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Abstract The introduction of safety cases into the practice of safety assurance has
revolutionized safety engineering. Via a ‘safety argument’, a safety case aims to
explicate, and to provide some structure for, the kind of reasoning involved in demon-
strating that a system is safe. To date, there are several notations for writing down
safety arguments. These notations suffer from not having a well-founded semantics,
making them deficient w.r.t. the requirements of a serious approach to engineering.
We consider that a well-founded semantics for safety arguments ought to be based
on logical principles in the form of a logical calculus. Logic is the basis for reason-
ing in mathematics, philosophy, and science, and the same should be true for safety
reasoning. With this goal in mind, we take some steps towards constructing a logical
calculus for safety arguments by exploring some of the features of this calculus.
Moreover, we look into the essential role that evidence plays in safety arguments.
Evidence sets apart safety arguments from their traditional logical counterpart, as
assumptions in safety arguments must be grounded on (i.e., justified by) data from
the empirical world. We present our thoughts on these matters, and illustrate them by
means of examples.We consider that ourwork establishes a framework for discussing
safety arguments in a more rigorous manner.

1 Introduction

The introduction of safety cases into the practice of safety assurance aims to make
explicit and to organize the justification for a claim that some engineered artefact is
safe. (What ‘safe’ means is, however, a totally different issue, which we choose to
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set aside here.) A safety case is defined as: ‘A structured argument, supported by a
body of evidence that provides a compelling, comprehensible, and valid case that a
system is safe for a given application in a given operating environment’ (see [35]).
This widely accepted definition of a safety case as a structured argument is a big
step towards a more precise definition. Moreover, it sets a standard against which
competing definitions of a safety case can be assessed [16]. See also Sect. 2.

A significant amount of useful work has been accomplished in turning the idea
that a safety case is a structured argument into practical notations to support their
development (see [1, 33]). However, to date, existing notations for safety cases have
no semantics. This entails that, when presented with a safety case in one of these
notations, we have no means for deciding whether the structured argument it for-
mulates is syntactically well formed, never mind whether the reasoning it purports
to represent is sound. In other words, though safety cases have been developed and
used with some success, they seem to be largely supported by intuition and experi-
ence. This is in stark contrast to other disciplines of engineering where mathematical
rigour is the norm. The situation is worrisome. Canwe reasonably expect to deal with
the increasing complexity of systems such as cyber-physical systems or autonomous
cars largely based on intuition? It is well known that, in the end, intuition always fails
us when confronted by complexity. Would we have entrusted the lives of astronauts
to outer space missions had space shuttles been engineered based on intuition and
not science? Of course not.1 So why do we not hold the development of safety cases
to the same high standards? It does certainly seem to be appropriate. Moreover, how
do we teach new safety engineers the necessary rigour required in their field without
a proper scientific basis? Do we appeal to intuition and experience? Intuition only
takes us so far, and certainly not far enough to justify the safety of complex systems.
The moral of the story is that history clearly demonstrates that notations lacking a
well-founded semantics are deficient w.r.t. the requirements of a serious approach to
engineering. This state of affairs in safety assurance has persisted for too long. We
consider that it is time to bring this issue to the fore.

We do not think that the use of the term ‘structured argument’ is incidental in the
definition of a safety case.2 For this reason, our view is that a well-founded semantics
for safety cases should be based on logical principles in the form of a logical calculus.
We view the development of this logical calculus in the light of Logic Engineering
(see [36]). Logic Engineering addresses the development of logical frameworks for
specific purposes. In our case, the specific purpose is safety reasoning. As logic
engineers, we then need to identify among the available logical calculi if there is
one that is adequate for safety reasoning, and in case there is none, to construct one
(possibly by combining or borrowing elements from those that exist).

1This does notmean thatwe expect engineering to be perfect. Engineers domakemistakes.However,
engineers learn by experience and codify that knowledge in mathematical analyses and engineering
methods, on which they can rely to build systems that are reliable.
2Tim Kelly, the developer of one of the most commonly used notations for safety cases, the Goal
Structured Notation, see [33], and his PhD. supervisor John McDermid in [25] directly linked the
notation to the argument language developed by Toulmin in [34]. Moreover, the UKMoD standard
definition of a safety case, see [35], also links safety cases to arguments.
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As a disclaimer, we do not propose to reduce safety reasoning to an existing logical
calculus, nor will we fully develop a logical calculus for safety reasoning; we do not
yet know enough to do so. Instead, we take some steps towards a logical calculus
for safety reasoning by presenting and discussing some of its main elements in the
form of working definitions. More precisely, we provide a precise definition of the
notion of a structured argument in a safety case and discuss some of the elements of
safety reasoning in relation to it. An important part of this reasoning is the essential
role that evidence plays in safety cases. Evidence sets apart the kind of arguments
involved in safety cases from their traditional logical counterpart, as assumptions in
safety cases must be grounded on (i.e., justified by) data from the empirical world.
An important source for ideas in this regard is the work of epistemologists such as
Carnap, Hempel, and Popper, amongst others, see [5, 18, 29]. In particular, we have
taken inspiration from Carnap’s Two Level Language of Science. This language is
a logical formalism that has a limited logic for observational reasoning, i.e., about
evidence, which is included in another language, the so-called theoretical language,
that is used for reasoning about universal generalizations. The current observations
about safety cases and the distinctions between reasoning about evidence versus
inferential reasoning of amore general nature are directly rooted in the ideas outlined
above.

Our work has two main outcomes. First, we set up a framework for discussing
the kind of reasoning involved in safety cases. Second, we set up a standard against
which progress can be measured by providing some working definitions. Working
definitions are the basis of science and engineering and are an essential tool against
which to measure scientific progress. Working definitions allow us to make further
progress in transforming safety cases into a properly grounded engineering tool,
enabling a systematic and rigorous construction and analysis. But, of course, our
working definitions should not be seen as defining a dogmatic position; we will
happily make changes as we learn more and are able to justify their necessity.

Structure: In Sect. 2, we beginwith some preliminary observations on safety cases.
In Sects. 3 and 4, we discuss some of the main elements of safety reasoning and offer
some working definitions. In Sect. 5, we put these elements together in an attempt
to present a coherent picture. In Sect. 6, we offer some conclusions and comment on
next steps.

2 Preliminary Observations

The first observation regarding safety cases concerns notations for their presenta-
tion/development (e.g., [1, 33]). To save us from having to continually refer to all of
them, we use the diagrams in the Goal Structured Notation (GSN) as our witness. In
our view, GSN diagrams do not present arguments in the usual logical sense of the
term. Instead, they present decomposition structures for safety goals, i.e., a strategy S
related to goals {Gi }i∈n,G expresses a decomposition of G into {Gi }i∈n . This is rem-
iniscent of problem solving by decomposition, a well-known technique for coping



230 V. Cassano et al.

Fig. 1 Goal decomposition

with the complexity of large problems (see [28]), where solutions to sub-problems
are combined in a prescribed way to solve the original problem. More closely, this
is reminiscent of goal structured requirements approaches such as KAOS (see [23]),
which apply problem decomposition ideas to requirements definition. (In fact, GSN
researchers often refer to the notation as supporting safety goal decomposition.) But
decomposition structures for safety goals and structured arguments in safety cases
are different: while a goal decomposition structure breaks down a complex goal G
into more manageable goals {Gi }i∈n , as stated in some underlying logical calculus,
a structured argument substantiates that G follows from the set {Gi }i∈n . This dif-
ference is immediate if we draw an analogy with goal decomposition structures in
KAOS. The following example, adapted fromone presented in [9], clarifies this point.
Figure1 illustrates the decomposition of a goal G stating that ‘if the train is ready to
depart, then, it eventually departs’ into goals G1, G2, and G3 stating that ‘if the train
is ready to depart and the go signal turns green (go), then, it eventually departs’;
‘if the train is ready to depart, then, the go signal turns green (go) eventually’; and
‘if the train is ready to depart, then, it remains in that state at least until it departs’;
respectively. In Fig. 1, goals G and G1 – G3 are formulated in (TK ; see [24]) as
r ⊃ � ♦ d, r ∧ g ⊃ ♦ d , r ⊃ ♦ g, and r ⊃ r W d, respectively. Figure2 illustrates
what we consider to be a structured argument in the context of this goal decomposi-
tion. In Fig. 2, single lines correspond to inference steps of TK , and double lines to
the use of lemmas in TK , i.e., combinations of inference steps (see [24]). Though
related, it can be readily seen that decomposition structures for goals and structured
arguments are not the same. GSN diagrams fall short at presenting structured argu-
ments. So-called strategies do not involve structured arguments akin to that presented
in Fig. 2, and what they do better at representing, a goal decomposition structure,
while very important, is hindered, from a scientific and engineering point of view,
by not having a properly defined semantics (as exists in KAOS).

Another popular notation for safety cases is CAE developed by Adelard (see
[1]). The ideas and motivations are similar to those of GSN in many ways. In CAE
claim decompositions can be viewed as logical conjunctions of the sub-claims. This
links directly intended logical meaning of claim decomposition to reasoning about
the claims. However, such a ‘semantics’ of claim decomposition is very limiting
and simplistic. As noted above, in problem solving by decomposition, the way sub-
solutions are put together to obtain a solution for the original problem must be well
defined, but the composition method may be more complicated than conjunction.
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Fig. 2 Structured argument

Similarly, when we build proof procedures, another example of the principle of
problem solving by decomposition, putting proofs together may be much more com-
plex than simply ‘build the conjunction’ of the proofs. Breaking claims down to ones
that can be put together by conjunction enormously, and unnecessarily, complicates
the decomposition problem.3

There is also something to be said about attempts at reducing safety reasoning
directly to First-Order Logic (FOL) and using automated deduction support and proof
calculi for expressing a safety argument (see [31, 32]). These attempts try to provide a
strong, well defined, foundation for eliciting what is meant by a structured argument.
But they must also face up to the fact that safety reasoning is not FOL reasoning
(and, more generally, not that captured by classical deductive logical calculi). There
are several reasons for this. We proceed to enumerate some:

(i) Safety reasoning contains textbook examples of fallacies in FOL (e.g., argu-
ments fromauthority, such as expert opinions). Independently of howweexpress
them, including a fallacy in a proof renders the proof a fallacy, and thus a no-
proof.

(ii) Safety reasoning makes use of inductive generalizations (as in inductive rea-
soning, see [12]). An obvious example of this occurs when it is concluded from
a test set extracted from an universe of data, where every test case is successful,
that a corresponding property of the universe of data is the case. This kind of
generalization requires a truly inductive reasoning step. FOL is not the logic for
dealing with inductive generalizations.4

3When trying to define how components could be composed ‘in parallel’, researchers also proposed
that the semantics was conjunction. This was found to be very limiting, failing to deal well with
interaction and communication between components andwas soon replaced by the use of categorical
operations, such as co-limit, applied to diagrams of components and morphisms in an appropriate
category.
4The position that inductive generalizations correspond to reasoning at the level of evidence, that,
once this is sorted out, we can move to a more ‘pure’ form of reasoning, and that the non-evidential
part of the reasoning in a safety case can be done in FOL is difficult to sustain. There is no clear
distinction between when reasoning at the level of evidence stops and when we can move to ‘pure’
reasoning. In fact, the related literature categorically contradicts this position.When reasoning about
statements that make assumptions about evidence, it seems implausible, at least, that FOL will do.
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(iii) Safety reasoning includes elements of defeasible reasoning (as discussed in the
field of non-monotonic logics; see [3]). Often safety reasoningmakes inferences
from incomplete information, i.e., neither are we certain that a property holds
for an artefact, nor that it does not, yet we still conclude something about
the artefact. Moreover, safety reasoning makes use of defeasible inferences.
These inferences are defeasible because further investigation may invalidate the
conclusions drawn from them, forcing their revision, or withdrawal. Defeasible
reasoning falls outside of the scope of FOL.

(iv) FOL is inadequate for reasoning about actions, modalities, and agency. This
part addresses the idea that modal reasoning can be better dealt with in FOL.
This does not mean that actions, modalities, and agency cannot be reasoned
about in FOL. It simply means that they are better dealt with by logics which
were developed with that particular purpose in mind (see [10, 27]). From the
perspective of logic engineering, these logics provide amore suitable formalism
for the task at hand.

(v) Safety case reasoning sometimes also uses a form of reasoning called elimi-
native induction (see [15]). Eliminative induction, first developed by Francis
Bacon, and taken up by philosophers such as John Stuart Mill, John Maynard
Keynes, Karl Popper, Jonathan Cohen, et al., works like this: Suppose that we
conclude property A and that, at the same time, we identify that A may not
be true in the presence of one or more properties B1, . . . ,Bn . The set of Pi s
associates some uncertainty to P. If none of the Pi s can be concluded, then, the
uncertainty associated with P is reduced. This form of reasoning is in fact an
example of a form of probabilistic reasoning that departs from the frequentist
based reasoning of probability and is more related to confidence (as in confi-
dence in a scientific theory). Confidence underlies reasoning about scientific
theories, legal cases, and other domains, and some valuable lessons can be
learned from those domains. For example, confidence is the basis on which
semantics for statements in law like ‘beyond a reasonable doubt’ or ‘on the bal-
ance of probabilities’ can be defined. (Toulmin includes ‘qualifiers’ as elements
in the logical statements he uses in his arguments. He would recognize the two
examples we just presented as examples of qualifiers. Safety case examples are
replete with qualified statements such as ‘sufficiently’ safe or acceptably safe.)
In safety reasoning, confidence is absolutely necessary for it manifests scientifi-
cally the conventional wisdom that safety cannot be absolutely guaranteed, and,
therefore, the degree of confidence becomes an essential aspect of reasoning.
Again, confidence falls outside of the scope of FOL.

(vi) Safety reasoning has a global rather than a compositional, inductive, nature.
Defeasible and probabilistic reasoning exhibit this particularity. In these forms
of reasoning it is not generally possible to put consequences together in a
soundness-preserving way (see [2]). This has grave consequences for the pos-
sibility of devising incremental safety approaches that support the well tried
and understood concept of incremental design improvement (see [37]). Lack of
compositionality is not a feature of FOL.



Towards Making Safety Case Arguments Explicit … 233

(i)–(vi) lead to the observation that FOL is not a suitable framework for safety
reasoning. There might be a need to look elsewhere for a logic for safety reasoning.

To summarize, it is unsurprising that safety reasoning presents a challenging topic
for research. The practical implications of this are plainly evident. Taking on this
challenge, we take some steps towards establishing a logical calculus for safety
reasoning.

3 Structured Arguments in Safety Reasoning

The concept of a safety case is a cornerstone of safety reasoning. But what do we
exactly mean by a safety case? A safety case is commonly defined as: ‘A structured
argument, supported by a body of evidence that provides a compelling, comprehen-
sible, and valid case that a system is safe for a given application in a given operating
environment’ (see [35]). The introduction of safety cases into safety reasoning is a
step in the right direction. Safety cases make a serious attempt to explicate, and to
provide some structure for, the inference licenses, a.k.a. rules of inference, used in
guaranteeing that a system is safe. Nonetheless, a striking feature of the definition
of a safety case just given is its logical vagueness. It is unclear what is to be taken
as constituting a structured argument, as in, what are its defining characteristics, and
how is such a structured argument to be assessed in terms of the soundness of the
reasoning it involves. In this section we discuss these issues from the perspective of
a logical calculus. This presentation extends and clarifies an earlier work of ours (see
[6]).

3.1 Background

Webegin by introducing some basic definitions and comments onGentzen’sCalculus
of Natural Deduction for Classical First-Order Logic (NK for short; see [8, 14]).
With this, we aim to provide a well-defined context for discussion. In the process,
we will fix the terminology that we will use in what follows, and we will make this
terminology precise.

As explained in [14, p. 291], with his NK , Gentzen intended to provide: ‘A
formalism that reflects as accurately as possible the actual logical reasoning involved
in mathematical proofs’. Gentzen offers as an example of this kind of reasoning:

(∃x∀yFxy) ⊃ (∀y∃x Fxy). The argument runs as follows: Suppose there is an x such that
for all y Fxy holds. Let a be such an x. Then for all y: Fay. Now let b be an arbitrary object.
Then Fab holds. Thus there is an x , viz., a, such that Fxb holds. Since b was arbitrary, our
result therefore holds for all objects, i.e., for all y there is an x , such that Fxy holds. This
yields our assertion. (See [14, p. 292].)

In essence, the program laid out by Gentzen in [14] consists of the integration of
the kind of mathematical proofs carried out above in an exactly defined calculus, his
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NK . To this end, Gentzen provides precise definitions of so-called symbols, expres-
sions, and figures. Symbols are the alphabet of Classical First-Order Logic (FOL
for short). Expressions are the language of FOL, i.e., the set of all formulæ defined
recursively over the alphabet of FOL.Wewill need to refer to arbitrary formulæ in the
language of FOL. We indicate these arbitrary formulæ with uppercase boldface let-
ters. Figures are inference figures or proof figures. Inference figures consist of a finite
set of formulæ called upper formulæ and a single formula called a lower formula.
Regarding inference figures Gentzen explains in [14, p. 291] that: ‘We shall have
inference figures and they will be stated for each calculus as they arise’. The permis-
sible inference figures which make up the NK correspond to the well-known rules
of introduction and elimination of the logical connectives of the alphabet of FOL
and the law of the excluded middle (see [14, pp. 292–295]). Gentzen states these
permissible inference figures via a set of inference figure schemata. An inference
figure schema is to be understood as: The permissible inference figure obtains from
the inference figure schema by instantiating the syntactical variables for formulæ
by corresponding formulæ. Figure3 illustrates an inference figure schema (corre-
sponding to the introduction of material implication). Observe that in this inference
figure schema A, B, and A ⊃ B are not sentences, they are variables or templates for
sentences. Figure4 illustrates an instance of the inference figure schema in Fig. 3. In
this inference figure, {(∃x∀yFxy), (∀y∃xFxy)} is the set of upper formulæ, instan-
tiating A and B, respectively, and (∃x∀yFxy) ⊃ (∀y∃xFxy) is the lower formula,
instantiating A ⊃ B.

Proof figures, also called derivations, combine a number of formulæ to form
inference figures such that: ‘Each formula is a lower formula of at most one inference
figure; each formula (with the exception of exactly one: the endformula) is an upper
formula of at least one inference figure; and the system of inference figures is non-
circular, i.e., there is in the derivation no cycle [...] of formulæ of which each upper
formula of an inference figure has the lower formula as the next one in the series’
(see [14, p. 291]). Figure5 illustrates the result of incorporating the mathematical
proof given above inGentzen’sNK . (Numbering annotations in Fig. 5 identifywhere
formulæ are discharged and they are solely used for bookkeeping purposes.)

Introducing some further terminology that we will use later on, Gentzen calls the
formulæ of a derivation that are not lower formulæ of an inference figure initial; the
formulæof a derivationD-formulæ; the inferencefigures of a derivationD-inferences;
and a series of D-formulæ in a derivation, whose first formula is an initial one and
whose last formula is the endformula, and of which each formula but the last is an

Fig. 3 Inference figure
schema

Fig. 4 Inference figure
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Fig. 5 Proof figure (a.k.a.
derivation)

upper formula of a D-inference figure whose lower formula is next in the series, a
branch. Note that, in Gentzen’s formulation of the NK , it is possible for some of
the initial formulæ of a derivation not to be discharged. We call such initial formulæ
premisses. At times, we need to refer to derivations without making their structure
explicit. For this purpose,we use symbol�NK .Weunderstand this symbol as a relation
between sets of formulæ and formulæ. The source of �NK is the set of undischarged
formulæ in the derivation, the target of �NK is the endformula of the derivation. For
example, we indicate the derivation in Fig. 5 as {} �NK (∃x∀yFxy) ⊃ (∀y∃xFxy).

3.2 Some Concepts

Wemake some observations about Gentzen’sNK as a prelude to what follows. First,
via the integration of mathematical proofs into NK , Gentzen provides a precise
definition of what is a mathematical proof, enabling an analysis of its scope and
limits. For us, the importance of this cannot be underestimated, in particular, because,
to a certain extent, the notion of a mathematical proof stands in analogy with that
of a structured argument in a safety case, or a safety argument for short: while a
mathematical proof aims at capturing the kind of reasoning involved in mathematics,
a safety argument aims at capturing the kindof reasoning involved in safety reasoning.
In that respect, we consider that safety arguments should be given a definition akin
to the one that Gentzen provides for mathematical proofs. Without such a definition
it is impossible to judge whether a proposed safety argument is indeed such. If
logic, logical methods, and their history have taught us anything at all, it is that only
through the provision of precise definitions and their analyses canwe avoid fallacious
reasoning steps. Two of the most important results about Gentzen’s definition of a
derivation are the Soundness and Completeness Theorems (see [8]); having, at the
very least, a soundness theorem for a logical calculus for safety reasoning would
greatly improve the state of the art in this domain of knowledge.

In light of the previous paragraph, we offer some clarifications to avoid any subse-
quent confusion.We are not saying that mathematical reasoning and safety reasoning
are one and the same. There are most definitely some points of departure between
the two, some of which we have already mentioned in Sect. 2, some of which we
will make clear below. Neither are we saying that without a definition of a safety
argument that stands on grounds analogous to Gentzen’s definition of a derivation,
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safety reasoning is vacuous. Though with some reservations, even in the absence
of such a definition of safety argument, we see no major reason preempting logical
progress in safety reasoning. (After all, it is not as if mathematical reasoning could
not be carried out before Gentzen’s definition of a derivation.) Lastly, we are not
saying that the aforementioned definition of a safety argument can or shall be given
from the outset. This would be a clear impossibility given the current state of the
art of safety reasoning. Instead, our remarks are oriented towards the formulation of
a working definition of a safety argument that is (i) suitable for capturing as accu-
rately as possible the actual logical reasoning involved in safety assurance, and (ii)
amenable for the logical analyses that are needed to establish the well-formedness
and the soundness of the inference licenses to be used in safety assurance. It is rel-
ative to (i) and (ii) that a Logical Engineering approach proves its worth. We hope
that by discussing and refining such a working definition we can establish a strong
logical foundation on which to improve safety reasoning and ultimately develop a
logical calculus for safety reasoning.

One final discussion may be of importance in clarifying what we are trying to
do. It has been widely recognized that safety reasoning includes at least two forms
of reasoning: so-called evidential reasoning, to incorporate experimental observa-
tions that might be relevant to our conclusions about the safety of a system, and
so-called inferential reasoning, to enable us to manipulate statements that are not
directly about experimental data. There seems to be a consideration that inferen-
tial reasoning is logical, as in FOL, while evidential reasoning is not logical, but
so-called epistemological, based on conventional probability notions (see [31, 32]).
Now, though there are good reasons to distinguish the two kinds of reasoning, there
seems to be no good reason to demote evidential reasoning from the realm of logic.
There is a century-old history of trying to do exactly the opposite. Carnap’s Two
Level Language of Science was an attempt at characterizing the logic behind scien-
tific reasoning (see [5]). As in safety cases, Carnap had to deal with the incorporation
of observation in science with the more general forms of reasoning that any mathe-
matician, scientist, or logician would recognize. He divided his logical language into
two parts: one that has to do with observations, the other that has to do with general,
universal reasoning, e.g., about universal laws. The observational language was of
limited expressive power; it included observations as ground atomic formulae (e.g.,
‘this glass is blue’, ‘the output of this program run in this test harness, when the input
is a, is b’, etc); the observational logic had the usual connectives, but limited infer-
ential power (e.g., universal generalization is not allowed), only so-called empirical
generalizations (e.g., ‘all the swans we have observed are white’). The so-called
Theoretical Level of discourse, on the other hand, was more like FOL and allowed
universal generalization. This latter logic incorporated the former. Thus, reasoning
about evidence (observations) and inferential reasoning are integrated into a single,
coherent whole. When we refer below to a logic of safety cases, we have in mind a
logic analogous to Carnap’s. It incorporates elements for evidential reasoning as well
as general (inferential) reasoning. It seems to us that making evidential reasoning
not logical just leaves us with the non-trivial problem of integrating the two parts.
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Fig. 6 s-inference figure
schema

Fig. 7 s-derivation

Following from these preliminary observations, similarly to Gentzen’s aim of
incorporating mathematical proofs into a logical calculus, Gentzen’s NK , what we
have in mind is also the integration of safety arguments into a logical calculus, which
we refer to as SK . This integration provides the sought after definition of a safety
argument. In working towards this end goal, we make precise first the concept of a
s-derivation. Reminiscent of Gentzen’s derivations, s-derivations consist of a number
of s-formulæ which are combined to form s-inference figures. For each s-derivation,
each s-formula is a lower s-formula of at most one s-inference figure; each s-formula
(with the exception of exactly one, the s-endformula) is an upper s-formula of at
least one s-inference figure; and the system of s-inference figures is non-circular.
We consider a s-inference figure to be an instance of the s-inference figure schema
in Fig. 6.5 In the s-inference figure schema in Fig. 6, A1, . . . , An, B, R are variables
for s-formulæ; the part corresponding to 〈R〉 is optional. We will have to consider
a particular s-inference figure schemata in the definition of our sought after SK ,
and these we will have to state precisely, but we are not in a position to do so yet.
Following Gentzen’s terminology, for a s-inference figure schema such as the one
given above, we call the instances of A1, . . . , An upper s-formulæ and the instances
of B lower s-formulæ. We call the instances of R s-rebuttals. We will return to
them shortly for they occupy a special place in s-derivations. We call the s-formulæ
participating in a s-derivation s-formulæ and the s-inference figures participating in
a s-derivation s-inference figures. Moreover, we call the s-formulæ of a s-derivation
that are not lower formulæ of a s-inference figure initial s-formulæ. The initial s-
formulæ of a s-derivation can be discharged (in the sense given by the introduction
of appropriate conditionals, modalities, or quantifiers) or not. We call those initial
assumptions of a s-derivation that are not discharged s-premisses. At times, we need
to refer to s-derivations but not their structure. For this purpose, we use symbol |∼SK .
We understand this symbol as a relation between sets of s-formulæ and s-formulæ.
The source of |∼SK is the set of undischarged s-formulæ in the s-derivation, the target
of |∼SK is the s-endformula of the s-derivation. We label |∼SK with the s-rebuttals of
the s-inference figures in the s-derivation.

5Technically, the s-inference figure schema in Fig. 6 is a s-inference figure schemata. We obtain a
s-inference figure schema for each value of n.
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Fig. 8 Goal decomposition

Fig. 9 s-inference Figure

We illustrate what a s-derivation may look like in Fig. 7.6 In this s-derivation,
{r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} is its set of s-premisses, and r ⊃ ♦ d
is its s-endformula. With the exception of the s-inference figure in Fig. 9, to which
we will return, the s-inference figures used in this s-derivation are obvious; they are
inference figures of Temporal Logic (see [24]). We indicate the s-derivation in Fig. 7
as {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d .
We can understand the s-derivation in Fig. 7 in light of the goal decomposition in

Fig. 8. In this goal decomposition, we broke the top goal r ⊃ ♦ d into goals r ∧ g ⊃
♦ d, r ⊃ (r W d), and (s U g) ∧ (g U s). We borrowed r ⊃ ♦ d, r ∧ g ⊃ ♦ d, and
r ⊃ (r W d) from the goal decomposition example in Sect. 2 and they have the same
intuitive meaning. With (s U g) ∧ (g U s) we capture the idea that ‘the go signal
turns from green (go) to red (stop) and from red (stop) to green (go)’. With ¬v we
capture the idea that ‘the go signal is not visible to the operator of the train’. Relative
to the goal decomposition in Fig. 8, the s-derivation in Fig. 7 identifies clearly and
definitely a structured argument substantiating that the top goal follows from the
(sub)goals it has been broken into.

The definition of SK concludes with the definition of the language of s-formulæ,
and with the formulation of the permitted s-inference figures via s-inference figure
schemata.We envision the language of s-formulæ as theSK counterpart of the claims
involved in safety arguments, safety claims for short, and the permitted s-inference
figures as the SK counterpart of the inference licenses used in the formulation of
safety arguments. Their precise formulation is, however, an open research question
and part of what makes the definition of a safety argument, via its integration into an
exactly defined calculus, a working definition.

6In the s-derivation in Fig. 7, we assume that the language of Temporal Logic is part of the language
of s-formulæ and that the inference figures of Temporal Logic are permissible (see [24]).
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3.3 Some Comments on the Logic of Safety Arguments

A significant and non-trivial part of our SK needs to be completed. We need to:
(i) provide a formal definition of s-formulæ; (ii) formulate the s-inference figure
schemata for the permissible s-inference figures of SK ; and, more importantly, (iii)
integrate a basic stock of examples into SK . However, even at this early stage, the
definition of a s-derivation allows us to discuss technically certain important issues
regarding safety reasoning.

3.3.1 Regarding s-Formulæ

The following observation made by Gentzen in [14] provides some context for dis-
cussion: ‘To the concept of “object”, “function”, “predicate”, “theorem”, “axiom”,
“proof”, “inference”, etc., in logic and mathematics there correspond, in the for-
malization of these disciplines, certain symbols or combinations of symbols’. What
Gentzen implicitly assumes is the translation of some ordinary language of mathe-
matics into the formal languageFOL.Arguing about the faithfulness of the translation
of statements in the ordinary language of mathematics into that of FOL is a moot
point, first, because, to a large extent, the language of FOL has been designed having
in mind the ordinary language of mathematics, and second, because statements in
mathematics are rigorously precise and unambiguous.After all, no onewill doubt that
the ordinary statement of mathematics ‘there is no natural number whose successor
is zero’ is expressed by the formula ¬∃n(S(n) = 0).

More generally, a faithful translation of an ordinary language, such as English,
into a formal language, such as that of FOL, brings with it a number of non-trivial
issues to address. In particular: Is there then a formal language in which to provide a
precise definition of s-formulæ that caters for a faithful translation of safety claims
formulated, say, in plain English? The answer to this question is, however, non-trivial.

It is not at all clear how to faithfully translate logical connectives in an ordinary
language such as English into a formal language. For instance, we have chosen to
translate the English claim ‘if the train is ready to depart, then, it eventually departs’
into the formula r ⊃ ♦ d. The problemwith this is that, ifwe assume that the inference
figure schemata ruling the introduction and elimination of ⊃ in the SK are similar
to those in Gentzen’s NK for ⊃, i.e., if ⊃ is like the material conditional, then, we
can establish r ⊃ ♦ d from r ∨ b ⊃ ♦ d. But there is something counter-intuitive in
this situation; in particular, if we understand the formula r ∨ b ⊃ ♦ d as a faithful
translation of the English claim ‘if the train is ready to depart or it is broken, then,
it eventually departs’; for, clearly, we would not want a broken train to depart. The
problems of conditional statements in ordinary English and material implication
discussed in [7] offer some further food for thought on this issue.

To further complicate matters, a quick perusal of some safety claims reveals a
heavy use of vaguely defined modal logical connectives, e.g., ‘acceptably’, ‘suffi-
ciently’, ‘adequately’, in combination with quantifiers of a restricted nature, e.g.,
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‘All identified hazards’. It is well known in classical logical studies that these are
not easily dealt with, and adding modal logical connectives intertwined with logical
quantifiers to the mix does not simplify matters.

In addition to the above, there are also issues related to reasoning about actions,
and about qualifiers on actions, that pose some challenges in their own right.

At this point, some may wonder: Why should we even bother in developing
and proposing a formal language of s-formulæ if it is so devilishly complicated?
First, because formal languages are unambiguous, easier to provide a clear semantics
for, and, ultimately, more amenable to analyses and tool support. Second, because
the unrestricted use of ordinary languages, e.g., English, is known to be prone to
paradoxes, e.g., ‘This sentence has five words’, or the heinous ‘This sentence is
false’.

We are of the opinion that a version of a paradox of language is already present in
safety reasoning. To explain this observation, we draw an analogy between reasoning
about safety, and reasoning about correctness in Hoare’s Calculus (HK ; see [20]).

Hoare’s HK is a formalism enabling us to reason deductively about programs.
Its lore involves claims such as: ‘The program S is correct w.r.t. its precondition P
and its postcondition Q’. But we note here an important point: There is no formula
in the formal language of Hoare’sHK capturing such claims about correctness. The
formal language of Hoare’s HK consists of triples {P} S {Q}. These triples are
the formal counterpart of claims of the form: ‘If (the precondition) P is true before
the initiation of (the program) S, then, (the postcondition) Q will be true upon the
completion of S’. Claims such as ‘The program S is correct w.r.t its precondition
P and its postcondition Q’ are formulated outside of Hoare’s HK and refer, from
outside the calculus, to the existence of a derivation, inside the calculus, which has
the triple {P} S {Q} as an endformula. In other words, ‘The program S is correct w.r.t
its precondition P and its postcondition Q’ is defined to be ‘There is, in the HK ,
a derivation which has the triple {P} S {Q} as an endformula’. Figure10 illustrates
what a derivation in Hoare’s HK looks like. (In this figure, single lines correspond
to inference steps of Hoare’s HK , and double lines to the use of lemmas in the
calculus, i.e., combinations of inference steps).

The point is that the claim ‘The program x := x + y;y := x − y;x := x − y is
correct w.r.t. its preconditionx = X ∧ y = Y and its postconditionx = Y ∧ y = X ’
refers to the derivation in Fig. 10. But the claim of correctness does not belong to the
language of Hoare’sHK . Including a formula that can refer to correctness inside of
Hoare’sHK yields a calculus which can refer to its own notion of derivation, giving
rise to all sorts of logical problems, not to mention fallacies.

Our observation is that, though programs and systems are distinct entities, and
so is reasoning about correctness and safety, we consider that in the same way that
the correctness of a program in Hoare’s HK refers to the existence of a derivation
in the calculus, a statement about the safety of a system, whether acceptably, suf-
ficiently, adequately, etc., refers to the existence of a s-derivation and, as such, it
is not part of the s-derivation itself. In other words, a goal such as ‘The system is
acceptably/sufficiently/adequately safe’ can never be the top-level goal of any safety
argument. Instead, this top-level goal should correspond to a property akin to precon-
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Fig. 10 A derivation in Hoare’s HK

ditions/postconditions in Hoare’s HK . After all, fallacious reasoning begins with
the use of formulæ that are, from the point of view of the candidate calculus, already
logically problematic.

The moral of the story is that we should exercise great care in the formulation
of safety claims, and what they are about, to avoid the kind of problems mentioned
above, or others of a similarly problematic logical nature. As a first step, we may
choose to restrict the formulation of safety claims to fragments of ordinary languages,
such as English, that are expressive enough to capture the safety claims that we need,
but that maintain a reasonable degree of logical tractability. This would provide us
with a basis on which to engineer a formal language for s-formulæ, and a corre-
sponding formal semantics, which caters for a faithful translation of safety claims,
catering for a thorough and systematic understanding of the sort of claims involved
in safety reasoning and how to reason about them.

3.3.2 Some Thoughts on Toulmin

The definition of a s-inference figure given in Fig. 6 provides a necessary level of
technicality for putting in context and discussing the appeal to Toulmin’s argument
patterns (see [34]) in the formulation of a safety argument, an important topic at the
heart of notations for safety arguments.

Let us recall some of the basics of Toulmin’s notion of an argument pattern. In
[34], Toulmin asks himself: How should we lay an argument out, if we want to
show the sources of its validity? In answering this question, Toulmin identifies the
following elements: claim (C), data (D), warrant (W), qualifier (Q), rebuttal (R), and
backing (B). Resorting to this basic stock of concepts, Toulmin lays out his famous
notion of an argument pattern as in Fig. 11.

Avery simple explanationof these concepts is offered in [19]. There, it is explained
that Toulmin articulates his argument patterns in the context of justifying an assertion
in response to a challenge. The challenge starts with the assertion of a claim (C), of
which we may be asked: What have we got to go on? To which we would offer the
data (D). Upon offering the data (D), we may be asked: How do you get there? (How
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Fig. 11 Toulmin’s argument
pattern

do we get from D to C?) To which we would present the warrant (W). The warrant
is, thus, what allows us to infer the claim from the data. Warrants may be qualified
by modalities (Q), e.g., ‘probably’, ‘generally’, ‘necessarily, or ‘presumably’. If the
warrant is defeasible, i.e., open to revision or annulment, then, we would state the
conditions of rebuttal (R). Lastly, we may also be asked for a justification of the
warrant itself, to which we would present the backing (B).

Setting aside Toulmin’s notion of a backing (B), it is not difficult to see that,
though with some restrictions, our formulation of a s-inference figure schema in
Fig. 6 borrows elements from Toulmin’s argument patterns and articulates them in
Gentzen’s terminology. More precisely, incorporating the modalities (Q) into the
logical connectives of the language of s-formulæ, the set of Ai s, B, and R in Fig. 6
can be viewed as standing in analogy with Toulmin’s triple of data (D), claim (C),
and rebuttal (R) in the obvious way, i.e., D relates to the conjunction of the Ai s, C
relates to B, and R relates to R (this is the reason why we named the instances of R
rebuttals). Toulmin’s notion of a warrant can be viewed as standing in analogy with
the s-inference figure schema in Fig. 6.

The restrictions that we referred to above are linguistic and logical constraints on
the kind of rebuttals allowed. According to Toulmin, rebuttals indicate circumstances
in which the general authority of the warrant would have to be set aside (see [34,
p. 94]). There are, at least, two possible ways in which Toulmin’s view of a rebuttal
can be understood. First, (i) as indicating a set of circumstances in which the claim
licensed by the warrant would have to be set aside. Second, (ii) as indicating a
set of circumstances in which the warrant itself would have to be set aside. The
analogy between a warrant and a s-inference figure schema allows for the following
clarification: (i) Implies that an instance of the s-inference schema cannot be used
in a particular s-derivation; (ii) Implies that the s-inference schema cannot be part
of the s-inference figure schemata defining the SK . When understood in this sense,
(i) speaks to the defeasible aspect of s-derivations, whereas (ii) results in a denial
of the proposed calculus (intuitionistic reasoning, arising as a result of rejecting the
principle of the excluded middle, see [8]; or the various systems of Deontic logic,
arising in view of the so-called paradoxes of obligations and contrary-to-duties, see
[26], are examples of the second kind of rebuttals). In defining rebuttals as s-formulæ,
and under the proviso that the language for s-formulæ cannot refer to properties of
the SK , we preempt the formulation of rebuttals of the second kind. Including
rebuttals of the second kind makes room for paradoxes of language, as they can refer
to s-derivations. Paradoxes of language are something that we clearly wish to steer
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away from. We consider that this restriction presents a firmer basis on which to start
building the SK .7

The relation between Toulmin’s argument patterns and s-inference figures places
the work of Toulmin in the context of safety reasoning: Toulmin’s argument patterns
present a framework in which to formulate what s-inference figures, or s-figure
schemata, may look like. However, Toulmin’s argument patterns are not s-inference
figures, nor s-figure schemata. This means that Toulmin’s argument patterns do not
define, at least not obviously, a calculus for safety reasoning, our sought after SK .
Such a calculus, which we view as a fundamental tool for analysing the logical well-
formedness of safety arguments, is only defined by the provision and justification of
a sensible set of s-inference figures via a set of s-inference figure schemata. In other
words, the appeal to Toumin’s argument patterns in the context of safety reasoning
is rather limited; it serves as a way of showing the sources of validity of a safety
argument, but it does not propose a way of assessing the validity of said sources.

3.3.3 Regarding s-Derivations

Two immediate questions may be asked about the SK : (i) Are s-derivations suitable
as the formal counterpart of safety arguments? (ii) Are s-derivations suitable for
supporting the logical analyses needed to establish the well-formedness and the
soundness of the inference licenses used in safety arguments?

Our answer to question (i) is, at this point, an expression of desire. Evidently, we
do consider that s-derivations present a suitable framework for incorporating safety
arguments. This view is partly justified by the intent of notations such as the GSN or
the CAE.Whether this view is fully justified is debatable. So far, we have been unable
to produce an example of the incorporation of a safety argument as a s-derivation.
This is, partly, due to our own limitations, to the lack of a language for s-formulæ,
and to the logical rigour that we intend to put in place in the integration of a safety
argument into a s-derivation (something that we hope to improve on); but this is also
due to the logical havoc reigning over the handful of examples of safety arguments
that we have inspected in detail (something that we expect to shed some light on).

Our answer to question (ii) is, even at this point, more satisfactory. In particular,
the concept of an s-derivation enables us to discuss some basic notion of well-
formedness. Let π1 and π2 be two s-derivations; if the s-premisses of π2 are a subset
of the s-premisses of π1 and the s-endformula of π2 belongs to the set of rebuttals of
the s-inference figures in π1, then, we call π2 a rebutting derivation for π1. We call a
s-derivation internally coherent in the absence of a rebutting s-derivation for it.8,9 The

7If we really wish to revise a logic supporting safety reasoning by revising its inference rules, then
this is a logic engineering job and we have not thought about what this may entail.
8We are calling a s-derivation internally coherent in the absence of a rebutting s-derivation for it,
not in the presence of a proof that such a rebutting s-derivation does not exist; the latter is far more
difficult to establish.
9Internally coherent s-derivations also make precise the role of rebuttals. They are not negated
premisses, nor premisses of any kind; they are a source of defeasibility. To consider rebuttals as
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second footnote is in response to the comment that rebuttals are negated assumptions.
Obviously, s-derivations that are internally incoherent are logically ill-formed.

The concept of internal coherence makes precise in which sense a s-derivation
is defeasible, i.e., open to revision or annulment. To illustrate this point, let π be
the s-derivation in Fig. 7. As it stands, π is internally coherent. It remains so even
if we extend its set of s-premisses. However, if we are, from the extended set of
s-premisses, able to construct a s-derivation with ¬v as its s-endformula, then, π is
no longer internally coherent. Losing this status is a direct result of the s-inference
figure in Fig. 9. Intuitively, this s-inference figure may be read as: If ♦ g has been
established by means of s-premiss r , we have r ⊃ ♦ g, now without the s-premiss
r . The rebuttal ¬v states the conditions under which this inference license is locally
inapplicable, i.e., in those situations in which there is also a derivation of ¬v, i.e., in
those situations in which it is possible to establish that ‘the go signal is not visible’.
The s-inference figure in Fig. 9 is ‘locally inapplicable’ for there are situations in
which its use is perfectly permissible (e.g., in Fig. 7).

To be noted, the discovery of a rebutting s-derivation π1 for a s-derivation π calls
for a revision of π as a whole, and possibly establishes its annulment; as a ‘whole’,
because s-inference figures in s-derivations are not, in general, localized to parts of
the s-derivation; and, ‘possibly’, and not ‘necessarily’, because even in the presence
of a rebutting s-derivation, we may still be able to ‘repair’ the original s-derivation,
e.g., by resorting to s-inference figures not affected by the rebutting s-derivation.

The discussion on internal coherence is important for two main reasons. First,
because it sets apart safety reasoning from mathematical reasoning; the former is
defeasible while the latter is not. Second, because it has a bearing on compositional
safety reasoning. Let us explain this with an example. Suppose that the s-derivation
(i) {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d in Fig. 7 results
from composing two s-derivations, (ii) {(s U g) ∧ (g U s)} |∼{¬v}

SK r ⊃ ♦ g, and (iii)
{r ∧ g ⊃ ♦ d, r ⊃ ♦ g, r ⊃ (r W d)} |∼SK r ⊃ ♦ d , in the obvious way, i.e., by glu-
ing (ii) and (iii) together at r ⊃ ♦ g. This composition is reminiscent of Gentzen’s
Cut Rule.10 In this case, two internally coherent s-derivations, i.e., (ii) and (iii), are
composed into an internally coherent s-derivation, i.e., (i). But this is not the gen-
eral case, as there is no guarantee that we will not be able to obtain the rebuttal of
one of the s-inference figures in one of the composing s-derivations from the joint

premisses has some drawbacks. Suppose thatπ is an s-derivationwith rebuttalR. Letπ be internally
coherent, i.e., we do not have an s-derivation π ′ of R from the premisses of π . Adding R to the
premisses of π implies that we need to discharge it in some conditional; otherwise, we are changing
the set of premisses from which we argue. Not discharging an added rebuttal has the unwanted
consequence that it makes any s-derivation incoherent in the presence of the rule of reflexivity, i.e.,
we can always conclude what is in the premisses. Adding the ¬R also has unwanted effects. If it so
happens that from the premisses of π we can prove R, but we have not done so yet, e.g., because we
have not found such a s-derivation, adding ¬R to the premiss set of π means that we now have to
deal with a premiss set that involves a glaring contradiction, i.e., R and ¬R. The moral of the story
is: rebuttals occupy a special place in s-derivations as sources of defeasibility; considering them as
part of the premisses of a s-derivation needs to be done with extreme care.
10Gentzen’s Cut Rule: If {Ai } �NK B and {B j } ∪ {B} �NK C, then, {Ai } ∪ {B j } �NK C (see [14]).
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set of premisses of the composed s-derivations. In other words, the composition of
internally coherent s-derivations to form a larger s-derivation may result in the larger
s-derivation being internally incoherent; and in order to establish whether the larger
s-derivation is internally coherent or not, we may have to revise this s-derivation as
a whole. In any case, compositionality is lost.

The preceding discussion on internal coherence also allows us to discuss tech-
nically the use of a form of eliminative induction in safety reasoning. As we men-
tioned in Sect. 2, eliminative induction was first developed by Bacon, and taken up
by philosophers such asMill, Keynes, Popper, et al. A reference to eliminative induc-
tion in safety reasoning is [15]. Briefly, eliminative induction works like this: Let us
suppose that we conclude a property P and that, at the same time, we identify that
this may not be the case in the presence of one or more properties Pi . The set of
Pi s associates some uncertainty to P. If none of the Pi s can be concluded, then, the
uncertainty associated with P is reduced. In the context of s-derivations and internal
coherence, eliminative induction takes the following form: For a s-derivation π , the
property P corresponds to the s-endformula of π . Each of the Pi s corresponds to a
rebuttal of π . Let us now suppose that π is internally coherent, i.e., that we have not
found a rebutting s-derivation for it. Internal coherence associates some uncertainty
to π , i.e., that expressed by its rebuttals. Since internal coherence alone does not
establish that there are no rebutting s-derivations for π , simply that we have not
found them, and since establishing that there are no rebutting s-derivations for π is
non-trivial, instead, as a form of eliminative induction, we can attempt to construct
s-derivations whose s-enformulæ are the negations of the rebuttals of π . The latter
s-derivations enable us to reduce the uncertainty associated with π , and thus with P.
This form of eliminative induction involves the presentation of a set of s-derivations.
In this set, one s-derivation is designated as a main s-derivation. The assumption is
that there is some uncertainty associated with this main s-derivation, as indicated
by its rebuttals. The remaining s-derivations in the set are intended to reduce this
uncertainty. This form of reasoning is an example of a form of probabilistic reason-
ing related to confidence, a topic that we discuss in more detail in Sect. 4.2.3. Let us
illustrate this view of eliminative induction with a simple example. As it stands, the
s-derivation {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d in Fig. 7
is internally coherent. There is, associated to this s-derivation, some uncertainty,
namely, that indicated by ¬v. Recall that this s-derivation corresponds to an argu-
ment which concludes that ‘if the train is ready, then, it eventually departs’, that one
of the s-inference figures is contingent on the go signal being visible, and that the
s-formula¬v corresponds to the property ‘the go signal is not visible’. To reduce this
uncertainty, we can focus on constructing a s-derivation having v as its s-endformula,
i.e., an argument which concludes that ‘the go signal is visible’.
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3.4 Some Final Remarks on Safety Arguments

There are some final remarks about the difference between s-derivations and GSN
diagrams that we can only elucidate at this point.

First, GSN strategies have no concept analogous to that of discharging an initial
s-formula. This limitation severely restricts most forms of conditional reasoning. Is
conditional reasoning forbidden in safety cases? How are we to reason conditionally
without suitable mechanisms for introducing and discharging conditionals?

Let us digress for a moment to the issue of an initial formula being discharged to
explain its ramifications in some detail. We begin by discussing what is the case in
Gentzen’sNK . In Gentzen’sNK , discharging an initial formula means: (i) incorpo-
rating said formula into the lower formula of some inference figure in the derivation
and (ii) eliminating said formula from the set of premisses of the derivation. Though
(ii) is not necessary, keeping initial formulæ that have been discharged as part of the
premisses of a derivation is superfluous; and this is something that we wish to avoid
(see [8]). In fact, what Gentzen is after with his NK is a derivation that is logistic,
i.e., one in which all initial formulæ in a derivation are discharged (see [14, p. 295]).
To achieve this, Gentzen proposes to convert any non-logistic derivation π1 into a
logistic derivation π2 whose endformula is an instance of A ⊃ B; in this instance
of A ⊃ B, the instance of B is the endformula of π1, and the instance of A is the
conjunction of the formulæ in the set of premisses of π1. In a more general setting,
Gentzen’s proposal requires the use of the Compactness and Deduction Theorems
for the logical calculus in which derivations are formulated (see [8]). It is not clear
to us whether or not such (meta) theorems hold for safety reasoning, i.e., whether
they hold in our sought after SK (and we are inclined to believe that they do not). In
other words, it seems that in safety reasoning we are required to be able to deal with
genuine premisses, i.e., premisses that cannot be discharged. To have at hand suitable
mechanisms for dealing with such premisses is of utmost importance. In addition, it
is well known that different discharge policies give rise to different conditionals. For
example, in the s-inference figure in Fig. 7 we allowed for the s-premiss r to be dis-
charged vacuously (as is usually done in the introduction of thematerial conditional).
If we forbid this, then, we obtain a form of a relevant conditional. Alternatively, if we
allow for r to be discharged only once, then, we obtain a form of linear conditional
(see [30]). It is clear to us that safety reasoning involves different kinds of condi-
tionals. Discussing what discharge policies are allowed in safety reasoning may shed
some light on which conditional we are referring to. How are we supposed to do
this without proper mechanisms for tracking which initial s-formulæ correspond to
which conditional? These issues are not at all properly dealt with in GSN diagrams.

Second, GSN diagrams have no concept analogous to rebuttals. In this sense, they
are more limiting than goal decomposition structures in KAOS, which incorporate
the notion of an obstacle to a goal (see [23]).Without rebuttals, the defeasible aspects
of safety arguments are left implicit or are simply ignored.

In summary, the discussion that we have presented in this section is not a matter
of logical pedantry. Instead, our discussion pinpoints some important issues to be



Towards Making Safety Case Arguments Explicit … 247

addressed if safety reasoning is meant to be grounded on logical principles, and it
exposes the leading causes of fallacies and the challenges in safety reasoning by
bringing them into the foreground with the use of appropriate logical machinery.

4 Evidence in Safety Reasoning

As we mentioned in Sect. 3, safety cases are a cornerstone of safety reasoning. In
addition to structured arguments, a defining characteristic of safety cases is the use
of evidence as a grounding mechanism for safety arguments. In this section, we pay
close attention to the concept of evidence, to how it can be incorporated into our
program for formalizing safety reasoning in the form of a logical calculus, and to
some of the challenges that it brings with it.

4.1 Evidence in Safety Cases

To provide some context for discussion, let us recall some basic facts about the role
of initial formulæ in Gentzen’s NK . Gentzen mentions in [14, p. 292] that a distin-
guishing feature of hisNK is that derivations start from what he calls assumptions,
to which logical deductions are then applied. Gentzen’s assumptions are the initial
formulæ of a derivation. As we have noted in Sect. 3.1, in Gentzen’s formulation
of the NK , it is possible for the initial formulæ of a derivation to be discharged or
not. We have called initial formulæ that are not discharged premisses. An important
characteristic of the premisses of a derivation is that they are, in a sense, given deus
ex machina. This is not the case in safety reasoning, where the safety claims from
which a safety argument is built need to be provided with a rationale which justifies
their postulation. In other words, the s-premisses in a s-derivation cannot be taken
as being given deus ex machina. This is reminiscent of the notion of justified belief
in studies in epistemology or scientific explanation. It is at this point that evidence
makes an appearance.

The definition of a s-derivation given in Sect. 3.2 enables us to discuss the use of
evidence in safety cases in technical terms. However, in order to do so, we need, first
and foremost, to be (i) precise about what we mean by evidence and to be (ii) able
to refer to evidence in the language of s-formulæ.

As to (i), the uses of ‘evidence’ that we have observed in safety arguments, in
particular in those referred to as solutions in GSN diagrams, refer to results obtained
via testing, simulation, model analyses, or other observation-based mechanisms,
including past experiences. These uses regard ‘evidence’ as some kind of data. This
view of evidence is problematic for data does not, and cannot, in and of itself, be
used as a basis for constructing a safety argument. To explain this issue, we take an
example presented in [38, p. 195]. In a court of law, a bloodied knife, i.e., a piece
of data, can be used both by the prosecution or the defense in their respective cases.
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The use of the bloodied knife in court, i.e., the use of this piece of data in court,
may involve claims such as: ‘the bloodied knife was found at the crime scene’, ‘the
bloodied knife was used by the accused to stab the victim’, ‘the bloodied knife was
planted at the crime scene’, etc. The bloodied knife is a source of many such claims
(some of which may be incompatible with others). What this example shows is that,
in isolation, a piece of data is not a truth bearer, i.e., it cannot be assigned a truth
value; a truth bearer is a claim about it. In other words, data becomes evidence, in the
epistemological or scientific sense of the term, when it stands in a precisely defined
testing relationship with some claims postulated about it. To avoid any confusion,
we will refer to a piece of data as evidence, and to a claim about a piece of data as
an evidential claim.

Let us now turn our attention to (ii). Immediately from the distinction between
evidence and evidential claim, we would need evidence terms and evidence formulæ
in the language of s-formulæ. Evidence terms would include, at least, constants for
concrete pieces of evidence, and variables for arbitrary pieces of evidence. Evidence
formulæ would include, at least, quantifiers binding variables in evidence terms.
An evidence formula is grounded if it has no free variables (where ‘free variable’
has the usual meaning). An evidence formula is said to be ground atomic if it has
no quantifiers and if its testing relationship with its evidence term is self-evident
(intersubjectively agreed).

Evidence terms and evidence formulæ can be understood by drawing an analogy
between terms and formulæ in the language of FOL. More precisely, in the language
of FOL, terms denote objects; formulæ are the formal counterpart of claims about
objects. For instance, in their standard interpretation, the terms S(n), 0, denote the
successor of a natural number, and the natural number zero, respectively. In these
terms, the variable n is used to indicate an arbitrary natural number, and the constant
0 to indicate the number zero. In turn, the formula ¬∃n(S(n) = 0) is the formal
counterpart of ‘there is no natural number whose successor is zero’. In this formula,
the existential quantifier binds the variable n. If we understand evidence terms and
evidence formulæ in this way, the former serve as a way to denote pieces of evidence,
while the latter are the formal counterpart of claims about evidence.

We are now in a position to make precise in which sense a safety argument is to be
taken as being grounded on evidence.We do this in relation to s-derivations. Namely,
we define a s-derivation as grounded on evidence if its s-premisses, i.e., its undis-
charged initial s-formulæ, are ground atomic evidence formulæ. In consequence,
a safety argument is grounded on evidence if its incorporation into a s-derivation
results in the latter being grounded on evidence.

4.2 Some Comments on Evidence in Safety Arguments

Aswith safety arguments, a significant part of the definitions of an evidence term and
an evidential s-formula needs to be completed and fully worked out. Nevertheless,
evidence terms and evidential s-formulæ allow us to discuss technically some aspects
of the use of evidence in safety cases.
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4.2.1 Regarding Ground Atomic Evidence Formulæ

Wehave defined a safety argument as being grounded on evidence if its incorporation
into a s-derivation results in the latter beinggroundedon evidence. Thefirst part of this
definition corresponds to our program of making precise what is a safety argument
via its incorporation into a logical calculus (our sought after SK). The second part
of this definition corresponds to our view of the use of evidence in safety cases and
its logical characterization. The idea is that a ground atomic evidence formula plays
a role similar to an axiom of a classical logical theory, i.e., a formula that is regarded
as accepted or self-evident. This is precisely what a ground atomic evidence formula
aims to capture. More elaborate evidence formulæ, e.g., those that are not ground
atomic, must perforce involve some reasoning.

To illustrate the points above, let us suppose that the go signal example in Sects. 2
and 3, indicating whether the train can depart or not, consists, among other things, of
a piece of software toggling the light from red to green, and from green to red. Let us
suppose further that this piece of software is proven correct in Hoare’sHK , i.e., that
there is, for this piece of software, a derivation π akin to that in Fig. 10. Technically
speaking, π is not a proof that the piece of software itself is correct, but rather a proof
of the correctness of a (syntactical) model of the piece of software in Hoare’s HK
in relation to some specification. But the piece of software itself and its (syntactical)
model in Hoare’sHK are different things. Now, let us suppose that we use the proof
of correctness of the (syntactical) model of the piece of software in Hoare’sHK to
argue that the piece of software itself is dependable (in a more general sense than
‘correct’). In this context, the former is a piece of evidence and the latter is an evidence
claim. In the language of s-formulæ, we would then have an evidence term to denote
the piece of evidence, i.e., π , and an evidence formula as the formal counterpart of
the evidence claim, i.e., that the piece of software itself is dependable, respectively.
A question that we could ask ourselves at this point is: Would this evidence formula
meet the criterion of being ground atomic? The answer is no. The problem is that
the testing relationship between the evidence term and the evidence formula is not
self-evident, i.e., it already involves some reasoning, e.g., about the adequacy of the
proof of correctness of the (syntactical) model of the piece of software in relation to
a claim about the dependability of the piece of software itself. For this reason, the
evidence formula cannot be used as a premiss in a s-derivation. What can be used as
a ground atomic evidence formula is the formal counterpart of a claim along the lines
of ‘the (syntactical) model of the piece of software meets its specification’. It is the
role of a safety argument to take us from this basic claim about evidence (possibly
in conjunction with other basic claims about evidence), to the claim that the piece of
software itself is dependable.

The preceding discussion shows that the burden is on finding ground atomic evi-
dence formulæ, i.e., evidence terms and evidence formulæwhose testing relationship
is self-evident. These ground atomic evidence formulæ serve as the basis on which
we would construct the s-derivation that would take us to a s-endformula. The dan-
ger is that, without a proper formulation of a ground atomic evidence formula, or
set thereof, a significant amount of effort needs to be devoted to eliciting in which
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sense a piece of evidence relates to an evidence claim, something that is prone to
error. An open question is whether the testing relationship between evidence terms
and evidence formulæ is part of the SK or is external to it.

4.2.2 Regarding Multiple Atomically Grounded Evidence Formulæ

The discussion about ground atomic evidence formulæ raised to the surface the use
of multiple pieces of evidence in relation to a single evidence claim.

To illustrate this phenomenon, let us take up again the go signal example in
Sects. 2 and 3. Namely, let us suppose that the go signal, indicating whether the train
can depart or not, consists, among other things, of a piece of software toggling the
light from red to green, and from green to red. In addition, let us suppose that this
piece of software is proven correct in Hoare’s HK , i.e., that there is, for this piece
of software, a derivation π akin to that in Fig. 10. Let us suppose further that we
use π to argue that the piece of software itself is dependable (in a more general
sense than ‘correct’). Repeating ourselves, in this context, the former is a piece of
evidence and the latter is an evidence claim; which would cause us to have, in the
language of s-formulæ, an evidence term to denote the piece of evidence, and an
evidence formula as the formal counterpart of the evidence claim, respectively. In
Sect. 4.2.1 we discussed that this evidence formula is not ground atomic for it already
involves some reasoning, e.g., about the adequacy of π in relation to a claim about
the dependability of the piece of software itself. Among other things, the adequacy
of π in relation to a claim about dependability hinges on how faithful the model of
the piece of software in Hoare’s HK is to the piece of software itself, something
which depends, in turn, on some assumptions on the piece of software itself, e.g., that
arithmetic computations do not result in an overflow. The use of input/output testing
data on the piece of software itself presents an interesting use of evidence to validate
this kind of assumption. Moreover, this leads in a more or less natural way to the use
of different input/output testing data, e.g., obtained from different testing methods,
to validate the same assumption, e.g., because the different testing methods cover
different aspects of the assumption. In technical terms, we are in a scenario in which a
s-formula, i.e., the formal counterpart of one of the assumptions, is the s-endformula
of various s-derivations, each of which has as its premisses ground atomic evidence
formulæ whose evidence terms denote the different input/output testing data. To put
all these different s-derivations together in one single s-derivation, we need to relax
the definition of a s-derivation to allow for the upper s-formula of a s-inference figure
to be the lower s-formula ofmore than one s-inference figure. Such a relaxation has no
analogy in Gentzen-like derivations, for in traditional logical calculi, one derivation
of an endformula is as good as any other. However, the situation is different in safety
arguments due to the confidence value that we tend to associate with them. We have
here an example of what has sometimes been referred to as a multi-legged argument
(see [2]). The idea is that each leg is logically sufficient, but the legs taken together
provide greater confidence in the logical result. We discuss this in Sect. 4.2.3, after
we introduce some basics on confidence measures.
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4.2.3 Evidence and Confidence

As previously mentioned, there is an inherent uncertainty associated with safety
arguments. To begin with, the use of data in evidential reasoning naturally involves
uncertainty. There is uncertainty in gathering data, in the processes of observation
andmeasurement fromwhichwe obtain the data, in how the data is used, in the claims
that we formulate about data, etc. For example, we often use some form of inductive
reasoning to assert a universal conclusion from a finite number of observations,
e.g., in testing of programs, and this inherently involves some lack of certainty in
the universal conclusion, e.g., whether the test cases are sufficient to justify the
conclusion. Second, multi-legged arguments are often used to reduce the uncertainty
(i.e., increase confidence) in an argument, and this clearly means that we are not
entirely sure of the conclusion of some arguments, no matter how stringent we might
have been in developing the argument. Thirdly, the use of eliminative induction
involves uncertainty of various kinds. For example, we cannot be certain that all the
possibilities for issues to be examined have been discovered. We may also not be
able to positively eliminate all possible cases, leaving some open as the risk involved
is deemed too low to worry about. Modelling this uncertainty is key to evaluating
the confidence we place in the safety argument, and in the claim that it establishes.
In the previous section, we focused on rebuttals as a source of uncertainty. In this
section, we focus on evidence.

Thekindof uncertainty associatedwith evidence thatwehave inmindgoes beyond
uncertainty associated with statistical values (e.g., test cases returned the expected
result 8 out of 10 times). It also includes the uncertainty associated with the way
in which the evidence is obtained (e.g., the test cases are devised properly, they are
executed in the right environment, the results are repeatable, etc). The latter kind
of uncertainty associated with evidence is typically systematized by using accep-
tance criteria for the inclusion of certain data as evidence. The various confirmation
measures for work products proposed in ISO 26262 provide an example of such
acceptance criteria (see [21]).11 In the cases where we have a pass/fail acceptance
criterion, things are relatively simple, i.e., the data item either gets included in the
safety argument, or not, i.e., the data is accepted as evidence or not. However, if there
is a degree of acceptability, and a certain threshold that needs to be met in order for
the data to be acceptable as evidence, we would like to have acceptability values at
handwhen evaluating the confidence wemay place in the safety argument. For exam-
ple, consider the following confirmation measure found in ISO 26262: ‘The work
products referenced in the safety case are available and sufficiently complete’ (see
[21, pt. 2, p. 21]). Checking whether the work products are available is not difficult,
but measuring whether they are sufficiently complete is not trivial, as this needs to
be precisely defined, so as not to be open to arbitrary interpretation. Unfortunately,
this kind of precision is often missing.

11ISO 26262 is a safety standard developed to fit the needs of the automotive domain. The standard
applies to electrical and/or electronic (E/E) systems within road vehicles (see [21]).
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The above focuses our attention on one of the biggest issues that plague confi-
dence modelling and evaluation. There is a lack of precise definitions, benchmarks,
and evaluation techniques, all of which hinder the possibility of defining meaningful
acceptance criteria, i.e., ones to which we can assign values. This is very similar
to the situation in quality management, where vague definitions are common. Let
us draw an analogy to elaborate on this point. In quality management, some con-
cepts are associated with an abundance of definitions and quality measures. This
has meant that something as simple as the efficiency of a computer program might
mean completely different things to different stakeholders. In addition, since there
are various models and methods for product quality assurance, e.g., various ways
of measuring the efficiency of a computer program (memory usage and/or speed),
any value associated with one of the quality characteristics of a product has to be
accompanied by additional information in order for this value to be meaningful (see
[17]). The same is clearly true for confidence modelling in the safety domain. To
refer back to the example above, if an expert has stated that the safety case references
work products that are sufficiently complete, this expert needs to provide a definition
of sufficiently complete in measurable terms, and explain themeasurement procedure
used to arrive at this conclusion. If done in this way, the claim made by the expert
can be reviewed and potentially compared on a more objective basis, an otherwise
well-nigh impossible task. Of course, objective measures are difficult to come by,
and sometimes relying on subjective measures is the only practical approach. But
these subjective measures still ought to be given explicit definitions to enable results
to be reproduced. This is crucial for the validation of confidence metrics and the
measures associated with them.

In addition to providing a precise definition of the confidence metrics and the
measures associated with them, we need rules for combining and decomposing those
measures. One example of the latter in the safety-critical domain is the decomposition
of Automotive Safety Integrity Levels, ASILs, in ISO 26262 (see [21, pt. 9]). In more
detail, in ISO 26262, each safety requirement of the E/E system being considered has
an ASIL associated with it. The stringency of the ASIL depends on the criticality of
the safety requirement. Note that ISO 26262 allows for ASILs to be weakened during
the decomposition of a safety requirement. In this respect, the obvious question
that arises is: What is needed to guarantee that the weakened ASILs associated
with the decomposed safety requirements guarantee the ASIL of the original safety
requirement? The problem is that the decomposition of ASIL levels suggested in
ISO 26262 has not been explicitly justified. Instead, it rests on domain experience, as
does its validation. This is clearly a shortcoming. One way in which the combination
of different measures is addressed in the field of quality management is through
utility functions. Though the definition of such utility functions may be subjective,
when explicitly defined, they enable us to reproduce results and to interpret these
results in a repeatable and objective fashion.

In light of the above, and in order to make some progress, we need to start with
widely agreed upon definitions of confidence and what its evaluation entails. With-
out this, the production of confidence measures becomes very vague and is largely
based on the opinions and prejudices of experts. In [16], we find a survey of con-
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fidence modelling approaches suggested for use in the safety-critical domains. All
the various approaches are illustrated by means of examples. Borrowing from them,
though we are not yet ready to provide a more complete working definition for this
framework, we can outline some of its key elements. First, each evidence term has to
be associated with a confidence value (or a tuple of values), produced as a reflection
of its acceptance criteria as well as additional sources of uncertainty. The measures
for these confidence values have to be precise and to meet the representation condi-
tion of measurement theory (see [11]), namely, that the mapping from the empirical
domain of attributes to the formal domain of measures is a homomorphism (i.e., that
the assignment of measures to attributes does not violate properties of attributes,
e.g., that height does not make a baby’s height bigger than a grown person’s). In
addition, the measurement statements must be meaningful, i.e., the truth value of
the measurement statements must remain invariant under all admissible scale trans-
formations (e.g., ‘the temperature in Toronto is 20C and is twice as much as in
Buenos Aires, where it is 10C’ is not a meaningful statement as the transforma-
tion of Celsius to Fahrenheit, an admissible transformation, does not preserve the
truthfulness of the statement). The measurement scales might exhibit different prop-
erties (being classified, being ordered, having quantified differences, etc.) based on
the scale used. This would in turn depend on the property (subject to uncertainty)
being modelled. To again make a parallel with quality management, we know that
quality measures can take a number of forms (non-numeric, or quantitative, both
of which are further subdivided and correspond to different scales) depending on
the domain-specific content they model. In fact, due to the fact that the different
types of measures sometimes cannot be meaningfully combined, it is possible that
instead of a single confidence value, we end up with a tuple of confidence values.
Transforming between different types of measures is not impossible, but it might
not bring any added benefit, and might instead obscure some valuable information
(e.g., through transforming a precise value into a range one). The difference between
confidence modelling and quality management, and indeed the biggest issue, lies in
the propagation of confidence measures associated with uncertainty. One possible
way in which this issue may be addressed is through the use of Jøsang’s Subjective
Logic (see [22]). After introducing well-defined confidence measurement scales and
procedures, and utility functions for combining the confidence values as well as a
logic for propagating them, we should proceed to empirically validate our framework
and make any necessary adjustments.

An additional challenge to modelling confidence is what some people call the
three Ps: Process, Product, and People. For example, ISO 26262 states that we need
to explicitly note the qualifications and level of independence of the people tasked
with carrying out the confirmation measures (see [21, pt. 2, p. 12]). This may be
construed as a form of multi-legged argument. Each leg of the argument corresponds
to how an independent team arrives at a conclusion, the premisses of each leg would
then correspond to items of evidence that have been independently obtained, or, alter-
natively, independently vetted. Let us illustrate this by extending our train example.
Suppose that we recognized the visibility of the go sign as one of the sources of
uncertainty. In other words, for whatever reason, we cannot be totally sure whether
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the go sign is visible or not. This said, we do want to establish, with some level of
confidence, that the go sign is visible. To reach this conclusion, we approach two
experts in the field of vision inspection, who will conduct independent experiments.
Each expert starts out with the same set of experiment participants (the train opera-
tors), and the same experimental environment (riding in the train alongside the train
operators). Though both experts start with the same premisses, i.e., in the same set-
ting, the individual experiments that they conductmight be devised in a different way,
e.g., based on the different impediments to visibility that they might have thought of
and decided to check against. For example, both experts might take into account the
fact that one of the train operators uses allergy medication, reported to cause blurry
vision as a side effect, but only one of them considers the use of sunglasses, and
that their lens hue and tint density might negatively affect visibility in certain condi-
tions (pink, blue, and green lenses can make red lights indistinguishable). Having the
experts design their experiments independently guards against confirmation bias and
leads to increased confidence in the final result, i.e., that the go signal is visible. The
results, observations, claims, and the like, made by each of the experts would then
be included in their own leg of the overall safety argument. Each leg by itself may
not provide sufficient confidence, but when put together they reduce the uncertainty
and increase the confidence in the claim that ‘the go signal is visible’.

5 Discussion

In Sects. 3 and 4, we discussed some various bits and pieces of the puzzle of safety
reasoning independently from each other. In this section, we put these bits and pieces
together in an attempt to present a coherent picture.

We frame our discussion in the context of our running example: a train departing
from a station. Our goal is to establish that this is done safely, for whichwewould like
to build a safety case, i.e., a structured argument. This structured argument is our claim
of safety. The structured argument itself corresponds to a s-derivation π in the SK .
As a first step in the construction of π , we need to determine its s-endformula. This
s-endformula is the property which, if established, via a structured argument, assures
safety. (It is not directly a claim of ‘safety’, for such a claim of ‘safety’ is outside the
structured argument and the logical calculus in which we state it, and it is associated
with our conception ofwhat itmeans for the train to depart safely.) Let us suppose that
this property is ‘the train departs iff it is ready’. To this property, there corresponds,
in the language of s-formulæ, the s-formula (r ⊃ ♦ d) ∧ (¬r ⊃ ¬♦ d). Given the
structure of the s-endformula, we can think of proceedingwith the construction of the
s-derivation which establishes separately in two s-derivations, π1 and π2; π1 would
have r ⊃ ♦ d as its s-endformula; π2 would have ¬r ⊃ ¬♦ d as its s-endformula; π
would obtain by combining π1 and π2. π1 would correspond to a structured argument
establishing that ‘if the train is ready then it eventually departs’.π2 would correspond
to a structured argument establishing that ‘if the train is not ready then it does not
eventually depart’. We have shown what π1 may look like in Fig. 7. We have also
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shown that there is some uncertainty associated with π1, namely, that indicated by
¬v. The latter s-formula corresponds to the property ‘the go signal is not visible’.
As we have said, in the absence of a s-derivation which has ¬v as its s-enformula,
π1 is internally coherent. Since finding that there are no such derivations, what we
can do instead, is to construct a s-derivation π3, which has v as its s-endformula.
This s-derivation corresponds to a structured argument making a case for ‘the go
signal is visible’. In this way, π1 would be accompanied by a π3, with π3 being there
to reduce the uncertainty associated with π1. This is an application of eliminative
induction. The case with π2 would be similar. We are now in a situation in which we
have two internally coherent s-derivations, π1 and π2, which we want to combine
in a single internally coherent s-derivation, π . A priori, we could glue π1 and π2

together to form π by introducing the missing logical connective, ∧. However, to
guarantee that π is internally coherent, we would have to inspect π as a whole. This
is a necessary step to eliminate the possibility of one of the rebuttals of π1 being
established from the combination of the s-premisses of π1 in combination with those
of π2, and similarly with the rebuttals of π2.

Thus far, nothing has been said about π being grounded on evidence, i.e., the
s-premisses of π could be arbitrary s-formulæ. This is a situation that we would
wish to remedy. For this, we would have to show how the s-premisses of π that
are not ground atomic evidence s-formulæ can be obtained from ground atomic
evidence s-formulæ. This involves an extension of π . This extension is also a s-
derivation, let us call it π ′. In contrast to π , the s-premisses in π ′ are ground atomic
evidence s-formulæ. It would seem thatπ ′ contains a distinguished part that is ‘purely
evidential’, i.e., obtained through evidential reasoning (this distinction is, although
with a different flavour, also noted in [32]). It is open to debate where this ‘purely
evidential’ part ends. Perhaps Carnap’s distinction between the observable and the
theoretical in the language of science (see [5, ch. 23]) provides a foundation onwhich
to settle this debate. But this thesis needs further investigation. It should be noted
that ‘purely evidential’ reasoning needs not appear solely when there is a need to
make a s-derivation grounded on evidence. It may also appear while attempting to
remove the uncertainty associated with a s-derivation. For example, in the example
above, it is possible, perhaps even natural, for π3, i.e., the s-derivation corresponding
to a structured argument making a case for ‘the go signal is visible’, to be ‘purely
evidential’.

Emerging from our discussion in Sect. 4.2.3, we would associate with each s-
derivation a confidence value. In order to assign a confidence value (or a tuple of
values) to each evidence term, we shall start by reviewing the sources of uncertainty
associated with it, including any acceptance criteria that have been specified. If
the acceptance criteria have been properly defined, they would provide the scale of
measurement and themeasurement procedure to be used. However, for the sources of
uncertainty that have not been explicitly considered we would need to add two steps.
Firstly, based on the property beingmodelled (availability, objectivity, independence,
etc.), we would select a scale for its measurement such that we can formulate useful
and truth-preserving measurement statements. Then, we would select and describe
a measurement procedure, which is practical and reliable (it should return the same



256 V. Cassano et al.

result under the same conditions). After defining the confidence measurement scales
and procedures, and obtaining precise confidence values for the evidence terms,
we would introduce utility functions for combining them (these might vary across
products and companies), and a logic for propagating them. Lastly, the framework
shall be empirically validated and adjusted so as to make sure that the representation
condition still holds after the use of our chosen utility functions and logic. Resuming
the example above, we would associate with π , i.e., the s-derivation corresponding
to a structured argument making a case for ‘the train departs iff it is ready’, some
confidence value. This value will, in turn, be the value associated with our claim of
safety.

6 Conclusions

The present practice of safety cases, recorded in some notation, is the result of over
25 years of work. However, to date, notations for safety cases have no semantics.
This makes their understanding and assessment difficult, if not well nigh impossible,
and prone to error, with the apparent negative consequences. In this work, we have
started to travel the long road to providing a semantics for safety cases. Our work
builds on the idea that the semantics for what is a structured argument should be
based on a logical calculus. We have discussed the main ingredients of such a logical
calculus, as well as the challenges that its development represents.

The situation with notations for safety cases is not new. Immediately coming to
mind is the Unified Modelling Language (UML) (see [4]). This language underwent
a similar historical development over a similar period of time. In both cases it has
become clear that simply providing a loose syntax is not enough. Engineering dis-
ciplines rely on scientific theories and mathematics to enable precision in design
and analyses to support sound engineering decisions. This was acknowledged by the
OO community, who started to incorporate mathematical precision into its notations
some years ago, not without its hurdles and sometimes against the protests of the
notation’s inventors! The safety case community is slowly awakening to this. The
increasing complexity of safety-critical systems, and the recognition that relying on
the informal understanding and intuition of individuals, regardless of their experi-
ence, is not only unscientific, but a historic invitation to disaster, have been the major
forces pushing the need for proper engineering guarantees about safety; notations
for safety cases are no exception.

We propose to develop a proper scientific and engineering basis for safety case
understanding and construction on logical grounds. To this end, we have introduced
a working definition of a safety case via its incorporation in a precisely defined cal-
culus. In line with other researchers in the area (see [25]), we observe that assurance
case reasoning is more akin to the argument based reasoning ideas of Toulmin than to
the conventional deductive logic reasoning well known to mathematicians and soft-
ware engineers (or computer scientists). This form of reasoning is already known in
domains such as legal reasoning and scientific reasoning/explanation (from which
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we have taken some of our ideas). The logical roots of our proposal are based on
Gentzen’s program for formalizing mathematical reasoning in terms of a logical lan-
guage, inference rules to support reasoning steps, and proofs to capture the ‘informal’
notion of argument used by mathematicians. One can debate about the adequacy of
Gentzen’s formalization, but if one accepts it, and most mathematicians have, then
one can make remarkable progress in analysing mathematical reasoning, including
developing automated tools such as theorem provers and model checkers. Though
safety reasoning is very different in character from mathematical reasoning, we can
use an analogous approach to that of Gentzen. In particular, we can focus on the
same ingredients, i.e., a formalized logical language for expressing safety claims, a
well-defined notion of inference step (enlarged by incorporating some of the ideas
of Toulmin’s definition of an argument pattern), a well-defined notion of derivation
(capturing what is a safety argument), and a new ingredient, grounded proofs, i.e.,
the idea that all initial formulæ in a derivation cannot be taken for granted but that
they need to be justified by evidence. The latter enables a proper understanding of
the notion of evidence and the role it plays in safety arguments. We hope to have
taken some steps in the right direction.
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