminating CSCs would impact ominously on
cancer treatment, by countering metastasis and cancer relapse [24]. This chapter
discusses some of the important roles of CSCs in modulating the metastatic poten-
tial, metabolic alterations and key signalling pathways and thus, tumour
aggressiveness.
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8.2 Cellular Behaviour and Niche

Aberrant activation in the cell signalling networks along with the production of
different essential growth factors are necessary for the initiation of tumour. Further-
more, synthesis of angiogenic proteins by the tumour itself decides the fate of
aggressiveness of the tumour [25]. Not all subtypes of tumours are highly metastatic
in nature. The behaviour of the cells depends on the habitat where the tumour exists.
The niche provides an enriched environment with the supply of all the intrinsic
factors to the TME that drives the progression of the tumour in its growth and
adversity [26]. The principal characteristics of the CSCs along with its phenotypic
plasticity are well protected within the niche against the classical immune system
and therefore promote the metastasis. Stem cell markers are functionally specific
proteins that help in the process of identification of different tumour subtypes. There
are various stem cell markers such as CD44 [27], CD133 [28], CD49f [29], ALDH
[30], etc., which have specific roles in the development of different tumours. The
characteristics of these stem cell markers are represented in Table 8.1.

In the primary carcinoma, the lack of oxygen in tumour cells increases the
production of reactive oxygen species (ROS) due to impaired vascularisation inside
the TME. The cellular stress due to hypoxia and the increased ROS levels initiate the
CSC’s stress signalling pathway to boost the cancer cell survival and also, to main-
tain its stemness [31]. The mesenchymal stem cells (MSCs) along with the CSCs
produce intrinsic chemokines, cytokines and other angiogenic growth factors to
initiate neoangiogenesis, thereby, directing more blood supply to the tumour and
increasing the plasticity of CSCs. Furthermore, it compromises the immune system
by suppressing the cytotoxic functions of the immune cells [32].

In the normal cellular physiology, the MSCs establish a normal stem cell niche
with various stemness factors to support stem cell survival. But the oncogenic hit
transforms the normal stem cell niche to a CSC niche that triggers the initiation of the
tumour. In the TME, the CSCs can activate the EMT pathway in the adjacent normal

Table 8.1 Stem cell markers, tumour types and their characteristics

Stem cell
markers Tumour types Characteristics

CD44 Breast, pancreas,
prostate, head and neck

Found in the CSCs; glycoprotein that has role in
inflammation, tumour progression and metastasis

CD133 Brain, prostate and
colon

Five transmembrane domain cell-surface glycoprotein
that helps in disease progression

CD49f Breast and colon Acts as an inflammation sensor to regulate
differentiation, adhesion and migration

ALDH Haematopoietic and
breast

Maintenance and differentiation of stem cells; promotes
chemoresistance and survival mechanisms in CSCs

The table enlists the key stem cell markers and their unique expression in different types of tumours.
Each stem cell marker possesses specific characteristics, which enables the isolation and analysis of
CSCs. Moreover, this helps to understand the role of these stem cell markers in CSCs and tumour
progression

8 Cancer Stem Cells and Tumour Aggressiveness 141



tissue and transform them into tumour cells to invade further and to grow at a new
site with a separate niche to support the CSCs at that distant site [33]. Also, the
primary CSCs can control the potential metastatic sites by releasing exosomes to
facilitate the arrival of invading tumour cells. The exosomes along with other
necessary growth factors prepare the metastatic niche and favour CSCs to establish
a new colony at a distant site through the process of extravasation [34].

8.3 Conjunction Between CSCs and Tumour Aggressiveness

CSCs share the common characteristics of normal stem cells such as self-
renewability and multi-lineage differentiation that have the capacity to drive tumour
growth. The role of CSCs starts early during tumour initiation and sustains through-
out the progression of the carcinoma. CSCs play a critical role in the metastasis and
tumour relapse due to its high plasticity. The CSCs utilise various signalling
pathways to evade immune cells, and also impede immune cell function against
cancer cells. However, during normal metabolism, the systemic immune cells
target cancer cells exhibiting high levels of cellular stress and ROS production [35].

In most of the currently available cancer therapies, the treatment regime is
designed to usually target the whole organ for radiotherapy or the whole body
for chemotherapy. But in advanced treatment programme such as the proton beam
therapy, the tumour is targeted specifically [36]. But even with this treatment, the
normal tissues are affected in an insignificant manner, whereas in other treatments,
the damage done by the therapy is far worse causing overall deterioration of the
body. Since the present therapies follow a holistic approach in their treatment regime
and the CSCs are encapsulated and well protected within their niche, it becomes
difficult to target the CSCs [37]. On the contrary, when the treatment kills cancer
cells and the tumour shrinks eventually, the CSCs may go to a dormant state, and
develop resistance towards that drug. In a few years, the tumour may relapse with
enhanced resistance towards that drug treatment and exhibits aggressive metastatic
potential.

CSCs play an integral role in oncogenesis by promoting tumour initiation,
invasion and metastasis. CSCs initiate cancer due to their stemness which is acquired
due to accumulation of genetic or epigenetic alterations and oxidative stress. CSCs
establish their communication network with the TME, which favour their survival
and migration, and also promote angiogenesis for metastasis [38].

8.4 Impact of Metastatic Potential on Tumour Aggressiveness

Metastatic dissemination of cancer cells is the ability of the malignant cells to initiate
the invasion from the primary site to form a colony at a distant site. This invasiveness
of the cancer cells involves various cascades of events such as intravasation, EMT
and hijacking of different signalling pathways. These events enable the CSCs to gain
their self-renewing property, which under normal physiological condition is
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primarily used for the maintenance of adult stem cell homeostasis, wherein the
epithelial cells acquire mesenchymal characteristics [39]. While the tumour
develops, it is intrinsic for the tumour cells to sustain growth and function in the
hypoxic environment with the recruitment of the cellular components and modula-
tion of their extracellular matrix.

The tumour acquires its vasculature through angiogenic factors and retains its
blood supply for the growth of tumour. The tumour cells invade the normal tissues,
and upon reaching the blood vessels, the tumour cells infiltrate through the endothe-
lial barrier of the blood vessel, and enter into the circulation by the process called
intravasation. After intravasation, the blood vessels in the tumour estab-
lish connections between the tumour and other organs, thereby providing a route for
the circulating tumour cells (CTCs) to extravasate into the circulation for metasta-
sis [40] (Fig. 8.2). CTCs possess epithelial properties, and cannot escape the
microenvironment until they gain mesenchymal properties. EMT is one of the key
events necessary for the extravasation of the CTCs into the vascular system. While
the CTCs in circulation adhere and secure themselves in the adjacent organs, the
entire process of tumour development at primary tumour sites are driven by CSCs,
and the release of the CTCs is an active process that supports metastasis to distant
secondary sites. Also, the CSCs prepare the metastatic niche at distant second-
ary sites with the help of necessary growth factors, before the arrival of the CTCs
and its development to form secondary tumours [41].

The growth of the tumour after colony formation at the distant site is one of the
crucial events in the process of metastasis. But in most cases, the CTCs after
adhering at a distant organ enter a state of dormancy (Fig. 8.2). Metastatic dormancy
is one of the major reasons for the tumour to relapse after cancer therapy [42]. Can-
cer treatments are often developed to target the tumour at the primary site. Though,
the treatment kills most of the tumour cells and the tumour regress, it does not kill all
the CSCs in the tumour. Few of the CSCs at the primary tumour often escape
death from the treatment or enter a dormant state. Also, some tumour containing
CSCs can often escape even from a successful precision surgery. The dormant
tumour cells at a distant site or CSCs at a primary site can remain resilient towards
a treatment regime, and can relapse to a full-blown tumour again in a few years.
In relapsed cancers, the metastatic cells are dominant and are more fatal with mesen-
chymal properties, and their aggressiveness is doubled due to their acquired resis-
tance to the therapies [43].

8.5 Factors Influencing Tumour Aggressiveness

The CSCs are influenced by various components such as hormones, enzymes,
cytokines and growth factors (Fig. 8.3). Several studies have shown that hormones
hasten the process of oncogenesis in different tumour conditions. The
hormones, oestrogen and progesterone influence the growth of breast cancer cells
by binding to their specific receptors in the cells. These hormones increase cancer
cell division and rapidly promote tumour growth in a very short period of time,
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making it one of the aggressive forms of tumour. Furthermore, hormones such as
testosterone, oestrogen and progesterone enhance drug resistance and metastasis of
hormone-dependent tumours [44].

Along with hormones, growth factors, cytokines and chemokines play a crucial
role in the progression of tumours. The TME contains different types of cells that
undergo hypoxia and cellular stress as the tumour grows, and so the tumour itself
releases the necessary growth factors such as transforming growth factor-beta
(TGF-β), platelet-derived growth factor (PDGF), vascular endothelial growth factor
(VEGF), etc., in order to form new vasculatures (neoangiogenesis) for the tumour to
supply blood and nutrients [45]. Additionally, there are few enzymes such as matrix

Fig. 8.3 Various factors that influence tumour aggressiveness. Several factors influence the
initiation and progression of tumour. These include both intrinsic and extrinsic factors that drive
tumour growth and aggressiveness. The extrinsic (modifiable) factors include smoking, consump-
tion of alcohol, unhealthy diet and lifestyle, which can be modified. The intrinsic factors include
enzymes, hormones, growth factors, nutrients, chemokines, cytokines and tumour niche, which
contribute to the rapid progression and dissemination of the tumour. Cancer cells are represented
with serrated margins. Red coloured cell with serrated margins is CSC. Green and yellow coloured
cells with serrated margins are different tumour cells, which are represented to show the tumour
heterogeneity. The blue or black coloured nucleus represents heterogeneity in the cancer
genomes. TGF-β transforming growth factor-beta, PDGF platelet-derived growth factor, VEGF
vascular endothelial growth factor, MMPs matrix metalloproteinases, PGK1 phosphoglycerate
kinase 1, PKM2 pyruvate kinase M2
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metalloproteinases (MMPs), phosphoglycerate kinase 1 (PGK1) and pyruvate kinase
M2 (PKM2), which affect the tumour cell behaviour and accelerate their progression
by breakdown of the extracellular matrix (ECM), and fuelling the tumour cell
metabolism to aid the invasion of cancer cells, by rapidly promoting peritoneal
dissemination to the distant sites [46].

The crucial factor that is involved in tumour progression and development is the
hypoxia caused due to increased proliferation, and thus, elevated cellular stress. The
uncontrolled cell division creates an unfavourable environment inside the TME,
which eventually leads to poor nourishment of cells. This initiates the need for
excess growth factors and nutrients to cells, and therefore, the tumour itself secretes
necessary angiogenic factors to construct new vasculatures (neoangiogenesis) inside
the tumour, which enables blood supply to the tumour. Also, alteration in tumour
metabolism is a key factor that determines the tumour growth and
aggressiveness [47].

The CSCs control the switch between using the glycolytic and OXPHOS
pathways to extract ATP. It is also based on the niche, which partly chooses the
pathway for the ATP production. During the tumour initiation, the CSCs use the
glycolytic pathway, but they switch to the OXPHOS pathway during tumour progres-
sion. Metastasis requires elevated energy expenditure as cells have to migrate to a
distant site, and so, it depends on both the pathways [48]. Also, in few carcinomas,
hormones act as critical factors, which double the invasiveness of tumour. Although
several molecular mechanisms play vital roles in the initiation and progression of
tumour, the environmental carcinogens influence the growth of tumour in the form
of DNA damage due to higher ROS production and increased cellular stress. More
importantly, modifiable risk factors including smoking, alcohol consumption, eating
junk food and unhealthy lifestyle (e.g. obesity) increase the risk of cancers (Fig. 8.3)
as these factors can also promote metastasis [49].

8.6 Molecular Mechanisms Involved in EMT

EMT is a process by which epithelial cells acquire mesenchymal characteristics by
undergoing several changes including the loss of cell polarity. The acquisition
of mesenchymal phenotype is influenced by different signalling factors, which
are necessary to evade apoptosis and increase the migration potential of the cells.
It also increases the secretion of degrading enzymes to penetrate the ECM, and this
process promotes the invasiveness of cells [50]. EMT activates and maintains the
stemness of the cells, and it plays a key role in the transition of normal stem cells to
CSCs, by acquiring the invasive mesenchymal characteristics.

The EMT is a two-way process, and it can be reversed. EMT can change in either
direction, and the conversion from mesenchymal phenotype to epithelial phenotype
is called mesenchymal to epithelial transition (MET) (Fig. 8.4). It involves multiple
signalling pathways such as Wnt/β-catenin, Hedgehog (Hh) and Notch signalling.
The interaction between these signalling pathway and the immune cells, enables the
normal stem cells to develop and maintain their plasticity. Various transcriptional
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factors such as Slug, Snail, Twist, Sox-9, etc. are involved in the transition from
epithelial to mesenchymal cell characteristics [51]. The epithelial cells lose certain
important characteristics, while acquiring invasiveness and metastatic properties.
The epithelial phenotype markers [including E-cadherin, desmoplakin, Muc-1,
cytokeratin-18, occludins, claudins and zonula occludens] are lost, while mesenchy-
mal markers [including N-cadherin, vimentin, fibronectin, vitronectin, α-smooth
muscle actin (α-SMA) and fibroblast-specific protein 1 (FSP1)] are acquired during
EMT [52].

Importantly, growth factors and inflammatory cytokines, including interleu-
kin (IL)-8 [an activator of the Janus-activated kinase/signal transducer and activator
of transcription 3 (JAK/STAT3) pathway] are secreted by the stromal fibroblasts,
and they promote tumour progression and account for the aggressiveness of cancers
[53]. Nevertheless, the aberrant activation of the signalling pathways varies with
cancer types. Few proteins, which have tumour suppressor property in one type of
cancer are known to initiate and cause invasiveness in a different type of cancer. But,
genetic instability or mutations and epigenetic alterations can activate oncogenes
or inactivate tumour suppressor genes via metabolic reprogramming, which in turn
can lead to increased cell proliferation, malignant transformation, metastasis or

Fig. 8.4 Effect of current therapies on CSCs and future treatment perspectives. The normal stem
cells undergo oncogenesis due to accumulation of mutations, and the dysregulation of oncogenes
and tumour suppressor genes of the cell cycle, which lead to active proliferation of the mutated cells
and development of tumour. The current therapeutics do not specifically target the CSCs, and
therefore, tumour relapses with multidrug resistance. The CSCs are very plastic in nature, and they
possess the characteristics of self-renewability due to their control over key signalling pathways
such as Wnt/β-catenin, Notch and Hedgehog. Ongoing research specifically target CSCs, and have
shown some promising results in the eradication of tumour. Cancer cells are represented with
serrated margins. Red coloured cells with serrated margins are CSCs. Green and yellow coloured
cells with serrated margins are different tumour cells, which are represented to show the tumour
heterogeneity. Pink coloured cell with serrated margins depicts the dead targeted CSC. The blue or
black coloured nucleus represents heterogeneity in the cancer genomes. CSCs cancer stem cells

8 Cancer Stem Cells and Tumour Aggressiveness 147



cancer relapse. Furthermore, CSC’s heterogeneity and the process of EMT are con-
sidered to largely contribute to the complexity and organ-specific metastasis of
cancers [54].

8.7 Metabolic Alterations in Tumour Survival

Due to the complex nature of various TMEs, the CSCs tend to depend on different
sources for energy. It has been identified that glucose- and oxidative-based
metabolisms, feed the CSCs with energy derived from vital nutrients, along with
amino acids like glutamine and lysine, which act as alternative fuel sources. In a
normal cell, mitochondria produce ATP using their tricarboxylic acid (TCA) cycle
coupled with OXPHOS, to catabolise acetyl-CoA produced from glycolysis and
fatty acid oxidation [55]. But, CSCs tend to increase the glycolytic flux in aerobic
condition, thereby increasing the production of ATP multifold to feed the anabolic
demands of cancer cells (Fig. 8.5). The supply of essential growth factors and
nutrients from the energy provided by the oxidative and glycolytic metabolisms,
favour cancer cells to survive in unfavourable hypoxia condition, and helps them to
proliferate, differentiate and evade apoptosis more efficiently [56].

Metabolic alterations in the cells are considered as one of the hallmarks of cancer.
Glucose is a key nutrient that is necessary for the CSCs to survive in their microen-
vironment. It also favours the active proliferation of CSC populations as glucose
induces the transcription of specific genes associated with the pathways of glucose
metabolism (c-MYC, Glut, HK-1, HK-2 and PDK-1) in CSCs [57]. Growing evi-
dence suggest that the mitochondrial oxidative metabolism is highly favoured for
energy production in CSC populations. CSCs are metabolically plastic in nature as
they can switch between either glycolytic or OXPHOS pathway, depending on their
anabolic needs (Fig. 8.5).

Most of the quiescent CSCs, during the initial stages of tumour development, use
the oxidative metabolism to match the demands of ATP requirement by the tumour.
The higher rate of oxidative metabolism results in increased oxygen consumption,
along with higher mitochondrial mass and increased ROS production in the
mitochondria, but with lower glycolytic rate. On the contrary, the proliferative
cancer cells (i.e. non-stem cells) use the glycolytic pathway which results in higher
glucose uptake, but lower oxygen consumption with the least mitochondrial mass
and ROS production. This helps in efficient cell differentiation, leading to increased
invasiveness [58]. Interestingly, the proliferative CSCs during metastasis get their
energy from both the pathways, as more energy is required for the cancer cells to
migrate and colonize a new site to form a secondary tumour. The aggressiveness of
the carcinoma during metastatic dissemination or cancer relapse is doubled, due to
energy availability from both the glycolytic and OXPHOS pathways.
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8.8 Signalling Pathways that Drive CSCs

CSCs and MSCs employ common mechanisms, which enable them to retain their
stemness and plasticity. The most crucial mechanisms that are involved in CSC self-
renewal are Wnt/β-catenin, Notch and Hedgehog (Hh) signalling pathways.
Wnt/β-catenin signalling is a conserved pathway present in different organisms,
and it plays a key role during development. It is an essential pathway that is
required for the maintenance of adult stem cell homeostasis. The intercellular
Wnt signalling molecules that are usually involved in the embryonic development,
are altered during EMT, which leads to continuous activation of Wnt signalling and

Fig. 8.5 Molecular mechanisms and metabolic alterations that drive CSCs in tumour development.
The tumour cells in the primary site invade the normal tissues using various enzymes and cross the
endothelial barrier, before entering into blood vessels for circulation. The tumour cells undergo
EMT to gain mesenchymal properties, which aid in their rapid invasion. The circulating tumour
cells (CTCs) intravasate to enter into blood vessels, then extravasate and undergo MET, which are
required for dissemination and colonization of cancers at distant secondary sites in other tissues or
organs. The tumour at the primary site uses the glycolytic pathway for the production of ATP,
which is used as energy by cancer cells for their rapid growth. But, the tumour at the metastatic site
uses both glycolytic and OXPHOS metabolisms for the production of ATP, and the tumour cells
can switch the pathways depending on their need. Cancer cells are represented with serrated
margins. Red coloured cells with serrated margins are CSCs. Green and yellow coloured cells
with serrated margins are different tumour cells, which are represented to show the tumour
heterogeneity. Orange coloured cells with serrated margins represent tumour cells with altered
metabolism (i.e. using both glycolytic and OXPHOS pathways), whereas yellow coloured cells
represent tumour cells using only glycolytic pathway. The blue or black coloured nucleus represents
heterogeneity in the cancer genomes. ATP adenosine triphosphate, EMT epithelial to mesenchymal
transition, CTCs circulating tumour cells, MET mesenchymal to epithelial transition, OXPHOS
oxidative phosphorylation
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persistent synthesis of oncogenic proteins, thereby enhancing CSC’s self-renewal
potential [59].

β-Catenin is the key molecule, which regulates the activation of the Wnt signal-
ling pathway. Importantly, aberrant activation of Wnt/β-catenin pathway plays a cru-
cial role in cancer growth, invasion, stemness and angiogenesis [60, 61]. In the
absence of Wnt ligand, the multi-protein destruction complex containing Axin,
adenomatous polyposis coli (APC) and glycogen synthase kinase-3β (GSK-3β)
phosphorylates β-catenin, which is followed by ubiquitination and proteasomal
degradation of β-catenin. However, when Wnt ligand bind to its receptor, conforma-
tional change occuring at its binding site activates downstream signalling, and
β-catenin molecules are released from its destruction complex and accumulates in
the cytoplasm. Later, the accumulated cytoplasmic β-catenin is imported into the
nucleus, where it binds to the transcription factor Tcf/Lef, and activates Wnt
target genes transcription. The target genes of Wnt/β-catenin signalling such as c-
Myc, cyclin D1, MMP-7, CD44, COX-2, Axin2, etc. upon expression promote the
adhesion and migration of CSCs. Furthermore, Wnt target gene expression
also promotes the cellular differentiation and proliferation of CSCs, which lead to
increased invasiveness of CSCs [62].

Notch signalling pathway plays a key role in cell-to-cell communication during
the developmental stages. It also regulates cellular proliferation and differentiation,
and apoptosis. It is essential for neural stem cell maintenance, immune regulation
and normal haematopoiesis. The Notch signalling pathway is activated during cell-
to-cell communication, when membrane-bound Jagged or Delta ligand bind to
its specific receptor. The Notch receptor is a heterodimer, which is composed of
non-covalently bound extracellular and transmembrane domains. After the bind-
ing of ligand to Notch receptor, the receptor undergoes a conformational change,
which leads to its proteolytic cleavage by the metalloproteinase and γ-secretase, and
the release of extracellular and intracellular fragments. The proteolytic cleavage of
the heterodimeric Notch receptor releases the Notch intracellular domain (NICD)
into the cytoplasm, which upon translocation into the nucleus activates transcription
factors, resulting in the upregulated expression of Notch target genes such as c-Myc
and HES-family members [63].

The Hedgehog (Hh) signalling pathway is intrinsic for stem cell maintenance as it
controls tissue polarity and maintains patterning during embryogenesis. The genetic
or epigenetic alterations in cells can generate CSCs, which hijacks the Hh signalling
pathway for the maintenance of its plasticity or tumour growth. In the inactive state,
the absence of Hh ligand results in the inhibition of Smoothened (Smo) receptor by
the transmembrane receptor Patched (Ptch). This in turn activates a series of events
in the cytoplasm, which subsequently phosphorylates and degrades Gli1/2 through
proteasomal degradation. When adjacent cells secrete Hh, it binds to its receptor Ptch
and activates Smo. Then, Gli1/2 molecules, which are bound to the complex in the
cytoplasm are released from the Smo protein complex and translocate into the
nucleus. This, results in the activation of transcription factors and the expression of
Hh-associated genes [64]. The activated genes also include various genes that are
directly and indirectly involved in the maintenance of the CSCs. Hh signalling
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upregulates JAG2, and also indirectly upregulates bone morphogenic protein
4 (BMP4) via FOXF1. Hh pathway can crosstalk with Wnt pathway, and can
upregulate crucial Wnt proteins such as Wnt2B and Wnt5A. Furthermore, Hh
signalling can induce stem cell markers such as LGR5, CD44 and CD133, upon
interaction with Wnt and other signalling pathways [65].

In most types of cancers, CSCs hijack all the signalling pathways, which are
functionally related to the maintenance of the adult stem cells, thereby promoting
the growth and invasiveness of tumour. Recent studies suggest that CSCs are mostly
maintained and driven in the TME with the help of these signalling pathways.
Therefore, targeted inactivation of these pathways in most carcinomas may have
clinical implications, as it would inhibit the self-renewability of CSCs. This
approach could be used to target both CSCs and tumour to inhibit metastasis
and tumour relapse, and therefore, would enable effective future treatments and ulti-
mately cure for cancers [66].

8.9 Conclusions

CSCs possess the plasticity and self-sustaining ability to survive longer in dormant
state within the TME, by evading cell death and remaining refractory to cell
signalling or communication mechanisms. Importantly, CSCs can initiate tumours
and cause relapse of cancers, which subsequently could lead to more aggressive
carcinomas with increasing resistance to treatments. Cancer patients show poor
survival rate, when they have metastatic cancer and cancer relapse, because these
cancers possess CSCs. Hence, patients with metastatic and relapsed cancers can-
not be cured with currently available cancer therapies. Therefore, developing
advanced novel therapeutics, which can specifically target and eliminate CSCs in
tumours, is an urgently required endeavour to treat, cure and eradicate cancers in the
future.
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Therapeutic Implication of Cancer Stem
Cells 9
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Abstract

Most of the conventional cancer treatments have limited selectivity, are tempo-
rarily effective, and have adverse side effects. The potential of cancer stem cell
(CSC)-based therapies has recently attracted much attention to override the
detrimental impact of conventional therapies. Here we have highlighted potential
strategies including identification of cancer stem cell biomarkers, interfering with
circuitry network associated with drug resistance, sensitization of CSC to chemo-
therapy, and radiation therapy through protein targeting. CSCs display differen-
tial metabolic activity, specific signaling pathway activity in tumor initiation,
metastasis, and drug resistance. Thus identification of CSC-specific markers
distinct from the total cancer cell population is essential. Given the fact that the
stem cell is one of the key components of organogenesis and maintenance of
homeostasis throughout life, improvement of treatment modalities based on CSC
therapies holds wish for better overall survival and better quality of life of cancer
sufferers, specifically for patients with metastatic disorder. Therefore, in this book
chapter, we have mainly discussed aberrant regulation of gene expression and
some signaling pathways in CSCs and implication of CSC surface markers for
designing new therapies for better clinical outcome.
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9.1 Introduction

Cancer development is a multistep process which includes dysregulation in the
complex network of genes like accumulation of series of mutations and epigenetic
changes in tumor suppressors and proto-oncogenes in addition to other hallmarks
like sustained proliferative signal, apoptosis resistance, metastatic ability, etc.
[1]. With the fact that normal stem cells has self-renewal property, cancer stem
cells (CSCs) may exhibit replicative potential for many cancer types [2, 3]. CSCs
originate from tumor which sustain proliferative signal and clonal selection as in the
case of normal malignancies [4, 5]. With the fact that the stem cell is one of the key
components of organogenesis and maintenance of homeostasis throughout life,
improvement of treatment modalities based on CSC therapies needs proper
in-depth understanding of biological consequences of existing therapies for better
patient outcome.

9.2 Roles of Stem Cells in Regulation of Key Biological
Functions

Stem cells have profound biological significances like being pioneer of progenitor
cells required for repair of the tissues of particular germ line. It is one of the key
component of developmental processes like organogenesis and maintenance of
normal homeostasis. Pluripotent cells which are embryonic stem cell by origin [6]
give rise to a variety of cell types of the body, including regeneration of blood, skin,
or intestinal tissues [7].

9.2.1 Characteristic Features of Cancer Stem Cells and Its
Biomarkers

Cancer stem cells exhibit a small fraction of the entire population of tumor cells with
distinct characteristic features of stemness, display of differential metabolic activity,
distinct molecular switch activity regulating cell signaling, and deregulation in cell
cycle function [8, 9]. Identification of such population of cells may hold tremendous
potential for targeted therapies. Various cell surface proteins like ABCG2, ALDH1,
CD44, CD24, and CD133 are overexpressed as stem cell markers [10, 11]. Interest-
ingly, these cell surface markers segregate subsets of CSC population in multiple
types of solid tumors. This variation in CSC phenotype in patient tumors of the same
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subtype raises the question whether difference in clinical outcomes within the tumor
subtype is due to variation in CSC population.

A comprehensive list of common marker proteins of CSCs and their roles in
normal biological processes is represented in Table 9.1.

9.2.2 Molecular Players of CSCs Stemness

The diagnostic and prognostic significance of CSCs is documented through gene
expression profiling authenticated by various molecular techniques. For instance, the
molecular analyses of leukemia stem cell populations from AML patients showed a
pattern of gene expression that was found to be a strong predictor of poor prognosis
[12]. In colorectal cancer, EphB2-positive CSC population was identified in tumors
correlated with patient relapse [13]. Subsequent clinical and laboratory studies of
patients in multiple tumors based on these signatures’ involvement of CSC in drug
resistance and cancer metastasis are well documented now [14].

9.2.3 Therapeutic Targeting of CSCs

Cancer stem cells can be selectively targeted without disturbing the homeostasis of
adjacent normal cells. These strategies include molecular players of various
hallmarks of cancer such as self-renewal pathways, resistance to various types of
radio- and chemotherapies, and targeting various CSC-specific cell surface proteins.
For instance Notch and Hedgehog signal transduction pathway-associated pharma-
cological inhibitor -based targeted therapies in human and mouse leukemia inhibited
the expansion of imatinib-resistant CML [15]. Thus CSC-based targeted therapies
are gaining much attention due to the inefficiency of conventional cancer therapies,
failure to kill CSCs, thereby resulting in multiple malignancies, and also toxic to the
healthy tissues [16]. Various approaches of targeting CSC are summarized below.

9.3 Signaling Pathways

Various inhibitors have been developed for targeting signal transduction pathways
including Hedgehog (Hh), Notch, Wnt/b-catenin,, Bcl-2, Bmi-1, etc. (Fig. 9.1) in
CSCs and are a promising step in cancer therapeutics [17–19]. However, these
inhibitors have adverse effect on the normal stem cells. Therefore, improvisation
in drug formulations is required with other CSC-targeting therapies for better
therapeutic outcomes.

The goal of the current therapeutic regimen should be to target circuitry network
of CSCs to trigger CSC-specific apoptosis and alter the microenvironment (niches)
supporting these cells. Toward this goal, modifications in ABC superfamily,
antiapoptotic factors, detoxifying enzymes, DNA repair enzymes, and histone
deacetylation [20, 21] play a very important role. For example, the PI3K/AKT
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Table 9.1 A comprehensive list of common marker proteins of CSCs and their roles in normal
biological processes is represented

Cancer types CSC markers Role of CSC markers Reference

Glioma/medulloblastoma,
head and neck cancers, lung,
prostate, melanoma,
osteosarcoma

ABCG2
(ATP-binding
cassette
transporter)

ABCG2 is a protein that plays
a role in host detoxification of
various xenobiotic substrates
in various organs like the
liver, intestine, placenta, and
blood-brain barrier. The bone
marrow is reported to express
ABCG2

Guo et al.
[10]

Glioma/medulloblastoma,
head and neck cancers, lung,
breast, pancreas, bladder,
prostate

A1/ALDH1A1
(aldehyde
dehydrogenase
1)

ALDHs are NAD
(P)+ �dependent enzymes, in
the human system. ALDH1
oxidizes retinaldehyde to
retinoic acid and
acetaldehyde to acetic acid
and is expressed in the
epithelia of the brain, liver,
testis, eye lens, and cornea

de Beça
et al. [50]

Glioma/medulloblastoma,
head and neck cancers,
breast, pancreas, bladder,
prostate, ovarian,
osteosarcoma, leukemia

CD44 CD44 is a multistructural and
multifunctional cell surface
molecule and hyaluronic acid
receptor, whose role is
primarily governed by
various posttranslational
modifications
CD44 is involved in cell
proliferation; differentiation;
migration; angiogenesis;
presentation of cytokines,
chemokines, and growth
factors to the corresponding
receptors; and docking of
proteases at the cell
membrane, as well as in
signaling for cell survival.
Such biological properties are
essential not only for the
physiological activities of
normal cells but also for the
pathologic activities of cancer
cells

Wang et al.
[21]

Glioblastomas, prostate,
gastric, and breast

CD133/
Prominin-1

CD133 are hematopoietic
stem cells, endothelial
progenitor cells, glial stem
cells, and kidney, mammary
gland, salivary gland, testes,
and placental cells. However,
CD133 is also reported being
expressed by glioblastomas

Yasuda
et al. [51]
and Brescia
et al. [52]

(continued)
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signaling pathway which is involved in numerous cancers, including leukemia,
induces resistance to apoptosis through Bcl-2 overexpression and the phosphoryla-
tion of the pro-apoptotic protein BAD. A summary of new CSC-targeted therapeutic
strategies is shown in Fig. 9.2.

Table 9.1 (continued)

Cancer types CSC markers Role of CSC markers Reference

and pediatric brain tumors
and gastric and breast CSCs

Head and neck cancer CD44+ Prince et al.
[53]

Pancreatic CD133+,
CD44+,
EpCAM+,
CD24+

Li et al.
[47] and
Simeone
[54]

Fig. 9.1 Cancer stem cells associated different types of signal transduction pathways. The various
molecular players such as tumor suppressors, apoptosis regulators, cell survival genes and drug
transporter mechanism along with epigenetic pathways becomes defective during cancer stem cell
formation
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9.3.1 Nucleic Acid-Based Targeting CSC Markers

Certain cytotoxic drugs like Bcl-2 inhibitors, angiogenic inhibitors, short hairpin
RNAmolecules, antibodies, DNAmethyltransferase inhibitors, etc. might be a better
choice of treatment by targeting CSCs, for example, downregulation of CD133+

CSCs using short hairpin RNA in human metastatic melanoma [22]. Similarly,
breast cancer cells can be targeted with an anti-CD44 antibody-conjugated gold
nanorod which displays significant cancer stem cell characteristics [23].

Fig. 9.2 Emerging trends for targeting cancer stems cells. Identification of cancer stem cells with
surface markers helps in targeting complex signalling networks such as—inhibiting drug
transporters, alteration in tissue microenvironment targeting with nanoparticles, natural products
and miRNAs
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9.3.2 Cancer Stem Cell Targeting by Inhibitors of Detoxifying
Enzymes and Drug Efflux Pumps

Cancer aggressiveness can be reduced, and sensitivity of cancer cells to chemother-
apeutic drugs can be enhanced using specific drug detoxifying inhibitors like
diethylaminobenzaldehyde (DEAB) or all-trans retinoic acid (ATRA), ALDH inhib-
itor against breast CSCs [24]. Similarly, some novel ABC transporter inhibitors like
MS-209 and VX-710 [25, 26] have shown promising results in enhancing drug
sensitivity in various solid cancers [26].

9.3.3 Role of Tissue Microenvironment Niche of CSCs

The advancement of in situ applications of in vitro reprogrammed stem cells and
targeted tissue-specific stem cell expansion in tissue regeneration .requires under-
standing of how abnormal microenvironments can contribute to cancer initiation and
progression. The extracellular matrix (ECM) and stromal cells enriched with a
variety of proteins, growth factors, etc. of bone marrow and secondary lymphoid
organs favor disease progression and resist conventional therapies [27]. Tumor
angiogenesis is well known for CSC survival and drug resistance. For example,
brain tumor stem cells and leukemic stem cells promoting blood vessel formation
can be targeted by angiogenic inhibitor VEGF-neutralizing antibody bevacizumab
that reduces CSC pools followed by tumor growth.

9.3.4 Emerging Trends of Noncoding RNA as Potential Drug
for CSCs

Certain noncoding RNAs including micro-RNAs have been found to be the direct
targets of CSC markers. MiRNA-mediated targeting like miRNA mimics, miRNA
antagonists, and nano-delivery of synthetic oligos [28] to suppress oncogenes or
activate tumor suppressor proteins was reported which plays significant regulatory
roles in CSC apoptotic and antiapoptotic pathways, proliferation, survival, differen-
tiation, migration and invasion, drug resistance, and radiation resistance [29, 30].

9.3.5 Natural Product-Based Targeting of CSCs

Natural products are the products obtained from plants or any other organism and
have always been a rich source of novel compounds that can be used for cancer
therapeutics. In this scenario, curcumin, a key compound obtained from the rhizome
of Curcuma longa (turmeric), holds promising outcome as anticancer agent by
inhibiting metastasis, suppressing cancer signaling pathways, sensitizing tumor
cells to cancer treatment, and finally inducing apoptosis [31]. Besides curcumin,
other natural products, like chrysotoxine isolated from Dendrobium species and
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parthenolide isolated from the shoots of feverfew (Tanacetum parthenium), possess
anticancer features that include targeting various cancer hallmarks in lung cancer.

9.3.6 Dissecting the Role of Apoptotic Players in CSC Stemness

One of the major obstacles of cancer chemotherapy is resistance to apoptosis and
drug resistance. Majority of the cancer types including colon cancer, pancreatic
cancer, glioblastoma, and prostate cancer are typically resistant to cancer chemo-
therapy due to intrinsic defects or post-chemotherapy effects [32, 33]. There are
several mechanisms by which CSC triggers drug resistance including mitochondrial
defects, mutations of death receptors, overexpression of antiapoptotic Bcl-2 family
members and inhibitors of apoptosis proteins (IAPs), etc. [34]. Monensin and
salinomycin ionophore antibiotics are currently recognized as promising anticancer
agents in CSC apoptosis [35]. Obatoclax, a pan-Bcl-2 inhibitor, was recently shown
to overcome resistance to the histone deacetylase inhibitors SAHA and LBH589 and
to act as a radiosensitizer in patient-derived GSCs [36].

9.4 Relevance of CSC-Based Targeted Therapies in Different
Malignancies

9.4.1 Leukemia

One of the most commonly diagnosed malignancies in people of all age groups [37],
leukemia has different subcategories such as acute myeloid leukemia (AML),
chronic myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), and multi-
ple myeloma (MM). There is distinct patient-to-patient variation in the morphology
of leukemic blast cells within these groups. Stem cell markers like CD34, CD38,
HLA-DR, and CD71 have been reported in leukemic cells [38, 39]. A few of the cell
surface markers, for instance, CD90 (Thy-1), are differentially expressed between
normal hematopoietic stem cells and leukemia CSCs, with CD90 underexpression in
leukemia [39, 40] indicating the potential of CD90 as a differentiating marker of
leukemic CSC subpopulations [39, 41]. Loss of expression of CD117, also known as
c-kit, is a prominent characteristic of AML CSCs (CD34+c-kit�) [42]. A monoclonal
antibody, CSL360, targeting CD123 was the first-in-human trial (NCT00401739) in
high-risk AML patients. In multiple reports it was evidenced that hematological
neoplasms, a fusion protein like SL-401, made up of human IL-3 and diphtheria
toxin truncated version of the protein directly target CD123 [17]. These studies
reveal some novel approaches of targeting CD123 for leukemia treatment.
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9.4.2 Breast Cancer

Continuously holding the banner for the second most deadly malignancy for females
is breast cancer, where one out of eight women have a tendency to develop this
malignancy in their lifetime [37]. Breast cancer is most prevalent in Afro-Americans
compared to other ethnic groups where the ratio of prevalence stands at 121 per
100,000. A minor subpopulation of breast cancer cells known as breast CSCs
(0.1–1%) is found in primary tumors. Upon transplantation into NOD/SCID mice,
a rare subtype of breast CSCs possesses a high tendency for self-renewal and has the
capacity to initiate tumorigenesis [4, 43]. CD133, CD44, ALDH, c-kit, ESA, and
ABCG2 are among the most common CSC markers reported in primary breast
cancer samples [44]. Targeting BCSC populations with glutathione S-transferase
omega 1 apart from other cell surface marker, resulted in elevated levels of intracel-
lular calcium and activation of STAT3 signaling, along with enriched BCSC micro-
environment and reduction in metastasis.

9.4.3 Pancreatic Cancer

Presently the fourth major reason for mortality in the United States is pancreatic
ductal adenocarcinoma [37] which is among the most lethal malignancies, with a
5-year survival rate of <5% [45]. Less than 1% of all pancreatic cancer cells are
cancer stem cells with important attributes like self-renewal and uncontrolled poten-
tial of differentiated progeny. CD44+, CD24+, and epithelial-specific antigen (ESA)+

are important cell surface markers expressed by pancreatic CSC populations
[43, 46]. These pancreatic cancer CSC phenotypic cells also demonstrate a signifi-
cant upregulation of Sonic hedgehog (SHH) and the polycomb group (PCG) gene
family member Bmi-1, unlike normal pancreatic epithelial cells and non-CSC-like
cancer cells. All of these have been well known for maintaining CSC characteristics
[46, 47].

9.4.4 Lung Cancer

More than two lakh people are diagnosed with lung cancer every year in the United
States, with a yearly morbidity rate of 160,000 individuals [37]. Tremendous growth
has been witnessed in the past decade pertaining to the diagnosis and management of
this condition; however due to factors such as resistance to treatment, uncontrolled
tumor growth, and metastatic capacity, the prognosis still remains poor. One of the
main reasons behind the aggressive phenotypes of lung cancer is the presence of a
small subpopulation of lung CSCs capable of expressing certain stem cell markers,
such as CD133, CD44, ALDH, Oct4, and Nanog [48, 49].

It is interesting to note that the development of immunotherapy has led to
scientific advancements in using CSC-specific antigen presentation in addition to
targeted small molecule inhibitors for the improvement of cancer therapies.
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9.5 Conclusion

A substantial amount of evidence reveal that a puny CSC population has been
known to be associated with an aggressive phenotype of tumors portraying vital
characteristic features such as increased cell survival, migration, invasion, metastatic
capacity, treatment resistance, and tumor recurrence eventually contributing to poor
prognosis. Regardless of the number of efforts that have been made toward charac-
terization of CSCs, their pathogenesis and molecular interactions in the tumor
microenvironment are still elusive. Identification, isolation, and characterization of
CSCs and CSC-specific markers in malignant tissues will enhance our knowledge
and assist us in designing strategies for the development of chemotherapeutics aimed
at reducing tumor aggressiveness by targeting CSCs. Recent evidence states that
preclinical and clinical trials have highlighted the cruciality of CSC markers in
cancer detection, screening, and CSC-based targeted therapies such as epigenetic
targeting and immunotherapy which is aimed at improving patient outcomes. Cur-
rent scientific advancement on CSCs has widened our horizons and provided a new
dimension in developing new strategies in order to curb malignancies, thereby
allowing researchers and clinicians to alleviate the burden of cancer.
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Abstract

Glioblastoma (GBM) is a deadly brain tumor with poor prognosis despite the
improvement in the diagnosis of GBM and innovative treatment strategies.
Chemotherapy and radiotherapy could only help the GBM patients to a mean
survival of 15 months. One of the key reasons for this poor outcome is a complex
tumor heterogeneity and the presence of cancer stem cells (CSCs). CSCs in GBM
(GSCs) are responsible for drug resistance and relapse. Cancer cells (non-GSC)
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are normally sensitive to drug treatment, whereas GSCs are resistant to treatment.
This chapter describes the complexity of GSC and their microenvironment niche,
GSCs as a therapeutic target, and details on clinical trials that target GSCs. This
knowledge may help us in better understanding CSCs in glioblastoma and
developing new therapeutic strategies for this deadly disease.

Keywords

Cancer stem cells · Glioblastoma · Brain tumor · Radioresistance

10.1 Introduction

Gliomas are a group of aggressive and most common types of primary central
nervous system cancers. The incidence and mortality of gliomas have increased
globally during the last two decades [1]. Histologically, glioma can be classified as
high-grade glioma [glioblastoma (GBM)] and low-grade glioma (astrocytoma and
oligodendroglioma) [2]. According to the cell of origin, gliomas can be classified as
astrocytic tumors (astrocytoma, anaplastic astrocytoma, and GBM),
oligodendrogliomas, ependymomas, and mixed gliomas [3]. Based on histopathol-
ogy and level of malignancy, the World Health Organization (WHO) classified
glioma under grade I to IV. Grade I glioma is less proliferative and can be treated
by surgical procedures, while grade II to IV types are highly invasive and fatal. Due
to the high malignancy and aggressiveness, WHO designated GBM as grade IV
astrocytoma [3, 4]. Glioblastoma is one of the fatal and malignant forms of tumors
from a glial origin in the human brain with a median survival period of 16–21 months
[5]. Glioblastoma accounts for >60% of all brain tumors in adults with high
mortality rate and a poor prognosis due to the infiltration and migration of GBM
cells, high degree of intratumoral cellular heterogeneity and plasticity, and a high
degree of recurrence [6, 7]. In a cancer perspective, GBM is a rare tumor with a
global incidence rate from 0.59 to 3.69/100,000 population [8]. However, due to
poor prognosis, GBM has a survival rate of 14–15 months and only<5% of patients
reportedly surviving 5 years after diagnosis [9]. The incidence of GBM directly
proportional to age and the median diagnosis age was reported as 64 [8]. Epidemio-
logical studies revealed that the male population is highly prone to GBM than
females [10]. Previous studies suggested that gliomas have higher incidence only
in developed western countries [10]. However, according to a recent study, the
highest gliomas incidence has been reported in eastern countries like China and
India [1]. Geographic variations in the GBM incidence have been studied in the US
population, and the findings revealed that South Americans are highly affected by
GBM than that of other regions [11]. Among White non-Hispanic, Black
non-Hispanic, Asian/Pacific Islanders non-Hispanic (API), and Hispanic adults
GBM patients, a better survival rate was observed in API patients when compared
to other races and ethnicity [12]. These studies indicate that GBM incidence and
patient survival are dependent on race, ethnicity, and geographic region. The exact
etiology of GBM remains unclear. However, studies have shown that high dose
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exposure to ionizing radiation is considered as confirmed etiological factor. Though
mobile phone radiation is associated with an increased risk of low-grade glioma [13],
there is no conclusive evidence reported for the risk factors such as mobile phone
radiation or electromagnetic field [3, 14]. Occupational risk factors such as exposure
to toxic chemicals such as carbon tetrachloride have been associated with the
progression of GBM [15]. Glioblastoma is a highly aggressive and invasive cancer,
and therefore, even with surgery and radio/chemotherapy, there is poor prognosis in
GBM patients [16]. In the last two decades, several drugs such as temozolomide
(TMZ) and bevacizumab are used in GBM patients as adjuvants along with radio-
therapy to improve quality of life and survival [17, 18]. TMZ is recommended for
newly diagnosed GBM patients, while bevacizumab is used to treat recurrence
[18]. Currently, TMZ is used as a potential chemotherapeutic agent for the treatment
of GBM. TMZ metabolites are reportedly causing DNA damage; off-target effects
and its continuous administration caused ineffectiveness in GBM patients due to
resistance [16].

10.2 Glioblastoma Stem Cells (GSCs)

10.2.1 Historical Perspective of GSCs

A pioneering study from Bonnet and Dick (1997) confirmed the existence of
heterogeneity of tumor cells, and they successfully isolated the leukemia-initiating
cells, and they were considered as the first purification of cancer stem-like cells
[19]. To the best of our knowledge, the human neural stem and progenitor cells
(NSPCs) were first isolated by Uchida et al. (2000) using the marker CD133, and this
study paved the way in the quest of brain tumor cells that shared the characteristics of
NSPCs [20]. Since then, several studies described the cancer stem cells (CSCs) in a
variety of brain tumors such as glioblastoma, anaplastic and pilocytic astrocytoma,
ganglioglioma, medulloblastoma, and ependymoma [21–24].

10.2.2 Nomenclature

The heterogeneity of the cell populations within CNS tumors is well documented.
Several terms are used to describe these cell populations; however, individually they
have unique characteristics and functions. The brain CSC nomenclature is used
interchangeably. However, they have unique characteristics. For instance,
(1) tumor or glioma or brain tumor stem cells have the capacity to self-renew and
give rise to differentiated progeny. Their functional characteristics include tumor
generation upon secondary transplantation, and progeny contains CSCs and
non-stem tumor cells; (2) tumor or glioma or brain tumor-initiating cells have the
ability to initiate tumor after transplantation; (3) tumor or glioma or brain tumor-
propagating cells have the ability to propagate tumor after serial transplantation.
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10.2.3 Origin of GSCs

Ample evidences reported that a variety of cancers have a population of cells with
stem cell characteristics that are CSCs [25]. Brain tumors consist of heterogeneous
cell populations and are reported to arise from CSCs (Fig. 10.1). Clinically, GSCs
have been functionally identified in brain tumors in humans [23, 26]. These stem
cells have been reported to mediate treatment resistance to chemotherapy [27, 28],
radiotherapy [25], and also resistant against markers involve in angiogenesis, inva-
sion, and recurrence [28]. In origin point of view, it has been reported that GBMmay
arise from (1) a subpopulation of neural stem cells (NSCs), (2) transformation and
proliferation of differentiated astrocytes in the subventricular zone (SVZ), and
(3) the increased somatic mutations in NSCs in the SVZ [29, 30]. Moreover, an
innovative experimental and clinical finding from Lee et al. (2018) confirmed that
astrocyte-like NSCs in the SVZ are the cell of origin, which is the main driver
mutation in human GBM [31]. This study reported that the acquirement of the
telomerase reverse transcriptase (TERT) promoter mutation allows the prolonged
self-renewal ability of NSCs and subsequent somatic mutation development causes
GBM [31]. However, the origin of GSCs is still subjected to debate, and more
studies are warranted on these lines.

Fig. 10.1 GBM is heterogeneous which contains cancer cells and a small subset of CSCs. The
CSCs can be distinguished from other cell populations. In this model, CSC-specific targeted
therapies are proposed in combination with conventional chemo- and radiotherapies to kill both
CSC and other cancer cells to prevent subsequent relapse
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10.2.4 Cellular Hierarchy of Brain Tumors

The embryonic stem cells are the most primitive cells derived from the inner mass
cells of the human embryo. They are pluripotent and capable of differentiating into
any type of cells in an organism. Downstream from embryonic stem cells are
multipotent progenitor cells that include NSCs, endothelial progenitor cells,
hematopoietic stem cells, and mesenchymal stem cells (MSCs). These cells have
restricted differentiation potential and self-renewal. The multipotent NSCs can give
rise to more downstream progenitor cells with restricted self-renewal potential,
differentiation, and mitosis [32]. In a hierarchical viewpoint, CSC cancer models
reported to arise from CSCs by mutations in embryonic stem cells or in progenitor
cells at birth or accumulate over time resulting in cells possessing the ability for
uncontrolled growth and propagation [33, 34]. Studies have also shown that
non-CSCs can also dedifferentiate into CSCs through epigenetic and environmental
factors, thereby increasing the complexity of the tumor and thus the treatments [35].

10.2.5 Biomarkers of GSCs

Prominin-1 (PROM1/CD133), SSEA-1 (CD15), integrin-α6, and L1 cell adhesion
molecule (L1CAM) are considered as markers for GSCs. PROM1 is a
5-transmembrane (5-TM) protein first recognized in the prominin family [36], and
its expression was identified as a tumor initiator in a variety of cancers including
GBM. Experimental studies proved the tumor-propagating potential of PROM1+

cells in immunodeficient xenograft mice model [37]. Ironically, PROM1� cells also
contributed to the tumor initiation [38]. This study indicates that PROM1 is not only
related to tumor initiation. PROM1+ GSCs are tumorigenic and exhibit self-renewal
and differentiation properties [39]. Clinically, overwhelming evidences indicate that
PROM1 expression and neurosphere formation were associated with short survival
of GBM patients and PROM1 expression was correlated with short survival of mice
transplanted with tumor cells [39, 40]. Therefore, PROM1 could serve as a prognos-
tic marker for GBM.

Some studies have also reported the expression of stage-specific embryonic
antigen-1 (SSEA-1) or CD15 in cells with tumor initiation. It has been experimen-
tally and clinically proven that CD15 expression has been found in PROM1� tumors
and nearly 40% of the freshly isolated GBM specimens did not contain CD133-
positive cells [41, 42]. CD15-positive cells have the ability to generate the cellular
heterogeneity of the primary tumor [43]. An experimental study from Kenney-
Herbert et al. (2015) reported that CD15 was not a useful marker to distinguish a
fast-proliferating, tumorigenic, or stem-like population in GBM [44]. Further,
overexpression of CD44 was related to poor survival rates, and studies suggest
that CD44 could act as an independent prognostic factor in patients with
low-grade gliomas [45]. In GBM, high CD44 expression in GSCs promotes the
tumor progression and invasion, which lead to short survival [46]. A recent study

10 Glioblastoma Stem Cells as a Therapeutic Target 171



demonstrated that high CD44-expressing GSCs in GBM are resistant to radiotherapy
leading to therapeutic failure [47].

Integrins play a pivotal role in CSC biology. GSCs with high integrin-α6 expres-
sion are highly tumorigenic [48]. Integrin-α6 was reported to promote
radioresistance [49]. In a recent experimental study, the functional role of integrin-
α10β1 was established. siRNA-mediated knockdown of integrin-α10 in GBM cells
decreased the neurosphere formation and migration and reduced the viability
[50]. The neuronal cell adhesion molecule L1CAM (L1, CD171) regulates the
growth, migration, and survival of neural cells and is essential for preserving the
proliferation and survival of CD133-positive glioma cells with stem-like properties
[43]. SRY-related HMG-box 2 (SOX2) is a glioma stem cell marker [51], and its
high expression is implicated in tumor formation and chemotherapeutic resistance
[52]. In a recent clinical study, Takashima et al. (2019) reported that nearly 22 sets of
genes including L1CAM and sirtuin 1 can be used as the prognostic markers of
GBM [53]. Though these markers help to identify the GSCs, the conclusive evidence
linked to a stem cell phenotype remains elusive.

10.3 Isolation and Cultures of Primary GSCs

Fresh brain tumor specimens can be collected from patients who underwent surgical
resection of histologically confirmed GBM. Specimens can be collected after
obtaining necessary human ethics committee permission and with the 1964 Helsinki
Declaration. Then, the collected specimen can be immediately transported in
phosphate-buffered saline containing antibiotics (preferably 10–15% penicillin/
streptomycin). GSCs can be isolated from the fresh tissue with trypsin. Under the
sterile conditions, tumor tissue can be cut into small pieces and placed in trypsin-
ethylenediaminetetraacetate solution (0.25%) and incubated for 10–15 min at 37 �C.
After incubation, Dulbecco’s modified Eagle’s medium (DMEM)/F12 culture
medium containing 10% fetal bovine serum (FBS) can be added to stop trypsin
activation and then centrifuged at 3000 rpm for 10 min to recover the cells from the
enzyme. The supernatant is discarded, and complete medium is added to the cell
pellet, mixed well, and filtered through a 70-μm cell strainer. Then the filtered cells
are washed by centrifugation, and fresh culture medium containing 10% FBS and
penicillin (100 U/mL), and streptomycin (0.1 mg/mL) is added. Further, 0.1 mL of
cell suspension and 0.1 mL of trypan blue solution are added, mixed well, and
counted under the inverted microscope using a cell counter. Then approximately
1 � 106 cells are seeded in culture flask containing complete medium and incubated
in a standard culture condition at 37 �C and 5% CO2. After 72 h of incubation, the
flask can be observed for cell adherence and sphere generation, and the medium can
be replaced until enough cell confluency is attained for passage [54, 55]. Then, the
characterization should be done for the expression of tumor stem cell markers
reported. Glioblastoma stem cells are cultured in Neurobasal medium supplemented
with epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) to
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stimulate growth, maintain the stem cell-like characteristics, and preserve the genetic
profile of the GSCs [56].

10.4 Glioblastoma Cell Lines

Rat gliomas cell lines such as C6 and RG2 [D74] are commonly used to study the
GBM due to their high angiogenic, migratory, and invasive properties [57]. Other
human GBM cell lines such as R1, T2, A-172, T98G, U-251, U-87, A172, U-118,
U-138, LN-229, and SNB-19 are characterized and also used by several workers for
in vitro GBM research [58, 59]. These cell lines have unique angiogenic, migratory,
invasiveness, and in vivo metastatic ability after transplantation in animals and
xenograft cancer properties. For instance, LN-229 xenografts were reported to
grow faster than U-251 and U-87 cell lines. Similarly, U-251 xenografts increased
the tumor size. A well-defined cancer mass in the brain parenchyma was established
after the transplantation of the U-87 cell line [59]. Currently, several new human-
derived GBM cell lines developed by various research groups are characterized
[58, 59]. However, none of the studies have recommended any GBM cell line as the
ideal one, and the selection of cell lines is under the discretion of individual
researchers.

10.5 Glioblastoma: Microenvironment and Niche

The niche concept was developed to describe the location of GSCs in the tumor and
where the tumor microenvironment (TME) exerts its maximum influence. It is an
established fact that GSCs in tumor reside in the niche that is like those hosting
normal NSCs in the SVZ. The astrocytes and ependymal cells present in SVZ
regulate stem cell niche, as the former establish close contacts with all cell types
and with blood vessels, sensing and integrating any signals from germinal regions
and vasculature within stem cell niche. The paracrine role of the niche plays a vital
role in the survival of GSCs and resistance to therapy. Cells like neuroblasts, transit-
amplifying cells, and quiescent NSCs also occur in the same niche [60]. These
niches are surrounded by ependymal cells projected towards the ventricle and are
essential for stemness maintenance.

Evidences suggest that perivascular space as a niche for GSCs survival, resistance
to therapy, progression, and dissemination. The perivascular niche of GBM includes
endothelial cells, astrocytes, differentiated and undifferentiated tumor cells, immune
cells, pericytes, vascular basement membrane glioma-associated microglia/
macrophages, myeloid cells, fibroblasts, and obviously, GSCs and normal NSCs
[61, 62]. Upon specific stimuli, GSCs can transdifferentiate into pericytes or endo-
thelial cells and directly contribute to the perivascular niche. Perivascular niches are
represented by capillaries or arterioles where ECs are in direct contact with stem
cells. Larger vessels like transport vessels cannot be considered as niches as they do
not have direct contact with GSCs and endothelial cells [60, 63]. When niches are
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found in the most invasive area of the tumor, they are called invasive niches
[63]. Oxygen concentration plays a pivotal role in maintaining the stemness of
GSCs defining perivascular and the hypoxic niches [64]. The existence of enriched
hypoxic region GSCs has been reported as one of the hallmarks of GBM [65]. Hyp-
oxia in GSCs involve plasticity and self-renewal and modulate the functions of
non-GSCs via metabolic reprogramming and transcriptional regulation by activation
of hypoxia-inducible factors 1α and 2α (HIF1α, HIF2α), Notch signaling, and
epigenetic regulations [66, 67] (Fig. 10.2). Hypoxia in GSCs induces the secretion
of various soluble factors such as transforming growth factor-β (TGF-β), vascular
endothelial growth factor (VEGF), etc. which are crucial for dedifferentiation and
angiogenesis in the tumor microenvironments [67]. Hypoxia condition also induces
factors like C-X-C motif chemokine receptor 4, glucose transporter 1, hypoxia-
inducible gene 2, serpin B9, octamer-binding transcription factor 4, and lysyl
oxidase for the stemness maintenance and proliferation of GSCs [65]. The niche
cells are responsible for the synthesis of a variety of signaling molecules, and at the
same time, they respond to the stimuli from paracrine signaling.

10.6 Signaling Pathways Involved in GSC Regulation

Several signaling molecules secreted by the cells in tumor niche are responsible for
tumor suppression and also pro-tumorigenic potential. TGF-β signals via its down-
stream serine/threonine kinase receptors to activate messenger proteins (SMADs)
and induce the upregulation of several genes/proteins associated with the progres-
sion of GBM [68]. High TGF-β expression is involved in tumor cell proliferation,
invasiveness, immunosuppression, and renewal of GSCs [69]. Interacting with
fibroblast growth factor (FGF) and VEGF, TGF-β contributes to angiogenesis for
rapid tumor growth [70]. Moreover, TGF-β also induces radioresistance [71]. In
human GBM, the isoforms of TGF-β1 and TGF-β2 levels were found 33- and
11-fold, respectively, higher than in the healthy brain, and their expressions were
inversely correlated with overall survival (OS) of GBM patients [70]. Bone morpho-
genetic protein (BMP) signaling is also a part of the TGF-β family. In GSC’s point of
view, BMP induces differentiation of these cells and is reported as a tumor suppres-
sor [72, 73]. For instance, it has been reported that BMP 7 could induce the
transcription factor Snail and decrease the tumor growth via activation of astrocytic
differentiation in GSCs in an orthotopically xenografted immunodeficient mouse
model. The same study has used a GBM cell line in vitro and confirmed the
repression of the TGF-β1 promoter upon Snail binding through its N- and
C-terminal domains that interact with BMP and SMADs of TGF-β signaling
[74]. These studies have proposed that BMP agonist can be developed as promising
GBM-suppressive drugs. However, BMP signaling extends beyond the GSC com-
partment and fosters tumorigenesis in neoplastic astrocytes through the promotion of
proliferation and invasion, and this experimental study suggested the differential
regulation of BMP in GSCs and in other GBM compartments [75].
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Fig. 10.2 Characteristic features of glioblastoma stem cells (GSCs). Neural stem cells (NSCs), L1
cell adhesion molecule (L1CAM), Sonic hedgehog (SHH), transforming growth factor beta
(TGF-β), bone morphogenetic protein (BMP), nitric oxide (NO), hypoxia-inducible factors
(HIFs), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1α (SDF-1α),
epidermal growth factor receptor (EGFR), hepatoma-derived growth factor (HDGF), ephrin type-
A receptor 2 (EphA2), matrix metalloproteinases (MMPs), C-X-C motif chemokine receptor
4 (CXCR4), octamer-binding transcription factor 4 (OCT 4), telomerase reverse transcriptase
(TERT), SRY (sex-determining region Y)-box 2 (SOX2)
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Notch and Wnt/β-catenin signaling pathways are strongly implicated in GBM
progression. Notch signaling via NO plays a critical role in both GSC maintenance
and GSC radioresistance [76]. Gersey et al. (2019) reported the increased Notch
activation and expression in human GBM cell lines [77]. Wnt/β-catenin and Notch
signaling are involved in tumor progression by promoting proliferation and
clonogenic ability and inhibiting neuronal differentiation in GSCs. This has been
confirmed in a study in which dual inhibition of Wnt/β-catenin and Notch signaling
in GSCs that express high levels of the proneural transcription factor ASCL1 leads to
robust neuronal differentiation and inhibits clonogenic potential [78]. However,
studies have also demonstrated that treatment with Wnt ligands and β-catenin
overexpression may induce neuronal differentiation and inhibit the proliferation of
primary GBM cells [79]. Several studies illustrated the Wnt activation in human
GBM and suggested the novel Wnt signaling antagonists for the treatment of
GBM [80].

GSCs secrete several cytokines or growth factors, such as epidermal growth
factor receptor (EGFR) and VEGF, to promote angiogenesis through endothelial
cell proliferation and recruitment [76]. Like other cancers, EGFR and VEGF
expressions are strongly implicated in human GBM. Increased expression of
EGFR has been reported in GSCs, and EGFR is essential for proliferation, survival,
and invasiveness of GSCs [81]. In an in vitro study, ZR2002 (a small-sized and
novel inhibitor developed with haloalkyl arm capable of reacting with the receptor
itself and with DNA and bases and crossing the blood-brain barrier) induced
cytotoxicity in GSCs resistant to TMZ and gefitinib, a clinical EGFR inhibitor
[82]. The VEGF is a highly specific endothelial cell mitogen that has been shown
to promote vascular endothelial cell proliferation, migration, and survival, resulting
in tumor angiogenesis, a requirement for glioma [83]. In another study, glioma stem
cell-derived exosomes promoted the angiogenic ability of endothelial cells through
miR-21/VEGF signal growth [84].

10.7 Glioblastoma Stem Cells as a Therapeutic Target

Glioblastoma is highly heterogeneous involving several cell types, and GSCs secrete
a variety of cell signaling molecules and respond to various paracrine signaling.
Therefore, targeting with a single agent is a challenging task. However, studies have
reported targeting specific GSC receptors and came out with promising results. For
instance, in an epigenetic point of view, histone deacetylases (HDACs) are
implicated in several cancer cell types including GBM. Therefore, HDAC inhibitors
such as TSA and SAHA have been tested against the U87-MG cell line and primary
tumor (GBM011) cells. HDAC activity blockade downregulates the GBM progres-
sion due to the modulation of plasticity in vitro [85]. Integrin-α7 (ITGA7), a major
laminin receptor in GSCs, has been identified as a therapeutic target in GBM
patients. Targeting of ITGA7 by RNAi or blocking mAbs impaired laminin signal-
ing and delayed tumor engraftment and invasion [86]. TGF-β inhibitors like
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AP12009, LY2157299, and GC1008 have been tested in clinical trials; however,
they had limited therapeutic potential in GBM patients [87].

In the hypoxia perspective, GSCs are maintained in the hypoxic niche and are
responsible for GBM initiation, progression, and recurrence. Notch pathway is
important for hypoxia-mediated maintenance of GSCs, and therefore, inhibition of
Notch signaling or depletion of HIFs can inhibit the hypoxia-mediated maintenance
of GSCs. In previous studies, blocking Notch signaling through γ-secretase
inhibitors caused depletion of CD133+ in GSCs, decreased neurosphere formation,
and inhibited xenograft tumor growth through decreased Akt and STAT3 phosphor-
ylation [88]. Combination therapy using Notch and Akt inhibitors, MRK003 and
MK-2206, respectively, tested in the GBM cell line indicates that combination
therapy is useful in controlling invasion but not the proliferation of GBM cells
[89]. However, a phase 1 clinical trial encountered Notch inhibition via RO4929097,
gamma-secretase inhibitor in glioma patients, and reported that the inhibition of
Notch signaling alone is insufficient to fully control tumor progression; however,
this study is not GSC specific [90].

Epithelial-to-mesenchymal transition (EMT)-like process is considered to play an
important role in the invasiveness in GBM. In a study, metformin has been reported
to inhibit the self-renewal ability of GSCs and decrease the expression of stem cell
markers such as Bmi1, Sox2, and Musashi1, indicating that metformin could inhibit
cancer stem-like properties of GBM cells. Metformin also inhibited the Akt and
TGF-β2 and its downstream SMAD signaling [91, 92]. Interestingly, a plant-derived
drug resveratrol is reported to inhibit EMT-assisted self-renewal capacity of GSCs
and EMT-induced cancer stem cell markers Bmi1 and Sox2. These effects were also
confirmed in the xenograft experiments in vivo [93].

In the immunology perspective, GBM patients have been targeted with several
immune modulators. For instance, cetuximab, trastuzumab, and panitumumab are
EGFR monoclonal antibodies that have shown effectiveness in preclinical studies.
However, in phase 2 clinical trial, cetuximab had no therapeutic effect and no
changes in OS [94, 95]. GSCs specifically express SOX6 and are killed by cytotoxic
T lymphocyte (CTL) primed against SOX6-derived peptides [96], and therefore,
GSC antigen peptides recognized by CTL can be applied to immunotherapy that
targets GSCs [97]. Dendritic cell-based vaccination-induced CTL recognized GSCs
and prolonged the survival of tumor-bearing xenograft animals [98]. The AC133
epitope of CD133 is a vital GSC marker for GBM; therefore recombinant
AC133 � CD3 bispecific antibody was developed. This bispecific antibody
redirected to polyclonal T cells to CD133+ GSCs and decreased colony-forming
ability of human glioma cell line (U-251), induced their lysis, and prevented the
xenograft growth in vivo [99]. Similarly, several immune targets have been tried in
GSC for the treatment of GBM. Clinical trials targeting GSCs in GBM condition has
been listed in Table 10.1.
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10.8 Conclusions

Till now, GBM is the most deadly and aggressive cancer. Several types including
GSCs in the TME contribute to the progression and relapse. Available studies
demonstrated that GBM microenvironment has a variety of CSC population includ-
ing GSCs which display stem-like properties. GSCs are resistant to chemo- or
radiotherapy, and hence, GSC-specific targeted therapies are need for the hour.
Three main features of the GBM that hamper the treatment are (1) occurrence of
chemo- or radioresistant GSCs in the TME, (2) heterogeneity of tumor, and (3) the
microenvironment and the niche responsible for the secretion of various onco-
genic soluble factors. Often, glioma treatments with various strategies affect the
normal cells residing near the cancer environment. Till now, only a basic under-
standing of plasticity, differentiation, and colony formation of GSCs has been
reported and the results derived from such studies are inconsistent. Though studies
have reported the modulation of several cell signaling molecules in GSCs, several
aspects have not yet been fully established. For instance, BMP is differentially
expressed in GSCs as well as in other areas like solid tumors. The reason behind
this kind of discrepancies needs to be addressed soon. Some plant-derived drugs
have high molecular weight with poor bioavailability that hamper its ability to cross
the blood-brain barrier. Therefore, care should be taken on drug size and bioavail-
ability. Moreover, most of the therapeutic interventions are tested against in vitro and
in vivo using xenograft animal models. Such studies are useful for interpretation of
the results, and per se they will not recapitulate the TME of humans, and it will not
give the conclusive evidence, and therefore, more studies are warranted on GBM
patients.
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Angiogenesis 11
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Abstract

Angiogenesis is a highly regulated process of formation of new blood vessel from
preexisting blood vessel during fetal development, ovulation, and wound healing.
Tumor growth and maintenance are critically controlled by tumor angiogenesis by
facilitating the ingress of tumor cells into the circulatory system and in turn
metastatic spread of the tumor. Apart from self-renewal and proliferating
capabilities, cancer stem cells (CSCs) are also involved in tumor angiogenesis.
CSCs establish a vascular niche by expressing vascular-related mediators to induce
neovascularity around tumors. Developing antiangiogenic agents that also targets
CSCs and evaluating its effect on a three-dimensional (3D) angiogenesis spheroid
model are significant cancer therapeutic measures as the interactions between niche
and CSCs and the heterogeneity can be understood better by using 3D spheroid.
Furthermore exploiting the antiangiogenic effect of phytochemicals is beneficial
over other available conventional drugs as they have relative pharmacological
safety and target multiple molecular pathways to exert its anticancer effect.
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Abbreviations

ABCG-2 ATP-binding cassette subfamily G member 2
ALK1 Activin A receptor-like type 1
BM Basement membrane
BMP Bone morphogenic proteins
BMPR Bone morphogenetic protein receptor
COX-2 Cyclooxygenase-2
CSC Cancer stem cell
EC Endothelial cell
ECM Extracellular matrix
EGCG Epigallocatechin gallate
EPC Endothelial progenitor cell
FGF Fibroblast growth factor
LGR5 Leucine-rich repeat-containing G-protein coupled receptor 5
MVD Microvessel density
PD-ECGF Platelet-derived endothelial cell growth factor 1
PDGF Platelet-derived growth factor
PGE2 Prostaglandin E2
SDF-1 Stromal cell-derived factor 1
TGF Transforming growth factor
TNF-α Tumor necrosis factor-α
VEGF Vascular endothelial growth factor
VEGFR-2 Vascular endothelial growth factor receptor 2

11.1 Angiogenesis

Angiogenesis is a complex process that involves the activation, proliferation, and
directed migration of endothelial cells to form new capillaries from existing blood
vessels [1]. This highly regulated process occurs during various physiological
conditions like human development, reproduction, and wound repair [2]. Angiogen-
esis also has its role in pathological conditions like cancer, rheumatoid arthritis,
psoriasis, and proliferative retinopathy [3]. Various factors like soluble polypeptides,
cell-cell and cell-matrix interactions, and hemodynamic effects influence angiogen-
esis. Various inducers of angiogenesis include vascular endothelial growth factor
(VEGF) family, angiopoietins, transforming growth factors (TGF), platelet-derived
growth factor (PDGF), tumor necrosis factor-α (TNF-α), interleukins, and members
of the fibroblast growth factor (FGF) family [4, 5]. Among these VEGF-A is the
most potential proangiogenic protein which helps in induction of proliferation,
sprouting, and tube formation of endothelial cells (ECs). Under hypoxic condition
VEGF binds to its tyrosine kinase receptors (VEGFRs) present on endothelial cells
and triggers the signal transduction pathways that kindle the cells to undergo
sprouting angiogenesis [6, 7].
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11.1.1 Tumor Angiogenesis

Angiogenesis plays a key role in the metastatic spread of the tumor by facilitating the
ingress of tumor cells into the circulatory system and hence instrumental in the
formation of pre-metastatic vascular niche [8]. As the tumor progresses, it becomes
malignant and attains the hypoxic condition. Hypoxia induces the release of angio-
genic growth factor molecules. This dominating proangiogenic signaling turns on
the angiogenic switch. Upon binding of these growth factors to the endothelial cell
receptors of the blood vessels in close proximity arises new blood vessel that invades
the tumor and aids in its progression [9] (Fig. 11.1). The blood vessels formed during
tumor angiogenesis are different from the normal vessel in that the walls of tumor
vessels are made of both tumor cells and ECs [11]. Peripheral blood vessels are often
devoid of functional pericytes [12] and thus an incomplete basement membrane
which makes those vessels to be leaky and dilated [13]. Analogous to normal
angiogenesis, tumor angiogenesis also relies on VEGF and other angiogenic proteins
for tumor vasculature maintenance. Elevated expression of VEGF and its receptor
VEGFR-2 was reported in many cancers, including metastatic human colon

Fig. 11.1 #Tumor-influenced angiogenesis. The stepwise process of angiogenesis begins with
ECM and BM breakdown, followed by EC proliferation, EC migration, and finally re-formation of
stable blood vessel. Tumor cells will secrete a variety of factors to ensure that the new blood vessels
formed are fed directly to the tumor tissue [10]
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carcinomas, which results in enhanced tumor vascularization [14]. Ang-2
(angiopoietin-2) expresses greatly in ECs of tumor vessel than in normal vessels.
It imparts plasticity to developing vasculature in the presence of VEGF and plays an
important role in initial stages of tumor angiogenesis [15, 16]. TGF-β signaling
activates tumor growth and metastasis through induction of stromal reaction by
neoplastic cells which results in the promotion of angiogenesis and tumor growth
[17–19].

11.2 Cancer Stem Cell (CSC) and Angiogenesis

Apart from self-renewal and proliferating capabilities, CSCs are also involved in
tumor angiogenesis. CSCs establish a vascular niche by expressing vascular-related
mediators to induce neovascularity around tumors [20]. Tumor heterogeneity is
influenced extrinsically by a major factor called tumor microenvironment or niche.
A niche is a composition of stromal cells, immune cells, endothelial cells, and cancer
cells per se, as well as connective tissue components, growth factors, and cytokines
[21]. Niche plays an essential role in the maintenance/enrichment, preservation of
the phenotypic plasticity, immune surveillance, differentiation/dedifferentiation,
angiogenesis activation, and invasion/metastasis of CSC [22–24]. CSCs and angio-
genesis thus exhibit positive feedback and contribute to tumor angiogenesis.

11.2.1 Molecular Interplay of CSC and Angiogenesis

At both normoxic and hypoxic conditions, CSCs secrete greater levels of VEGF than
the non-CSC population. Such CSC-mediated VEGF production leads to enhanced
endothelial cell migration and tube formation in vitro (Fig. 11.2). These newly
generated vessels supply nutrients for the growth and development of cancer
[25]. Diverse studies confirmed the potential of CSCs to encourage angiogenesis
and produce angiogenic cells that interact with vascular niche and promote angio-
genesis through the secretion of VEGFs, stromal-derived factor 1 (SDF-1), and

Fig. 11.2 Interplay of CSC
and angiogenesis
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tumor microvesicles [26–28]. As to confirm this, Grange et al., in 2011, showed that
microvesicles that shed from CSCs from human renal cell carcinoma carry a set of
proangiogenic mRNA and microRNA, which bestow the angiogenic phenotype to
the normal human endothelial cells and thus trigger angiogenesis by promoting their
growth and vessel formation.

11.2.1.1 Signaling Pathways Linking CSC and Angiogenesis
To understand how vascular endothelial cells maintain CSC proliferation, it is
essential to be aware of the signaling pathways that relate CSC and angiogenesis.
BMP (bone morphogenic protein) signaling is one such critical pathway. BMP
which is known to help in bone formation is also involved in angiogenesis inhibition.
BMP-9/ALK1 inhibits angiogenesis by suppressing VEGF expression through
BMP-9 which is against the effect of the TGFβ1/ALK5 pathway that enhances
VEGF expression and angiogenesis. BMP-4 balances these two pathways and
maintains the vascular integrity [29]. This BMP-4 is also shown to exert anti-
tumorigenic effect through BMP-4/BMPR/SMAD signaling pathway in glioblas-
toma cancer stem cells [30].

Notch signaling pathway is yet another pathway that relates CSCs and angiogen-
esis. Vascular development and survival of normal stem cell are supported by the
Notch/NICD/Hes/Hey signaling pathway [31, 32]. Studies show that renewal of
CSCs and angiogenesis in glioblastoma are also supported by Notch pathway.
Inhibition of this Notch pathway using DAPT (γ-secretase inhibitor) reduced the
number of CD133+ tumor cells and the ability of CSCs to self-renew. Vascular
markers such as CD105, CD31, and von Willebrand factor also exhibited reduced
expression [33].

11.2.1.2 CSCs Expressing Angiogenic Markers
A variety of CSCs that express vascular endothelium markers to support tumor blood
vessel formation have been discussed in this section. Nestin+/CD133+ brain cancer
(oligodendroglioma and glioblastoma) stem cells are in close interaction with endo-
thelial cells and provide factors that are responsible for self-renewal mechanisms of
CSCs. Further these stem cells are to be found in close proximity to CD34+
capillaries and correlate to microvessel density (MVD) [34]. In malignant gliomas,
Bao et al. observed that CD133-enriched SCLGC (stem cell-like glioma cells) are
located near blood vessels. CD133+ SCLGC enhanced tumor vascularity, necrosis,
and hemorrhage when compared to CD133- SCLGC. CD133+ SCLGC also elevated
VEGF expression around 10- to 20-fold, and vascular density was significantly
increased [25]. Yang et al., in 2010, showed that in hepatocellular carcinoma, the
MVD and angiogenic factors like VEGF and PD-ECGF are dramatically expressed
in the high hepatic stem/progenitor cell (HSC/HPC) profile group (CD133, nestin,
CD44, and ABCG2) than in the low HSC/HPC profile group. In the tumors of
glioma condition, huge CSC population recruits enormous amount of endothelial
progenitor cells (EPC) which in turn stimulates VEGF and SDF-1 and thereby brings
about local angiogenesis and mobilizes EPC. These data are partly an indication to
the fact that cancer stem cells induce tumor angiogenesis by introducing angiogenic
factors to the cancer microenvironment (Table 11.1).
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11.3 Antiangiogenic Therapy by Targeting CSCs as a Significant
Therapeutic Measure

Tumor vasculature that regulates the tumor microenvironment also contributes to
stem and progenitor cell formation [35]. Angiogenesis inhibitors are thus expected
not only to disrupt vessel formation but also target the CSC that contributes to tumor
angiogenesis (Fig. 11.3). The available antiangiogenic agents like bevacizumab,
thalidomide, sorafenib, sunitinib, and pazopanib along with targeting the vascular
niche are also involved in the commotion of the CSC microenvironment [36]
(Fig. 11.3). Antiangiogenic therapy in treating brain cancers is executed by targeting
VEGF, which inhibits the tumor vasculature, partly disturbs the CSC vascular niche,
and ablates self-renewing cancer stem cells [34]. Celecoxib, an anticancer drug, is
cytotoxic for CSCs. It exerts anticancer effect by inhibiting the COX-2/PGE2/VEGF

Table 11.1 CSCs expressing angiogenic markers

Tumor type CSC marker
Angiogenic
marker Function

Malignant glioma CD133 VEGF Cause MVD increase

Oligodendroglioma and
glioblastoma

CD133, nestin CD34 Cause MVD increase

Hepatocellular
carcinoma

CD133, ABCG2,
nestin CD44

VEGF,
PD-ECGF

CSC and angiogenic
markers co-expressed

Glioblastoma Nestin VEGF,
SDF-1

Induce angiogenesis

Pancreatic cancer CD133 VEGF-C Cause MVD increase

Fig. 11.3 Antiangiogenic therapy by targeting CSCs and tumor angiogenesis
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and WNT/LGR5 stemness pathways. COX-2 produces prostanoids PGE2, which are
released by tumor and stromal cells. PGE2 acts in an autocrine/paracrine manner
binding to surface members of the prostanoid receptor family (EP1–4) to increase
cancer cell stemness and angiogenesis (via production of VEGF and FGF) [37]. All
the above findings infer the fact that developing antiangiogenic agents that also
target CSCs is a significant cancer therapeutic measure. Such a combination of
therapy serves the dual purpose of depriving the tumor of vascular supply and
preventing the recurrence of tumor by debulking the tumor mass.

11.3.1 Implications of Phytochemicals as Potential CSC-Targeting
Therapeutics

Phytochemicals are naturally occurring bioactive compounds derived from plants.
They represent a good candidate for chemopreventive and chemotherapeutic
applications. Phytochemicals are also reported to modulate the CSC phenotype by
intervening the signaling pathways critical for stemness maintenance of CSCs
[38]. Cyclopamine, initially found in the corn lily, targets hedgehog signaling [39–
42], while EGCG and retinoic acid inhibit Wnt/�catenin signaling [43–45] and
Notch signaling [46, 47], respectively. These signaling pathways are responsible for
CSC self-renewal, differentiation, and invasive abilities. Furthermore,
phytochemicals from turmeric (curcumin) and long pepper (piperine) are known to
bring about anticancer effect upon targeting breast CSCs by inhibiting Notch and/or
Wnt/�catenin signaling [48]. On the basis of the above accumulating evidence, it is
evident that phytochemicals have beneficial effects against CSCs as well as cancer
cells. However there seems to be no studies supporting the effect of phytochemicals
on targeting CSCs expressing angiogenesis markers. Future studies should hence be
directed toward identifying antiangiogenic phytochemicals targeting CSCs as use of
phytochemicals is beneficial over other available conventional drugs as they are
naturally present in edible plant materials and have relative pharmacological safety.
Moreover they bring about anticancer effect by targeting multiple molecular
pathways.

11.4 Angiogenesis Spheroid Models: Connecting Vascular
Niche and CSCs

The interactions between niche and CSCs and the heterogeneity can be understood
better by using three-dimensional (3D) spheroid. 3D spheroids recapitulate the
spatial dimension, cellular heterogeneity, and the molecular networks of the tumor
microenvironment. Sophisticated 3D models are proposed with the potential to
further understand the CSCs in a more appropriate condition resembling the
in vivo microenvironment. In vitro spheroid forming ability is considered as a
substitute to examine the functionality of CSCs as CSCs pose the tendency to
propagate as spheroid bodies [49]. As the spheroid models mimic the in vivo cancer
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microenvironment, it is essential for any anticancer drug to be tested upon the 3D
spheroid models than the 2D monolayer cultures. Any antiangiogenic drug thus
developed needs to be checked upon the angiogenesis spheroid model to test the
antiangiogenic effect by its ability to inhibit sprouting (tube formation) of blood
vessels as well as spheroid development which is an indication of cancer stemness.

11.4.1 Sprouting Spheroid-Based 3D Angiogenesis Model

A 3D spheroid system involving co-culturing of endothelial cells, fibroblasts
(fibroblasts in direct contact with endothelial cells allow formation of endothelial
cell tubules in vitro), and the tumor cell line mimics the complex cancer-stromal
interactions and tumor angiogenesis condition. This model system bridges the gap
between 2D monoculture and in vivo systems and serves as potential platform to test
the efficacy of various antiangiogenic drugs on a 3D in vitro model of tumor [50].

A 3D spheroid co-culture system is generated by adding HUVECs, fibroblast
cells, and tumor cells to each well of a 96 U-well suspension plate. The cells form
spheroids overnight at 37 �C. The spheroids are then transferred to a collagen type-I-
coated 24 well plates. Angiogenesis inhibitors were added to the wells, and the
spheroids were allowed to form sprouts for 2 days at 37 �C. Spheroids incubated in
type-I collagen form capillary-like sprouts that mimic early stages of tumor angio-
genesis. Angiogenic sprouting can be evaluated by analyzing the sprouts arising
from the spheroid core using phase contrast microscope. Number of sprouts and
length (mean and cumulative values) of the sprouts are the important parameters to
be analyzed. Further the spheroid cells can be sorted using FACS for identification of
altered angiogenic and CSC markers upon drug treatment [51] (Fig. 11.4).

11.5 Perspectives and Future Direction

Critical progress has been made in the field of cancer stem cell biology over the
years. The accumulating evidences stated in this chapter reveal the importance of
antiangiogenic phytochemicals targeting the CSC population. Application of in vitro
angiogenesis spheroid models that mimic the capillary-sprouting mechanism and
cancer stemness of tumor microenvironment in anticancer drug development has
significant ramification for the future of cancer therapeutics.

Clinical manipulation of the interplay between CSCs, angiogenesis, and the
tumor vasculature opens up new therapeutic windows in the area of tumor biology
to provide antitumor effect. Integrating antiangiogenic therapy with anti-CSC ther-
apy in treatment paradigm may improve the efficacy of current cancer therapies.
Furthermore, it is essential to take into account that this integrated therapeutic
strategy should have minimal or no effect on normal stem cells. As there are no
studies reporting the role of phytochemicals in targeting CSC expressing angiogenic
markers, future studies should be directed toward involving the antiangiogenic
phytochemicals as a novel paradigm for potential CSC-targeting therapeutics.
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CSCs often exhibit EMT (epithelial-mesenchymal transition) properties. EMT
confers tumor angiogenesis by upregulated expression of the proangiogenic factor
VEGF-A. In recent years studies are involved in delineating the complex EMT
network using CRISPR/Cas technology [52, 53]. Therefore as an alternative
approach, further research is warranted to apply emerging CRISPR/Cas9 gene
editing technology to target EMT expressing CSC-related genes to alleviate the
tumor burden.
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Cancer Stem Cells as a Seed for Cancer
Metastasis 12
L. Lizha Mary, M. Vasantha Kumar, and R. Satish

Abstract

Cancer is one of the leading causes of death worldwide. Recent report from the
World Health Organization suggested that, globally, one in six deaths is owing to
cancer. In 2018, it was accountable for nearly 9.6 million deaths, and it is
expected to be 14.6 million by the year 2035. The worldwide burden of cancer
increase is due to aging and growth of population. In addition, cancer-associated
lifestyle choices like smoking, sedentary habits and westernized diets increases
the risk. Metastasis is complex and multistep process that results in the spread of
cancerous cells from the primary site of the tumor to the surrounding tissues and
to distant organs. Metastatic cancer is the primary cause of cancer morbidity and
mortality. Several studies suggest that tumor has heterogeneous cell population
and have numerically less cancer stem cell (CSC) population with self-renewal
characteristics. CSCs are shown to drive tumor initiation, progression, metastasis,
recurrence, and resistance. In addition, acquisition of epithelial-mesenchymal
transition, expression of aberrant RNA-binding proteins, dysregulated
microRNA expression, and increase in intercellular transfer of molecules via
exosome cargo have been correlated with tumor progression, invasion, metasta-
sis, poor survival, and an increased risk of cancer recurrence. Given the tumor
initiating capacity, resistance, migratory potential and invasiveness, CSCs are the
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seeds of metastasis. This review article attempts to provide the details of the
critical importance of CSCs on metastatic process and to offer a basis for the
investigation of novel targets to curtail this deadly disease.

Keywords

MicroRNA · Epithelial-mesenchymal transition · Exosomes · RNA-binding
proteins

12.1 Introduction

Cancer is one of the leading causes of death worldwide [1]. Recent report from the
World Health Organization suggested that, globally, one in six deaths is owing to
cancer. In 2015, it was accountable for nearly 8.8 million deaths, and it is expected to
be 14.6 million by the year 2035. The worldwide burden of cancer increase is due to
aging and growth of population. In addition, cancer-associated lifestyle choices like
smoking, sedentary habits, and westernized diets increases the risk. Cancer is a
complex disease with various cellular alterations that will result in self-sufficiency in
growth signal leading to abnormal cell growth, evading apoptotic and growth
suppressor signals, and increased angiogenesis, wherein, network of blood vessels
develop and penetrates into the tumor to supply nutrients and oxygen for the
cancerous cells. Some of the tumor cells invade surrounding tissues and distant
organs through the blood circulation or lymph vessels. This spread of cancer cells
from primary tumor to other sites is termed metastasis, which is shown to be
responsible for more than 90% of cancer-related death. Cancer stem cells (CSCs)
are cells within a tumor that exclusively have self-renewal capacity and can give rise
to all cancer cell lineages within a tumor and are exclusively tumorigenic in vivo.
They undergo asymmetric/symmetric cell division, can maintain and expand them-
selves, and also have a distinct profile of surface marker expression that has been
linked to poor prognosis [2]. Intriguingly, it has been shown that CSCs drive tumor
initiation, progression, metastasis, recurrence, and resistance. Identification of
CSC-specific surface markers has provided opportunity to characterize CSCs and
their role in tumor progression and metastasis. In addition, acquisition of epithelial-
mesenchymal transition (EMT) features, expression of aberrant RNA-binding
proteins, dysregulated microRNA expression, and increase in intercellular transfer
of molecules via exosome cargo have been correlated with tumor progression,
invasion, metastasis, poor survival, and an increased risk of cancer recurrence.
Given the tumor initiating capacity, resistance, migratory potential and invasiveness,
CSCs are the seeds of metastasis [3]. This review article attempts to provide the
details of advances in the role of CSCs on metastatic process that will aid in better
understanding of the involvement of cancer stem cells (CSCs) in the metastatic
processes and to offer a basis for the investigation of novel targets to curtail this
deadly disease (Fig. 12.1).
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12.2 Epithelial-Mesenchymal Transition in Regulation of CSCs
and Metastasis

Epithelial-mesenchymal transition (EMT) is a process where the cancer epithelial
cells lose many of their epithelial characteristics and acquire various mesenchymal
cell characteristics such as cell morphology, cytoskeletal organization, and cell
junctions that will enable cell invasion and migration. Cancer cells have been
observed in the circulation, whether as single or in clusters; these cells display
signs of at least partial epithelial-mesenchymal transition [4]. Earlier reports have
provided evidence that in the tumor, only CSC-enriched subpopulation exhibits
aspects of EMT-related gene activation [5, 6]. In addition, induction of
EMT-related gene expression in epithelial tumor cells has increased their capacity
for tumor progression and metastasis [7]. Eliminating CSCs alone will not be
sufficient to prevent tumor recurrence as the non-CSCs can undergo EMT and
dedifferentiate into CSCs [8]. Therefore, for effective cancer therapeutic strategy,

Fig. 12.1 Schematic representation for cancer metastasis
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both CSCs and non-CSCs should be simultaneously targeted. We have listed the
most important CSC markers for various cancer subtypes (Table 12.1).

The traits of EMT are the loss of epithelial cell surface marker, E-cadherin, and
the gain of mesenchymal traits [28]. The initiating factors are seen to be mostly
because of networks of transcriptional, translational, posttranscriptional, and post-
translational modifications seen in the cells [29]. The ALDH+ cells strongly
displayed stem cell-like properties plus higher invasiveness, EMT, and antiapoptotic
phenotypes [30]. In the case of human breast cancer cells, it was observed that a
small population of cells, which exhibited EMT, also displayed stem cell-like
phenotypes. Fascinatingly studies performed in transgenic cancer models in combi-
nation with S100A4 lineage tracing have stated that EMT of the breast cancer cells is
not responsible for their metastasis to the lungs, but they had a significant role in
promoting chemoresistance. The lowering the levels of E-cadherin in the mouse
models showed that inhibition of the epithelial traits may promote migration but
does not result in metastasis [31]. CD44 is a popular cell surface glycoprotein, which
is strongly associated to the stemness of the cancer and its aggressiveness. In the case

Table 12.1 Cell surface markers of CSCs in different types of cancer

Cancer types Cell surface markers of CSCs References

Acute Myeloid Leukemia CD34+, CD38� Won-Tae Kim and Chun Jeih
Ryu [9]

Cervical cancer CD133+ and CD49F Ruixia Huang and Einar
K. Rofstad [10]

Bladder cancer CD44+ and CD67LR Yi Li et al. [11]

Oral squamous cell
carcinoma

CD44+ Weiming Lin et al. [12]

Renal cell carcinoma CD133+, CXCR4, CD105+ Zhi-Xaiang Yuan et al. [13]

Hepatic/liver cancer Laminin-332 Olivier Govaere et al. [14]

CD133+, ALDH+, CD45�,
CD90+, and CD44+

Jing-Hui Sun et al. [15]

Esophageal squamous cell
carcinoma

Integrin X7 (ITGA 7) Xiao-Yan Ming et al. [16]

Colon cancer CD133+, CD44+, and CD24+ Sahlberg SH et al. [17]

Lung cancer CD133+, ABCG2 (high) Shaheenah Dawood et al.
[18]

Thyroid cancer CD133+ and CD144+ Zhenying Guo et al. [19]

Breast cancer CD44+, CD24�, CD133+, and
ALDH+

Bin Bao et al. [20]

Ovarian cancer CD44+/CD117+ M-Q Gao et al. [21]

Gastric cancer CD44+ Yoshiro Saikawa [22]

Pancreatic cancer CD44+, CD24+, and ESA+ Chenwei Li et al. [23]

Glioblastoma multiforme CD133+ Shideng Bao et al. [24]

Melanoma cancer CD20+ Dong Fang et al. [25]

Prostate cancer CD44+/CD24� Eun-Jin Yun et al. [26]

Brain cancer CD133+ Sheila K Singh et al. [27]
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of ovarian cancer cells, the overexpression of CD44 resulted in population of cells
with mesenchymal-like phenotypes (CD44S) and decreased the number of
epithelial-like cells. The downregulation of ESRP1 and upregulation of TGFPs1
promoted EMT, invasiveness, and the gain of stem cell-like phenotypes and
chemoresistance in CD44 cells [32].

In the colorectal cancer cells, abnormal expression of miR-26b induced EMT and
stem cell-like characteristics. Lymphatic metastasis shows significantly upregulated
levels of miR-26b. miR-26b directly targets many tumor suppressors along with
phosphatase and tensin homolog (PTEN) and wingless-type MMTV integration site
family member 5A (WWT5A) [33].

The role of IncRNAs was evaluated in two sets of cells: colorectal cancer with
liver metastasis and colorectal cancer without liver metastasis. The expression levels
of UICLM (upregulated in colorectal cancer liver metastasis) IncRNA was
upregulated in the CRC with liver metastasis, and the knockdown of UICLM
prevented cell proliferation, invasion, epithelial-mesenchymal transition, and CRC
stem cell formation. Further experiments found that IncRNA UICLM regulated
ZEB2 [34, 35].

MYC (c-Myc) is regarded as a very strong proto-oncogene observed to be highly
expressed in many cancers. The (PARPI)-poly (adenosine diphosphate (ADP))
ribose polymerase inhibitor effect on triple-negative breast cancer can be chemically
improved upon a blockade of MYC. Dinaciclib a cyclin-dependent kinase inhibitor
downregulates Myc expression; this, administered along with PARPI-niraparib,
downregulated EMT by reducing homologous recombination which resulted in
reduced cancer stem cell-like phenotype. Also dinaciclib re-sensitized TBNC cells
which displayed resistance toward niraparib. This combination of therapy also
worked on ovarian, prostrate, pancreatic, lung, and colon cancer cells [36].

Claudin-6 (CLDN6) is a tight junction protein functioning as a tumor suppressor
and also a stem cell marker. Triple-negative breast cancer (TNBC) cells show low
levels of CLDN6. A study involving the overexpression of CLDN6 in TNBC cells
(MDAMB231 cells) showed increase in epithelial marker E-cadherin and reduction
in vimentin (mesenchymal marker); stem cell markers such as OCT4, SOX2, and
Nanog were upregulated [37].

Another long noncoding RNA called the nuclear-enriched abundant transcripts
(NEATs) plays a significant role in Non-small-cell lung carcinoma (NSCLC) stem
cells. Experimental results suggest that NEAT1 was overexpressed and copper
transporter 1 (CTR1) was downregulated in the NSCLC stem cells. NEAT1 knock-
down reduced the cancer stem cell-like phenotype in these cells. NEAT1-expressing
cells also exhibited Wnt pathways and EMT process [38].

In triple-negative breast cancer cell line SUMI159pr, low expression of miR-105
was recorded. Its targets were identified to be VEGFA, Erb33, Zab1, Fyn, and Lyn
A/B, thus reducing cell proliferation and c-Myc with upregulated levels of
participants.

Overexpression of MiR205 inhibited the anchorage-independent growth, migra-
tory and invasive nature of SUM159PT cell line with activated src kinases, and low
levels of MMPs. The pathways and proteins associated with EMT like CD44, TAZ,
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E2AE12, twist, Snail A, and CK5 were also highly reduced with the expression of
miR-205. The miR-205 also plays a critical role, and its co-expression along with
anti-miR-205 reverted back all the reduced and the inhibited pathways of the triple-
negative breast cancer cell line SUM159PT [39]. Ursodeoxycholic acid is an epimer
of chenodeoxycholic acid found in the mammalian bile secretions, commonly
abbreviated as UDCA. Reactive oxygen species (ROS) plays a critical role in cancer
progression and advancement, and UDCA inhibited intracellular ROS. Pancreatic
cancer cell lines treated with 0.2 mM UDCA showed elevated levels of E-cadherin
and lower levels of N-cadherin and downregulation of sex-determining region
Y-box 2 (SOX2). It reduced the sphere-forming abilities; thus it is evident as an
effector inhibitor of cancer stem cell-like and EMT phenotypes [40].

Carnosol (CAR) is naturally found in our body that inhibits the MDM2/p53
complex. Its effects on U87MG, a glioblastoma-derived cancer stem cell line,
showed that it reduced the CSC formation and promoted apoptosis of the cancer
stem cells by functionally reactivating P53. Furthermore it also controlled the effects
of TNF-alpha/TGF-beta and inhibited the effects of cytokines associated with
EMT-regulating genes (slug, Snail, twist, ZEB1). It also promoted the activation
of miR-200c, which is associated with EMT; adding on this it also increased the
antiproliferative effects of temozolomide (TMZ) [41]. Lagunas et al. demonstrated
that telomere DNA damage signaling regulates cancer stem cell evolution and
metastasis. Telomeres are protected by the double-stranded DNA-binding protein
TRF2 and maintained by telomerase or a recombination-based mechanism known as
alternative lengthening of telomeres (ALT). Loss of TRF2 and Terc expression gives
telomere DNA damage, severely decreases CD34+ and Lgr6+ cancer stem cells, and
induces terminal differentiation of metastatic cancer cells [42]. The natural
sphingolipid phytosphingosine (PHS) suppresses the stem cell-like phenotype and
EMT-associated proteins and the highly malignant basal-type breast cancer cells
(CD44+/CD24-) by downregulating EGFR/JAK1/STAT3 [43]. Slug and twist are
important transcriptional factors that are highly associated with EMT; they are found
to be regulated by two processes, namely, ubiquitination and degradation. Slug and
twist are found to be in very stable conditions inside the cancer cells. It can be
speculated that the stabilization of the slug and twist is because of the loss of
ubiquitin by deubiquitinase (DUB). DUB3 was identified to be the deubiquitinase
for both slug and twist. The upregulation of DUB3 amplified the expression levels of
slug and twist in a dosage-dependent manner, also protecting the two genes from
being degraded. IL-6, which plays a significant role in the metastasis of breast cancer
cells, seemed to induce the expression of DUB3. Thus DUB3 is identified to play a
critical role in stem cell-like phenotype, metastasis, and invasive and migratory traits
in breast cancer cells [44].

Fusobacterium nucleatum has been identified to play a role in colorectal cancer.
A study was conducted on stage 3 CRC patients. The Fusobacterium nucleatum
levels were significantly high and were associated with the invasion, lymph node and
metastasis and distant metastasis. Analysis showed the presence of Nanog, OCT4,
and SOX2 (stem cell markers) and N-cadherin levels [45]. SOX8 was overexpressed
in tongue squamous cell carcinoma (TSCC) resistant to cisplatin, which exhibited

202 L. Lizha Mary et al.



EMT and CSC-like (Wnt) phenotypes. It is found to be upgraded in chemoresistant
patients affected by tongue squamous cell carcinoma (TSCC) and also correlated
with normal lymph node metastasis [46].

12.3 Role of MicroRNAs on CSCs and Metastasis

The microRNAs are short noncoding segments of RNA with 21–25 nucleotides seen
in plants, animals, and certain viruses. Their function is “RNA-mediated gene
silencing” at the posttranscriptional stage by attacking the 30-untranslated regions
of the “target gene,” thereby degrading the specific mRNA [47]. miRNAs play a
vital role in the human cancer progression and metastasis. The expression levels of
the oncogenic miRNAs can be observed to be increased as cancer progresses. The
improper regulation of the expression of the miRNAs influences the processes of the
progression like antiapoptotic activity, drug resistance, tissue invasion, and metasta-
sis [48] (Table 12.2).

12.3.1 miR-200 Family

miR-200a, miR-200b, miR-141, and miR-429 are the members of the miR family.
Their regulations have a strong association with the cancer stem-like features and
metastasis via EMT [63]. Experiments on human mammary epithelial cells show that
these cells were able to transit from non-stem like to stem like upon the loss of miR
family [64]. A strong connection between the levels of miR-200s and E-cadherin in
the cancer cell lines and clinical samples showed that miR-200s maintained tumor
epithelial traits and prevented EMT. This was achieved by the direct interaction of
miR-200s with ZEB1 and ZEB2 transcription factors. Suppression of metastasis has
been observed upon the upregulation of miR-200s, but the miRNAs are also known
to promote metastasis by recent studies as higher concentration of miR-200s pro-
moted the development of metastasis in breast cancer patients and promoted inva-
sion of the lung by murine breast cancer cells. The direct downregulation of Sec23a
resulted in loss of expression of metastasis-suppressive proteins IGFBP4 and
Tinagl1 in the murine breast cancer cells [63].

Tumor suppressor p53 is shown to be associated with both EMT and breast CSCs
associated with EMT by transcriptionally activating the miRNAs associated with
stemness including miR-200C. The loss of P53 in mammary epithelial cells
downregulated miR-200C expression and initiates EMT and increases CSCs. It
also directly interacts with EMT and increases CSCs. It also directly interacts with
the protein line ZEB1, ZEB2, and BMI1 [65].
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Table 12.2 miRNA involved in cancer stem cell metastasis

Cancer type miRNA Targets
Functions in CSCs-
Metastasis References

Breast cancer miR-199a FOXP2 Enhanced CSC properties Lei Zhou et al.
[49]

miRNA-
600

PORCN Differentiation Rita El Helou
et al. [50]

miR-200c BMI1 Inhibit the clonal
expansion

Zheng-ming
Wang et al.
[51]

Let-7 H-RAS
and
HMGA2

Suppresses self-renewal
and differentiation

Yohei
Shimono et al.
[52]

miR-205 BMI1 Regulate EMT, migration,
and invasiveness

Xiao et al. [53]

miR-141
miR-183

BMI1 Regulate the self-renewal
abilities

Yohei
Shimono et al.
[52]

Pancreatic cancer miRNA-
1246

CCNG2 Chemoresistance and
stemness

Sabrina
Bimonte et al.
[54]

Acute Myeloid
Leukemia (AML)

miRNA-22 TET2 Self-renewal and
transformation

Ryou-u
Takahashi
et al. [48]

Colon miR-193
miR-145
miR-200
miR-203

PLAU
and
K-RAS
ZEB1

Inhibition of
tumorigenicity and
invasiveness
Maintenance of stemness
EMT activation

Ryou-u
Takahashi
et al. [48]
Sabrina
Bimonte et al.
[54]

Lung cancer miR-145 OCT4 Inhibited the proliferation Hu et al. [55]

Prostate cancer miR-143 FNDC3B Differentiation of prostate
cancer stem cells and
promoted prostate cancer
metastasis

Xinlan Fan
et al. [56]

miR-34a CD44 Inhibit prostate cell
proliferation, tumor
regeneration, and
metastasis

Zheng-ming
WANG et al.
[51]

miR-708
and
miR-199a-
3p

CD44 Regulate the proliferation Can Liu et al.
[57]

Hepatocellular
carcinoma

miR-22 PTEN,
p21, and
p53

Reduces cell growth,
invasion, and metastasis

Bin Bao et al.
[58]

Head and neck
squamous cell
carcinoma

miR-200c BMI1 Regulating self-renewal,
radio/chemoresistance and
metastatic properties

Yu et al. [59]

Brain tumors miR-34a c-met Induce the differentiation
of CSCs

X J Li et al.
[60]

(continued)
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12.3.2 miR-203

miR-203 inhibits the colony formation, migration, and invasion of many cancer
cells. Enhanced regulation of Snail and downregulation of miR-203 in CD44+
human colorectal carcinoma cell lines showed higher metastasis; further miR-203
is suppressed by Snail [66].

miR-203 reduced the sphere-forming ability of the nearby cells by indirectly
prompting DKK 1 (inhibitor of Wnt signaling) [67]. The effects of miR-203 are
observed in CD44+/CD88� leukemia cancer stem cells by directly interacting with
BMI1/survivin [68].

12.3.3 miR-34a

miR-34a has been called as a “star” miRNA in cancer research, acts as tumor
suppressor, and is downregulated in many human cancers, and also studies have
shown that the aberrant miR-34a expression has been linked to chemotherapy
resistance in a variety of cancers [69].

miR-34a is a mediator of the p53 transcriptional network and has been identified
as a tumor suppressor that contributes to the inhibition of the invasion and metastasis
in various types of epithelial cancers [69]. miR-34a expression is significantly
downregulated in primary tumors from head and neck cancer patients as well as in
head and neck cancer cell lines. Ectopic expression of miR-34a in head and neck cell
lines significantly inhibited tumor cell proliferation, migration, and colony formation
by downregulating the expression of E2F3 and survivin [70]. Expression of miR-34a
in bulk can inhibit prostate cancer cells (CD44+) through inhibition of clonogenic
expansion, tumor regeneration, and metastasis, and expression of miR-34a
antagomirs in CD44� prostate cancer cells promoted tumor development and metas-
tasis [71], and miR-34a performs a key role in suppressing colorectal cancer
metastasis by targeting and regulating Notch signaling [72].

Table 12.2 (continued)

Cancer type miRNA Targets
Functions in CSCs-
Metastasis References

Ovarian cancer miR-199a ABCG2 Increased the
chemosensitivity of
ovarian CSCs

Yongchao
Wang et al.
[61]

Glioblastoma miR-128 BMI1 Inhibit glioma stem cell
proliferation

Can Liu and
Dean G. Tang.
[62]

Gastric cancer miR-34 p53 Control the biological
properties of gastric CSCs

Can Liu and
Dean G. Tang.
[62]
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12.3.4 miR-22

miR-22 epigenetically promoted stem-like traits and metastasis in breast cancer
cells. Studies have shown miR-22 capable to directly inhibit TET expression and
EMT induction in breast cancer. Ten eleven translocation (TET) enzyme has been
linked to the demethylation of miRNA-200 promoter region. miR-200 is an anti-
metastatic microRNA that inhibits stemness and EMT, and miR-22 is observed to
be in association with TET family, thus promoting CSC-like properties and metas-
tasis by repressing miR-200 family [48].

12.3.5 miR-17

Significant overexpression of miR-17 was seen in CD133+ cells of glioblastoma cell
lines. The miR-17 is said to directly target calmodulin-binding transcriptional
activator (CAMTA1), which is a transcription factor of antiproliferation cardiac
hormone natriuretic peptide A. Downregulation of miR-17 in these cells reduced
neurosphere formation and promotes cell differentiation. This shows that miR-17 is
significantly correlated to stem (CD133+)-like traits in cells [48]. In osteosarcoma
the levels of miR-17 were seen to be higher, and its inhibition resulted in reduced or
suppressed cancer cell proliferation, migration effects, and invasion/metastasis.
PTEN homolog was identified to be directly targeted by miR-17 [73]. PTEN levels
are critical in maintaining stemness, and its suppression leads to promotion of cancer
stem cells [74]. However, A549/DDP (cisplatin resistance) non-small cell lung
cancer cells showed downregulated levels of miR-17, miR-20a, and miR-20b. The
downregulated levels suppressed the TGF-beta signaling pathways and inhibited
EMT pathways, thus affecting metastasis [75]. Cancer stem cells seem to have
developed their stem-like properties via stem cell pathways like Wnt, TGF-beta,
STAT, and Hippo-YAP/TAZ [76]. Colon cancer cells that overexpressed phospha-
tase of regenerating liver 3 (PRL-3) inducing the expression of miR-21, miR-17, and
miR-19 by activating STAT3 [77]. Cancer stem cells are strongly associated with
stemness-related STAT pathway [76]. Thus these miRNAs have increased the
proliferation of primary colon cancer cells and the metastatic growth [77]. In ovarian
cancer metastasis, the expression of miR-17 is inversely related to the levels of
ITGA5 and ITGB1. Lower level of ITGA5 and ITGB1 suppressed peritoneal
metastasis. The abnormal expression of miR-17 in ovarian cancer resulted in
lowered expression of ILK phosphorylation and MMP-2. Thus higher levels of
miR-17 suppress ovarian cancer cell peritoneal metastasis [78].

12.3.6 miR-124

SNAI2 has been found to be upregulated in glioblastoma cells, and miR-124 has
SNAI2 as its functional target. SNAI2 has also been associated with stemness.
Experimental evidences showed that upregulation of miR-124 and SNAI2
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knockdown reduced neurosphere formation, and the expression of stem cell markers
like BMI1, Nanog, and Nestin was substantially reduced, and the effects can be
reverted by the re-expression of SNAI2 in in vivo [79]. miR-124 was also seen to
directly target STAT3 signaling. STAT3 is identified to have positive effects on T-
cell-mediated suppression in tumor microenvironment. miR-124 is observed to be
lost in all grades and in all pathological types of gliomas. The upregulation of
miR-124 in glioma cancer stem cells (GCSCs) resulted in the inhibition of
STAT3, and it reversed the GCSC-associated immunosuppression of T cells and
the induction of FOXP3 and regulatory T cells (Tregs). T cells from
immunosuppressed glioblastoma patients when treated with miR-124 resulted in
upregulation of interleukin (IL-2), IFN-gamma, and TNF-alpha [80]. The abnormal
expression of miR-124 in MDA-MB-231 cells (known for high invasiveness)
suppressed spindle formation, invasive capacity, and adhesion to fibronectin and
anoikis. These results show that miR-124 plays a critical role in the multistep process
of metastasis in breast cancer cells [81].

12.3.7 miR-128

Patients with advanced glioma show downregulation of miR-128. miR-128 targets
BMI1 [48]. miR-128 is reported to target VEGF-C and reduce the proliferation and
the invasive properties of bladder cancer cells. The knockdown of miR-128
upregulates VEGF-C and induces proliferation, migration, and invasion of bladder
cancer (BC) [82]. The metastatic and the stem cell-like properties of the hepatocel-
lular carcinoma were inhibited by the upregulation of miR-128, and they were
identified to target ITGA2 and ITGA5 [83]. The chemosensitivity is increased and
invasive properties of prostate cancer cells were inhibited following upregulation of
miR-128. Experimental results suggest that miR-128 directly targets zinc finger E-
box-binding homeobox 1 (ZEB1) in prostate cancer cells and induces the sensitivity
toward cisplatin and inhibits invasion [84].

12.3.8 miR-199b-5p

Studies show that miR-199b-5p is downregulated in medulloblastoma which results
in its invasive properties. This happens by targeting HES1 transcription factor in
Notch signaling pathways, thus inhibiting the self-renewal properties of Glioma Stem
Cells (GSCs) by targeting the CD133+ cells [48]. But its expression plays an opposite
role in the case of human osteosarcoma. The elevated levels of miR-199b-5p correlate
to cell proliferation, invasion, and migration of these cells. Its expression levels are
seen amplified in the higher grades of osteosarcoma [85]. In breast cancer cells,
miR-199b-5p suppresses HER2 expression by negatively conferring with ERK1/2
and AKT pathways. This shows loss of migration, wound healing, and colony
formation. This has also improved the sensitivity of HER2 cells towards trastuzumab,
thus hampering cells’ migratory and clonogenicity properties [86]. miR-199b-5b
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targets N-cadherin and promotes cell aggregation and suppresses migration/invasion
of hepatocellular carcinoma (HCC). This inhibits metastasis of tumor xenografts. It
was also shown to reduce the effects of TGF-beta-induced AKT phosphorylation
which results in EMT features [87].

12.3.9 miR-451

The lower expression of miR-451 shows enhanced levels of cyclooxygenase-
2 (COX2) and macrophage migration inhibitory factor (MIF); this results in acquisi-
tion of stem cell-like properties. COX2 and MIF have been shown to be associated
with Wnt pathway, which is a major regulator of cancer stem cells [48].

Papillary thyroid carcinoma with lymph node (PTCLN) metastasis shows
amplified expression levels of four miRNAs: miR-2861, miR-451, miR-193b, and
miR-1202. When compared with PTC without lymphoid metastasis, it was found
that PTCLN had high levels of miR-2861 and miR-451 especially in lateral and
lymph node (LLN) [88]. Zhang et al. reported that miR-144/451 re-expression
markedly suppressed the migration and invasion of breast cancer and HNSCC
cells through ADAM10 and ADAMTS5 modulation. PAX4 promoted migration
and invasion in human epithelial cancers by decreasing miR-144 and miR-451
(miR-144/451) expression levels.

Paired box gene 4 (PAX4) has been promoting metastasis in human epithelial
cancer by downregulating miR-144 and miR-451, while miR-144/451 has been
observed to inhibit cancer migration even in PAX4-expressing cells by targeting a
disintegrin and metalloproteinase (ADAM) protein family members in ADAMT55
and ADAM10 [89]. MiR-451 has also been shown to suppress cell proliferation and
metastasis by targeting chemokine ligand 16 (CXCL16) in osteosarcoma patients
[90]; it has been shown to promote significant metastasis in various cancer types like
hepatocellular carcinoma by targeting c-Myc [91]. In neuroblastoma miR-451 has
been shown to target macrophage migratory inhibitory factors [92], in A549 lung
cancer cells miR-451 inhibits metastasis by targeting PSMB8 and NOS2 thereby
reducing the expression of MMP-2, MMP-9, VEGF. miR-451 has also been
associated with stemness and CXCR4 [93]. This miR-451 plays a vital role in
inhibition of stem cell-like features by inhibiting stem cells and metastasis through
numerous pathways.

12.3.10 miR-320

The miR-320 directly targets Wnt/beta-catenin expression in prostate cancer stem
cells. Thus the expression of CD44+ PCa cell expressing Wnt is inversely propor-
tional to miR-320 level [48]. Fatty acid synthase (FAS) was previously reported to
be correlated with various clinicopathological features of cancer. Overexpression of
FAS in NSCLC has been shown to be significantly associated with bone metastasis.
Thus miR-320 contributes to cell proliferation, migration, and invasion by directly
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targeting FAS in NSCLC, and overexpression of miR-320 in NSCLC cell lines
inhibits cell proliferation, migration, and invasion via downregulation of FAS.
miR-320 may act as a tumor suppressor by inhibiting the oncogenic activity of
FAS [94]. In addition, miR-320 inhibited migration by targeting FOXM1 in cervical
cancer cells [95].

12.4 Functions of RBPs on CSCs and Metastasis

RNA-binding proteins (RBPs) act as epigenetic regulators of various RNA
processing events, such as splicing, localization, stabilization, and translation, and
can regulate various types of stem cells. Many RNA-binding proteins are
overexpressed in cancers [96, 97]). Deregulation of RBPs affects every step of
cancer development, such as sustained cell proliferation, inhibition of the apoptosis
process, avoiding immunosurveillance, inducing angiogenesis, and activating
metastasis. Some RBP proteins recognize cis-acting elements to translationally
regulate proto-oncogenes, cytokines, and growth factors [98]. RNA-binding proteins
that are abnormally expressed in cancers are the IMP-3, the CRD-BP/IMP-1, the
p62, as well as members of the ELAV/Hu protein family, e.g., HuR. Upon binding to
the AU-rich instability element (ARE) in the 30Untranslated region (UTR) of rapidly
degraded mRNAs of proto-oncogenes, cytokines, and growth factors, HuR regulates
nucleocytoplasmic transport, stability, and translation. However, only very few of
these RNA-binding proteins have been demonstrated to regulate tumor progression
and metastasis and control the cancer stem cell self-renewal [97].

12.4.1 RBM3

Colorectal cancer mostly demonstrates the overexpression of Wnt/beta-catenin in the
colon cancer stem cells. The RNA-binding protein RBM3 promotes cancer cell
proliferation, angiogenesis, and resistance against apoptosis and even induces metas-
tasis at higher levels by acting as a proto-oncogene [99]. Two cell lines HCT116 and
DLD1 were taken to study the effects of RBM3 on colon cancer; upon the
upregulation of RBM3, the number of sphere-forming cells increased in the
HCT116 cells along with the increased expression of cancer stem cell marker
DCLK1 in DLD1 cells. Further analysis have shown that RBM3 upregulated the
levels of Wnt/beta-catenin but suppressed the expression of Notch [100].

12.4.2 PTBP3

The RNA polypyrimidine tract-binding protein (PTBP3) at upregulated state leads to
the acquisition of cancer stem cell-like and EMT phenotype in breast cancer cells,
thus enhancing metastasis. Mechanistically, the EMT regulatory transcription factor
ZEB1 is upregulated due to PTBP3 binding to its mRNA at the 30UTR [101].
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12.4.3 Lin 28

Recent studies have shown that LIN 28A/B plays an important role in the formation
of CSCs and is involved in tumor aggressiveness and metastasis. Higher expression
rates of RNA-binding protein LIN 28 is correlated with the exhibition of malignant,
cancer stem-like phenotypes in breast, colorectal, and esophageal cancer cells.
Ovarian cancer cells with CSC-like trait express both LIN 28A and OCT4. LIN
28B is expressed in the colorectal stem cells with CSC markers like LGR5, KIT, and
PROM1 (CD133) in colon cancer. LIN 28B might be correlated with intestinal
CSCs, and LIN 28B regulated by IKKβ are able to maintain stemness by interacting
with Wnt pathways as LIN 28 is expressed only by CSCs. A crosstalk between LIN
28 and let-7 is observed in CSCs; thus blocking this axis might be a solution to target
the CSCs. In non-small cell lung cancer patients, higher levels of LIN 28 and lower
levels of let-7 are associated with chemo- and radiotherapy resistance [102].

12.4.4 MUSASHI-1

MUSASHI-1 (MSI-1) is a stem cell marker in both normal and cancerous stem cells;
in malignant colorectal cancer cells, MUSASHI1 is upregulated by the expression of
Notch-3 [103]. In another experiment on gastric cancer cells, it was identified that
MUSASHI1 played a significant role in the prognosis of the metastatic gastric
cancer. The expression of MSI-1 can be associated with tumor node metastasis
(TNM), Lauren’s classification, depth of invasion, vessel invasion, lymph node
metastasis, and distant metastasis. The prognosis at each stages of TNM is worse
than its previous one as there is an increase in MSI-1 expression [104].

12.4.5 MUSASHI-2

Elevated levels of MSI-2 is observed in metastatic non-small cell lung cancer cell
lines; the suppression of MSI-2 led to decrease in metastatic potential and promoted
the expression of claudin 3 (CLDN3), claudin 5 (CLDN5), and claudin 7 (CLDN7)
and downregulated the expression of TGFβR1, SMAD3, and zinc finger proteins
SNAI1 and SNAI2 (Slug) [105].

12.5 Effect of CSCs on Immunosurveillance and Metastasis

A perfect display of chemoresistance and immune resistance is seen during the
escape phase when detectable tumor bodies of CSCs/TICs reappear after a long
dormant phase. They have been reported to produce immunosuppressive molecules
and recruit cells that suppress the immune system like Treg cells more tolerant
toward the immune system via loss of expression of tumor antigen, loss of
processing and presentation machinery, and downregulation of MHC1 and MHC2.
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All these factors along with aging related immune deficiency is utilized by CSCs to
promote cancer. CSCs/TICs are able to escape the immune response because they
are equipped with co-inhibiting molecules like cytotoxic T-lymphocyte antigen
(CTLA4), B7-H2, B7-H3, and programmed death receptor 1 (PD-1). The lack of
MHC2 leads to downregulation of low molecular weight proteins (LMP), transporter
associated with antigen processing (TAP), and beta-macroglobulin, which assists
immune escape. Cytokines like transforming growth factor-beta (TGF-beta), IL-10,
and IL-13 were secreted in in vitro conditions. The CSCs/TICs from glioblastoma
required expression of VEGF, macrophage chemoattractant protein-1 (MCP-1),
macrophage inhibitory factor (MIF), and growth-related oncogene (GRO2) for
their survival. Breast cancer stem cells and glioblastoma CSCs produce more
TGFs than usual cancer cells; IL-4 produced by colon CSCs promotes drug resis-
tance and stops antitumor immune responses. CSCs also produce CD200 that aids
immune escape. The dissemination of CSCs of the melanoma is assisted by the
expression of ATP-binding cassette subfamily member 5 (ABCB5) and shows low
levels of lineage-related and Cancet-testis (CT) antigens. But the CSCs expressing
CD133+ have upregulated levels of NY-ESO1 cancer testis antigen; and they
produce specific T-cell response.

TAADDX3X expressed by CD133+ CSCs is susceptible to T cells in massive
models, while the CD271+ CSCs do not express both lineage-related and CT
antigens; hence their susceptibility toward T cells is not possible. Thus all these
traits help the CSCs/TICs during tumor progression and metastasis.

Cancer stem cells of the lungs have developed ways to protect themselves from T
cells and induce apoptosis in them. T cells express CTLA4/CD152 after exposure to
antigen. The binding of CTLA4 to its ligand (CD80/CD86) on the antigen presenting
cells (APC) induces T-cell apoptosis. Specifically lung cancer cells induce T cells to
produce more CTLA4. Similarly PD4 is produced by the T cells, B cells, and some
myeloid cells. Cytotoxic T cells with PD4 interacting with its ligand are marked for
apoptosis. Upregulation of ALDH and B-cell lymphoma-2 (BCL-2) protein and its
family seems to enhance the chemoresistant phenotype [106].

Cancer stem cells derived from histopathologically negative prostrate training
lymph nodes (PDLN) in mice with prostrate intraepithelial neoplasia (mPIN) con-
trolled by oncogene was similar to the CSCs from mPIN tumor bodies. CSCs from
both PDLN and mPIN produced extracellular matrix protein tenascin-C (TNC) and
CXCR4. TNC interacts with α5β1 integrin on the cell surface of the T cell and
inhibits T-cells receptor dependent T cell activation proliferation and cytokine
production [107].

Macrophages play a vital role during the stages of metastasis of the cancer cells.
Macrophages are made tumor friendly by various cytokines and chemokines like
colony-stimulating factor 1 (CSF1), vascular endothelial growth factor A (VEGF-
A), semaphorin3A (SEMA3A), CC-chemokine ligand 2 (CCL2), and
CXC-chemokine ligand 12. Tumor-associated macrophages (TAM) are known for
their CD8+-suppressing properties by directly producing DDL1 and BT-H4 or
indirectly Treg cells [108].
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The vascular endothelial growth factor A (VEGF-A) is a vital oncogenic factor
that also plays important role in cancer stem cell maintenance, proliferation, malig-
nancy, immunosuppression and also EMT. Myc and SOX2 were upregulated in the
breast and lung cancer stem cells through VEGF receptor 2 (VEGFR2)/STAT3
[109]. VEGF has been identified to target dendritic cells by disrupting its maturation
from the progenitor cells. It also plays a role in the T cells and macrophages. The
functional maturation of the DCs from its progenitor CD34+ was identified to have
disturbed the VEGF produced by breast and colon cancer cells. The M2-polarized
macrophages that are tumor friendly express VEGF, hence promoting angiogenesis.
Initial experiments on mice with elevated levels of VEGF equivalent to the amount
found in advanced cancer patients showed that the number of CD8/CD4 thymocytes
was reduced. The VEGF affected the progenitor of the T cells rather than on the T
cells themselves [110]. The human cancer cell A549 and breast cancer cells
MDA-MB-231 recruit many tumor-associated dendritic cells (TADCs)
overexpressing CCL2. CCL2 increases the stem cell-like features, migratory/inva-
sive properties, malignancy, and also the immunosuppressive tumor-associated
macrophages. The CCL2 amplifies the phosphorylation of STAT3 in the cells.
6-Shogaol can inhibit CCL2 and suppress the proliferative and the metastatic
properties of the lung and the breast cancer cell lines [111]. In case of the hepatocel-
lular carcinoma, increased expression of CXCR4 corresponds to lymph node metas-
tasis [112], but the cytoplasmic expression of CXCR4 does not seem to play a role in
the lymph node metastasis [113].

A cross talk between the CXCR4 pathway and TGF-beta pathways has been
reported in the Hepatocellular carcinoma (HCC); CXCL12/CXCR4 has also been
identified to promote the expression matrix metalloproteinase 10 (MMP10) that
enhances the migration and metastatic properties of the HCC. A cross talk between
CXCR4 and Sonic hedgehog (SHH) pathways has been reported in the human
pancreatic cancer and medulloblastoma as well. SHH/CXCR4 interaction has been
associated with promotion of stem cell properties and malignancy in these cells.

A cross-link between alpha-fetoprotein (AFP) and CXCR4 has been observed.
AFP promotes migration by activating AKT/mTOR signaling through CXCR4 in
HCC [114].

The regulatory T cells are utilized by the breast cancer cells with lung metastasis
by expressing CCL22/CCL5, which is very immunosuppressive expressing alpha-
chain/CD25 and forkhead boxp3 (FOXP3). Suppressing of metastasis in the breast
cancer models has shown to deplete number of CD4 + CD25+ cells; overexpression
of prostaglandin E2 by the breast cancer cells also recruits Treg cells there by
inducing CD8+ T-cell apoptosis and enhances cancer cell bone metastasis. Mela-
noma utilized Treg cell to overexpress TNR to promote lung metastasis [108]. The
galectin-1 produced by the breast cancer cells suppresses the immune system by
regulating clonal expansion and via linker for activation of T cells resulting in the
promotion of breast cancer metastasis. Galectin-1 has been reported to be highly
expressed in CD133+ cells (stem cell marker) [115, 116]. Treg cells seem to target
NK cells and induce apoptosis by expressing BETA-galoctoside-binary protein
(BETA-GBP) in lung metastasis that Treg cells suppressed the cytotoxicity of the
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NK cells via cell to cell contact and expressing TGF-beta [108]. Neutrophils have an
interesting role in cancer promotion. The human fibrosarcoma and prostate cancer
cells associated neutrophil promote angiogenesis by secreting MMP9. In
intrahepatic cholangiocarcinoma xenograft model, CXCL15 recruits neutrophils
and enhances lung metastasis. But other studies show that reducing the neutrophil
contact increases the lung metastatic loci in breast cancer models. The neutrophils
extracted from tumor-bearing mice can kill cancer cells in other mice models by
producing Hydrogen peroxide (H2O2). However TGF-beta has been reported to
reverse the antitumor properties to tumor-promoting traits of neutrophils [117].

12.6 Overview of CSC-Derived Exosomes on Metastasis

There are many evidences proving that exosomes from cancer cells cause organ-
specific metastasis. Their specificity can be identified by the presence of certain
ECM, membrane proteins, lipids, and adhesion molecules present within the
exosomes. Tumor-derived exosomes (TDEs) initiate metastasis by three ways:
firstly, autocrine and paracrine signaling which initiates EMT formation. Secondly,
they help in the formation of pre-metastatic niche. Thirdly, they modulate the body’s
immune system promoting metastasis.

Exosomes from various cancer cells have Notch-1 (MMPs), miR-100, HIFα,
casein kinase Iiα, and annexin A2. Hypoxia is a popular condition associated with
the development of metastasis particularly; EMT-inducing molecules like TGFβ,
MMPs, TNF-α, IL6, AKT, ILK1, caveolin 1, PDGFs, and β-catenin are the contents
of exosomes under hypoxic conditions. Nasopharyngeal carcinoma (NPC) (CNE2)
cell line co-cultured with exosomes expressed more of N-cadherin and vimentin and
downregulated expression of E-cadherin [118]. Primary tumors targeting the lungs
express integrins like α6β4 and α6β1. The integrin αvβ5 promotes metastasis to the
lungs [119]. In another experiment where exosomes from fluorescently labeled
B16-FI0 melanoma cells were injected into a mice, the exosomes combined together
with the regional lymph node nearest to the point of injection. Tumor and organ-
specific metastasis is a characteristic behavior of cancer stem cells [120]. CSCs
secrete and uptake exosomes; hence their metastatic phenotype can also be deter-
mined by studying the contents of their exosomes. The CD105+ exosomes from the
renal cancer stem cells when injected into SCID mice developed only lung metasta-
sis [118]. Breast cancer stem cells recruit Treg cells and promote lung metastasis
[108]. Tumor-derived exosomes (TDEs) use Treg cells and induce CD8+ T-cell
apoptosis and suppress NK cells. The exosomes from NPC recruit Treg cells and
confer with T helper cell (Th1) and Th17 differentiation; also these cells recruit
CD4 + CD25- T cells and convert them to CD4+CD25+ T cells. Tumor-tropic
patient-derived adipose cancer stem cells when treated with exsosomes from prostate
cells induced mesenchymal to epithelial transition (MET) and lead to the develop-
ment of a more aggressive prostate like secondary tumor [118]. Malignant breast
cancer stem cells are also associated with CD4+CD25+ T cells [108]. Thus it is
possible for the Breast cancer stem cells to utilize exosomes in a similar manner.
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The paracrine activity of adult stem cells and cancer stem cells is mediated by the
release of exosomes [121]. Cancer stem cells communicate with nearby cancer cells
and stromal cells by uptaking the exosomes by the cells. The exosomes derived from
the fibroblast mediate Notch signaling, overexpress ALDH, and promote stemness in
the breast cancer cells. The intake of exosomes from melanoma cancer cells by the
bone marrow progenitor cells leads to the acquisition of malignant phenotype
[122]. The exosomes from more aggressive TNBC cell lines Hs578Ts
(i) transmitted their aggressive phenotype to secondary breast cancer cells
(Hs578T, SKBR3, MDA-MB-231, and HCC1954). The noninvasive nature of the
mammary epithelial cell line HMLE was reversed upon its exposure to miR-10b
from MDA-MB-231 cells. miR-10b has been reported to be highly expressed by the
TNBC cells. In an in vivo study mice were intravenously injected with exosomal
miR-105 from MDA-MB-231 cells, and the MDA-MB-231 cells also were intracar-
dially injected resulted in the development of lung and brain metastasis. Under
hypoxic conditions the exosomes from breast cancer cells have been shown to
promote invasiveness and malignant phenotypes. The expression of RAB22A by
the breast cancer cell lines (MCF-7, MDA-MB-231, and MDA-MB-435) is seen.
The knockdown of the RAB22A by shRNA showed suppressed invasion and long
colonization. The fibroblast promotes metastasis by Wnt signaling. The CD81
secreted by the fibroblast L cells through exosomes was taken up by the breast
cancer cells and induces metastasis of the MDA-MB-231 cells. The knockdown of
CD81 in L cells suppressed the malignancy [123, 124].

12.7 Future Prospects

Understanding the roles of CSCs on tumor progression and metastasis will provide
the strategies for targeting CSCs to prevent the seed for cancer metastasis. This
chapter has highlighted the need for future research on the various factors that
regulate the dissemination of cancer from its primary site. The RNA-binding
proteins and their role in posttranscriptional regulation during cancer progression
and metastasis have provided various targets for regulating cancer stem cells. In
addition, the development of combination therapies for the above highlighted
multiple targets will improve patient’s outcome. The latest development in the
field has enabled us to understand the contents and role of CSC-derived exosomes
on metastasis. There is a clear lack of information on content loading of exosomes
and target or recipient cell identification. The epigenetic regulation of CSCs by
microRNAs and RNA-binding proteins has highlighted the targets and identified the
biomarkers for tumor progression and metastasis.
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Functionality of Intron-Specific Genes
and Cancer Stem Cells in the Progression
of Colorectal Cancer

13

Janani Gopi, Madhumala Gopinath, Xiao-Feng Sun, Surajit Pathak,
and Antara Banerjee

Abstract

This review article deals with comprehensive information about the evolutionary
history of introns with their localization and functions in the gene transcripts of
colorectal cancer precisely. In this way, the major breakthrough in the molecular
biology discipline was the discovery of introns by Richard Robert and Phil Sharp
in 1977. Firstly, noncoding regions are recognized by various assortments of
regulatory ncRNA sequences such as circular RNA, telomere-associated RNA,
small nuclear RNA, Piwi-interacting RNA, small interfering RNA, small nucleo-
lar RNA, microRNA, and long noncoding RNA. Fortunately, splicing process of
mRNA strand deals with the excision of introns via spliceosomal proteins into
mature mRNAwhich is witnessed only in eukaryotic organisms and devoid of the
splicing machinery components in the prokaryotic organisms. The major focal
point relies on intronic genes mainly involved in the progression of colorectal
cancer with preliminary information. An alternative splicing process takes place
in mRNA that implicates in intron retention leading to varied gene expression in
cells and tissues and their promotion in colorectal cancer. Therefore, colorectal
cancer-associated diseases have paved the way to know more about the intronic
genes mainly concentrated among them in the progression of the related diseases.
Hence, the focus of the researchers is toward the fascinating cellular and molecu-
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lar biology aspects of the regulatory intronic sequences known to enhance as well
as repress particular gene expression in tumor microenvironment of colorectal
cancer by analyzing the genome and proteome levels for the betterment of human
kind that is intended for various therapeutic purposes.

Keywords

Introns (noncoding sequences) · mRNA · Spliceosomal proteins · Alternate
splicing process · Intron retention · Colorectal cancer

13.1 Introduction

Eukaryotic genome consists of DNA sequences which are transcribed into
pre-mRNA, which is exemplified by the organization of intron-exon structure and
endures posttranscriptional and posttranslational process to produce a desired pro-
tein. Consequently, intervened introns are excised among the adjoining exons, to
form the pre-mRNA [1]. In particular, the coding regions specifically undergo
translation, while in the noncoding regions, introns also undergo the translation
process but the protein produced is acclaimed to be regulated in various splicing
processes which in turn advance varied gene expression and cancer development
[2]. Introns appear to influence any phase of mRNA maturation together with
transcription process such as mRNA stability, nuclear transport, and
polyadenylation. Splicing introns imply an expurgation of spliceosomal introns
from the genome where the spliceosome consists of five snRNAs and more than
150 proteins which are coded by intron-bearing genomes itself. The transcription of
lengthy introns persists up to several hours as the elongation time is found to be
60 bases for every second facilitated with the help of RNA polymerase [3]. There-
fore, the host of cis-regulatory facet assists in the identification of splicing joint by
the spliceosome. As a consequence, intrusion of normal splicing pattern paves the
way to more than half of the genetic disorders in humans (Table 13.1).

Table 13.1 Life span of introns in five different phases

Origin of introns Role of introns Intronic effects

Genomic site Genome organization,
Transcription process

Sequence site and
length

Transcription site Time impediment Length

Splicing site Control of transcription,
Alternate splicing

Splicing, sequence

Excision site Articulation of non-coding RNAs Splicing, sequence

Exon junction complex- anchorage
transcript site

Non sense intervened decay Splicing, sequence

Nuclear export

Translation yield
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13.1.1 Elucidation of Intron Evolution

The preponderance of the existing intron-rich mammals is elevated in contrast to the
preceding eukaryotic ancestors populated with introns. As a result, when the intron is
excised from the gene, it turns out to be an element of post-splicing complexes that
follow de-branching and destruction. Therefore, the RNA gene is entrenched within
the intron; its expression is witnessed on the intron exclusion and outlasts its intronic
mass (Fig. 13.1). Functional consequence of an intron might be compatible with the
point of conservation of intron position. Excision of intron exon structure indicates
sequence construction of orthologous genes which helps in the assessment of intron
position (Fig. 13.2). Such constructions reveal the intron position is at times pre-
served throughout the long evolutionary times in orthologous genes [1].

The eukaryotic hierarchy reveals an array of intron concentration (Fig. 13.3). An
investigation of intron mass and eukaryote phylogeny illustrates that it is not always
the instance that early division eukaryotes are intron deprived and that late division
eukaryotes are luxuriant intron. Analysis of eukaryotic genome aids in empathizing
the intron gain or loss. During evolution, the locations of definite introns are
preserved between extremely divergent and vibrant among eukaryotes [2]
(Fig. 13.4).

Consequently, the life expectancy of an intron is of five stages which indepen-
dently allude to the capacities that are related with each phase. Diverse functional
antisense elements arise from intronic regions and are considered as intron-hosted
RNA genes that are triggered during transcription process and are also required for
alternative splicing (Fig. 13.5) [3].

13.1.2 Different Classes of Introns Residing in Prokaryotes
and Eukaryotes

Spliceosomal introns, group I self-splicing intron, group II self-splicing introns, and
tRNA introns are categorized as the four main arrays of introns to be inherent in
pre-nuclear mRNA. Moreover, the intronic form is discrete due to its construction
and phylogenetic dispersal [4, 5] (Table 13.2).

Fig. 13.1 Intronic position in
site of intron insertion along
the mRNA

Fig. 13.2 Comparison of
intron positions between
orthologous genes
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13.1.3 Noncoding RNAs in Eukaryotes

In human beings, approximately 25,000 genes are recognized which effectively
transcribe into mature RNA, where it is comprised of 20% coding (exons) and
80% noncoding (introns) sequences. Consequently, the genome contains greater

Fig. 13.3 The hierarchy of the origin of introns. (a) Early theory of introns. (b) Late theory of
introns (LUCA, last universal common ancestor)

Fig. 13.4 Various types of intronic functions
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part of noncoding sequences also known as “junk DNA.” The major focal point is on
functional noncoding RNAs which are generated in a small percentage which is an
assorted regulatory biological mechanism, for instance, like gene expression, propa-
gation, differentiation and senescence of cell, and epigenetic modification along with
other cellular processes which lead to numerous diseases by the dysregulation of
human genome [6].

Fig. 13.5 Dynamic aspects of gain and loss of introns

Table 13.2 Differential kind of introns in prokaryotes and eukaryotes

Spliceosomal introns Group I introns
Group II self-splicing
introns tRNA introns

• Splicesomal are
mostly expounded in
eukaryotes

• Group I introns are
present in nuclear or
mitochondrial
genome in
eukaryotes

• Group II introns
impart in bacteria as
well as in chloroplast
or mitochondrial
genome

• tRNA introns
generally reside in
nuclear genome of
eukaryotes and also in
archael genome

• Therefore, the
contrivance of
splicing process
involve an
expurgation of
introns by intricate
ribonucleproteins
such as U1, U2, U3,
U4, U5 and U6 of
small RNAs

• They have a
distictive splicing
process enhanced by
an exogenic
guanosine as a
cofactor

• An intron coded
protein assist in the
self-splicing process
which also have
reverse transcriptase
enzyme which
transcribes group II
introns into DNA,
ultimately producing
transposons

• They are really
diminutive introns,
where the splicing
process is organized
by protein enzymes
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13.1.4 Description of Different Types of Regulatory ncRNA

• MicroRNAs (miRNAs)
MicroRNA is a lavish group of small noncoding RNAs which do not encode for
protein synthesis. They have a significant task as a tumor suppressor or an
oncogene which is misled by mutations and abnormal gene expression. Thus,
the microRNA modification will prompt the development of various types of
cancer [7].

• Circular RNA (ciRNA)
Circular RNA is a sort of contended endogenous RNA in the lineage of long
noncoding RNAs which is known to be stable in eukaryotic cell. ciRNA has
diverse functionalities such as the capacity of reorganizing the genomic
sequences, fortification against exonuclease at the 30 poly(A) tail, and also an
epigenetic regulator [7].

• Long noncoding RNA (lncRNA)
Resistance of colorectal cancer to chemotherapy is due to the encoding long
noncoding RNA which restrains the cell multiplication, differentiation,
programmed cell death, and metastasis [8]. Some of the colorectal cancer-
associated long noncoding RNAs influence the gene expression by epigenetic
alteration that necessitates DNA methylation, histone scaffolding, chromosomal
instability, and pseudogenes appropriately (Fig. 13.6).

Fig. 13.6 Classification of noncoding RNAs
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13.1.5 Functional Characteristic of Noncoding Sequences in Cancer

Tumor is an unrestrained proliferation of cells residing in a tumor microenvironment
of a specific tissue site triggered by the dysregulation of the signaling mechanism by
the “oncogene” or “tumor suppressor gene” appropriately. Consequently, it
advances in their abnormal gene expression, cell growth, protein profiles, differenti-
ation, and epigenetic modulation, and very few instances may be due to familial
inherited gene in their germ line. Genome-correlated analysis in cancer divulges in
the fact that nearly 75–85% of cancer-linked single-nucleotide polymorphisms
transpire in the regulatory noncoding sequences such as intergenic or intronic
regions [9] (Fig. 13.7).

13.2 Colorectal Cancer and Associated Factors

Colorectal cancer is the third most prevalent disease affecting both the genders
worldwide which is mostly predominant in men with >50 years of age in Western
countries while found in minor incidence in India. The dynamic power of
tumorigenesis is due to the chromosomal mutations and epigenetic modifications,
which either activate oncogenes or cease the task of tumor suppressor genes, which
subsequently progress in the development of cancer from neoplasia to metastasis.
Initial genetic changes start in an early adenoma and accumulate as it transforms to
carcinoma and ultimately to invasive and metastatic tumor. So, the molecular
pathogenesis of colorectal cancer includes the familial adenomatous polyposis
(FAP) and Lynch syndrome and hereditary nonpolyposis colorectal cancer
(HNPCC) (Fig. 13.8).

Fig. 13.7 Single-nucleotide polymorphisms (SNPs) existing in the genome dispersal (%) of a
range of cancers. It is revealed to be widely encoded by the noncoding sequences (intergenic,
intronic) and minority of them by the coding sequences
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13.3 Genetic Background of the Colorectal Cancer-Associated
Diseases

13.3.1 Adenomatous Polyposis Colon Cancer

Adenomatous polyposis coli (APC) is recognized to be a tumor suppressor protein
concealed by the APC gene which is endowed as the pioneer gene transformed in
sporadic and inherited colon cancer. The APC gene is frequently mutated by either
frameshift or nonsense mutation generating a misfolded protein which leads to
various syndromes related to colorectal cancer. Normally, the cell cycle checkpoints
involve G1/S (start or restriction point) and G2/M checkpoint, and spindle
checkpoints are the barricade which is known to regulate cell cycle appropriately
without any errors. If the mutational sequences are replicated and synthesized, it will
advance in various genetic diseases. In adenomatous polyposis colon cancer, the
alteration from G1 to S phase cell cycle is obstructed by the tumor suppressor gene,
i.e., APC gene. Subsequently, the Gardner syndrome, familial adenomatous
polyposis, Turcot syndrome, and attenuated familial adenomatous polyposis are
the APC-related polyposis conditions in colorectal cancer. Wnt signaling and
β-catenin pathway take part in the colorectal tumorigenesis of sporadic and familial
colorectal cancer (Fig. 13.9).

13.3.2 Lynch Syndrome

Lynch syndrome is also known as “hereditary nonpolyposis colorectal cancer”
which is transmitted by germline mutations through microsatellite instability and
mismatch repair pathways in colorectal cancer. MLH1, MSH2, MSH6, and PMS2
are the most frequently mutated genes in case of mismatch repair pathway which is
known to be the diagnostic marker in colorectal cancer [10]. Therefore, deficit of
DNA in mismatch repair activity acts as an indicator of microsatellite instability.
Consequently, the preponderance of mismatch repair deficiency in sporadic colorec-
tal cancer is suitable to the epigenetic silencing of MLH1 gene expression that is
induced by overmethylation of the promoter [11] (Fig. 13.10).

Fig. 13.8 Precariousness in
genomic pathways engaged in
colorectal cancer
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13.3.3 Intron Retention

Alternative splicing is described as an arbitrary splicing of the introns from prema-
ture mRNA which eventually affects the multiple exon genes in humans. Intron
retention, alternative 50 or 30 control, and exonic regions are the three major divisions
of alternate splicing. Among the three divisions mentioned above, intron retention
plays an intense role in causing cancer of various types. Intron retention is
characterized as the conservation of introns in the coding vicinity or flanked by the
introns in the untranslated region which directs the way to mis-splicing of mature

Fig. 13.9 Pathological interpretation of colon cancer tissue prototype

Fig. 13.10 Properties of introns
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RNA during the transcription process which ultimately end results in the origination
of destructive proteins during the translation process [6]. Thus, the generation of
detrimental proteins may lead to an assorted gene expression which roots the basis of
various genetic diseases. Therefore, the translation process is inhibited by the
contrivance of nonsense-intervened decay or exosome deprivation which facilitates
in the excision of introns [12]. Transcripts containing introns often contain the
premature termination codons which instigate the nonsense-intervened decay
(Fig. 13.11). In general, the nonsense-intervened decay disintegrates the transcripts
retaining introns with a premature termination codon which is situated in greater than
50–55 nucleotides upstream of an exon to exon junction [13]. Finally, the plausibil-
ity of intron retention can be influenced by different factors such as GC content,
expression of splicing factor, extent of introns, alteration of chromatin structure or
nucleosome packing, and potency of splice site [14].

13.3.4 Intron Retention Performs a Crucial Role in Gene Expression

Our main focus is on intron retention where the noncoding genes are retained within
the coding regions of the gene due to the alternative excision process. Theoretically,
an alternative splicing process of exonic genes is known to widely influence the
human population. During the transcription process, the pre-mRNA consists of 50

Fig. 13.11 Role of intron-sustained transcripts. (a) Downgrading the gene expression through
eliciting the nonsense-intervened decay. (b) Intron-preserving transcripts might endure deprivation
in the nucleus as a result of inhibiting the transport of mRNA which in turn obstructs the translation
process. (c) Creation of new isoforms along with precise biological act
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capping, 30 poly(A) tail with interspersed exons and introns appropriately
(Fig. 13.12) [15].

The captivating information about the major and minor compounds contributing
to the excision process of heteronuclear RNA encompassing the dominant complex
which adds to their role in nucleus, whereas, the less significant complex acts on the
division of introns with lower incidence in the multicellular genomes [16]. Thus, the
coding regions undergo the translation process generating a functional protein
[15]. However, in alternative splicing process, the exon-exon junction complex
with up frameshift proteins such as UP-1, UP-2, and UP-3 are bound to
the mRNA which proceeds to the protein synthesis. In the translation process, the
premature stop codons which are situated prior the termination site lead to the
preservation of introns in the coding sequences which advance in the unexpected
production of silencing or harmful detrimental proteins without a specific function.
In general, the premature stop codons are situated in upstream of greater than
55 nucleotides in the mRNA transcript which eventually signals the nonsense-
intervened decay process to activate and undergo the necessary degradation process.
So, to circumvent the initiation of such forms of unknown proteins are conceded to
promote the deprivation of the transcripts via nonsense-mediated decay. The
nonsense-mediated decay process disintegrates the proteins which are accumulated
in the processing bodies organized in the cytoplasm of a cell. Thus, the intron
retention in gene expression results in varied roles in cell cycle, cell differentiation,
cancer, and even genetic disorders. Consequently, our focal point will be on the
intron-retaining genes extensively present in colorectal cancer to assess their diverse
properties of noncoding RNAs which may be the long noncoding RNA, small
interfering RNA, and various other types of noncoding RNAs. The preservation of
intronic transcripts in the mature RNA is identified to cause latent destructive end
product, if it undergoes translation. According to the literature analysis, intron
retention is known to be associated with progression of tumor such as the instigation
of oncogene besides reconciling the tumor suppressor gene. So, the profusion of

Fig. 13.12 Schematic
representation of alternative
splicing process

13 Functionality of Intron-Specific Genes and Cancer Stem Cells in the Progression. . . 233



mature RNA comprising the introns residing in tumor cells is recognized to enhance
multiplicity of tumor transcriptomes [17]. Abnormal excision of the noncoding
regions from the mRNA leads to limited or complete preservation of the introns.
Fortunately, the final intron is prone to restrain the normal as well as cancer tissues
and also cause disease by the point mutation in the nucleotide sequence. The
molecular level of the chromatin packing of the DNA involves the nucleosome
which is compactly packed in two forms such as euchromatin and heterochromatin
in which the intron retention has a crucial role in influencing the histone variation,
nucleosome compaction, as well as the chromatin modifications at the gene promoter
level expressing a range of tumor development with distorted gene expression in
their tumor microenvironment. At this point, we will discuss about “mirtron”
discerned to arise from the microRNA known to be refined in the introns during
the splicing process that creates a loop which is self-regulated and devoid of the
microprocessor that is exported to the cytosol of the cell [13]. Frequently, retaining
the noncoding sequences within the mRNA constituent and cleaving in the cyto-
plasm are certain alterations in the transcriptional level advancing in the cellular
multiplicity of eukaryotic cells mainly human cells [16].

13.3.5 Noncoding RNA Genes [Human]

• H19 (nonprotein coding)
H19 gene is found to explicit from the maternally inherited chromosome situated
in p-arm (15.5) of the chromosome 11. Therefore, the consequence of the gene is
the lengthy noncoding RNAwhich performs as a tumor repression. So, eventually
the mutation in this gene will lead to diverse genetic disorders.

• MIR137 microRNA 137 (1p21.3), MIR126 microRNA 126 (9q34.3), MIR33A
microRNA 33a (22q13.2), MIR335 microRNA 335 (7q32.2), MIR33B microRNA
33b (17p11.2), and MIR21 microRNA 21 (17q23.1)
In multicellular organisms, miRNAs are short about 20–24 nucleotides ncRNAs
transcribed by RNA polymerase II which can end result as noncoding or protein
coding which affects the transcriptional control. Then, the initial transcript is
spliced by the Drosha ribonuclease III enzyme to generate a prototype miRNA,
which in turn is further excised by cytoplasmic Dicer ribonuclease to produce
mature miRNA and antisense miRNA star products. Translational reticence or
destability of the mature mRNA is due to the improper base pairing with miRNA
which is eventually conceded by the RNA-provoked silencing complex.

• CDKN2B-AS1 (antisense RNA 1)
This gene is imprinted in the p-arm (21.3) of chromosome 9 which resides within
the gene cluster. Epigenetic silencing of the neighboring genes in the cluster is
due to the interaction of polycomb suppressive complex-1 and complex-2 with
the functional RNA molecule. Some of the alternatively processed transcript
variants have been perceived in the form of circular RNA molecule. This gene
seizes the prime locus for various disease abnormalities such as endometriosis,
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intracranial aneurysm, glaucoma, periodontitis, type-2 diabetes, cancer, and
Alzheimer's disease.

• KCNQ1OT1 (antisense transcript 1)
KCNQ1OT1 gene is situated in p-arm (15.5) of chromosome 11 which is a
nonprotein coding gene specifically expressed in maternally or paternally
inherited chromosomes which enclose two clusters of epigenetically controlling
genes. This gene is regulated by functionally imprinted control region present in
the intron of KCNQ1, and the DNA is known to be unmethylated in maternally
derived chromosomes. KCNQ1OT1 transcript is the antisense to the KCNQ1
gene which is an uncleaved lengthy ncRNA found to interrelate with chromatin
affected by epigenetic alteration. The transcript plays a key role in colorectal
carcinogenesis.

• CCAT 1 and CCAT 2 (colon cancer-associated transcript 1 and 2)
CCAT gene is situated in the q-arm of chromosome 8 (24.21) which generates a
long noncoding RNA gene to facilitate the tumor progression such as cell
propagation, differentiation, invasion, and metastasis. It is known to be highly
regulated in colon cancer which interrelates with myc oncoprotein and controls
metabolism in an allele-specific manner.

Introns play a vital role in the gene expression of proteins which are translated
from the intron retention segment of the messenger RNA. The alternative splicing
process comes into picture with a varied multiplicity of proteins generated that alters
the gene expression in eukaryotes. Thus, the crucial alternative excision process
occurs in the nucleus of the eukaryotic cell with post translational variation such as
methylation, sumoylation, and phosphorylation which influence the splicing mecha-
nism appropriately. The splicing machinery affects the tumor microenvironment
such as proliferation, differentiation, invasion, and metastasis of a cancer by affect-
ing the mutations in the regulatory site. Therefore, the majority of the human genes is
affected by the alternative splicing process [18]. MicroRNAs are derived from the
intronic regions of the genes which are protein encoded in Homo sapiens, through
the analysis of the genome populated with complete intron-coded genes comprised
of 22–45% approximately. A phylogenetic conservation of miRNA may provide an
additional advantage to the assimilation into transcriptional systems [19]. Currently,
the genome-wide analysis studies gives the entire information about the gene loci,
location, region, traits, disease probability, and other functional classes such as
single-nucleotide polymorphism (SNPs) [20] evaluated through genotyping of
wide populace. Unpredictably, the significant genome-wide analysis study of the
SNPs and haplotypes is mostly resided in the noncoding regions impeding their
functions during the molecular processes [21]. The cleavage of introns from the
messenger RNA that in turn modifies the open reading frame (ORF) as well as the
protein production. RNA sequencing analysis which utilizes the conserved introns,
and predicting their gene structure and the intron prediction algorithms eliminate the
introns with <50 nucleotides and STAR aligner that overcomes the RNA sequenc-
ing analysis by recognizing very short introns in the mRNA sequences [22]. Various
literature reviews have suggested that intron retention mechanism paves an extensive

13 Functionality of Intron-Specific Genes and Cancer Stem Cells in the Progression. . . 235



evolutionary conservation of the homologous and heterologous genome diversity.
They aid in regulating the genome multiplicity by assisting the species predilection
through the epigenetic modification [23]. Therefore, the splicing process is in
particular assessed by the kinetics phenomenon, which senses the polymerase
activity as well as the length of introns that may be short or long [24]. The current
progression of high-throughput transcriptome method emphasizes the persistent
disposition of the human genome to transcription process that divulges the nonpro-
tein encoding genes with their functional transcripts with the aim of genome
intricacy. Hence, an efficient transcription unit might produce numerous molecules
consisting of regulatory noncoding RNA; proteins rely upon the requirement of a
cell according to their external factors [25]. Ultimately, the variation in the expres-
sion of specific noncoding RNAs engaged in the stemness of colorectal cancer by
employing miRNAs serves as a new tool to reverse the cancer stem cell phenotype
and overcome the therapy resistance significantly.

13.4 Cancer Stem Cells

Initially, the cancer stem cells are derived from progenitor or differentiated cells
which are usually known to reside in the inner recesses of a tumor mass that holds the
capability of self-renewal as well as a diverse family of cancer cells. There are
specific surface markers that typically distinguish cancer stem cells that are isolated
from various solid tumors including the colon. The two hypotheses of cancer stem
cells are the mutations of the oncogene that build up within the adult cells or
embryonic stem cells leading to an uncontrolled multiplication of cells, and the
other one is the cellular dedifferentiation into a stem cell-like state [26]. Cancer stem
cells are of two subdivisions, namely, stationary cancer stem cells and mobile cancer
stem cells. The stationary cancer stem cells reside in the epithelial tissues which are
active in tumor mass proliferation and cannot disseminate to other distant sites, and
the mobile cancer stem cells divide indefinitely that leads to the metastasis of cancer
to other parts of the body. It has been suggested that the colon cancer stem express
CD44 and CD166. CD133 and epithelial-specific antigen surface marker
characteristics of CSCs/CSLCs are their ability to invade and metastasize by acquir-
ing epithelial-mesenchymal transition (EMT) phenotype, which can be determined
by analyzing the expression of E-cadherin and vimentin representing Wnt effectors
and notch signals. Most of the human malignancies emerge from tissues that contain
an active population of stem cells. The stem cells are increasingly recognized as the
focus of cancer-causing events, since both genetic and epigenetic alterations may
lead to carcinogenesis processes [27]. This is primarily due to the tumor bursting
through the intestinal wall and spreading through the lymph nodes and systemically
through the bloodstream to distant organs. The colon’s luminal surface consists of
one single layer of columnar epithelial cells that are folded into the lumen to form
finger-like protrusions. The spaces between those folds are known as Lieberkuhn’s
crypts, the intestine’s functional network. There are four distinct cell lineages in the
colonic epithelium: enterocytes, goblet cells, endocrine cells, and Paneth cells. The
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small undifferentiated cells such as the crypt base columnar cells are known to hold
the intestinal stem cells that are found to upsurge to the epithelial lineage. The stem
cells have the potential of asymmetrical division which arises to give similar
daughter cells as well as the transit amplifying cells that multiply and single out
into goblet cells, endocrine cells, and enterocyte in the course of upward movement
through the crypt. Here comes the Paneth cell which maintains the microenviron-
ment of stem cell by the release of mucosal defense barriers that change the intestinal
microflora through the growth factors and regulatory molecules.

13.4.1 Exacerbation of Cancer Stem Cells in Conjunction
with Intronic Genes During the Development of Colorectal
Cancer

Cancer stem cells have a distinct microenvironment encompassing the inclination of
oxygen levels, chemokines receptors, cyclooxygenase, cytokines, molecules, and
growth factors enhancing in the progression of colorectal cancer. Pro-cancer stem
cell cytokines such as hepatocyte growth factor, prostaglandin E2, bone morphoge-
netic protein, and tumor niche-generating interleukins are found to be intensified in
the cancer stem cell assembly. The major organ involved in the metastasis of
colorectal cancer is the liver and also the growth factor such as chemokine receptor
4 (CXCR4). Stromal-derived factor 1 is chiefly articulated in the liver assisting in the
transit of circulating CXCR4 colorectal cancer cells [28]. Wnt, Sonic hedgehog,
bone morphogenetic protein (BMP), β-catenin, tumor growth factor-beta (TGF-β),
and notch are the major signaling pathways engaged in the homeostasis of colorectal
cancer stem cells precisely. Some of the cellular processes such as proliferation,
differentiation, migration, and cell death majorly rely on the homeostatic self-
renewal of the intestine which ultimately depends on the evolutionarily conserved
signaling pathway [29]. Eventually, the microRNAs control several cancer processes
like transformation, tumor cell duplication, epithelial-mesenchymal transition
(EMT), invasion, and metastasis which are mainly involved in the inhibition of
gene expression in pathways that regulate cell processes, for instance, cell cycle,
apoptosis, and miRNA migration. Intronic gene such as mir-21 is found to be
overexpressed nearly in all malignancies such as breast cancer, glioblastoma, colo-
rectal cancer, lung cancer, pancreatic cancer, and leukemia. In due course,
pluripotency and differentiation are known to be through the alteration of stem
cells through microRNA [30].

13.5 Future Direction

This chapter encompasses on the intronic genes mainly involved in the progression
of colorectal cancer with preliminary information. Researchers turned their focal
point toward the mammalian cell and determined that the noncoding sequences (junk
DNAs) are known to perform a key role in the development of cancer. Then, the

13 Functionality of Intron-Specific Genes and Cancer Stem Cells in the Progression. . . 237



alternative splicing process takes place in the messenger RNA strand that implicates
in the retention of introns leading to a varied gene expression as well as promotion in
colorectal cancer. So, the intron retention is known by sensing the premature
termination codons in the mRNA strand and triggers the nonsense-mediated decay
process appropriately. Therefore, colorectal cancer-associated diseases such as the
adenomatous polyposis colorectal cancer and Lynch syndrome have paved the way
to know more about the genes and what are all the intronic genes mainly
concentrated among them in the development of colorectal cancer. As a result, the
concentration of the protein output and gene expression is known to be influenced by
the intron retention.

Intron retention Protein output

Intron retentionGene expression

↑

↑

↓

↓

Thus, the noncoding regions in the genome can be predicted by RNA sequencing
method and interpreting the obtained results from the normal to the diseased form
focusing on colorectal cancer. They can also knock down the associated intronic
genes in the tumor microenvironment of colorectal cancer which may be beneficial
in the tumor proliferation and differentiation. Recent advancement has hypothesized
that conjunction of intronic gene with cancer stem cells is known to be progressed in
the colorectal cancer precisely. Ultimately, the current circumstances of research
fields are accomplished to work with the intriguing noncoding sequences engaged to
play a crucial role at certain neoplastic transformation in the normal microflora of the
colorectal by analyzing the domino effect of the intronic genes in the molecular
phase precisely.
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Abstract

Cancer stem cells (CSCs) display a significant role in cancer research, evidenced
from past decade studies. Although, with the passage of time, effective cancer
therapy has been developed, still up to now, cancer possesses the second highest
mortality worldwide. The only defined characteristic for every therapy failure is
the presence of cells with self-renewable capacity known as cancer stem cells in
the heterogeneous population of tumor. These CSCs provide a tumor resistance
against various therapies like chemotherapy and radiotherapy. Thus, to prolong
survival time period of cancer patients, it is prerequisite to eliminate CSC
population. Thus, to develop novel effective therapeutics against primary tumors,
isolation and characterization of CSCs will provide a novel insight to develop
cancer therapeutics. Thus, various in vitro and in vivo approaches have been
developed to isolate and target CSCs. In this chapter, we will discuss about how
researchers have developed various powerful tools to characterize CSCs to
develop better therapeutics to target CSCs and thus cancer and also how technol-
ogy has sprung up to generate advanced preclinical models of human tumors.
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14.1 Introduction

Despite advancement in intensive experimental approaches and progress in cancer
treatment, cancer still causes the second highest death [1]. A deep insight into the
mechanism of development of carcinogenesis has caused a drift toward cancer
research and treatment. Previously, much attention has been paid on genetic and
biochemical mechanisms that induce drug resistance. Prevailing theories have
reported that tumor is not a mass of homogeneous malignant cells albeit, composed
of heterogeneous population of cells. It has been well established that during
carcinogenesis, treatment failure primarily occurs due to intratumoral heterogeneity.
A subpopulation of cells present within a tumor is responsible for the genesis of
resistance against chemotherapy and radiotherapy and the roots of tumor relapse.
These minor populations of cells are known as cancer stem cells (CSCs) and can
repopulate after therapies causing tumor recurrence [2].

Tumor progression has been well explained by two models, the stochastic model
(Fig. 14.1a) and cancer stem cell model (Fig. 14.1b). The stochastic model is known
as clonal evolution model. According to the stochastic model, all cells of the tumor
possess carcinogenic potential with uncontrolled proliferation potency, and thera-
peutic treatment requires targeting of all tumorous cells [3, 4]. The cancer stem cell
model states that tumor is originated from a stem cell with self-renewable capacity,
possessing resistance to chemotherapy and radiotherapy [5]. These subpopulations
of tumor are known as cancer stem cells (CSCs) due to their ability to drive
whole tumor, and these cells cause tumor recurrence [5]. CSCs are involved in
tumor initiation, progression, maintenance, development of metastasis, and

Fig. 14.1 Models for tumor cell proliferation. (a) Stochastic model: this model proposes that every
cell has the potential to proliferate and behaves as stem cells. (b) Cancer stem model: according to
this model, only subset of cell has the self-renewable capacity which can generate whole tumor.
This distinct subpopulation of cells is known as cancer stem cells
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reappearance. Thus, specifically targeting and eliminating CSCs population from
tumor could be an effective treatment strategy that can pause tumor relapse and can
be sustained as a long-lasting treatment [5].

14.2 Cancer Stem Cell Models

Various tumor biology questions can be answered by studying CSCs. CSCs in a
tumor population can be defined as those cells which have potential of self-renewal
and are multipotent. Identification and quantification of cancer stem cells like cells
can be done by either by in vitro or in vivo assays.

14.3 In Vivo Assays

14.3.1 Xenotransplantation Assay

14.3.1.1 Severe Combined Immunodeficient (SCID) Mice
Immunocompromised mice have been widely used to study CSCs. SCID mice
model was first explored for the development of “leukemic stem cells (LSCs)” to
study acute myeloid leukemia (AML). During acute myeloid leukemia, cells are
restricted with low proliferation capacity, indicating that leukemic clones are
maintained by rare population of stem cells [6]. Lapidot et al. [6], used SCID mice
model and engrafted different population of cells expressing CD34+ CD38�, CD34+

CD38+, and CD34� CD38+, resulting in the development of leukemia by cells
expressing CD34+ CD38� only. It was also observed that 1 in 2.5 � 106 cells had
the potential to generate leukemic graft [1, 6]. This study provided an evidence that
not all the AML cells had potency for tumor formation, but the limitation of using
SCID mice was that the frequency of isolated LSCs was very low.

14.3.1.2 Nonobese Diabetic, Severe Combined Immunodeficient
(NOD/SCID) Mice

Human malignant melanoma was studied using NOD/SCID mice model which is
more immunocompromised than SCID mice model [7]. Xenotransplantation of
human melanoma cells in NOD/SCID mice resulted in identification of only one
tumorigenic cell out of million cells [7]. Researchers also observed that most cancers
had less than 0.1% of tumorigenic cells when transplanted in NOD/SCID mice
[7, 8]. It was questioned whether NOD/SCID assays poorly estimate the frequency
of tumor generating cells [8, 9]. Thus, it was a demand to develop an efficient model
which could increase the number of detection and isolation of cancer stem cells. To
solve this problem NOD/SCID IL2Rγnul model was used [8].

14.3.1.3 NOD/SCID IL2Rgnull Mice
NOD/SCID IL2Rγnull mice is the one which lack the interleukin-2 (IL-2) receptor
gamma chain and natural-killer cells and is highly immunocompromised mice model
[10]. Quintana et al. showed that transplantation of melanoma cells into the
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NOD/SCID IL2Rγnul mice resulted in detection of increased number of tumorigenic
cells [8]. Using this model, researchers were able to generate new tumor in vivo from
25% of melanoma cells. This was quite high in comparison to tumor-initiating
potential of NOD/SCID mice which was 1 in 1,090,000; in NOD/SCID IL2Rγnull,
it was 1 in 9 melanoma cells which had tumor-generating capacity [10].

This model then became the choice of many researchers. For example, AML cells
were xenotransplanted in NOD/SCID IL2Rγnull mice, and it resulted in the presence
of long-term engrafting, self-renewing LSCs in very few 103 bone marrow
hCD34+hCD38� cells, but not in hCD34+hCD38+ or hCD34� cells [11]. Ishizawa
et al. did comparative study between NOD/SCID and NOD/SCID IL2Rγnull mice for
human pancreatic, lung carcinoma, and head and neck cancer [12]. For all tumor
under investigation, about tenfold elevation was detected for tumorigenic cells in
NOD/SCID IL2Rγnull mice [12].

14.3.1.4 Limitation of Xenotransplantation Assays
There are many technical errors in in vivo detection of cancer stem cells by using
xenotransplantation assay and limiting dilution analysis. These errors occur due to
murine microenvironment and inadequate immune response at the transplanted site
and also sex of recipient mouse strain. These factors compelled scientists to develop
a more accurate approach to study cancer stem cells and led to use of genetically
engineered mouse models (GEMM).

Fig. 14.2 Lineage tracing assay. Schematic representation of lineage tracing assay. The first step
includes establishment of bigenic line. The second step involves induction of oncogenic event
which is followed by third step, where analysis of outcome is done
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14.3.1.5 Lineage Tracing Assay
In lineage tracing assay (Fig. 14.2), different cell-specific promoters are used to label
different cells which enables tracking of single cells [13]. Various steps are involved
in lineage tracing assay. The initial step is to generate bigenic mouse line
(Fig. 14.2a). The bigenic mouse line is generated by crossing an inducible Cre
(expressing Cre recombinase) with a reporter line (expressing reporter) which
helps in labeling of cells [13]. The second step involves either introduction of
oncogenes or deletion of tumor suppressor genes by crossing bigenic mouse
generated with third conventional Tg line overexpressing either oncogenes such as
Myc, Tcf, and Ras or deleted tumor suppressor genes such as p53, PTEN, and Rb
(Fig. 14.2b) [13]. In spite of expressing oncogenes using Tg line, chemical
carcinogens can also be used to induce oncogenic event. The most widely used
carcinogen is DMBA (7,12-dimethylbenz[a]anthracene). In the final steps of tumor
formation, tracing of labeled cells is done. If all the cells are reporter positive, it
suggests that these cells have tumor-repopulating capacity (Fig. 14.2c). Thus,
purification of these cells is done to perform serial transplantation and then CSCs
are isolated. But, if majority of cells are reporter negative, then it suggests that cells
do not possess CSC properties. Lineage tracing assay has gained momentum, and
various studies have been performed using this assay which employs the use of
genetically engineered mouse models (GEMM) [14].

For example, Chen et al. performed a lineage tracing study for glioblastoma
multiforme (GBM). This study showed that dormant subset of endogenous glioma
cells is responsible for tumor maintenance and recurrence of GBM after chemother-
apy [15]. They used a Nestin-ΔTK-IRES-GFP (Nes-ΔTK-GFP) transgene that labels
both adult NSCs (neural stem cells) and endogenous glioma tumor cells. This Nes-
ΔTK-GFP was crossed with Mut7 line which is a glioma-prone mouse line [16]. This
Mut7 mouse line is generated by deleting three tumor suppressor genes, i.e., PTEN,
p53, and Nf1 [15]. The resultant Mut7 mice developed glioblastoma with deleted
PTEN, p53, and NF1 tumor suppressor genes [15]. These Mut7;Nes-ΔTK-GFP
tumor cells also expressed Sox2 and had two population of cells. One subset of
cells expressed GFP+/Sox2+/ki-67� and GFP�/ki�67+. Treatment with
temozolomide eliminated actively dividing GFP�/ki�67+ tumor cells, and a fraction
of quiescent cells responsible for tumor recurrence GFP+/Sox2+/ki-67� was left.
GFP+ cells could be targeted by ganciclovir; thus, ganciclovir administration signifi-
cantly decreased tumor growth with prolonged survival and co-administration of
temozolomide- and ganciclovir-retarded tumor growth [15]. This lineage tracing
study demonstrated that dormant endogenous glioblastoma cells GFP+/Sox2+/ki-
67� responsible for tumor recurrence possess CSC properties and are responsible for
long-term tumor growth [14].

A functional evidence for the presence of stem cells in intestinal adenomas was
provided by the study done by Schepers et al. [17]. In this study, they used
multicolor Cre reporter R26R-Confetti mouse strain. They crossed Lgr5EGFP-Ires-
CreERT2/Apcfl/fl mice with the R26R-Confetti strain, and tamoxifen injection resulted
in generation of Lgr5-GFPhi and Lgr5-GFPlow. Gene expression and clonogenic
potential analysis showed that Lgr5-GFPhi had multipotent stem cell characteristics,
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and retracing of these cells showed that these cells were obtained from single
adenoma stem cells [17].

Another lineage tracing study done by Driessens et al. utilized a chemical
two-stage carcinogenesis model to generate skin papillomas [18]. The bigenic
mouse strain K14CreER/Rosa-YFP was obtained by crossing K14-driven CreER
line with the Rosa26-YFP reporter line. By injection of tamoxifen, K14-expressing
keratinocytes will be labeled as YFP+ cells [18]. Administration of both DMBA and
tamoxifen resulted in generation of YFP+ cells and had majority of cells with limited
proliferation capacity, while a fraction had stem cell-like characteristics. Confocal
analysis of clones showed that papillomas were sustained by small population of
tumor cells having characteristics like of stem cells [18].

14.3.1.6 Limitations of Lineage Tracing Assay
Lineage tracing can be performed utilizing mouse model only, and various funda-
mental differences exist in human and mice cells/organs. For example, mouse
prostate is divided into 4 lobes that do not exist in humans, and also, mouse cells
do not express PSA which is an important molecule of human prostate gland.
Another difference is that mouse cells express high telomerase activity, which
indicates that mouse cells may never undergo true terminal differentiation. Thus,
results obtained using mouse models may not directly reflect human system [14].

14.3.2 In Vitro Assays

14.3.2.1 Side Population Assay
Side population assay has been used for the isolation and characterization of cancer
stem cells (Fig. 14.3) [13]. SP assay was developed by Goodell and mulligan
[19, 20]. It was observed by the researchers that a distinct population existed in
murine bone marrow cells which were poorly stained for Hoechst 33342. These cells
occupied a distinct position in flow cytometry dot plot, hence named as side
populations [21]. The exclusion of Hoechst stain by side population is a specific
property of CSCs. Interestingly, the efflux of Hoechst stain was due to ATP-binding
cassette (ABC) transporter. ABC transporter uses ATP to efflux out many small
endogenous molecules like peptides, cholesterol, and bile acids. These transporters
help in detoxification of cells and also contribute to cancer stem cell-like properties
to CSCs. ABC transporters induce chemoresistance in CSCs as chemotherapeutic
drugs are also substrates for these pumps and efflux of drugs occurs by ABC
transporters [21].

14.3.2.2 Retention of PKH26 and PKH6 Dye
It has been reported that CSCs proliferate slowly and remain quiescent. These CSCs
when divided result in two daughter cells; one possesses stemness (remains quies-
cent) and other proliferates. PKH26 and PKH6 are two lipophilic dyes [21]. In this
assay (Fig. 14.4), the cell membranes are labeled with these dyes. After division both
daughter cells receive equal portion of theses dyes [21]. The CSCs which are

246 T. Sharma and C. C. Mandal



quiescent retain dye for longer duration as compared to non-stem cells. This method
has been used to isolate CSCs from breast cancer [22].

14.3.3 ALDEFLUOR Assay

Aldehyde dehydrogenases (ALDHs) belongs to the family of enzymes that catalyzes
the oxidation of endogenous and exogenous aldehyde substrates to corresponding
carboxylic acids [23]. These enzymes are known for their detoxification properties as
these eliminate aldehydes synthesized either by physiological metabolic products or
by cytotoxic drugs like chemotherapeutic agents. This detoxification property

Fig. 14.3 Side population assay. The side population assay measures percent side population of
cells after flow cytometric analysis. The steps include single-cell isolation of cells by disaggregation
and enzymatic digestion of cells. These cells are then stained with Hoechst 33342, and then cells are
subjected to flow cytometric analysis. The cells with CSC characteristics possess more ABC
transporters and effluxes dye out of the cells, and these cells are obtained on side on flow
cytometric plot
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attributes them as a marker of cancer stem cells as they confer chemoresistance in
cancer cells [24]. Study done by Hilton et al. firstly revealed that high ALDH activity
is responsible for chemoresistance in leukemia stem cells against cyclophosphamide
(an alkylating agent) [25]. Increased ALDH activity has been reported in lung, colon,
and breast cancer stem cells [21]. ALDEFLUOR assay is done to identify cancer stem
cells (Fig. 14.5). In this assay, CSCs with high ALDH activity become highly
fluorescent and can be detected by using flow cytometer and can be isolated by
using cell sorting. ALDEFLUOR assay works on the principle of conversion of
BODIPY-aminoacetaldehyde (BAAA) substrate to a fluorescent BODIPY-
aminoacetate (BAA) product [24]. Thus, this assay isolates CSCs on the basis of
intrinsic functional property of CSCs.

14.3.3.1 Two-Dimensional Model
Two-dimensional cultured tumor cell lines have been extensively used to study
cancer progression. Various signaling pathways have been studied using 2D cultured
tumor cell lines. But, with the advancement in technology to study tumor progres-
sion, it has been reported that 2D cultured tumor cell lines provide contradictory
results due to culture conditions and number of cell passages [26]. Although research
using 2D cultured tumor cell lines is inexpensive, these cannot mimic three-
dimensional characteristics of solid tumor models and also tumor microenvironment.
Thus, researchers have developed three-dimensional tumor models that may resem-
ble solid tumor characteristics so that more accurate therapeutics can be developed to
improve survival of cancer patients (Table 14.1).

Fig. 14.4 PKH26 dye retention assay. Monolayer culture is first treated with PKH26 and then
subjected to non-adherent 3D culture. After single-cell sorting, CSCs are identified as those which
retained dye for long due to low proliferating potential
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14.3.3.2 Three-Dimensional Models
Three-dimensional tumor cultures are the recent advancement of technology to
specifically generate and isolate CSCs. The main purpose of 3D models is to study
the effect of tumor microenvironment on the gene expression analysis, pathogenesis,
and effective drug testing to overcome chemoresistance. The two important 3D
tumor models discussed in this chapter are tumor spheroids and tumor organoids.

14.3.4 Sphere Formation Assay

14.3.4.1 Tumor Spheroids
Tumor spheroids are spherical aggregates of tumor cells with self-renewable capac-
ity and are generated by sphere formation assay (Fig. 14.6). Sphere formation assay
also known as non-adherent 3D culture was firstly described as an approach to study
adult stem cells [32]. The principle of this assay is that cancer stem cells in
non-adherent conditions proliferate to form a sphere and non-stem cells will go for

Fig. 14.5 ALDEFLUOR assay. This assay involves treatment of cultured cells with BODIPY-
aminoacetaldehyde (BAAA) substrate, and CSCs are identified and isolated on the basis of high
ALDH activity which converts BAAA to highly fluorescent BAA
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anoikis. Sphere formation assay is a powerful tool that allows to access stem cell-like
characteristics residing in tumor and cancerous cells. Cancer stem cells possess the
ability to generate 3D (three-dimensional) spheres in vitro when grown in serum-free
non-adherent culture conditions [33]. Various 3D in vitro sphere formation assays
have been developed to obtain cancer stem cells. This assay requires the growth of
cells in an artificial medium resembling stem cell-like conditions which include
media supplemented with epidermal growth factor (EGF), low-density condition to
avoid aggregation, progesterone, heparin, insulin, and hydrocortisone [34]. Sphere
formation assay is widely used as it helps to detect CSCs, and also, self-renewal and
differentiation can be studied at single-cell level [32].

14.4 Critical Parameter Consideration

14.4.1 Cell Density and Clonal Formation

Cell density is the most crucial parameter as it directly affects clonality. A central
focus of sphere formation assay is that each sphere is obtained from single cell and
therefore must be clonal. Different research groups have proposed different cell
densities for seeding. High-density seeding is not favored because interpretation of
results becomes very difficult due to sphere fusion. Spheres have the potency for
aggregation due to both intrinsic and experiment-induced locomotion. It must be
ensured that the sphere is formed due to proliferation not due to aggregation
[32]. Thus, seeding at 0.2–20 cells per microliter is recommended [35–37].

Table 14.1 Illustration of key differences between advantages and disadvantages of
two-dimensional cell lines and three-dimensional spheroids and organoids

Advantages/
disadvantages 2D cell line Spheroids Organoids

Advantages • Cost-effective
[2, 26]
• Genetic
manipulation is
easy [2]
• It allows high-
throughput
screening of drugs
in short duration
[2, 27]

• Provides 3D
environment [28]
• Allows growth of cancer
stem cells [28]
• Highly reproducible [29]

• In vivo-type
complexity and
architecture
• 3D structures and
resembles mini-organ to
the tissue of origin
[2, 30]
• Patient-derived
organoids enable the
development of
personalized medication
[31]. Variable [29]

Disadvantages • Lack of
heterogeneity
[2, 27]
• Do not correspond
to tumor
microenvironment
[27]

• Expansion of CSCs
occurs after serial
passages, thus, not
efficient for investigation
of drug activity [31]

• Organoids cannot
mimic exact hypoxic
gradient occurring in
tumor
microenvironment [2]
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14.4.2 Mitogen Tolerance

It has been reported that spheres are cultured at very high level of EGF of about
20 ng/ml. This high concentration of EGF may alter differentiation potential of
cultured cells [32].

14.4.3 Overestimation of Stem Cell Frequency

Sphere formation assay can overestimate frequency of generated stem cells because
neural stem cell purification by FACS has shown that both stem cells and transit
amplifying cells have potential to give rise to neurospheres [38]. Similar observation
of false readout was observed by culturing mammary cells which formed
mammospheres [39].

Fig. 14.6 Sphere formation assay. In this assay, firstly single-cell suspension is formed from
primary tumor by disaggregation and enzymatic digestion. Then seeding of single cells is done and
sphere formation occurs in 1–4 weeks
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14.4.4 Tumor Organoids

Tumor organoids are 3D constructs resembling avascular tumor generated from
fresh biopsy samples [26]. The process of tumor organoid formation includes
mechanical or enzymatic processing of tumor samples and embedding in extracellu-
lar matrix such as collagen or Matrigels and ECM substitutes [26, 40]. The various
steps used to generate tumor organoid has been shown in Fig. 14.7. Organoid
technology recently has been used extensively, and various cancer organoids such
as stomach cancer organoid, intestinal cancer organoid, liver cancer organoid,

Fig. 14.7 Tumor organoid formation assay. Primary tissue from the patient is disaggregated to
obtain CSCs. These cells are then cultured in three-dimensional media to generate tumor organoid,
and these organoids can be used to test required drug efficacy and to develop personalized
medicines
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pancreatic cancer organoid, breast cancer organoid, bladder cancer organoid, and
prostate cancer organoid have been synthesized [41–51].

14.5 Conclusion and Further Directions

Plethora of evidences is in agreement with current theory of cancer stem cells. It has
been well established that CSCs play a vital role in tumor initiation and maintenance
of tumor progression. These CSCs facilitate tumor metastasis to distant site other
than the site of origin. Thus, these CSCs have the potential for tumor regeneration
and recurrence; hence, these are potential therapeutic targets, and elimination of
these CSCs will protect tumor recurrence. Various technological advancements have
been made with the primary aim to develop effective drug treatment. Traditional 2D
culture cell lines have been in long use to develop cancer treatment and have
contributed significantly in cancer research. But these 2D culture cell lines fail to
match accuracy to the condition of tumor development in the presence of the
immune system; stromal interactions of CSCs and also lack of heterogeneity make
them of least choice. To overcome these limitations, 3D tumor models are in fashion
for cancer research. Tumor spheroids and tumor organoids both are widely used, but
tumor organoids have revolutionized cancer research and have been proven as best
models as they recapitulate whole tumor like in vivo. These tumor organoid
technologies have provided a way for cancer researchers toward the development
of effective drug testing and facilitation of personalized therapy.

Thus, organoid technology upholds potential for new possibilities for
personalized medication which will be the best nonsurgical treatment not available
today.
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Controversies in Isolation
and Characterization of Cancer Stem Cells 15
Ravi Gor and Satish Ramalingam

Abstract

Cancer is an uncontrolled growth of a cell in any part of the body. It has been
more than a century for identification of cure for cancer/tumor, and still, we are
unable to understand and treat the cancer completely. Current therapeutic
techniques such as radiation, chemotherapy, surgery, etc. are failing to eradicate
the cancer cells from its root and lead to its relapse in the short or long term. This
is because of the small subpopulation of the cells within the tumor that are known
as cancer stem cells (CSCs). These cells play an important role in supplying
differentiated cells for the growth and development of the tumor. Along with this,
they also maintain their population intact for the future requirement of the cells
for tumor growth and its metastasis. In spite of several studies proving the
presence of CSCs in various types of tumors, there is always a question about
its existence and the way we characterize the CSCs based on the histotype-
specific markers. There is a dire need for the compilation of research in this
area to understand whether the cells, which are being confirmed as CSCs are
really CSCs or not? In this chapter, we provide the various isolation and charac-
terization techniques along with the latest CSC identification markers for different
types of cancer, in addition we highlight the arguments and the limitations
regarding the isolation and characterization of CSCs in this chapter.
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15.1 Cancer Stem Cell: Brief History and Current Status

It all started with one question, “How many cells are required for the induction of
tumor?”. Back in the year 1937, J. Furth and his group reported the transmission of
mice leukemia with the transfer of a single transformed cell. The leukemia cell
suspension was obtained by isolating the leukemic tumor and filtering it to remove
larger particulates and this results in the single cell suspension. The cell suspension is
diluted and a single cell is injected in the mice and checked for its tumor forming
ability. Out of 97 mice, five developed carcinoma. Finally, they concluded that
leukemia can be transmitted with a single transformed cell in an adult individual
[1]. Later after half a decade, a publication by John E. Dick’s and colleagues in 1994
and 1997 demonstrated that only a few rare cells (undifferentiated) of mouse acute
myelogenous leukemia (AML) are capable of initiating this leukemia in other mice
on transplantation. They concluded that these rare groups of cells (CD34+ CD38�)
can produce a different lineage of cells and also maintain the undifferentiated form of
themselves for a longer duration of time [2, 3].

Currently, we call them cancer stem cells, which are mostly like the
hematopoietic stem cells present in the human body, which give rise to the blood
cells, immune cells, etc. Cancer stem cells are called by many different names like
“cancer-initiating cells,” “cancer stem-like cells,” and “tumor-initiating cells,” but
they all mean the same and possess key characteristics of stem cells. These are the
population of cells found in the tumor which possess the features such as
multipotentiality, self-renewal, clonogenicity, and treatment resistant which are the
key features of a stem cell. Although these cells are found to be capable of recreating
the original tumor independently, we are unable to uncover the origin or mechanism
by which the tumor has got Cancer Stem cells. There are only possible theories
suggesting that the CSCs came into existence due to mutation(s) in the tissue stem
cell, or the transformed cancer cell has gained stem cell property by mutation(s) and
became a Cancer Stem Cell. With these characteristics of CSCs, we are unable to
eradicate the CSCs by conventional cancer therapy (Fig. 15.1) which will only wipe
out the non-tumorigenic cells and CSCs will remain even after the treatment. Current
methods of treatment includes chemotherapy, surgery, radiation, immunotherapy,
etc. even if one CSC is left after the treatment, then it can regrow the tumor in the
same place resulting in tumor recurrence. If the CSCs are killed along with the
non-tumorigenic cells, it can result in the total eradication of the tumor. As a result of
cancer stem cell targeting therapy the cancer can be eradicated from its root and there
won’t be any relapse of cancer.

The real challenge is how to select the putative cancer stem cells from the
heterogeneous population of the cells in the tumor. Since they only comprise less
than 1% of the total tumor cells, it’s like finding a single nucleotide polymorphisms
(SNP) in the whole genomic DNA sequence. We need to have some identification
markers to target them. Around 40 cancer stem cell surface markers are being
published and still counting for various types of cancer [4]. Including these cell
surface markers, there are other stemness genes like BMI, β-catenin, OCT3/OCT4,
SMO, SOX2, NANOG, NOTCH, etc. They play an important role in maintaining
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the character of the cancer stem cell; evaluation of the expression of these genes by
real-time PCR analysis can be used to characterize the isolated CSCs and to
understand the molecular mechanism required to maintain the stemness. In the
case of breast cancer, SOX2 levels are used as a prognostic marker for early
detection of cancer recurrence [5]. In renal cell carcinoma, OCT4 and NANOG
can be used as markers for prediction of poor prognosis of the disease [6]. This
information regarding different cancer types can further be used for targeting them
and fully eradicating them.

15.2 Isolation and Characterization Techniques

There are two major ways by which cancer stem cells can be identified, one with the
help of cell surface marker dependent and another is independent of cell surface
marker identification. The cell surface marker-dependent techniques involve fluo-
rescence activated cell sorting (FACS) as a critical step in sorting the cells based on
their surface markers. On the other hand, FACS is also used for detecting the
intracellular marker such as ALDH1 to isolate cancer stem cells in different tumor
types. Other identification techniques include phenotypic assay, cytotoxic drug
effluxing assay, side population assay, sphere formation assay, somatic stem cell
property, pulse-chase approach, etc. Almost all the isolation techniques have their
pros and cons in isolating and characterizing the alleged cancer stem cell population,
therefore combination of these techniques needs to be utilized for efficient isolation
of CSCs.

Fig. 15.1 Cancer stem cell hypothesis
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15.2.1 Isolation Based on Cell Surface Markers

As the cells in the body have an identification mark showing self-cells, immune cells,
etc. with the help of a cluster of differentiation protein collectively called CD,
similarly, the CSCs can also be identified based on the CD proteins or other surface
markers like EpCAM/ESA, etc. This can be achieved by advanced high-throughput
machine called FACS; it can sort cells based on their surface marker using fluores-
cent labelled antibodies. For CSC characterization, different markers specific for
mesenchymal and hematopoietic stem cells can be used, such as CD133, CD44,
CD90, etc. Different combinations of these markers tell us about the presence of a
very small population of the putative CSCs. A population of cells can be defined as a
cancer stem cell if it can develop tumor after implantation to the immunodeficient
host [7]. Also, it must continuously do that for multiple subculturing. To validate the
ability of the isolated cells to imitate the tumor in vivo, the isolated cells are
xenotransplanted to immunodeficient host (mice usually). If it gives rise to the
tumor and further transplantation reproduces the result, then it can be concluded
that the isolated population of cells are cancer stem cells.

The isolation protocol can be divided into three major steps, isolating the tumor
sample from the patient, making a single cell suspension, and lastly cell labelling and
flow cytometry analysis. The solid tumor is isolated from the patient with proper
concern and must begin processing as soon as possible to maximize viability. To
prepare a single cell suspension sample can be processed by a mechanical or
enzymatical (overnight) method to make a suspension of cells from solid tissue.
The goal is to break all the cell-cell connections or junctions so that we get a
suspension with individual cells floating. To achieve better results, combination of
chemical and mechanical dissociation is performed to provide maximum yield and
viability of the cells schematic of the method is depicted in the figure (Fig. 15.2).

Further, the suspension is filtered through the cell strainer, and homogeneous cell
suspension will be used in the process. Multiple cell wash is done and labelled with
the fluorescent labelled antibody specific to the surface marker under study. Cells are
sorted and transplanted to the immunodeficient mice to check its ability to form a
tumor. FACS can also be used for isolation of the CSCs from the cell lines from the
cell banks/working laboratory cell lines [45, 46]. CD44+ gastric cancer stem cell that
has been isolated by FACS shows stemness properties like differentiation and self-
renewal. In gastric cancer, CD44+ cells show more resistance for chemotherapy and
also radiation-induced cell death. Also, knockdown of CD44 showed reduced tumor
production in SCID mice and shows reduced spheroid colony formation [28]. When
working with a large number of cells, magnetic bead-assisted sorting will be quicker
than flow cytometry. Commonly used methods with magnetic beads are Dynabeads,
magnetic-activated cell sorting (MACS), etc. According to the sample acquired and
the number of marker needs to be accessed to separate the CSCs, FACS or magnetic
bead-assisted sorting is carried out [45].
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15.2.2 Isolation Independent of Cell Surface Marker

15.2.2.1 Side Population (SP) Assay
Stem cells have a high capacity to outflow antimitotic drugs. These cells come under
a subset of stem cells and called “side population.” Side population assay checks for
the ability of the CSCs to remove the drug out from the system rapidly as their
characteristic for chemoresistance. Normally the differentiated cells will take up the
chemical in and process it or be targeted by the same. CSCs can achieve drug
resistance with the high expression of ABC transporter protein family members. It
is an ATP-dependent transporter or also called a drug effluxing pump and is used to
translocate molecules across membranes [47–49]. It has been analyzed in glioblas-
toma [50], colon carcinoma [51], breast cancer [52], and other types of cancer
[53, 54] that ABC proteins provide high chemoresistance to the normal stem cells
as well as CSCs with comparison to the differentiated cells [55–57]. Hoechst 33342
dye is used in this assay; it is a nucleic acid stain and emits blue fluorescence when
bound to dsDNA. In the heterogeneous population, differentiated tumor cells will
keep the dye, whereas the CSCs stream out the dye with high efflux capacity. In the
case of neuroblastoma cells, SP was capable of sustaining expansion in vitro and also
shows the asymmetrical division, generating SP and non-SP (differentiated) cells.
High level of ABCG2 and ABCA3 expression was found to help in better survival
by expelling cytotoxic drugs [58]. The advantage of SP assay is there is no
requirement of the cell-specific marker to isolate the CSCs. Since the population
of CSCs are less in number which makes it difficult to even isolate them with the
help of FACS (<2%) [59], the longer incubation with the dye increases apoptosis in
a glioma cell line [60].

15.2.2.2 Sphere Formation Assay
Sphere formation assay can enrich CSCs from the solid tumor without utilizing the
cell sorting and surface marker. The solid tumors are grown in the non-adherent
condition. In this assay, mitogenic growth factors are provided, and the media is
devoid of the serum to provide a non-adherent environment. Mitogenic growth
factors including epidermal growth factor (EGF), basic fibroblast growth factor
(bFGF), etc. are supplied depending on the specific cell line. As a result of providing
a non-adherent environment, the primitive cells will form a sphere by clustering
together, and the differentiated cells die because of no communication to the
neighboring cells. Cell sphere was first found in the culture of adult mouse striatum
(part of the basal ganglia of the brain) forming sphere in the absence of adhesion
factors or supplementary substrate. With all the provided mitogenic growth factor,
only the primitive cells survived and the differentiated cells died [61]. With this
finding even only cancer stem cells can be grown in the non-adherent environment
and be isolated from the heterogeneous population of cells. After a decade it has been
shown that a CD133+ cell from human brain tumor grew as a neurosphere in a
non-adherent environment [62]. In case of the C6 glioma cell line, only the SP cells
survived in the serum-free, growth factor supplemented media and the non-adherent
environment by forming a tumorsphere. It has also reported that the C6SP cells can
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generate the SP and non-SP cells in the culture, and they are responsible for the
malignancy [63].

15.2.2.3 Pulse-Chase Approach
One characteristic of a CSC is slow proliferation, i.e., as compared to the other cells
in the surrounding, they will be in the quiescent stage and only divide when needed
to produce the differentiated cells. Slowly dividing cells will retain DNA analog for a
long time because of no cell division taking place, and this will be termed as a label-
retaining cell or stem cell. The more the label retained in the cell, chances of it to be
CSCs are more. Firstly, the cells are labelled with BrdU (3H-thymidine or 5-
0-bromodeoxyuridine), and then it will be examined regularly to check for the cells
with label retention. As the dividing cell’s label will be diluted due to the DNA
replication during cell division, the selected cells with high label retention are tested
with other assays to confirm the CSCs [64–66]. In the case of prostate cancer (PCa)
cells with the help of BrdU, pulse-chase assays reveal that CD44+ cells colocalize
with intermediate label-retaining cells. Further, it was concluded that these cells are
more proliferative, tumorigenic, metastatic, and clonogenic than the CD44� PCa
cells [67].

15.2.2.4 Aldehyde Dehydrogenase (ALDH) Activity
ALDH1 is used as an internal marker for the identification of CSCs in many cancers
like breast, colon, etc. ALDH is an enzyme which catalyzes the pyridine nucleotide-
dependent oxidation of aldehydes to acids. For example, in case of retinoid signal-
ling ALDH1 catalyzes the conversion of retinol to retinoic acid (RA) in the cyto-
plasm and finally the RA activates genes which will help in the regulation of stem
cell and cancer stem cells. ALDH is substrate nonspecific; by this property it protects
the organism from potentially harmful xenobiotics and makes stem cells resistant to
the aldehyde-specific xenobiotics [68]. Commercially available fluorescent
ALDEFLUOR assay kit can be used to identify the ALDH activity with the help
of the ALDH substrate and an ALDH inhibitor (diethylaminobenzaldehyde) as a
negative control. By ALDEFLUOR assay, isolation of CSC from breast cell line is
done [69] also from acute myeloid leukemia, and multiple myeloma CSCs are
isolated with this method [70, 71]. Further, isolated cells, i.e., ALDELFUOR
positive and negative cells, are collected, and tumor xenograft studies, expression
of stemness genes, etc. can be studied to validate the isolated cancer stem cells. It is
found that in renal cell carcinoma (RCC), the number of ALDH1+ cells is doubled in
the metastatic ACHN cell line than compared to the primary KRY/Y cell line. Also,
the ALDH+ cells show higher sphere-forming ability than that of ALDH� cells [72].

15.2.2.5 Tumorigenicity Assay Also Known as Reestablishing
Heterogeneity

Along with the slowly dividing, self-renewal property, a cancer stem cell must be
able to generate a heterogeneous population again at the new site of growth; this
property is called tumorigenicity. All the cells which are isolated as prospective
cancer stem cells are further analyzed to check its ability to imitate the same cell
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heterogeneity when injected into immunocompromised mice. This was first
demonstratd by J. Furth et al., to know how many cells are required for it to generate
leukemia in immunodeficient mice. As per their research a solid tumor is isolated,
and after processing tumor to a single cell suspension and limiting dilution, the
specific amount of the cells was counted and injected subcutaneously into
NOD-SCID mice [1]. This research has made one thing clear that there is a small
population of cells responsible for the tumor regeneration, and the easier way to
know them well is by tumor xenograft model. It’s the best alternative to the marker-
dependent CSC isolation. Limiting dilution assay is a labor-intensive process and
time demanding, but the results are highly acceptable. As the smaller number of cells
are being introduced to check tumorgenicity, the identity of the same can be known
very well.

15.3 Controversies in Cancer Stem Cells

Discovery of the CSCs is a great finding that has provided a reason behind resistance
to cancer therapy or cancer survival even after an enormous effort or ways to treat
cancer, and tumor recurrence. This in turn also enabled us to identify new approach
for cancer therapy, that is, to target the CSCs to totally eradicate the roots of the
cancer. However the CSC hypothesis remains controversial; it is because of the
divergence in defining cancer stem cells, reliance only on cell surface markers, and
lack of standard functional assays [73]. CSCs are known by many different
terminologies like cancer stem cells, tumor-initiating cells, or cancer stemlike
cells. The CSCs and tumor-initiating cells cannot be considered as a same population
of cells. This is because the tumor-initiating cells means that the isolated cell can
generate tumor after implantation, whereas CSCs can repopulate the tumor as well as
the original heterogeneity. Assays must be done to check the tumorigenicity as well
as to demonstrate the cellular heterogeneity.

15.3.1 Relying on the Cell Surface Markers

As depicted in Table 15.1, there are multiple CSC markers for a single type of cancer
based on different research group findings. CD133 marker is expressed in multiple
tumor-like glioblastoma [42], ovarian cancer [20], prostate cancer [8], etc. One
research group found that CD133 is not found to be a CSC marker for non-small
cell lung cancer [74]. Whereas the other group found that CD133 shows the ability of
a tumor-initiating cell by resistance to cisplatin in case of NSCLC [75]. Apart from
this, the combination of markers shows tumorigenic properties rather than individual
markers alone [75]. All these finding suggest that we do not have a universal marker
for individual cancer type, and we must find the distinctive small population of cell
lines on the top hierarchy. As different research groups utilizes various combination
of cell surface markers to isolate CSCs. Since these subpopulations of CSCs in the
heterogeneous tumor are very less, as reported in the case of pancreatic cancer, only
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0.2–0.8% of cells show increased tumorigenic potential compared with
non-tumorigenic cancer cells [14]. Also in the case of glioblastoma (GBM),
CD133+ is a putative CSC marker, but recently it has been challenged by other

Table 15.1 List of cancer stem cell markers of various cancer types

Sr.
no Cancer type Markers References

01 Prostate cancer CD44+/α2β1hi/CD133+ [8]

02 Colon cancer EpCAMhig/ CD44+/
CD166+

[9, 10]

CD26+ [11]

DCLK1+ [12, 13]

03 Pancreatic cancer CD44+/CD24+/ESA+ [14]

04 Breast cancer CD44+/CD24�/
lowLineage�

[15]

CD44+/CD24�/low/
ALDHhigh

[16]

Thy+/CD24+ [17]

05 Lung cancer CD133+ [18]

06 Non-small cell lung cancer CD24+/CD38� [19]

07 Ovarian cancer CD133+ [20]

ALDH+ [21]

CD44+/CD177+ [22]

08 Liver cancer CD133+ [23–25]

EpCAM+/AFP [26]

CD13+ [27]

09 Gastric cancer CD44+ [28]

CD133+/CD44+/ CD24+ [29]

10 Melanoma cancer CD271+ [30]

CXCR6+ [31]

11 Acute myeloid leukemia (AML) CD34+/CD38� [2, 3]

12 Chronic myeloid leukemia (CML) CD34+/CD38� [32]

13 Acute lymphocytic leukemia (ALL) BCR/ABL�/ALL� [33]

14 Chronic lymphocytic leukemia (CLL) CD19+/CD5+ [34]

15 Head and neck squamous cell carcinoma
(HNSCC)

ALDH+/CD133+/CD44+ [35]

16 Cervical cancer ABCG2-positive [36]

OCT3/4/BCRP/CD133+ [37]

CD49f [38]

ALDH1 [39]

17 Renal cell carcinoma ALDH1/CD44+/CD24�/ [40]

CD133+/CXCR4� [41]

18 Glioblastoma CD133+/SSEA1+ [42]

19 Esophageal carcinoma α6bri/CD71dim [43]

20 Bladder cancer EMA�/CD44v6+ [44]
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groups. In the culture of CD133+ CSCs, the CD133� population of cells are unable
to form a tumor. But individually isolated CD133� shows tumorigenic potential
which was not reported earlier [76]. The CD133+ CSC culture only maintains a small
set of primary glioblastomas. This means that CD133+ cells are an early
differentiated cell from the parental CSC, and we need to trace the first line of
cells which give rise to the different progenies making a heterogeneous population of
tumor. From this, we can assume that there might be another tumor-initiating cell
that exists in the heterogeneous population of tumor cells which recapitulates the
original tumor and maintains the heterogeneity. As we have advanced in the CSC
isolation techniques from serial dilution to FACS, MACS, and transplantation to
NOD/SCID mice, maybe soon we might be able to isolate and characterize CSCs
with a universal marker for each cancer type.

15.3.2 Model for Tumor Heterogeneous Population

As we call tumor a heterogeneous population of cells, this plays a key role in the
development and growth of the tumor. Currently, there are two models representing
the heterogeneous population in the tumor, CSC model and the stochastic model. As
depicted in Fig. 15.1, the CSC model suggests that the growth and progression of
many cancers are driven by a small uncommon subpopulation of cells called CSCs.
They mimic normal tissue development by working as stem cells in the normal
tissues. Whereas the stochastic model predicts that the reaction of a cancer cell is
random and influenced by the environment in which it is, i.e., intrinsic and/or
extrinsic factors [77]. Interleukin 6 (IL6) can induce transformation of non-stem
cancer cells (NSCCs) to form CSCs. CSCs are shown to have more amount of IL6 as
compared to the NSCCs and therefore it is hypothesized that the non stem can-
cer cells having increased IL6 expression can instruct the NSCC to dedifferentiate to
CSCs. This has been reported in breast and prostate cancer cell lines and also from
the human breast tumors [78]. In the case of colon cancer, CD133+ cells are potential
cancer stem cell population from SW620 human colon cancer cells [79]. A recent
study has demonstrated that with in situ immunofluorescence the division types of
CSC from the non-stem cancer cell (NSCC) are observed. Results show that even
non-stem cancer cells can differentiate into CSCs due to extrinsic factors like
radiation in their study [80]. The CSCs which we are identifying may not be the
universal CSCs for a particular cancer type, because of the plasticity of cell and their
niche. Although both the models are based on theoretical and experimental studies
and support the cancer therapy targeting CSCs along with the heterogeneous
populations, it would be better if a combination of these two models is created
which will provide clarity regarding the cell responsible for repopulating and
maintaining the heterogenicity of the parent tumor.
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15.3.3 The Problem in the NOD/SCID Mice System
and FACS-Mediated Isolation of CSCs

The presence of CSCs in the heterogeneous population of cells in the tumor is very
rare. Nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice are
used as an in vivo model system to validate the tumorigenic ability of CSCs. Studies
have indicated that only a rare 0.1–0.0001% of the heterogeneous population of cells
in the human cancer cells can initiate a tumor, in diverse cancer types. Not all the
NOD/SCID mice are equally immunocompromised, which can lead to variation in
the result from one research group to another research group. There are no defined
criteria for the compromised immunity of NOD/SCID mice, how much of their
immunity is compromised is not mentioned while injecting the cells for tumor
formation. In the case of acute myeloid leukemia (AML), it has been shown by
Quintana et al. using higher immunocompromised NOD/SCID mice as a xenotrans-
plantation system there is increase in the percentage of the tumorgenic cells in the
tumor population. Their study focuses on injecting the isolated cells from tumor into
two different mice one with higher immunocompromised and against the regular
NOD/SCID mice and comparing the percentage of tumor-initiating cells in both the
experiment. Results from that study suggested that the percentage of tumor-initiating
cells increased in number by 25–27% by limiting dilution and single-cell transplan-
tation in NOD/SCID mice [81–83]. In AML, it has been shown that CD34+/CD38�

cells have an ability to repopulate the tumor. Fluorescent-activated cell sorting uses
the fluorescently conjugated antibodies for the cell surface marker, and based on the
expression of the antigen, different fractions were collected and transplanted into
NOD/SCID mice. In this study, CD34+/CD38� cells were isolated from AML, the
antibodies itself affected the survival of transplanted cells which is Fc-mediated, and
this was overcome by treating the mice with immunosuppressive antibodies. Further
when the inhibitory effect is prevented, most of the cells were found to be leukemia-
initiating cells. This is another example to show the increase in the leukemia-
initiating cells [84]. This finding was carried out on the same AML on which the
CSC hypothesis is established, resulting in having multiple tumor-initiating cell
phenotypes. So, it can be concluded that if the test system is not evenly immuno-
compromised from one laboratory to another, the data generated can be error-prone.
Also, the antibodies we use to isolate the single cells from the population of cells
must also be studied for its effects on the sorted cells and their ability to produce a
tumor. It questions all the studies based on the CSCs in a different solid tumor,
whether the cells isolated are really CSC or not, and further validation of the isolated
cells needs to be done.

15.4 Conclusion and Future Perspectives

Multiple evidences and researches prove that only a small distinctive population of
cells are capable of generating tumors and original heterogenicity in many different
cancer types. Many methods are being developed to isolate and characterize the
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CSCs from the mixed population of the cells. There are different types of cancer, and
current research has found multiple combinations of the CSCs in a single type of
cancer which is identified, verified, characterized, and published. But, can we rely on
these data? Since multiple CSCs are identified for a single cancer type, how do we
decide which CSC needs to be targeted for eradication of cancer from its root? It’s
been more than half a decade but still, there is no exact definition for the CSCs, and
different researchers call it with different names like CSCs, tumor-initiating cells,
etc. but there are no standard meaning or definition. CSC means the cell which can
recapitulate the parental tumor and keeps original heterogeneity, whereas tumor-
initiating cells are the cells which can form a tumor after transplanted into
NOD/SCID mice. Recent publications raise questions regarding the existence of
CSCs based on the experiment performed by John E. Dickand colleagues based on
which the CSC theory is established. Research shows the standard assays to identify
tumor-initiating cells fail to detect the exact population of cells which are responsible
for tumor regeneration. A proper experimental system must be established to
perform a solid functional analysis of CSCs isolated from the parental tumor. The
in vivo xenograft assays must be refined for proper characterization of CSCs. Not
only the isolation and identification of CSCs are important but also the understand-
ing of the gene expression of the CSCs versus normal stem cancer cells is imperative.
Unanticipated intrinsic or extrinsic factors also play an important role in the fate of
the cells to be normal or cancer stem cells. Also, the stemness genes are the same that
help the CSCs and normal stem cells to maintain their stem cell property. A better
understanding of it helps in targeting the cells overexpressing those genes and not
only relying on the cell surface markers. Further, we need to design a better model
for tumor heterogenicity to make a clear understanding regarding the cell responsible
for the heterogeneous population. We conclude that, although we have come a long
way with the understanding of CSCs but with many assumptions has lead to the
controversies like broad definition, limited assays and their standard of quality to
determine the CSCs, relying mainly on the surface markers, etc. A standard defini-
tion and list of rigorous assays need to be made mandatory for the isolation and
characterization of the CSCs and this needs to be followed by the research group
aound the world to isolate, analyse and understand the CSCs. Analysing the cells by
using surface markers, Side population analysis, intracellular markers, spheroid
assays etc. alone will not provide a strong supporting data for a population of cells
to be CSCs, because of the limitations in each of these methods, however combining
these methods together could provide a strong supportive evidence. Therefore
a guidlines listing a combinative approach to be made for the identification of
CSCs is obsolutely essential. This will further reduce the possible controversies
arising due to the limitations of different methods that are currently used by the
research groups worlwide. The current strategies to understand CSCs is not bound to
any rules and to get more clarity about these small subpopulation of cells a stan-
dard international guidelines must be made and followed. It’s high time now to clear
these black spots in the CSC theory and direct research in the aim of curing this
dreaded disease and eliminating its existence from mankind for a better future.

268 R. Gor and S. Ramalingam



Acknowledgments The authors would like to thank the SRM Institute of Science and Technology
for the infrastructure and fellowship to Ravi Gor. We would also like to thank the funding support
provided to us from Science and Engineering Research Board (EMR/2017/002874), and the
Department of Biotechnology, (BT/PR26189/GET/119/226/2017).

References

1. Furth J, Kahn MC (1937) The transmission of leukemia of mice with a single cell. Am J Cancer.
https://doi.org/10.1158/ajc.1937.276

2. Lapidot T et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into
SCID mice. Nature. https://doi.org/10.1038/367645a0

3. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that
originates from a primitive hematopoietic cell. Nat Med. https://doi.org/10.1038/nm0797-730

4. Kim WT, Ryu CJ (2017) Cancer stem cell surface markers on normal stem cells. BMB Rep.
https://doi.org/10.5483/BMBRep.2017.50.6.039

5. Finicelli M et al (2014) Expression of stemness genes in primary breast cancer tissues: the role
of SOX2 as a prognostic marker for detection of early recurrence. Oncotarget. https://doi.org/
10.18632/oncotarget.1936

6. Rasti A et al (2018) Co-expression of cancer stem cell markers OCT4 and NANOG Predicts
poor prognosis in renal cell carcinomas. Sci Rep. https://doi.org/10.1038/s41598-018-30168-4

7. Clarke MF et al (2006) Cancer stem cells—perspectives on current status and future directions:
AACR workshop on cancer stem cells. Cancer Res 66:9339–9344

8. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of
tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

9. Dalerba P et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc
Natl Acad Sci U S A. https://doi.org/10.1073/pnas.0703478104

10. Chu P et al (2009) Characterization of a subpopulation of colon cancer cells with stem cell-like
properties. Int J Cancer. https://doi.org/10.1002/ijc.24061

11. Pang R et al (2010) A subpopulation of CD26 + cancer stem cells with metastatic capacity in
human colorectal cancer. Cell Stem Cell. https://doi.org/10.1016/j.stem.2010.04.001

12. Kantara C et al (2014) Curcumin promotes autophagic survival of a subset of colon cancer stem
cells, which are ablated by DCLK1-siRNA. Cancer Res. https://doi.org/10.1158/0008-5472.
CAN-13-3536

13. Nakanishi Y et al (2013) Dclk1 distinguishes between tumor and normal stem cells in the
intestine. Nat Genet. https://doi.org/10.1038/ng.24813

14. Li C et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037
15. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective

identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. https://doi.org/
10.1073/pnas.0530291100

16. Ricardo S et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression
distribution within intrinsic molecular subtype. J Clin Pathol. https://doi.org/10.1136/jcp.2011.
090456

17. Cho RW et al (2008) Isolation and molecular characterization of cancer stem cells in MMTV-
Wnt-1 murine breast tumors. Stem Cells. https://doi.org/10.1634/stemcells.2007-0440

18. Tan Y, Chen B, XuW, ZhaoW,Wu J (2014) Clinicopathological significance of CD133 in lung
cancer: a meta-analysis. Mol Clin Oncol. https://doi.org/10.3892/mco.2013.195

19. Karimi-Busheri F, Rasouli-Nia A, Zadorozhny V, Fakhrai H (2013) CD24+/CD38- as new
prognostic marker for non-small cell lung cancer. Multidiscip Respir Med. https://doi.org/10.
1186/2049-6958-8-65

20. Baba T et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian
cancer cells. Oncogene. https://doi.org/10.1038/onc.2008.374

15 Controversies in Isolation and Characterization of Cancer Stem Cells 269

https://doi.org/10.1158/ajc.1937.276
https://doi.org/10.1038/367645a0
https://doi.org/10.1038/nm0797-730
https://doi.org/10.5483/BMBRep.2017.50.6.039
https://doi.org/10.18632/oncotarget.1936
https://doi.org/10.18632/oncotarget.1936
https://doi.org/10.1038/s41598-018-30168-4
https://doi.org/10.1073/pnas.0703478104
https://doi.org/10.1002/ijc.24061
https://doi.org/10.1016/j.stem.2010.04.001
https://doi.org/10.1158/0008-5472.CAN-13-3536
https://doi.org/10.1158/0008-5472.CAN-13-3536
https://doi.org/10.1038/ng.24813
https://doi.org/10.1073/pnas.0530291100
https://doi.org/10.1073/pnas.0530291100
https://doi.org/10.1136/jcp.2011.090456
https://doi.org/10.1136/jcp.2011.090456
https://doi.org/10.1634/stemcells.2007-0440
https://doi.org/10.3892/mco.2013.195
https://doi.org/10.1186/2049-6958-8-65
https://doi.org/10.1186/2049-6958-8-65
https://doi.org/10.1038/onc.2008.374


21. Landen CN et al (2010) Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer.
Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-10-0563

22. Zhang S et al (2008) Identification and characterization of ovarian cancer-initiating cells from
primary human tumors. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-08-0364

23. Ma S et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor
cells. Gastroenterology. https://doi.org/10.1053/j.gastro.2007.04.025

24. Suetsugu A et al (2006) Characterization of CD133+ hepatocellular carcinoma cells as cancer
stem/progenitor cells. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2006.10.
128

25. Yin S et al (2007) CD133 positive hepatocellular carcinoma cells possess high capacity for
tumorigenicity. Int J Cancer. https://doi.org/10.1002/ijc.22476

26. Yamashita T et al (2008) EpCAM and α-fetoprotein expression defines novel prognostic
subtypes of hepatocellular carcinoma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-
07-6013

27. Haraguchi N et al (2010) CD13 is a therapeutic target in human liver cancer stem cells. J Clin
Invest. https://doi.org/10.1172/JCI42550

28. Takaishi S et al (2009) Identification of gastric cancer stem cells using the cell surface marker
CD44. Stem Cells 27:1006–1020

29. Chen T et al (2012) Identification and expansion of cancer stem cells in tumor tissues and
peripheral blood derived from gastric adenocarcinoma patients. Cell Res. https://doi.org/10.
1038/cr.2011.109

30. Civenni G et al (2011) Human CD271-positive melanoma stem cells associated with metastasis
establish tumor heterogeneity and long-term growth. Cancer Res. https://doi.org/10.1158/0008-
5472.CAN-10-3997

31. Taghizadeh R et al (2010) Cxcr6, a newly defined biomarker of tissue-specific stem cell
asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.
PLoS One. https://doi.org/10.1371/journal.pone.0015183

32. Jørgensen HG, Holyoake TL (2007) Characterization of cancer stem cells in chronic myeloid
leukaemia in biochemical society transactions. https://doi.org/10.1042/BST0351347

33. Bernt KM, Armstrong SA (2009) Leukemia stem cells and human acute lymphoblastic leuke-
mia. Semin Hematol. https://doi.org/10.1053/j.seminhematol.2008.09.010

34. Gross E, Quillet-Mary A, Ysebaert L, Laurent G, Fournie JJ (2011) Cancer stem cells of
differentiated B-cell malignancies: models and consequences. Cancers. https://doi.org/10.
3390/cancers3021566

35. Krishnamurthy S, Nör JE (2012) Head and neck cancer stem cells. J Dent Res. https://doi.org/
10.1177/0022034511423393

36. Villanueva-Toledo J, Ponciano-Gómez A, Ortiz-Sánchez E, Garrido E (2014) Side populations
from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep. https://doi.
org/10.1007/s11033-014-3047-3

37. Qi W et al (2014) Sorting and identification of side population cells in the human cervical cancer
cell line HeLa. Cancer Cell Int. https://doi.org/10.1186/1475-2867-14-3

38. López J, Poitevin A, Mendoza-Martínez V, Pérez-Plasencia C, García-Carrancá A (2012)
Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers
and increased radioresistance. BMC Cancer. https://doi.org/10.1186/1471-2407-12-48

39. Ginestier C et al (2007) ALDH1 Is a marker of normal and malignant human mammary stem
cells and a predictor of poor clinical outcome. Cell Stem Cell. https://doi.org/10.1016/j.stem.
2007.08.014

40. Debeb BG et al (2010) Characterizing cancer cells with cancer stem cell-like features in 293T
human embryonic kidney cells. Mol Cancer. https://doi.org/10.1186/1476-4598-9-180

41. Varna M et al (2015) Stem cells increase in numbers in perinecrotic areas in human renal cancer.
Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-14-0666

270 R. Gor and S. Ramalingam

https://doi.org/10.1158/1535-7163.MCT-10-0563
https://doi.org/10.1158/0008-5472.CAN-08-0364
https://doi.org/10.1053/j.gastro.2007.04.025
https://doi.org/10.1016/j.bbrc.2006.10.128
https://doi.org/10.1016/j.bbrc.2006.10.128
https://doi.org/10.1002/ijc.22476
https://doi.org/10.1158/0008-5472.CAN-07-6013
https://doi.org/10.1158/0008-5472.CAN-07-6013
https://doi.org/10.1172/JCI42550
https://doi.org/10.1038/cr.2011.109
https://doi.org/10.1038/cr.2011.109
https://doi.org/10.1158/0008-5472.CAN-10-3997
https://doi.org/10.1158/0008-5472.CAN-10-3997
https://doi.org/10.1371/journal.pone.0015183
https://doi.org/10.1042/BST0351347
https://doi.org/10.1053/j.seminhematol.2008.09.010
https://doi.org/10.3390/cancers3021566
https://doi.org/10.3390/cancers3021566
https://doi.org/10.1177/0022034511423393
https://doi.org/10.1177/0022034511423393
https://doi.org/10.1007/s11033-014-3047-3
https://doi.org/10.1007/s11033-014-3047-3
https://doi.org/10.1186/1475-2867-14-3
https://doi.org/10.1186/1471-2407-12-48
https://doi.org/10.1016/j.stem.2007.08.014
https://doi.org/10.1016/j.stem.2007.08.014
https://doi.org/10.1186/1476-4598-9-180
https://doi.org/10.1158/1078-0432.CCR-14-0666


42. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 Is an enrichment marker for
tumor-initiating cells in human glioblastoma. Cell Stem Cell. https://doi.org/10.1016/j.stem.
2009.03.003

43. Croagh D, Phillips WA, Redvers R, Thomas RJS, Kaur P (2007) Identification of candidate
murine esophageal stem cells using a combination of cell kinetic studies and cell surface
markers. Stem Cells. https://doi.org/10.1634/stemcells.2006-0421

44. Yang YM, Chang JW (2008) Bladder cancer initiating cells (BCICs) are among
EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating)
cells. Cancer Investig. https://doi.org/10.1080/07357900801941845

45. Dobbin ZC, Landen CN (2013) Isolation and characterization of potential cancer stem cells
from solid human tumors-potential applications. Curr Protoc Pharmacol. https://doi.org/10.
1002/0471141755.ph1428s63

46. Aplin AC, Nicosia RF (2016) The aortic ring assay and its use for the study of tumor. Tumor
Angiogenes Assays Methods Protoc 1464:63–72

47. Keysar SB, Jimeno A (2010) More than markers: biological significance of cancer stem cell-
defining molecules. Mol Cancer Ther. https://doi.org/10.1158/1535-7163.MCT-10-0530

48. Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in
stem cell and cancer therapy. Life Sciences. https://doi.org/10.1016/j.lfs.2010.02.012

49. Zhou S et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem
cells and is a molecular determinant of the side-population phenotype. Nat Med. https://doi.org/
10.1038/nm0901-1028

50. Li WQ et al (2010) Downregulation of ABCG2 expression in glioblastoma cancer stem cells
with miRNA-328 may decrease their chemoresistance. Med Sci Monit

51. Paduch R, Jakubowicz-Gil J, Niedziela P (2010) Hepatocyte growth factor (HGF), heat shock
proteins (HSPS) and multidrug resistance protein (MRP) expression in co-culture of colon
tumor spheroids with normal cells after incubation with interleukin-1β (IL-1β and)/or
camptothecin (CPT-11). Indian J Exp Biol

52. Chuthapisith S, Eremin J, El-Sheemey M, Eremin O (2010) Breast cancer chemoresistance:
emerging importance of cancer stem cells. Surg Oncol. https://doi.org/10.1016/j.suronc.2009.
01.004

53. Misawa A et al (2010) AP-1-dependent miR-21 expression contributes to chemoresistance in
cancer stem cell-like SP cells. Oncol Res. https://doi.org/10.3727/
096504010X12828372551759

54. Tang QL et al (2011) Enrichment of osteosarcoma stem cells by chemotherapy. Chin J Cancer.
https://doi.org/10.5732/cjc.011.10127

55. Donnenberg VS, Donnenberg AD (2005) Multiple drug resistance in cancer revisited: the
cancer stem cell hypothesis. J Clin Pharmacol. https://doi.org/10.1177/0091270005276905

56. DeanM, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer. https://
doi.org/10.1038/nrc1590

57. Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and
angiogenesis. J Clin Oncol. https://doi.org/10.1200/JCO.2007.15.1829

58. Hirschmann-Jax C et al (2004) A distinct ‘side population’ of cells with high drug efflux
capacity in human tumor cells. Proc Natl Acad Sci U S A 101:14228–14233

59. Gilbert CA, Ross AH (2009) Cancer stem cells: cell culture, markers, and targets for new
therapies. J Cell Biochem. https://doi.org/10.1002/jcb.22350

60. Shen G et al (2008) Identification of cancer stem-like cells in the C6 glioma cell line and the
limitation of current identification methods. Vitr Cell Dev Biol Anim. https://doi.org/10.1007/
s11626-008-9115-z

61. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the
adult mammalian central nervous system. Science. (80-). https://doi.org/10.1126/science.
1553558

62. Singh SK et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res
63:5821–5828

63. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like
cells in the C6 glioma cell line. Proc Natl Acad Sci 101(3):1–6

15 Controversies in Isolation and Characterization of Cancer Stem Cells 271

https://doi.org/10.1016/j.stem.2009.03.003
https://doi.org/10.1016/j.stem.2009.03.003
https://doi.org/10.1634/stemcells.2006-0421
https://doi.org/10.1080/07357900801941845
https://doi.org/10.1002/0471141755.ph1428s63
https://doi.org/10.1002/0471141755.ph1428s63
https://doi.org/10.1158/1535-7163.MCT-10-0530
https://doi.org/10.1016/j.lfs.2010.02.012
https://doi.org/10.1038/nm0901-1028
https://doi.org/10.1038/nm0901-1028
https://doi.org/10.1016/j.suronc.2009.01.004
https://doi.org/10.1016/j.suronc.2009.01.004
https://doi.org/10.3727/096504010X12828372551759
https://doi.org/10.3727/096504010X12828372551759
https://doi.org/10.5732/cjc.011.10127
https://doi.org/10.1177/0091270005276905
https://doi.org/10.1038/nrc1590
https://doi.org/10.1038/nrc1590
https://doi.org/10.1200/JCO.2007.15.1829
https://doi.org/10.1002/jcb.22350
https://doi.org/10.1007/s11626-008-9115-z
https://doi.org/10.1007/s11626-008-9115-z
https://doi.org/10.1126/science.1553558
https://doi.org/10.1126/science.1553558


64. Welm BE et al (2002) Sca-1 pos cells in the mouse mammary gland represent an enriched
progenitor cell population. Devl biol 56:42–56

65. Cotsarelis G, Sun T, Lavker RM (1990) label-retaining cells reside in the bulge area of
pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.
Cell 61:1329–1337

66. Kim SJ et al (2004) Methods in cell physiology isolation of nuclei from label-retaining cells and
measurement of their turnover rates in rat colon. Am J Physio Cell Physiol 3104:1464–1473

67. Patrawala L et al (2006) Highly purified CD44 þ prostate cancer cells from xenograft human
tumors are enriched in tumorigenic and metastatic progenitor cells:1696–1708. https://doi.org/
10.1038/sj.onc.1209327

68. Sládek NE (2003) Human aldehyde dehydrogenases: potential pathological, pharmacological,
and toxicological impact. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.10057

69. Charafe-Jauffret E et al (2009) Breast cancer cell lines contain functional cancer stem sells with
metastatic capacity and a distinct molecular signature. Cancer Res. https://doi.org/10.1158/
0008-5472.CAN-08-2741

70. Cheung AMS et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a
subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID
engrafting potential. Leukemia. https://doi.org/10.1038/sj.leu.2404721

71. Corti S et al (2006) Identification of a primitive brain-derived neural stem cell population based
on aldehyde dehydrogenase activity. Stem Cells. https://doi.org/10.1634/stemcells.2005-0217

72. Khan MI et al (2015) Current approaches in identification and isolation of human renal cell
carcinoma cancer stem cells. Stem Cell Res Therapy. https://doi.org/10.1186/s13287-015-
0177-z

73. Lathia JD (2013) Cancer stem cells: moving past the controversy. CNS oncology. https://doi.
org/10.2217/cns.13.42

74. Salnikov AV et al (2010) CD133 is indicative for a resistance phenotype but does not represent
a prognostic marker for survival of non-small cell lung cancer patients. Int J Cancer. https://doi.
org/10.1002/ijc.24822

75. Bertolini G et al (2009) Highly tumorigenic lung cancer CD133+ cells display stem-like
features and are spared by cisplatin treatment. Proc Natl Acad Sci U S A. https://doi.org/10.
1073/pnas.0905653106

76. Beier D et al (2007) CD133+ and CD133- glioblastoma-derived cancer stem cells show
differential growth characteristics and molecular profiles. Cancer Res. https://doi.org/10.1158/
0008-5472.CAN-06-4180

77. Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer
stem cells versus clonal evolution. Cell 138:822–829

78. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem
cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl
Acad Sci U S A. https://doi.org/10.1073/pnas.1018898108

79. Ricci-Vitiani L et al (2007) Identification and expansion of human colon-cancer-initiating cells.
Nature. https://doi.org/10.1038/nature05384

80. Wang W et al (2014) Dynamics between cancer cell subpopulations reveals a model
coordinating with both hierarchical and stochastic concepts. PLoS One. https://doi.org/10.
1371/journal.pone.0084654

81. Wang JCY, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol. https://
doi.org/10.1016/j.tcb.2005.07.004

82. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of
Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and
in vivo. Blood. https://doi.org/10.1182/blood.v89.9.3104

83. Quintana E et al (2008) Efficient tumour formation by single human melanoma cells. Nature.
https://doi.org/10.1038/nature07567

84. Taussig DC et al (2008) Anti-CD38 antibody –mediated clearance of human repopulating cells
masks the heterogeneity of leukemia-initiating cells. Blood. https://doi.org/10.1182/blood-
2007-10-118331

272 R. Gor and S. Ramalingam

https://doi.org/10.1038/sj.onc.1209327
https://doi.org/10.1038/sj.onc.1209327
https://doi.org/10.1002/jbt.10057
https://doi.org/10.1158/0008-5472.CAN-08-2741
https://doi.org/10.1158/0008-5472.CAN-08-2741
https://doi.org/10.1038/sj.leu.2404721
https://doi.org/10.1634/stemcells.2005-0217
https://doi.org/10.1186/s13287-015-0177-z
https://doi.org/10.1186/s13287-015-0177-z
https://doi.org/10.2217/cns.13.42
https://doi.org/10.2217/cns.13.42
https://doi.org/10.1002/ijc.24822
https://doi.org/10.1002/ijc.24822
https://doi.org/10.1073/pnas.0905653106
https://doi.org/10.1073/pnas.0905653106
https://doi.org/10.1158/0008-5472.CAN-06-4180
https://doi.org/10.1158/0008-5472.CAN-06-4180
https://doi.org/10.1073/pnas.1018898108
https://doi.org/10.1038/nature05384
https://doi.org/10.1371/journal.pone.0084654
https://doi.org/10.1371/journal.pone.0084654
https://doi.org/10.1016/j.tcb.2005.07.004
https://doi.org/10.1016/j.tcb.2005.07.004
https://doi.org/10.1182/blood.v89.9.3104
https://doi.org/10.1038/nature07567
https://doi.org/10.1182/blood-2007-10-118331
https://doi.org/10.1182/blood-2007-10-118331


Targeting Therapies for Cancer Stem Cells 16
Manash K. Paul, Vijay R. Marati, Yuvaraj Sambandam,
Lurdes Queimado, Gautam Chaudhuri, Ilangovan Ramachandran,
and R. Ileng Kumaran

M. K. Paul
Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University
of California at Los Angeles, Los Angeles, CA, USA

V. R. Marati
Independent Consultant, Medical Writing, Tucson, AZ, USA

Y. Sambandam
Immune Monitoring Core, Comprehensive Transplant Center, Feinberg School of Medicine,
Northwestern University, Chicago, IL, USA

L. Queimado
Department of Otorhinolaryngology –Head and Neck Surgery, The University of Oklahoma Health
Sciences Center, Oklahoma City, OK, USA

Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City,
OK, USA

Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City,
OK, USA

G. Chaudhuri
Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of
California at Los Angeles, Los Angeles, CA, USA

I. Ramachandran
Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of
Madras, Taramani Campus, Chennai, Tamil Nadu, India

Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of
California at Los Angeles, Los Angeles, CA, USA
e-mail: ilangovan@unom.ac.in

R. I. Kumaran (*)
Biology Department, Farmingdale State College, Farmingdale, NY, USA
e-mail: ramachi@farmingdale.edu

# The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Singapore Pte Ltd. 2020
S. Pathak, A. Banerjee (eds.), Cancer Stem Cells: New Horizons in Cancer
Therapies, https://doi.org/10.1007/978-981-15-5120-8_16

273

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5120-8_16&domain=pdf
mailto:ilangovan@unom.ac.in
mailto:ramachi@farmingdale.edu
https://doi.org/10.1007/978-981-15-5120-8_16#DOI


Abstract

Cancer stem cells (CSCs) represent a small subpopulation of the bulk of a tumor.
The CSCs possess the characteristics of self-renewal, clonal repopulation and
resistance to conventional therapies, and thereby contribute to cancer metasta-
sis and relapse. Moreover, CSCs establish homeostasis under stress via
autophagy, endoplasmic reticulum (ER)-stress-mediated unfolded protein
response (UPR) pathways, and mitophagy. Recent evidence indicate that besides
many protein molecules, the noncoding RNAs (ncRNAs) also play a significant
role in CSC growth and maintenance, as well as in cancer metastasis and
therapeutic resistance. Therefore, targeting the CSCs has evolved as an important
strategy for cancer therapy. Recent advancements in cancer immunotherapy has
shown excellent application of its potential in targeting CSCs. Various immuno-
therapy approaches like immune checkpoint inhibitors, dendritic cell (DC)-based
vaccines, adoptive T-cell therapy, oncolytic viruses, and combination therapies
are currently used to target the CSCs. Also, recent multi-omic technologies can
divulge exclusive CSC-associated cell surface markers, which can be used in
detection or therapeutics of CSCs for various cancers. Additionally, detection of
CSC-specific neoantigens can help in the design of new immunotherapeutics for
cancers. Available literature suggests that many types of cancers have CSCs
located in anatomically distinct niches within the tumor microenviron-
ment (TME), which help in CSC’s survival and maintenance. Unique
pro-survival and anti-survival intercellular and intracellular cross talk also exists
among the CSCs, its niche and/or TME. Modulating unique CSC-niche/
TME interaction(s) can reduce the maintenance potential of CSCs, and thereby
prevent tumor development and progression or cancer metastasis. Many impor-
tant cell signaling pathways play a key role in the maintenance and regulation of
CSCs. Several new potential therapeutic molecules that could specifically target
the CSCs or their signaling pathways to overcome cancer metastasis, treatment-
resistance or relapse, are being developed. Furthermore, the emerging clinical
studies strongly support the use of drugs as a monotherapy or in combination with
other available standard therapies. This chapter highlights the roles of various crit-
ical CSC markers and pathways in or around the CSCs, and the several
CSC-targeting approaches or therapies that are used or being developed to treat
cancer for a cure.

Keywords

Noncoding RNAs · Unfolded protein response (UPR) ·
Endoplasmic reticulum (ER) stress · Autophagy · Cancer stem cells (CSCs) ·
Immunotherapy · Dendritic cell (DC)-based vaccine · Adoptive immunotherapy ·
Oncolytic virotherapy · Combination chemotherapy · CSC cell surface markers ·
CSC-associated tumor microenvironment · CSC signaling pathway · Hedgehog ·
Notch · Wnt/β-catenin
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16.1 Introduction

Cancer is a major public health problem and remains the second most common cause
of death globally, despite the intense efforts in cancer research and rapid improve-
ment of treatment strategies in the past decade. Resistance to cancer therapeutics and
relapse are the most pertinent problems in cancer drug development. It is estimated
that a total of 9.5 million people die every year worldwide [1], and in the USA alone,
an estimated 606,880 people died of cancer in 2019 (https://seer.cancer.gov/
statfacts/html/all.html). Tumor phenotypic heterogeneity along with the complex
tumor microenvironment (TME) presents an exciting challenge in targeting therapy
resistance. Tumor heterogeneity here refers to the existence of subpopulations of
tumor cells, with distinct genotypes and phenotypes that may harbor different
biological behaviors, within a primary tumor or after it metastasize and forms
secondary tumors, i.e., between tumors of the same histopathological subtype
(intra- and inter-tumor variability, respectively) [2]. It has been noted that tumor
heterogeneity is, in part, controlled by a small population of cells called cancer stem
cells (CSCs). The CSC model was first identified in leukemia, which proved the
existence of a small population of cells capable of initiating leukemia, also generally
called as tumor initiating cells (TICs) [3].

Generally, there are three types of normal stem cells that exist in mammals
including human namely, embryonic stem cells, adult germinal and somatic stem
cells. These normal stem cells can renew themselves, differentiate into multiple cell
types or lineages, and maintain a balance between self-renewal and differentiation
[4]. Like normal stem cells, CSCs also have the capacity to self-renew and differen-
tiate into different types of cells. But, CSCs differ from normal stem cells by having
the potential to induce tumorigenesis. So far, studies have proposed that CSCs form
a subset of the tumor cells within TME and are ultimately responsible for tumor
initiation, progression, and recurrence [5]. In addition, CSCs exhibit the properties of
resistance to chemo/radiotherapy, cellular apoptotic pathways and immune evasion.
CSCs can also potentially confer these properties to the cells that reside in their niche
or TME or tumor. The knowledge acquired from CSC signaling pathways in recent
years has enabled a better understanding of CSC biology and improved the strategies
on therapeutic drug development. In the Chapter 2 of this book, “Types of Cancer
Stem Cells” are discussed in more detail.

The discovery of CSCs brought a new perspective in the search for therapeutic
targets to tackle cancer. CSCs are a rare subpopulation of the tumor cells, which
possess self-renewal properties, and contribute to tumor heterogeneity and therapeu-
tic resistance. Mounting experimental evidence suggests the existence of CSCs in
several human cancers, suggesting a commonality among different tumor types, and
therefore a potential therapeutic target for various cancer treatments [6, 7]. Heightened
DNA-damage response, accumulation of drug efflux transporters, dysregulated
apoptosis, cellular quiescence and self-renewal are the unique attributes of CSCs
[8]. Therefore, a patient-specific combination therapy approach using CSC-specific
targeting along with other available therapeutics to attack the bulk tumor, could
improve the therapeutic outcomes in cancer patients [9].
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CSCs achieve apoptotic resistance by activating the unfolded protein response
(UPR) in response to extrinsic and intrinsic stress. A strong association exists
between the upregulated UPR, autophagy and tumor phenotype in many cancers.
Therefore, targeting the CSCs and tumor cells-specific-UPR and autophagy
pathways can help to induce cellular apoptosis, and kill these cells to eliminate
tumor cells [10]. Success in immunotherapy-based tumor targeting has provided
renewed hopes in cancer therapy. CSCs exhibit resistance towards chemo/radiother-
apy. Immunotherapy with two-pronged approaches of activating the body’s immune
system and suppressing the tumor cells-imparted immune (evasion) inhibitory effect
can lead to egression of tumors and successful elimination of tumors [11]. Targeting
CSCs is gaining huge attention among anticancer therapies because of its specificity
and potentially very low adverse effects on normal cells [12, 13]. Different
approaches to target CSCs such as dendritic cell (DC)-based vaccine, adoptive
immunotherapy, oncolytic virotherapy and combination chemotherapy are discussed
in this chapter.

CSCs possess normal stem cell-like characteristics and depend on the activation
of stem cell-related signaling pathways. In this chapter, we will also focus on the
most recent therapeutic strategies in development for targeting CSC’s signaling
pathways such as Hedgehog (Hh), Notch and Wnt/β-catenin (Fig. 16.1), and other
pathways. In normal stem cells, these pathways are highly regulated, but show
abnormal activation in CSCs, causing uncontrolled proliferation, dysregulated apo-
ptosis and differentiation. The evolutionary uniqueness, underlying genetic
signatures and associated networks create unique phenotypic signatures of CSCs.
Harnessing, the strengths of genome-wide screening, proteomics and flow cytometry
techniques can help to identify CSC-specific and unique cell surface marker profiles
to distinguish CSCs from other tumor and normal cells [14]. A unique patient-
specific cancer or CSC marker signature will contribute to a better understanding of
the underlying regulatory mechanisms and more effective targeted therapies. Recent
studies have suggested the existence of both protumor and antitumor signaling
interactions between the CSCs and TME. The TME consists of several cell types
and is a place for reciprocal interactions, leading to a favorable niche for the
maintenance of the CSCs [15]. Targeting the CSC-associated niche and TME can
curb the tumor proliferation and metastasis, as discussed in this chapter. More-
over, therapies targeting CSC's markers and signaling pathways or
immunotherapies, and epigenetic modifiers that are used, or currently being explored
in clinical settings are also dicussed in this chapter.

There are many options to treat cancers depending upon the stage or severity and
may involve the use of single or combination treatments such as surgery, chemo-
therapy, radiation therapy, and targeted therapies. However, currently mono- or
combination therapies targeting CSCs remain the most promising mode of cancer
treatment. Therefore, this book chapter focuses on CSC-targeting strategies for
cancer therapy.
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16.2 Targeting CSC-Associated Endoplasmic Reticulum Stress
and Autophagy Pathways

The endoplasmic reticulum (ER) is a membrane-bound organelle and a site for
protein folding, posttranslational modification of proteins, lipid synthesis, glycogen
metabolism and calcium homeostasis. The ER homeostasis may get perturbed in
some pathological state or stressful conditions, which can lead to an abundant accu-
mulation of misfolded and/or unfolded proteins or vice versa. Then, adaptive signal-
ing mechanisms, senses and detects these stress-inducing conditions or events,

Fig. 16.1 Schematic representation of the molecular pathway linking endoplasmic reticulum
(ER) stress response, autophagy, and apoptosis in cancer stem cells (CSCs). Accumulation of
unfolded proteins triggers the unfolded protein response (UPR) and creates ER stress. UPR
activation is initiated by the stimulation of stress sensors on the ER membrane. The important
components include protein kinase R-like ER kinase (PERK), inositol-requiring enzyme 1 alpha
(IRE1α), and activating transcription factor 6 (ATF6). IRE1 RNAse domain mediates mRNA
splicing and activation of the functional transcription factor X-box binding protein 1 spliced form
(XBP1). PERK inhibits global protein translation by phosphorylating eukaryotic initiation factor
2 alpha (eIF2α) and activating the translation of autophagy (ATG) related genes via activating
transcription factor 4 (ATF4). ATF6 translocates from the ER to the Golgi, followed by protease-
mediated cleavage and the release of the active form ATF6 basic leucine zipper
domain (ATF6bZIP). After translocation into the nucleus, XBP1s, ATF4, and ATF6bZIP activate
the translation of specific genes involved in ER stress regulation. Several other pathways also
interact with the ER stress pathway and induce autophagy. A high-level or continuous UPR
signaling can activate apoptosis. CSCs activate the autophagy pathway to gain survival advantages.
Autophagy is also important for maintenance of CSC pluripotency, imparts protection against
cellular stress, activates chemo- and immune resistance, regulates cell migration and invasion,
and thereby influences metastasis
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and evokes the ER’s “unfolded protein response” (UPR) stress pathways, leading to
the restoration of ER homeostasis [16]. Different ER membrane sensors, including
inositol-requiring enzyme 1 alpha (IRE1α), protein kinase RNA (PKR)-like ER
kinase (PERK) and activating transcription factor 6 (ATF6), are some of the key
molecules that play a role in sensing the stress and activating the UPR mechanisms,
and they help to restore and maintain ER homeostasis (Fig. 16.1) [17]. IRE1α, PERK
and other receptor tyrosine kinases that are located in the ER membrane, intiate
the autophosphorylation cascade and downstream signaling pathways as shown in
Fig. 16.1. Autophagy, an evolutionarily conserved process of lysosomal degradation
and recycling of defective macromolecules, and pernicious organelles, is tightly
regulated by the UPR pathway. Autophagy is a complex multistep process involving
cargo recognition, packaging, vesicle nucleation, sequestration and complete forma-
tion of the autophagosome, and finally fusion with the lysosomes [18, 19]. IRE1α
phosphorylates mitogen-activated protein kinase 8 (MAPK8), which then interacts
with c-Jun N-terminal kinase (JNK) and triggers the downstream effectors followed
by autophagy. During ER stress response, JNK indirectly activates the Beclin 1, a
coiled-coil myosin-like BCL2-interacting protein-mediated autophagy pathway. ER
stress can also stimulate calcium release from the ER, followed by calcium/calmod-
ulin-dependent protein kinase kinase β (CaMKKβ) phosphorylation and activation
of AMP-activated protein kinase (AMPK). The AMPK removes the mammalian
target of rapamycin (mTOR)-induced inactivation of the unc-51 like autophagy
activating kinase 1 (ULK1) complex, and thereby activates autophagy. ER stress-
associated calcium release can also activate death-associated protein kinase
(DAPK)-Beclin 1 pathway for autophagy induction. ER stress also induces another
arm of UPR response via PERK-mediated autophagy [20]. PERK-eukaryotic initia-
tion factor 2 alpha (eIF2α)-ATF4 pathway activates CCAAT/enhancer binding
protein (C/EBP) homologous protein (CHOP)-mediated autophagy. An overview
of the ER stress signaling and its association with apoptosis and autophagy is shown
in Fig. 16.1.

Tumor cells and CSCs are subjected to extrinsic and intrinsic stress, and they acti-
vate the UPR pathway as a survival strategy. A strong association exists between the
upregulated UPR and cancer progression in several tumor types. CSCs activate
autophagy to achieve a significant pro-tumorigenic advantages in many cancer types.
Activated ER stress and autophagy in CSCs provide several pro-tumori-
genic advantages including self-renewal, resistance to stress from adverse environ-
mental conditions such as hypoxia or low nutrients, resistance to drugs during
therapy, modulation of anticancer immunity, and activation of migration and inva-
sion properties (Fig. 16.1). Hence, targeting the CSC’s UPR and autophagy
pathways, can sensitize CSCs to apoptosis and thereby help to strategize cancer
treatment therapies [10, 21, 22].

ALDH+ CSCs from mammary ductal carcinomas are dependent on Beclin 1
autophagic flux for survival and tumorigenesis [23, 24]. Autophagic flux imparts
survival advantage, plasticity and stemness in CD44+CD24� breast CSCs
[25]. shRNA screens have also helped to confirm the role of autophagy in the
maintenance of breast CSCs and revealed autophagy-related protein 4 homolog A
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(ATG4A), a cysteine peptidase and Janus kinase (JAK)/signal transducer and acti-
vator of transcription (STAT) signaling pathways as important mediators [26–
28]. Autophagy inhibition, through targeted deletion of the FIP200 component of
the CD29hiCD61+ mouse mammary CSCs in MMTV-PyMT and MMTV-Wnt1
transgenic mice, showed strong autophagic dependence [29, 30]. ER stress and
other stresses [hypoxia and transforming growth factor-beta (TGF-β)] are prevalent
in the TME and induce both EMT and autophagy gene expression in CSCs. EMT
induction also promotes a CSC phenotype in breast cancer [31–33]. Other CSCs also
exhibit autophagic dependence, including those from human hepatocellular carci-
noma [34, 35], pancreatic cancer [36, 37], bladder cancer [38], colorectal cancer
[36, 39], chronic myeloid leukemia [40], and glioblastoma [41]. Hypoxia-induced
autophagy activates immune resistance from T cell cytotoxicity [42]. Thus, UPR and
autophagy pathways have become an exciting target for therapeutic exploration to
eliminate CSCs.

Chloroquine (CQ) and hydroxychloroquine (HCQ) are the main autophagy
inhibitors that have been tried and tested in the clinic [10, 43, 44]. Small-molecule
inhibitors targeting the catalytic components of the autophagosome biogenesis
pathway (ULK1, VPS34, and ATG4B), Phosphoinositide 3-kinase (PI3K)/AKT/
mTOR and the mitophagy pathway are also being evaluated for their antitumor
properties. The important druggable targets include mTOR, ULK1, VPS34, Beclin 1,
ATG7, and ATG4. Lys05 is a dimeric chloroquine that has been reported to be
significantly more potent than HCQ and is under preclinical trials [45, 46]. A
quinacrine derivative (DQ661) showed a robust anticancer effect in several cancer
types [47]. Several clinical trials are underway exploring the synergistic cytotoxicity
of anticancer drugs with autophagy inhibitor CQ and HCQ on different cancer types
[10, 43]. Further investigation to better understand the tissue and cancer-specific role
of the UPR, autophagy flux, and apoptosis is needed to facilitate the design of better
pharmacological modulators for targeting CSCs.

16.3 Cancer Stem Cell (CSC)-Specific Immunotherapy

The immune system combats the initiation and progression of cancer, and it’s failure
leads to tumor progression. CSCs exhibit resistance toward small-molecule
inhibitors and thereby limit the therapeutic response. Recent advances in immune
oncology have raised hopes for targeting CSCs using immunotherapy-based
approaches. Currently, immunotherapy is aimed not only at potentiating and
harnessing the strength of the immune system but also to suppress the immune
inhibitory effect imparted by the tumor cells. Recent evidence has clearly shown that
inhibiting tumor cells’ immunosuppressive effect can lead to the successful elimina-
tion of the tumor. CSCs, by virtue of their inherent properties like self-renewal, low
abundance, and chemo- and radiotherapy resistance, present a significant therapeutic
challenge. Preclinical and clinical efforts are underway to harness the
immunotherapy-based strategies to successfully eliminate CSCs and induce tumor
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regression [11]. Different immunotherapy approaches to target CSCs are elaborated
under specific subtitles.

16.3.1 Dendritic Cell (DC)-Based Vaccines for CSCs

Alterations in the genomic DNA or mutations can cause changes in protein sequence
and function contributing to tumorigenesis. The patient’s human leukocyte antigen
(HLA) molecules can present the novel tumor-specific peptides or neoantigens to the
immune cells and thereby elicit an immune response. Innovative immunogenomic
techniques, including whole genome or exome sequencing technologies, HLA
haplotyping, HLA binding computational predictions, T-cell receptor (TCR)
sequencing, and immunophenotyping, have collectively paved the path to elucidate
the tumor-specific mutant antigens or neoantigens. The complete understanding of
the neoantigens’ repertoire can help design cancer immunotherapies for specific
tumor types [48, 49]. Dendritic cells (DCs) are the most efficient antigen-presenting
cells (APCs). DCs can conventionally present (exogenous antigens as MHC
II-associated peptides to CD4+ T cells; endogenous antigens as MHC I-associated
peptide to CD8+ T cells) as well as cross-present (exogenous antigens as MHC
I-associated peptides) and thereby accomplish more efficient T cell activation. T cell
activation is not only dependent on a cognate antigen (signal 1) but also on
co-stimulatory signals present on the APC cell surface (signal 2; e.g., CD86,
CD40, CD80) and cytokine signaling (signal 3), Fig. 16.2. An immunosuppressive

Fig. 16.2 Immune synapse between antigen-presenting cells (APCs) and T cells. Signal 1 involves
the presentation of an antigenic peptide by MHC II molecule and its identification by the antigen-
specific T cell receptor (TCR). Signal 2 corresponds to the synapse stabilization by co-stimulatory
molecules, leading to an activation signal. Interaction with cytotoxic T lymphocyte-associated
protein 4 (CTLA4), on the other hand, produces inhibitory signals (not shown). Signal 3 helps to
generate a T cell effector phenotype and is dependent on cytokine secretion by APCs
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microenvironment is promoted by most tumor cells to limit immune efficacy. DCs
provide a robust platform for integrating all relevant signals required for T cell
priming with appropriate cancer antigens, leading to a strong antitumoral immune
response [50, 51]. Autologous DC-based vaccines to activate in situ T cell mediated
antitumor response and concomitant reversal of the immune suppression might lead
to successful combinatorial immunotherapies in the future.

Several pioneering discoveries that showed DCs as highly specialized APCs,
DC-mediated T cell priming, and the role of cancer antigen in cancer immunother-
apy led to the concept of the DC vaccine. The first-generation DC vaccines relied
mostly on patient-isolated DCs or ex vivo differentiated monocyte-derived immature
or semi-immature DCs (mo-DCs). These DCs were then primed with tumor cell
lysate and synthetic antigenic peptides and achieved limited success against certain
tumor types (melanoma, non-Hodgkin’s lymphoma). The second-generation DC
vaccines relied on fully mature mo-DCs primed with recombinant antigenic peptides
and irradiated tumor cell lysates. Results from several clinical trials suggest greater
clinical efficacy. The next-generation DC vaccines focus on a specific subset of
patient-derived DCs (e.g., BDCA1/CD1c+ myeloid DCs and BDCA3/CD141+ mye-
loid DCs) for efficient memory T cell generation and immune response. Table 16.1
shows the recent advances in targeting CSCs by immunotherapy regimens that are a
part of clinical trials. Patients’ peripheral blood mononuclear cells (PBMCs) can be
differentiated into DCs and sensitized with cancer cell lines or CSC lysate or patient
tumor lysate and can be used as vaccines to potentiate the antitumoral immune
response (Fig. 16.3) [49]. The efficacy of DC-based vaccines is evident in multiple
cancers. Ning et al. [52] demonstrated the cell-killing efficacy of ALDHhi

CSC-pulsed DCs in an immunocompetent murine model using D5 melanoma and
SCC7 squamous cell cancer [52]. DCs charged with pancreatic CSC lysate (enriched
from Panc-1 sphere cultured cells) induced enhanced immune killing and robust
antitumor cytokine production [53]. ALDHhi CSC-pulsed DCs inhibited pulmonary
metastasis of primary tumor melanoma and squamous cell carcinoma and induced
B cell priming toward CSCs [54]. A DC-based vaccine against CSCs in mouse
malignant melanoma (B16F10 lysate) showed a decrease of metastatic tumor burden
in mice model [55]. The efficacy of DC primed with CSC lysate on tumor burden
is also evident in other studies [56, 57]. CSCs from pancreatic and lung cancer cell
lines pulsed with DCs can lead to successful T cell stimulation [58]. Another
approach includes the fusion of DCs with tumor cells, which lead to the
DC/hepatocellular carcinoma stem cell vaccine that provides the potential to gener-
ate polyclonal immune responses and can provide a unique method to target CSCs
[59]. Examples of clinical trials based on DC-based vaccines and cancer
immunotherapies aimed at targeting CSCs are shown in Table 16.1.

Targeting the CSCs by DC immunotherapy can be challenging as CSCs express
low MHC I molecules and other innate immune receptors and are resistant to
immune effector cells. Concomitant overexpression of pluripotency markers renders
the CSCs immune resistant. Moreover, cytokines and chemokines released by the
stromal cell population and some immune cells suppress antitumor immunity.
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Fig. 16.3 Cancer stem cell (CSC)-specific immunotherapy. (a) Dendritic cell (DC)-based cancer
immunotherapy: Autologous CD14+ monocytes are isolated through the process of leukapheresis
from the peripheral blood of a cancer patient. The monocytes are then differentiated in the presence
of GM-CSF, IL-4, and IL-13 to produce immature DCs, which are then primed with tumor-
associated antigen (TAA)/CSC antigen and finally subjected to maturation cocktail to obtain mature
DCs. The maturation process is followed by the injection of mature immunogenic DCs back to the
patient. The immunogenic DCs facilitate antigen presentation and co-stimulation. GM-CSF
granulocyte-macrophage colony-stimulating factor, IL-4 interleukin 4, and IL-13 interleukin
13 (b) Adoptive T cell therapy (ACT): T cells are isolated from the patient’s peripheral blood via
leukapheresis and then subjected to genetic modification using a retroviral or lentiviral vector to
express a specific artificial chimeric antigen receptor (CAR). CARs comprise of an extracellular
antigen recognition domain, which is then fused with an intercellular T cell signaling domain and
also merged with co-stimulatory domains. CAR T cells are then administered to the patient. For
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Potential new strategies like adoptive T cell therapy may be useful in tackling
immune resistant CSCs.

16.3.2 Adoptive Immunotherapy for CSCs

Passive immunization or popularly referred to as adoptive T cell therapy (ACT)
represents the extraction of T cells from tumor-infiltrating lymphocytes (TILs) or
antigen-specific T cells, followed by ex vivo genetic modification and culture and
the subsequent autologous transfer of the T cells to the cancer patient. ACT is
achieved based on two strategies. One approach is the genetic engineering of
autologous T cells to overexpress T cell receptors (TCRs) that can identify tumor-
associated antigens (TAA) by viral transduction. Genetic engineering of autologous
T cells to express the chimeric antigen receptors (CARs) is the other approach.
CARs combine multiple signaling domains, including the single-chain variable
fragments (scFv), antigen binding domain to an intracellular T cell signaling domain,
and one or two co-stimulatory domains (e.g., CD3 ζ-CD28-41BB, CD3 ζ-CD28-
OX40). CAR T cell therapy is an innovative and promising immunotherapy
approach as it leads to T cell activation and is non-MHC restricted.

CSCs play a vital role in tumorigenesis and subsequent metastasis; hence the
adoptive transfer of CAR T cells may lead to the elimination of CSCs and provide
long-term disease-free survival or cure. The use of ACT targeting CSCs is limited,
but scientists are exploring the possibility. Tettamanti et al. [60] transduced the
adoptive transfer of cytokine-induced killer cells to target leukemia progenitors and
leukemia stem cells by targeting IL3RA or CD123. A strong response against
CD123+ cell lines and AML blast cells and a concomitant minimal killing of normal
monocyte and CD123-low expressing cells were observed [60]. Deng et al. [61] used
CAR T cells specific for CSC-specific marker EpCAM and showed significant
response on PC3M tumor cells both in vitro and in vivo [61]. CAR T cells
engineered to coexpress CAR with a membrane-bound chimeric interleukin (IL)-
15 (mbIL15) promoted a stem cell memory T cell subset in CD19+ leukemia
[62]. Though colorectal cancer exhibits a low CSC number, Miyamoto et al. [63]
using an HLA ligandome analysis identified ASB4 as a colorectal CSC-specific
marker. The ASB4 peptide as an epitope primed a potent CD8+ cytotoxic T cell
(CTL) response and demonstrated significant elimination of the CSCs [63].

Adoptive transfer of natural killer (NK) cells has also shown significant success
and is a potent alternative adoptive transfer strategy. Interestingly, NK cells show a

�

Fig. 16.3 (continued) T cell receptor (TCR) therapy, conventional TCR is inserted into a patient’s
T cells, followed by T cell expansion, and then injected to the patient. TCRs are composed of an α
chain and a β chain and can recognize antigens only when presented on an MHC molecule.
Alternatively, tumor-specific T-cells can be isolated from the tumor of a patient, expanded and
injected into the patient. (c) Oncolytic virotherapy (OVT): OVT involves infection of a tumor with a
genetically modified oncolytic virus to induce tumor cell killing and activation of local inflamma-
tion, followed by immune infiltration. CTL cytotoxic T lymphocyte, TAA tumor-associated antigen,
MHC major histocompatibility complex, TNF-α tumor necrosis factor-alpha, and IFN interferon
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preferential targeting of the CSC phenotype and thereby highlight the possibility of
the use of NK-based immunotherapy [64]. Multiple exciting studies have shown the
potency of NK cell-based adoptive therapy in CD54/ICAM-1 in breast cancer [65]
and IL-2- and IL-15-mediated activation of NK targeting of chemoresistant bladder
cancer stem-like cells [66]. Though several laboratories worldwide are exploring the
benefits of adoptive immunotherapy, very few studies have reached the clinical trial
level, suggesting an unexplored area that is worth to investigate (Table 16.1).

16.3.3 Oncolytic Virotherapy (OVT) for CSCs

Viruses can infect healthy cells and cause diseases. Certain viruses are known to
target cancer cells specifically and are called oncolytic viruses. Oncolytic viruses can
kill cancer cells by multiple approaches, first by infecting, followed by intracellular
replication, and finally destroy by inducing lysis of the cancer cells [67]. The second
method involves the production of cancer antigens when the cancer cells die,
subsequent uptake of the cancer antigens by immune cells, and T-cell activation
leading to tumor cell killing [68]. Viruses can also hijack the cancer cell’s apoptotic
machinery and induce cell killing. Various groups have demonstrated the therapeutic
efficacy of OVT on multiple cancers and CSCs [12]. Cancer cells show susceptibility
toward specific viral infections because of defective interferon pathways (e.g.,
myxoma virus, raccoon poxvirus, vesicular stomatitis virus) [69]. Cancer cells also
exhibit expression of specific viral receptors leading to enhanced intracellular uptake
of certain viruses (e.g., adenovirus, poliovirus, measles virus, etc.) [70]. Advances in
the genetic engineering of viruses, success in the clinical trials of oncolytic viruses,
and a better understanding of immunotherapy led to the progress of virotherapy from
the laboratory to the clinic. Genetically modified oncolytic adenovirus armed with
apoptosis-inducing gene tumor necrosis factor (TNF)-related apoptosis-inducing
ligand (TRAIL) and using human telomerase reverse transcriptase (hTERT) pro-
moter for driving the viral E1A gene leads to significant cytotoxicity of radioresistant
esophageal cancer stem-like cells [71]. Cheema et al. [72] engineered and armed the
oncolytic herpes simplex virus with the immunomodulatory cytokine interleukin
12 (G47-mIL12). G47-mIL12 showed significant therapeutic benefits in a CSC
model of glioblastoma [72]. The genetically modified oncolytic adenovirus (using
hTERT promoter for driving the viral gene E1A) on gastric cancer stem cell lines
(MKN45 and MKN7) showed enhanced cytotoxicity toward gastric CSCs
[73]. Oncolytic adenovirus targeting CD133 exhibited an antitumor effect on colo-
rectal cancer and corresponding CSCs. The application of oncolytic viruses has also
been used on breast cancer [75, 76], ovarian cancer [77], and colon CSCs [78]. Many
different oncolytic viruses are being tried and tested in clinical trials. T-Vec is the
first to receive US Food and Drug Administration (FDA) approval for the treatment
of metastatic melanoma, suggesting the need for further investigations in the field
of OVT.
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16.4 Targeting CSCs via Combination Chemotherapy

Immune checkpoint inhibitors and monoclonal antibodies have proven effective in
clinical trials, but only a small fraction of patients benefit from them. Zhang et al.
[79] investigated the combinatorial effect of CSC-DC vaccine and with a dual
blockade of programmed death ligand 1 (PDL1) and cytotoxic T-lymphocyte-
associated protein (CTLA-4) on CSC targeting using B16-F10 murine melanoma
tumor model. The effect of combination therapy in less immunogenic tumors raises
hope. Saha et al. [80] used a immunovirotherapy (G47Δ-mIL12) in combination
with immune checkpoint blockade (CTLA-4, PD-1, PD-L1) and obtained a syner-
gistic therapeutic response to eradicate glioblastoma. Combination chemotherapy
approaches can be more efficient in combating the multiple immune escape
mechanisms of the CSCs.

16.5 Targeting CSC-Associated Cell Surface Markers

Rudolf Virchow and Julius Cohnheim proposed similarities between fetal tissues
and cancers more than 150 years ago [13]. Experiments on acute myelogenous
leukemia by John E. Dick’s laboratory first demonstrated a rare leukemia-initiating
cells in mice [81]. Since this pioneering finding, many other laboratories have
identified CSCs in other cancer types as well [13]. In an interesting study, Gerlinger
et al. [82] analyzed nine different areas of a renal tumor including three metastatic
tumors from the same patient. The data from this study revealed intra-tumoral
heterogeneity and nonlinear evolution of cancer, resembling that of branched normal
stem cell lineage specification. This study not only highlighted the heterogeneity but
also suggested that a small population of the cells possessed the primary evolution-
ary stem cell-like properties [82]. CSCs constitute a subpopulation of cancer cells
that are difficult to target using chemotherapy and radiation therapy. Increasing
evidence suggests that CSCs lead to tumor recurrence and metastasis after cancer
therapy [6]. Understanding the origin, source, regulatory mechanisms, and the
process of malignant progression of CSCs has received significant attention from
scientists [12]. Distinguishing CSCs from other tumor cells depends on the use of
antibodies that detect cell surface markers that are sometimes nonexclusively
expressed on CSCs. The underlying networks of the transcription factors that create
the CSC-specific phenotyping identity may lead to a unique cell surface marker
pattern relevant for targeting CSCs. Rapid application of genome-wide screening,
proteomics, and cell sorting techniques have helped elucidated the CSC-specific cell
surface markers in tumors from different organs. The fundamental evolution of
CSCs and a list of frequently used CSC markers are presented in Fig. 16.4 [8, 9,
83–86]. In general, the CSC surface markers show commonality to that expressed on
human embryonic stem cells (hESCs), but are rarely expressed in normal tissue. The
Human Protein Atlas (http://www.proteinatlas.org) is an excellent source of histo-
logical data for different cell surface markers. The discovery of the CSC-specific cell
surface markers not only paved the way to study the basic mechanisms governing
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cancer cell stemness but also to specifically target these resistant populations.
Harnessing the strength of specificity provided by cell surface markers, several
targeting approaches have been explored including antibody-based targeting,
targeted chemotherapy, targeted radiation therapy, and immunotherapy.

An interesting example of CSC surface molecule based-targeting is CD133, a
membrane-bound glycoprotein and one of the most frequently investigated CSC
markers (Fig. 16.4) [87]. CD133 is the choice for targeting CSCs in many tumors.
Cytolethal distending toxin (Cdt)AC149A, C178ABC-CD133 MAb, a more specific
anti-CD133 antibody conjugated with Cdt toxin, showed specific inhibition of oral
cancer cell proliferation [88]. dCD133KDEL is a deimmunized pseudomonas exo-
toxin fused to anti-CD133 scFv fragment that has shown promising results in ovarian
cancer model in vivo [89], melanoma cells [90], and breast cancer cells [91]. To
increase the specificity of targeting bispecific humanized EpCAM/CD133, targeted
toxin (dEpCAMCD133KDEL) was synthesized using DNA shuffling and ligation
technique. dEpCAMCD133KDEL showed high selectivity and tumor regression in
an in vivo model (using UMSCC-11B cells) of head and neck squamous cell
carcinoma [92]. Another approach with a bispecific antibody is the use of anti-
CD3/anti-CD133, which led to a decrease of CD133+ pancreatic (SW1990) and
hepatic (Hep3B) tumor cell growth in nude mice [93]. CD133-targeted nanoparticles
or CD133NPs [poly(D,L lactide-co-glycolide) polymer loaded with paclitaxel]
reduced MDA-MB-231 xenograft growth and decrease of the CD133+ population
[94]. A bispecific anti-CD16/anti-CD133 antibody has been developed to engage
NK cells and CD133-positive CSCs (BiKEs). BiKEs lead to enhanced NK cell
engagement and activity against CD133+ colorectal cancer cells [95]. To improve

Fig. 16.4 Cancer stem cell
markers. The central area
shows the origin of CSCs. The
outer area above the central
area shows CSC-specific cell
markers in tumors from
different organs/tissues
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CSC targeting trispecific CD133EpCAMCD16 antibody tagged with a toxin
(TriKE) shows three ligand-specific bindings and increased cell killing of the
colorectal cancer cell line (Caco-2) [96]. Immunotherapy-based approaches
(ICT-121 DC vaccine) are used for targeting CD133+ glioblastoma cells. ICT-121
DC vaccine was successfully tested in a phase 1 trial, and results suggest that
ICT-121 is both safe and well tolerated with specific immune response observed in
a subset of patients (https://clinicaltrials.gov/ct2/show/NCT02049489). Several pre-
liminary results suggest the possibility of the use of CD133+ targeted approach in
cancer therapeutics, new investigations, and stringent validation will aid the poten-
tial of better targeting the CSCs in the future.

Another exciting example is CD44, a transmembrane glycoprotein that functions
as a hyaluronic acid receptor with many isoforms and is prominent on many CSCs
(Fig. 16.4). CD44 is ubiquitously expressed in many healthy cells, but its differential
splice variants (CD44v) generated by alternate splicing can be unique in different
tumors and help target the CSCs [97]. CD44 variant CD44v6 is expressed in
non-small cell lung cancer, pancreatic cancer, and gastric carcinoma [98–100],
while CD44v9 is expressed in gastric cancer [101] and colorectal cancer [102],
and CD44v8–10 is expressed in gastric CSCs [103]. Considering the expression
pattern of CD44 on CSCs and its function in regulating cancer cell proliferation,
metabolic shifting, and invasion, many targeting approaches have been formulated,
including the anti-CD44 monoclonal antibody approach. In vivo administration of
monoclonal antibody specific to the CD44 molecule, which shows efficient eradica-
tion of acute myeloid leukemia (AML) in SCID mice [104], is one approach to target
CD44+ tumor cells. Similar reports were also published for BCR-ABL expressing
leukemia [105]. Verel et al. [106] designed chimeric antibodies (BIWA-1, BIWA-2,
BIWA-4, and BIWA-8) and labeled with rhenium 186 (186Re) isotope leading to a
higher degree of specification and efficacy. Further experiments with BIWA Abs
conjugated with isotope Tc-99 and cytotoxic drug mertansine showed promising
results with head and neck squamous cell carcinoma in phase 1 clinical trials
[107, 108].

Several nanotechnology-based platforms have also been explored to achieve
CD44 targeting for cancer therapy. An anti-CD44 monoclonal antibody loaded
with chitosan nanoparticles coated with polylactic acid was effective against
human ovarian cancer cells in vivo [109]. A new approach to tag anti-CD44
antibody with modified superparamagnetic iron oxide nanoparticles (SPIONPs)
and using alternating magnetic field treatment led to magnetic hyperthermia and
significant tumor reduction in human oral squamous cell carcinoma xenograft model
in nude mice [110]. Chen et al. [111] developed anti-CD44 and anti-CD133 antibody
conjugated all-trans retinoic acid-loaded poly-lecithin-PEG nanoparticles (CD44/
CD133–ATRA-PLPN) to target gastric CSCs and showed encouraging results.
These nanoparticles provide a platform for targeting multiple CSCs populations
[111]. Appropriately functionalized carbon nanotubes (CNTs), including single-
walled CNTs (SWCNT) and multiwalled CNTs (MWCNT), are being used as
nano-carriers for anticancer drugs and noninvasive imaging [112]. MWCNTs
functionalized with hyaluronic acid (a ligand for CD44 receptors) and α-tocopherol
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succinate and loaded with anticancer drug doxorubicin (α-TOS-HA-MWCNT-DOX
conjugate) were used to target the CD44 receptors overexpressed in MDA-MB-231
triple-negative breast cancer cells [113]. In an another recent study, Gautam et al.
[114] used a similar CD44 receptor targeting approach and used hyaluronic acid-
modified PEGylated DOX-STS loaded phyto-liposome, which showed an increased
antitumor effect in the MDA-MB-231 xenograft tumor model.

Interestingly, nanoparticle systems are also designed to promote an antigen-
induced immune response in CD44 receptor overexpressed cells. Hyaluronic acid
was also modified into the outer shell of the 3s-PLGA-PEG nanoparticles to improve
immune cell uptake. 3s-PLGA-PO-PEG/HA nanoparticles (PHO NPs) were targeted
to CD44+ cells, and in vivo experiments resulted in avid T cell response
accompanied by modest stimulation of memory T cells [115]. Several other studies
have elaborated different therapeutic strategies including neutralizing antibodies,
peptide mimetics, aptamers, HA-directed nanoparticles, and CAR T cell-based
targeting of CD44+ cancer cells and are in various stages of development.

Other CSC-specific cell surface markers have also been used for CSC targeting.
Therefore, total profiling of the CSC surface markers can help differentiate CSCs
from normal tissue stem cells and better understand their physiological and func-
tional properties in terms of tumor progression and provide therapeutic benefit to the
patient.

16.6 Targeting CSC-Associated Tumor Microenvironment
and Metastasis

The tumor microenvironment (TME) contains several cell types, as well as their
derived soluble factors (e.g., cytokines and chemokines). TME is constituted by
various kinds of cells, including mesenchymal stem cells (MSCs), cancer-associated
fibroblasts (CAFs), endothelial cells, immune cells, fibroblasts, tumor cells,
adipocytes, etc., which utilize reciprocal interactions and influence CSC properties
and functions (Fig. 16.5). Tumor cells and CSCs modulate the microenvironment via
various signaling cues in the form of cell-cell contact and secreted factors [e.g., IL-6,
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF)
and basic fibroblast growth factor (bFGF)], to alter the properties of the stromal cells
into a favorable support system for the maintenance of the CSCs. Like the normal
stem cells, CSCs also reside in specific niches. CSC niche is a particular microenvi-
ronment, in which the CSCs can maintain their principal properties like self-renewal,
ability to form a clonal tumor, long-term repopulation potential, plasticity, and
potential to evade cell death and metastasize [116]. The CSC niche is an integral
component of the TME and collectively considered as the adjacent stroma along
with the tumor cells [117]. Understanding the spatiotemporal dynamics of TME
pattern formation, maintenance of CSC functional heterogeneity, reciprocal cross
talk, and immune suppression by the component cells can help target the TME and
CSC niche.
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Solid tumors are complex tissues, as shown in Fig. 16.5. As the primary tumor
grows, inadequate vascularization within tumor leads to increased hypoxia and ROS
generation, which in turn activates the CSC’s stress signaling pathways. CSCs
activate the production of angiogenic factors to stimulate angiogenesis [116]. The
tumor cells and CSCs also secrete cytokines, chemokines, and other soluble factors
to attract the MSCs, myeloid-derived suppressor cells (MDSCs), tumor-associated
macrophages (TAM), tumor-associated neutrophil (TAN), and regulatory T cells
(Treg), i.e., the pro-tumorigenic components. CSCs establish reciprocal interaction
with the MSCs. While the CSCs secrete IL-6 to stimulate MSCs, the MSCs secrete
C-X-C motif chemokine ligand 12 (CXCL12), IL-6, and IL-8 to activate CSC
stemness. The tumor cells and CSCs also secrete macrophage colony-stimulating
factor (M-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), and
granulocyte colony-stimulating factor (G-CSF) that attract and stimulate the expan-
sion of pro-tumorigenic cell populations. These pro-tumorigenic cells contribute to a
pro-tumorigenic and pro-metastatic effect and thereby promote tumor growth. On
the contrary immune components like the cytotoxic T cells, helper T cells, natural
killer cell (NK), and dendritic cells (DC) lead to an antitumor effect [118]. The
pro-tumorigenic cells block the immunosurveillance of the antitumor adoptive and
innate immune responses.

Cancer metastasis is a multistep process, including epithelial to mesenchymal
transition (EMT), neoangiogenesis, metastatic niche creation, cell migration primar-
ily through the blood vessel, and establishment of secondary tumors. For
detailed information on cancer metastasis, please refer to our “Chapter 8: CSCs
and Tumour Aggressiveness” in this book. In the TME, the CAFs and TAMs

Fig. 16.5 Cancer stem cells and the tumor microenvironment (TME). TME-associated important
cell types and their spatial localizations are shown
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coordinate and activate the pro-angiogenic switch to activate angiogenesis and
invasiveness. The TME in the presence of cytokines secreted by the tumor stroma
induces a specific population of CSCs to undergo EMT and thereby renders them
invasive. CSCs and tumor cells can also hijack normal MSC niches and colonize,
modify, and manipulate distant tissue niches for future colonization and create
perivascular metastatic niches [119]. Mutational analysis suggests that CSCs harbor
alterations in critical developmental pathways that are essential regulators of cell
cycle and differentiation, including the Notch, Wnt/β-catenin, Hedgehog, and Hippo
pathways [118]. The TME is characterized by the reciprocal interactions among
these developmental pathways and also with other tumorigenic signaling pathways,
including the nuclear factor-κB (NF-κB), MAPK, PI3K/AKT/mTOR, and EGFR
cascades leading to tumor progression and metastasis. NOTCH mutations are not
only associated with tumorigenesis but also reported to play a key role in EMT
induction, neoangiogenesis, anoikis resistance, malignant cell expansion, and aiding
in metastatic cell homing [120–122]. Activation of the Wnt/β-catenin pathway is
also clinically associated with tumorigenesis, migration, and invasion
[123, 124]. Similar involvement of the Hedgehog and the Hippo pathways are also
implicated in metastasis [125–129]. Therefore, several studies have targeted the
Notch, Wnt/β-catenin, Hh and Hippo signaling pathways as the primary targets for
anti-CSC therapy, and the relevant, targeted signaling components are shown in
Fig. 16.6 [7]. Many Notch pathway inhibitors are currently tested in clinical trials.
The γ-secretase inhibitors (RO4929097 and BMS-906024) are in different clinical
trial phases. The anti-Notch pathway antibodies are also in various stages of trials.
They include anti-NOTCH1 antibodies (brontictuzumab), anti-NOTCH2/3
antibodies (tarextumab), anti-DLL4 antibodies (demcizumab, enoticumab,
MEDI0639), and anti-DLL3 antibody-drug conjugates (rovalpituzumab tesirine).
There are several pharmacological inhibitors aimed at the canonical as well as the
noncanonical Wnt signaling pathway that are under investigation in clinical trials.
Wnt pathway inhibitors include PRI-724 (β-catenin-CBP complex antagonist),
DKN-01 (anti-DKK1 antibody), ipafricept (anti-FZD8 antibody), vantictumab
(anti-FZD1/2/5/7/8 antibody), cirmtuzumab (anti-ROR1 antibody), and
CWP232291 (also referred as CWP291; peptidomimetic small-molecule β-catenin
antagonist). The Hedgehog signaling pathway plays a vital role in embryonic
development, but mutations and dysregulation in the Hedgehog pathway are also
associated with many tumor types. Multiple Hedgehog pathway-specific
investigating agents are currently undergoing clinical trials. The principal
investigated agents are glasdegib (small-molecule inhibitor of a Sonic HH),
sonidegib (smoothened antagonist), vismodegib (smoothened inhibitor), taladegib
(smoothened antagonist), and saridegib (smoothened antagonist). Pevonedistat
(NEDD8 inhibitor) is an investigational agent that targets the Hippo signaling
pathway [118]. Specific agents targeting CSC signaling pathways have received
FDA approval, including the Hedgehog pathway inhibitor glasdegib for the treat-
ment of AML patients, and have raised hopes for efficient cancer cure.
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16.7 Targeting CSC Signaling Pathways

16.7.1 Hedgehog Signaling Pathway in CSCs

Hedgehog (HH) pathway activation has been linked to more than a dozen types of
cancers [130]. The main parts of the Hedgehog signaling contains three secreted
ligands [Sonic (S) HH, Indian (I) HH, and Desert (D) HH], a negative regulatory
receptor [patched (PTCH)], a positive regulatory receptor [Smoothened (SMO)], and

Fig. 16.6 Therapies targeting key signaling pathways associated with CSC-directed metastasis.
Schematic diagram shows the specific signaling pathway components that are targeted by agents,
which are currently under clinical investigation. The numbers relate to the specific target and to the
type of inhibitors tested. (1) mAbs to NOTCH ligands; decoy NOTCH receptors; anti-DLL3
antibody-drug conjugates (ADCs), (2) mAbs to NOTCH receptors, (3) γ-secretase inhibitors,
(4) NOTCH-specific transcription complex inhibitors, (5) WNT secretion inhibitors/porcupine
inhibitors, (6) Decoy FZD-fusion proteins; anti-FZD mAbs; anti-FZD ADCs; anti-WNT mAbs;
small-molecule inhibitors, (7) Tankyrase inhibitors, (8) β-catenin inhibitors, (9) the binding protein
of the cAMP response element-binding protein (CREB) [CBP]-β-catenin antagonists; Traf2 and
Nck-interacting protein kinase (TNIK) inhibitors, (10) HH blockers, (11) SMO antagonists,
(12) Small-molecule GLI inhibitors, (13) Macrophage stimulating 1 (MST1) upstream signal
inhibitors, (14) Yes-associated protein (YAP) inhibitors, and (15) Transcriptional coactivator with
PDZ-binding motif (TAZ) inhibitors. The color of each number indicates the pathway being
targeted: yellow, Notch pathway; pink, Wnt pathway; light blue, HH pathway; and green, Hippo
pathway
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glioma-associated oncogene 1, 2, and 3 (GLI1, GLI2 and GLI3). The initial step of
the Hedgehog pathway involves binding of the Hh ligand to PTCH leading to the
lifting of SMO and translocation of GLI transcription factors into the nucleus to
regulate target genes. Growing evidence suggests that targeting the Hedgehog sig-
naling pathway in CSCs might offer a sensible as well as effective clinical choice to
restrict tumor growth, overcome cancer resistance, and prevent cancer recurrence. So
far, there are two orally available drugs, namely, vismodegib and sonidegib, which
have been identified as inhibitors of Hedgehog signaling pathway (Fig. 16.7) [131]
and investigated in clinical settings (Table 16.2). These two drugs showed excep-
tional activity in metastatic basal cell carcinoma (mBCC) and have been approved
by the FDA [132].

A phase 2 study (ERIVANCE study) evaluated the clinical efficacy of
vismodegib in 104 patients with mBCC as second-line therapy [133]. From this

Fig. 16.7 Therapeutic strategies targeting the CSC signaling. Overview of CSC signaling and CSC
signaling-targeted therapeutics: vismodegib and sonidegib are inhibitors of Hedgehog signaling
pathway; Notch pathway is targeted by either GSI inhibition (MK-0752, LY900009, and
RO4929097) or its receptor/ligand by use of antibodies (demcizumab and tarextumab);
Wnt/β-catenin signaling-targeted therapeutics include OMP-54F28, which targets FZD receptor,
and PRI-724 that targets β-catenin. Abbreviations used are as follows: HH, Hedgehog; HH ligands:
Indian (I), Sonic (S), and Desert (D); SMO, Smoothened; GLI1-3, Glioma-associated oncogene
1–3; FZD, frizzled; DVL, Dishevelled; APC, Adenomatous polyposis coli; GSK-3β, Glycogen
synthase kinase 3 beta; and NICD, NOTCH intracellular domain
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Table 16.2 Clinical trials for targeted therapy against the signaling pathways of CSCs

Signaling Drug
Trial/NCT identifier/
indication Status Outcome

Hedgehog
pathway

Vismodegib Phase
2/NCT00636610/
metastatic colorectal
cancer

Completed No vismodegib-
associated benefit was
observed in
combination with either
FOLFOX or FOLFIRI

Phase
2/NCT00739661/
ovarian cancer

Completed No difference in PFS
for vismodegib versus
placebo

Phase
2/NCT01088815/
metastatic pancreatic
cancer

Completed Adding vismodegib to
chemotherapy did not
improve efficacy

Phase
2/NCT00887159/
extensive stage small
cell lung carcinoma,
recurrent small cell
lung carcinoma

Completed There was no
significant
improvement in PFS or
OS with the addition of
vismodegib

Phase
1/NCT01209143/solid
cancers

Completed Systemic exposure of
rosiglitazone
(a CYP2C8 substrate)
or OC (ethinyl
estradiol/
norethindrone) was not
altered with
concomitant
vismodegib

Phase
1/NCT00968981/solid
cancers

Completed Vismodegib failed to
achieve unbound
plasma concentrations
as previously reported
in advanced basal cell
carcinoma and
medulloblastoma

Phase
2/NCT00833417/basal
cell carcinoma

Completed Study demonstrated
durability of response,
efficacy across patient
subgroups, and
manageable long-term
safety of vismodegib in
patients with advanced
BCC

Phase
2/NCT00607724/
unspecified adult solid
tumor, protocol
specific

Completed Vismodegib showed
antitumor activity in
locally advanced or
metastatic basal cell
carcinoma

Phase
2/NCT01160250/
advanced basal cell
carcinoma

Completed The results of this study
suggested that patients
aged �65 years were

(continued)
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Table 16.2 (continued)

Signaling Drug
Trial/NCT identifier/
indication Status Outcome

likely to benefit from
vismodegib

Notch
pathway

MK-0752 Phase 1, phase
2/NCT00645333/
metastatic breast
cancer

Completed Clinically meaningful
doses were possible,
with manageable
toxicity and
preliminary evidence of
efficacy

Phase
1/NCT00572182/brain
and central nervous
system tumors

Completed Well tolerated in
children with recurrent
CNS malignancies

Phase
1/NCT01098344/
pancreatic cancer

Completed Gemcitabine and
MK-0752 can be
combined as combo
therapy. Thirteen
patients achieved stable
disease and one patient
achieved a confirmed
partial response

LY900009 Phase
1/NCT01158404/
advanced cancers

Completed No complete or partial
responses were seen,
but five out of
35 patients had stable
disease after treatment
with LY900009

RO4929097 Phase
2/NCT01232829/
metastatic pancreatic
adenocarcinoma

Completed Of the 18 patients
enrolled, 12 patients
were evaluable for
response based on
protocol criteria; three
patients (25% of
evaluable; 17% of total
enrolled) had stable
disease at best
response. There were
no complete or partial
responses

Phase 2/NCT01141569/
clear cell renal cell
carcinoma, recurrent
renal cell carcinoma,
and stage IV renal cell
cancer

Completed No objective
radiographic responses
were observed, and
only six patients had
stable disease as their
best response

Demcizumab Phase 2/NCT02289898/
solid tumors

Completed Well tolerated in
patients with solid
tumors

Phase 2/NCT02289898/
pancreatic cancers

Completed No efficacy benefit
when demcizumab was
added to gemcitabine
plus abraxane

(continued)
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study, 43% of patients with locally advanced disease experienced substantial shrink-
age of tumors or healed visible lesions, whereas 30% experienced mBCC tumor
shrinkage. The objective response rates (ORR) for locally advanced and metastatic
BCC were 60% and 46%, respectively. Subsequent to the ERIVANCE study,
another open-label, phase 2 study (EAS) explored the impact of vismodegib in
BCC patients [134]. The results from the EAS study were similar to those of
ERIVANCE trial. Further, sequential phase 2 studies (PBTC-025B and PBTC-
032) analyzed the clinical benefit of vismodegib in pediatric and adult medulloblas-
toma (MB) [135]. Results from these studies showed that patients in sonic Hedgehog
(SHH)-MB group with active Hh signaling had significantly longer progression-free
survival (PFS) than patients in the non-SHH-MB group. Despite the fact that
vismodegib has excellent antitumor activity in MB, other studies with metastatic
colorectal [136], small cell lung [137], and pancreatic [138] cancers had no consid-
erable improvement in terms of clinical efficacy endpoints.

Other data indicated that cancer cells might develop resistance to the Hh
inhibitors. For example, in MB and also BCC, treatment with vismodegib
(GDC-0449) and sonidegib (LDE-225), two drugs that have shown better outcome
in other clinical trials, triggered drug resistance in the residing cells of these cancers
[139]. Hence, the efficacy of Hh inhibitors in cancers is still uncertain, and so far,
they have shown activity in only a subset of tumors with active Hh signaling. A
comprehensive understanding of the Hh pathway regulation could facilitate the

Table 16.2 (continued)

Signaling Drug
Trial/NCT identifier/
indication Status Outcome

Phase 2/
NCT02259582/Non-
squamous non-small
cell lung cancer

Failed to meet studies’
primary endpoint

Tarextumab Phase
2/NCT01647828/
metastatic pancreatic
cancer

Completed Addition of tarextumab
did not improve overall
survival

Wnt
pathway

OMP-54F28 Phase
1/NCT01608867/solid
tumors

Completed Prolonged stable
disease was noted in
desmoid tumor and
germ cell cancer
patients

PRI-724 Phase
1/NCT01764477/
advanced pancreatic
adenocarcinoma

Completed PRI-724 combined
with gemcitabine was
safe and demonstrated
modest clinical activity

Clinical trials conducted using specific CSC signaling pathway inhibitors are depicted. Source of
the table is https://www.clinicaltrials.gov

16 Targeting Therapies for Cancer Stem Cells 297

https://www.clinicaltrials.gov


development of new therapeutics to deal with Hh pathway-activated cancers with
better outcomes.

16.7.2 Notch Signaling Pathway in CSCs

Notch signaling represents a type of direct cell-cell communication that is necessary
for the regulation of proliferation, apoptosis, and fate decisions of stem cells during
embryonic development [140]. Several studies suggest that Notch signaling plays
important roles in cell proliferation, survival, self-renewal, differentiation, angiogen-
esis, and migration of CSCs [76]. Notch signaling works through a cell-cell commu-
nication, in which a membrane-bound Notch ligand, Delta-like (DLL) or
Jagged (JAG) binds with a transmembrane Notch receptor on a juxtaposed cell.
This interaction initiates two proteolytic events, which are carried out by A
Disintegrin And Metalloproteinase (ADAM) and γ-secretase enzymes, and results
in liberation of the NOTCH intracellular domain (NICD). Later, the cleaved intra-
cellular domain enters the nucleus to engage with other DNA-binding proteins and to
regulate gene expression [76]. So far, clinical studies targeting Notch pathway have
been following two approaches; one is the use of γ-secretase inhibitor (GSI) and the
other is targeting the Notch receptor or ligand through the use of antibodies
(Table 16.2).

Pathway inhibition by γ-secretase inhibitors has been shown to be effective in
preclinical models of cancer and appears to have a safe profile based on phase
1 clinical studies [141, 142]. Inhibitors of GSI (MK-0752, LY900009, and
RO4929097) (Fig. 16.7) have been investigated in clinical trials. In one study,
patients with advanced solid tumors were treated with MK-0752, and clinical
benefits were assessed [142]. The results from this study showed that the
MK-0752 was not effective in extracranial tumors; however, one patient with
anaplastic astrocytoma achieved complete remission (CR), and ten patients with
high-grade glioma had stable disease for more than 4 months. However, there were
two studies where MK-0752 showed minimal or no clinical benefit [141, 143]. In
another study, patients with breast cancer were treated with MK-0752 plus docetaxel
as combotherapy. In this study, 30 patients were enrolled and received MK-0752
along with docetaxel. Of the 30 participants, 26 entered the study with measurable
disease as defined by RECIST criteria, and 2 of them were not evaluable for other
reasons. Of the 24 participants, 11 showed partial response, 9 had stable disease, and
4 had progressive disease [144]. But the results from this study need to be translated
with caution considering that all participants received combotherapy with the stan-
dard of care therapy, and the trial was also designed with single-arm treatment.
Another drug, LY900009, has been studied in phase 1 trial and assessed for
maximum tolerated dose, toxicity, pharmacokinetics (PK), pharmacodynamics
(PD), and antitumor activity [145]. This study had shown a manageable safety
profile and acceptable PK and PD with limited antitumor effects of LY900009 in
patients with advanced cancer. The RO4929097 drug, which also inhibits GSI, has
been studied in more than 35 phase 1 and 2 clinical studies, but so far, it has not
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reached to the level of phase 3 studies yet. LY3039478 is another drug that targets
γ-secretase and has been successful in phase 2 study with encouraging signs of
preliminary clinical activity in advanced and metastatic cancers [146].

For therapies targeting Notch ligand and receptors, immunotherapies such as
demcizumab and tarextumab have been developed and are currently undergoing
clinical investigations. Demcizumab binds to the membrane-binding portion of
DLL4 and prevents its interaction with NOTCH1/4 receptors, thereby inhibiting
Notch-mediated signaling and gene transcription. This drug was tested in phase
1 clinical trial with solid tumors and tolerated well in patients [147]. However, a
recent study (YOSEMITE study) in pancreatic cancer failed to demonstrate efficacy
benefit when demcizumab was added to gemcitabine plus abraxane (NCT02289898,
https://www.clinicaltrials.gov). Another phase 2 study (DENALI study)
investigating the efficacy of combotherapy of demcizumab with standard therapy
in lung cancer was terminated (NCT02259582, https://www.clinicaltrials.gov). Data
from the DENALI study showed that not only did the trial fail to meet its primary
endpoint of overall response rate (ORR) but also that outcomes were better for
patients in the placebo group than for those in the demcizumab treatment group
(NCT02259582, https://www.clinicaltrials.gov).

Another monoclonal antibody directed against the NOTCH receptor, tarextumab,
has been tested in several clinical trials and has been approved as an orphan drug to
treat pancreatic and lung cancers. This drug is a humanized monoclonal antibody
targeting the NOTCH2/3 receptors. Preclinical studies using pancreatic xenograft
models have found that treatment with the combination of tarextumab, gemcitabine,
and nab-paclitaxel caused tumor regression and decreased CSC frequency compared
to treatment with cytotoxic therapy alone [148]. However, the addition of
tarextumab to standard therapy in advanced pancreatic cancer did not improve
outcomes over the standard therapy [149].

16.7.3 Wnt/b-Catenin Signaling Pathway in CSCs

WNT ligands are secreted glycoproteins that bind to the N-terminal extracellular
cysteine-rich domain of the frizzled (FZD) receptors in the presence of co-receptors,
low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Upon activation
of Wnt signaling, Dishevelled (DVL) prevents degradation of β-catenin and results
in translocation of β-catenin into the nucleus, which eventually leads to facilitation
of transcription of WNT target genes [130]. Abnormal activation of Wnt signaling is
implicated in the CSC maintenance of colorectal, breast, hematologic, skin, and lung
cancers [150–152]. Moreover, hyperactivation of Wnt/β-catenin pathway
contributes to cancer cell proliferation, stemness and invasion [153, 154].

OMP-54F28 is a drug that inhibits FZD receptor binding to Wnt ligands
(Fig. 16.7). It has been tested in clinical setting in patients with desmoid tumors
and demonstrated clinical activity [155]. In addition, currently, it is being tested in
phase 1 studies for safety profile (NCT02050178, NCT02092363, and
NCT02069145). Another drug, PRI-724, which blocks β-catenin interaction with
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its transcriptional co-activators, has been studied with gemcitabine in phase 1 study
[156], and the results showed some clinical benefits. The preclinical data on
targeting Wnt signaling have shown some promising outcome (Table 16.2); how-
ever, these drugs are still in the early phase, and these drugs’ future will depend on
identifying the right population who can respond really well and also choosing better
combinations with available standard therapies as combotherapies.

16.7.4 Other Pathways in CSCs

Various other signaling pathways including the TGF-β, JAK/STAT and PI3K/AKT/
mTOR signaling have all been shown experimentally to mediate various stem cell
properties, such as self-renewal, cell fate decisions, survival, proliferation, and
differentiation. There are numerous inhibitors targeting these signaling pathways
that show promising treatment abilities in cancers, and some of them have been
shown to utilize anti-CSC effect, but most of them are still in the early phase of
development.

TGF-β signaling has been shown to be very active in cancer-initiating stem cells
within the tumor tissue. Galunisertib, the first small molecule of TGF-β receptor
inhibitor, has been shown to inhibit cancer-initiating stem cells and arrest the
TGF-β-dependent tumor cell growth and migration [157, 158]. Another recent
study has shown that galunisertib with gemcitabine resulted in improvement of
survival in patients with unresectable pancreatic cancer [159]. Combotherapy having
galunisertib in combination with chemo- and radiotherapy with temozolomide is
being tested in glioblastoma patients (NCT01220271), and the study results have not
been published yet. In another study, galunisertib plus lomustine combotherapy
failed to demonstrate improved OS relative to placebo plus lomustine in patients
with recurrent glioblastoma [160]. For detailed information on glioblastoma, please
refer to our “Chapter 10: Glioblastoma Stem Cells as a Therapeutic Target” in
this book.

JAK/STAT signaling is also involved in maintaining embryonic stem cell self-
renewal properties, hematopoiesis, and neurogenesis [161]. Evidence that
JAK/STAT signaling pathway is activated aberrantly in CSCs has been found in
tumors of the breast and prostate [162, 163]. There has been some success in clinical
trials using JAK inhibitors (e.g., pacritinib) to treat myeloid and lymphoid
malignancies [164].

PI3K/AKT/mTOR signaling pathway is critical for CSC maintenance
[165]. mTOR inhibitors (temsirolimus and everolimus) and PI3K inhibitors
(copanlisib and idelalisib) have been under investigation in the clinical settings as
anticancer drugs targeting PI3K/AKT/mTOR pathway.
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16.8 Conclusions

Conventional therapies have several limitations, and therefore, there is an unmet
need to develop novel effective therapies for the treatment of various cancers. CSCs
possess the properties of self-renewal, plasticity, and the ability to cause can-
cer metastasis and relapse. Various in vitro and in vivo studies have demonstrated
that conventional cancer therapeutics induce apoptosis of tumor cells but are unable
to eliminate the CSCs in the tumor, thus posing a serious challenge to currently
available therapies. Moreover, available evidence suggests that conventional
therapies can activate CSC-like phenotype in many bulk tumor cells. In con-
trast to conventional therapies, CSC-based therapeutics targeting CSCs population,
exhibit high pharmacological efficiency, and thus have a greater potential to elimi-
nate CSCs and cancers. Though, several approaches targeting CSCs are feasible,
targeting CSC-specific pathways and CSC-niche interactions, likely have the
greatest potential to effectively control cancer progression and metastasis in cancer
treatments. Multiple aberrant CSC-associated signaling pathway molecules are
potential targets for inhibition and different inhibitors are currently under
investigations in clinical trials.

Targeting the UPR and autophagy pathways can lead to elimination of CSCs.
Treatment options using immunomodulatory approaches like antibody therapy,
DC-based vaccines, adoptive immunotherapy, and oncolytic virotherapy can
also efficiently target the CSCs, and should be explored more widely for various
cancers. Targeting the ncRNAs that modulate the CSC’s ability to induce EMT and
drug resistance can serve as another potential alternative therapeutic approach to
treat cancers. Combination therapy approaches targeting the CSCs and bulk tumor
cells or CSCs and their niche, using different approaches can efficiently eliminate the
primary and secondary metastatic tumors. Nanoparticle (NP)-based delivery systems
including liposomes, exosomes, lipid NPs, protein NPs, viral NP, apoferritin-based
NPs, inorganic NPs, and natural phytochemical-based NPs can also potentially
target the CSCs specifically.

Advances in integrated omics, including genomics, transcriptomics, proteomics,
metabolomics and other omics platforms integrated with statistical tools, machine
learning algorithms or artifical intelligence (AI) platforms, can help to dissect out the
specific and unique features of the CSCs as compared to normal and bulk tumor
cells. The markers unique to CSCs can also be used to target CSCs. More-
over, detailed information harnessed from patient-specific CSC alterations for
many cancer types, will be useful to better understand the variabilities across
individual’s CSCs epigenetic status, self-renewal, signaling, marker profile and
CSC-niche interactions, for use in precision medicine treatments.

Current therapies targeting CSC signaling pathways demonstrate its efficacy in
clinical trials against many tumor types, but exhibit poor performance during treat-
ment of cancer patients. Therefore, targeting CSC’s signaling pathways should be
explored in depth to further develop and enhance tumor targeting treatments, and
evolve it into an efficient method to combat cancers. The flexibility of employing
CSC signaling pathway targeting drugs along with available standard therapies has
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made the treatment strategies highly promising. As extensive information on the
molecular biology of CSCs is garnered for various tumor types, more targeted
therapies may be designed and tested in combination with each other or with
standard therapies. This could ultimately lead to the development of novel therapies
and potent therapeutics to effectively target CSCs, and thus, treat and cure cancer.
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Targeting Cancer Stem Cells by
Nanoenabled Drug Delivery 17
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Abstract

Resistance to chemotherapy and radiotherapy is commonly seen in cancer cells
due to various reasons like mutation in drug target or their overexpression, drug
inactivation, or drug removal from the cell, thereby rendering a problem in cancer
management. The cancer stem cells (CSCs), which are responsible for cancer
metastasis, are far reached from conventional therapies as these approaches are
unable to eradicate the drug-resistant CSCs, and a novel approach for targeting
these CSCs is warranted. Nanotechnology has occupied a huge space in drug
delivery due to their unique photophysical properties and large surface area to
volume ratio compared to their bulk counterparts. Targeted drug delivery can be
achieved using nanoenabled drug delivery as the different nanostructures can be
functionalized to tag different molecules which can identify specifically the
CSCs. Moreover these nanostructures can also be used as cargo for carrying the
chemotherapeutic drugs and delivering them to the target site. This chapter
discusses the different types of nanocarriers used for targeted drug delivery as
well as the progress in research for targeting the CSCs and destroying them.
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17.1 Introduction

New therapeutic and diagnostic strategies for treatment of cancer have made enough
progress in its preclinical and clinical research on cancer [1], but the metastasis in
cancer is life-threatening as it spreads the cancer cells to other tissues from the origin
[2]. The tissues found in cancer consist of heterogeneous cells with different states of
differentiation and contain “tumor-initiating” cells formed by normal stem cell
mutations [3, 4]. These “tumor-initiating” cells were termed as “cancer stem cells”
(CSCs) which exhibit similar properties like other stem cells, self-renewal, can
differentiate into any cell, and can proliferate to enhance malignant cells [4]. The
strategy for cancer therapy includes the balance between self-renewal and differen-
tiation of these CSCs to prevent formation of cancer.

In recent times, many new drugs are being invented with outstanding pharmaco-
kinetic and therapeutic properties, but delivering those new drugs to target effec-
tively becomes a challenge. Once targeted to the specific molecules, it can show its
potential activity. Many nanotechnology-based drug delivery systems have been
introduced and successfully commercialized like oncology drugs based on solid
nanoparticles, liposomal formulation, conjugates of proteins and polymers, or drug-
polymer conjugated nanoenabled drug delivery systems. However, the bioavailabil-
ity of these drugs is dependent on several factors like size of the drug, dosages,
difference in solubility of water-soluble and fat-soluble drugs, and their clearance
from the blood stream. The drug designing also involves the target cells because in
case of cancer it is desirable that the drug should affect the malignant cells only, not
the benign ones, thereby warranting certain drug carriers which can encapsulate the
drug and release them in only tumor microenvironment. Modern medical
bionanotechnology has enabled us to design such nanocarriers which can target
cancer cells. Targeting CSCs is much more relevant in cancer research because there
are many drawbacks associated with conventional treatments using radiation and
chemotherapy. But in cancer some CSCs can escape this treatment and migrate into
new place through metastasis and start developing fresh tumors, relapsing the
disease [5–7]. The different types of nanocarriers and their role in targeting CSCs
will be discussed in this chapter.

17.2 The Different Types of Nanocarriers

The nanocarriers are helpful for the solubilization of lipophilic drugs, give protection
to drugs which are fragile from degradation by enzymes or pH, and can target the
drugs to be released at specific sites [8]. The different types of nanocarriers are
discussed below.
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17.2.1 Nanobots

Nanobots are nanorobots or nanomotors which are self-driven with submicron
dimension, biodegradable nanodevices composed of bionano materials that can
transport the cargo to deliver them in target sites. Zinc-based nanobots, named as
PEDOT/Zn micromotor, were used to deliver payload in the stomach of a mouse
model, which gradually dissolves the nanobot in the stomach acid and delivers the
payload [9]. Single-molecule-based submersible nanomachines in solutions were
activated using UV light, and single-molecule fluorescence correlation spectroscopy
(FCS) was monitored. Designing such nanobots, which were non-unidirectional
rotating motor, provided 10% enhanced diffusion, and we could monitor the behav-
ior of these motorized molecules in solution [10]. DNA origami-based nanobots
were designed to deliver payloads by designing outer functionalization using a DNA
aptamer which can bind nucleolin, an endothelial cell tumor protein, and in the inner
cavity had thrombin, the blood coagulation protease. They demonstrated that when
these nanobots were injected intravenously, they delivered thrombin to the blood
vessels associated with tumor and could induce thrombosis intravascularly. This
resulted in necrosis of tumor and inhibited tumor growth [11]. Nanoactuators have
also been designed which get activated using light by binding temperature-
responsive polymers over gold (Au) nanoparticles which are charged. This stores
the elastic energy which can be released rapidly under light for repeated isotropic
nanoactuation. When the nanoactuator was heated above critical temperature
(Tc ¼ 32 �C) using light from incident laser, the coating expels water and gets
collapsed into nanoscale within a microsecond which is million times fast compared
to the base polymer. This phenomenon triggers a small number of nanoparticles to
get tightly packed into clusters. When the nanomachine is cooled below Tc, the
strong van der Waals force between the cluster particles is surmounted as the
expansion of polymer takes place giving rise to nanoscale forces of several
nN. The intensity of the large force is dependent on van der Waals attractions
between the Au cores existing very large in collapsed polymer state which sets a
tightly compressed spring of polymer that can be triggered further into inflated state
[12]. Nanoswimmers were designed which can be applied to swim in bloodstream to
deliver the drugs. Multilink nanowire-based chains of diameter 200 nm were used to
make a composite which exhibited planar undulations induced, using a planar-
oscillating magnetic field. The chains were constructed by an elastic polypyrrole
tail like eukaryotes and rigid nickel links which were magnetic in nature connected
by hinges made up of flexible polymer bilayer. This multilink design showed high
swimming efficacy and thereby could be used as a vehicle for drug delivery in body
fluids [13]. These nanotechnological developments can enable nanobots useful for
drug delivery.
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17.2.2 Nanoneedles, Nanoclusters, and Nanobubbles

To facilitate the entry of drugs into the cell cytoplasm directly, nanoneedles are used
because the biological membranes do not facilitate the drug entry into the cells.
Nanoneedles are mainly used in atomic force microscopy but are applied for drug
delivery to cells where they make small temporary perforation in the biological
membrane and deliver the drug without perturbing the biological functions [14].

Metal nanoclusters are usually of the size of 10 nm prepared by self-assembly of
polymeric or small organic molecule-based nanoparticles, cross-linked together with
plasmonic metals like gold and silver or magnetic nanoparticles. These nanoclusters
exhibit molecule-like properties and fluorescence; they are used for tracking the drug
carried using these clusters to the target site and imaging. Peptide-protected gold
nanoclusters (Pep-AuNCs) were used for self-regulated loading and release of drug
vancomycin (van). The antimicrobial activity of van loaded in Pep-AuNCs was
comparable to van alone, and the van released by Pep-AuNCs was proportional to
the number of bacteria present [15].

Nanobubbles, on the other hand, are nano-sized spherical structures filled with
gas which are usually stabilized using polymeric/lipid shells. The nanobubbles are
used in combination with ultrasound, thermal, or magnetic sensitivities for efficient
application in drug delivery and imaging, because of their higher stability and long
time of residence in systemic circulation. For the purpose of diagnosis and therapy
done together, theranostics has come into field, and researchers have developed
plasmonic nanobubbles (PNBs) for tunable theranostic applications. The PNBs were
designed by gold nanoparticle exposed to laser after delivering it intracellularly
which generated transient photothermal vapor nanobubbles. The action of PNBs was
tuned inside the individual cells from noninvasive, at lower laser fluence, to cell
membrane disruption at higher fluence. The imaging was also captured with 50-fold
amplification of optical scattering amplitude, and PNBs were established to support
diagnosis, therapy, and image guidance at the cellular level in a single process [16].

17.2.3 Nanoghosts, Nanoclews, Injectable Nanoparticle Generators
(iNG), and Nano-Terminators

Nanoghosts are based on a technology to form nanovesicles isolated from natural
functionalized membranes of mammalian cell surface of complete biological cells
like mesenchymal stem cells (MSCs) which do not contain cytoplasm or any
organelles. These are smart delivery vehicles for drug or gene delivery. As they
are derived from natural source, they do not pose difficulties related to drug loading,
adverse immune response related to evading tumor etc. Moreover, it provides
improved nanoparticle stability and gives a superior drug release profile. Nanoghosts
were successfully isolated from cell membranes of MSCs (MSC-NGs), and in vitro
and in vivo tumor targeting properties were also retained and were cleared from
blood-filtering organs. These MSC-NGs were biocompatible, and drug-loaded
MSC-NGs showed 80% inhibition of prostate cancer cells after systemic adminis-
tration [17]. Negatively charged plasmid cDNA (pDNA) was loaded on a nanoghost
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derived from MSCs which retained their unique surface-associated tumor-targeting
properties. These engineered nanoghosts which were loaded with gene that is toxic
to cancer cells could inhibit the growth of orthotopic lung cancer which has
metastasized. These nanoghosts also proved to be effective in subcutaneous prostate
cancer models and were shown to improve the survival of animals [18]. Nanoghosts
derived from monocyte cell membrane were used along with doxorubicin-loaded
PLGA core to make core-shell nanoghosts. The size of the nanoghosts was nearly
200 nm and was stable in serum for 120 h. These core-shell nanoghosts showed
higher cellular uptake and cytotoxicity in MCF-7 cell lines compared to non-coated
nanoparticles [19].

A nanoclew or nanococoon is made up of a single-stranded DNA which self-
assembles to form a cocoon or yarn or a clew-like structure. The DNA amplification
takes place by rolling circle model, and these nanococoons are highly biocompatible
nanodrug delivery system. Sun et al. [20] first described a cocoon-like DNA-based
nanocomposite as a drug delivery carrier which was associated with “caged worm”

of deoxyribonuclease (DNase) that can undergo self-degradation thereby releasing
the drug inside the cells. The DNA structure was a nanoclew made by weaving of
DNA amplified by using rolling-circle model, and the self-assembly was facilitated
by incorporating a palindromic sequence. The loaded drug was doxorubicin (DOX),
and the targeted tumor delivery was achieved by folic acid (FA) conjugation with a
nanoclew complementary DNA which gets hybridized to the DNA nanoclew. For
self-degradation after reaching the tumor site with acidic environment, an
encapsulated DNase I in single-protein-based nanocapsule (NCa) having a thin
positively charged polymeric layer shell made up of cross-linkers which were acid
degradable was used. This NCa which was positively charged was embedded into
the nanoclew through electrostatic interactions forming a DOX-loaded DNA scaf-
fold which was self-degradable. Under physiological pH, the DNase I was not
released by the cage, but as soon as the nanoclew entered the cancer cell, the acidic
microenvironment degraded the nanoclew as the pH-sensitive polymer releases the
DNase I, thereby releasing the encapsulated drug DOX exhibiting higher anticancer
efficacy [20].

Injectable nanoparticle generator (iNG) was first described by Xu et al. [21] and
was made up of a polymer loaded with DOX which had multiple strands enwrapped
over a nanoporous silicon material which is biodegradable. When these drug-loaded
nanocarriers were intravenously injected, they got accumulated in tumor cells due to
natural tropism. Then the silicon material slowly degraded and released the drug
polymeric strands. Spontaneously, these strands formed nanoparticles which were
taken up by the cancer cells, and the acidic microenvironment inside the cancer cells
made the polymeric stands to trigger drug release. The iNG-based drug delivery
system could cross the multiple biological barriers, and the dimensions and geome-
try of the silicon core could be tuned for targeting precise anatomical locations like
the lung and liver. Moreover instead of DOX any other anticancer drug could also be
loaded in the engineered iNG [21].

Nano-terminators were developed by Lu et al. [22] that were nanodroplets made
from liquid metal loaded with drug which were absorbed by the tumor cells when
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injected. In acidic tumor environment, it released the drug because the nanodroplet
made from liquid phase eutectic gallium-indium core and a thiolated polymeric shell
equipped with hyaluronic acid got dissolved. This nanodroplet was a core-shell
nanosphere loaded with DOX and the hyaluronic acid acted as a tumor-targeting
ligand. This nanoformulation when used in chemotherapy was shown to inhibit
tumor in xenograft tumor-bearing mice in a much superior way than conventional
chemotherapy [22].

17.2.4 Exosomes, Liposomes, and Niosomes

Exosomes, typically of the size from 30 to 120 nm, are used for transferring
information from one cell to another and can be used as a natural vehicle for targeted
drug delivery. The mode of transport using exosomes is depicted in Fig. 17.1.

The exosomes can be isolated from the patient’s own cells which are healthy, as
they can interact with its own cellular membranes when used for drug delivery
without any hindrance. The exosomes have a unique property called “cell-specific
tropism” which means that they can target specific cells by expressing specific
receptors on the membrane, toward the cells from which they are isolated. This
property can be utilized to convey drugs, microRNAs, or proteins loaded in these
exosomes. Since the origin of these exosomes is biological which contains natural
lipid bilayers, the immunogenicity and issues regarding clearance of drug can be
reduced. Moreover, these exosomes can also cross the blood-brain barrier
overcoming the challenging situation for drug delivery in the brain and for designing
personalized medicine. Encapsulation of natural products and RNA has been accom-
plished in exosomes for the treatment of many solid tumor cancers like pancreatic,

Fig. 17.1 The formation of exosomes. The multivesicular endosomes (MVEs) encompass the
exosomes and these MVEs can fuse with plasma membrane to release the exosomes to the
intercellular space or fuse with lysosome for their degradation. Once the exosomes are released,
they can be isolated and used as a vehicle to carry DNA, RNA, protein, drugs, etc.
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breast, prostrate, lung, and glioblastoma [23]. Three means in the exosomal targeted
therapy can be achieved: (1) by targeting the peptides to the exosomal surface, (2) by
encapsulating specific genes within the exosomes and transferring them to tumors,
and (3) by targeting the exosomes that contain tumor-associated antigen. These are
elaborately discussed in review by Wang et al. [24].

Liposomes are formulated spherical vesicles comprising of an aqueous core and
surrounded by a lipid bilayer, used for improving the bioavailability, drug absorp-
tion, and reducing toxicity. The unique feature of liposomes is their ability to
compartmentalize as well as solubilize both hydrophobic and hydrophilic materials,
thereby opening a vast encapsulation capability. The different possibilities of using
liposomes as drug carrier are given in Fig. 17.2.

A co-delivery system was developed based on fusogenic liposome that
encapsulated chemotherapeutic agents with ATP-responsive elements and a lipo-
some that contains ATP. When these two liposomes fuse together, there is triggering
of ATP-mediated drug release. The design of the fusogenic liposome is a protein-
DNA complex core consisting of an ATP-responsive DNA scaffold with DOX
which could release DOX by a change in conformation of aptamer/ATP duplex in
the presence of ATP. To achieve cancer cell targeted delivery, the fusogenic
liposomal membrane was coated with a peptide which can open when acid-triggered
to fuse the two liposomes under cancer acidic microenvironment. Thus, a
pH-sensitive anticancer drug delivery system was achieved [25].

Niosomes are nonionic surfactant vesicles available in different sizes that range
from 20 to 50 μm. They can be constructed by self-assembly of monomers of
hydrated nonionic surfactant and are capable of encapsulating a variety of drugs
[26], and their typical structure is shown in Fig. 17.3.

Fig. 17.2 The schematic diagram showing a liposome and the possible drug loading capacity of
different types of drugs. The different surface functionalization is also illustrated for targeting the
different types of cells
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Due to the stability problems found in liposomes, niosomes are introduced as an
alternative drug delivering vehicle. Niosomes also possess the capacity to encapsu-
late both hydrophilic and lipophilic drug substances. The efficiency of entrapment
increases with the increase in lipophilicity and concentration of the surfactant which
is used to make them. Compared to liposomes, niosomes have different chemical
compositions of its bilayer making them more advantageous. The components of
liposomes are based on phospholipids, whereas surfactants are used to make
niosomes which have improved chemical, physical, and biological stability. More-
over, by modulating the noisome bilayer composition, enhanced drug entrapment
can be achieved. The industrial manufacturing of niosomes is also less expensive as
they do not need special handling methods as well as storage conditions due to their
high stability. The mostly used nonionic surfactants for niosome preparation used for
drug delivery are alkyl ethers, sorbitan fatty acid esters, alkyl glyceryl ethers, and
polyoxyethylene fatty acid esters. The correct selection of the surfactant plays an
important role in designing nonionic vesicular systems. The stability, size, pharma-
cokinetics, entrapment efficacy, pharmacodynamics, and targeting properties of the
vesicular systems are affected by the molecular structure of the surfactant used
[27]. The different types of niosomes used for cancer drug delivery are well
discussed in the review by Bondar et al. [28].

17.2.5 Dendrimers

Dendrimers are polymers having a well-defined structure with a core at its center
made up of an atom or molecule. Branches emerge from its core comprising of
repeated units of the constituent polymer with the branch junctions, known as
generations [29]. There can be first-generation, second-generation, third-generation,
or fourth-generation dendrimer emerging from a single core. The branching makes
multiple functionalization and many molecules can be attached thereby on a single
core. Dendrimer framework can be controlled and can be utilized as a good drug
carrier, and their functionalizations are used for conjugation with drugs or
DNA/RNA. Dendrimers can enhance the solubility and bioavailability of the drugs
that are hydrophobic. The entrapment of drugs can happen in the intramolecular

Fig. 17.3 The structure of
noisome made from nonionic
surfactant and cholesterol
used for drug delivery. All the
types of drug, hydrophobic,
hydrophilic, and amphiphilic,
can be loaded in the niosomes
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cavity of dendrimers or can be conjugated to the functional groups attached at their
surface [30].

17.2.6 Graphene and Carbon Nanotubes

Graphene is a two-dimensional nanostructure of carbon with one-atom thickness
made from densely packed sp2-hybridized carbon atom network arranged in a
hexagonal crystal lattice structure exhibiting unique nanoscopic properties [31–
35]. It has profound usage in materials science as well as biomedical science
[32, 35]. The graphene nanoparticles can exhibit various structural features,
biological responses, and physicochemical properties based on their manufacturing
methods [36]. The different types of graphene nanoparticles are graphene
nanoribbons (stacks of ribbon-shaped graphene synthesized by the unzipping of
the multiwalled carbon nanotubes), graphene nano-onions (spherical shaped layers
of graphene which are concentric having both sp2 and sp3 hybridizations), and
graphene nanoplatelets (irregular or disc-shaped multiple layered graphene
nanoparticles which are synthesized from graphite, also named as graphene oxide
(GO)) [36]. The promising applications of graphene in imaging, therapeutics, and
drug delivery are attributed to their unique physical and chemical properties [35, 37–
39], and so it is considered as a multifunctional nanoparticle. The surface of
graphene nanoparticles can be functionalized covalently or noncovalently with
anticancer drugs as well as functional groups that can target the cancer cells or
tissues for improving the treatment efficacy. The physicochemical properties of
graphene nanoparticles can be utilized to assist stimulus-responsive therapy as
well as drug delivery. Scientists have targeted CSCs using graphene nanoparticles
without causing any harm to normal cells [40].

Carbon nanotubes (CNTs) are made from carbon graphite nanomaterials arranged
in an ordered array and hollow structure. CNTs have high surface area, ultralight
weight, high aspect ratio, and high tensile strength with tube diameter ranging from
1 to 100 nm. The end of the tubes is usually capped with half-fullerene molecules on
both ends and exists as one or several coaxial layers of graphite having diameters in
nanometer range. Every carbon atom in CNT is joined to their three neighbors with
sp2 hybridization just like graphite that gives the molecules huge strength. CNTs are
classified into two types depending on their structure: single-walled carbon
nanotubes (SWNT) and multiwalled carbon nanotubes (MWNT). In the field of
drug delivery, CNTs have a number of advantages to deliver the drugs at specific
locations in our body suggesting that CNTs may overcome the difficulties of
nanoparticles. Since the CNTs have a huge inner volume, it allows more drug
molecules which can be encapsulated. Moreover, these volumes are easily accessible
because the fullerene caps at the ends can be removed easily and they can have
different functionalizations for inner and outer surfaces [41]. CNTs can be chemi-
cally modified to attach a variety of molecules on its surface such as proteins, DNA,
drugs, peptides, ligands for targeting cells, etc. which enable them to be appropriate
candidate for targeted drug delivery. Although one of the drawbacks of CNTs is that
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they are evidenced to show oxidative stress both in vitro and in vivo causing
inflammation and damage to cells in the liver and lungs [42]. To overcome these,
nitrogen can be doped in CNTs in the form of various functionalities like pyrrolic
nitrogen, pyridinic nitrogen, oxidized nitrogen, and graphitic nitrogen. Further
alterations of these functionalities by means of chemical reactions can be done to
get desired nitrogen species [43]. When the nitrogen atoms are incorporated into the
graphitic lattice of the CNTs, an additional strain to the structure of CNT results in
forming “stacked cups” [44]. These stacked cups are held together with weak van der
Waals forces, and when these weak interactions are disrupted, individual or short-
stacked nanocups are obtained. These short-stacked nanocups are corked with gold
nanoparticles, thereby yielding sealed nanocontainers for cargo delivery [45]. In this
way a much biocompatible, sealed drug delivery system can be obtained and can be
used to deliver drugs at targeted cells. In cancer immunotherapy also CNTs are used
as an artificial substrate. Expansion of T cells isolated from mice was done using
CNT-polymer nanocomposite, as an artificial antigen-presenting cell. The antigens
were attached onto bundled CNTs and complexed with polymer nanoparticles which
contained magnetite and interleukin-2 (IL-2), a T-cell growth factor. The results
obtained were very promising, and the T cells obtained could delay tumor growth
observed in murine melanoma model. Thus, CNT-polymer platform could generate
a huge number of cytotoxic T cells which can be used for cancer
immunotherapy [46].

17.2.7 Nanodiamonds

Nanodiamonds are carbon-based nanoparticles with 2–8 nm diameter having
truncated octahedral structure which gives them multiple facets. These
nanodiamonds are not recognized and carried out by the transport proteins which
usually pump the drugs outside the cells, and thus the drugs attached to these
nanodiamonds remain inside the cells. The synthesis of nanodiamonds can be
done using chemical vapor deposition (CVD), detonation, or high-temperature-
high-pressure process [47]. Nanodiamonds have good chemical stability, structural
rigidity, octahedral symmetry, large surface area, and low production costs
[48, 49]. The two types of nanodiamonds used in medical applications are detonation
nanodiamonds (DNDs) and fluorescent nanodiamonds (FNDs). In cancer chemo-
therapy, nanodiamonds are coupled with chemotherapeutic drugs that enable
sustained release of the loaded drug for a period of 1 month. Epirubicin, a chemo-
therapeutic drug, was attached to nanodiamonds of nearly 5 nm diameter to make a
nanodiamond-epirubicin drug delivery complex (EPND) which could specifically
kill the CSCs apart from killing normal cancer cells [50]. The other applications of
nanodiamonds in cancer therapy are discussed by Gupta et al. [51] and Ho et al. [52].
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17.2.8 Whole Cells

Drug delivery mediated by whole cells involves specific cells as vehicles for the
drugs to deliver them into targeted sites. Therapeutic drugs or imaging molecules are
loaded inside these cells and further released into the diseased sites. The cells usually
used for cell-based therapy include leukocytes, red blood cells, stem cells, etc. and
these cells act like a Trojan horse. The payload is carried inside the cells and gets
transferred to the diseased tissue from the circulating blood. During this process
these cells retain their original properties because of which they mimic the migration
behavior of certain cells for carrying the drug to targeted site when administered
in vivo [53]. Mesenchymal stem cells (MSCs) are recently being used as drug
carriers as reviewed by Cheng et al. [54] apart from the use of genetically modified
MSCs for the delivery of different pro-apoptotic, antiangiogenic, as well as thera-
peutic proteins to various types of tumors. Jiang et al. [55] have induced
overexpression of CXCR4 in human adipose-derived stem cells and used these
cells as a potential vehicle for targeting hypoxia in tumors. Paclitaxel (PTX), a
potent chemotherapeutic drug, was successfully delivered using nano-engineered
MSCs which acted as a tumor-specific drug delivery vehicle with improved antican-
cer efficacy compared to conventional chemotherapeutic drugs [56]. A hybrid
spheroid/nanomedicine system was constructed from MSC spheroid entrapping a
drug-loaded nanocomposite. The spheroid formulation increased the tumor tropism
of MSCs and allowed the loading of various types of drugs. The system altogether
acted as drug delivery platform tested in glioblastoma model integrating the
properties of cell- and nanoparticle-mediated drug delivery along with tumor-
homing features of MSCs, resulting in advanced combinational therapy for
cancer [57].

17.2.9 Photodynamic Therapy

Photodynamic therapy (PDT) is a mechanism of killing cells using a photosensitizer,
oxygen, and appropriate wavelength of light. The photosensitizer is specifically
delivered into the cancer cells using a vehicle. The photosensitizer when activated
moves to their excited state and generates reactive oxygen species (ROS) by two
different ways. In primary photochemical reaction (type I), the electrons are trans-
ferred to oxygen or other molecule which forms a radical. This radical further reacts
with molecular oxygen forming superoxide anion. In secondary photochemical
reaction (type II), the main pathway involves energy transfer to molecular oxygen
which further forms the ROS. Both type I and type II mechanisms can take place
simultaneously, and the proportion of the two reactions is dependent on the photo-
sensitizer type used, the substrate concentration, and the amount of oxygen present.
If the accumulation of the photosensitizer can be made selective at the target site and
there is delivery of focused light, it can reduce the damage to the normal cells and
can eventually enhance PDT efficacy [58]. The destruction of cells by the reactions
of PDT is mediated by either necrosis or apoptosis [59]. The commonly used

17 Targeting Cancer Stem Cells by Nanoenabled Drug Delivery 323



photosensitizers which can be administered intravenously for PDT are very rapidly
cleared from our circulation, thereby rendering them safe for usage. However, the
hydrophobic nature of these photosensitizers renders them to aggregate in aqueous
solution and thereby reduces the efficacy of PDT. This drawback of the photosensi-
tizer hinders their delivery inside our body and also causes a decrease in singlet
oxygen formation due to self-quenching at the excited state [60]. Thus, to overcome
this difficulty, to maintain the photosensitizer in their monomeric state, to give them
protection from aqueous environment, and to increase the safety as well as efficacy
of PDT treatment, different pharmaceutical carriers and drug delivery systems have
emerged. These delivery systems for photosensitizer include liposomes, micelles,
oil-based emulsions, polymeric nanoparticles, etc. [58].

For the eradication of cancer, PDT is used in combination with conventional
therapy to yield superior outcomes, and nanoenabled therapy for cancer gives higher
specificity for cancer cells, lowers side effects, and destructs the cancer cells with
high efficiency both in vivo and in vitro. PDT is suitable for treating the types of
cancers which cannot be cured by surgery, and moreover the nanoenabled drug
delivery system can reach the CSC niche, thereby killing cancer cells and destroying
the CSCs which are drug resistant. These nanomediated therapies give 100-fold high
therapeutic efficiency compared to free drugs against the drug-resistant cancer cells.
The different types of photosensitizers used in PDT are hematoporphyrin,
photodithazine, methylene blue, curcumin, chlorins, hypericin, and phthalocyanines
[61–63]. To enhance the therapeutic efficiency of the photosensitizers,
improvements are being made through conjugation with other molecules. Previous
applications of PDT were restricted to surface applications only because of the
inapproachability of light in the deeper areas. It has been shown that PDT can also
be used in deep-seated cancers including brain tumors and liver cancers using a
wireless device capable of activating the photosensitizer inside the tumor
[64]. Bakalova et al. have shown that the photosensitizer trifluoperazine when
loaded in anti-CD90 antibody conjugated with water-soluble CdSe core-shell
nanocrystals was delivered directly to CD90 + leukemia CSCs and could kill the
CSCs when exposed to UV light via apoptosis [65]. The different aspects of PDT in
targeted cancer therapy have been discussed by Crous et al. [66], but only future
perspective of targeting CSCs has been discussed. Till now, not many potential
PDTs have been developed to target CSCs.

The different treatment strategies involving nanoenabled drug delivery were
discussed so far. Regarding the treatment of cancer, research is still ongoing
concerning the target cells, vehicles for drug delivery, and their outcomes in
combating the disease. Targeting CSCs becomes the most effective way of
controlling the tumor outbreak and metastasis. The different targets that can be
utilized for CSC destruction are given in Fig. 17.4.

The CSCs actually act as seed for the initiation of tumor, transition from epithelial
to mesenchymal cells, and resistance to chemotherapy thereby resulting in metastasis
[67]. A combination drug therapy can help in improving the clinical outcomes, by
combination of inhibitors of CSC with conventional cytotoxic agents which can kill
both CSC and bulk tumor cells simultaneously [68]. The combination therapy not

324 K. Girigoswami et al.



only delays or suppresses the adaptation of cancer, its mutation, and progression, but
it eventually decreases the individual dose and hence the side effects [69–71]. The
targeting of cancer cells or CSCs can take place in two different ways:

1. Passive delivery systems: This system is based on the enhanced permeability and
retention effect (EPR) in case of solid tumors. In this phenomenon, due to the
increased permeability of the vasculature around the tumor tissue, low molecular
weight molecules (up to 40 kDa) can enter into the tumor space, and the
suppressed lymphatic filtration also allows these molecules to accumulate [72–
75].

2. Active targeting system: Active targeting systems can be achieved by associating
the cancer cell-specific affinity ligands to the nanostructure-based drug delivery
systems [76, 77].

17.3 Nanoenabled Treatment of Cancer Stem Cells

Chemoresistance is the major cause of failure in treatment of cancer and also a
common trait in the tumor-initiating CSCs. CSCs escape the chemotherapy and have
enhanced tumor initiation capacity. Targeting cancer stem cells for effective therapy
of cancer is being studied in the last few decades [78–80]. Targeting the CSCs using
different cell markers gives a strategy for the targeted drug delivery. For example,
there are several markers for ovarian cancer stem cells like epithelial cell adhesion

Fig. 17.4 The destruction of
CSCs can be achieved by
interrupting various pathways
as depicted in this figure like
inhibition of ATP binding
cassette (ABC) transporter,
blocking different signaling
pathways, destruction of CSC
niche, targeting the CSC
markers and autophagy
inhibition or targeting
metabolism
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molecule (EpCAM), CD117 (c-kit), CD44, CD133, and aldehyde dehydrogenase
isoform 1 (ALDH1) [81]. The most common cell markers of CSCs are CD44 and
CD133 which are generally used for targeting the CSCs using nanovehicles. The
progress in research using nanocarriers for targeting CSCs is discussed below.

17.3.1 Nanodiamonds as Drug Carriers

A nanodrug delivery platform based on nanodiamonds, to deliver epirubicin, a
chemotherapeutic drug, has been used to impair the growth of tumor that is devel-
oped from chemoresistant CSCs. The nanodiamonds were attached reversibly to
epirubicin through physical adsorption (nanodiamond/epirubicin ratio ¼ 5:1) to
make epirubicin drug complex (EPND). The drug complex, EPND, was
characterized (size and surface charge) and found to be capable of passive targeting
with enhanced permeability and retention property. The cellular uptake and cell
killing capacity of EPND were monitored showing higher chemotherapeutic killing
in both CSCs and normal cancer cells [50]. Previous studies have suggested that
there can be covalent and noncovalent methods for functionalization of the
nanodiamonds which make them more biocompatible and superior than the other
carbon-based nanomaterials like SWNT, MWNT, and carbon blacks [82]. Several
applications of nanodiamonds in drug delivery system for cancer have been
reviewed by previous researchers [83], but very few reports exist on targeting
the CSCs.

17.3.2 Polymeric Nanoparticles

Polymeric nanoparticles have also been applied for the drug delivery [84] for
targeting cancer stem cells. Yang and his team [85] prepared functional micelles
that were self-assembled from the mixture of polyethylene glycol (PEG) and acid-
functionalized polycarbonate to make a diblock copolymer (PEG-b-PAC) and a PEG
and urea-functionalized polycarbonate copolymer diblock (PEG-b-PUC) through
hydrogen bonding. These synthesized micelles had high stability because of the
hydrogen bond presence (urea-urea and urea-acid) and had the ability to accumulate
preferably in the tumor tissues due to EPR effect [86]. They also exhibited high
loading capacity for the chemotherapeutic drugs like DOX [85–87]. Phenformin is
another chemotherapeutic drug, with two guanidine groups that can form hydrogen
bond with urea group and can have ionic interaction with the acid group present in
the micellar core. A self-assembly of PEG-b-PUC and PEG-b-PAC mixture was
made and loaded with phenformin, and the drug-loaded micelles were characterized
for its size, stability in serum containing solution, and drug release properties
in vitro. Lung cancer cell line H460 was analyzed for its cytotoxicity using only
phenformin and micelle-loaded with phenmorphin which showed promising results
for the micellar form. Further the CSC population in the tumor tissue after treatment
with only phenformin and micelle-loaded with phenmorphin was monitored. The
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tumors posttreatment with only phenformin and micelle-loaded with phenmorphin
were excised and dissociated to make a single-cell suspension and were analyzed for
CD133-positive cells using flow cytometry. The results showed that free phenformin
did not reduce the CSC subpopulation, whereas, the phenformin-loaded micelles
could significantly reduce the CSC’s population in the tumor cells compared to the
control. The reason behind this may be due to the EPR effect of drug-loaded micelles
in the leaky tumor tissues that led to preferential accumulation of these micelles in
the tumor tissues [88]. In another study, salinomycin-loaded poly(lactic-co-glycolic
acid)-polyethylene glycol nanoparticles were used for conjugation of CD133
antibodies (CD133-SAL-NP) for the purpose of elimination of CD133+ ovarian
CSCs. The size of the polymer-loaded drug-antibody conjugate was 149 nm and had
the property of sustained drug release with high efficient binding capacity to CD133
+ ovarian cancer cells. An increased cytotoxicity was observed in CD133+ ovarian
cancer cells compared to nontargeted SAL-NPs and only salinomycin. There was a
reduction in the CD133+ ovarian CSCs in the ovarian cells compared to only
salinomycin and SAL-NP treatment showing that the polymer-loaded drug-antibody
conjugate was effective in targeting the CSCs. The nude mice were taken which bore
ovarian cancer xenografts and were treated with CD133-SAL-NPs, showing
enhanced therapeutic effects demonstrating that CD133-SAL-NP can be a promising
target for killing ovarian CSCs [89]. Actively targeting CSCs was achieved using a
multilayered core-shell polymeric nanoparticle using hyaluronic acid (HA) in place
of PVA as a drug loading vehicle [90]. HA can specifically bind to CD44 antigen
which is commonly overexpressed at the surface of several types of CSCs [91, 92],
and the HA-decorated nanoparticles can co-deliver many drugs specifically into the
CSCs. The four drugs used for co-delivery were doxorubicin hydrochloride (DOX,
hydrophilic), curcumin (CUR, hydrophobic), indocyanine green (ICG, hydrophilic),
and irinotecan or camptothecin (CPT, hydrophobic), using nanoparticles prepared
from four polymers: pluronic F127 (PF127 with and without chitosan modification),
poly(D,L-lactide-co-glycolide) (PLGA), HA, and chitosan. These polymers are
approved by the US Food and Drug Administration (FDA). The combination of
PLGA and PF127 yielded more uniform size and high stable nanoparticles compared
to the one obtained using PF127 or PLGA alone. Chitosan was also found to bind
specifically to CD44 which was overexpressed in the CSCs [93]. Drug repositioning
is another strategy used for targeting the CSCs because it helps to overcome some
limitations of conventional drug therapies like poor drug solubility, toxicity at
off-targets, etc. A transcription factor, named STAT-3, can regulate the genes
which are involved in the renewal of stem cells and has become a novel target for
cancer therapy. Breast cancer stem cells’ (BSCs) studies were highly correlated with
STATs [94], and STAT-3 has been documented for its role in invasion, survival, and
promotion of cell proliferation in tumors, immunosuppression, angiogenesis, obe-
sity, inflammation, as well as premetastatic niche formation [95]. Moreover, STAT-3
also plays an important role as potent immune checkpoint responsible for immune
response for multiple tumors that are present in tumor microenvironment for pro-
moting tumor progression [96–99]. Thus, any therapeutic approach that can block
STAT-3 can be effective in the treatment of cancer. Drug repurposing strategy was
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done for delivering suitable STAT-3 inhibitor, niclosamide, incorporated in a poly-
meric nanoparticle (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)) and
conjugated with CD44-targeting peptide yielding CD44-tagged niclosamide-loaded
nanovehicles (CD44-NIC-Veh). This drug-loaded nanoparticle was used for effi-
cient targeting of BSCs and was found to be promising in breast cancer stem cell
killing capacity by altering the gene expression and protein translation. There was
downregulation of CSCmarker genes like MYC, BCL2, IL10, MCL1, IL11, MMP9,
MUC1, EGFR, COX2, IFNG, and VEGF in the mouse xenograft tumors that were
treated with the CD44-NIC-Veh in comparison to the nano-Veh-treated controls.
The researchers have also found that the CSC populations were significantly
decreased, as evidenced by the reduction in CD44+/CD24¯ expressing cell popula-
tion. This showed that the “stemness” characteristics were reduced in the CSCs and
the CD44-NIC-Veh could deactivate STAT-3 [100]. HA-functionalized
ethylenediamine conjugated bovine serum albumin (eBSA) encapsulating all-trans
retinoic acid (ATRA) (HA-eNPs) was used as a drug delivery vehicle for the targeted
drug delivery to CD44-enriched B16F10 cells. In vivo imaging experiments showed
that HA-eNPs could accumulate in the lungs of the tumor-bearing mouse. The
ATRA-laden HA-eNPs could exert better killing ability to B16F10 cells as seen
from the cytotoxicity assay compared to free drug or normal nanoparticles exposed
at the same dose. Moreover, the tumor growth was inhibited significantly by
HA-eNPs/ATRA as seen in the lung metastasis tumor mice. Thus, HA-eNP-loaded
ATRA can be a superior drug for controlling the CSCs [101]. Active targeting of
breast and colon CSCs was achieved by targeting the stem cell surface marker CD44.
PLGA-co-PEG loaded with PTX micelles was used for targeted drug delivery to
BCSCs and colon cancer cells showing promising results
[102]. N-Isopropylacrylamide, vinylpyrrolidone, and acrylic acid polymer mixture
was used in the molar ratio of 60:20:20 to encapsulate curcumin and was found to
reduce the brain tumor size and also reduced the number of CD133+ stemlike cells
[103, 104]. The Hedgehog (Hh) signaling pathway was interrupted by delivering
GLI inhibitor through PLGA-PEG nanoparticles and showed inhibition in metastasis
in hepatocellular carcinoma models [105, 106]. Anthothecol encapsulated in PLGA
could alter the fate of pancreatic CSCs by inhibiting CSC proliferation and inducing
apoptosis [107]. Polyethyleneimine/polyethylene glycol conjugated with
mesoporous silica nanoparticles was used to load the TGF-β inhibitor, LY364947,
for inhibiting the TGF-β signaling pathway of BCSCs and also to deliver siRNA to
the CSCs. These nanopolymer-based delivery of siRNA caused the accumulation of
the siRNA in the tumor and reduced the CSCs [108, 109]. Targeting the different
CSC killing pathways using nanoenabled drug delivery is discussed in detail by
previous researchers [7, 110–113].

17.3.3 Liposomal Nanocarriers

Liver cancer stem cells (LSCs) are responsible for the initiation of liver cancer,
invasion, recurrence, metastasis, and further chemoresistance. Like other cancers,
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targeting LCSCs using nanoenabled drug delivery can show some insight in liver
cancer treatment and prevent their recurrence [114]. Nanoliposomes were prepared
using a lipid mixture of hydrogenated soybean phospholipids (HSPC), cholesterol,
and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(PEG)-2000]
(PEG-DSPE) in the ratio of 85:10:5. The nanoliposomes were used to make
salinomycin-loaded nanoliposomes (SLN), doxorubicin-loaded nanoliposomes
(DLN), as well as a combination of salinomycin and doxorubicin (SDLN) for
targeting both normal liver cancer cells and LSCs. The mole ratio of
DOX/salinomycin sodium at 1:1 had the optimum synergistic combination index
value, and the same ratio was taken in SDLN. The percentage of LSCs in vivo was
significantly decreased after treatment with SDLM and SLN + DLN post 12 h
treatment [115]. Liposomal nanoformulations for targeting the prostate cancer cells
and prostate CSCs have been engineered using cabazitaxel (CBX)- and silibinin
(SBL)-loaded liposomes made from cationic phospholipid N-[1-(2,3-dioleoyloxy)
propyl]-N,N,N-trimethylammonium chloride (DOTAP) and cholesterol. For specifi-
cally targeting prostate CSCs, HA was coated atop the cationic liposome that had
affinity for the CD44 cell surface receptors overexpressed in CSCs. The in vitro
results showed that these surface-functionalized liposome-encapsulated drugs could
exert specific cytotoxicity against CD44+ cells. Thus, the results showed the poten-
tial of CBX-SIL co-loaded liposomes for eradicating prostate cancer stem
cells [116].

17.3.4 Exosomes as Drug Cargo

Exosomes are natural nanovehicles derived from cells and are widely distributed in
body fluids for the cell-cell communication. They are involved in multiple diseases,
including cancer, and they contain receptors above their lipid bilayer membrane.
They carry lipids, proteins, miRNAs, mRNAs, and small DNA fragments within
them to protect the degradation of these molecules [117–120]. The exosomes have
specific surface markers like TSG101, Alix, Flotillin-1, CD63, and CD9 and are
present in different cell culture-conditioned media as well as body fluids like saliva,
synovial fluid, urine, semen, blood, and breast milk [121–124]. Different treatment
strategies have been proposed for controlling the proliferation and differentiation of
CSCs. Since the cell surface marker, CD44, is highly expressed in hepatic CSCs, it
has been targeted for liposomal drug delivery to control hepatic CSCs [125], and
exosomal delivery of anti-CD44 antibody can be a future aspect for targeting the
CSCs. Similarly other CSC markers like CD24, CD133, epithelial cell adhesion
molecule (EpCAM), and CD200 can also be attached to the surface of the exosomes
for targeting the CSCs. Multiple clinical trials are going on for targeting the cancer
stem cells using exosomes as nanocarrier [126].
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17.3.5 Nanoporous Materials

Mesoporous silica is the most commonly used nanoporous materials and is
synthesized using tetraethyl orthosilicate which reacts with micellar rod templates.
The porous form of silica thus synthesized is a collection of rods or spheres of nano-
size filled with numerous pores arranged regularly. They are usually of two types,
MCM-41 and SBA-15. Mesoporous silica based-nanoparticles, encapsulating
γ-secretase inhibitors (GSIs), were used to control the notch signaling driven stem
cells and enhance the tumor reduction in medulloblastoma [127]. Notch signaling
inhibitors were loaded in mesoporous silica to deliver the drug in BCSCs which are
susceptible to more glucose consumption. The results showed reduction in CSC
population as well as size of the tumor both in vivo and in vitro [128]. The typical
porous nature of mesoporous silica is shown in Fig. 17.5.

Thus, the different nanoenabled drug delivery systems used so far for targeting
the CSCs have been discussed, and the outcome of such treatment strategies was also
reviewed in the above sections.

17.4 Conclusion

The major problem in addressing the chemoresistance and multidrug resistance in
cancer therapy is the inability to combat the CSCs through any drug. These CSCs
migrate to a different site and initiate different tumors, thereby spreading the cancer.
This warrants the need of targeting specifically the CSCs and delivers the chemo-
therapeutic drug to these populations and killing them. The CSCs have been known
to exhibit different cell surface biomarkers as well as pathways of internal signaling
which are involved in their self-renewal and the drug resistance. CD44 and CD133
are commonly identified in many cancer types. If these biomarkers can be targeted
using some novel drug delivery system, it can improve the CSC killing thereby
improving the drug resistance, eradication of CSCs, and possible cure for cancer.

Fig. 17.5 The porous
structure of mesoporous silica
which enables the drug to be
loaded in the small pores to
reach the target site
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Nanostructure-based therapeutic strategy has been recently evolved for effective
cancer treatment due to their specific properties like (1) sustained drug release,
(2) designing and development of personalized medicine, and (3) improved bio-
availability of drugs and use in multifunctional therapy. In this chapter we have
discussed about the different nanoenabled drug delivery systems and their possible
therapeutic research done so far to target the CSCs. The nanodrug delivery systems
could deliver a single or multidrug to the CSCs with particular biomarker targeting
molecules attached to their surface for the CSC targeting. The targeting of CSCs was
done using small chemical ligands, peptides, lipids, polysaccharides, and surface
markers which have selective affinity for the CSCs and attaching them with the
nanocarrier along with the chemotherapeutic drug. Both active and passive targeting
were used to eradicate the CSCs. Thus, the different targeting strategies can enable to
wipe out the CSCs and open a new avenue in the near future for the cancer treatment.
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Cancer Stem Cells in Patient Survival
and Therapies in Cancer 18
Ying Yang, Chao Tian, and Wen-Jian Meng

Abstract

Cancer stem cells (CSCs) are a subpopulation of cancer cells and responsible for
stemness properties of cancer cell. It is regarded as one of the major causes of
cancer formation, recurrence, and metastasis. Recent studies demonstrated that
CSCs are closely related to the prognosis and treatment of many tumors including
lung cancer, colorectal cancer, breast cancer, gastric cancer, and melanoma by
targeting cell surface markers, signaling pathways, and microRNAs (miRNAs) to
affect stemness features of CSCs. In addition, the application of nanotechnology
in CSCs also makes it a novel and potential target in therapy of tumor. However,
given the limitations of CSCs as mentioned in this paper, its clinical applications
as a target of cancer face many challenges. Further research is needed to explore
its clinical application as a target for tumor therapy.
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18.1 Introduction

Cancer stem cells (CSCs) are a minor population of tumor cells with the properties of
self-renewal and differentiation, as well as tumorigenic potential. [1] The
accumulated evidence suggests that CSCs play an imperative role in metastases,
posttreatment recurrence, and resistance to chemoradiotherapy in cancer [2], which
closely associated with the worse survival of cancer patients. Meanwhile, these
properties also make CSCs become a potential therapeutic target for cancer
treatment.

Previous studies have shown that conventional chemotherapy and radiotherapy
could not completely eliminate CSCs in cancer patients, resulting in treatment
failure. The reason is that CSCs possess the properties of slow cell cycle, detoxifica-
tion or regulation of cytotoxic outflow, resistance to oxidative stress, and rapid
response to DNA damage [3, 4].

Recently, several methods available to target CSCs including specific surface
markers of CSCs, specific signaling pathways, tumor microenvironment, or specific
microRNA (miRNA, miR) have been reported by accumulating researches. For
specific surface markers of CSCs, CD44, CD133, CD24, and ALDH1 are routinely
used to identify and validate CSCs [5]. Another approach could be targeting CSCs
by their specific signaling pathways. Key cell signaling pathways include Notch,
Wnt/β-catenin, hedgehog (HH), human epidermal growth factor receptor (EGFR),
and so on [6]. These signaling pathways are of crucial importance in CSCs. Other
treatment strategies include targeting the tumor microenvironment or specific
microRNA (miRNA, miR). MiRNAs participate in many vital biological processes
including cell proliferation and migration, tumor cell aggression, and metastasis. At
present, emerging evidences suggest that miRNAs play a critical role in CSCs
[7, 8]. Of course, the CSC-targeting strategy certainly goes beyond these methods
above.
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Therefore, in this article, we have summarized recent advancement on the
therapeutic and prognostic role of CSCs in different types of cancer including lung
cancer, colorectal cancer (CRC), breast cancer, gastric cancer, and melanoma.

18.2 CSCs in Lung Cancer

Primary lung cancer remains one of the most common malignant tumors, and deaths
from lung cancer exceed those from any other malignancy worldwide [9]. A growing
number of studies have shown that CSCs exhibited important roles in driving
initiation, metastasis, recurrence, and resistance to conventional therapy of lung
cancer. Hence targeting CSCs of lung cancer may provide a promising approach
to improve the survival and therapies of lung cancer patients in the future.

18.2.1 Targeting Cell Surface Markers of CSCs

Many cell surface and transmembrane proteins are expressed in CSCs of lung cancer
including CD24, CD133, ALDH, and so on. These surface markers could not only
identify CSC population in lung cancer but also act as an approach to target CSCs.

Elevation of CD133+ and CD24+ cells has been found to be closely related to
poor prognosis of cancer treatment. Stem cell surface marker CD24 has been
considered as a novel prognostic marker and stem cell marker in non-small cell
lung cancer (NSCLC). Overexpression of CD24 was reported to associate with
tumor patients with a higher risk of disease progression and tumor-related death.
In addition, this study also showed that the overexpression of CD24 could be used as
an independent predictor for poor progression-free survival and tumor-specific
survival in patients with NSCLC [10]. Therefore, CD24 antigen could provide
numerous crucial information to research the biology of NSCLC and may be used
as a beneficial tool to promote the development of novel diagnostic and therapeutic
ways to eradicate CD24 function in tumor cells. As a specific marker of human
hematopoietic stem cells, CD133 has been considered as a marker of CSCs in
numerous cancers. In NSCLC, CD133+ cells possess a higher tumorigenicity ability
compared with CD133� cells and express genes which confer to cancer cells the
property of stemness, adhesion, motility, and drug efflux. And importantly, CD133+
cells of lung tumor are spared by cisplatin treatment [11].

The aldehyde dehydrogenase (ALDH) is another important surface marker of
lung cancer with stem cell properties. Compared with the ALDH-CSC population,
ALDH+ CSCs show longer telomeres. MST312, a novel telomerase inhibitor, plays
an antiproliferative role in lung CSCs and possesses the characteristic of inducing
tumor population apoptosis. The previous study demonstrated that MST312
possesses potential antitumor properties in NSCLC in vivo (mouse model): intraper-
itoneal injection of MST312 (40 mg/kg/day) can reduce the tumor size by more than
70%. In addition, at the end of in vivo treatment, immunohistochemical analysis of
ALDH and fluorescence-activated cell sorting analysis of ALDH after removal of
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the tumor showed that the population of CSCs was also significantly reduced. Thus,
as a antitelomeric therapy mainly by targeting lung CSCs, MST312 may prove to be
effective in treating lung cancer [12]. ALDH1-positive CSCs showed stronger
proliferative ability, cloning efficiency, and tumorigenicity. And ALDH1, a marker
of CSCs, may be employed as a target for the therapy of lung cancer in the future
[13]. Huang et al. [14] showed that compared with ALDH1 family member A1
(ALDH1A1)-negative lung cancer cells, lung cancer cells with ALDH1A1-positive
possess the property of resistance to gefitinib. Clinical sample studies showed that a
significant increase in the proportion of ALDH1A1-positive cells was observed in
lung cancer cells that resist to EGFR-tyrosine kinase inhibitor and chemotherapy
agents. In addition, a higher proportion of ALDH1A1-positive cells was shown in
PC9/gef cells (lung cancer cells showing resistance to gefitinib), compared with lung
cancer cells which were sensitive to gefitinib. Another study showed that the
expression level of ALDH1A1 was significantly correlated with the poor prognosis
of patients with stage I and N0 disease. ALDH tends to select NSCLC stemlike cells
with stronger tumorigenicity and self-renewal ability, and those NSCLC carrying
tumor cells expressing ALDH1A1 tend to have a worse outcome [15].

18.2.2 Targeting Signaling Pathways of CSCs

Any deregulation of CSC-related signaling pathway will activate CSCs, which
eventually results in formation, recurrence, and metastasis of numerous cancer
including lung cancer [16]. Dysregulation of various signaling pathways in CSCs
is expected to be a novel potential therapeutic target for human cancer.

18.2.2.1 Hedgehog Signaling Pathway
In lung cancer, hedgehog (HH) signaling pathway was found to increase drug
resistance in patients and eventually leads to the failure of chemotherapy. Mutations
of HH signaling pathway play a critical role in promoting tumorigenesis and activa-
tion of CSCs, thereby resulting in lung cancer. A study involving genetically
engineered mice showed that the activation of Smoothened (SMO), the component
of HH signal molecules, could not only contribute to the formation of cloning in
human small cell lung cancer (SCLC) in vitro but also promote the occurrence and
development of mouse SCLC in vivo. Furthermore, the key cell-intrinsic role of HH
signaling in the progression and maintenance of SCLC has been explored, as Park
KS et al. demonstrated that the use of SMO antagonists could suppress the develop-
ment of SCLC in mice and humans, especially after chemotherapy. And the inhibitor
of HH pathway may be a novel potential therapeutic target for human SCLC patients
to slow down the further deterioration of the disease and delay the relapse of cancer
[17]. GDC-0449, a HH inhibitor, effectively reduces cell growth of SCLC and
enhances the inhibitory effect of cisplatin on the growth of lung cancer cells
[18]. At present, there is a lack of effective targeted therapy in lung squamous cell
carcinoma (LSCC). A study shows that GANT61, a HH-GLI inhibitor, could
effectively induce apoptosis of LSCC cells, suggesting that inhibition of HH-GLI

18 Cancer Stem Cells in Patient Survival and Therapies in Cancer 343



may be employed as a new and effective strategy for the treatment of some patients
with LSCC [19]. Protein kinase C iota (PRKCI)-mediated SOX2 is required for HH
acyl transferase (HHAT) to initiate and activate the HH pathway. Justilien et al. [20]
reported that PRKCI-SOX2-HH signaling pathway is crucial to maintenance of CSC
in LSCC. These findings offer a strong rationale for HH inhibitors for treatment
of LSCC.

18.2.2.2 Notch Signaling Pathway
Notch signaling pathway is key to maintain a cancer stem or progenitor cell
compartment, which is necessary for tumorigenesis in lung cancer.

Notch signaling is one of the most activated pathways in cancer cells and crucial
for the correlation between self-renewal of CSCs and angiogenesis. In addition, the
growth of lung cells is regulated by it via controlling the fate of normal stem cells. By
testing the effect of Notch1 blocking on the growth and viability of lung CSCs, Cai
et al. [21] observed that CD44+/CD24– cells isolated from A549 cells possessed
stem cell-like properties with high expression of Notch1 and blocking Notch1 by
inhibitor DAPT (GSI-IX) or siRNA, both inhibiting the growth capacity of lung
CSCs. In a study by Liu et al. [22] in 2014, the difference of Notch signal expression
between CD133+ and CD133- cells was compared in the same human lung adeno-
carcinoma cell line A549 with CD133 as the marker of stem cells. And in these two
cells above, the effects of DAPT combined with cisplatin (CDDP) were detected and
compared. The results showed that notch signaling pathway members (Notch1,
Notch2, and Hes1) were low expressed in CD133+ cells, and significant drug
resistance to CDDP was found in CD133+ cells. Moreover, after combined applica-
tion of GSI, the inhibitory effect of CDPP was significantly enhanced in both cells
above, particularly in CD133+ cells. These findings suggest that the inhibitor of
Notch pathway is expected to be a potential therapeutic target for lung cancer.
Furthermore, the previous studies [23, 24] showed that the combination of the
inhibitor of Src-YAP1, EGFR, and signal transducer and activator of transcription
3 (STAT3) could provide an inhibitory effect beyond its application alone or double
in vivo, indicating the importance of combined treatment. Recently, they further
investigated whether the expression of CSCs and EMT markers and the activity of
ALDH were affected by the inhibition of EGFR. The results showed that combined
inhibition of EGFR, STAT3, and Src significantly reduced CSC subsets in the cell
model of EGFRmutation. Thus, a single inhibitor of EGFRmay increase the number
of CSCs; on the contrary, its combination with targeted Src and STAT3 might be
beneficial to the treatment of lung cancer [25]. Taken together, these findings
suggested that for the treatment of lung cancer, a single inhibitor of signal pathway
is insufficient and it would further drive activation of parallel signal pathways,
thereby leading to the failure of treatment. In contrast, combined therapy might be
beneficial to the treatment of patients, especially for those NSCLC patients with
positive EGFR mutations.
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18.2.2.3 Wnt/b-Catenin Signaling Pathway
In a 2012 study, trifluoperazine showed an ability to inhibit the generation of CSC
tumor sphere and decrease the expression level of CD44/CD133 (CSC markers). It
inhibited Wnt/β-catenin signaling in lung cancer sphere with resistance to gefitinib.
Furthermore, in animal models of lung cancer metastatic and orthotopic CSC,
trifluoperazine has been found to inhibit the development of tumor and increase
the sensitivity of gefitinib. Combined application of trifluoperazine, gefitinib, or
cisplatin may effectively increase the sensitivity of lung cancer to it [26].

18.2.3 Targeting the miRNAs

Accumulating evidence suggests that as a key regulatory molecule of lung
CSC-related metastasis, drug resistance, and tumor self-renewal, miRNA can effec-
tively regulate numerous signal pathways, which participate in the regulation of
proliferation, differentiation, apoptosis, cell cycles, and immune response of
lung CSCs.

MiRNA plays a critical role in regulating lung CSCs, and these CSCs are closely
related to the obstacles in cancer treatment including recurrence, metastasis, and
drug resistance of cancer. For instance, as a tumor suppressor gene, miRNA-34a
inhibits abnormal cell growth of malignancies including lung cancer [27]. The low
expression level of miR-34a is key to promoting the invasiveness of lung CSCs.
Moreover, with the recovery of miR-34a activity and the generation of exogenous
delivery, this invasive property will also be reduced [28]. Thus, the recovery of
miR-34a activity might be employed as an effective strategy for tumor treatment via
downregulating the expression of Notch target genes or family members. Qi et al.
[29] demonstrated that miR-214 suppressed the expression of catenin beta
interacting protein 1 (CTNNBIP1), which also elucidates the mechanism of activa-
tion of Wnt/β-catenin signal in lung adenocarcinoma (LAC) tumor stem cells.
Moreover, the expression level of CTNNBIP1 is also proportional to the differentia-
tion of cancer cells and could be used to predict the survival of LAC patients. Thus,
identifying miR-214-CTNNBIP1 pathways with the ability to regulate the self-
renewal and stemness of CSLCs is expected to become a new strategy for the
treatment of LAC patients. Recently, Dai et al. [30] identified the important role of
miR-150-5p in the recurrence and metastasis of NSCLC. The result showed that the
significantly low expression of miR-150-5p was observed in CSCs compared with
non-CSCs. Furthermore, there was a significant positive correlation between the low
expression of miR-150-5p and the disease deterioration and poor prognosis of
NSCLC patients. The suppression of miR-150-5p would lead to the increase of
CSC population, stemness, and metastasis of NSCLC cells. On the contrary, the high
expression of miR-150-5p would markedly suppress the relapse, metastasis, and
tumorigenesis of CSCs via targeting high mobility group AT-hook 2 (HMGA2) and
β-catenin signaling in NSCLC. These results showed that as an inhibitor of CSC, the
upregulation of miR-150-5p could be expected to a novel potential approach for the
inhibition of CSC-induced metastasis and relapse in NSCLC. Taken together, these
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findings suggested that miRNAs could significantly affect the biological behavior of
lung CSCs by regulating the signaling pathways of LCSCs.

However, targeting CSCs in lung cancer would be a challenge due to heteroge-
neity of the cells and various genomic pathways involved. Therefore, many studies
are focusing on using combination of cellular markers as it increases the specificity
of targeted population.

18.3 CSCs in CRC

CRC is one of the most common and fatal malignant tumors in the world. It puts
great pressure on medical and health care in all countries, and its incidence is
gradually increasing [31]. The metastasis and recurrence in patients with CRC are
known to be the main cause of failure of CRC treatment and ultimately leads to the
worse prognosis. If we can early detect metastasis of CRC and take appropriate
intervention before the disease progression, we can greatly improve the prognosis of
CRC patients. Accumulating evidence suggests that CSCs participate in tumor
formation, recurrence, metastasis, and resistance to chemoradiotherapy, which
might play a crucial role in CRC. In fact, failure to completely eradicate CSCs is a
major reason for the failure therapy of cancer [32]. It has been reported that the
eradication of CSCs would be useful in increasing CRC patients’ survival rates
[33]. Thus, colorectal CSC markers can act as effective prediction factor and
therapeutic targets.

18.3.1 Targeting Cell Surface Markers of CSCs

CSCs express some specific cell surface macromolecules that can be used for its
identification and separation, and these macromolecules or markers can also provide
a feasible target for scavenging CSCs. Leucine-rich repeat-containing G-protein-
coupled receptor 5 (LGR5), an identification mark of CSCs, is crucial to the
development of tissue and the maintenance of adult stem cells in gastrointestinal
system. LGR5 overexpression has been reported to be closely related to lymphatic
invasion, lymph node metastasis, vascular invasion, tumor depth, and tumor stage in
patients with CRC. High level of LGR5 expression was linked to poor disease-free
survival (DFS) for CRC patients [34, 35]. Further study [36] demonstrated that the
inhibition of LGR5 cell such as selective ablation would suppress the development
of primary tumor, but not lead to the regression of tumor. Furthermore, CSCs play a
key role in the generation and maintenance of liver metastasis derived from CRCs,
which indicate that CSCs may be expected to become a novel potential target for the
treatment of metastatic cancers. In addition, Shimokawa and colleagues [37] showed
that LGR5-positive (LGR5+) CRC cells could be acted as CSCs in growing cancer
tissues. And significant regression of the tumor was observed after eradicating
LGR5 + CSCs through ablation in LGR5-iCaspase9 knock-in organoids. Interest-
ingly, the reemerging LGR5 + CSCs are shown to contribute to tumor regrowth after
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LGR5 + CSCs’ ablation. A previous study [38] showed that LGR5 is effective in the
treatment of gastrointestinal tumors, especially colon cancer using different
antibody-drug conjugates. Several studies have indicated that LGR5 has been
shown to relate to increased drug resistance in gastrointestinal tumors. And in
primary colon tumors, overexpression of LGR5 was shown to associate with
chemoresistance and lower DFS and overall survival (OS) [39–43]. Hence, LGR5
is expected to be a new prognostic indicator and a potential target for the therapy of
CRC. Nevertheless, the mechanism of LGR5 which participates in the tumorigenic-
ity of CRC is not completely understood; therefore, larger, higher-quality studies are
needed to illustrate the role of LGR5 in CRC.

CD133, CD24, and CD44 are cell surface markers which have been shown to be
linked to stem cells, as well as aggressive cancer types and poor prognosis in CRC.
Jing et al. [44] reported that CD44 might be used as an effective indicator to predict
liver metastasis and prognosis of colon cancer patients. Du et al. [45] found strong
inhibitory effect of knockout CD44 on clone formation and tumorigenicity of
xenografts, indicating that CD44 is a robust marker and key to the initiation of
tumor. Rao et al. [46] have illustrated that tumor correlated with macrophage (TAM)
interacts with CD44-positive cancer cells and secrete osteopontin (OPN) which in
turn promoted the clonogenicity and tumorigenicity of CRC. Moreover, tissue
microarray data showed that the expression of OPN and CD44v6 (an OPN func-
tional receptor) was inversely related to the survival of patients with CRC. These
findings revealed that interaction between OPN and CD44 is crucial to the develop-
ment of CRC and might be employed as a promising therapeutic target in CRC.
However, large-scale, higher-quality studies (such as prospective trials) are needed
to verify the results of these studies. Sahlberg et al. [47] reported that overexpression
of CD133/CD44 was proportional to the increase of resistance to radiation in colon
cancer cells. Liu et al. [48] reported that combined treatment of paclitaxel and
siRNA-targeted CD133 cells could effectively reduce the expression of multiple
drug resistance-1 (MDR1) in human colon CSCs (CD133+ enriched cell popula-
tion), which could markedly reduce the resistance to paclitaxel. Jao et al. [49]
reported that the overexpression of CD133 was markedly proportional to local
relapse and prognosis of patients and could be used as an effective prognostic marker
for tumor regression grading in rectal cancer patients after neoadjuvant concurrent
chemoradiotherapy. Kanwar et al. [50] observed that difluorinated-curcumin (CDF)
combined with 5-fluorouracil and oxaliplatin could effectively inhibit proliferation
and induce apoptosis of CSCs via decreasing CD44 and CD166 drug-resistant colon
cancer cells, suggesting that the combination of CDF with 5-fluorouracil and
oxaliplatin is expected to be a reliable therapeutic approach to inhibit the drug
resistance of colon cancer cells via eradicating CSCs. Excepting for the above cell
surface markers, ST6Gal-I may also be a promising marker of CSCs. Swindall et al.
[51] suggest that ST6Gal-I promotes tumorigenesis and plays a crucial role in
maintaining behavior of stemlike cell; thus it might be employed as therapeutic
target. Lugli et al. [52] reported that loss of membranous CD44s, CD166, and
epithelial cellular adhesion molecule (EpCAM) was linked to tumor progression,
invasiveness, and infiltrating tumor growth pattern. Therefore, CD44s, CD166, and
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EpCAM possess the potential to predict the survival of CRC patients. Furthermore,
Xiang et al. [53] developed a novel therapeutic approach based on the combination
of EpCAM aptamer (a new drug delivery system) with doxorubicin which is able to
target surface molecules of CSCs. This approach can effectively inhibit the growth
of tumor and a prolonged longer tumorigenic latency, thereby improving the prog-
nosis of CRC patients. Wang et al. [54] established a novel therapeutic strategy
based on chitosan vesicle entrapment of oxaliplatin, which could eradicate tumor
cells and CSCs (more effective than free oxaliplatin) and might be a novel strategy
for treatment of CSCs. Recently, ALDH1 is one of putative CSC marker in CRC.
Kahlert et al. [55] found that ALDH1 nuclear expression related to shorter survival
of patients with CRC. Furthermore, Deng et al. [56] reported that high postoperative
ALDH1 expression predicts the recurrence, distant metastasis, and poor prognosis
for CRC patients who received neoadjuvant therapy. Also, Goosssens-Beumer et al.
[57] suggested that co-expression level of ALDH1, survivin, and EpCAM was a
reliable prognostic indicator to predict risk of recurrence and survival of colon
cancer patients. However, further validation about these conclusions in clinical trials
is warranted.

18.3.2 Targeting Signaling Pathways of CSCs

It has been shown that various signaling pathways including Wnt and Notch can
control growth, differentiation, migration, and response to drug treatment of CRC by
regulating CSCs. Therefore, targeting CSCs through signal pathway is a potential
therapeutic strategy for CRC, but only taking such treatment does not make an
effective approach at least today. The combination of conventional therapies such as
radiotherapy and chemotherapy and the inhibitor of CSC-specific pathway possesses
the potential to improve cancer cure compared with monotherapies [58].

Overexpression of BMI1, a signaling pathway of CSCs, induces tumor progres-
sion and metastasis and contributes to the self-renewal of CSCs. Depletion of BMI1
cancer cells can lead to suppression of CSC self-renewal. [59] The STAT3 pathway
is crucial to regulate CSC self-renewal, and suppression of this pathway will lead to a
decrease in the number of CSCs. Lin et al. [60, 61] reported that CD133/ALDH(+)
CSC cell population expressed higher level of pSTAT3, and the effects of STAT3
inhibition in colon CSLCs were examined, which indicate that inhibition of STAT3
in CSLCs might provide a potential therapeutic strategy for CRC. And then they
found that GO-Y030 acted as inhibitor of STAT3 phosphorylation and therefore
inhibited colon CSCs. Napabucasin, an inhibitor of tumor stemness by targeting
STAT3, possesses the ability to inhibit the recurrence and metastasis of numerous
cancers [62]. A phase III clinical trial recently aimed to test napabucasin in advanced
CRC showed that STAT3 may be a promising target for the therapy of CRC with
elevated phosphorylated STAT3 (pSTAT3) expression [63]. Overactivation of Wnt
signaling is the main reason for the pathogenesis of CRC. In colon cancer, the
suppression of HOXA5 by the Wnt pathway maintains stemness of CSCs, and its
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reexpression induces loss of the CSC phenotype, which will prevent tumor progres-
sion and metastasis [64].

A previous study revealed that HH-GLI1 was crucial to promote the develop-
ment, metastasis, and self-renewal of stem cells in advanced colon cancers. There-
fore, targeting HH-GLI1 may be used as a therapeutic strategy to reduce tumor size
and metastases of colon cancer and eliminate colon CSCs [65]. These results suggest
that HH-GLI1 signaling pathway played a key role in the formation of colon CSCs
and may be a potential therapeutic strategy for colon cancer, especially for those with
refractory and metastatic characteristics.

18.3.3 Targeting the miRNAs

A growing body of evidence suggests that miRNAs are closely related to the
invasiveness and metastasis of CRC. And the aggressiveness and stemness of
CRC remain a major cause for relapse and metastasis of CRC. Hongdan et al. [66]
reported that miR-3210-5p could increase the characteristics of aggressiveness and
stem cell-like in colon cancer via decreasing the expression of Axin2 (a regulator of
Wnt signaling).Therefore, targeted inhibition of miR-3210-5p may be a promising
therapeutic strategy to improve the prognosis of patients with colon cancer. Zhai
et al. [67] showed that high expression of miR-140-5p was significantly correlated
with the low expression of Smad2 in CRC cell lines, which would lead to the
decrease of cell proliferation and invasiveness and the increase of cell cycle arrest.
Furthermore, overexpression of miR-140-5p in CSCs abolished tumor formation and
metastasis in vivo. The functional and clinical significance of miR-140-5p shows
that it can regulate the metastasis and progression of CRC, as well as it has the ability
to be a new therapeutic target for CRC in the future. Huang et al. [68] revealed that
tRF/miR-1280, a 17-bp fragment derived from tRNA and pre-miRNA, affected
Notch signaling pathways supporting the role of CSLCs in CRC progression.
They have reported that tRF/miR-1280 could inhibit the metastasis and development
of CRC via suppressing Notch signaling pathways. Furthermore, they demonstrated
that miRNA with functional activity could be obtained from tRNA, which undoubt-
edly provides another promising biomarker for the treatment of CRC. A study
showed that miR-34a directly inhibited Numb in early-stage colon CSCs and
deletion of miR-34a will enhance CSC properties in colon cancer [7].

Colon CSCs have been identified as one of the main reasons for the resistance of
colon cancer to chemotherapy. MiRNA is crucial to the progression of colon CSCs
and might contribute to reducing drug resistance and increasing sensitivity to
chemotherapy [8]. It has been shown that the expression of miR-451 leads to the
decrease of colonic bulb self-renewal and tumorigenicity and the increase of its
sensitivity to irinotecan by reducing the expression of ABCBA1 (an ATP-binding
cassette drug transporter). The above results revealed that miR-451 may be used as a
novel marker to predict the relapse and chemoresistance of CRC, especially the
response of colon cancer to irinotecan [69]. A study by Xu et al. [70] in stem cell-like
side population (SP) cells in CRC showed that the high expression of miR-328 could
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improve the chemoresistance and suppressed the invasiveness of SP cells. These
findings indicate that miR-328 plays a crucial role in maintaining cancer stemlike SP
phenotype and might be a promising target for the treatment of CRC.

18.3.4 Other Strategies Targeting CSCs

Conventional therapies, such as radiotherapy and chemotherapy, play a predominant
role in the management of patients with advanced-stage CRC. However, the inherent
or acquired chemo- and radiation resistance of CRCs results in failure of treatment,
which is partly on account of the enrichment of CSCs with resistance to conventional
therapy.

A recent study shows that the combination of MST-312 (a telomerase inhibitor)
with flavonoid morin can decrease the stemness of CSCs. In addition, co-treatment
of the two drugs above can also enhance the therapeutic effect of 5-FU [71]. There-
fore, the combination of flavonoid morin and MST-312 can be used as a novel
therapeutic target to improve the prognosis of tumors. Recently, epigallocatechin-3-
gallate (EGCG), an active catechin present in green tea, has been found to possess
the ability to inhibit the development of CSC in a variety of tumor. Toden et al. [72]
reported that EGCG could increase the efficacy of 5-FU and inhibit tumor prolifera-
tion in 5-fluorouracil-resistant (5FUR) CRC cell lines. EGCG treatment in these
5FUR cells leads to the inhibition of spheroid-derived CSCs’ (SDCSCs) generation
and increased sensitivity of 5-FU to SDCSCs. The above findings provide a support
for EGCG to enhance the sensitivity of 5-FU by targeting CSCs of CRC and
highlight the potential of EGCG as an adjuvant therapy for conventional chemother-
apy in patients with CRC.

18.4 CSCs in Breast Cancer

A growing number of studies demonstrated that the formation of breast cancer was
thought to be driven by CSCs. Today, acquired and inherent resistance to radiother-
apy and chemotherapy represents a main obstacle in therapy of breast cancer. Breast
CSCs (BCSCs) not only drive tumor formation, recurrence, and metastasis of cancer
but also mediate therapeutic resistance [73]. Thus, developing strategies with effec-
tive targeting BCSCs might be beneficial to control tumor relapse, increase DFS, and
increase sensitivity to conventional therapy such as chemoradiotherapy.

18.4.1 Targeting Cell Surface Markers of CSCs

Doxorubicin can achieve the therapeutic effect of scavenging BCSCs by decreasing
the expression of CD44 in vitro. Moreover, decreased expression of CD44 will
increase the sensitivity of CD44+CD24� breast cancer cells to doxorubicin
[74]. Interestingly, another study [75] showed that knockout of the CD44 gene
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makes BCSCs become non-BCSCs with less tumorigenicity, which changes the cell
cycle and some CSC-related gene expression, leading to the loss of stemness and
enhancing response to conventional therapy.

The malignant potential of triple-negative breast cancer (TNBC) is also relied
upon a subpopulation of BCSCs. CD133 and EpCAM, two BCSC markers, are
significantly related to invasiveness of breast tumors, indicating that combined
therapy targeting two surface molecules at the same time might be an effective
strategy for the therapy of TNBC [76]. GD2 (a glycosphingolipid) is a new
CSC-specific cell surface marker. As a key enzyme of GD2 synthesis, GD3 synthase
might be a promising therapeutic target for CSCs and may improve the prognosis of
breast cancer patients. Furthermore, complete knockout of GD3 could eliminate the
formation of tumor in vivo [77]. Hence, developing a therapy approach targeting
CSCs may be beneficial to the treatment of patients with breast cancer.

18.4.2 Targeting Signaling Pathways of CSCs

A recent study has revealed that the noncanonical hedgehog inhibitor GANT61
could reduce not only the development of cells but also the number of CSC in triple-
negative breast cancer cells and GANT61 could enhance the inhibitory effect of
paclitaxel on the growth of these cells [78]. Likewise, GANT61 also possesses the
ability to increase the proportion of CSC in ER-positive breast cancer cells excepting
for its inhibitory effect on breast cancer cells [79]. These results suggest that
GANT61 could be used as a target for the therapy of breast cancer patients through
its inhibitory effect on cancer cells and CSCs. Genistein inhibited the breast CSCs
and MCF-7 cells’ growth and proliferation and promoted apoptosis via the
downregulation of hedgehog-Gli1 signaling pathway [80]. These researches offer
reasonable and reliable evidence to further explore the clinical application of genis-
tein in the therapy of breast cancer via targeting BCSCs.

The Notch pathway is crucial to stem cell renewal and might be a promising target
for BCSC-directed treatment. A preclinical and clinical study [81] shows that
treatment with gamma secretase inhibitors (GSI) reduced BCSCs in MC1 and
BCM-2147 tumor grafts via suppression of the Notch pathway. In this study, GSI
shows the capability of enhancing the efficacy of docetaxel in breast cancer. These
results indicate that the inhibitor of the Notch pathway could lead to the decrease of
BCSCs. A 2017 study revealed that vitamin D compounds could be acted as a
promising preventive drug of inhibiting TNBC via regulating BCSC differentiation
and reducing its population through inhibition of Notch pathway [82].

Wnt/β-catenin pathway is critical for regulation of BCSC-mediated metastasis.
Survivin was found to contribute to self-renewal of CSCs via driving the activation
of PI3K/Akt-dependent Wnt/β-catenin pathway, which mediates the breast cancer
metastasis [83]. Some signaling pathways are not only key to maintaining the
biology of CSCs but also main reason for breast cancer patients to resist treatment
[6]. For instance, a study [84] in 2018 shows that the STAT3 pathway can promote
BCSC maintenance and breast cancer chemoresistance. Furthermore, the inhibitor of
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JAK/STAT3 blocks BCSC self-renewal, and blocking fatty acid β-oxidation,
induced by STAT3 in BCSCs, can resensitize them to chemotherapy. These results
indicate that STAT3 pathway may be a promising target for BCSC-directed therapy.
Sabutoclax has been reported to reduce sphere formation of drug-resistant cells and
eliminated the CSC subpopulation by downregulating the IL-6/STAT3 signaling
pathway. When sabutoclax was combined with chemotherapeutic agents, it
presented a strong synergistic antiproliferative effect [85]. The study shows the
feasibility of combination of sabutoclax and chemotherapy; however, larger and
higher-quality studies are needed to verify these findings and determine the potential
value of the combination of sabutoclax with conventional therapy in chemotherapy-
resistant breast cancer.

18.4.3 Other Strategies Targeting CSCs

18.4.3.1 Antiangiogenic Therapies
The formation of blood vessels in the tumor provides a continuous supply of
nutrition and oxygen for the frenzied growth of the tumor. BCSCs is found to
favor the generation of novel blood vessels by undergoing dedifferentiation into
endothelial cells, which is termed as vasculogenic mimicry (VM) [86]. The presence
of the close relationship between VM and CD133(+) expression may be helpful for
TNBC relapse and progression [87]. Later, USP44(+) CSCs subpopulation possess
the ability to predict the generation and invasiveness of VM and could be used as a
reliable prognostic biomarker of worse clinical outcomes in breast cancer
patients [88].

The therapy of antiangiogenic drug can effectively suppress the growth of tumor
neovascularization, thus inhibiting the development of tumor. Reversely, tumors
will inevitably be resistant to antiangiogenic drugs due to the generation of HIF
(hypoxia-inducible factor) with the ability to promote formation, metastasis, and
aggression of tumor blood vessels and CSC self-renewal. Conley et al. [89] found
that the combined administration of HIF-1α-targeted agents like CRLX101 and
antiangiogenic drug such as bevacizumab could get a better effect by targeting the
CSC populations. In addition, OPN also is critical for angiogenesis and tumor
progression of breast cancer. A recent study [90] has revealed the prime role of
OPN in controlling breast cancer progression and angiogenesis through ILK and
NF-κB-mediated HIF1α-dependent vascular endothelial growth factor (VEGF)
expression in response to hypoxia. Compared to the control group, the expression
of OPN cells induced the progression and angiogenesis of breast cancer by
upregulating the expressions of proangiogenic factors, suggesting that OPN and its
controlled signal network may be a promising target for breast cancer therapy.

18.4.3.2 Radiotherapy
It was reported that CSCs show resistance to radiotherapy via enhancing the ability
of DNA repairing and reducing the concentration of intracellular reactive oxygen
species (ROS), due to the overexpression of ROS scavengers in CSCs [91]. These
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BCSCs with low ROS level are proportional to the priority spare and smaller DNA
loss after irradiation, resulting in resistance to radiotherapy in breast cancer [92].

Mammalian target of rapamycin (mTOR) activation is critical for sustaining the
self-renewing ability of CSCs. In triple-negative MDA-MB-453 and MDA-MB-468
breast tumor cells, rapamycin suppression of mTOR phosphorylation helped to
sensitize the resistant breast cancer to low-dose radiation therapy [93]. In addition,
proliferating cell nuclear antigen (PCNA)-associated factor (PAF) is a pivotal factor
with the ability to regulate the stemness of cancer cell. PAF was overexpressed in
breast cancer cells, and its depletion impairs the maintenance of stemness of CSCs,
suggesting that PAF may become an effective therapeutic target to restore radiother-
apy sensitivity of breast cancer [94].

BCSCs are also accountable for drug resistance by expressing drug efflux
proteins like multidrug resistance-associated proteins (MRP), P-glycoprotein
(P-gp), and breast cancer resistance protein (BCRP) [95]. ATP-binding cassette
(ABC) transporters, a class of drug transporters, possess the ability to promote
resistance to drug by relying on ATP to drain the drug out [96]. These ABC efflux
pumps provide shelter for CSCs to protect them from various drug treatments
[97]. As an ABC transporter encoded by MDR1 gene, P-gp participated in the
protecting these tumor cells from anticancer chemotherapeutic drugs. The combina-
tion of P-gp inhibitors and chemotherapeutic drugs can maintain the concentration of
chemotherapeutic drugs in tumors [96], suggesting that BCSCs expressing P-gp may
be significantly associated with the chemoresistance and recurrence of tumor, which
could make CSCs a novel therapeutic target and beneficial to current antineoplastic
therapy. The high expression of BCRP (a protein of ABC transporter superfamily)
will promote the resistance of tumors to some drugs including topotecan, methotrex-
ate, mitoxantrone, doxorubicin, and daunorubicin [98].

Recently, lysine-specific demethylase 1 (LSD1) is considered as a major contrib-
utor to EMT, tumor stemness and drug resistance of breast cancer. Circulating tumor
cells (CTCs) from patients with metastatic breast cancer were found to be rich in
LSD1. Furthermore, targeting LSD1 by pharmacological inhibitor inhibited the stem
cell-like and mesenchymal characteristics of the above CTCs. This report suggests
that LSD1 might be acted as an effective therapeutic target for the therapy of
advanced and drug-resistant breast cancer [99]. Lanzardo et al. [32] reported that
downregulation of xCT damaged the formation of tumor sphere and changed the
balance of CSCs intracellular redox in vitro. In addition, anti-xCT vaccination was
shown to increase CSC chemosensitivity to doxorubicin in vivo; therefore therapeu-
tically targeting xCT may contribute to the therapy of patients with breast cancer.
Accumulating evidence suggests that metformin can also act as a promising agent
for breast cancer and may be used as an effective (neo-)adjuvant therapy to eradicate
CSCs and inhibit tumor aggressiveness [100, 101].
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18.5 CSCs in Gastric Cancer

Gastric cancer is one of the five most frequently diagnosed cancers and the third
leading cause of tumor-related death worldwide [31]. Gastric CSCs (GCSCs) have
been proved to play a critical role in gastric cancer chemoresistance, recurrence, and
metastasis. As a result, GCSCs might be expected to be a potential therapeutic target
for improving the prognosis of patients with gastric cancer.

18.5.1 Targeting Cell Surface Markers of CSCs

CD44, a surface marker of CSCs, can be used as a key factor to promote the
development of GCSCs. In gastric cancer, the presence of CD44+ CTCs has been
considered to be related to lymph node metastasis, distant metastasis, and recurrence,
which indicate that CD44+ gastric cancer CTCs may be used as a prognosis indicator
of gastric cancer [102]. A variant of CD44 (CD44v8–10) has been considered as a
major expression of CD44 variant in gastric cancer cells, which may promote
tumorigenesis by enhancing the defense against oxidative stress [103]. A preclinical
study shows that overexpression of CD44 and ALDH has recently been
demonstrated in gastric cancer and all-trans retinoic acid could downregulate the
expression of CD44 and ALDH, which eventually leads to the inhibition of the
growth of gastric cancer [104]. Another study further illustrated the great potential of
CD44 in predicting the prognosis of gastric cancer. Wang et al. [105] showed that the
expression of CD44 was proportional to tumor transformation, TNM grading,
metastasis, and recurrence of gastric cancer. At the same time, the high expression
of CD133 also tended to predict the poor prognosis of patients. However, further
research is necessary to verify the potential value of above markers in predicting the
prognosis of gastric cancer. As a marker of CSCs, LGR5 is also highly expressed in
gastrointestinal tumors. Gong et al. [106] developed two LGR5-targeting antibody-
drug conjugates with the ability to induce the apoptosis of gastrointestinal cancer
cells with high expression of LGR5, but it had no effect on gastrointestinal cancer
cells that do not express LGR5. These findings suggest that it might represent a novel
potential therapy targeting CSCs to eliminate the LGR5-positive gastrointestinal
tumors and prevent cancer recurrence.

18.5.2 Targeting Signaling Pathways of CSCs

GCSCs make use of various signaling pathways including Notch, Wnt, HH, and so
on to regulate the growth, migration, and response to drug therapy of gastric cancer.
There was a significant correlation between target genes with different miRNA
expression levels of gastric CSCs and several critical biological pathways including
the regulation of cell cycle, the property of stemness, and differentiation
[107]. Hence, targeting signaling pathways might be a therapeutic strategy to
eradicate CSC population of gastric cancer.
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A research exploring the relationship between Notch2 signaling pathway and the
progression of gastric cancer showed that the expression of N2IC, an activated
Notch2 receptor, not only promoted the proliferation of human SC-M1 cells and
its development of transplanted tumor but also enhanced the colony generation,
migration, aggression, and wound healing ability of SC-M1 cells. Interestingly,
these effects will also disappear with the knockout of Notch2. Therefore, the
knockout of Notch2 may be an effective strategy to suppress the development of
AGS and AZ521 gastric cancer cells [108].

HH signaling pathway is critical to maintain CSC phenotypes and malignant
transformation phenotypes in CD44(+) gastric cancer cells. Moreover, the inhibition
of HH can block chemotherapy resistance in CD44(+) cells. However, this study also
revealed that combination of HH inhibition and chemotherapy may only be effective
for a small number of gastric tumor patients with overexpression of CD44 [109].

18.5.3 Targeting the miRNAs

Recent data suggest that miRNAs are associated with gastric cancer and contribute to
carcinogenesis due to abnormality in their expression, which in turn affects cell
proliferation, apoptosis, motility, and invasion [110]. It has been found that the
expression profile of miRNAs in tumor initiation cells (CSCs) was significant
differed from that in noncancerous cells [111].

MiR-501-5p, which plays a critical role in promoting the stem cell-like property
of gastric cancer, shares a negative correlation with OS of patients with gastric
cancer. MiR-501-5p has been shown to be significantly associated with gastric
cancer patients possessing the more aggressive traits, suggesting that miR-501-5p
represents a promising target for the therapy of human gastric cancer [112]. A study
showed that there was a significant negatively correlation between the expression of
miRNA-20a and miRNA-92a and the survival of patients with gastric cancer. This
study also illustrated miRNA-92a may be an independent prognosis factors in gastric
cancer [113]. Interestingly, miRNA can regulate stemness properties of CSCs of
gastric cancer by regulating signaling pathway, thereby affecting the prognosis and
therapies of patients with gastric cancer. A study [114] showed that the miR-23b
suppressed gastric tumorigenesis such as development, invasion, migration, and
metastasis through Notch2 pathway. MiR-132 has also been shown to possess the
potential to promote the cisplatin resistance in gastric cancer patients by regulating
SIRT1/CREB/ABCG2 signaling pathway [115]. The miRNAs are significantly
associated with numerous cellular processes such as differentiation, proliferation,
motility, and apoptosis in malignancies including gastric cancer, which suggest that
miRNAs may be an effective approach to target CSCs and will ultimately possess the
ability to treat gastric cancer patients and affect the prognosis of gastric cancer
patients.
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18.6 CSCs in Melanoma

In addition to playing a role in hematopoietic cancer and solid tumors (such as brain,
breast, colon, pancreas, lung), CSCs have recently been found to be correlated with
tumorigenesis, metastasis, and drug resistance of melanoma [116–120].

18.6.1 Targeting Cell Surface Markers of CSCs

Numerous stem cell markers have been found in drug-resistant melanoma cells and
clinical specimens like CD133, CD20, ABCB5, ALDH1, and so on. Rappa et al.
[121] have shown that in childhood malignant melanoma, CD133 + CSCs may be
associated not only with lymph node and/or visceral metastasis but also with lower
proliferative Ki-67 index which is one of the reasons for drug resistance. In addition,
the overexpression of stem cell-associated markers, nestin, and CD133 in circulatory
melanoma cells is related to the worse clinical outcome in melanoma patients.
However, further validation in a large study with sufficient follow-up, similar sample
sources, and including patients in stages II and III is warranted. [122] Lai et al. [123]
have revealed that CD133+ and ABCB5+ subpopulations were co-localized in
melanomas in perivascular niches and as stem cell-like cells, CD133+ cells could
promote the development of tumor via promoting VM and the morphogenesis of a
specialized perivascular niche in melanoma. Furthermore, CD133 knockdown mel-
anoma cells are related to the poorer tumor growth in vivo. Luo et al. [120] reported
that the expression level of ALDH was associated with the drug resistance of human
melanoma stem cells, thus regulating the proliferation and survival of cancer cells.
And the inhibition of ALDH by silencing ALDH1A can not only result in cell cycle
arrest, apoptosis, and inhibited cell variation in vitro but also inhibit tumorigenicity
in vivo. These results suggested that ALDH was not only a marker of CSC but also a
promising target for the therapy of melanoma. However, further research on the
molecular mechanisms of regulating CSCs of these isozymes and genes is
warranted. Vincristine (VCR) is widely used in melanoma treatment; however, it
has been found ineffective to treat the specific CSCs of melanoma. Song et al. [124]
found that VCR-containing immunoliposomes combined with CD20 antibody
(VCR-Lip-CD20) were 1.85 times more effective than VCR-Lip and VCR in
melanoma. Significantly, the results also showed that VCR-Lip-CD20 could selec-
tively kill CD20+ melanoma cells in populations of WM266-4 cells both in vitro and
in vivo. These findings indicate that VCR-Lip-CD20 may be expected to be an
efficient target to kill CD20+ melanoma cells.

18.6.2 Targeting Signaling Pathways of CSCs

Accumulating studies have shown that there are many signal pathways and potential
therapeutic targets in numerous malignant tumors like melanoma. It was reported
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that inhibiting HH pathway by interfering SMO or GLI1 drastically attenuates the
self-renewal and tumorigenicity of melanoma stem cells with overexpression of
ALDH; thus SMO and GLI1 may possess the potential to become a new and
effective approach for the targeted therapy of human melanoma [125]. It has been
also reported that the overexpression of Notch4 contributes to the aggression and
metastasis of melanoma stem cells, which indicates a poor prognosis [126]. Kumar
et al. [127] have shown that the expression of CD133+ CSCs which was regulated by
Notch1 pathway could activate its regulated signaling network, promoting the
development, metastasis, and angiogenesis of melanoma. Furthermore, eradication
of Notch1 by blocking or ablation could also suppress the expression level of
CD133, which in turn inhibits the cell migration and angiogenesis of melanoma.
However, these findings only verified in mice experiments, and further studies are
necessary to verify the value of these findings in human melanoma. BRAF and
NRAS mutations are reported to occur in about 70% of melanoma, and a study [128]
shows the combination of γ-secretase inhibitors (block the activation of Notch
signal) and BRAF inhibitors (block the activation of BRAF-MEK-ERK signal) is
more effective in the therapy of melanoma with BRAF/NRAS mutation. A study in
2016 showed that andrographolide could attenuate melanoma growth and lung
metastasis by abrogation of Notch1-mediated CD133-dependent p38 mitogen-
activated protein kinase (MAPK) activation pathway in CD133+ melanoma cells.
Mechanistically, Notch1 upregulates MAPK activation through CD133 resulting in
the development, lung metastasis, and angiogenesis of melanoma. In contrast,
inhibition of Notch1 and MAPK pathways inhibits cell migration and angiogenesis
of melanoma [129]. Excepting for these signaling pathways, low rhodamine
123 (Rh123low) cells are enriched for stem cell-like activities, and Rh123low cells
possess the characteristic of relative stillness and drug resistance in melanoma CSCs.
A study reported that PI3K/Akt pathway was the key to maintain Rh123low in
melanoma stem cell compartment [130].

18.6.3 Targeting the miRNAs

Several reports have suggested that miRNAs played a crucial role in development of
tumor, angiogenesis, and metastasis in numerous tumors including melanoma. A
preliminary report showed that several miRNAs (miR-21, miR-10b, miR-200c,
miR-520c, and miR-373) were significantly upregulated in melanoma sphere,
suggesting that these miRNAs might regulate the potential of metastasis and
stemness in melanoma [131]. Noman et al. [132] have shown that miR-210, as a
hypoxia-regulated miRNA in lung cancer and melanoma, could reduce the lysis of
tumor cells by antigen-specific cytotoxic T lymphocytes (CTL). And low expression
of miR-210 could also enhance the CTL-mediated lysis of tumor cells in lung cancer
and melanoma. Thus, miR-210 could be a promising prognostic marker and thera-
peutic target. Moreover, a study [133] suggested that miR-33b directly binds to
HMGA2 30 untranslated region to suppress its expression and suppresses EMT and
migratory potential of melanoma cells. Forloni et al. [128] found that overexpression
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of miR-146a enhances the proliferation property of human melanoma cells in culture
and the formation of tumor in mice by targeting Notch signaling and BRAF-MEK-
ERK signaling, while knockout of miR-146a showed opposite results. Oncogenic
DNp73 is a dominant-negative variant of tumor suppressor gene p73, which confers
to tumor cells the characteristic of increased stemlike properties by attenuating
expression of miR-885-5p [134]. It was reported that augmentation of miR-9
markedly inhibited the cell proliferation and migratory capacity of melanoma
cells. In contrast, knockout of miR-9 or anti-miR-9 miRNA inhibitor could enhance
not only the expression of Snail1 but also the cell proliferation and migration
capacity of melanoma. Mechanistically, miR-9 binds to the 30 noncoding region of
NF-κB and attenuates its expression, thus preferentially inhibiting Snail1 and finally
inhibiting the proliferation and metastasis of melanoma cells [135]. Taken together,
these findings suggested that miRNAs may regulate the proliferation and metastasis
of melanoma cells by modulating CSC properties and may be a promising prognos-
tic marker and therapeutic target.

18.6.4 Targeting the Microenvironment of CSCs

Tumor progression also depends on their microenvironment. The tumor microenvi-
ronment like fibrous cells, immune cells, inflammatory cells, and blood vasculature
(angiogenesis of tumor) is necessary for CSC survival since it could not only
produce and maintain CSCs but also protect them from attacks by the immune
system and lead to enhanced migration and recolonization as secondary tumors
[136, 137].

TAMs play multifaceted roles in the growth of tumor, especially related to the
aggression and angiogenesis of tumor. CSCs may regulate the surrounding niche by
regulating the expression of OPN in TAM. Kale et al. [138] have shown that
macrophage related to melanoma modulated tumor microenvironment by secreting
OPN, triggering the angiogenesis and development of melanoma. Therefore, inhibi-
tion of OPN and its regulated signaling network may be a potential approach to
eliminate melanoma through the manipulation of TAMs.

Besides, hypoxic microenvironment is linked to the worse clinical outcome of
tumor and controls the number of CSCs by stabilizing HIF [139]. It has been
reported that HIF1α and HIF2α drove the aggression of melanoma and related to
the metastases of melanoma patients [140]. MFG-E8, a powerful angiogenic factor,
increased tumor angiogenesis and the development of melanoma under hypoxic
conditions via enhancing the expression of VEGF and ET-1 in MSC and M2
polarization of macrophages [141]. However, this finding which is based on a
tumor model of bone marrow chimeric mice does not represent that MFG-E8 has a
similar effect in vivo, and further researches are necessary to verify findings above.
Another study [142] showed that hypoxia can downregulate the expression of
miR-340-5p, while the low expression of miR-340-5p is negatively related to the
expression of ATP-binding cassette subfamily B member 5 (ABCB5, a marker of
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melanoma stem cells, is a key transmembrane transporter closely related to tumor
chemoresistance).

18.6.5 Other Strategies Targeting CSCs

In addition to the above targeted CSC therapy, there are also some other methods
targeting CSCs to treat melanoma. Melanoma stem cells can also display drug
resistance via enhancing drug efflux, which is mediated through ATP-binding
cassette subfamily B (ABCB). El-Khattouti et al. [143] revealed that caffeic acid
phenethyl ester (CAPE), a bioactive molecule, could enhance the expression of
E2F1 and apoptosis in CD133(�) melanoma, but not in CD133(+). Interestingly,
the knockdown of ABCB5 was shown to enhance the sensibility of CD133(+) cells
to CAPE. Therefore, combination of ABCB5 inhibitor and CAPE can eliminate
chemoresistance in melanoma-specific CSCs. A study [144] showed that the novel
sirtuin 1 and 2 (SIRT1/2) inhibitor tenovin-6 could effectively eliminate CSCs and
induce apoptosis in uveal melanoma. The approach of targeting tumor stem cells can
also be used in tumor immunological therapy. Lu et al. [145] developed a vaccine by
using CSC lysate-pulsed dendritic cells (DCs), which could target the CSC
populations of numerous cancers including melanoma.

As a CSC marker, the high expression of CD44 is significantly related to the
development and metastasis of various human cancers like melanoma. CD44 can
bind specially to hyaluronic acid (HA), a pericellular matrix component. Shen et al.
[146] reported that solid lipid nanoparticles coated with hyaluronic (HA-SLNS)
possess the ability to target paclitaxel (PTX) transport to B16F10 melanoma cells
with high expression of CD44 and significantly improve their intracellular transfer-
ring efficiency. Furthermore, it will cause numerous CD44(+) cells to induce
apoptosis in vitro, and the growth and lung metastasis of melanoma were also
significantly inhibited. In addition, this strategy could be markedly beneficial to
the survival of patients with no adverse events. Moreover, there was a significant
positive correlation between the expression of differentiation inhibitor/DNA binding
(Id) proteins 1 and 3 (both depend on BMP4/7) and the development and poor
survival of patients with malignant melanoma. Moreover, the interaction between
HA-CD44 and BMPR contributes to the expression of Id1/3 protein relying an
BMP4/7 and poor survival in patients with melanoma [147]. These results suggest
that targeting CD44 is a potential and effective approach for melanoma therapy by
elimination of CSCs.

18.7 Application of Nanomedicine in Targeting CSCs

Although targeting CSCs is one of the most promising therapeutic approaches, the
traditional methods of targeting CSCs have several flaws including poor water
solubility, poor pharmacokinetics, and poor stability of CSC-specific agents [148–
150]. At present, for the existing technology, it is a challenging task to target drugs
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into a small amount of CSCs in tumor tissue. In recent years, nano-transport
technology offers a novel approach to effectively exert the efficacy of drugs via
controlling the release of drugs, prolonging the effective time of drugs, and improv-
ing the biological distribution of drugs. And this technique can effectively solve the
obstacle of eradicating CSCs and improve the therapeutic effect of targeted CSC
drugs. It has been proved that CSC-targeted inhibitors alone are not particularly
effective in inhibiting tumor growth. The double-targeted nano-drugs containing
CSC-targeted inhibitors and conventional antineoplastic drugs can not only effec-
tively eliminate CSCs and tumor cells but also possess lower toxicity than that of
free drugs [151–153]. For example, through nanotechnology, Sun et al. [154]
wrapped all-trans retinoic acid (ATRA, a powerful differentiation agent of CSCs)
and chemotherapy agent doxorubicin together to make into a nano-drug, which can
significantly enhance the concentration of drugs in tumor tissues and CSCs, greatly
enhance the inhibitory effect on tumor growth, and cooperatively decrease the
population of CSC. As a result, ATRA combined with doxorubicin can be used as
a promising therapeutic approach to inhibit the development and relapse of cancer
via targeting CSCs and non-CSCs.

18.8 Limitation, Barriers, and Controversy in the CSCs

There are some limitations in the treatment of targeted CSCs.
Firstly, it is crucial to select the appropriate CSC markers for these researches

about CSCs, as misrecognition of CSC subpopulations will lead to the wrong
conclusion. Nonetheless, how to identify and isolate CSCs has always been an
obstacle in this field. Some CSC populations do not express the cellular markers
found so far, while some non-CSC tumor cells also express these markers. At
present, the isolation and identification of CSCs is mainly based on cell surface
markers like CD133. Nevertheless, the credibility of this method remains to be
answered. [155, 156] Novel techniques like live-cell RNA detection and single-
cell DNA and RNA sequencing methods may help to identify CSCs, but these
methods are still unlikely to identify a unique CSC marker [157].

Secondly, despite CSCs having been found in numerous dysfunctional signaling
pathways, these pathways also express normal stem cells that are of great signifi-
cance to normal physiological activity. Therefore, drugs targeting these signaling
pathways can affect not only CSCs but also normal stem cells, leading to serious side
effects. Considering this limitation, we must improve the specificity of targeting
CSC drugs, through continuous optimization or in combination with other
technologies (such as nanotechnology) in order to gain effective treatment and
avoid serious side effects [158]. In addition, the cross talk between different
pathways should also be considered. Therefore, the strategy of targeted
CSC-related signaling pathway in the treatment of tumor still needs to be further
explored before it is used clinically.
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18.9 Conclusion and Future Perspectives

CSCs have been shown to be able to evade current cancer treatments including novel
immunotherapies, thereby leading to tumor recurrence, metastasis, and resistance to
radiotherapy and chemotherapy. Therefore, targeted CSC treatment for more thor-
ough treatment of tumors to achieve a better prognosis is necessary. In summary, the
application of CSCs is promising, opening a new era for cancer treatment and
evaluation of prognosis. However, there remain several unresolved problems in
CSCs. Further research is needed to find reliable and accurate markers to distinguish
CSCs from normal stem cells for developing the treatment approaches with higher
specificity and fewer side effects. In addition, before the clinical application of
targeted CSCs in tumor therapy, it is necessary to clarify its effective dose and
side effects and other important factors. After all, the current findings from in vitro or
animal experiments may not achieve satisfactory results or even cause major
accidents when applied to humans. Signaling pathway and tumor microenvironment
as an approach of targeting CSCs have shown encouraging results. Nevertheless, it is
worth noting that the signal pathway regulating CSCs does not operate separately
and the combination of drugs may be a more effective targeting strategy in the future.
Although nano-carriers were able to enhance the delivery and drug activity of CSC
inhibitors, only a small number of nano-drugs could be approved for clinical
treatment at present. With the further research of CSCs and nano-drugs, nano-
drugs loaded with different therapeutic drugs may become the most effective
drugs for tumors.

In the future, the combination of traditional antineoplastic drugs and targeted
CSC drugs combined with nanotechnology may be expected to be an effective
approach for the therapy of cancer.
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