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Abstract For management purposes, the sub-systems of a system are generally
described through various configurations, each fragment focusing on a specific sub-
system, e.g., platform, middleware, etc. To form a consistent system configuration,
these independently developed configurations, also known as partial configurations
or configuration fragments, need to be integrated together. This integration is a chal-
lenging task,mainly because of overlapping entities (different logical representations
of the same system resource) in the configuration fragments and/or complex rela-
tionships among the entities of the different configuration fragments. At runtime,
the system may be reconfigured to meet new requirements or in response to perfor-
mance degradations for instance. These changes may lead to inconsistency as they
may violate some constraints between entities. Maintaining the consistency, i.e.,
satisfying the defined constraints, and adjusting the system configuration at runtime
is another challenging task. In this book chapter, we describe our overall model-based
framework for tackling these important issues. We discuss briefly the modeling and
other approaches that compose this framework and elaborate on the runtime configu-
ration validation approach. With this approach, the runtime reconfiguration requests
are checked, before applying them, against a reduced set of the consistency rules
instead of the complete set of rules, and the reconfiguration requests are applied
only if they are safe, i.e., they preserve the configuration consistency and satisfy the
constraints. Using a reduced set of consistency rules reduces the validation time,
which is important for dynamic/runtime reconfigurations.
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1 Introduction

A system, e.g., new composite application or a system of systems such as in the cloud
architectures, is built by assembling together independently developed Commer-
cial Off-The-Shelf (COTS) components. Each of these components/sub-systems
may have its own perspective of the system described as a configuration. This
configuration specifies the organization and the characteristics of the resources the
component/sub-system is aware of and potentially manages. A system can also be
viewed from different perspectives or aspects (such as performance, security, or
availability) and thus have multiple configurations. Therefore, a composite system
may be described through various independently developed configuration fragments.
One of the main challenges of such systems is the integration of these configuration
fragments in a consistent manner that reflects the relations and constraints between
the entities of the different configuration fragments and ensures that the resulting
system meets the required properties such as availability, performance, and security.
The complexity of the integration task stems from the overlapping entities of the
different configuration fragments (i.e., different logical representations of the same
physical entity) and from the complex relationships among the entities of the different
configuration fragments. Manual and ad hoc integration of the fragments is difficult
and error-prone.

Furthermore, at runtime a system actor (i.e., the administrator or a management
application) may need to modify the configuration. These reconfigurations may be
needed to meet new requirements, respond to performance degradations, for elas-
ticity or upgrade purposes. Changes made to one configuration entity may have an
impact on other entities of the configuration because of the relations and dependen-
cies between the entities some ofwhich are only known by the integration framework,
but not by the actors requesting the changes. Nevertheless, the changes should be
conducted in a safe way not to compromise the consistency of the system configu-
ration and therefore jeopardize the system operations. Thus, the proposed changes
should be checked and the modified configuration needs to be validated to guarantee
its consistency and therefore to protect the system from malfunctioning. According
to [1], the consistency of a configuration is defined as the correctness of the data
which requires the satisfaction of the structural integrity requirements and the appli-
cation/domain constraints. The system configuration, especially for large systems, or
composite systems, may consist of thousands of entities each with several attributes
and complex relations between the entities. In such systems, the management and
control of the reconfiguration side-effects with an ad hoc or manual approach is a
difficult and error-prone task as the actor must know and take care of all the rela-
tions and constraints. This problem is even worse for real-time and highly available
systems as the validation and reconfiguration time should beminimal.Moreover, such
systems should not be shut down or restarted because of the reconfiguration. There-
fore, an automated and efficient approach is required to manage the reconfiguration
and protect the system consistency from invalid modifications.
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To address the aforementioned issues, we defined a model-based configuration
management framework for the integration, runtime validation, and adjustment of
system configurations. In this framework, Domain-Specific Modeling Languages
(DSML) capture the concepts, their relations, and consistency rules (constraints) of
configuration fragments. The Unified Modeling Language (UML) and its profiling
mechanism [2, 3] is our choice for defining the DSMLs. The constraints coming
from the application domain restrict the configuration entities and their relations by
governing both their structure and behavior. The constraints are expressed using the
Object Constraint Language (OCL) [4].

In this book chapter, we provide an overview of the framework and elaborate on
one of the approaches, namely, on the runtime configuration validation. Such runtime
validation is a prerequisite for systems with dynamic reconfiguration capabilities as
it detects the potential inconsistencies that can be caused by the reconfigurations
(changes to a single system entity or a bundle of changes to a number of entities).
Runtime reconfigurations often target only parts of the system and an exhaustive vali-
dation, i.e., checking against all the constraints, can be time and resource consuming.
We propose a partial validation of the configurations, which can be used at runtime to
reduce the validation time and overhead. A configuration model is validated against
the configuration profile including the OCL constraints. However, in our partial vali-
dation, only the constraints that are affected and need to be checked are selected—
hence it is referred partial—as the other ones remain valid. The approach consists of
filtering the set of constraints to be rechecked, categorizing them, and then validating
them. We perform an evaluation of the approach and provide a semi-formal proof of
its correctness.

The rest of the chapter is organized into five sections. In the next section, we
describe the modeling framework. In Sect. 3, we provide an overview of the configu-
rationmanagement framework. In Sect. 4, we discuss the partial validation approach.
We review related work in Sect. 5 before concluding in Sect. 6.

A semi-formal proof of our partial validation approach is given in the appendix.

2 Modeling Framework

A system configuration is a set of configuration entities and their relations. These
configuration entities are logical representations of the system resources. The config-
uration defines the arrangement and the rules that the system should obeywith respect
to the represented resources. The granularity and the definition of the configuration
entities depend on the application domain represented and its requirements. Compo-
nents, groups of components, sub-systems, virtual machines, and hardware elements
are examples of the resources the configuration entities represent in the context of
this chapter. For the representation and manipulation of configurations, a configu-
ration schema is required to specify the structure of the configuration entities and
their relations. We use UML and its profiling mechanism to define the configuration
schema. To capture the domain semantics and additional restrictions, we added the
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consistency rules to the configuration profile as OCL constraints. In this section, we
explain our extension to OCL and its need.

Although the standard OCL is suitable for many applications, it is not always
sufficient. By extending OCL we can add more information to the constraints. An
example of extension is the addition of severity and a description to the constraints as
introduced in [5]. The configuration constraints are restrictions on the attribute values
and relations of the configuration entities. They are defined when the configuration
schema is designed to reflect the requirements of the system/application domain. In
the case of configurations, a constraint puts some restrictions on some entities but it
does not characterize the role of these entities in the constraint, i.e., if some entities
in the constraint influence the others. These dominant and dominated roles of entities
cannot be expressed by standard OCL. Knowing these roles, however, will help us in
identifying the constraints that need to be checked and the order in which they must
be checked whenever needed.

To illustrate our idea we use an example from the Open Virtualization Format
(OVF) domain [6] defined by the Distributed Management Task Force (DMTF) [7].
OVF is a packaging standard, which describes an extensible format for the packaging
and distribution of software products for virtual systems. It enables the cross-platform
portability by allowing software vendors to create pre-packaged appliances for which
the customers can have different choices of virtualization platforms [6]. The example
is shown in Fig. 1 where the upper part shows the structure of a simple two-tier
Petstore appliance. It consists of a Web Tier and a Database Tier. The Database Tier
itself consists of two Virtual Systems for fault tolerance. So, three Virtual Systems
(Web Server, DB1, and DB2) and three Virtual System Collections (Petstore, Web
Tier, and DB Tier) are included in the Petstore OVF package.

The OVF package definition allows for specifying the deployment of Virtual
Systems with specific proximity needs through the definition of placement group

Fig. 1 The structure of the
Petstore OVF package

Placement Group: PG1 

Placement Group: PG2 

Pet Store

DB Tier
PG1

Web Tier

DB1 DB2
PG2

Web Server
PG2

Host2Host1

OVF Package

Deployment

Placement Group PG1 Policy - Availability
Placement Group PG2 Policy - Affinity
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policies for the Virtual Systems and Virtual System Collections. The policies are as
follows[6]:

• Affinity Policy: It is used to specify that two or more Virtual Systems should be
deployed closely together, for example, because they need fast communication.

• Availability Policy: It is used to specify that two or more Virtual Systems should
be deployed separately because of HA or disaster recovery considerations.

In the illustrated Petstore appliance of Fig. 1, the DBVirtual Systems (DB1 andDB2)
should be deployed on different hosts for fault tolerance. Thus, the PG1 placement
group with the availability policy is specified for the Virtual System Collection of
the DB Tier. PG1 is a property of the DB Tier. On the other hand, the DB2 and Web
Server Virtual Systems should be deployed on the same host for fast communication,
so a placement group, i.e., PG2, with the affinity policy is specified for these two
Virtual Systems. PG2 is defined as a property for each the DB2 and the Web Server
Virtual Systems.

Figure 2 illustrates the relation between these entities of a simplified OVF domain
model. The restrictions that the policies impose on the deployment ofVirtual Systems
are expressed with the OCL constraints included in the figure.

At deployment time, the Virtual Systems with their placement groups dictate how
they should be deployed on the Hosts that are shown at the bottom of Fig. 1. Note that
the placement group may be defined for the Virtual System (e.g., in the Web Server
Virtual System), implied by the parent Virtual System collection (e.g., DB1 Virtual
System), or a combination of these two cases (e.g., DB2 Virtual System). The DB
Tier has a placement group PG1, which in turn has the “Availability” policy, thus, all
the Virtual Systems of the DB Tier (DB1, DB2) should be hosted on different Hosts
as shown on Host1 and Host2. On the other hand, the placement group PG2 defined
for DB2 and for theWeb Server has the “Affinity” policy, thus, they should be placed
on the same Host, i.e., Host2. An OCL constraint captures the restrictions on the
relation between the Virtual Systems and their Host(s) imposed by the placement
group policies. However, an OCL constraint cannot capture the role of the Virtual
Systems in the constraint as determining the Host entity selection. In the relation

PlacementGroup

Id: String
PlacementPolicy: Policy

VirtualSystem-
Collection

VirtualSystem

Host

0..1

<<enumeration>>
Policy

Availability
Affinity

Context VirtualSystemCollection
Inv C1: self.VscPg.PlacementPolicy=
‘Availability’ implies self.vs-> 
forAll(v1,v2:VirtualSystem| v1<>v2 
implies v1.host<>v2.host)
AND 
self.VscPg.PlacementPolicy=‘Affinity’ 
implies self.vs-> 
forAll(v1,v2:VirtualSystem|
v1<>v2 implies v1.host=v2.host)

vs

host

VscPg

VsPg0..1

Context VirtualSystem
Inv C2: self.allInstances()-> 
forAll(v1,v2:VirtualSystem|v1<>v2 
and v1.VsPg.id=v2.VsPg.id and 
v1.VsPg.PlacementPolicy=‘Availability’ 
implies v1.host<>v2.host)
AND
self.allInstances()->
forAll(v1,v2:VirtualSystem|v1<>v2 
and v1.VsPg.id=v2.VsPg.id and 
v1.VsPg.PlacementPolicy=‘Affinity’ 
implies v1.host=v2.host)

Fig. 2 Partial model of the Virtual Systems, their collection and placement policy in an OVF
package
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between the Virtual System and the Host entities, the Virtual System entity has a
leader role and drives the Host entity, that is, the follower. This means that if the
Virtual System entity (including its Placement Group) changes and the constraint
becomes violated, the Host of the Virtual System should change too to follow the
Virtual System change and satisfy the constraint. On the other hand, if the Host of the
Virtual System changes and this change violates the constraint, the Virtual System
and its Placement Group cannot be changed as the role semantics does not allow
the leader entity to adjust to the changes of the follower entities. For instance, in
the Petstore example, the DB Tier (i.e., DB1, DB2) and the Web Server Tier are
the leader entities while Host1 and Host2 are the followers. Now let us assume that
Host1 fails. Since PG1 does not allow the collocation of DB1 and DB2, DB1 cannot
be re-deployed on the remaining Host2. On the other hand, if we want to change the
placement group of the DB Tier from PG1 to PG2, this change of the leader results
in changing the Host entity (follower) which means that now DB1 and DB2 should
be placed on the same Host (Host2).

As the standard OCL cannot express these roles for entities, we extended the OCL
by defining roles for the constrained entities to show the influence of some entities
over others in the constraint. Considering the semantics of the relations between
the entities we can identify a leadership flow between them. In other words, in a
constraint with multiple entities involved, changes in some entities (Leader) may
impact the others (Follower), but not the other way around. In other relations where
the entities have equal influence over each other, we call them Peer entities.

Figure 3 shows the extension of the constraints with the leadership information.
We extended the OCL to enrich the constraints without changing its grammar and
metamodel so that parsers and validators designed for the standard OCL remain
usable. We consider OCL together with our extension as our constraint profile.

The roles of the entities in the constraints of OVF example are shown in Fig. 4.
In this figure, constraints are shown as ovals. The participation of each entity in a
constraint is represented by an edge between the constraint and the constrained entity.
The role of the entity in the constraint is shown as a label on this edge (e.g., label
“L” represents the Leader role). This representation focuses on the role of entities in
the constraints and depicts how the constrained entities can affect each other.

It is worth mentioning that the roles of the constrained entities may change with
the application scenario. More specifically, we may define the leader/follower/peer
roles for the entities differently for design time and runtime. At design time we
generate the configuration according to an optimal design method. Once the system

<<Metaclass>>
ClassOCL Constraint

<<Stereotype>>

LeadershipInfo

Leader: Stereotype
Follower: Stereotype
Peer: Stereotype

<<extends>>

Fig. 3 OCL constraint enriched by the leadershipInfo
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PlacementGroup

Id: String
PlacementPolicy: Policy

VirtualSystem-
Collection

VirtualSystem

Host

0..1

<<enumeration>>
Policy

Availability
Affinity

C1

C2

L

L

L

F
L

L

F

Fig. 4 Representation of entity roles in constraints

is deployed we may be limited in the changes allowed. For example, due to budget
reasons, we may not add new hosts to the system and as a result we want the Virtual
Systems (including the software products) adopt and follow the Host restrictions in
this respect. This means that now the Host entity becomes a leader and the Virtual
System and Virtual System collection are followers. Note that the standard portion
of the OCL constraint between them remains unchanged. Defining the roles for the
entities through the leadership information has the advantage that we can define and
change the roles whenever it is needed without affecting the constraints themselves.

3 Overview of the Configuration Management Framework

As shown in Fig. 5 our model-based framework for configuration management
includes amodule for configurationgeneration at systemdesign time and amodule for
system runtime change management. In this section, we briefly discuss the different
parts of our configuration management framework.

3.1 System Configuration Design—Integration
of Configuration Fragments

As mentioned earlier, sub-systems of a system are described through several config-
uration fragments. These configuration fragments need to be integrated together to
form a consistent system configuration to ensure correct operation of the system.
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Configuration 
Fragment A

Configuration 
Fragment C…

System Configuration

Configuration 
Fragment B

Configuration Integration

Configuration 
Validator

Configuration 
Adjustment

Configuration 
Generation Module 
for the Integration of 
Configuration 
Fragments

Runtime Change 
Management  Module 
for Consistency 
Preservation of the  
System Configuration 

Mapping definition

Model Integration (Weaving)

Integration
Constraints

Modification 
Request

Fig. 5 Overview of configuration management framework

The system configuration should ensure that the resulting system meets the required
properties.

We extend themodel weaving technique [8, 9] and usemodel transformation tech-
niques to devise an approach for the integration of configuration fragments targeting
specific system properties. We define the semantics of the relations between the enti-
ties of the configuration fragments as links at a higher level of abstraction which has
several advantages:

• It increases the reusability of the defined links (relations) to map other entities
between configurations.

• It allows adding/modifying the interpretation of the links and embedding them
into the integration process without modifying the links.

• It is easily extendible as various configuration profiles can be added to the
integration process using predefined or new links.

• The integration process is automated. The system configuration can be generated
automatically with the same rules for different input configurations.

We define the integration semantics as integration constraints to enrich the system
configuration profile. The integration constraints (describing the semantics of the
relation between the fragments) in addition to the union of the constraints of the
fragments form the system configuration constraints which guard the consistency of
system configuration models against unsafe runtime modifications. In other words,
the consistency is formally defined by the set of OCL constraints generated auto-
matically from the weaving and the constraints of all the fragments, which are by
construction non-contradictory. More details on the integration technique can be
found in [10, 11].
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3.2 System Runtime—Consistency Preservation with Change
Management

A reconfiguration may be performed for many reasons, e.g., in response to environ-
mental changes or for fine-tuning. These changes may compromise the consistency
of the configuration. To manage configuration changes, we propose the architecture
shown in Fig. 6 which includes a configuration validator to check the change requests
and an adjustment agent, which attempts to add complementary modifications to
resolve the potential inconsistencies detected during the validation phase.

Runtime Configuration Validation
At runtime the administrator or the management applications may need to change
the system configuration to control/manage the resources they are responsible for.
These changes may compromise the consistency of the system configuration and
jeopardize the system’s operation.Thus, the requested changes should be checked and
the modified configuration has to be validated to guarantee its consistency. As shown
in Fig. 6 the configuration validator is responsible for performing the validation with
respect to the system configuration profile and its constraints. The validation may
result in one of the three following cases:

(a) The requested changes do not violate the configuration constraints and respect
the profile. Therefore, the changes are safe and can be applied.

(b) The requested changes violate one or more constraints of the profile and these
violations cannot be resolved as there is no chance to propagate the changes
to other entities of the violated constraints to resolve the violations. Thus, the
requested changes are rejected.

System 
Configuration 

Profile

Validator

Adjustment Agent

Adjustment 
Modifications 

Change Request

Uses

(b) Constraint Violation 
Changes Rejected

(a)  No Constraint 
Violation

Apply the 
Changes(c) Constraint 

Violation

Not Adjustable
Changes Rejected

Apply the 
Modifications

Administrator/
Management Apps

System 
Configuration

Respects

Consistency 
Rules

Fig. 6 Runtime configuration validation and adjustment
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(c) The requested changes violate one or more constraints of the profile; however,
the changed entities/attributes can impact other entities/attributes of the violated
constraints. Therefore, there may exist a chance to resolve the constraint viola-
tion by changing other constrained entities. Thus, the result of the validation
will be passed to an adjustment agent.

The decision of rejecting the requested changes (i.e., case b) or trying to adjust
the configuration (i.e., case c) is made based on the ability of the changed entities
to impact other entities of the violated constraints. The possibility of the impact is
determined based on the leadership information of the constraint. In the next section,
we elaborate on our technique for runtime configuration validation. We aim at an
efficient technique that can be applied at runtime.

Configuration Adjustment
Although a configuration validator can detect the constraint violations caused by
unsafe/incomplete change requests, it cannot tell if such violations or conflicts might
be resolved by adding complementary modifications that complete the initial set of
changes. The potential inconsistencies detected by the validation technique can be
due to the incompleteness of the set of changes as performed by the administrator
who is not aware of all the relations between all involved entities/attributes. In order
to resolve such inconsistencies, we devise a technique for complementing an incom-
plete set of changes and therefore adjust automatically the configuration at runtime.
The adjustment consists of modifications of other entities/attributes that re-establish
the configuration consistency. We achieve this by propagating the changes in the
configuration according to the system constraints following the possible impacts of
the configuration entities on each other. We minimize the complementary modifi-
cations to control the side-effects of the changes. The problem is formulated as a
Constraint Satisfaction Problem (CSP) [16, 17] which we solve using a constraint
solver. In our proposed framework, this task is done by the adjustment agent shown
in Fig. 6. It takes the validation result from the validator as input and uses the system
configuration profile and constraints. If a set of complementary changes can be found
that along with the requested changes satisfies all the constraints, the adjustment is
successful and the changes canbe applied to the configuration.Otherwise, the initially
requested changes are rejected. More details on this technique can be found in [12].

4 Partial Validation of Configurations

Runtime validation is a prerequisite for dynamic reconfiguration as detection and
correction of potential inconsistencies are required. The capabilities of dynamic (or
runtime) reconfiguration and runtime validation are needed for Highly Available
(HA) systems as they cannot be shut down or restarted for reconfiguration.

A systemconfigurationmay consist of hundreds of entities,with complex relations
and constraints. Runtime reconfigurations (changes to a single system entity or a
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bundle of changes to a number of entities) often target only parts of the configuration.
An exhaustive validation that checks all the consistency rules is not always required
and canbe substituted by apartial validation, inwhich the number of consistency rules
(constraints) to be checked are reduced and this results in reduction of the validation
time and overhead. In a partial validation, only the constraints that are impacted by
the changes are selected and checked. The other constraints remain valid and do not
need to be rechecked. Thus, by checking only a subset of the constraints we can
claim if the configuration is valid or not.

4.1 Partial Validation Technique

To validate a configuration model, we check its conformance to the configuration
profile. The profile defines the stereotypes, their relations (the structure of the model)
along with a set of constraints over these stereotypes and relations to assure well-
formedness. When a request for changing some entities of the configuration model
is received, the modified model needs to be checked for conformance against its
profile. The full validation can be time and resource consuming. Such overhead is
not desirable in live systems, especially in real-time and HA systems. A solution to
reduce the overhead and improve performance is to reduce the number of constraints
to be checked, i.e., check only what needs to be checked against. We refer to this as
partial validation.

In our approach, we minimize the number of constraints to be checked based on
the requested changes. This typically also leads to the reduction of the number of
configuration entities to be checked.We check only the entities whose stereotypes are
involved in the selected constraints. This new set of configuration entities includes
at least the changed entities and the ones related to them through their constraints.
In the appendix, we provide a semi-formal proof to establish that the results of our
partial validation approach are equivalent to the results of the full validation where
all the constraints are checked for every change request.

Figure 7 shows an example, a model and its profile, in which changes affect only
some of the constraints. The model entities conform to their respective stereotypes
in the profile, e.g., A1, A2 entities of the model conform to stereotype A, and B2, B3
entities conform to stereotype B and so on. The constraints of the profile are shown
as blue ovals (i.e., C1, C2, etc.). Assuming that the change set includes model entities
B2 and D1, to validate the model instead of checking all the constraints of the profile
(C1–C4), it is enough to select only the ones that are affected by these changes, i.e.,
constraints C2 and C3.

To reduce the validation overhead the time to select this set should be negligible
compared to the time saving we achieve by the partial validation. Note that in cases
where the modification request includes entities of many different stereotypes, the
number of constraints that need to be selected is considerable and the selection may
not be worthwhile anymore. The case is similar when although only a few constraints
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The model
Changed Entities: {B2, D1}

The profile
Selected Constraints: {C2, C3}

Fig. 7 Model changes and affected constraints in the profile

are selected but they apply and should be checked for a large number of configuration
entities.

4.1.1 Filtering and Categorizing the Constraints

To identify the reduced set of constraints we filter the constraints based on the modi-
fication request. A request may consist of many changes each of which applies to
one or more entities of the configuration model—we call them the change set. We
represent the configuration entities of the change set as a model, which conforms
to a change profile. Figure 8 shows the change profile and an example change set.
The change profile has a stereotype called CEntity which extends the NamedEle-
ment metaclass of UML. The CEntity stereotype represents the configuration model
entities to be changed—referred to as changed entity. In the Petstore, for example,
we may need to reconfigure the Web Server, i.e., have it as the changed entity. The
operation requested on the model entities is represented by the Operation stereotype
in the change profile. It is specialized as the Add, Update, and Delete stereotypes.
Regardless of the requested operation, the constraints in which the entity is involved
should be checked. A change model is an input to the constraint filtering process.

Having the change model and the change profile as well as the configuration
profile, the stereotypes applied on each changed entity can be identified. These are
the stereotypes of the configuration profile and also of the CEntity stereotype. For the
validation, the stereotypes of the configuration profile are considered. The constraints
of the configuration profile are defined over these stereotypes and we also captured
their roles in the constraints through the leadership concept. By looking up the stereo-
type of each changed entity we can select from the constraints of the configuration
profile those that have the same stereotype as the stereotype applied to the entity of
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<<Stereotype>>
CEntity

Add Delete Update

<<Stereotype>>
Operation

DeleteDB1

Web Server Update

<<metaclass >>
NamedElement

<<extends>>

1

Change profile

Change model

Fig. 8 Change profile and a simple change model

the change model. The role/leadership information determines the relevance of the
constraint.

We also categorize each selected constraint based on the roles of the changed
entities in the constraint. For this purpose,weuse three sets: FConstraint, LConstraint,
and PConstraint. Algorithm 1 describes the filtering process and the categorization
of the filtered constraints. It starts with an empty set of stereotypes, set A, and
three empty sets, LConstraint, FConstraint, and PConstraint. The constraints of the
configuration profile are all in the set Constraint. In set A, we collect the stereotypes
of all changed entities (lines 6 to 8). For each constraint in the set Constraint, we
consider its LeadershipInfo and compare the Leader/Follower/Peer stereotypes with
the stereotypes in set A. If a common stereotype is found, then the constraint is added
to one of the sets, LConstraint, FConstraint, or PConstraint, while making sure that
each constraint will be added only to one of these output sets (line 10 to 19). If the
stereotype applied on a changed entity has a leader role in the constraint, we add the
constraint to LConstraint. Similarly, if the stereotype of a changed entity plays the
follower role, the constraint is added to FConstraint. The set PConstraint is for the
constraints whose entities have a peer role in the constraint and also appear in the
changemodel. Thefiltering and categorizing process ofAlgorithm1 are implemented
using transformations.



212 A. Jahanbanifar et al.

Algorithm 1. Filtering and Categorizing the constraints
Input: ConfigurationProfile, ChangeProfile, ConstraintProfile, Constraint, ChangeModel

Output: LConstraint, FConstraint, PConstraint  

1: A := {}
2: LConstraint := {}
3: FConstraint := {}
4: PConstraint := {}
5: // Find all the stereotypes applied to the entities of the ChangeModel
6: for each ENTITYj in ChangeModel do
7: A:= A ∪ {ENTITYj.getAppliedStereotypes()}
8: end for
9: // Filtering and categorizing constraints of the Constraint
10: for each CONSTRAINTi in Constraint do
11: K:= CONSTRAINTi->LeadershipInfo
12: if {K.Leader} ∩ A ≠ {} then
13: LConstraint :=  LConstraint ∪   {CONSTRAINTi}   
14: else if {K.Follower} ∩ A ≠ {} then
15: FConstraint :=  FConstraint ∪ {CONSTRAINTi}
16: else if {K.Peer} ∩ A ≠ {} then
17: PConstraint :=  PConstraint ∪ {CONSTRAINTi}
18: end if
19: end for

It is possible that a constraint can be categorized into more than one category. For
example, when both the leader and follower entities of a constraint are changed
within the same change set, the constraint can be categorized as FConstraint or as
LConstraint and added to either category. Considering the Petstore again a request
may, for example, change DB1, an instance of the DB Tier (leader) and Host1, an
instance of the Host (follower) in the same change set. In such a case, we have to
make a choice and add the constraint to the least restrictive set, i.e., LConstraint, to
allow for potential adjustments. Since at least one leader entity is involved in case of
constraint violation its follower(s), except the ones that are in the change request, can
be adjusted to satisfy the constraint. Similarly, the PConstraint category is preferred
over the FConstraint category.

4.1.2 Validation of the Constraints

After filtering and categorizing the constraints, the validation process considers first
the least flexible constraints before the more flexible ones. The constraints in the
FConstraint category are the least flexible ones because if they are violated, no
adjustment can be made within the context of the change set to resolve the incon-
sistency as the follower entities cannot affect the leader entities. Thus, in case of
detecting a violation of a constraint in FConstraint, the requested change is rejected
and the validation process stops. Next, the LConstraint and the PConstraint sets are
checked. If the validation fails in these cases, we consider this as a potential violation
of configuration consistency because we may be able to resolve it with additional
changes as leader entities can affect their followers and similarly peer entities can
affect their peers. The adjustmentmodulewill try to resolve the inconsistency through
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additional modifications relying further on the leadership concept. Initial results on
the partial validation technique have been reported in [18].

4.2 Evaluation

In this section, we present an evaluation of our partial validation approach using a
prototype implementation.

4.2.1 Setup and Scenarios

We used the UML profile of the Entity Type File (ETF) [13] as a configuration profile
and applied our partial validation approach to its instances. This ETF UML profile
had 28 stereotypes and 24 OCL constraints defined over these stereotypes.

We implemented the partial validation method in the Eclipse Modeling Frame-
work (EMF) [14], using theAtlas TransformationLanguage (ATL) [15] for constraint
selection and also the EMF OCL APIs for constraint validation in a standalone java
application. The experiments were performed on a machine with an Intel® Core™
i7 with 2.7 GHz and 8 Gigabytes RAM and a Windows 7 operating system.

We created an initial ETF model that conforms to the ETF UML profile. This
model had 50 entities.We considered three change sets to be applied to this model. In
each case, a certain number of model entities were randomly selected and changed.
This number was 10, 20, and 30 for the three cases, respectively. The selections
were made independently from each other. For the cases, we compared the number
of constraints selected in the constraints model and the total number of constraint
checks performed during the partial validation. We also measured the execution time
of the full validation and each of the cases of the partial validation. Each validation
test was executed five times and the average was considered as the validation time.

4.2.2 Results and Analysis

Table 1 presents the results for the different cases of partial validation in comparison
with the full validation. The first row of the table represents the results of the full
validation of themodel in which all entities are checked for all applicable constraints,
i.e., as if all entities have been changed. The second, third, and fourth rows present
the results for the partial validations for 10, 20, and 30 changed entities. As the
number of changed entities increases, more constraints are selected, more times they
are checked and the validation time increases.

As it was expected the validation time is proportional to the number of selected
constraints which in turn depends on the number of changed entities. However, the
number of selected constraints is not proportional to the number of changed entities,
which is due to the characteristics of the ETF profile. In the ETF profile, some entity
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Table 1 Partial validation performance results

Number of
changed entities

Number of
selected
constraints

Total number of
constraint checks
performed

Partial validation
time (ms)

Initial model 50 24 70 6933

Test CASE 1 10 8 41 4432

Test CASE 2 20 15 55 5413

Test CASE 3 30 18 57 5845

types have only a few tagged values and constraints while others have a relatively
large number of each. Also, the frequency of use of different entity types in an ETF
model is different. In a given ETF model the number of component types is typically
higher than the number of other entity types. This means that in a random selection
of changes the probability is higher to select a change in a component type and
with that more constraints are selected. This is the reason that with only 10 changed
entities the number of selected constraints is already 8 and these constraints are
checked 41 times. The high ratio of checks is further explicable by the fact that the
component type is specialized into several specific component types (using the UML
generalization in the profile). Thus, each child component type inherits the tagged
values and the constraints of its parent component types. That is, if the constraint
of a parent stereotype is in the selected constraint set, then that constraint should be
checked over all the child entities of that parent.

The experiments show that the stereotype of the changed entity has a determining
role whether using partial validation results in the expected time gain. The char-
acterization of the configuration profile is necessary to determine whether partial
validation is beneficial and for which kind of change set.

In this evaluation, we did not include the constraint categorization as in these
preliminary measurements we focused on the time gain resulting from the partial
validation. In this respect,wehave shown that there is a timegain,;however, the results
are also showing that further analysis is needed to determine the circumstances. This
is important as the constraint selection process itself takes some time and it becomes
an additional overhead.

5 Related Work

The work reported in this book chapter touches upon several aspects, including
system configuration generation, configuration adjustment, but elaborated mainly
on configuration validation as prerequisite to dynamic reconfiguration. A lot of work
has been done in each of these aspects. For a full reviewanddiscussion of relatedwork
on configuration design, we refer the reader to [11], for the configuration adjustment
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aspect we refer to [22]. Hereafter, we discuss the work related to configuration
validation.

The validation of configurations against runtime changes has been thoroughly
investigated; it is not only critical for preventing invalid changes that risk the integrity
and consistencyof the configuration but also because it is a necessity for self-managed
systems. Some work in this context focus on the structural checking of the functional
configuration parameters [19–21], e.g., type correctness, checking the validity of the
values of the system entities’ attributes with respect to the constraints of each entity
and the relation between the entities. In the SmartFrog configuration management
framework [20], the components consist of three parts: the configuration data, the
life cycle manager, and the functionality of the component itself. Constraints of each
component are considered within its configuration data by attaching the conditions
as predicates on a description. For combining the components, the configuration
data should be extended and the conditions are propagated and additional predicates
may be added grouping the old and new predicates. The component developer is in
charge of defining the conditions (restrictions) for the components and their combi-
nation in the configuration data templates. The authors indicate that the validation of
the configuration data happens by checking these conditions; however, they do not
mention how the conditions are checked. In addition, the constraints for combining
the components can be expressed as simple conditions but it might not be possible
to describe more sophisticated constraints (coming from special requirements of the
domain) with the conditions in the configuration data templates.

In [22, 23], the authors propose a solution for dynamic reconfiguration. They
consider the validation of the structural integrity and runtime changes. They use
the predefined constraints for the validation of the requested modification on the
structural and current operational conditions of the system. The solution consists of
a model repository for storing the reference model and the constraints and an online
validator for performing the dynamic constraint evaluation. The online validator
takes the configuration modification request and the current system state as input
and validates the request by checking the configuration instance against the reference
model and the constraints. The solution uses an exhaustive validation, i.e., checks all
the system constraints, which can degrade the validation performance especially for
large configuration models. In our work, we check the structural integrity and also
validate only the constraints affected by the changes.

Some existing approaches for re-validatingmodels after changes also try to reduce
the number of constraints and/or the number of model entities to check. In [24,
25], a list of events that can violate the OCL constraints is defined and added to
their configuration schema to check the constraints only if changes are related to
these constraints and only on relevant entities. This approach cannot handle complex
constraints containing recursion, loops, or complex iterations. Bergmann et al. [26]
use a query language (IncQuery) based on graph pattern formalism on EMFmodels.
The queries are stored permanently in memory and they update the values of the
partial matches used in queries after each model change. This approach has consid-
erable memory consumption. In [27], an approach for incremental validation of OCL
constraints has been proposed. The validation log of each constraint over the model
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entities is stored. A re-validation is triggered when the stored parts are changed. The
work is extended in [28] to improve the performance by only checking parts of the
constraints that are affected by changes and to avoid checking all the constraints.
This improvement achieves a better performance but consumes more memory.

6 Conclusion

In this book chapter, we provided an overview of a model-based framework for
configuration management to integrate configuration fragments in a consistent
manner at design time and to preserve the consistency of the generated system
configuration at runtime by validating and adjusting the configuration modification
requests whenever necessary and possible. In this framework, configuration profiles
are defined using the UML profiling mechanism to capture the concepts of each
configuration domain, relation, and constraints between the concepts. We extended
the OCL by defining roles for the constrained entities to represent the impact of
the entities on each other in a constraint, i.e., the leadership concept. We extended
the concept of model weaving for the purpose of semantic configuration fragments
integration.

We discussed in detail our partial validation approach for the validation of the
configurations at runtime. In our partial validation, only the subset of constraints
affected by the modifications is selected and checked as the other constraints remain
valid. Constraints are also categorized to specify the order in which they need to be
checked. For evaluating the partial validation approach, we semi-formally proved
its equivalence to the exhaustive validation which checks all the constraints. Also,
a quantitative evaluation demonstrates reduction of the validation time compared to
the exhaustive validation.

As future work, we will consider the validation of the complete framework with
real case studies.

Acknowledgements This work has been partially supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) and Ericsson.

Appendix: A Semi-formal Proof for the Partial Validation
Approach

In this appendix, we provide a semi-formal proof of our validation approach which
shows that the reduced set of constraints contains all the required ones to guarantee
the validity of the whole configuration model.

Note that we do not distinguish the leader/follower/peer roles of the constrained
entities for the proof. This is because to prove the correctness of the validation we
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are only concerned about the sufficiency of the selected (filtered) constraints rather
than their categorization.

Definitions

A Profile (P) is defined as a set of Stereotypes (STP), the set of Relations between
them (RP), and their set of Constraints (ConsP).

P(STP,RP,ConsP)

For referring to the sets of stereotypes, relations, and constraints of a given Profile
we use the Profile’s name as the index of the set, e.g., STP1 is the set of stereotypes
of Profile P1.

Each relation Rl in the set RP consists of a source stereotype (Rl.SrcST) and a
destination stereotype (Rl.DstST). They specify the two ends of the relation Rl. A
tuple of Lowerbound and Upperbound also specifies the minimum and maximum
number of instances of the DstST in relation with a SrcST.

Rl(Rl.SrcST,Rl.DstST, (L,U))

For simplicity, the relations in this definition are considered to be associations. Other
types of relations (generalization, dependency, etc.) can be added with appropriate
modifications of the definition.

Each constraint ConsX in the set of ConsP consists of an Invariant (a Boolean
expression) and a set of stereotypes based on which the invariant is defined, i.e., the
constrained stereotypes. The set of constrained stereotypes is shown as STConsX.

ConsX(Invariant,STConsX)

A Model M is defined as a set of entities (enM) and a set of relations (rM).

M(enM, rM)

Each relation rl (rl∈rM) has a source entity represented as rl.SrcEn and a destination
entity represented as rl.DstEn.

rl(rl.SrcEn, rl.DstEn)

In order to be valid, a model should conform to its profile. This means that each entity
of the model should respect the stereotype(s) of the profile that is applied to and also
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all the constraints of the profile should be valid in the model. These functions are
defined as follows:

Let us assume profile P is applied on model M. The function AST 1 for the input
of a model entity (that belongs to the entity set of a model M) returns as the output
the stereotype (that belongs to the stereotype set of the profile P), which is applied
on the entity.

S = AST(e), e ∈ enM, s ∈ STP

AtomicValid is defined over a constraint () and a subset of entities and relations () that
belong to a model (M). The result of this function is a Boolean value which shows
whether is satisfied with the values of the entities and relations in or not. Thus, is
a subset of M and contains the entities and relations that are related to constraint .
The entities in are defined as those entities of the model on which the stereotypes of
the constraint are applied. If the stereotypes of constraint are applied on the member
ends of a relation, the relation is included in . (enM and rM represent the set of entities
and relations in model M and STx represents the set of stereotypes of the constraint).

AtomicValid(K , x)

K (enK, rk) = {(e, r)|e ∈ enM , AST (e) ∈ STx , r ∈ rM , (AST (r.SrcEn) ∈ STx AND

AST(r.DstEn) ∈ STx)}

If the result of the AtomicValid is true, it means that the constraint is satisfied over
a subset of entities and relations of the model M (entities on which the stereotypes
of the constraint are applied). So we can conclude that the constraint is satisfied in
model M or in other words, the validity of the constraint x over model M is true.
Another function Valid is used to represent this statement.

AtomicValid(K , x) ↔ Valid(M, x)

Conformance of amodelM(enM, rM) to a profile P(STP, RP, ConsP) is defined through
the conform function which returns true if all the constraints of the P are valid over
themodelM and also all the entities and relations of themodel respect the stereotypes
and relations of the P. P and STP are the sets of constraints and stereotypes of the
profile P, respectively. enM and rM are the set of entities and relations of model M.
The Respect function is used to check if the entities and relations of themodel respect
the stereotypes and relations of the profile.

Conform(M,P) ↔ (∀x ∈ ConsP, Va(M, x)) AND

1Applied StereoType.



Configuration of Complex Systems … 219

(∀e ∈ enM ,AST(e) ∈ STP,Respect(e,AST(e))

AND(∀t ∈ rM , ∃z ∈ RP,AST(t.SrcEn)

= z.SrcST,AST(t.DstEn) = z.DstST,Respect(t, z))

Modifying the Model

We assume that we have an initial model M1 which is valid according to the profile
Pr, i.e., Conform(M1, Pr). The Change function takes the changeSet model and M1
as input and results in a new model M2 with the modified entities and relations, i.e.,
applies the changeSet to M1.

changeSet
(
enchangeSet, rchangeSet

)

M2 = Change(M1, changeSet)

To verify whether the changed model (M2) is also valid, we need to validate it by
checking its conformance to the reference profile (Pr). To do so instead of performing
a full validation and using Pr, we consider a second profile Pv which is created from
the reference profile Pr with the same stereotypes and relations as Pr but with a
reduced set of constraints. A filtering reduces the constraints of Pr based on the
entities of the changeSet. As a result Pv is a subset of Pr.

Pv = Filter(Pr, changeSet),Pv ⊆ Pr

According to the filtering function:

∀y ∈ enchangeSet, (if ∃ x ∈ ConsPr,AST(y) ∈ STx) → x ∈ ConsPv

AND ∀z ∈ rchangeSet, if ∃ g ∈ ConsPr,

(AST(z.SrcEn) ∈ STgAND AST(z.DstEn) ∈ STg) → x ∈ ConsPv

AND ∀s ∈ STPr → s ∈ STPv

AND ∀r ∈ RPr → r ∈ RPv



220 A. Jahanbanifar et al.

The Proof of Partial Validation

We prove by contradiction that the partial validation has the same result as the full (or
complete) validation. We make the assumption that the initial configuration model
(to which the changes should be applied) is valid, i.e., it conforms to its profile. Using
the mentioned definitions we prove that if a modified model (M2) conforms to the
filtered profile (Pv) then it also conforms to Pr. This means:

Conform(M2,Pv) → Conform(M2,Pr)

Prove by contradiction technique is used, whichmeans that we assume that the above
statement is not true and show considering the other assumptions a contradiction.

We add the negation of this statement to our assumptions:

Conform(M2,Pv) and Conform(M2,Pr)

Based on the definition of the conform function we can say that there is at least one
constraint of Pr that is not valid in M2 or at least one of the entities or relations of
M2 does not Respect the profile Pr.

Conform(M2,Pr) → (∃ e ∈ enM2,AST(e) ∈ STPr,Respect(e,AST(e))

or (∃t ∈ rM2,�z ∈ RPr,AST(t.SrcEn)

= z.SrcST,AST(t.DstEn) = z.DstST,Respect(t, z)))

or (∃x ∈ ConsPr,Valid (M2, x))

At first we show that if the first part of the “or” statement would be true, we face
a contradiction:

∃ e ∈ enM2,AST(e) ∈ STPr,Respect(e,AST(e))

From the definition of the Pv:

∀s ∈ STPr → s ∈ STPv

As the STPr = STPv, the STPr in the first statement can be replaced with STPv and
thus:

∃e ∈ enM2,AST(e) ∈ STPv,Respect(e,AST(e))

This is in contradiction with the assumption that Conform(M2, Pv) is true,
because:
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Conform(M2,Pv) ↔ (∀x ∈ ConsPv,Valid(M2, x)) AND

(∀e ∈ enM2,AST(e) ∈ STPv,Respect(e,AST(e)))

Similarly, it can be shown that if a relation of model M2 does not respect Pr, a
contradiction is encountered.

In the next step, we show that if there is a constraint in Pr which is violated by
M2, it would contradict to our initial assumptions. Three cases are possible:

First: The constraint x already belongs to Pv:

x ∈ ConsPv

which is in contradiction to the assumption that M2 conforms to Pv because:

∃x ∈ ConsPv,Valid (M2, x) ↔ Conform (M2,Pv)

Second: The constraint x does not belong to Pv (i.e., /∈‘Pv), and constraint involves
the change set entities, which means the stereotype set of constraint x has at least one
stereotypewhich is applied to at least one of the entities of the change set or constraint
x has stereotypes that are applied to the member ends (entities) of a changed relation
in the change set:

∃y ∈ enchangeSet, AST(y) ∈ STx OR
∃z ∈ rchangeSet, (AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx)

According to the Filter function:

∀y ∈ enchangeSet (i f ∃x ∈ ConsPr,AST(y) ∈ STx ) → x ∈ ConsPv
∀z ∈ rchangeSet, if ∃x ∈ ConsPr,

(AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx) → x ∈ ConsPv

And as ∈Pr, it can be concluded that x should also belong to Pv, that is:

x ∈ ConsPr, ∃y ∈ enchangeSet , AS(y) ∈ STx → x ∈ ConsPv OR

x ∈ ConsPr, ∃z ∈ rchangeSet ,

(AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx) → x ∈ ConsPv

This means that if such constraint exists in ConsPr, it should have been already added
in the ConsPv too because all the constraints that are relevant to the change set should
be in the ConsPv.

Third: The constraint x does not belong to the constraint set of Pv (i.e., /∈Pv), and
constraint does not involve the change set entities, which means the stereotype set
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of constraint x does not have any stereotype which is applied to at the entities of the
change set or the member ends (entities) of the changed relations in change set:

x /∈ ConsPv,�y ∈ enchangeSet, AS(y) ∈ ST x
x /∈ ConsPv,�z ∈ rchangeSet, (AST (z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx)

Based on our assumption:

Valid (M2, x) ↔ AtomicValid(K , x)

K (enK, rK) = {(e, r)|e ∈ enM2, AST (e) ∈ STx , r ∈ rM2, (AST (r.SrcEn) ∈ STx AND
AST(r.DstEn) ∈ STx)}

The constraint x does not have any stereotypes which is applied to the entities or
member ends of relations in the change set, so the intersection of the two sets change
set andK (set of entities and member ends of the relations of the modelM2 on which
stereotypes of constraint x is applied) is empty:

K ∩ changeSet = ∅

When none of the entities of K belongs to the changeSet, it can be deducted that all
the entities of K are in M1 model:

K ⊆ M1

ThusM2 model can be replaced withM1 in the previous assumption and state that:

K (enK, rK) = {(e, r)|c ∈ enM1, AST (e) ∈ STx , r ∈ rM1, (AST (r.SrcEn) ∈ STxAND
AST(r.DstEn) ∈ STx)}

And because K is in common between M1, M2, then:

Valid (M2, x) ↔ AtomicVali(K , x) ↔ Valid(M1, x)

And this is a contradiction to our first assumption because:

Valid (M1, x) ↔ Conform (M1,Pr)

Thus, we can conclude that the filtered constraints are sufficient for validating the
model.
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