
Implicit and Explicit
Semantics Integration
in Proof-Based
Developments of
Discrete Systems

Yamine Ait-Ameur · Shin Nakajima ·
Dominique Méry Eds.

Communications
of NII Shonan Meetings

Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems

Yamine Ait-Ameur • Shin Nakajima •

Dominique Méry
Editors

Implicit and Explicit
Semantics Integration
in Proof-Based
Developments of Discrete
Systems
Communications of NII Shonan Meetings

123

Editors
Yamine Ait-Ameur
Department of Computing and Applied
Mathematics
IRIT/INPT-ENSEEIHT
Toulouse, France

Dominique Méry
Telecom Nancy
University of Lorraine
Vandœuvre-lès-Nancy, France

Shin Nakajima
National Institute of Informatics
Tokyo, Japan

ISBN 978-981-15-5053-9 ISBN 978-981-15-5054-6 (eBook)
https://doi.org/10.1007/978-981-15-5054-6

© Springer Nature Singapore Pte Ltd. 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://orcid.org/0000-0003-4582-9712
https://orcid.org/0000-0001-5231-6611
https://doi.org/10.1007/978-981-15-5054-6

Preface

Formal methods have been proposed for improving system design and system
verification. One can cite state-based techniques, proof-based techniques, model
checking, type systems, static analyses and abstract interpretation, algebraic
methods, CSP (constraint solving problem) techniques, … These techniques are
well established on a solid formal basis and their domain of efficiency, their
strengths and weaknesses are well acknowledged by the formal methods commu-
nity. The semantics of the used formal method is implicit and encoded in the
modelling language of this formal method.

Although some ad hoc formalisation of design contexts and domain knowledge
within formal methods is possible, none of these techniques offers built-in mech-
anisms to make explicit some features like hypotheses, assumptions, expectations
and properties related to the context and to the domain knowledge associated to the
system under design. These features are usually hidden in the requirements han-
dling explicit semantics. Moreover, these methods do not offer mechanisms to relate
domain knowledge features to system design models concepts nor reasoning
mechanisms to exploit these knowledges in order to enhance the quality of the
developed systems and of the development processes.

For instance, an integer variable (typed by an integer in the the design model)
may denote a temperature expressed in Celsius degrees, whilst another one may
denote a pressure measured in bars at the extreme limit of the left wing of an aircraft
in the landing phase. In general, these knowledges are omitted or abstracted by the
produced formalisations or their formalisation is hard encoded in the designed
formal model. Those knowledges carried by the concepts manipulated in these
formal models are still in the mind of the model designer, it is not explicitly
formalised and therefore, it is not shared.

Several approaches aim at formalising mathematical theories that are applicable
in the formal system developments. These theories are helpful for building complex
formalisations, expressing and reusing proof of properties. Usually, these theories

v

are defined within contexts, that are imported and/or instantiated. They are a
powerful way to represent and to model explicitly the external knowledge (e.g.
domain knowledge) related to the system under development. They are expressed
using types, logics, algebras, … based approaches.

Providing features in formal methods to make knowledge models explicit, by
external formal domain models like ontologies, is still a major challenge. One of the
main benefits of offering such mechanisms preserves the systematic aspect of the
method. Indeed, the formal models are defined in the used formal method language
and explicit reference and/or annotation mechanisms are provided for associating
explicit semantics to formal models concepts.

Once this integration is realised, the formalisation and verification of several
properties related to the heterogeneous models’ integration become possible.
Specific properties like interoperability, adaptability, dissimilarity, re-configurability
and identification of degraded modes, etc. can be addressed. Refinement/
instantiation and composition/decomposition will play a major role for specifying
and verifying these properties.

Nowadays, no formal method or formal technique provides explicit means for
handling such an integration.

In November 2016, Yamine Ait-Ameur (IRIT Toulouse, France), Shin Nakajima
(NII, Tokyo Japan) and Dominique Méry (LORIA, Nancy, France) organised the
Shonan meeting number 090 (https://shonan.nii.ac.jp/seminars/090/) in Shonan
Village in the subrubs of Tokyo.

Entitled Implicit and explicit semantics integration in proof based developments
of discrete systems, this seminar gathered, during a whole week, 30 researchers
issued from both academia and industry from America, Asia, Australia and Europe
to discuss solutions to address the problem of making explicit domain knowledge in
formal developments.

This book results from discussions and meetings held during this seminar. It
contains contributions from the participants expressing and summarising their point
of view and solutions on this problem. The following contributions have been
included.

Contributions

• Domain Modelling

– Modelling an e-voting domain for the formal development of a Software
Product Line: when the implicit should be made explicit by J Paul Gibson
and Jean-Luc Raffy reports on an approach based on the specification of
Event-B contexts to model an e-voting ontology, and its integration with an
e-voting features model tree which formally specifies a software product line
(SPL). The importance of making the implicit explicit in two different

vi Preface

https://shonan.nii.ac.jp/seminars/090/

ways—domain experts need to explicitly model implicit knowledge, and
Event-B modellers need to explicitly communicate the semantics of the
formal model constructs to the domain experts—has been identified.

– Domain-Specific Developments Using Rodin Theories by Thai Son Hoang,
Laurent Voisin and Michael Butler exploit domain theories expressed in
Event-B in order to capture domain-specific Abstract Data Types (ADTs)
and build dynamic systems using the developed structures. The approach is
applied on an industrial example of developing a train control system.

– Integrating Domain Modelling within a Formal Requirements Engineering
Method by Steve Tueno, Régine Laleau, Amel Mammar and Marc Frappier
describes a metamodel for a domain modelling language built from OWL
and PLIB. The language is part of the SysML/KAOS requirements engi-
neering method which also includes a goal modelling language. Moreover,
the formal semantics of SysML/KAOS models is specified, verified and
validated using the Event-B method.

• Knowledge-Based Modelling

– Operations Over Lightweight Ontologies and Their Implementation by
Marco A. Casanova and Rômulo C. Magalhães defines an algebra of
operators to build new ontologies from other ones ensuring sound propa-
gation of their constraints.

– Formal Ontological Analysis for Medical Protocols by Neeraj Kumar Singh,
Yamine Ait-Ameur and Dominique Méry. This chapter shows the use of
explicit domain-specific knowledge in a system model and how it is related
to a system model using an annotation mechanism. A proof-based formal
approach is set up to evaluate a medical protocol. An assessment of the
proposed approach is given through a case study, relative to a real-life ref-
erence protocol (electrocardiogram (ECG) interpretation), which covers a
wide variety of protocol characteristics related to different heart conditions.

– Deriving Implicit Security Requirements in Safety-Explicit Formal
Development of Control Systems by Inna Vistbakka and Elena Troubitsyna.
This work presents a formal approach that allows the designers to uncover
the implicit security requirements that are implied by the explicit system
level safety goals. It relies on modelling and refinement in Event-B to sys-
tematically uncover mutual interdependencies between safety and security
and derives the constraints that should be imposed on the system to guar-
antee its safety in the presence of accidental and malicious faults

– Towards an Integration of Probabilistic and Knowledge-Based Data
Analysis Using Probabilistic Knowledge Patterns by Klaus-Dieter Schewe
and Qing Wang. In this chapter, an extension to probabilistic knowledge
patterns is defined, where the rules become clauses in probabilistic logic.
Using maximum entropy semantics for the probabilistic logic, the fixed-point
construction can be extended resulting in a probabilistic model, i.e. distri-
butions for the randomised relations.

Preface vii

• Proof-Based Modelling

– An Explicit Semantics for Event-B Refinements by Pierre Castéran discusses
a shallow embedding of the Event-B semantics in the CoQ proof assistant.
This formalisation offers reasoning capabilities at the meta-level on machines
and their behaviours, considered as first-class citizens.

– Contextual Dependency in State-Based Modelling by Souad Kherroubi and
Dominique Méry. This chapter recalls and details preliminary results on
contextualisation and dependency state-based modelling using the Event-B
modelling language. The contextualisation of Event-B models is based on
knowledge provided from domains classified into constraints, hypotheses
and dependencies, according to truthfulness in proofs.

– Configuration of Complex Systems—Maintaining Consistency at Runtime by
Azadeh Jahanbanifar, Ferhat Khendek and Maria Toeroe addresses con-
sistency maintenance during dynamic system reconfiguration, i.e. satisfying
the defined constraints, and adjusting the system configuration at runtime.
The overall model-based framework for tackling these important issues is
described in this chapter.

• Assurance Cases

– Towards Making Safety Case Arguments Explicit, Precise, and Well
Founded by Valentìn Cassano, Thomas S.E. Maibaum and Silviya
Grigorova discusses the use of safty cases to assess the safety of a system.
Via a ‘safety argument’, a safety case aims to explicate, and to provide some
structure for, the kind of reasoning involved in demonstrating that a system
is safe. To date, there are several notations for writing down safety argu-
ments. These notations suffer from not having a well founded semantics,
making them deficient w.r.t. the requirements of a serious approach to
engineering. With this goal in mind, the authors take some steps towards
constructing a logical calculus for safety arguments by exploring some of the
features of this calculus. The authors consider that their work establishes a
framework for discussing safety arguments in a more rigorous manner.

– The Indefeasibility Criterion for Assurance Cases by John Rushby. In this
paper, the author adopts a criterion from epistemology and argues that
assurance should be “indefeasible”, meaning that we must be so sure that all
doubts and objections have been attended to that there is no (or, more
realistically, we cannot imagine any) new information that would cause us to
change our evaluation. Then, application of this criterion is explored to the
interpretation and evaluation of assurance cases and derive a strict but
practical characterisation for a sound assurance case.

• Refinement-Based Modelling

– An Event-B Development Process for the Distributed BIP Framework by
Badr Siala, Jean-Paul Bodeveix, Mamoun Filali and Mohamed Tahar Bhiri
defines as approach that makes explicit the transition from formal

viii Preface

requirements to a distributed executable model. It is based on a refinement
chain specified as Event-B models.

– Explicit Exploration of Refinement Design in Proof-Based Approach:
Refinement Engineering in Event-B by Fuyuki Ishikawa, Tsutomu Kobayashi
and Shinichi Honiden discusses the problem of refinement design and pre-
sents an approach for explicitly exploring and manipulating possible
refinement designs. Specifically, experiences on refinement planning and
refactoring to support engineering activities on refinement are reported.

– Constructing Rigorous Sketches for Refinement-Based Formal Development:
An Application to Android by Shin Nakajima. In this chapter, the author
addresses the problem of discovering refinement plans. The approach
introduces an iterative process to use Alloy to produce an under-constrained,
but unambiguous Alloy descriptions, which acts as a rigorous sketch of the
target for us to make a refinement plan that is deployed as an Event-B
refinement. The proposed modelling method was assembled as educational
materials for Event-B.

Toulouse, France Yamine Ait-Ameur
Tokyo, Japan Shin Nakajima
Vandœuvre-lès-Nancy, France Dominique Méry

Preface ix

Contents

Domain Modelling

Modelling an E-Voting Domain for the Formal Development
of a Software Product Line: When the Implicit Should Be Made
Explicit . 3
J. Paul Gibson and Jean-Luc Raffy

Domain-Specific Developments Using Rodin Theories 19
Thai Son Hoang, Laurent Voisin, and Michael Butler

Integrating Domain Modeling Within a Formal Requirements
Engineering Method . 39
Steve Tueno, Régine Laleau, Amel Mammar, and Marc Frappier

Knowledge Based Modelling

Operations over Lightweight Ontologies and Their
Implementation . 61
Marco A. Casanova and Rômulo C. Magalhães

Formal Ontological Analysis for Medical Protocols 83
Neeraj Kumar Singh, Yamine Ait-Ameur, and Dominique Méry

Deriving Implicit Security Requirements in Safety-Explicit Formal
Development of Control Systems . 109
Inna Vistbakka and Elena Troubitsyna

Towards an Integration of Probabilistic and Knowledge-Based Data
Analysis Using Probabilistic Knowledge Patterns 131
Klaus-Dieter Schewe and Qing Wang

xi

Proof Based Modelling

An Explicit Semantics for Event-B Refinements 155
Pierre Castéran

Contextual Dependency in State-Based Modelling 175
Souad Kherroubi and Dominique Méry

Configuration of Complex Systems—Maintaining Consistency
at Runtime . 199
Azadeh Jahanbanifar, Ferhat Khendek, and Maria Toeroe

Assurance Cases

Towards Making Safety Case Arguments Explicit, Precise,
and Well Founded . 227
Valentín Cassano, Thomas S. E. Maibaum, and Silviya Grigorova

The Indefeasibility Criterion for Assurance Cases 259
John Rushby

Refinement Based Modelling

An Event-B Development Process for the Distributed BIP
Framework . 283
Badr Siala, Jean-Paul Bodeveix, Mamoun Filali,
and Mohamed Tahar Bhiri

Explicit Exploration of Refinement Design in Proof-Based Approach:
Refinement Engineering in Event-B . 309
Fuyuki Ishikawa, Tsutomu Kobayashi, and Shinichi Honiden

Constructing Rigorous Sketches for Refinement-Based Formal
Development: An Application to Android . 331
Shin Nakajima

xii Contents

Domain Modelling

Modelling an E-Voting Domain for the
Formal Development of a Software
Product Line: When the Implicit Should
Be Made Explicit

J. Paul Gibson and Jean-Luc Raffy

Abstract There has been much recent interest in the development of electronic vot-
ing (e-voting) systems, but there remain many outstanding research challenges for
software and system engineers. Software product line (SPL) techniques offer many
advantages for the practical development of reliable and trustworthy e-voting sys-
tems, but the composition of system features poses significant problems that can be
addressed satisfactorily only through the use of formal methods. When such systems
are used in government elections, then they are obliged to follow legal standards
and/or recommendations written in natural language. For the formal development
of e-voting systems, it is necessary to build a domain model which is consistent
with the legal requirements. We have already demonstrated that Event-B models can
be used to verify critical requirements for e-voting system components. However,
the refinement-based approach needs to be applied to the engineering of a complete
e-voting system. We report on our approach, using Event-B contexts to model an
e-voting ontology, and its integration with an e-voting features model tree which
formally specifies the SPL. During this work, we identified the importance of mak-
ing the implicit explicit in two different ways—domain experts need to explicitly
model implicit knowledge, and Event-B modellers need to explicitly communicate
the semantics of the formal model constructs to the domain experts. If either of
these tasks is not adequately carried out, then this compromises validation of the
requirements model (instance of the SPL).

J. P. Gibson (B)
SAMOVAR UMR 5157, Télécom Sud Paris, 9 rue Charles Fourier, 91011 Evry cedex, France
e-mail: paul.gibson@telecom-sudparis.eu

J.-L. Raffy
Télécom Sud Paris, Evry, France
e-mail: jean-luc.raffy@telecom-sudparis.eu

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_1&domain=pdf
mailto:paul.gibson@telecom-sudparis.eu
mailto:jean-luc.raffy@telecom-sudparis.eu
https://doi.org/10.1007/978-981-15-5054-6_1

4 J. P. Gibson and J.-L. Raffy

1 Introduction

Electronic voting systems are those which depend on some electronic technology—
including both software and hardware—for them to function as required [13]. Initial
adoption of electronic voting systems focused on direct recording electronic (DRE)
machines, where the voting is under supervision in a controlled environment, com-
monly known as a voting station. These systems drew much criticism, and many
problems were reported around the world [35]. Much progress has been made and
there is general agreement that it is possible to develop DRE that provides a reliable,
trustworthy and secure e-voting system [13]. However, there are continued reports
of problems with such systems [26], which are due to poor engineering practices and
lack of understanding of the complex interaction between e-voting system require-
ments [32]. The state-of-the-art in such machines now promotes the use of a form of
voter verified printed audit trail (VVPAT) [47], and a risk-limiting audit or manual
recount [30].

E-voting systems make up a family of products which share common functional-
ity, but where each system has its own unique requirements [18]. As a consequence,
they are well-suited to the development of a software product line [14]. Such tech-
niques offer many advantages for the practical development of reliable and trust-
worthy e-voting systems, but the composition of system features poses significant
problems that can be addressed satisfactorily only through the use of formalmethods.
A formal domain model for e-voting systems is a critical part of any such formal
development [15] and this correspond to the standard notion of ontology [11].

Previous work has demonstrated that Event-Bmodels can be used to verify critical
requirements for e-voting system components [5, 6]. Recently, it has been shown
how the refinement-based approach can be applied to the engineering of a complete
e-voting system [12]. The next step in our research is the integration of the SPL
approach for formal specification of system requirements, and the refinement of
such a specification to a concrete implementation. We report on our ongoing work,
using Event-B contexts to model an e-voting ontology, and its integration with an
e-voting features model tree which formally specifies the SPL.

Our research has identified the key issue of making explicit that which may be
implicit—domain experts need to explicitly model implicit knowledge and Event-
B modellers need to explicitly communicate the semantics of the formal model
constructs to the domain experts. If either of these tasks is not adequately carried
ou,t then this compromises validation of the requirements model (instance of the
SPL).

In general, “explicit” means clearly expressed or readily observable while
“implicit” means implied or expressed indirectly. However, there is some incon-
sistency regarding the precise meaning of these adjectives [1]:

• Logic andbeliefmodels [29]—“a sentence is explicitly believedwhen it is actively
held to be true by an agent and implicitly believed when it follows from what is
believed.”

Modelling an E-Voting Domain for the Formal Development of a Software … 5

• Semantic web [42]—“semantics can be implicit, existing only in the minds of the
humans […]. They can also be explicit and informal, or they can be formal.”

• Requirements engineering community [45]—use the terms to distinguish
between declarative (descriptive) and operational (prescriptive) requirements,
where they acknowledge the need for “a formal method for generating explicit,
declarative, type-level requirements from operational, instance-level scenarios in
which such requirements are implicit”.

We propose a more formal (explicit) treatment of the adjectives implicit and explicit
when engineering electronic systems.

The remainder of the paper is structured as follows. Section2 provides an overview
of e-voting machines: the complexity of the requirements, the different types of
implementations, and the legal aspects. Section3 is concerned with building a for-
mal domain model as a type of ontology and examines the question of when the
explicit should be implicit (if ever). Section4 reviews some real-world examples of
e-voting systems where problems have arisen because of the implicit–explicit dual-
ity. Section5 reports on our ongoing research and development of a SPL for e-voting:
using Event-B to specify a domain ontology, a SPL feature tree and a generic sys-
tem architecture, in order to support a feature-driven refinement process towards a
correct-by-construction implementation. The paper concludes in Sect. 6.

2 E-Voting Machines

2.1 Complex, Interacting Requirements

Since the earliest analysis of e-voting systems [20], it has been argued that there are
many complex interactions between the different requirements that these systems
may be required to meet. Much of the current research in this area is concerned with
a better understanding of these interactions, designing and implementing systems that
meet certain combinations of requirements and evaluating the use of such systems
during elections:

1. Authentication [10]—how to guarantee that the person who wishes to record a
vote is the person they claim to be?

2. Anonymity/Privacy/Secrecy [7]—I should be able to vote without anyone know-
ing how I have voted.

3. Verifiability/Auditability [50]—I should be able to check that the voting process
was executed correctly.

4. Accuracy [9]—whether the votes were tabulated/counted following the election
rules.

5. Usability [3]—if the voting interface is easy to use for the voters and election
administrators.

6 J. P. Gibson and J.-L. Raffy

6. Understandability/Trustability [39]—can voters understand how the system
works, and can they trust that their understanding is correct?

7. Fault Tolerance/Security from attack [37]—is the system secure against attacks
and tolerant of faults in its component parts (electronic or otherwise).

8. Availability [28]—can access to the e-voting system be attacked, leading to a
denial of service?

9. Maintainability [18]—as requirements change, can the system evolve in order
to maintain correct behaviour?

10. Cost/Lifetime [35]—will the machines cost more/less than the traditional sys-
tems (over the lifetime of the system), including development and maintenance
costs?

11. Openness/transparency [38]—is difficult to guarantee when parts of the system
are outsourced.

There are numerous documented complex interactions between these different
requirements. For example, it is difficult to provide a usable interface when applying
complex cryptographic protocols for security. Verifiability and anonymity appear to
be inconsistent—how can a voter demonstrate that their vote was counted incorrectly
if they cannot demonstrate how they have voted? Authentication and anonymity are
difficult to guarantee when a voter has to identify themselves to the same machine
that will be used to record their vote. Understandability is compromised when com-
plex cryptographic protocols are used to provide verifiability. Fault tolerance and
auditability both increase the cost of system development and maintenance. Making
the system code open source may conflict with other security requirements.

2.2 Remote Electronic Voting

Remote electronic voting (REV) permits the voter to record a vote without hav-
ing to be physically present in a supervised environment [27]. The voter must use
unsupervised mechanisms for recording and transmitting their vote [19] In the mod-
ern world, this will most likely be an electronic computer/device that is connected
to the Internet [24]. Coercion is the biggest risk [8], and authentication is a major
challenge [34]. Denial of service attacks has already been observed [41]. Computer
viruses and malware provide powerful attack mechanisms, that have already been
developed [22].

2.3 End-to-End Verifiable Systems

With End-to-end verifiable systems (E2E-V) [25], voters have an opportunity to
verify that their vote is cast as they intended and correctly recorded (individual
verifiability) Anyone can verify that all recorded votes were properly included in the

Modelling an E-Voting Domain for the Formal Development of a Software … 7

tally (universal verifiability). Such systems provide a high degree of evidence that the
outcome is correct, assuming that the voters correctly performed the verifications.
E2E-V systems typically use sophisticated cryptographic techniques for providing
privacy (although this is not a requirement). Such protocols should guarantee that
voters do not need to blindly trust any component of the system; all components can
be scrutinised so that their computation can be verified if their trustworthiness is in
doubt. However, even requiring the use of E2E-V systems does not guarantee that
the system will meet all the requirements.

2.4 Laws Standards and Recommendations

We must ask whether a given e-voting system is lawful, as a system that does not
comply with international law should not be used in democratic elections. The fun-
damental principles of elections are firmly stated in article 25 of the International
Covenant on Civil and Political Rights and article 21 of the Universal Declara-
tion of Human Rights. Voting systems are normally required to comply with laws at
other levels of governance, for example, constitutional, national, state, regional, etc.
These laws often make reference to international and national standards that must
be followed. An e-voting system has a myriad of inter-related legal requirements to
meet; these multiple layers do not provide solid foundations upon which to build a
system—none of the layers are fixed and the texts are open to different interpreta-
tions. In some cases, there is no consistent interpretation of system requirements.
When problems arise with a particular e-voting system, it is for judges to decide if
these were due to some aspect which could be said to be illegal. The final problem
to consider is that each voting system has to meet specific needs that are not directly
addressed by the laws and standards. The requirements of the system must somehow
integrate these specific needs with multiple layers of laws and standards.

There are four main actors in the specification and use of e-voting system require-
ments:

1. The standards bodies establish the requirements that all e-voting systems (within
a certain geopolitical space) must meet.

2. The procurement offices establish the requirements that a specific machine must
meet in order for it to be purchased for use in a specific election.

3. Themanufacturers developmachines thatmeet the generic requirements specified
by the standards bodies and the specific requirements stipulated by procurement
offices.

4. The Independent Testing Authorities test the delivered machines to ensure that
they meet the requirements.

Unfortunately, there is evidence that the communication and co-ordination between
these actors are poorly managed [33].

8 J. P. Gibson and J.-L. Raffy

3 Need for a Formal Domain Model: Ontology

3.1 Terminology: Dictionaries and Glossaries

The European Council of Europe e-voting recommendations [46] recognises that
consistent use of terminology is key, and states “In this recommendation the fol-
lowing terms are used with the following meanings: …” The terms that it chooses
to include are authentication, ballot, candidate, casting of the vote, e-election or
e- referendum, electronic ballot box, e-voting, remote e-voting, sealing, vote, voter,
voting channel, voting options and voters registrar. The list is very incomplete, but
it is a first important step towards developing an e-voting domain ontology. It should
be noted that, even in this short set of definitions, fundamental terms are used incon-
sistently. A formal ontological model would facilitate automated validation of model
consistency.

A number of other countries, outside of Europe, have also developed glossaries for
their particular voting systems and requirements, for example, Canada,1 Australia2

and USA.3 The level of detail in such glossaries varies from a short list of terms to
hundreds of pages. There is a clear need for a standard ontological domain model.

3.2 When the Explicit Should Be Implicit: Ontologies and
Domain-Specific Languages

In all forms of communication, implicit shared understanding improves signal rate,
and is often necessary in achieving an acceptable communicationmechanism. Shared
implicit understanding is goodwhen it is coherent. There should always be an explicit
representation of the implicit knowledge as a base reference, if needed. This is the
role of an ontology [21].

When a community of developers shares much common knowledge, then the next
step is the development of a domain-specific language (DSL) [44]. Many such DSLs
are structured in terms of domain features [43], and this provides a strong link to the
SPL modelling and development approach. Building a DSL is a complex task [36],
and there has been much recent research on using formal approaches [4]. Integration
of DSLs and ontologies requires the use of formal methods [48].

With respect to the implicit/explicit dichotomoy, such DSLs bring the best of both
worlds. Shared domain knowledge is implicit when the DSL is used to describe and
synthesise systems within the domain, but is also explicit when used to reason about
and analyse such systems. The implicit aids human–human interaction and commu-

1www.elections.ca.
2www.aec.gov.au/footer/Glossary.htm.
3www.eac.gov/voting-equipment/voluntary-voting-system-guidelines/.

www.elections.ca
www.aec.gov.au/footer/Glossary.htm
www.eac.gov/voting-equipment/voluntary-voting-system-guidelines/

Modelling an E-Voting Domain for the Formal Development of a Software … 9

nication. The explicit aids automation and tool development. Both are necessary for
model validation.

4 E-Voting: Examples of When the Implicit Should Be
Explicit

4.1 DUALVOTE—E-Pen

The authors have been involved in the development of a novel e-voting system
(DUALVOTE) that provides an innovative interface for e-voting using an electronic
pen [31]. The advantages of the system arise out of the way in which it generates
a paper vote (for audit) and an electronic vote simultaneously. However, there were
some problems that arose when testing the system (during real elections) because of
the unpredictable behaviour of the voters [17].

A major issue was that the developers had made implicit assumptions about voter
behaviour which had never been explicitly stated to the voters. The correct function-
ality of the system was dependent on these assumptions being true. Unfortunately,
this was not the case:

• Some voters recorded their vote using their own pen rather than the e-pen that was
provided. We wrongly assumed that all voters would record their votes using the
e-pen.

• Some voters recorded their votes on a surface other than the electronic surface
provided. The instructions explicitly stated that they should write on the surface
provided, but it was wrongly assumed that all voters would follow the instructions.

• It was explicitly stated that any identifying mark on the ballot paper which could
uniquely identify the voter would render the vote invalid. However, there was no
explicit statement of how a machine could automate the identification of such
invalid votes. The system failed to function correctly because the election admin-
istrators had implicit (domain-specific) knowledge of how voters could mark
their vote which had never been explicitly stated. As an additional complica-
tion, this knowledge varied from election-to-election and from constituency-to-
constituency. There were even disagreements between election officials in the
same voting station as to what would render a vote invalid.

• The electronic voting interface was a limited resource and tying up the resource
could lead to a denial of service type attack. We implicitly, and wrongly, assumed
that all voters would spend a reasonable amount of time to vote. This was based on
us wrongly assuming that voters would not deliberately attack the voting system.
A simple attack, in this case, would be to stay at the voting interface for a long
(unreasonable) amount of time. The implicit need to timeout a voter should have
been explicitly stated and defined before the voting process started.

10 J. P. Gibson and J.-L. Raffy

Our DUALVOTE experience highlighted the need to make the implicit explicit when
developing voting systems.

4.2 Implicit Programming Language Semantics

While analysing an e-voting system, we identified issues that arise when system
components are developed independently, and they make inconsistent assumptions
about the global system and its environment. A good example of this arises when
the system software is written using different languages. The meaning of software
behaviour is now dependent on the semantics of the programming language concepts.
Unfortunately, concepts that share the same syntax (in different languages) do not
always share the same semantics.

This can happen with concepts as simple as arrays [16]. In this study, two com-
ponents of the system were developed using different modelling/programming lan-
guages/techniques. Each of the developers had a correct implicit understanding of
the semantics of arrays in the language they were using (and an explicit statement
of these semantics was available). However, the semantics of arrays was different in
each of the two languages. As votes moved from being recorded in one language to
being counted in another language, their representations changed. The inconsistency
was caught late in development (during testing), but it would be better if such issues
had been avoided at the beginning of development.

4.3 Negative Counts—Can Anything Be Too Obvious?

It is obvious that a vote count for a specific option (or candidate) should not be
negative. Returning a negative count is clearly an error. Such negative counts have
been reported in real elections. We must ask how such a stupid error could have
happened. Should non-negativity of counts be explicit in the requirements speci-
fication? In order to answer this question, we need to examine a major difference
between modelling languages and programming languages with respect to integer
representation.

In Event-B, there are three in-built types that can be used for counting: integers,
naturals (including 0) and naturals (excluding 0). If we model a count as a natural
(NAT), then the model guarantees that the count has a non-negative value. There
should be no need to explicitly state this as it is implied by the semantics of NAT.
However, if the client (the person specifying the system requirements) does not
know/understand the formal semantics of Event-B, then how can they validate the
model as being correct? After validation, the model has to be implemented. Most
programming languages do not contain the notion of a natural number as a primitive
type. As a consequence, it is not surprising that a count could be implemented as
an integer (which does permit negative values). In such a case, a program invariant

Modelling an E-Voting Domain for the Formal Development of a Software … 11

(stating that the count is always non-negative) would have solved the problem. This
property of NATs is implicit in the Event-B model; thus the the non-negative count
invariant is not explicitly stated and may be overlooked in an integer-based imple-
mentation. Of course, using a refinement-based development method will prohibit
an incorrect implementation.

A similar issue occurs with many other model language semantics. A good exam-
ple is that of sets. The modeller knows that a collection of entities modelled as a set
implicitly guarantees that the collection contains no repeated elements; but the client
may not know this. In e-voting, it is often very important that collections have such
set-like behaviour. How should we validate such models?

4.4 Vote Coercion in a Typical Voting Station

Formal methods are generally used in the development of electronic systems. How-
ever, they can also be used in modelling and analysing traditional voting systems
(with no electronic components). Insight from the formal development of e-voting
systems has helped us to identify previously undocumented issueswith the traditional
systems. Without a formal model—explicitly modelling assumptions—the correct
functioning of a traditional system can be guaranteed only if the implicit assumptions
are valid. Unfortunately, many of these implicit assumptions have not been explicitly
documented and are true only because the actors in the system behave in a certain
way. A simple example from voting a polling stations in France illustrates this case.

In remote voting, there is a major threat of man-in-the-middle attacks on the
communication network between the voting booth and the ballot box. Such attacks
have been modelled using formal methods and we have a good understanding of how
systems can be defended against such attacks. By explicitly modelling such attacks,
we can verify that our systems are protected against them. It has been claimed that no
such threats exist when using traditional paper voting at a controlled voting station,
as there is no underlying network to be attacked. Such reasoning is based upon a false
assumption that is implicit in the correct functioning of a traditional voting station;
namely, that voters do not interact with other parties between recording their vote
anonymously in the booth and the submission of the recorded vote in the ballot box.
In France, and in other countries, the passage between the booth and the box is not
strictly controlled. The implicit need for voters to transfer their vote directly from the
booth to the box is, in general, not explicitly enforced. This could lead to problems
of coercion and vote buying. The problem is mitigated by the fact that the polling
station is a public area where voters can be observed; but there is no guarantee that
invalid behaviour of voters will be witnessed.

12 J. P. Gibson and J.-L. Raffy

5 A SPL for E-Voting

In this section, we provide a brief overview of our current work in developing a
formal SPL for e-voting.

5.1 A Feature Tree Model for E-Voting

In Fig. 1,we illustrate part of the feature tree for an early version of our SPLprototype.
From the diagram (which shows only part of the full feature tree model) we

see that VoteCounting is a mandatory abstract feature of our e-voting SPL.
ValidityChecking is a mandatory (sub) feature ofVoteCountingwhich can
be done either automatically or manually (which are modelled as concrete features).
The details of individual requirements associated to each feature are not important.
We note that the number of features (in the complete tree) was chosen to provide a
SPLwhichwas simple enough to develop, but complex enough to provide a proof-of-
concept. In our current version, our SPL can be configured into hundreds of different
concrete instances.

5.2 Formalisation in Event-B

The tree is specified formally in an Event-B generic context, which is generated
automatically from a feature tree graphical editor. The configuration of the specific
instance of the SPL can also be done interactively using a graphical editor. Again,
we generate automatically the Event-B context corresponding to the instance. At this

Fig. 1 The (partial) feature tree for an e-voting SPL

Modelling an E-Voting Domain for the Formal Development of a Software … 13

Fig. 2 The instantiated context for Presidential Election Round 2

stage, the formal methods guarantee that the tree instantiation is a valid instance of
the SPL, respecting the constraints specified in the feature tree model. We now have
to associate behaviour with each of the features in the tree. Currently, we follow a
3-tier approach:

1. Each feature has an associated context where static relationships between sets
and constants are specified. These sets and constants are taken from an e-voting
domain ontology context. (Fig. 2 illustrates the context that is generated for an
instance corresponding to the second round of a presidential election in France.)

2. Each feature has an associated state, which is a union of all system variables that
it is concerned with. Features specify an invariant over the relevant state. The state
variables are also part of the domain ontology.

3. Each feature can be associated to one ormore events that correspond to changes to
its relevant state variables. The events are also modelled in the domain ontology.

14 J. P. Gibson and J.-L. Raffy

As such, the domain ontology groups together all the concepts (static and dynamic)
that are shared between the SPL features. More details of the formalisation of the
feature tree can be found in [2].

Combining these three tiers into a single abstract Event-B machine is the main
challenge that we are currently addressing.

5.3 A Pipeline Design Pattern

The initial abstract machine is modelled as a simple pipeline, of 4 phases—set up,
voting, counting and audit (see Fig. 3). We have identified a useful formal design
pattern, where a state variable in one phase becomes a constant in the next phase:

• During election set up, the list of candidates and list of electors are variable (as
they must register before being added to the lists). However, once the set up is
completed, these lists must be fixed.

• During the voting step, the list of electors who have voted is variable (names get
added as votes are recorded). However, once the polling station closes, this list is
fixed before the count begins.

• Counting, in phase 3, will be complete when the list of ballots counted is complete,
and then we can start the final audit phase.

We note that the precise semantics of the pipeline operator have recently been
published [12]. We also note that the same paper addresses a correct-by-construction
refinement approach using the same architecture. However, the initial abstract

Fig. 3 The pipeline architecture

Modelling an E-Voting Domain for the Formal Development of a Software … 15

machine in this work is not initially generated from the SPL feature tree. The devel-
opment of the feature tree model and the validation of the pipeline approach were
done in parallel, and, as such, are not yet fully integrated.

5.4 Feature-Driven Refinement Towards Implementation

Developing features as a sequence of refinements guarantees correctness if such a
sequence can be found. The order in which features/refinements are added is very
important. We propose that such refinement should be driven by the feature config-
uration. Developing features in parallel poses many additional issues with respect to
feature interactions [14]. We can usefully classify feature pairs in terms of the way
in which they interact following the approach for composing fair objects [23]. As
we identify (enemy) features that have contradictory requirements, we update the
feature tree with a constraint to preclude their composition. As we identify (politi-
cian) features that need special co-ordination in order for them to work correctly, we
refine the system in such a way that guarantees such a co-ordination. Features that
require no special co-ordination in order to work correctly together are known as
friends and their refinements can be safely developed in parallel (unlike with politi-
cians). Development of a feature-driven refinement method is a major challenge in
the formal development of software product lines [49], and is the major challenge in
our future research.

6 Conclusions

We have presented our ongoing research and development of a formal SPL for
e-voting. We have placed this work within the context of domain ontologies and
demonstrated the need to better model and understand the implicit–explicit semantic
dichotomy. Even if we trust the systems that we develop formally using our approach,
we still do not know howwe can get the public to trust them.We argue that if the SPL
is trustworthy, then it guarantees the trustworthiness of every machine that is built
using it. Using our approach does not guarantee the absence of unwanted feature
interactions. However, it will aid in detecting such interactions and make explicit
to the client the incompatibility between certain features. In the future, we would
like to develop a prescriptive assurance case mechanism (such as seen in [40]) based
around the SPL model. As we configure and develop more and more e-voting sys-
tems using our approach, we may consider the SPL e-voting feature tree as a type
of Domain-Specific Language which evolves as we improve our understanding of
feature interactions. As future work, we are interested in whether the formal SPL
domain language ontological approach generalise to other problem domains.

16 J. P. Gibson and J.-L. Raffy

References

1. Y. Ait-Ameur, J.P. Gibson, D. Méry, On implicit and explicit semantics: integration issues in
proof-based development of systems, in Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Specialized Techniques and Applications. Lecture Notes in Computer
Science, vol. 8803, ed. by T. Margaria, B. Steffen (Springer, Berlin, Heidelberg, 2014), pp.
604–618

2. A. Ait Wakrime, J.P. Gibson, J.-L. Raffy, Formalising the requirements of an e-voting soft-
ware product line using event-B, in 27th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises, Paris, France, June 2018 (IEEE, 2018), pp. 78–84

3. B.B. Bederson, B. Lee, R.M. Sherman, P.S. Herrnson, R.G. Niemi, Electronic voting system
usability issues, in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (ACM, 2003), pp. 145–152

4. J.-P. Bodeveix,M. Filali, J. Lawall, G.Muller, Formalmethodsmeet domain specific languages,
in Integrated Formal Methods (Springer, 2005), pp. 187–206

5. D. Cansell, J.P. Gibson, D. Méry, Formal verification of tamper-evident storage for e-voting,
in SEFM (IEEE Computer Society, 2007), pp. 329–338

6. D. Cansell, J.P. Gibson, D. Méry, Refinement: a constructive approach to formal software
design for a secure e-voting interface. Electr. Notes Theor. Comput. Sci. 183, 39–55 (2007)

7. C.-L. Chen, Y.-Y. Chen, J.-K. Jan, C.-C. Chen, A secure anonymous e-voting system based on
discrete logarithm problem. Appl. Math. Inf. Sci. 8(5), 2571 (2014)

8. J. Clark, U. Hengartner, Selections: internet voting with over-the-shoulder coercion-resistance,
in Financial Cryptography, vol. 7035 (Springer, 2011), pp. 47–61

9. D. Cochran, J.R. Kiniry, Formal model-based validation for tally systems, in International
Conference on E-Voting and Identity (Springer, 2013), pp. 41–60

10. S. Falkner, P. Kieseberg, D.E. Simos, C. Traxler, E. Weippl, E-voting authentication with qr-
codes, in International Conference on Human Aspects of Information Security, Privacy, and
Trust (Springer, 2014), pp. 149–159

11. D. Fensel, Ontologies (Springer, 2001)
12. J.P. Gibson, S. Kherroubi, D. Méry, Applying a dependency mechanism for voting protocol

models using event-B, in Formal Techniques for Distributed Objects, Components, and Sys-
tems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2017,
Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, ed. by A. Bouajjani, A. Silva. Lecture
Notes in Computer Science, vol. 10321 (Springer, 2017), pp. 124–138

13. J.P. Gibson, R. Krimmer, V. Teague, J. Pomares, A review of e-voting: the past, present and
future. Ann. Telecommun. 71(7), 279–286 (2016)

14. J.P. Gibson, E. Lallet, J.-L. Raffy, Feature interactions in a software product line for e-voting,
in Feature Interactions in Software and Communication Systems X, ed. by Nakamura and
Reiff-Marganiec. Lisbon, Portugal, June 2009 (IOS Press, 2009), pp. 91–106

15. J.P. Gibson, E. Lallet, J.-L. Raffy, Engineering a distributed e-voting system architecture:
meeting critical requirements, in Architecting Critical Systems, First International Symposium,
ISARCS2010,Prague,CzechRepublic, June23-25, 2010,Proceedings, ed. byH.Giese.Lecture
Notes in Computer Science, vol. 6150 (Springer, 2010), pp. 89–108

16. J.P. Gibson, E. Lallet, J.-L. Raffy, Formal object oriented development of a voting system test
oracle. Innov. Syst. Softw. Eng. (Spec. issue UML-FM11) 7(4), 237–245 (2011)

17. J.P. Gibson, D. MacNamara, K. Oakley, Just like paper and the 3-colour protocol: a voting
interface requirements engineering case study, in Proceedings of 2011 International Workshop
on Requirements Engineering for Electronic RE-Vote 2011, Trento, Italy, August 2011 (IEEE,
2011), pp. 66–75

18. J.P. Gibson, M. McGaley, Verification and maintenance of e-voting systems and standards, in
8th European Conference on e-Government, ed. by D. Remenyi. Lausanne, Switzerland, July
2008 (Academic Publishing International, 2008), pp. 283–289

Modelling an E-Voting Domain for the Formal Development of a Software … 17

19. G.S. Grewal, M.D. Ryan, L. Chen, M.R. Clarkson, Du-vote: remote electronic voting with
untrusted computers, in Computer Security Foundations Symposium (CSF), 2015 IEEE 28th
(IEEE, 2015), pp. 155–169

20. D. Gritzalis, Principles and requirements for a secure e-voting system. Comput. Secur. 21(6),
539–556 (2002)

21. T.R. Gruber, Toward principles for the design of ontologies used for knowledge sharing? Int.
J. Hum. Comput. Stud. 43(5-6), 907–928 (1995)

22. J.A. Halderman, Practical attacks on real-world e-voting. Real-World Electronic Voting:
Design, Analysis and Deployment (2016), pp. 145–171

23. G. Hamilton, J.P. Gibson, D. Méry, Composing fair objects, in International Conference on
Software Engineering Applied to Networking and Parallel/Distributed Computing (SNPD ’00),
ed. by Fouchal and Lee. Reims, France, May (2000), pp. 225–233

24. D. Jefferson, A.D. Rubin, B. Simons, D.Wagner, Analyzing internet voting security. Commun.
ACM 47(10), 59–64 (2004)

25. R. Joaquim, P. Ferreira, C. Ribeiro, Eviv: an end-to-end verifiable internet voting system.
Comput. Secur. 32, 170–191 (2013)

26. T. Kohno, A. Stubblefield, A.D. Rubin, D.S. Wallach, Analysis of an electronic voting system,
in IEEE Symposium on Security and Privacy (S&P04) (IEEE, 2004), pp. 27–40

27. R. Krimmer, M. Volkamer, Bits or paper? comparing remote electronic voting to postal voting,
in EGOV (Workshops and Posters) (2005), pp. 225–232

28. T.W. Lauer, The risk of e-voting. Electron. J. E-Gov. 2(3), 177–186 (2004)
29. H.J. Levesque, A logic of implicit and explicit belief, in AAAI, ed. by R.J. Brachman (AAAI

Press, 1984), pp. 198–202
30. M. Lindeman, P.B. Stark, A gentle introduction to risk-limiting audits. IEEE Secur. Priv. (5),

42–49 (2012)
31. D. MacNamara, J.P. Gibson, K. Oakley, A preliminary study on a dualvote and prltvoter hybrid

system, in International Conference for E-Democracy and Open Government 2012, Danube
University Krems, Austria, May (2012), pp. 77–89. Edition Donau-Universitt Krems

32. M. McGaley, J.P. Gibson, E-Voting: A Safety Critical System. Technical Report NUIM-CS-
TR-2003-02, NUI Maynooth, Computer Science Department (2003)

33. M. McGaley, J.P. Gibson, A critical analysis of the council of Europe recommendations on
e-voting, inEVT’06: Proceedings of theUSENIX/Accurate Electronic Voting TechnologyWork-
shop 2006 on Electronic Voting Technology Workshop, Berkeley, CA, USA (2006), pp. 1–13.
USENIX Association

34. B. Meng, A secure non-interactive deniable authentication protocol with strong deniability
basedondiscrete logarithmproblemand its applicationon internet votingprotocol. Inf. Technol.
J. 8(3), 302–309 (2009)

35. R. Mercuri, A better ballot box? IEEE Spectr. 39(10), 46–50 (2002)
36. M. Mernik, J. Heering, A.M. Sloane, When and how to develop domain-specific languages.

ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)
37. P.G. Neumann, Security criteria for electronic voting, in 16th National Computer Security

Conference, vol. 29 (1993)
38. A.-M. Oostveen, Outsourcing democracy: losing control of e-voting in the Netherlands. Policy

Internet 2(4), 201–220 (2010)
39. J. Pomares, I. Levin, R.M. Alvarez, G.L. Mirau, T. Ovejero, From piloting to roll-out: voting

experience and trust in thefirst full e-election inArgentina, in20146th InternationalConference
on Electronic Voting: Verifying the Vote (EVOTE) (IEEE, 2014), pp. 1–10

40. T. Rhodes, F. Boland, E. Fong, M. Kass, Software assurance using structured assurance case
models. J. Res. Nat. Inst. Stand. Technol. 115(3), 209 (2010)

41. D. Springall, T. Finkenauer, Z. Durumeric, J. Kitcat, H. Hursti,M.MacAlpine, J.A. Halderman,
Security analysis of the Estonian internet voting system, in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (ACM, 2014), pp. 703–715

42. M. Uschold, Where are the semantics in the semantic web? AI Mag. 24, 25–36 (2003)

18 J. P. Gibson and J.-L. Raffy

43. A. Van Deursen, P. Klint, Domain-specific language design requires feature descriptions. CIT.
J. Comput. Inf. Technol. 10(1), 1–17 (2002)

44. A. Van Deursen, P. Klint, J. Visser, Domain-specific languages: an annotated bibliography.
ACM Sigplan Not. 35(6), 26–36 (2000)

45. A. van Lamsweerde, L. Willemet, Inferring declarative requirements specifications from oper-
ational scenarios. IEEE Trans. Softw. Eng. 24, 1089–1114 (1998)

46. Venice Commission, Code of good practice in electoral matters. CDL-AD 23, 2002 (2002)
47. A. Villafiorita, K. Weldemariam, R. Tiella, Development, formal verification, and evaluation

of an e-voting system with VVPAT. Trans. Info. For. Sec. 4(4), 651–661 (2009)
48. T. Walter, J. Ebert, Combining DSLS and ontologies using metamodel integration, in DSL

(Springer, 2009), pp. 148–169
49. J.White, J.A. Galindo, T. Saxena, B. Dougherty, D. Benavides, D.C. Schmidt, Evolving feature

model configurations in software product lines. J. Syst. Softw. 87, 119–136 (2014)
50. X. Zou, H. Li, F. Li, W. Peng, Y. Sui, Transparent, auditable, and stepwise verifiable online

e-voting enabling an open and fair election. Cryptography 1(2), 13 (2017)

Domain-Specific Developments Using
Rodin Theories

Thai Son Hoang, Laurent Voisin, and Michael Butler

1 Introduction

The Theory plug-in [4] for the Rodin Platform [3] enables modellers to extend the
mathematical modelling notation for Event-B [2], with accompanying support for
reasoning about the extended language.We consider in this presentation using Rodin
theories to capture domain-specific Abstract Data Types (ADTs) and build dynamic
systems using the developed structures. In particular, we proposed the notion of
theory instantiation to incorporate more concrete representation of the ADTs. At
the same time, the dynamic systems are refined further with respect to the changes
of the underlying ADTs. We illustrate our approach with an industrial example of
developing a train control system.We anticipate theory instantiation to be a promising
direction for reusing theories via abstraction.

Structure

The rest of the chapter is structured as follows. Section2 presents some background
information on the Event-B modelling method and the Theory extension. We pro-
pose our approach for theory instantiation for system development in Sect. 3. The
proposed mechanism is illustrated using a simplified train control system in Sect. 4.
We conclude and discuss the advantage of our approach in Sect. 5.

T. S. Hoang (B) · M. Butler
University of Southampton, Southampton, UK
e-mail: T.S.Hoang@ecs.soton.ac.uk

M. Butler
e-mail: mjb@ecs.soton.ac.uk

L. Voisin
Systerel, Aix-en-Provence, France
e-mail: laurent.voisin@systerel.fr

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_2&domain=pdf
mailto:T.S.Hoang@ecs.soton.ac.uk
mailto:mjb@ecs.soton.ac.uk
mailto:laurent.voisin@systerel.fr
https://doi.org/10.1007/978-981-15-5054-6_2

20 T. S. Hoang et al.

2 Background

2.1 Event-B

Event-B [2] is a formal method for system development. The main features of Event-
B include the use of refinement to introduce system details gradually into the formal
model. An Event-B model contains two parts: contexts and machines. Contexts con-
tain carrier sets, constants, and axioms that constrain the carrier sets and constants.
Machines contain variables v, invariants I(v) that constrain the variables, and events.
An event comprises a guard denoting its enabling-condition and an action describing
how the variables are modified when the event is executed. In general, an event e
has the following form, where t are the event parameters, G(t, v) is the guard of the
event, and v := E(t, v) is the action of the event. Note that actions in Event-B are,
in the most general case, nondeterministic [6]. We only use deterministic actions in
this chapter.

e == any t whereG(t, v) then v:= E(t, v) end

A machine in Event-B corresponds to a transition system where variables repre-
sent the states and events specify the transitions. Contexts can be extended by adding
new carrier sets, constants, axioms, and theorems. Machine M can be refined by
machine N (we call M the abstract machine and N the concrete machine). The state
ofM and N are related by a glueing invariant J(v,w) where v, w are variables ofM
and N, respectively. Intuitively, any “behaviour” exhibited by N can be simulated by
M, with respect to the glueing invariant J. Refinement in Event-B is reasoned event-
wise. Consider an abstract event e and the corresponding concrete event f. Somewhat
simplifying, we say that e is refined by f if f’s guard is stronger than that of e and
f’s action can be simulated by e’s action, taking into account the glueing invariant
J. More information about Event-B can be found in [6]. Event-B is supported by
the Rodin platform (Rodin) [3], an extensible toolkit which includes facilities for
modelling, verifying the consistency of models using theorem proving and model
checking techniques, and validating models with simulation-based approaches.

2.2 Theory Plug-in

The Theory plug-in [4] enables developers to define new (polymorphic) datatypes
and operators upon those datatypes. These additional modelling concepts might be
defined directly (including inductive definitions) or axiomatically. Theories provide
the encapsulation of datatypes and enrich the modelling language for the developers.

An (inductive) datatype can be directly defined using several constructors. Each
constructor can have zero or more destructors. A datatype without any definition is
axiomatically defined. Note that axiomatic datatypes are not recursive. We focus on
axiomatic data types in this paper. By convention, an axiomatic datatype satisfies the

Domain-Specific Developments Using Rodin Theories 21

non-emptiness and maximality properties, i.e., for an axiomatic type S we have S
�= ∅ and ∀e · e ∈ S. (Types are maximal by definition since there are no sub-types
in Event-B.) As an example, an axiomatic type for stacks (without any additional
axioms) is as follows.

1 theory Stack(T)
2 types STACK_TYPE
3 operators
4 STACK: P(STACK_TYPE)
5 end

In the declaration of the theory, T denotes the type parameter of the Stack theory.
Here STACK_TYPE denotes the “type” of stacks, whereas STACK denotes the set
of stack instances. The reason for having a separate STACK_TYPE and the set of
stack instances STACK will be discussed further in Sect. 3 about instantiation.

Operators can be defined directly, inductively (on inductive data types) or axiomat-
ically. Anoperator definedwithout any definitionwill be defined axiomatically.Oper-
ator notation is prefix by default. Operators with two arguments can be infix. Further
properties can be declared for operators including associativity and commutativity.
In the following, we show the declaration for some stack operators: emptyStack,
top, pop, and push.

1 operators
2 emptyStack: STACK
3 top(st : STACK): T
4 pop(st : STACK): STACK
5 for st �= emptyStack
6 push(st : STACK, e : T): STACK
7 ≺ (e : T, st : STACK) infix
8 axioms
9 @push_not_empty: ∀st, e · st ∈ STACK ∧ e ∈ T ⇒ push(st, e) �= emptyStack
10 @pop_push: ∀st, e · st ∈ STACK ∧ e ∈ T ⇒ pop(push(st, e)) = st
11 @top_push: ∀st, e · st ∈ STACK ∧ e ∈ T ⇒ top(push(st, e)) = e
12 @top_inStack: ∀st · st ∈ STACK ∧ st �= emptyStack ⇒ top(st) ≺ st
13 theorem @push_inStack: ∀st, e · st ∈ STACK ∧ e ∈ T ⇒ e ≺ push(st, e)

An additional infix operator ≺ defines a predicate (without any returning type)
specifying whether an element e is in the stack st or not. The axioms are the
assumptions about these operators that can be used to define proof rules. Note that
@push_inStack is a theoremwhich is derivable from the axioms defined previously.
We omit the presentation of proof rules in this paper.

Operators can be “partial”, that is not defined for all values of parameters. Well-
definedness is used to specify the condition (on the parameters) such that the operator
is defined. In the Stack theory, operator pop is only defined when the parameter st
is non-empty. The well-definedness condition (using keyword for) for pop is st �=
emptyStack.

Finally, theories can be constructed in a hierarchical manner: a theory can extend
one or more other theories by adding more data types, operators, and axioms.

22 T. S. Hoang et al.

3 Theory Instantiation

A possible instantiation of the stack ADT is one where a stack is represented as an
array, where arrays are defined by an array ADT. Specifically, a stack is represented
by a pair (f �→ n), where n is the stack’s size and f is an array of size n representing
its contents.

1 theory Array
2 operators
3 ARRAY = {f �→ n | n ∈ N ∧ f ∈ 0.. n− 1 → T}
4 end

Operations of the array ADT are defined using direct definition as follows:

• append: takes an array a and an element e and returns a new array where e is
appended to the end of a.

• front: takes an array a and returns a new array where a’s last element is removed.
• last: takes an array a and returns a’s last element.
• inArray: a predicate indicating if an element e is in the array a or not.

1 append(f �→ n: ARRAY, e: T)
2 = (f �− {n �→ e}) �→ (n + 1)
3 front(f �→ n: ARRAY) for n �= 0
4 = ({n − 1} �− f) �→ (n − 1)
5 last(f �→ n: ARRAY) for n �= 0
6 = f(n − 1)
7 inArray(e: T, f�→ n: ARRAY) infix
8 = e ∈ ran(f)

To instantiate the Stack ADT using the Array ADT, we use the following instan-
tiation mappings. In the rest of the paper, we use the following notation A ←− C to
denote amappingwhere an abstract element (e.g., a set or a constant)A is instantiated
by a concrete element C.

1 STACK_TYPE ←− P(Z × T) × Z

2 STACK ←− ARRAY
3 emptyStack ←− ∅�→ 0
4 push ←− append
5 pop ←− front
6 top ←− last
7 ≺ ←− inArray

Here, for consistency, STACK_TYPE has to be instantiated using a “type expres-
sion”. This type expression is derived from the instantiation of STACK by ARRAY.
Other instantiations are straightforward linking operators of the Stack ADT with
those of the Array ADT. To prove that this instantiation is consistent, we have to
prove that all the axioms associatedwith the StackADTare derivable as (instantiated)
theorems of the Array ADT. For instance, the instantiated theorem for pop_push is
as follows.

1 @pop_push: ∀st, e · st ∈ ARRAY ∧ e ∈ T ⇒ front(append(st, e)) = st

Domain-Specific Developments Using Rodin Theories 23

The above theorem can be proved by expanding the definition for front and append
and gives rise to the following sub-goals (assuming that st = f �→ n):

{n+1 − 1} �− (f �− {n �→ e}) = f
n+1 − 1 = n

Given that f �→ n ∈ ARRAY, we have n ∈ N and f ∈ 0.. n-1 → T. As a result the
above sub-goals are trivially discharged.

This paragraph is added about instantiation of WD condition. Note that if the
operators are partial, i.e., having well-definedness conditions, we need to prove that
the well-definedness conditions of the instantiating and the instantiated operators are
equivalent (modulo of the instantiation mapping). For example, regarding the pop
operator, we need to prove that for all st ∈ ARRAY, we have

1 f �→ n �= ∅�→ 0 ⇔n �= 0

The proof is trivial and is omitted here.
Given that the Array ADT correctly instantiates the Stack ADT, we can reuse any

theorem and proof rule of the Stack ADT (with the correct instantiation). Theory
instantiation allows the users to start with some abstract ADTs and to gradually
introduce more concrete data types.

4 Case Study

4.1 System Descriptions

We illustrate our approach as a case study of a simplified train control system. This
is the example used in [5]. The system is intended to keep all trains in a railway
network at a safe distance apart to prevent collisions. The network consists of tracks
divided into sections, and of points connecting these tracks. An interlocking system
switches the points to connect different tracks together, and results in a dynamically
changing track layout. Instead of light signals, the train control system uses radio
communication to send the trains the permission to move or stop.

An overview of the interacting system components is given in Fig. 1. The trains
themselves determine their positions and send them to the train control system by
radio. Based on information about which parts of the network are occupied, the
controller calculates for each train the area in which it can safely move without
collisions. This area is called the MA and represents the permission for a train to
move as long as it does not leave this area. The calculated MAs are then directly sent
to the train where an onboard unit interprets it to calculate the location where the
permission to drive ends, called the Limit of Authority (LoA). To prevent driving
over the LoA, the onboard unit regularly determines a speed limit and applies the
train’s emergency brakes if necessary.

The most important properties of the train system are collision-freeness and non-
derailment.

24 T. S. Hoang et al.

Fig. 1 System architecture

REQ1 Theremust be no collision between any two (different) trains in the system.
REQ2 Every train in the system must stay on the tracks of the network.

Collision-freeness between trains, i.e., REQ 1, is guaranteed by the overall sys-
tem and relies on two conditions: (C1) The trains are always within their assigned
movement authorities, and (C2) the controller ensures that the MAs issued to the
trains do not overlap. In fact, (C1) is implementable only if the MAs issued by the
controller are never reduced at the front of the trains. Non-derailment, i.e., REQ 2,
is ensured by condition (C1) mentioned before, and condition (C3) stating that the
controller only grants MAs over the active network.

4.2 Development Strategy

In our development of the train control system, we develop the ADTs used for
modelling the trains and MAs, as follow.

• We start with an ADT that represents regions within the network.
• We subsequently instantiate the region ADT with an ADT representing sequences
of sections.

• Finally,we instantiate the sequenceADTwith theADTcorresponding toarbitrary-
based arrays.

Another entity of the system that we model using ADTs is the active network that is
controlled by the interlocking system.

• We start with an ADT representing the network.
• We subsequently instantiate the network ADT with an ADT representing graphs,
where nodes are sections, and edges correspond to connections between sections.

These ADTs allow us to encapsulate the concepts useful for modelling, such as
a region within a network. Moreover, we used the same ADT to model different
aspects of the system. For example, both trains and MAs are represented abstractly
by the Region ADT. Finally, important high-level properties of the system can be
specified and reasoned about easily using the ADTs.

Domain-Specific Developments Using Rodin Theories 25

M0 active network

M1 trains

refines

M2 mas

refines

M3 collision free

refines

M4 non derailment

refines

Section

Network

extends

Region

extends

Graph

Sequence

instantiates

instantiates

M5

refines

uses

uses

uses

uses

Fig. 2 The instantiation-chain of developments

In the following, we describe the ADTs with their usage in our formal model in
the order that we defined them.

4.3 Development Using ADTs

Our model using ADTs involves different developments forming an instantiation-
chain. The hierarchy of the development can be seen in Fig. 2. The model is available
at [7]. For clarity, we omit the link between a machine (e.g.,M2_mas) and a theory

26 T. S. Hoang et al.

(e.g., Network) if the theory has been used in an early refinement. We explicitly
show the links again after instantiation.

The development summary is as follows.

• InM0_active_network, we focus on the notion of the active network. We define
the abstract theory Network for this purpose.

• InM1_trains, wemodel the trainswith the network. Trains are abstractlymodelled
as “regions” of the network (the Region datatype).

• InM2_mas, we introduce the notion of the trainMAs. TheMAs are alsomodelled
using the Region datatype as it is similar to the trains.

• InM3_collision_free, we enforce the collision-free property between MAs. And
as a consequence of this property, we also establish the collision-free property
between trains. These properties are modelled using operators of the Region
datatype.

• InM4_non_derailment, we enforce the derailment-free property onMAs (and as
a consequence, establish the derailment-free property on trains). These properties
are modelled using operators linking the Network and Region datatype.

• In M5, we instantiate the abstract Network and Region ADTs by more concrete
(closer to some implementation) Graph and Sequence ADTs. The machine is
refined accordingly based on these instantiations.

4.3.1 The Initial Development

The Section ADT

We first define an ADT for sections which will be used as the basis for defining
networks and regions.

1 theory Section
2 types SECTION_TYPE
3 operators SECTION: P(SECTION_TYPE)
4 end

The Network ADT

The Network ADT imports Section and declares the type NETWORK_TYPE and
a set of instances NETWORK.

1 theory Network
2 imports Section
3 types NETWORK_TYPE
4 operators NETWORK: P(NETWORK_TYPE)
5 axioms
6 @NETWORK_non_empty: NETWORK �= ∅

Two predicate operators enlarge_WD and contract_WD are defined to capture
thewell-definedness of the operators (to be defined later) to enlarging and contracting
a network. A well-definedness predicate of an operator are conditions specifying the

Domain-Specific Developments Using Rodin Theories 27

“valid” values of the operator input. In our example, both well-definedness operators
take a network n, a set of connections between sections g, and a set of sections s
to be added or removed from the network n. Below, we show the declaration of
enlarge_WD and its axioms. The declaration of contract_WD is similar.

1 operators
2 enlarge_WD(n : NETWORK_TYPE,
3 g: SECTION_TYPE ↔ SECTION_TYPE, s: P(SECTION_TYPE))
4 axioms
5 @enlarge_WD_n: ∀n,g,s · enlarge_WD(n,g,s) ⇒ n ∈ NETWORK
6 @enlarge_WD_g: ∀n,g,s · enlarge_WD(n,g,s) ⇒ g ∈ SECTION �� SECTION
7 @enlarge_WD_s: ∀n,g,s · enlarge_WD(n,g,s) ⇒ s ∈ P(SECTION)

The axioms ensure that enlarging a network requires a network instancen, an injective
connection between section instances g, and a set of sections s. Note that the axioms
only state some necessary conditions for extending a network. The exact definition
for the enlarge_WD is not given at this level.

The declaration for enlarge and contract use the above enlarge_WD and
contract_WD operators as their well-definedness condition and are as follows.

1 operators
2 enlarge(n : NETWORK_TYPE,
3 g: SECTION_TYPE ↔ SECTION_TYPE, s: P(SECTION_TYPE)): NETWORK
4 for enlarge_WD(n,g,s)
5

6 contract(n : NETWORK_TYPE,
7 g: SECTION_TYPE ↔ SECTION_TYPE, s: P(SECTION_TYPE)): NETWORK
8 for contract_WD(n,g,s)

At the moment, there are no further axioms constraining enlarge and contract. In
the next section, we will specify the constraints on enlarge and contract in relation
with regions.

The Region ADT

Each train on a network occupies some region of the network. Furthermore,MAs also
correspond to regions of the network. Relationship between regions include “sub-
region” (to state that trains must be always within their MAs) and “disjointness”⊕
(to state that there is no collision between trains). As a result, we start the modelling
of the Region ADT as follows.

1 theory Region
2 types
3 REGION_TYPE
4 operators
5 REGION: P(REGION_TYPE)
6 (r1: REGION, r2: REGION) infix
7 ⊕ (r1: REGION, r2: REGION) infix

Properties of and ⊕ include that is transitive
(_transitive) and reflexive (@_reflexive),⊕ is symmetric (@disjoint_symmetric),
and a relationship between and ⊕ (@_⊕). In the axioms below, r1, r2, r3 are
regions, i.e., members of REGION.

28 T. S. Hoang et al.

1 axioms
2 @ _transitive: ∀r1,r2,r3· r1 r2 ∧ r2 r3 ⇒ r1 r3
3 @ _reflexive: ∀r· r r
4 @⊕ _symmetric: ∀r1,r2· r1 ⊕ r2 ⇒ r2 ⊕ r1
5 @ _⊕ : ∀r1,r2,r3· r1 r2 ∧ r2 ⊕ r3 ⇒ r1 ⊕ r3

Twooperators are declared for extending and reducing regions. Similar toenlarge
and contract for theNetworkADT,we also declare abstractly somewell-definedness
conditions for extend and reduce accordingly.

1 operators
2 extend_WD(r: REGION_TYPE, s: SECTION_TYPE)
3 reduce_WD(r: REGION_TYPE)
4 extend(r: REGION_TYPE, s: SECTION_TYPE): REGION for extend_WD(r,s)
5 reduce(r: REGION_TYPE): REGION for reduce_WD(r)

Operator extend takes a region r and a section s, and returns a region where r is
extended to include s. Operator reduce takes a region r and returns a region where
the last section of r is removed. Properties of extend and reduce related to are as
follows. While extend is monotonic and strengthening with respect to , reduce is
monotonic and weakening.

1 axioms
2 @extend_ _strengthening: ∀r,s· extend_WD(r,s) ⇒ r extend(r,s)
3 @reduce_ _weakening: ∀r· reduce_WD(r) ⇒ reduce(r) r

Relationship between the Network ADT and Region ADT is captured by the
relationship “a-part-of” �.

1 operators
2 � (r : REGION, n: NETWORK) infix
3 axioms
4 @enlarge_� _monotonic:
5 ∀r,g,s,n· r ∈ REGION ∧ enlarge_WD(n,g,s) ∧ r � n ⇒ r � enlarge(n,g,s)
6

7 @ _� _weakening:
8 ∀r1,r2,n· r1 ∈ REGION ∧ r2 ∈ REGION ∧ n ∈ NETWORK ∧ r1 r2 ∧ r2 � n
9 ⇒ r1 � n

The axioms state that enlarging network will preserve � relationship while is
“�-weakening”.

System Model Using the Network and Region ADTs

Given the Network and Region ADTs, we can develop an abstract system model of
the train control system. This model contains the following refinement steps.

• M0: Model the active network using variable active_network as an instance of
the Network ADT. Events NRK_enlarges and NRK_contracts are declared for
updating the active network. For example, theNRK_enlarges event is as follows.
Note that the variable active_network is updated by using the corresponding
operator from the Network ADT.

Domain-Specific Developments Using Rodin Theories 29

1 NRK_enlarges
2 any
3 grp
4 scts
5 where
6 @grd1: enlarge_WD(active_network,grp,scts)
7 then
8 @act1: active_network := enlarge(active_network,grp,scts)
9 end

• M1: Model the active trains on the network using the Region ADT. Variables
active_trains and train_regmodel the set of trains and their layout on the network
(which are regions).

1 invariants
2 @typeof−active_trains: active_trains ∈ P(TRAIN_ID)
3 @typeof−train_reg: train_reg ∈ active_trains → REGION

New events related to trains include TRN_enters and TRN_leaves for trains to
enter and leave the network, and TRN_extends and TRN_reduces to model the
movement of trains on the network.An example ofTRN_extends eventmodelling
the movement of train trn forward by extending to a section sct is as follows.

1 TRN_extends
2 any trn sct where
3 @grd1: trn ∈ active_trains
4 @grd2: extend_WD(train_reg(trn), sct)
5 theorem @thm1: extend(train_reg(trn), sct) ∈ REGION
6 then
7 @act1: train_reg(trn) := extend(train_reg(trn), sct)
8 end

• M2: Model the MAs using the Region ADT. A new variable train_ma is intro-
duced to capture the active trains’ MAs. An important property relating the trains
and their MAs is that the trains must always be within their MA (see invariant
@movement_authority).

1 invariants
2 @typeof−train_ma: train_ma ∈ active_trains → REGION
3 @movement_authority: ∀trn · trn ∈ active_trains ⇒ train_reg(trn) train_ma(trn)

Event TRN_extends has an additional guard to ensure that the train trn will not
overrun its MA, i.e.,

1 @grd3: extend(train_reg(trn), sct) train_ma(trn)

A new event updates_train_ma is introduced to change the MA of a train trn to
a new movement authority ma.

1 updates_train_ma
2 any
3 trn
4 ma
5 where
6 @grd1: trn ∈ active_trains

30 T. S. Hoang et al.

7 @grd2: ma ∈ REGION
8 @grd3: train_ma(trn) ma
9 then

10 @act1: train_ma(trn) := ma
11 end

Guard @grd3 ensures that the train’s MA can only be extended. The fact that
updates_train_ma maintains invariant @movement_authority relies on the
transitivity of , i.e., axiom @_transitive of the Region ADT.

• M3: State and prove the collision-free property REQ 1 using the⊕ operator. Here,
we first add an invariant stating that the trains’ MAs are non-overlapping. The
collision-free property is a consequence (i.e., a theorem) of this invariant.

1 @ma_collision_free:
2 ∀trn1, trn2 · trn1 ∈ active_trains ∧ trn2 ∈ active_trains ∧ trn1 �= trn2
3 ⇒ (train_ma(trn1) ⊕ train_ma(trn2))
4 theorem @collision_free:
5 ∀trn1, trn2 · trn1 ∈ active_trains ∧ trn2 ∈ active_trains ∧ trn1 �= trn2
6 ⇒ (train_reg(trn1) ⊕ train_reg(trn2))

The proof of the theorem relies on the invariant (@movement_authority) stating
that a train is always within its movement authority and the relationship between
⊕ and , i.e., axiom @_⊕.

• M4: State and prove the derailment-free property REQ 2 using the � operator. In
this refinement, we first add an invariant stating that the trains’ MAs are always
part of the active network. The derailment-free property is the consequence of this
invariant.

1 @ma−derailment_free:
2 ∀trn · trn ∈ active_trains ⇒ train_ma(trn) � active_network
3 theorem @derailment_free:
4 ∀trn · trn ∈ active_trains ⇒ train_reg(trn) � active_network

The proof of the theorem relies on the fact that a train is alwayswithin itsmovement
authority (invariant @movement_authority), and operator is “�-weakening”
(axiom @ _�_weakening).

4.3.2 The First Instantiation Development

As mentioned in Fig. 2, we are going to instantiate the Network and Region ADTs
with Graph and Sequence ADTs. The system model will be developed according
to the newly introduced ADTs. Compared to the “abstract” DTs, i.e., Network and
Region, the “concrete” ADTs, i.e., Graph and Sequence are closer to implemen-
tation, with more details about their internal representation.

The Graph ADT

We first specify the Graph ADT which will be used as an instantiation for the
Network ADT. The Graph ADT contains the type GRAPH_TYPE and operators
GRAPH, edges, and nodes. Operator GRAPH denotes the set of valid graph

Domain-Specific Developments Using Rodin Theories 31

instances while edges and nodes return the edges and nodes of a graph accordingly.
Axioms @edges_domain and @edges_range ensure the consistency between
edges and nodes: the edges of a graph g must connect only nodes of that graph g.

1 types
2 GRAPH_TYPE
3 operators
4 GRAPH: P(GRAPH_TYPE)
5 edges(g : GRAPH): SECTION �� SECTION
6 nodes(g : GRAPH): P(SECTION)
7 axioms
8 @GRAPH_non_empty: GRAPH �= ∅

9 @edges_domain: ∀g · g ∈ GRAPH ⇒ dom(edges(g)) ⊆ nodes(g)
10 @edges_range: ∀g · g ∈ GRAPH ⇒ ran(edges(g)) ⊆ nodes(g)

Two additional operators add and remove (together with their well-definedness
operators add_WD and remove_WD) are defined to adding to a graph or removing
from a graph.

1 operators
2 add(g : GRAPH, e : SECTION �� SECTION, n : P(SECTION)): GRAPH
3 for add_WD(g, e, n)
4 remove(g : GRAPH, e : SECTION �� SECTION, n : P(SECTION)): GRAPH
5 for add_WD(g, e, n)
6 axioms
7 @add_edges: ∀g,e,n · add_WD(g,e,n) ⇒ edges(add(g,e,n)) = edges(g) ∪ e
8 @add_nodes: ∀g,e,n · add_WD(g,e,n) ⇒ nodes(add(g,e,n)) = nodes(g) ∪ n
9 @remove_edges: ∀g,e,n · add_WD(g,e,n) ⇒ edges(remove(g,e,n)) = edges(g) \ e
10 @remove_nodes: ∀g,e,n · add_WD(g,e,n) ⇒ nodes(remove(g,e,n)) = nodes(g) \ n

The axioms specify the effect of adding (resp. removing) a set of connections e and
a set of nodes n to a graph g: e and n are added to (resp. removed from) the edges
and the nodes graph accordingly.

The Sequence ADT

The Sequence ADT specifies a datatype for representing sequences of sections.

1 types
2 SEQUENCE_TYPE
3 operators
4 SEQUENCE: P(SEQUENCE_TYPE)
5 extend_head_WD(seq: SEQUENCE, s: SECTION)
6 front_WD(seq: SEQUENCE)
7 extend_head(seq: SEQUENCE, s: SECTION)
8 for extend_head_WD(seq, s)
9 front(seq: SEQUENCE)
10 for front_WD(seq)

For a sequence of sections, we are interested in the link between sections and other
aspects such as head, and rear. The following operators are introduced for that
purpose.

1 operators
2 link(seq: SEQUENCE): SECTION �→SECTION

32 T. S. Hoang et al.

3 head(seq: SEQUENCE): SECTION
4 rear(seq: SEQUENCE): SECTION
5 middle(seq: SEQUENCE): P(SECTION)
6 members(seq: SEQUENCE): P(SECTION)
7 = {head(s)} ∪ middle(s) ∪ {rear(s)}
8 axioms
9 @empty_head_rear:
10 ∀seq · seq ∈ SEQUENCE ∧ link(seq) = ∅⇒ head(seq) = rear(seq)
11

12 @link_domain:
13 ∀seq · seq ∈ SEQUENCE ∧ link(seq) �= ∅

14 ⇒ dom(link(seq)) = {head(seq)} ∪ middle(seq)
15

16 @link_range:
17 ∀seq · seq ∈ SEQUENCE ∧ link(seq) �= ∅

18 ⇒ ran(link(seq)) = middle(seq) ∪ {rear(seq)}
19

20 @head_notin_middle: ∀seq · seq ∈ SEQUENCE ⇒ head(seq) /∈ middle(seq)
21 @rear_notin_middle: ∀seq · seq ∈ SEQUENCE ⇒ rear(seq) /∈ middle(seq)

Note that members is an operator directly defined based on other operators. The
axioms state the consistency between different aspects of a sequence. The meaning
of the axioms are as follows.

• @empty_head_rear: If the connection between sections is empty, the sequence
is within a section, hence its head and rear must be identical.

• @link_domain: If the connection is non-empty, then the domain of the connection
is the head and the middle of the sequence.

• @link_range: If the connection is non-empty, then the range of the connection is
the middle and the rear of the sequence.

• @head_notin_middle: The head of a sequence must not be in the middle of a
sequence.

• @rear_notin_middle: The rear of a sequence must not be in the middle of a
sequence.

These axioms constrain the sequence ADT to what is suitable to model the trains and
their movement authorities. They capture the well-formness properties of sequence
that formed by trains and/or movement authorities.

Other relevant operators related to the Sequence ADT are to extend the head
of the sequence (extend_head) and remove the rear of the sequence (front). These
operators are used to model the movement of the trains.

1 operators
2 extend_head_WD(seq: SEQUENCE, s: SECTION)
3 front_WD(seq: SEQUENCE)
4 extend_head(seq: SEQUENCE, s: SECTION)
5 for extend_head_WD(seq, s)
6 front(seq: SEQUENCE)
7 for front_WD(seq)
8 axioms
9 @extend_head_link:

Domain-Specific Developments Using Rodin Theories 33

10 ∀seq, s · extend_head_WD(seq, s)
11 ⇒ link(extend_head(seq, s)) = link(seq) ∪ {s �→ head(seq)}
12

13 @extend_head_head:
14 ∀seq, s · extend_head_WD(seq, s) ⇒ head(extend_head(seq, s)) = s
15

16 @extend_head_rear:
17 ∀seq, s · extend_head_WD(seq, s) ⇒ rear(extend_head(seq, s)) = rear(seq)
18

19 @extend_head_middle:
20 ∀seq, s · extend_head_WD(seq, s)
21 ⇒ middle(extend_head(seq, s)) = (middle(seq) ∪ {head(seq)}) \ {rear(seq)}
22

23 theorem @extend_head_members:
24 ∀seq, s · extend_head_WD(seq, s)
25 ⇒ members(extend_head(seq, s)) = member(seq) ∪ {s}

The effect of extend_head and front with respect to other operators, i.e., link,
head, rear, andmiddle are captured by the associated axioms. For example, axiom
extend_head_link states that by extending the head of a sequence seq to section
s, the link between sections corresponding to the sequence is extended by a new
connection from s to the current head of the sequence, i.e., head(seq). Note that
axiom extend_head_middle ensures that the middle of a sequence is updated cor-
rectly even in the situation where the original sequence seq is within a single section
(i.e., link(seq) = ∅). In this case, according to axiom @empty_head_rear, we
have head(seq) = rear(seq). If the sequence is extended to include section s, the
middle of the new sequence will still be empty, this is ensured by removing the rear
of the sequence. Similar axioms related to front are omitted.

Instantiation of Network and Region ADTs by Graph and Sequence ADTs

We now present the instantiation of the Network and Region ADTs by Graph and
Sequence ADTs. The instantiation mappings are as follows.

1 NETWORK_TYPE ←− GRAPH_TYPE
2 NETWORK ←− GRAPH
3 enlarge, enlarge_WD ←− add, add_WD
4 contract, contract_WD ←− remove, removed_WD
5 REGION_TYPE ←− SEQUENCE_TYPE
6 REGION ←− SEQUENCE
7 extend, extend_WD ←− extend_head, extend_head_WD
8 reduce, reduce_WD ←− front_head, front_head_WD

Note that the (abstract) WD conditions are instantiated by the concrete WD condi-
tions, and hence are trivially equivalent.

Predicate operators for REGION ADT, i.e., sub-region () and disjoint (⊕) are
now defined (in terms of SEQUENCE ADT) as follows.

1 operators
2 (r1: SEQUENCE, r2: SEQUENCE) infix
3 = members(r1) ⊆ members(r2) ∧ link(r1) ⊆ link(r2)
4 ⊕ (r1: REGION, r2: REGION) infix
5 = members(r1) ∩members(r2) = ∅

34 T. S. Hoang et al.

We have to prove that the definition given for and ⊕ operators satisfies the
axioms as specified in the REGION ADT, e.g., @ _transitive, @ _reflexive,
@disjoint_symmetric, and @ _⊕. They can be proved by expanding the defini-
tion accordingly. For example, the proof for @ _⊕ is as follows.

1 ∀r1,r2,r3· r1 r2 ∧ r2 ⊕ r3 ⇒ r1 ⊕ r3
2

3 ⇐ "Definition of and ⊕ "
4 ∀r1,r2,r3· members(r1) ⊆ members(r2) ∧ link(r1) ⊆ link(r2) ∧
5 members(r2) ∩members(r3) = ∅

6 ⇒
7 members(r1) ∩members(r3) = ∅

8

9 ⇐ "Property of ⊆ and ∩"
10 �
Further constraints in the REGION ADT relating with operators extend and
reduce (i.e., extend__strengthening and reduce__
weakening) can be proved (after instantiation) in a similar fashion. For example,
the proof of the instantiated axiom extend__strengthening is as follows.

1 ∀r,s· extend_head_WD(r,s) ⇒ r extend_head(r,s)
2

3 ⇐ "Definition of "
4 ∀r,s· extend_head_WD(r,s) ⇒
5 members(r) ⊆ members(extend_head(r,s)) ∧
6 link(r) ⊆ link(extend(r,s))
7

8 ⇐ "Axioms @extend_head_link and @extend_head_members"
9 ∀r,s· extend_head_WD(r,s) ⇒
10 members(r) ⊆ member(seq) ∪ {s} ∧
11 link(r) ⊆ link(seq) ∪ {s �→ head(seq)}
12

13 ⇐ "Property of ⊆ and ∪ ’’
14 �

Finally, the predicate operator � (a-part-of) relating the Network and Region
ADTs is now defined in terms of the Graph and Sequence ADTs as follows.

1 operators
2 � (r : SEQUENCE, n: GRAPH) infix
3 = link(r) ⊆ edges(n) ∧ members(r) ⊆ nodes(n)

Here, a sequence r is a part of a graph n if r’s links are edges of n and the
r’s members are nodes of n. The axioms related to the a-part-of relation, i.e.,
@enlarge_�_monotonic and @ _�_weakening are
proved straightforwardly.

Refinement of the System Model

Given the more concrete datatypes Graph and Sequence, we refine our system
model (after the instantiation) accordingly. We give an example of how the system
model can be refined as follows. Consider event NRK_contracts which reduces the
current active network as follows.

Domain-Specific Developments Using Rodin Theories 35

1 NRK_contracts
2 any grp scts where
3 @grd1: remove_WD(active_network,grp,scts)
4 @grd2: ∀trn · trn ∈ active_trains
5 ⇒ train_ma(trn) � remove(active_network, grp, scts)
6 then
7 @act1: active_network := remove(active_network,grp,scts)
8 end

Focus on the guard @grd2 specifying that the reduced current network must still
contain all the active trains’ movement authorities. We can replace this guard by the
following new guards.

1 @grd3: ∀trn · trn ∈ active_trains ⇒ link(train_ma(trn)) ∩grp = ∅

2 @grd4: ∀trn · trn ∈ active_trains ⇒ members(train_ma(trn)) ∩scts = ∅

Guard @grd3 states that the connections grp being removed from the network does
not overlap with any connection of the trains’MAs. Guard@grd4 states that the sec-
tions scts being removed from the network do not contain sections that belong to any
trains’ MAs. The correctness of this refinement (i.e., guard strengthening of @grd2)
relies on the definition of � and the properties of remove, i.e., remove_edges and
remove_nodes. Expanding the earlier definition of aPartOf, we have to prove that
for any trn ∈ active_trains, we have

1 link(train_ma(trn)) ⊆ edges(remove(active_network, grp, scts))
2 members(train_ma(trn)) ⊆ nodes(remove(active_network, grp, scts))

From the properties of remove, i.e., in the form of axioms @remove_edges and
@remove_nodes, we have

1 edges(remove(active_network, grp, scts)) = edges(active_network) \ grp
2 nodes(remove(active_network, grp, scts)) = nodes(active_network) \ scts

From invariant @ma − derailment_free, we have

train_ma(trn) � active_network,

which (by definition of �) is equivalent to

1 link(train_ma(trn)) ⊆ edges(active_network)
2 members(train_ma(trn)) ⊆ nodes(active_network)

Together with @grd3 and @grd4, we can prove that @grd2 indeed holds. Other
system events are refined according to the definition provided by the instantiation.

Overall, the refinement and its proof are tightly coupled with the ADT instantia-
tion, relying on (1) the properties of the ADTs, e.g., of remove, and (2) instantiation
mapping, e.g., the definition of �.

36 T. S. Hoang et al.

5 Conclusion

5.1 Summary

In this chapter, we present the theory instantiation mechanism for developing
datatypes using the Theory extension of Event-B. Together with refinement, the-
ory instantiation allows developers to model systems at a high level of abstraction
(both in terms of datatypes and system details) and to gradually introduce system
details into the formal models. We illustrate the mechanism using the example of a
train control system.

5.2 Advantage of This Approach

When modelling large systems, one has to capture in the model some concepts of
the application domain. In other terms, one needs to make implicit (expressed in the
modelling language) some explicit concepts of the system.

Traditionally, this is done by defining a direct encoding of the explicit concept in
the modelling language. However, this approach can lead to quite clumsy modelling
artefacts that are difficult to manipulate and make the model obscure.

In the approach advocated here, the explicit concepts are not directly translated to
themodelling language, but they rather captured a piece at a time. At each abstraction
level of the model, we only capture the parts of the explicit concepts that we need
to express our model and prove it correct. Then, when we refine the model, we also
refine the concepts that are captured, using theory instantiation.

Theory instantiation offers a parallel refinement process which is driven by the
modelling needs. The approach is thus quite similar to data refinement in Classical
B [1], where one refines at the same time the program code and the data structure on
which it operates.

This is very visible on the case-study example. Usually, people [2, 8] model such
systems by first defining the notion of the graph to describe the network topology,
then all the models are expressed using this notion of graph, which makes it very
complicated. Here, we start with some abstract and incomplete notions that capture
some aspects of a graph and the graph is only fully introduced in the last refinements.
This makes the model much more readable in the first refinements where we use
simple abstract operators that are sufficient to express our model at that level of
abstraction. In particular, the proofs are simpler with very abstract datatypes. Proofs
are inherited through refinement and instantiation. Developers just have to prove the
theory instantiation, and the refinement of data on the state-variables are “guided”
by the instantiation.

Domain-Specific Developments Using Rodin Theories 37

References

1. J.-R. Abrial, The B-book - Assigning Programs to Meanings (Cambridge University Press,
Cambridge, 2005)

2. J.-R. Abrial, Modeling in Event-B: System and Software Engineering (Cambridge University
Press, Cambridge, 2010)

3. J.-R. Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: an open toolset
for modelling and reasoning in Event-B. Softw. Tools Technol. Transf. 12(6), 447–466 (2010)

4. M.J. Butler, I. Maamria, Practical theory extension in event-b, in Theories of Programming
and Formal Methods - Essays Dedicated to Jifeng He on the Occasion of His 70th Birthday,
eds. by Z. Liu, J. Woodcock, H. Zhu. Lecture Notes in Computer Science, vol. 8051 (Springer,
Berlin, 2013), pp. 67–81

5. A. Fürst, T.S. Hoang, D. Basin, N. Sato, K. Miyazaki, Large-scale system development using
abstract data types and refinement. Sci. Comput. Program. 131, 59–75 (2016)

6. T.S. Hoang, An introduction to the Event-B modelling method, in Industrial Deployment of
System Engineering Methods (Springer, Berlin, 2013), pp. 211–236

7. T.S. Hoang, L. Voisin, M. Butler, Developments using theory instantiation (2017). http://users.
ecs.soton.ac.uk/tsh2n14/developments/Shonan2017/

8. C. Metayer, M. Clabaut, DIR 41 case study, in Abstract State Machines, B and Z, First Inter-
national Conference, ABZ 2008, London, UK, September 16-18, 2008. Proceedings, eds. by
E. Börger, M.J. Butler, J.P. Bowen, P. Boca. Lecture Notes in Computer Science, vol. 5238
(Springer, Berlin, 2008), p. 357

http://users.ecs.soton.ac.uk/tsh2n14/developments/Shonan2017/
http://users.ecs.soton.ac.uk/tsh2n14/developments/Shonan2017/

Integrating Domain Modeling Within a
Formal Requirements Engineering
Method

Steve Tueno, Régine Laleau, Amel Mammar, and Marc Frappier

Abstract One way to build safe critical systems is to formally model the require-
ments formulated by stakeholders and to ensure their consistency with respect to
domain properties. This paper describes a metamodel for a domain modeling lan-
guage built from OWL and PLIB. The language is part of the SysML/KAOS require-
ments engineering method which also includes a goal modeling language. The for-
mal semantics of SysML/KAOSmodels is specified, verified, and validated using the
Event-B method. Goal models provide machines and events of the Event-B specifi-
cation while domain models provide its structural part (sets and constants with their
properties and variables with their invariant). Our proposal is illustrated with a case
study dealing with the specification of a localization component for an autonomous
vehicle.

1 Introduction

Computer science is a relatively young science, but it does not prevent it from tackling
huge challenges such as implementation of critical and complex software or cyber-
physical systems. Such systems require careful analysis and design to ensure they do

S. Tueno
Université Paris-Est Créteil, 94010 Créteil, France
e-mail: steve.tuenofotso@univ-paris-est.fr

Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

R. Laleau (B)
Université Paris-Est Créteil, 94010 Créteil, France
e-mail: laleau@u-pec.fr

A. Mammar
Télécom SudParis, 91000 Evry, France
e-mail: amel.mammar@telecom-sudparis.eu

M. Frappier
Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
e-mail: Marc.Frappier@usherbrooke.ca

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_3&domain=pdf
mailto:steve.tuenofotso@univ-paris-est.fr
mailto:laleau@u-pec.fr
mailto:amel.mammar@telecom-sudparis.eu
mailto:Marc.Frappier@usherbrooke.ca
https://doi.org/10.1007/978-981-15-5054-6_3

40 S. Tueno et al.

not cause disasters. Literature is full of disasters caused by failures at one of these
stages [16]. The purpose of the ANR FORMOSE project [4] is to design a formally
grounded, model-based requirements engineering method, for critical and complex
systems, supported by an open-source environment. Modeling a system according
to the defined requirements engineering method requires the representation of its
requirements as well as of entities and properties of its application domain. This
representation implicitly implies a semantics that must be defined explicitly through
a formal method in order to be verified and validated and thus to prevent poten-
tial failures. The SysML/KAOS goal modeling language [15] focuses on modeling
of functional and non-functional requirements through goal hierarchies. Further-
more, Matoussi et al. [18] report on the explicit representation of the semantics of
SysML/KAOS goal models with Event-B [1].

This paper complements the aforementioned studies with the definition of a
domain modeling language. We first synthesize the body of knowledge related
to the concrete representation of the semantics of SysML/KAOS goal models.
Then, we analyze existing domain modeling approaches and describe the defined
SysML/KAOS domain modeling language. The illustration is performed on TACOS
[3], a case study dealing with the specification of a localization software component
that uses GPS, Wi-Fi, and sensor technologies for the real-time localization of the
Cycab vehicle [24], an autonomous ground transportation system.

The remainder of this paper is structured as follows: Sect. 2 briefly describes
Event-B and SysML/KAOS. Section3 summarizes existing work [17, 18] on the
explicit representation of the semantics of SysML/KAOSmodels. Section4 presents
the relevant state of the art on domain modeling in requirements engineering and
defines our expectations regarding the SysML/KAOS domain modeling language.
Finally, Sect. 5 describes and illustrates the domain modeling language while Sect. 6
reports our conclusions and discusses future work.

2 Background

This section provides a brief overview of the Event-B formal method and of the
SysML/KAOS requirements engineering method.

2.1 Event-B

Event-B [1] is a formal method created by J. R. Abrial for system modeling. It
is used to incrementally build a specification of a system that preserves a set of
properties expressed through invariants. Event-B is mostly used to model closed
systems: themodeling of the system is accompanied by that of its environment and of
all interactions likely to occur between them. An Event-B model includes static parts
called contexts and dynamic parts called machines. Contexts contain declarations of

Integrating Domain Modeling Within a Formal Requirements Engineering Method 41

abstract and enumerated sets, constants, axioms, and theorems. Machines contain
variables, invariants, and events. Moreover, a machine can access the definitions of
a context. Each event has a guard and an action. The guard is a condition that must
be satisfied for the event to be triggered and the action describes updates of state
variables. The system specification can be constructed using stepwise refinement, by
refining machines. Proof obligations are defined to prove invariant preservation by
events (invariant has to be true at any system state), event feasibility, convergence,
and machine refinement [1]. We use B System [8], a variant of Event-B proposed by
ClearSy, an industrial partner in theFORMOSE project, in its integrated development
environment Atelier B [5]. B System and Event-B share the same semantics but are
syntactically different [27].

2.2 SysML/KAOS

SysML/KAOS [15] is a requirements engineering method which combines the trace-
ability provided by SysML [12] with goal expressiveness provided by KAOS [16]. It
allows the representation of requirements to be satisfied by a system and of expecta-
tionswith regards to the environment through a hierarchy of goals. The goal hierarchy
is built through a succession of refinements using different operators: AND, OR, and
MILESTONE. An AND refinement decomposes a goal into subgoals, and all of them
must be achieved to realize the parent goal. An OR refinement decomposes a goal
into subgoals such that the achievement of only one of them is sufficient for the
accomplishment of the parent goal. A MILESTONE refinement is a variant of the
AND refinement which allows the definition of an achievement order between goals.

KAOS captures domain entities and properties within a model called the object
model which is a UML class diagram. Its expressiveness is however considered
insufficient by FORMOSE industrial partners [4], regarding the complexity and the
criticality of the systems of interest.

Within SysML/KAOS, a functional goal describes the expected behavior of the
system once a certain condition holds [17]: [if CurrentCondition then] sooner-or-
later TargetCondition. A functional goal can also be defined without specifying a
CurrentCondition. In this case, the expected behavior can be observed from any
system state.

Figure1 represents a SysML/KAOS goal diagram for theCycab localization com-
ponent. Its main purpose is vehicle localization.

To achieve the root goal,which is the localization of the vehicle (LocalizeVehicle),
raw localizations must be captured from vehicle sub components (CaptureRaw
Localizations) which can be GPS (CaptureGPSlocalization) or Wi-Fi (Capture
WIFILocalization), be validatedusing avehicle sensor (ValidateRawlocalizations)
which has to be either a speed sensor (ValidateUsingSpeedSensor) or an accelerom-
eter (ValidateUsingAccelerometer), and used to compute the vehicle’s accurate
localization (ComputeAccuratedlocalization).

42 S. Tueno et al.

Fig. 1 Excerpt from the localization component goal diagram

3 Expression of the Semantics of SysML/KAOS Models in
Event-B

3.1 Semantics of Goal Models

The formalization of SysML/KAOS goal models is detailed in [18]. Each refinement
level of a goal diagram gives an Event-B machine. Each goal gives an event. The
semantics of refinements links between goals is explicited using proof obligations
that complement classic proof obligations for invariant preservation and for event
actions feasibility defined in [1]. The other classic Event-B proof obligations are not
relevant for our purpose [18]. Regarding the added proof obligations, they depend
on the refinement pattern used. For an abstract goal G and two concrete goals G1

and G2,1

• For an AND refinement, the proof obligations are

– G1_Guard ⇒ G_Guard − G2_Guard ⇒ G_Guard
– (G1_Post ∧ G2_Post) ⇒ G_Post

• For an OR refinement, they are

– G1_Guard ⇒ G_Guard − G2_Guard ⇒ G_Guard
– G1_Post ⇒ G_Post − G2_Post ⇒ G_Post
– G1_Post ⇒ ¬G2_Guard − G2_Post ⇒ ¬G1_Guard

• For aMILESTONE refinement, they are

– G1_Guard ⇒ G_Guard − G2_Post ⇒ G_Post
– �(G1_Post ⇒ ♦G2_Guard) (each system state, corresponding to the post
condition of G_1, must be followed, at least once in the future, by a system
state enabling G_2)

1For an event G, G_Guard represents the guards of G and G_Post represents the post condition
of its actions.

Integrating Domain Modeling Within a Formal Requirements Engineering Method 43

Fig. 2 Formalization of the
root level of the goal
diagram of Fig. 1

SYSTEM
localizationComponent

SETS
CONSTANTS
PROPERTIES
VARIABLES
INVARIANT
INITIALISATION
EVENTS

LocalizeVehicle=
BEGIN

// localization of the vehicle
END

END

Figures2 and 3 represent the B System components obtained, respectively, from
the root level of the goal diagram of Fig. 1 and from its first refinement level. The
structural part of the B System specification (constants constrained by properties
and variables constrained by an invariant) and the body of events must be manually
provided. The objective of our study is to automatically derive the structural part
from a rigorous modeling of the domain of the system.

Proof obligations related to the AND refinement link between the root and the first
refinement levels are

CaptureRawlocali zations_Guard ⇒ Locali zeV ehicle_Guard (1)

ValidateRawlocali zations_Guard ⇒ Locali zeV ehicle_Guard (2)

ComputeAccuratedlocali zation_Guard ⇒ Locali zeV ehicle_Guard (3)

CaptureRawlocali zations_PostCondition ∧ ValidateRawlocali zations_PostCondition∧
ComputeAccuratedlocali zation_PostCondition ⇒ Locali zeV ehicle_PostCondition

(4)

3.2 Toward an Event-B Expression of the Semantics of
Domain Models

A domain model is a conceptual model capturing the topics related to a specific
problem domain [7]. The main difference between requirements and domain models
is that domain models are independent of stakeholders. They must conform to the
operational context of the system. In [6], a domain description primarily specifies
semantic entities of the domain intrinsics, semantic entities of support technolo-

44 S. Tueno et al.

Fig. 3 Formalization of the
first refinement level of the
goal diagram of Fig. 1

REFINEMENT
localizationComponentRef1

REFINES
localizationComponent

SETS
CONSTANTS
PROPERTIES
VARIABLES
INVARIANT
INITIALISATION
EVENTS

CaptureRawlocalizations=
BEGIN

// capture raw localizations
END;
ValidateRawlocalizations=
BEGIN

// validate raw localizations
END;
ComputeAccuratelocalization =
BEGIN

// compute vehicle accurate localization
END

END

gies already “in” the domain, semantic entities of management and organization
domain entities, syntactic and semantic of domain rules and regulations, syntactic
and semantic of domain scripts, and semantic aspects of human domain behavior. In
[23], Pierra defines a domain model as a set of categories represented as classes, their
properties, and their logical relationships. Modeling the domain of a system consists
in giving a representation of the set of concepts that the system will be called upon
to manipulate and the set of properties and constraints associated with them.

A first attempt at modeling domains within SysML/KAOS is achieved in [17].
Domain modeling involvesUML class diagrams,UML object diagrams, and ontolo-
gies. The case study presented reveals the use of ontologies for domain knowledge
representation; the model obtained is the domain model. Furthermore, UML object
and class diagrams are used to represent the system structure and constraints in a
model known as the structuralmodelwhichmust conform to the domainmodel. A set
of rules is proposed to translate some domain model elements to Event-B. However,
the proposal involves UML diagrams which are semi-formal graphical represen-
tations [19, 20]. Moreover, it uses several languages which is an extra source of
complexity.

Integrating Domain Modeling Within a Formal Requirements Engineering Method 45

4 State of the Art on Domain Modeling in Requirements
Engineering

4.1 Existing Domain Modeling Approaches

In KAOS [16], the domain of a system is specified with an object model using
UML class diagrams. An object within this model can be (1) an entity if it exists
independently of the others and does not influence the state of any other object, (2)
an association if it links other objects on which it depends, (3) an agent if it actively
influences the system state by acting on other objects, or (4) an event if its existence
is instantaneous, appearing to impulse an update of the system state. This approach,
which is essentially graphic and semi-formal, as argued in [19], is difficult to exploit
in case of critical systems [20].

In [10], Devedzic proposes to model the domain knowledge through either for-
mulae of first-order logic or ontologies. He considers ontologies as a more structured
and extensible representation of domain knowledge.

In [14], domain models are built around concepts and relationships: each defi-
nition of a domain model consists of an assertion linking two instances of Concept
through an instance of Relationship. A categorization is proposed for concepts and
relationships: a concept can be a function, an object, a constraint, an actor, a platform,
a quality, or an ambiguity, while a relationship can be a performative or a symmetry,
reflexivity, or transitivity relation. However, the proposed metamodel misses some
relevant domain entities such as datasets, predicates to express domain constraints,
and relation cardinalities. Moreover, it does not propose modularisation mechanisms
between domain models.

In [20], ontologies are used not only to represent domain knowledge, but also to
model and analyze requirements. The proposed methodology is called Knowledge-
Based Requirements Engineering (KBRE) and is mainly used for the detection and
processing of inconsistencies, conflicts, and redundancies among requirements. In
spite of the fact that KBRE proposes to model domain knowledge with ontologies,
the proposal focuses on the representation of requirements. A similar approach called
GOORE is proposed in [26].

In [9], Dermeval et al. proposes a systematic literature review related to usages
of ontologies in requirements engineering. They end up describing ontologies as a
standard form of formal representation of concepts within a domain, as well as of
relationships between those concepts.

These approaches suggest that ontologies are relevant for modeling the domains
of systems.

46 S. Tueno et al.

4.2 A Study of Ontology Modeling Languages

An ontology can be defined as a formal model representing concepts that can
be grouped into categories through generalization/specialization relations, their
instances, constraints, and properties as well as relations existing between them.
Ontology modeling languages can be grouped into two categories: Closed World
Assumption (CWA) for those considering that any fact that cannot be deduced from
what is declared within the ontology is false and Open World Assumption (OWA) for
those considering that any fact can be true unless its falsity can be deduced fromwhat
is declared within the ontology. As [2], we consider that accurate modeling of the
knowledge of engineering domains, to which we are interested, must be done under
the CWA assumption. Indeed, this assumption improves the formal validation of the
consistency of system’s specifications with respect to domain properties. Moreover,
systems of interest to us are so critical that no assertion should be assumed to be
true until the consensus is reached on its veracity. Similarly, we also advocate strong
typing [2] because our domainmodels must be translatable to Event-B specifications.

Several ontology modeling languages exist. The main ones are OWL (Ontology
Web Language) [25], PLIB (Part LIBrary) [22], and F-Logic (Frame Logic) [13].
A summary of similarities and differences between these languages is described in
Table1:

• PLIB, OWL, and F-Logic implement modularisation mechanisms. PLIB supports
partial import: a class of an ontology A can extend a class of an ontology B
and explicitly specify the properties it wishes to inherit. Moreover, if nothing is
specified, no property will be imported. On the other hand, OWL and F-Logic use

Table 1 Comparative table of the three main ontology modeling languages

Characteristics OWL PLIB F-Logic

Modularity Total Partial Total

CWA versus OWA OWA CWA CWA

Inheritance Multiple Simple Multiple

Typing Weak Strong (any
element
belongs to one
and only one
type)

weak

Expressivity Strong Weak Weak

Contextualization of a property
(parameterized attributes)

– + +

Different views for an element – + –

Graphic representation + – –

Domain Knowledge (static versus
dynamic)

Static Static Static

Integrating Domain Modeling Within a Formal Requirements Engineering Method 47

the total import: when an ontology A refers to an ontology B, all elements of B are
accessible within A.

• PLIB and F-Logic use the CWA assumption for constraint verification, OWL uses
the OWA assumption.

• OWL and F-Logic implement multiple inheritance and instantiation while PLIB
implements simple inheritance and instantiation. On the other hand, with the
is_case_of relation, a PLIB class can be a case of several other classes, each
class bringing some specific properties.

• PLIB and F-Logic allow the definition of parameterized attributes using context
parameters, which is not possible with OWL.

• PLIB allows several representations or view points for a concept while neither
OWL nor F-Logic do.

• The knowledge modeled using OWL, PLIB, and F-Logic is always considered
static because there is no distinguishing mechanism. It is for instance impossible
to specify that the localization of a vehicle can change dynamically while its brand
cannot.

As stated in [29], all the studied languages emphasize more on modeling static
domain knowledge. None of these languages allows to specify that a knowledge
described must remain unchanged or that it is likely to be updated. Moreover, none
of the languages fully meet our requirements. For instance, OWL assumes the OWA
assumption, PLIB is weakly expressive, etc. The most aligned are OWL and PLIB.

5 Our Approach for Domain Modeling

We choose to represent domain knowledge using ontologies since they are seman-
tically richer and therefore allow a more explicit representation of domain charac-
teristics. Thus, in this Section, we propose a metamodel, based on that of OWL and
PLIB while filling their shortcomings, to represent the domain of a system whose
requirements are captured using the SysML/KAOS method. The domain modeling
language makes the Unique Name Assumption (UNA) [2]: the name of an element
is sufficient to uniquely identify it among all others. Furthermore, the metamodel is
designed to allow the specification of knowledge that are likely to evolve over time.

5.1 Presentation

Figures4, 5, 6, and 7 present the main part of the metamodel associated with the
SysML/KAOS domain modeling language. The yellow elements are those that have
an equivalence in OWL, while the red ones are the ones that have been inserted or
customized. In addition, some constraints and associations, such as the parentCon-

48 S. Tueno et al.

DomainModel

+ name : string

Concept

+ name : string
+ isVariable : boolean

DataSet

Individual

+name DataValue

+ lexicalForm : string

Predicate Body

Head Atom

{:Each atom is
either a member

of a rule head
or a member of

a rule body}

GluingInvariant{:The abstractDomainModel must be
a transitive parent of the current

domain model}

parent

0..1 0..1*

 definedIn

1
definedIn

1 *
 individualOf

* type

1

*type

1
 valueOf

equalTo

*

*

*

*

differentFrom

*

definedIn

1

0..1
consequent

1

antecedent

1 1

1..*0..1

0..1

1..*

*

1

abstractDomainModel

0..1

parentConcept

0..1

Fig. 4 First part of the metamodel associated with the domain modeling language

cept association, come from the PLIB metamodel. Due to space consideration, we
will not highlight all the elements and constraints of the metamodel.

5.1.1 Concepts and Individuals, Datasets, and Data Values

Domain models are built around instances of Concept which represent sets of indi-
viduals sharing common characteristics (Fig. 4). A concept can be variable (isVari-
able=true) when the set of its individuals is likely to be updated through addition
or deletion of individuals. Otherwise, it is constant (isVariable=false). A concept
can be associated with another one, known as its parent concept, through the par-
entConcept association, from which it inherits properties. As a result, any individual
of the child concept is also an individual of the parent concept. It should be noted
that when a variable concept CO is a subconcept of another variable concept PCO,
the set of elements that CO can contain, over its whole existence, is included in the
set of elements that PCO can contain. However, this version of the domain modeling
language allows that, at some point, because of the variability of CO and PCO, an
element present in CO is not present in PCO.

Datasets (instances of DataSet) are used to group data values (instances of
DataValue) having the same type (Fig. 5).Default datasets areINTEGER,NATURAL

Integrating Domain Modeling Within a Formal Requirements Engineering Method 49

DataSet

DataValue

+ lexicalForm : string

DefaultDataSet

CustomDataSet

+ name : string

DataFunction

+ name : string

DataFunctionMaplet

{:Each antecedent (or image) in a
DataFunctionMaplet must be of

the same type as the domain (or
the range) of the associated

DataFunction}

EnumeratedDataSet 1

type *

 valueOf

*

1..*

domain

range

1..*

*

*
1..* antecedent

*

1..*
image

*

0..1

elements

1

*maplets

Fig. 5 Fourth part of the metamodel associated with the domain modeling language

for positive integers, FLOAT, STRING, or BOOL for booleans. The easiest way to
build a dataset is to list its elements. This can be done by defining instances of
EnumeratedDataSet.

5.1.2 Relations and Attributes

Relations (instances of Relation) are used to capture links between concepts (Fig. 6)
while attributes (instances of Attribute) capture links between concepts and datasets
(Fig. 7). A relation (Fig. 6) or an attribute (Fig. 7) can be variable if its set of maplets
can be updated through addition or deletion. Otherwise, it is constant. Relations
are characterized by their cardinalities: DomainCardinality and RangeCardinal-
ity (Fig. 6). Each instance of DomainCardinality (respectively RangeCardinality)
makes it possible to define, for a relationre, theminimumandmaximum limits of the
number of individuals, having the domain (respectively range) of re as type, that can
be put in relationwith one individual, having the range (respectively domain) of re as
type. The following constraints are associatedwith these limits: (minCardinali t y ≥
0) ∧ (maxCardinali t y = ∞ ∨ maxCardinali t y ≥ minCardinali t y), knowing
that if maxCardinali t y = ∞, then there is no maximum limit. Relation maplets
(instances of RelationMaplet) define associations between individuals through rela-
tions. In an identical manner, attribute maplets (instances of AttributeMaplet) define
associations between individuals and data values through attributes.

50 S. Tueno et al.

Optional characteristics can be specified for a relation (Fig. 6): transitive (isTransi-
tive, default false), symmetrical (isSymmetric, default false), asymmetrical (isASym-
metric, default false), reflexive (isReflexive, default false), or irreflexive (isIrreflexive,
default false). It is said to be transitive (isTransitive=true) when the relation of an
individual xwith an individual ywhich is in turn in relation toz results in the relation
of x and z. It is said to be symmetric when the relation between an individual x and
an individual y results in the relation of y to x. It is said to be asymmetric when the
relation of an individual x with an individual y has the consequence of preventing a
possible relation between y and x, with the assumption that x �= y. It is said to be
reflexive when every individual of the domain is in relation with itself. It is finally
said to be irreflexivewhen it does not authorize any association of an individual of the
domain with itself. Moreover, an attribute can be functional (isFunctional, default
true) if it associates to each individual of the domain one and only one data value of
the range.

5.1.3 Functions and Predicates

Data functions (Instances of DataFunction) (Fig. 5) define operations which allow
to determine data values at the output of a set of processes on some input data values.
At each tuple of data values of the domain, the data function assigns a tuple
of data values of the range, and this assignement cannot be changed dynamically.
Example: a data function named multiply can be defined to produce, given two
integers (individuals of INTEGER) x and y, the integer representing x ∗ y. On the
other side, predicates (instances of Predicate) (Fig. 4) represent constraints between
different elements of the domain model as horn clauses: each predicate has a body
which represents its antecedent and a headwhich represents its consequent, body and
head designating conjunctions of atoms. A typing atom defines the type of a term:
ConceptAtom for individuals andDataSetAtom for data values (Fig. 12). An asso-
ciation atom defines an association between terms: RelationAtom for associations
through instances of Relation, AttributeAtom for associations through instances
of Attribute, and DataFunctionAtom for associations through instances of Data-
Function (Fig. 12). For each case, types of the related terms must correspond to
domains/ranges of the considered link. A comparison atom defines comparison rela-
tionships between terms: EqualityAtom for equality and InequalityAtom for dif-
ference (Fig. 12). Built in atoms are specialized atoms, characterized by identifiers
captured through the AtomType enumeration, and used to represent special con-
straints between terms (Fig. 12) such as arithmetic constraints between several inte-
gers (e.g., a + b < c). Predicates can also be used to represent constraints required
for parameterized/dependent relations or attributes. For example, knowing that each
material resistance depends on medium temperature, resistance and temperature are
dependent attributes.

Integrating Domain Modeling Within a Formal Requirements Engineering Method 51

Concept

+ name : string
+ isVariable : boolean

Relation

+ name : string
+ isVariable : boolean
+ <<opt>> isTransitive : boolean
+ <<opt>> isSymmetric : boolean
+ <<opt>> isASymmetric : boolean
+ <<opt>> isReflexive : boolean
+ <<opt>> isIrreflexive : boolean

Individual

+name

RelationMaplet

RangeCardinality

+ minCardinality : integer
+ maxCardinality : integer

DomainCardinality

+ minCardinality : integer
+ maxCardinality : integer

{:Each antecedent in a
RelationMaplet must be of the
same type as the domain of

the associated Relation}

{:Each image in a
RelationMaplet must be
of the same type as

the range of the
associated Relation}

* 1domain

range

1

*

 type

1

 individualOf

*

mapletOf

*

maplets

1

0..1

parentRelation

*

*

*
equalTo

*

*differentFrom

antecedent

1

*

1*

image

parentConcept

0..1

0..1

Fig. 6 Second part of the metamodel associated with the domain modeling language

5.1.4 Domain Model and Goal Model

Each domain model is associated with a refinement level of the SysML/KAOS func-
tional goal model and can have, as its parent, another domain model (Fig. 4). This
allows the child domain model to access and extend some elements defined within
the parent domain model. It should be noted that the parent domain model must be
associated with the refinement level directly above the one to which the child domain
model is associated.

52 S. Tueno et al.

Concept

+ name : string
+ isVariable : boolean

Attribute

+ name : string
+ isVariable : boolean
+ <<opt>> isFunctional : boolean
+ <<opt>> isTotal : boolean

DataSet

Individual

+name AttributeMaplet

DataValue

+ lexicalForm : string

{:Each antecedent in an
AttributeMaplet must be
of the same type as the

domain of the
associated Attribute}

{:Each image in an
AttributeMaplet must be of the
same type as the range of the

associated Attribute}

domain

*1

* 1

rang
e

 type

 individualOf 1

*
type

 valueOf
1

*

*antecedent1 *

image

1

1

mapletOf

*
maplets

equalTo

*
*

*

*differentFrom

0..1
parentAttribute

*

0..1

parentConcept

*

Fig. 7 Third part of the metamodel associated with the domain modeling language

G1

G2 G3

G3

G31 G32

Domain Model 1

Domain Model 2

Domain Model 2

Domain Model 3

parent parent

Fig. 8 Management of the partitioning of a SysML/KAOS goal model

To be used for large complex systems, SysML/KAOS allows the refinement of a
leaf goal of a goal diagram in another diagramhaving the goal as root. For example, in
Fig. 8, goalG3, which is a leaf goal of the first goal diagram, is the root of the second
one. When this happens, we associate to the most abstract level of the new goal
diagram the domain model associated with the most concrete level of the previous
goal diagram as represented in Fig. 8: Domain Model 2, which is the domain
model associated with the most concrete level of the first diagram, is also the domain
model associated with the root of the second one.

5.2 Illustration

We have identified two graphical syntaxes to represent ontologies: the syntax pro-
posed by OntoGraph [11] and the one proposed by OWLGred [28]. The OntoGraph
syntax is the one used in [17]. Unfortunately, it does not allow the representation of
some domain model elements such as attributes or cardinalities. For this illustration,
we have thus decided to use theOWLGred syntax. For readability purposes, we have

Integrating Domain Modeling Within a Formal Requirements Engineering Method 53

v1:

Localization
loc_longitude:Longitude[1]
<<isVariable>>

loc_latitude:Latitude[1]
<<isVariable>>
<<isVariable>>

Vehicle<<instanceOf>> estimated_location 0..1
<<isVariable>>

1

Fig. 9 localization_component_0: ontology associated with the root level of the goal diagram of
Fig. 1

decided to represent the isVariable property only when it is set to true and to remove
optional characteristics representation.

Figures9, 10, and 11 represent the domain models associated, respectively, with
the root level of the goal diagram of Fig. 1 (localization_component_0), with its
first refinement level (localization_component_1) and with its second one (localiza-
tion_component_2).

5.2.1 Ontology Associated with the Root Level

In ontology localization_component_0 (Fig. 9), a vehicle is modeled as an instance
of Concept named Vehicle and its localization is represented through an instance
of Concept named Localization. Since it is possible to dynamically add
or remove vehicle localizations, the property isVariable of Localization is
set to true, which is represented by the stereotype «isVariable». Since the sys-
tem is designed to control a single vehicle, it is not possible to dynamically
add new ones. The involved vehicle is thus modeled as an instance of Individ-
ual named v1 having Vehicle as type. Localization is the domain of two
attributes: the latitude modeled as an instance of Attribute named loc_latitude
and the longitude modeled as an attribute named loc_longitude. Attribute
loc_latitude has, as range, an instance of CustomDataSet named Latitude
andloc_longitude an instance of CustomDataSet named Longitude. Since
it is possible to dynamically change the localization of a vehicle, the property isVari-
able of loc_latitude and that of loc_longitude are set to true, which is
represented by the stereotype «isVariable». The association between an individ-
ual of Vehicle and an individual of localization is represented through an
instance of Relation named estimated_location. Its associated domain car-
dinality has minCardinality=maxCardinality=1, and its associated range cardinality
has minCardinality=0 and maxCardinality=1.

5.2.2 Ontology Associated with the First Refinement Level

Ontology localization_component_1 (Fig. 10) has ontology localization_
component_0 (Fig. 9) as parent and defines new concepts and relations. Each reused

54 S. Tueno et al.

Sensor

SubComponent Vehicle{localization_
component_0}

Localization{localization_
component_0}

validated_locations
{<raw_locations}
0..1<<isVariable>>

*

vehicle_
sensors
1..*

1

vehicle_
subcomponents 11..*

raw_locations 0..1
<<isVariable>>

*

Fig. 10 localization_component_1: ontology associated with the first refinement level of the goal
diagram of Fig. 1

element is annotatedwith localization_component_0, the parent domainmodel name.
SubComponent, which is an instance of Concept, is introduced to represent sub
components of a vehicle. Each instance of Individual of type SubComponent
associates the vehicle with a raw location. Sensor, which is also an instance of
Concept, is introduced to represent vehicle sensors used to validate the raw locations.
Raw locations which are validated through sensors are called validated locations and
are used to compute the vehicle estimated location. Each vehicle has at least one sub
component and one sensor.

5.2.3 Ontology Associated with the Second Refinement Level

Ontology localization_component_2 (Fig. 11) has ontology localization_
component_1 (Fig. 10) as parent. This third abstraction level represents child concepts
of SubComponent and Sensor. A subcomponent is either a GPS, represented
through an instance of Concept named Gps, or a Wi-Fi, represented through an
instance of Concept named Wifi. A sensor is either an accelerometer, represented
through an instance of Concept named Accelerometer, or a speed sensor, rep-
resented through an instance of Concept named SpeedSensor. Finally, v1 is
associated to an instance of Individual of type Gps named g1 and to an instance
of Individual of type Wifi named w1 through vehicle_subcomponents, an
instance of Relation introduced in localization_component_1. It is also associated
to a speed sensor called s1 and to an accelerometer called a1.

The constraint “a GPS is more precise than aWi-Fi” is translated into an instance
of Predicate represented through formula 5: If an instance of Term, named x,
having Wifi as its type, has px as its precision and an instance of Term, named y,
having Gps as its type, has py as its precision, then py > px .

Integrating Domain Modeling Within a Formal Requirements Engineering Method 55

s1:

g1:

a1:

w1:

Wifi
type("constant")

SpeedSensor Accelerometer

Gps
type("constant")

v1:

Sensor
{localization_

component_1}

SubComponent
{localization_

component_1}
precision:float

<<instanceOf>>

<<instanceOf>>
<<instanceOf>>

<<instanceOf>>

vehicle_sensors {localization_component_1}

vehicle_subcomponents
{localization_component_1}

vehicle_subcomponents
{localization_component_1}

vehicle_sensors {localization_component_1}

Fig. 11 localization_component_2: ontology associated with the second refinement level of the
goal diagram of Fig. 1

greaterT han(?py, ?px) ← Wi f i(?x) ∧ precision(?x, ?px) ∧ Gps(?y) ∧ precision(?y, ?py)
(5)

6 Conclusion

In this paper,wehavefirst presented the explicitness of the semantics ofSysML/KAOS
goal models in Event-B. Then, we have drawn up the state of the art related to domain
modeling in requirements engineering. After positioning ourselves as to the existing,
we have presented our domain modeling approach consisting in representing domain
entities and constraints using an ontology modeling language for which a metamodel
is defined. The proposal is illustrated with a case study dealing with the specification
of a localization component for a Cycab vehicle.

Work in progress is aimed at developing mechanisms for the explicitness of the
semantics of SysML/KAOS domainmodels in Event-B.We are also working on inte-
grating the language within the open-source platformOpenflexo [21] which federates
the various contributions of FORMOSE project partners [4].

56 S. Tueno et al.

A
to
m

C
o
n
c
e
p
t

T
e
rm

V
a
ri
a
b
le

C
o
n
s
ta
n
t

In
d
iv
id
u
a
l

+n
am

e

D
a
ta
V
a
lu
e

+
le

xi
ca

lF
or

m
 :

st
rin

g

C
o
n
c
e
p
tA

to
m

D
a
ta
S
e
t

D
a
ta
S
e
tA

to
m

R
e
la
ti
o
n

R
e
la
ti
o
n
A
to
m

A
tt
ri
b
u
te

A
tt
ri
b
u
te
A
to
m

E
q
u
a
li
ty
A
to
m

In
e
q
u
a
li
ty
A
to
m

B
u
il
tI
n
A
to
m

+A
to

m
T

yp
e

D
a
ta
F
u
n
c
ti
o
n

D
a
ta
F
u
n
c
ti
o
n
A
to
m

A
to
m
N
e
g
a
ti
v
e

1.
.*

0.
.1

ne
ga

tio
nO

f

*

1
1 *

* 1
an

te
ce

de
nt

im
ag

e
1*

an
te

ce
de

nt
1*

1*

im
ag

e

* 2

* 2

*

*

1.
.*

*

an
te

ce
de

nt
im

ag
e

* 1.
.*

1 *

1 *

1 *

F
ig

.1
2

Fi
ft
h
pa
rt
of

th
e
m
et
am

od
el
as
so
ci
at
ed

w
ith

th
e
do

m
ai
n
m
od

el
in
g
la
ng

ua
ge

Integrating Domain Modeling Within a Formal Requirements Engineering Method 57

Acknowledgements This work is carried out within the framework of the FORMOSE project [4]
funded by the French National Research Agency (ANR).

References

1. J. Abrial, Modeling in Event-B - System and Software Engineering (Cambridge University
Press, 2010)

2. Y. Aït Ameur, M. Baron, L. Bellatreche, S. Jean, E. Sardet, Ontologies in engineering: the
OntoDB/OntoQL platform. Soft Comput. 21(2), 369–389 (2017)

3. ANR-06-SETIN-017: TACOS ANR project (2006)
4. ANR-14-CE28-0009: Formose ANR project (2014). http://formose.lacl.fr/
5. Atelier B,The Industrial Tool to EfficientlyDeploy the BMethod. http://www.atelierb.eu/index-

en.php (2008). Access date 22.03. 2015
6. D. Bjørner, A. Eir, Compositionality: ontology and mereology of domains, in Concurrency,

Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever, Lecture Notes
in Computer Science, vol. 5930. Springer (2010), pp. 22–59

7. M. Broy,DomainModeling andDomain Engineering: Key Tasks in Requirements Engineering.
(Springer, Berlin, Heidelberg, 2013), pp. 15–30

8. ClearSy: Atelier B: B System (2014). http://ajhurst.org/~ajh/teaching/ClearSy-Industrial_
Use_of_B.pdf

9. D. Dermeval, J. Vilela, I.I. Bittencourt, J. Castro, S. Isotani, P. Brito, A. Silva, Applications
of ontologies in requirements engineering: a systematic review of the literature. Requir. Eng.
21(4), 405–437 (2016)

10. V. Devedzic, Knowledge modeling - state of the art. Integr. Comput. Aided Eng. 8(3), 257–281
(2001)

11. S. Falconer, Protégé - ontograph (2010). http://protegewiki.stanford.edu/wiki/OntoGraf
12. M. Hause et al., The SysML modelling language, in Fifteenth European Systems Engineering

Conference, vol. 9. Citeseer (2006)
13. M. Kifer, G. Lausen, F-logic: a higher-order language for reasoning about objects, inheritance,

and scheme, in Proceedings of the 1989 ACM SIGMOD (ACM Press, 1989), pp. 134–146
14. M. Kitamura, R. Hasegawa, H. Kaiya, M. Saeki, An integrated tool for supporting ontology

driven requirements elicitation, in ICSOFT 2007, Volume SE, ed. by J. Filipe, B. Shishkov,
M. Helfert (INSTICC Press, 2007), pp. 73–80

15. R. Laleau, F. Semmak, A. Matoussi, D. Petit, A. Hammad, B. Tatibouet, A first attempt to
combine SysML requirements diagrams and B. Innov. Syst. Softw. Eng. 6(1–2), 47–54 (2010)

16. A. van Lamsweerde, Requirements Engineering - From System Goals to UML Models to Soft-
ware Specifications (Wiley, 2009)

17. A. Mammar, R. Laleau, On the use of domain and system knowledge modeling in goal-based
Event-B specifications, in ISoLA 2016, Lecture Notes in Computer Science, vol. 9952 (2016),
pp. 325–339

18. A. Matoussi, F. Gervais, R. Laleau, A goal-based approach to guide the design of an abstract
Event-B specification, in ICECCS 2011 (IEEE Computer Society, 2011), pp. 139–148

19. W.E. McUmber, B.H.C. Cheng, A general framework for formalizing UML with formal lan-
guages, in ICSE 2001 (IEEE Computer Society, 2001), pp. 433–442

20. T.H. Nguyen, B.Q. Vo, M. Lumpe, J. Grundy, KBRE: a framework for knowledge-based
requirements engineering. Softw. Qual. J. 22(1), 87–119 (2014)

21. Openflexo: Openflexo project (2015). http://www.openflexo.org
22. G. Pierra, The PLIB ontology-based approach to data integration, in IFIP 18thWorld Computer

Congress, IFIP, vol. 156 (Kluwer/Springer, 2004), pp. 13–18
23. G. Pierra, Context representation in domain ontologies and its use for semantic integration of

data. J. Data Semant. 10, 174–211 (2008)

http://formose.lacl.fr/
http://www.atelierb.eu/index-en.php
http://www.atelierb.eu/index-en.php
http://ajhurst.org/~ajh/teaching/ClearSy-Industrial_Use_of_B.pdf
http://ajhurst.org/~ajh/teaching/ClearSy-Industrial_Use_of_B.pdf
http://protegewiki.stanford.edu/wiki/OntoGraf
http://www.openflexo.org

58 S. Tueno et al.

24. S. Sekhavat, J.H. Valadez, The Cycab robot: a differentially flat system, in IROS 2000 (IEEE,
2000), pp. 312–317

25. K. Sengupta, P. Hitzler, Web ontology language (OWL), in Encyclopedia of Social Network
Analysis and Mining (2014), pp. 2374–2378

26. M. Shibaoka, H. Kaiya, M. Saeki, GOORE: goal-oriented and ontology driven requirements
elicitation method, in ER 2007 Workshops, Lecture Notes in Computer Science, vol. 4802.
(Springer, 2007), pp. 225–234

27. S. Tueno, A.Mammar, R. Laleau,M. Frappier, Event-B expression and validation of translation
rules betweenSysML/KAOSdomainmodels andB system specifications, inABZ2018, Lecture
Notes in Computer Science, vol. 10817 (Springer, 2018), pp. 55–70

28. OWLGrEd home (2017). http://owlgred.lumii.lv/
29. L. Zong-yong, W. Zhi-xu, Z. Ai-hui, X. Yong, The domain ontology and domain rules based

requirements model checking. Int. J. Softw. Eng. Appl. 1(1), 89–100 (2007)

http://owlgred.lumii.lv/

Knowledge Based Modelling

Operations over Lightweight Ontologies
and Their Implementation

Marco A. Casanova and Rômulo C. Magalhães

Abstract This chapter first defines a set of operations that create new ontologies,
including their constraints, out of other ontologies. The projection, union, and depre-
cation operations help define new ontologies by reusing fragments of other ontolo-
gies, the intersection operation constructs the constraints that hold in two ontologies,
and the difference operation returns the constraints that hold in one ontology, but not
in the other. Then, the chapter discusses how to implement the operations for a class
of ontologies, called lightweight ontologies. The key question is how to concretely
construct the constraints of the resulting ontology, which is solved with the help
of a structural proof procedure for lightweight ontologies. Lastly, it addresses the
question of minimizing the set of constraints of a lightweight ontology.

1 Introduction

We argued elsewhere [12] that certain familiar ontology design problems are prof-
itably addressed by treating ontologies as theories and by defining a set of operations
that create new ontologies, including their constraints, out of other ontologies. The
projection, union, and deprecation operations help define new ontologies by reusing
fragments of known ontologies, the intersection operation constructs the constraints
that hold in two ontologies, and the difference operation returns the constraints that
hold in one ontology, but not in the other.

In this chapter, we concentrate on lightweight ontologies, that is, ontologies whose
constraints are lightweight inclusions, which are expressive enough to cover the types
of constraints commonly used in conceptual modeling and which are as expressive as
the class of inclusions considered in DL-Lite core with arbitrary number restrictions

M. A. Casanova (B) · R. C. Magalhães
Department of Informatics, Pontifical Catholic University of Rio de Janeiro—PUC-Ri, Rua
Marques de S. Vicente, 225, Gávea, 22451900 Rio de Janeiro, Brazil
e-mail: casanova@inf.puc-rio.br

R. C. Magalhães
e-mail: romulo.eng@gmail.com

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_4&domain=pdf
mailto:casanova@inf.puc-rio.br
mailto:romulo.eng@gmail.com
https://doi.org/10.1007/978-981-15-5054-6_4

62 M. A. Casanova and R. C. Magalhães

[3]. We show how to implement projection, union, deprecation, and intersection for
this class of ontologies. Difference poses problems, as discussed in the chapter. We
single out the question of minimizing a set of lightweight inclusions, which is a step
that the implementation of the operations has in common.

The key question about the implementation of the operations is how to concretely
construct the constraints of the resulting ontology. Indeed, the implementation of an
operation must: (1) return a (finite) set of constraints that characterize the resulting
ontology; and (2) guarantee that the constraints of the resulting ontology are of the
appropriate class, that is, lightweight inclusions in our case. These are not obvious
points, which we solve with the help of a structural proof procedure for lightweight
ontologies.

In the context of conceptual modeling, this chapter, therefore, addresses two goals
of the present book: (G1) What are the candidate formal modeling languages and
techniques to model such domain knowledge? What are the reasoning capabili-
ties entailed by these modeling languages? (G2) Define composition mechanisms
to handle domain knowledge in formal modeling techniques. The chapter argues
that lightweight ontologies are expressive enough to cover certain formal conceptual
modeling scenarios (G1) and that the operations introduced provide composition
mechanisms (G2) to facilitate the construction of lightweight ontologies.

The paper is organized as follows: Section 2 defines the operations. Section 3
introduces a decision procedure for lightweight inclusions, based on the notion of
constraint graphs, and discusses the problem of minimizing a set of lightweight
inclusions. Section4 showshow to compute the operations for lightweight ontologies.
Section 5 summarizes related work. Section 6 contains the conclusions.

2 A Formal Framework

2.1 A Brief Review of Basic Concepts

The definition of the operations depends only on the notion of theory, which we
introduce in the context of Description Logic (DL) [4].

Briefly, a vocabulary V consists of a set of atomic concepts, a set of atomic roles,
and the bottom concept ⊥. A language in V is a set of strings, using symbols in
V, whose definition depends on the specific variation of Description Logic adopted;
the definition of the language typically includes definitions for the set of concept
descriptions in V and the set of role descriptions in V .

An inclusion in V is a statement of the form u� v, where u and v both are concept
descriptions in V or both are role descriptions in V. We use u ≡ v (equivalence) as
an abbreviation for the pair of inclusions u � v and v � u.

An interpretation s for V consists of a nonempty set �s, the domain of s, whose
elements are called individuals, and an interpretation function, also denoted s, where

Operations over Lightweight Ontologies and Their Implementation 63

s(⊥) = ∅
s(A) ⊆ �s for each atomic concept A in V
s(P) ⊆ �s × �s for each atomic role P in V
The function s is extended to role and concept descriptions in V. The exact defi-

nition again depends on the specific variation of Description Logic adopted. We use
s(e) to indicate the value that s assigns to a concept description or a role description
e in V.

Let σ and σ ’ be two inclusions in V and Σ be a set of inclusions in V. Assume
that σ is of the form u � v. We say that

• s satisfies σ or s is a model of σ , denoted s � σ , iff s(u) ⊆ s(v).
• s satisfies Σ or s is a model of Σ, denoted s � Σ, iff s satisfies all inclusions in

Σ.
• σ is valid, denoted � σ , iff any interpretation for V satisfies σ .
• σ and σ ’ are tautologically equivalent iff any model of σ is a model of σ ’ and

vice versa.
• Σ logically implies σ , or σ is a logical consequence of Σ, denoted Σ � σ , iff any

model of Σ satisfies σ .
• Σ is satisfiable or consistent iff there is a model of Σ.

The theory ofΣ inV, denoted τ [Σ], is the set of all inclusions inV that are logical
consequences of Σ. We say that two sets of inclusions, Γ and Θ, are equivalent,
denoted Γ ≡ Θ, iff τ [Γ] = τ [Θ].

Finally, an ontology is a pair O = (V,Σ) such that V is a finite vocabulary, whose
atomic concepts and atomic roles are called classes and properties of O, respectively,
and Σ is a set of inclusions in V, called the constraints of O. Two ontologies O1=
(V1,Σ1) and O2= (V2,Σ2) are equivalent, denoted O1 ≡ O2, iff Σ1 and Σ2 are
equivalent.

2.2 Definition of the Ontology Operations

In this section, we introduce a collection of operations over ontologies, whose
definition is not restricted to any specific variation of DL.

Definition 1 Let O1 = (V1,Σ1) and O2 = (V2,Σ2) be two ontologies, W be a
subset of V1, and Ψ be a set of constraints in V1.

(i) The projection of O1= (V1,Σ1) over W, denoted π[W](O1), returns the
ontology OP= (VP,ΣP), where VP=W and ΣP is the subset of the constraints
in τ [Σ1] that use only classes and properties inW.

(ii) The deprecation of Ψ from O1 = (V1,Σ1), denoted δ[Ψ](O1), returns the
ontology OD= (VD,ΣD), where VD= V1 and ΣD = Σ1 – Ψ .

(iii) The union of O1= (V1,Σ1) and O2= (V2,Σ2), denoted O1 ∪ O2, returns the
ontology OU= (VU,ΣU), where VU = V1 ∪ V2 and ΣU= Σ1 ∪ Σ2.

64 M. A. Casanova and R. C. Magalhães

(iv) The intersection of O1= (V1,Σ1) and O2= (V2,Σ2), denoted O1 ∩ O2, returns
the ontologyON = (VN ,ΣN), where VN = V1 ∩ V2 andΣN= τ [Σ1] ∩ τ [Σ2].

(v) The difference of O1= (V1,Σ1) and O2= (V2,Σ2), denoted O1 – O2, returns
the ontology OF= (VF,ΣF), where VF = V1 and ΣF= τ [Σ1] – τ [Σ2]. �

We refer the reader to [12] for examples of these operations. We observe that the
ontology that results from an operation is unique, by definition. However, theremight
be several ontologies that are equivalent to the resulting ontology. For example, if
OP= (VP,ΣP) is the projection ofO1 onW, there might be several sets of constraints
that are equivalent to the set of constraints in the theory ofO1 that use only terms inW.
This simple observation will be helpful in Sect. 4, which addresses how to implement
the operations. We also observe that we may generalize union, intersection, and
difference by considering a renaming of one or both vocabularies of the ontologies
involved and propagating the renaming to the terms that occur in the constraints
when comparing the theories. Out of simplicity, we do not consider this extension in
the chapter.

We now briefly discuss the conceptual design problems that motivated the defini-
tion of the operations. Consider first the problem of designing an ontology to publish
data on theWeb. Following the Linked Data principles [7], the designer should select
known ontologies, as much as possible, to organize the data so that applications “can
dereference the URIs that identify vocabulary terms in order to find their defini-
tion”. We argue that the designer should go further and analyze the constraints of the
ontologies fromwhich he is drawing the terms to construct his ontology. To facilitate
conceptual design from this perspective, we introduced the projection, union, and
deprecation operations.

Given two ontologies, if the designerwants to knowwhat they have in common, he
should create amapping between their vocabularies and detectwhich constraints hold
in both ontologies after the terms are mapped. The intersection operation answers
this question. We argued elsewhere [11] that intersection is also useful to address the
design of mediated schemas that combine several export schemas in a way that the
data exposed by the mediator is always consistent.

Likewise, given two ontologies, if the designer wants to know what holds in one,
but not in the other, he should again create a mapping between their vocabularies and
detect which constraints hold in the theory of the first ontology, but not in the theory
of the second, after the terms are appropriately mapped. The difference operation
answers this question. Note that a variant of ontology comparison is the problem of
analyzing what changed from one version of an ontology to the next.

2.3 Lightweight Description Logic

The procedures that implement the operations, introduced in Sect. 4, assume that
the inclusions meet certain restrictions, imposed by a variation of Description Logic,
that we call Lightweight Description Logic, or Lightweight DL.

Operations over Lightweight Ontologies and Their Implementation 65

Lightweight DL is characterized by the following definitions and restrictions on
the sets of concept descriptions, role descriptions, and inclusions.

Definition 2 Let V be a vocabulary.

(i) A lightweight role description in V is an atomic role P in V or a string of the
form P¯ (inverse role), where P is an atomic role in V.

(ii) A lightweight basic concept description in V is the bottom concept ⊥, an
atomic concept in V, or an at-least restriction of the form (≥n p), where p is a
lightweight role description in V and n is a positive integer.

(iii) A lightweight concept description in V is a lightweight basic concept descrip-
tion in V, or a lightweight negated concept of the form ¬e, where e is a
lightweight basic concept description in V.

(iv) A lightweight inclusion in V is a string of one of the forms:

• e � f , where e is an atomic concept or an at-least restriction in V and f is
the bottom concept ⊥, an atomic concept in V, or an at-least restriction.

• e � ¬f , where e and f are atomic concepts or at-least restrictions in V. �

Definition 3 Let V be a vocabulary and s be an interpretation for V. The function
s is extended to lightweight role and concept descriptions in V as follows (where P
is an atomic role, e is a lightweight basic concept description, and p is a lightweight
role description):

(i) s(P¯) = s(P)¯ (the inverse of s(P))
(ii) s(¬e) = �s – s(e) (the complement of s(e) with respect to �s)
(iii) s(≥n p) = {I ∈ �s/ card({J ∈ �s / (I,J) ∈ s(p)}) ≥ n} (the set of individuals

that s(p) relates to at least n distinct individuals, where card(S) denotes the
cardinality of a set S). �

Since lightweight inclusions are a special case of inclusions, the notion of
satisfiability, etc., remain as in Sect. 2.1.

Definition 4 An ontology O = (V,Σ) is a lightweight ontology iff Σ is a set of
lightweight inclusions in V. �

We use the following abbreviations, where p is a lightweight role description

• “�” (universal concept) for “¬⊥”
• “∃p” (existential quantification) for “(≥1 p)”
• “(≤n p)” (at-most restriction) for “¬(≥n + 1 p)”

By an unabbreviated concept description,wemean a concept description that does
not use such abbreviations. Care must be taken to eliminate the abbreviated concept
descriptions before checking if an inclusion is indeed a lightweight inclusion. Also,
in view of the restrictions in Definition 2(iv), a lightweight equivalence e ≡ f is such
that e and f both are atomic concepts or at-least restrictions in V.

Let e and f be lightweight basic concept descriptions. Inclusions of the following
forms are not lightweight inclusions: ⊥ � f , ⊥ � ¬f , e � ¬⊥, ¬f � ¬e, and ¬e �
f . However, we note that

66 M. A. Casanova and R. C. Magalhães

(1) ⊥ � f, ⊥ � ¬f , and e � ¬⊥ are valid (satisfiable by any interpretation)
(2) ¬f � ¬e is tautologically equivalent to e � f

Thus, when defining an ontology, inclusions as in (1) can be ignored, since they
are vacuous constraints, and ¬f � ¬e can be replaced by e � f .

We remark that the definitions of DL − LiteNcore inclusions [3] and lightweight
inclusions differ only in that the latter, but not the former, rules out inclusions of the
forms in (1). However, this is semantically immaterial since, given a set Σ of DL −
LiteNcore inclusions, we can always drop fromΣ inclusions as in (1) without affecting
the theory of Σ, since these inclusions are valid. On the other hand, inclusions as
in (1) would unnecessarily complicate the structural proof procedure introduced in
Sect. 3.

Finally, we observe that lightweight inclusions are sufficiently expressive to cover
the simplest types of constraints used in conceptual modeling (see Table 1). We refer
the reader to [3] for a detailed account of the DL family.

Table 1 Common constraint types used in conceptual modeling

Constraint type Abbreviated form Unabbreviated form Informal semantics

Domain
constraint

∃P � C (≥ 1 P) � C Property P has class C
as domain, that is, if (a,
b) is a pair in P, then a
is an individual in C

Range constraint ∃P¯ � C (≥ 1 P¯) � C Property P has class C
as range, that is, if (a, b)
is a pair in P, then b is
an individual in C

minCardinality
constraint

C � (≥ k P) or C � (≥
k P¯)

Property P or its inverse
P¯ maps each individual
in class C to at least k
distinct individuals

maxCardinality
constraint

C � (≤ k P) or C � (≤
k P¯)

C � ¬(≥ k + 1 P) or C
� ¬(≥ k + 1 P¯)

Property P or its inverse
P¯ maps each individual
in class C to at most k
distinct individuals

Subset constraint C � D Each individual in C is
also in D, that is, class C
denotes a subset of class
D

Disjointness
constraint

C � ¬D No individual is in both
C and D, that is, classes
C and D are disjoint

Operations over Lightweight Ontologies and Their Implementation 67

3 Basic Procedures for Lightweight Inclusions

3.1 A Decision Procedure for Lightweight Inclusions

In this section, we review a decision procedure for lightweight inclusions, based on
the notion of constraint graphs [11]. We also discuss the problem of minimizing
a set of lightweight inclusions, which affects the implementation of the ontology
operations. We stress that the concepts introduced in this section refer only to
lightweight inclusions. Thus, we often omit explicit reference to this variation of
DL, a simplification that the reader must bear in mind.

We say that the complement of a basic concept description b is¬b, and vice versa.
If e is a basic concept description or the negation of a basic concept description, then
e denotes the complement of e.

Let � be a set of lightweight inclusions and Ω be a set of lightweight concept
descriptions.

Definition 5 The labeled graph g(Σ ,Ω) = (γ ,δ,κ) that captures Σ and Ω, where κ

labels each node with a concept description, is defined as follows:

(i) For each concept description e that occurs on the right- or left-hand side of an
inclusion in Σ, or that occurs in Ω, there is exactly one node in γ labeled with
e. If necessary, the set of nodes is augmented with new nodes so that

(a) For each atomic concept C in Σ or in Ω, there is exactly one node in γ

labeled with C.
(b) For each atomic role P inΣ or inΩ, there is exactly one node in γ labeled

with (≥1 P) and exactly one node labeled with (≥1 P¯).

(ii) If there is a node in γ labeled with a concept description e, then there must be
exactly one node in γ labeled with ē.

(iii) For each inclusion e � f in Σ, there is an arc (M,N) in δ, where M and N are
the nodes labeled with e and f , respectively.

(iv) If there are nodesM and N in γ labeled with (≥m p) and (≥n p) such that m <
n, where p is either P or P¯, then there is an arc (N,M) in δ. Such arcs are called
tautological arcs.

(v) If there is an arc (M,N) in δ such that M and N are labeled with e and f ,
respectively, then there is an arc (K,L) in δ such that K and L are the nodes
labeled with f̄ and ē, respectively.

(vi) These are the only nodes and arcs of g(Σ ,Ω).

If Ω is empty, we write g(Σ) and say that g(Σ) is the graph that captures Σ. �

Definition 6 The constraint graph for Σ and Ω is the labeled graph G(Σ ,Ω) =
(η,ε,λ), where λ labels each node with a set of concept descriptions. The graph
G(Σ ,Ω) is defined by collapsing each strongly connected component of g(Σ ,Ω) into
a single node, labeled with the set of concept descriptions that previously labeled

68 M. A. Casanova and R. C. Magalhães

Table 2 The constraints of the ontology APO (unabbreviated form)

Constraint Informal specification

(≥1 foaf:name) � foaf:Person
(≥1 foaf:name¯) � xsd:string
(≥1 mo:member_of) � foaf:Person
(≥1 mo:member_of¯) � foaf:Group

The domain of foaf:name is foaf:Person
The range of foaf:name is xsd:string
The domain of mo:member_of is foaf:Person
The range of mo:member_of is foaf:Group

mo:MusicArtist � foaf:Agent
foaf:Group � foaf:Agent
foaf:Organization � foaf:Agent
mo:SoloMusicArtist � foaf:Person
mo:SoloMusicArtist � mo:MusicArtist
mo:MusicGroup � mo:MusicArtist
mo:MusicGroup � foaf:Group
mo:CorporateBody � foaf:Organization
mo:Label � mo:CorporateBody

mo:MusicArtist is a subset of foaf:Agent
foaf:Group is a subset of foaf:Agent
foaf:Organization is a subset of foaf:Agent
mo:SoloMusicArtist is a subset of foaf:Person
mo:SoloMusicArtist is a subset of mo:MusicArtist
mo:MusicGroup is a subset of mo:MusicArtist
mo:MusicGroup is a subset of foaf:Group
mo:CorporateBody is a subset of foaf:Organization
mo:Label is a subset of mo:CorporateBody

foaf:Person � ¬foaf:Organization foaf:Person and foaf:Organization are disjoint

the nodes in the strongly connected component. When Ω is the empty set, we write
G(Σ) and say that G(Σ) is the constraint graph for Σ. �

If a node K of G(Σ ,Ω) is labeled with e, then K̄ denotes the node labeled with ē;
we say that K and K̄ are dual nodes and (M,N) and (N̄ , M̄) are dual arcs.

Example 1 Let “foaf:” refer to the vocabulary of the “Friend-of-a-Friend” ontology,
“mo:” to the vocabulary of the “music” ontology, and “xsd:” to the XML schema
vocabulary. Consider the Agent-Person ontology, APO = (VAPO,ΣAPO), where

VAPO = {foaf:Agent, foaf:Person, foaf:Group, foaf:Organization,
mo:MusicArtist, mo:CorporateBody, mo:SoloMusicArtist, mo:MusicGroup,
mo:Label, mo:member_of, foaf:name, xsd:string}

ΣAPO = (the set of constraints is shown in Table 2)

Figure 1 depicts the constraint graph g(ΣAPO) for ΣAPO. Since g(ΣAPO) has no
strongly connected components, g(ΣAPO) and G(ΣAPO) are in fact the same graph.
Note that there is a path from the node labeledwithmo:Label to the node labeledwith
¬(≥1 mo:member_of), which indicates that mo:Label � ¬(≥1 mo:member_of) is a
logical consequence of ΣAPO. This logical implication would not be captured if we
constructed the graph with just the concept descriptions that occur in ΣAPO. Hence,
it provides an example of why we need Conditions (ii) and (v) in Definition 5.

We use K → M to indicate that there is a path in G(Σ ,Ω) from K toM. Also, as
a convenience, a path of length 0 is a path consisting of a single node.

Definition 7 Let G(Σ ,Ω) = (η,ε,λ) be the constraint graph for Σ and Ω.

(i) We say that a node K of G(Σ ,Ω) is a ⊥-node of rank 0 iff

(a) K is labeled with ⊥, or
(b) There are nodes M and N, not necessarily distinct from K, and a basic

concept description b such that M and N are labeled with b and ¬b,
respectively, and K → M and K → N.

Operations over Lightweight Ontologies and Their Implementation 69

Fig. 1 The constraint graph G(ΣAPO) for ΣAPO

(ii) For each positive integer n, we say that a node K of G(Σ ,Ω) is a ⊥-node of
rank n iff K is not a ⊥-node of rank m, with m < n, and there is a ⊥-node L of
rank n-1 such that

(a) (K,L) is an arc of G(Σ ,Ω), or
(b) L is labeled with (≥1 P¯) and K is labeled with (≥1 P), or
(c) L is labeled with (≥1 P) and K is labeled with (≥1 P¯). �

Case (ii-b) captures the fact that, given an interpretation s, if s((≥1 P¯)) = ∅, then
s(P) = s((≥1 P)) = ∅. Case (ii-c) follows likewise, when s((≥1 P)) = ∅. In view of
these cases, the notion of rank is necessary to avoid a circular definition.

Definition 8 LetG(Σ ,Ω)= (η,ε,λ) be the constraint graph for Σ andΩ. Let K be a
node of G(Σ ,Ω). We say that K is a ⊥-node iff K is a ⊥-node with rank n, for some
nonnegative integer n. We say that K is a �-node iff K̄ is a ⊥-node. �

To simplify the procedures described in Sect. 4, we tag the ⊥-nodes and the
�-nodes of a constraint graph with “⊥-node” and “�-node”, respectively.

Definition 9 The tagged constraint graph for Σ and Ω is the constraint graph for
Σ and Ω, with the ⊥-nodes and the �-nodes tagged with “⊥-node” and “�-node”,
respectively. �

In what follows, let G(Σ ,Ω) be the constraint graph for a set Σ of lightweight
inclusions and a set Ω of lightweight concept descriptions. We refer the reader to
[11] for detailed proofs.

Proposition 3 (Consistency).

(i) For any pair of nodes M and N of G(Σ ,Ω) such that M is labeled only with
atomic concepts and at-least restrictions, for any label e of M, for any label f
of N, ifM → N then e � f is a lightweight inclusion and Σ � e � f .

70 M. A. Casanova and R. C. Magalhães

(iii) For any node M of G(Σ ,Ω) such that M is labeled only with atomic concepts
and at-least restrictions, for any label e of M, if M is a ⊥-node, then e � ⊥ is
a lightweight inclusion and Σ � e � ⊥.

(iv) For any node M of G(Σ ,Ω) such that M is labeled only with atomic concepts
and at-least restrictions, for any pair e and f of labels ofM, e≡ f is a lightweight
equivalence and Σ � e ≡ f .

Theorem 1 shows how to test logical implications for lightweight inclusions. In
the “if” direction, Theorem 1 is just a restatement of Proposition 3. In the “only if”
direction, the proof is far more complex than those of the previous propositions and
can be found in [11]. Just as a reminder, a path from a nodeM to a node N has length
0 iffM = N.

Theorem 1 (Completeness). Let Σ be a set of lightweight inclusions and e � f be
a lightweight inclusion. Let Ω = {e,f }. Then, Σ � e � f iff one of the following
conditions holds:

(i) The node of G(Σ,Ω) labeled with e is a ⊥-node, or
(ii) The node of G(Σ,Ω) labeled with f is a �-node, or
(iii) There is a path in G(Σ,Ω), possibly with length 0, from the node labeled with

e to the node labeled with f . �
Theorem 1 leads to a structural decision procedure, Implies, to test if a lightweight

inclusion e � f is a logical consequence of a set Σ of lightweight inclusions (see
Fig. 2).

3.2 Minimizing the Set of Constraints of a Lightweight
Ontology

We briefly discuss the problem of minimizing the set of constraints of a lightweight
ontology, which is similar to finding a minimal equivalent graph (MEG) of a graph
G, defined as a graph H with a minimal set of edges such that the transitive closure
ofG andH are equal. This problem has a polynomial solution whenG is acyclic and
is NP-hard for strongly connected graphs [1, 16, 19].

Figure 3 contains all procedures developed to address this question, as well as
procedures to construct constraint graphs and to test if a lightweight inclusion is
a logical consequence of a set of lightweight inclusions, based on Theorem 1.
The MinimizeGraph procedure is based on the strategy of finding the MEG of
a constraint graph. Step (2) of MinimizeGraph can be implemented in polynomial
time [1, 16], since H is acyclic (because so is G, by Proposition 2(i)). In view of
Propositions 1 and 2, Step (2) considers just the nodes ofH labeled only with atomic
concepts and at-least restrictions. Furthermore, since Step (2) drops the dual arcs,
H satisfies the properties listed in Propositions 1 and 2. The GenerateConstraints

Operations over Lightweight Ontologies and Their Implementation 71

Input: a set Σ of lightweight inclusions and an op onal lightweight inclusion e ⊑ f

Output: the tagged constraint graph G(Σ,Ω)

1. Construct the constraint graph G(Σ,Ω) for Σ and Ω ={e,f}, using Defini on 6.
2. Tag G(Σ,Ω), using Defini on 9.
3. Return G(Σ,Ω).

Implies:

Input: a lightweight inclusion e ⊑ f and a set Σ of lightweight inclusions

Output: “True”, if e ⊑ f is a logical consequence of a set Σ, and “False”, otherwise

1. Call ConstructGraph to construct the constraint graph G(Σ,Ω) for Σ and Ω ={e,f}.
2. Return “True” if
3. The node of G(Σ,Ω) labeled with e is a ⊥-node, or
4. The node of G(Σ,Ω) labeled with f is a ⊤-node, or
5. There is a path in G(Σ,Ω), possibly with length 0, from the node labeled with e

to the node labeled with f.
6. Return “False”, otherwise.

MinimizeGraph:

Input: a tagged constraint graph G

Output: a MEG H of G

1. Ini alize H with the same nodes, arcs, labels and tags as G.
2. For each node L of H labeled only with atomic concepts and at-least restric ons,
3. For each arc (L,M) in H,
4. For each node N in H, do:
5. If there are arcs (M,N) and (L,N) in H
6. such that (L,N) is not a tautological arc,
7. Drop from H both the arc (L,N) and the arc (,)

connec ng the dual nodes of L and M.

GenerateConstraints:

Input: a tagged constraint graph H

Output: a set of constraints Σ2

ConstructGraph:

Fig. 2 Basic procedures

72 M. A. Casanova and R. C. Magalhães

4. If M is tagged as a “⊥-node”, then
5. For each label e of M,
6. Add to Σ2 a constraint of the form e ⊑ ⊥.
7. If M is not tagged as “⊥-node”, then
8. Order the labels of M, crea ng a list e1,…,en, and
9. Add to Σ2 the constraints e1 ⊑ e2, e2 ⊑ e3 ,…, en-1 ⊑ en and en ⊑ e1.
10. For each arc (M,N) of H such that (M,N) is unprocessed, do:
11. Select a label e of M and a label f of N and
12. Add to Σ2 a constraint of the form e ⊑ f.
13. Mark both (M,N) and (,) as processed.
14. Return Σ2.

MinimizeConstraints:

Input: a set of lightweight constraints Σ1

Output: an equivalent, minimal set of constraints Σ2

1. Call ConstructGraph to construct the tagged constraint graph G for Σ1.
2. Call MinimizeGraph with G to generate H.
3. Call GenerateContraints with H to generate Σ2.
4. Return Σ2.

1. Ini alize Σ2 to be the empty set.
2. Mark all arcs of H as unprocessed.
3. For each node M of H labeled only with atomic concepts and at-least restric ons, do:

Fig. 2 (continued)

Projec on:

Input: O1 = (V1,Σ1) be a lightweight ontology and W be a subset of V1

Output: OP = (W,ΓP), a lightweight ontology equivalent to the projec on of O1 on W

(1) Construct G(Σ1), the tagged constraint graph for Σ1.
(2) Construct G*(Σ1), the transi ve closure of G(Σ1). The nodes of G*(Σ1) retain all labels

and tags as in G(Σ1).
(3) Use G*(Σ1) to create a graph GW by discarding all concept descrip ons that label nodes

of G*(Σ1) and that involve classes and proper es which are not in W; nodes that end
up with no labels are discarded, as well as their adjacent arcs. The nodes of GW retain
all tags as in G*(Σ1).

(4) Call MinimizeGraph with GW to generate H.
(5) Call GenerateContraints with H to generate ΓP.

(6) Return OP = (W, ΓP).

Fig. 3 Projection Procedure

Operations over Lightweight Ontologies and Their Implementation 73

procedure transforms graphH into a set of constraintsΣ2. Again, in view of Proposi-
tions 1 and 2, Step (3) of GenerateConstraints considers just the nodes ofH labeled
only with atomic concepts and at-least restrictions. The MinimizeConstraints uses
the previous procedure to transform a set of lightweight constraintsΣ1 and output an
equivalent, minimal set of constraintsΣ2. The correctness of MinimizeConstraints
is stated in Theorem 2.

Theorem 2 Let Σ1 be a set of lightweight constraints and Σ2 be the result of
applying MinimizeConstraints to Σ1. Then, Σ1 and Σ2 are equivalent, that is,
τ [Σ1] = τ [Σ2]. �

4 Implementation of the Operations

4.1 A Brief Discussion on the Implementation
of the Operations

We start with a few simple observations that impact the implementation of the opera-
tions. First, Definition 1 guarantees that each operation is a function, as expected, that
is, each operation returns a unique result OR for each input. However, we consider
it acceptable that the implementation of an operation computes an ontology OE

which is equivalent to OR. Furthermore, if the input ontologies have a finite set of
constraints, we require that the implementation returns an ontology that has a finite
set of constraints. This may be problematic for projection, intersection, and differ-
ence, whose definitions use the theories of the sets of constraints involved, rather
than the sets of constraints themselves, as in the definition of deprecation and union.
Lastly, the resulting ontology must be lightweight if the input ontologies are.

LetO1= (V1,Σ1) andO2= (V2,Σ2) be two lightweight ontologies,W be a subset
of V1 and Ψ be a set of constraints in V1. From the perspective of the difficulty of
implementation, we may divide the operations into three groups:

Group 1: deprecation and union.

These operations have direct implementations from Definitions 1(ii) and (iii). Given
O1 and Ψ , the Deprecation procedure returns the ontology OD = (VD,ΣD), where
VD= V1 and ΣD is the result of minimizing Σ1 – Ψ . Given O1 and O2, the Union
procedure returns the ontologyOU = (VU,ΣU), where VU = V1 ∪ V2 and ΣU is the
result of minimizing Σ1 ∪ Σ2. Hence, these procedures are quite simple and will
not be further discussed.

Group 2: projection and intersection.

74 M. A. Casanova and R. C. Magalhães

These operations have implementations that depend on Theorem 1. The Projec-
tion procedure computes the projection of O1 onto W and follows from Definition
1(i), Theorem 1, and constraint minimization. The Intersection procedure likewise
follows from Definition 1(iv).

Group 3: difference.

This operation raises difficulties, as discussed in Sect. 4.4.

4.2 Implementation of Projection

Let O1= (V1,Σ1) be a lightweight ontology andW be a subset of V1. Recall that the
projection of O1 over W is the ontology OP= (VP, ΣP), where VP= W and ΣP is
the set of constraints in τ [Σ1] that use only classes and properties inW.

ProcedureProjection, shown in Fig. 3, computesΓ P so that τ [Γ P] = τ [ΣP]. That
is, given any lightweight inclusion e � f that involves only classes and properties in
W, e � f is a logical consequence of Γ P iff e � f is a logical consequence of Σ1.
Note that this does not mean that e � f is a logical consequence of the subset of Σ1

whose inclusions involve only classes and properties inW.
The correctness of Projection is established in Theorem 3, whose proof follows

directly from Theorem 1. In particular, the transitive closure G*(Σ1), generated in
Step (2), is simply a convenient way to capture all paths in G(Σ1) required to apply
Condition (iii) of Theorem 1.

Theorem 3 (Correctness of Projection). Let O1= (V1,Σ1) be a lightweight
ontology andW be a subset of V1. LetOP= (W, Γ P) be the ontology that Projection
returns for O1 and W. Then, for any lightweight inclusion e � f that involves only
classes and properties inW, we have that Σ1 � e � f iff Γ P � e � f . �

4.3 Implementation of Intersection

Let Ok= (Vk,Σk), for k = 1,2, be two lightweight ontologies. Recall that the inter-
section of O1 and O2 is the ontology ON = (VN ,ΣN), where VN = V1 ∩ V2 and
ΣN= τ [Σ1] ∩ τ [Σ2].

Procedure Intersection, shown in Fig. 4, computes Γ N so that τ [Γ N] = τ [ΣN].
That is, a lightweight inclusion is a logical consequence of Γ N iff it is a logical
consequence of Σk , for k = 1,2. We now discuss the decisions that lead to the
Intersection procedure. Recall from Theorem 1 that a lightweight inclusion e � f
is a logical consequence of Σk iff there are nodes M and N of G(Σk ,Ω), with Ω =
{e,f }, such that

Operations over Lightweight Ontologies and Their Implementation 75

Intersec on:

input: O1 = (V1,Σ1) and O2= (V2,Σ2), two lightweight ontologies

output: ON =(V1∩V2,ΓN), a lightweight ontology equivalent to the intersec on of O1 and
O2.

(1) Construct the closure Δ of Σ1 and Σ2 with respect to each other.
(2) Construct G(Σ1,Δ) and G(Σ2,Δ), the tagged constraint graphs for Σ1 and Δ and Σ2

and Δ, respec vely.
(3) Construct a set of constraints Σ3 as follows (see Table 3):

(a) Ini alize Σ3 to be the empty set.
(b) For each node M of G(Σ1,Δ) tagged with “⊥-node” and

labeled only with atomic concepts and at-least restric ons,
for each label e of M, do:
(i) If e also labels a node of G(Σ2,Δ) tagged with “⊥-node”, then add e ⊑

⊥ to Σ3.
(ii) For each node K of G(Σ2,Δ) tagged with “⊤-node”,

for each label f of K, add e ⊑ f to Σ3.
(iii) For each path of G(Σ2,Δ), possibly with length 0, from a node labeled

with e to a node labeled with f, add e ⊑ f to Σ3.
(c) For each node M of G(Σ1,Δ) not tagged with “⊥-node” and

labeled only with atomic concepts and at-least restric ons,
for each path in G(Σ1,Δ) from M to a node N,

for each label e of M,
for each label f of N (f ≠ e, if M=N), do:

(i) If e also labels a node of G(Σ2,Δ) tagged with “⊥-node”,
then add e ⊑ f to Σ3.

(ii) If f also labels a node of G(Σ2,Δ) tagged with “⊤-node”,
then add e ⊑ f to Σ3.

(iii) If there is a path in G(Σ2,Δ), possibly with length 0, from a node
labeled with e to a node labeled with f, then add e ⊑ f to Σ3.

(4) Call MinimizeContraints with Σ3 to generate ΓN.
(5) Return ON = (V1∩V2, ΓN).

Fig. 4 Intersection Procedure

76 M. A. Casanova and R. C. Magalhães

(i) The node of G(Σk ,Ω) labeled with e is a ⊥-node, or
(ii) The node of G(Σk ,Ω) labeled with f is a �-node, or
(iii) There is a path inG(Σk ,Ω), possibly with length 0, from the node labeled with

e to the node labeled with f .

Therefore, we must construct Γ N so that e � f is a logical consequence of Γ N

iff e � f satisfies the above conditions with respect to Σk , for k = 1,2. However, a
direct application of Theorem 1 depends on the inclusion e � f being tested (since
the theorem depends on the constraint graph G(Σ,Ω), with Ω = {e,f }. We argue
that we can simplify the application of Theorem 1 in the context of the intersection
operation if we define a set of concept descriptions as follows:

Definition 10 Let Σ1 and Σ2 be two sets of lightweight inclusions. The closure of
Σ1 and Σ2 with respect to each other is the set Δ of concept descriptions defined
so that a concept description e is in Δ iff, for k = 1,2, e occurs in an inclusion of Σk

but not in an inclusion of Σk+1 (sum is module 2). �
Then, G(Σ1,Δ) and G(Σ2,Δ) satisfy the following property.

Proposition 4 Let Σ1 and Σ2 be two sets of lightweight inclusions and Δ be the
closure of Σ1 and Σ2 with respect to each other. Then, for k = 1,2, any lightweight
inclusion e � f in Σk+1 (sum is module 2) is a logical consequence of Σk iff there
are nodes M and N of G(Σk ,Δ) such that

(i) The node of G(Σk ,Δ) labeled with e is a ⊥-node, or
(ii) The node of G(Σk ,Δ) labeled with f is a �-node, or
(iii) There is a path inG(Σk ,Δ), possibly with length 0, from the node labeled with

e to the node labeled with f. �

The final case analysis to compute the intersection operation is summarized in
Table 3 and results in a set of lightweight inclusions (Column C of Table 3). Step
(3), the core of the Intersection procedure, directly captures such case analysis. We
decided to create a set of lightweight inclusions, rather than a constraint graph, to
clarify the decisions behind the Intersection procedure. The actual implementation
is optimized and avoids this intermediate step.

Note that we need not consider �-nodes of G(Σ1,Δ) (or of G(Σ2,Δ)). Indeed,
by Proposition 1, there is a �-node of G(Σ1,Δ) labeled with f iff there is a ⊥-node
labeled with f̄ . Furthermore, there is a path, possibly with length 0, from a node
labeled with e to a node labeled with f iff there is a path, possibly with length 0,
from a node labeled with f̄ to a node labeled with ē. Therefore, Cases 4, 5, and 6 of
Table 8, respectively, reduce to Cases 2, 1, and 3 of Table 3.

Theorem 4 (Correctness of Intersection): Let O1= (V1,Σ1) and O2= (V2,Σ2) be
two lightweight ontologies. Let Δ be the closure of Σ1 and Σ2 with respect to each
other. Let ON= (V1∩V2,Γ N) be the ontology that Intersection returns for O1 and
O2. Let e � f be a lightweight inclusion. Then, Γ N � e � f iff Σ1 � e � f and Σ2

� e � f . �

Operations over Lightweight Ontologies and Their Implementation 77

Table 3 Case analysis for the intersection operation

Case (A) Condition on G(Σ1,Δ)1,2 (B) Condition on G(Σ2,Δ) (C) Inclusion in Σ3

1 There is a ⊥-node labeled with
e

There is a ⊥-node labeled with
e

e � ⊥

2 There is a �-node labeled with
f

e � f

3 There is a path, possibly with
length 0, from a node labeled
with e to a node labeled with f

e � f

4 There is a �-node labeled with
f

There is a ⊥-node labeled with
e

e � f

5 There is a �-node labeled with
f

� � f

6 There is a path, possibly with
length 0, from a node labeled
with e to a node labeled with f

e � f

7 There is a path, possibly with
length 0, from a node labeled
with e to a node labeled with f

There is a ⊥-node labeled with
e

e � f

8 There is a �-node labeled with
f

e � f

9 There is a path, possibly with
length 0, from a node labeled
with e to a node labeled with f

e � f

Notes (see Definition 2):

(1) e is an atomic concept or an at-least restriction.
(2) f is the bottom concept ⊥, an atomic concept, a lightweight at-least restriction,

a negated atomic concept or a negated at-least restrictions.

4.4 A Note on Difference

The problem of creating a procedure to compute the difference between two ontolo-
gies, O1= (V1,Σ1) and O2= (V2,Σ2), lies in that it might not be possible to obtain
a finite set of inclusions ΔN in such a way that

(1) τ[�N] = τ[Σ1] − τ[Σ2]

This invalidates the effort to create a procedure to obtain a finite set of inclusions
ΔN satisfying (1), along the lines of those exhibited in Sects. 4.2 and 4.3. This remark
puts in doubt the usefulness of a (generic) difference operation. For example, consider
the following two sets of inclusions:

(2) Σ1 = {e�g, g� f }

78 M. A. Casanova and R. C. Magalhães

(3) Σ2 = {e� f }

Then, ignoring tautologies when computing τ[Σk], k = 1,2, we have:

(4) τ[Σ1] = {e�g, g� f, e� f }

(5) τ[Σ2] = {e� f }

(6) �N = τ[Σ1] − τ[Σ2] = {e�g, g� f } = Σ1

But this definition of ΔN is not satisfactory since we have

(7) τ[�N] = τ[Σ1] = {e�g, g� f, e� f }

That is, to compute the difference �N = τ[Σ1] − τ[Σ2], we remove “e � f ”
from τ[Σ1], only to get “e � f ” back by logical implication from ΔN . In fact,
in this rather obvious example, we cannot obtain a set of inclusions ΔN such that
τ[�N] = τ[Σ1]−τ[Σ2]. Indeed, since the set of inclusions must not logically imply
“e � f”, the only candidates are

(8) �1 = {e�g}

(9) �2 = {g� f }

In both cases, we have (ignoring tautologies when computing τ[Δk], k = 1,2):

(10) τ [�k] = �k ⊂ τ [Σ1] − τ [Σ2]

In view of this discussion, we cannot hope to always compute the exact difference
between two ontologies.

5 Selected Related Work

We start with a very brief note about the algebraic specification, which is not the
main setting of this chapter, and then relate the concepts and results of this chapter
with work on ontology specification, especially ontology modularization.

The idea of theories as the semantics of specifications goes back at least to the early
1980s [8]. This idea was then carried on by the algebraic specification community in
the late 1980s. In this context, a rather abstract notion of module and operations on
modules were extensively explored (see, for example, [5, 14]). Operations on objects

Operations over Lightweight Ontologies and Their Implementation 79

include pullback and amalgamated sum [6], which generalize intersection and union,
respectively.

Treating ontologies as theories can be traced back at least to Uschold and
Gruninger [24] seminal paper, where they argue that “for any given ontology, the goal
is to agree upon a shared terminology and set of constraints on this terminology”.
Specifically, in the context of Linked Data, Jain et al. [18] stressed that the design
of Linked Data sources must indicate the semantics of the concepts. We argue that
such semantics must be expressed as constraints derived from those of the under-
lying ontologies used in the description of the data source, which was the primary
motivation for the work reported here.

Ontology modularization is a well-explored notion (see for example the papers in
[23]), especially for description logics and the Web Ontology Language. The idea of
ontological module extraction is to pull out, from a large ontology, those constraints
(or axioms) that are relevant to certain terms (or concepts) of interest, that is, to reuse
only those parts that cover all the knowledge about the subset of relevant terms.
Module extraction strategies can be structure-based, that is, based on the syntactical
structure of the constraints and hierarchy of concepts [13, 22, 21] or logic-based,
that is, based on the theory the ontology constraints define.

In more detail, as defined in [17], given an ontologyO= (VO,ΣO), amodule M =
(VM,ΣM) is a subset of O, that is, VM ⊆ VO and ΣM ⊆ ΣO. A moduleM is relevant
for a set of termsW iff all consequences of O that can be expressed overW are also
consequences of M; in this case, O is said to be a conservative extension of M. A
stronger property is that every model of M extends to a model of O; in this case, O
is said to be a model conservative extension.

The notion of S-module introduced in [15] is defined as follows: Let S be a
signature and M = (VM,ΣM) and O = (VO,ΣO) be two ontologies such that M is
a subset of O. Then, M is an S-module in O with respect to an ontology language L
iff, for every ontology P = (VP,ΣP) and constraint α expressed in L with Sig(P) ∩
Sig(O) ⊆ S and Sig(α) ⊆ Sig(P), we have ΣP ∪ ΣO � α if and only if ΣP ∪ ΣM �
α. The authors show that testing if an ontology is an S-module of another ontology,
is undecidable for the fragment of OWL DL, that disallows transitive roles, role
hierarchies, inverse roles, and cardinality restrictions.

The projection operation, as defined in this chapter, is stricter than the notion of
conservative extension and the notion of S-module. Indeed, given an ontology O
= (VO,ΣO) and a set of terms W⊆VO, recall that the projection of O on W is the
ontology M = (W,ΣM) such that, for every constraint α expressed in W, we have
that

ΣO � α if and only if ΣM � α. In this chapter, for lightweight ontologies, we
showed how to compute the projection operation in polynomial time (see Fig. 3). We
also note that the notion of modularization expressed by the projection operation is
logic-based, by Definition 1(i), and yet the implementation described in Sect. 4.2 is
structural, in the sense that it explores the constraint graph, which, in turn, captures
the structure of the lightweight inclusions of the ontology we want to project.

We went further and considered other operations. The union operation is quite
simple to implement, but it can generate redundant constraints. We then showed how

80 M. A. Casanova and R. C. Magalhães

to minimize the constraints of the union of two lightweight ontologies. The imple-
mentation of the intersection operation for lightweight ontologies, with finite sets of
inclusions, described in Sect. 4.3, explores the constraint graphs of the input ontolo-
gies to construct the finite set of lightweight inclusions of the resulting ontology.
However, the implementation of the intersection is far more intricated than that of
projection. The intersection is useful to address the design of mediated schemas that
combine several export schemas in a way that the data exposed by the mediator is
always consistent [11]. It was this problem that triggered the developments reported
in Sect. 3 of this chapter. In fact, previous work by the authors [9] introduced the
notion of the open fragment, which is captured by the projection operation, whereas
a preliminary version of the union and difference operations was presented in [12].

Finally, Volz et al. [25] proposed a tool that implements an operation similar
to the projection by the creation of a database view resulting from query execution.
However, this tool does not allow the generation of semantic information captured by
the constraints that apply to the vocabulary terms. Ibáñez-García et al. [17] addressed
module extraction within the context of DOL—Distributed Ontology Language
(DOL). Other tools, such as OAPT [2], addressed the question of partitioning an
ontology into modules to facilitate ontology reuse. The OntologyManagerTab [20]
is a full implementation of the operations described in this chapter as a Protégé
plug-in.

6 Conclusions

In this chapter, we defined a set of operations that create new ontologies, including
their constraints, out of other ontologies and that can be efficiently implemented
for lightweight ontologies. We argued that such ontologies are expressive enough to
cover certain formal conceptual modeling scenarios, and that the operations intro-
duced provide composition mechanisms to facilitate the construction of lightweight
ontologies.

As future work, we intend to expand the implementation of the operations to cover
a more expressive family of ontologies, using the results presented in [10]. We also
intend to explore the use of assistant theorem provers to compute approximations of
the operations, as in [15]. The challenge, in this case, would be to figure out how a
theorem prover would help construct sets of constraints, in much the same way that
the decision procedure that explores the constraint graph does.

Acknowledgements We are grateful to the referees of an earlier version of this chapter for urging
us to revise the introduction and the related work sections. Also, this work was partly supported by
CNPq under grant 302303/2017-0 and by FAPERJ under grant E-26-202.818/2017.

Operations over Lightweight Ontologies and Their Implementation 81

References

1. A.V. Aho, M.R. Garey, J.D. Ullman, The transitive reduction of a directed graph. SIAM J.
Comp. 1(2), 131–137 (1972)

2. Algergawy, A., Babalou, S., Klan, F., Koenig-Ries, B., 2016. OAPT: A tool for ontology
analysis and partitioning, in Proceedings of the 19th International Conference on Extending
Database Technology, March 15–18, 2016, Bordeaux, France (2016), pp. 644–647

3. A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite family and relations.
J. Artif. Intell. Res. 36, 1–69 (2009)

4. F. Baader, W. Nutt, Basic description logics, in The Description Logic Handbook: Theory,
Implementation andApplications (CambridgeUniversity Press,Cambridge,UK, 2003), pp. 43–
95

5. J.A. Bergstra, J. Heering, P. Klint, Module algebra. J. ACM 37(2), 335–372 (1990)
6. M. Barr, C. Wells, Toposes, Triples and Theories. Grundlehren der mathematischen

Wissenschaften, vol. 278 (Springer, New York, 1985)
7. C. Bizer, R. Cyganiak, T. Heath, How to publish Linked Data on theWeb (2007), http://www4.

wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/
8. R.L. Carvalho, T.S.E. Maibaum, T.H.C. Pequeno, A.A. Pereda, P.A.S. Veloso, A model theo-

retic approach to the semantics of data types and structures, in Proceedings of the International
Computer Symposium, Taiwan (1982)

9. M.A. Casanova, K.K. Breitman, A.L. Furtado, V.M.P. Vidal, J.A.F. Macêdo, The role
of constraints in linked data, in Proceedings of the Confederated International Confer-
ences: CoopIS, DOA-SVI, and ODBASE 2011, Part II. LNCS 7045 (Springer, Berlin, 2011),
pp. 781–799

10. M.A. Casanova, K.K. Breitman, A.L. Furtado, V.M.P. Vidal, J.A.F. Macêdo, An efficient proof
procedure for a family of lightweight database schemas, inConquering Complexity ed byM.G.
Hinchey (ed.), . Springer, 2012a, 431–461

11. M.A. Casanova, T. Lauschner, L.A.P.P. Leme, K.K. Breitman, A.L. Furtado, V.M.P. Vidal,
Revising the constraints of lightweight mediated schemas. Data Knowl. Eng. 69(12), 1274–
1301 (2010)

12. M.A.Casanova, J.A.F.Macêdo, E. Sacramento,A.M.A. Pinheiro, V.M.P.Vidal, K.K.Breitman,
A.L. Furtado, Operations over lightweight ontologies, in Proceedings of the 11th International
Conference on Ontologies, Databases, and Applications of Semantics. LNCS 7566 (Springer,
Berlin, 2012b), pp. 646–663

13. P. Doran, V. Tamma, L. Iannone, Ontology module extraction for ontology reuse: An ontology
engineering perspective, in Proceedings of the 16th ACM Conference on Information and
Knowledge Management (CIKM ‘07) (ACM, New York, NY, USA, 2007), pp. 61–70

14. H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2: Module Specifications and
Constraints (Springer Science & Business Media, Berlin, 2012)

15. B.C. Grau, I. Horrocks, Y. Kazakov, U. Sattler, Extracting modules from ontologies: A logic-
based approach, in Modular Ontologies: Concepts, Theories and Techniques for Knowledge
Modularization (Springer, Berlin, Heidelberg, 2009). ISBN-10 3-642-01906-4

16. H.T. Hsu, An algorithm for finding a minimal equivalent graph of a digraph. J. ACM 22(1),
11–16 (1975)

17. Y.A. Ibáñez-García, T. Mossakowski, D. Sannella, A. Tarlecki, Modularity of ontologies in an
arbitrary institution, inLogic, Rewriting, andConcurrency—Essays dedicated to JoséMeseguer
on the Occasion of His 65th Birthday. LNCS 9200 (Springer, Berlin, 2015), pp. 361–379

18. P. Jain, P. Hitzler, P.Z. Yeh, K. Verma, A.P. Sheth, Linked data is merely more data, in Proceed-
ings of the AAAI Spring Symposium: ‘Linked Data Meets Artificial Intelligence’, pp. 82–86
(2010)

19. S.Khuller, B.Raghavachari,N.Young,Approximating theminimumequivalent digraph. SIAM
J. Comp. 24(4), 859–872 (1995)

http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

82 M. A. Casanova and R. C. Magalhães

20. R.C.Magalhães,M.A. Casanova, B.P. Nunes, G.R. Lopes, On the implementation of an algebra
of lightweight ontologies, in Proceedings of the 21th International Database Engineering &
Applications Symposium, Bristol, England, July 12–14 (2017)

21. Seidenberg, J., Rector, A.L., 2006.Web ontology segmentation: analysis, classification and use.
In: Proc.15th Int’l. Conf. on World Wide Web, Edinburgh, UK, 23–26 May 2006, pp. 13–22

22. H. Stuckenschmidt, M. Klein, Structure-based partitioning of large concept hierarchies, in The
Semantic Web—ISWC 2004. LNCS 3298 (Springer, Berlin, Heidelberg, 2004)

23. H. Stuckenschmidt, C. Parent, S. Spaccapietra, (eds.),ModularOntologies: Concepts, Theories
and Techniques for Knowledge Modularization. Theoretical Computer Science and General
Issues 5445 (Springer, Berlin, Heidelberg, 2009). ISBN-10: 3-642-01906-4

24. Uschold, M., Gruninger, M., 1996. Ontologies: principles, methods and applications. The
Knowledge Engineering Review, 11(2), June 1996, 93-136

25. R. Volz, D. Oberle, R. Studer, Views for light-weight web ontologies, in Proceedings of the 7th
International Database Engineering and Application Symposium (IDEAS 2003), pp. 160–169
(2003)

Formal Ontological Analysis for Medical
Protocols

Neeraj Kumar Singh, Yamine Ait-Ameur, and Dominique Méry

Abstract Clinical guidelines systematically assist practitioners to provide an appro-
priate health care in specific clinical circumstances. A significant number of guide-
lines and protocols is lacking in quality. Indeed, ambiguity and incompleteness are
likely anomalies in medical practice. In order to find anomalies and to improve the
quality of medical protocols, this paper presents a stepwise formal development of
a medical protocol. In this development, we define the domain concepts based on
ontologies and integrate them with the medical protocol in an explicit way. In this
work, we use the Event B language for modelling a domain model using ontologies
and capturing the functional behaviour of the medical protocol. Our main contribu-
tions are: to use domain-specific knowledge in a system model explicitly; to link
a domain model and a system model using an annotation mechanism; and to use a
proof-based formal approach to evaluate a medical protocol. An assessment of the
proposed approach is given through a case study, relative to a real-life reference
protocol (electrocardiogram (ECG) interpretation), which covers a wide variety of
protocol characteristics related to different heart conditions.

1 Introduction

Over the past fewdecades,much research has beendone in the area ofmedical domain
to address the growing challenges in the field of biomedical informatics, life sciences,

IMPEX Project (ANR-13-INSE-0001), webpage: http://impex.loria.fr.

N. K. Singh (B) · Y. Ait-Ameur
ENSEEIHT-INPT/IRIT, University of Toulouse, Toulouse, France
e-mail: neeraj.singh@toulouse-inp.fr

Y. Ait-Ameur
e-mail: yamine.aitameur@toulouse-inp.fr

D. Méry
LORIA, Université de Lorraine, BP 239, Nancy, France
e-mail: mery@loria.fr

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_5&domain=pdf
http://impex.loria.fr
mailto:neeraj.singh@toulouse-inp.fr
mailto:yamine.aitameur@toulouse-inp.fr
mailto:mery@loria.fr
https://doi.org/10.1007/978-981-15-5054-6_5

84 N. K. Singh et al.

pharmacology, neuroscience and clinical research. There are several databases to
manage different kinds of biological information. However, these databases face
new challenges in terms of increasing amount of data due to the growing number
of users. These new challenges are: data are voluminous, unstructured and collected
from a variety of incompatible sources; difficult to use and understand the available
data, information and knowledge; needs of better techniques and tools to manage
the databases; needs of semantical description of biological domain and medical
systems; and needs of some sound techniques to meet regulators and certification
standards [37].

Mostly, the system development process does not consider the domain knowl-
edge explicitly. However, such knowledge is provided implicitly during the system
development by making some assumptions on an environment and some of the past
experiences. It is very common that such implicit domain knowledge often shows
some contradictory results, which may lead to a system failure state. Integrating
domain knowledge into a system model explicitly may improve the quality of the
development process. Note that one of the main reasons for not integrating domain
knowledge into the system development is the lack of modelling languages. Most of
the languages are unable to express environment requirements related to a system
[5].

Medical guidelines are “systematically developed statements to assist practition-
ers and patients to determine appropriate health care for specific circumstances” [27,
45]. Medical protocols provide healthcare testimonials and facilitate high standard
practices. For developing high-quality protocols, we need regular amendments.Med-
ical bodies worldwide have made efforts for improving existing protocols and their
development process. However, these initiatives are not sufficient since they rely on
informal methods and they do not apply domain knowledge during the development
of protocols [28].

We are concerned with a different approach, namely the quality improvement of
medical protocols using formal methods. In order to find anomalies and to improve
the quality of medical protocols, this paper presents a stepwise formal development
of a medical protocol. The whole development is composed of two different models:
domainmodel and systemmodel. The domainmodel contains domain concepts based
on ontologies [15] and the system model contains the required functional behaviour
of a given medical protocol. Note that an annotation mechanism is used to integrate
these two models for developing and verifying the medical protocol. Combining
these two models allows us to verify some new properties related to the domain
knowledge within the enriched design medical protocol. In this work, we use the
Event-B language for modelling the domain model and the system protocol model.
Our main contributions are:

• to use domain-specific knowledge in a system model explicitly;
• to link a domain model and a system model using an annotation mechanism;
• to use a proof-based formal approach to evaluate a medical protocol;
• to find ambiguity, incompleteness and inconsistency in a medical protocol.

Formal Ontological Analysis for Medical Protocols 85

The main goal of this work is to translate an informal description of a medical
protocol into a formal language, with the aim of analysing a set of properties. Such
kinds of formal verification allow us to expose problematic parts in the protocol
by analysing the formal description of the protocol. The current work intends to
explore those problems related to the modelling of medical protocols. Moreover,
an incremental development of the medical protocol model helps to discover the
ambiguous, incomplete or even inconsistent elements in the medical protocol under
the explicit domain knowledge. The electrocardiogram (ECG) protocol covers awide
variety of characteristics related to different heart conditions. Formal modelling and
verification of the ECG clinical protocols have been carried out as a case study to
assess the feasibility of this approach.

The outline of the remainder of the paper is as follows: Section2 describes the
ontology concepts and the modelling framework is presented in Sect. 3. Section4
presents a modelling methodology. In Sect. 5, we explore the incremental proof-
based formal development of the ECG protocol, including domain model. Related
work is presented in Sects. 6 and 7 concludes the paper.

2 Ontology

Ontology—“science of being”—is originated in philosophy, which is defined as
“hierarchical structuring of knowledge about concepts by sub-classing them accord-
ing to their properties and qualities” [19]. It can also be defined as “a declarative
model of a domain that defines and represents the concepts existing in that domain,
their attributes and the relationships between them” [19, 20]. Ontology provides
a description of concepts along with desired relations. The concept plays a very
important role in data sharing and knowledge representation. Nowadays ontologies
are adopted by almost every area of science and engineering for a common under-
standing between different user groups. In general, ontologies are classified as (i)
Upper ontologies, (ii) General Ontologies (iii) Domain Ontologies and (iv) Appli-
cation ontologies. All these classes are provided according to a detailed conceptual
knowledge. Upper ontologies or top-level ontologies provide a very generic knowl-
edge applicable to various domains. They mainly contain basic notions of objects,
relations, events and processes. General ontologies are not dedicated to any specific
domain or field. These ontologies represent general knowledge of a large field at an
intermediate level without addressing low-level details. Domain ontologies are only
applicable to a domain with a specific viewpoint that represent knowledge about a
particular field or area of the world. Application ontologies are the specialisation of
domain ontologies that are designed for specific tasks.

The prime use of defining or developing ontology is to share knowledge or infor-
mation with groups, who work in the same domain. The main reasons for developing
ontologies are [33, 46]: (1) to share knowledge in the same domain; (2) to reuse
existing developed ontologies; (3) to provide an explicit list of domain assumptions;

86 N. K. Singh et al.

(4) to separate domain knowledge from operational knowledge; and (5) to perform
domain-specific methodical analyses.

2.1 Ontology in Medical Domain

Medicine is a branch of science dealing with the maintenance of health, and the pre-
vention and treatment of diseases. It offers a solid foundation in the core biomedical
subjects, such as anatomy, physiology, pharmacology, neuroscience, etc. A medical
domain is characterised by abundant knowledge of medical science collected from
various sources. It is constantly growing due to new discoveries provided by medical
experts and researchers. Most of the existing data are distributed into heterogeneous
databases and architecture. They have different implementations and are not compat-
ible with each other. Integrating heterogeneous databases can be a solution to provide
a centralised and reliable database, but it is a very costly operation and requires huge
resources [37]. Note that most of the individual databases are developed by differ-
ent research groups for their own purpose that do not follow standard approaches.
Data collected from different sources are mainly inconsistent and hard to understand.
Therefore, an approach is required to systematically represent medical knowledge
that could be used for analysis, clinical practices and supporting the different health-
care activities [12]. Ontology has played a significant role in representing medical
knowledge systematically in an independent format to share and reuse across the other
biomedical domains. The medical ontology framework provides a common medi-
cal concepts, relationships, properties, and axioms related to biomedical, disease,
diagnosis, treatment, anatomy, pharmacology, clinical procedure and so on. There
are several medical ontologies, such as GALAN [14], OpenCyc [13], WordNet [30],
UMLS [12], SNOMED-CT [26], FMA [36] and Gene Ontology [6] developed by
researchers, industries and medical centres. In our work, we adopt these ontologies
to define the domain concepts related to the selected medical protocol.

3 The Modelling Framework: Event-B

This section describes the essential components of modelling framework. In par-
ticular, we will use the Event-B modelling language [3] for modelling a complex
system in a progressive way. There are two main components in Event-B: context
and machine. A context is a formal static structure that is composed of several other
components, such as carrier sets, constants, axioms and theorems. Amachine is a for-
mal dynamic structure that is composed of variables, invariants, theorems, variants
and events. A machine and a context can be connected with sees relationships.

An Event-B model is characterised by a list of state variables possibly modi-
fied by a list of events. Events play an important role in modelling the functional
behaviour of a system. An event is a state transition that contains two main com-

Formal Ontological Analysis for Medical Protocols 87

ponents: guard and action. A guard is a predicate based on the state variables that
define a necessary condition for enabling the event. An action is also a predicate that
allows modifying the state variables when the given guard becomes true. A set of
invariants defines required safety properties that must be satisfied by all the defined
state variables. There are several proof obligations, such as invariant preservation,
nondeterministic action feasibility, guard strengthening in refinements, simulation,
variant, well-definedness, that must be checked during themodelling and verification
process.

TheEvent-Bmodelling language allows usmodelling a complex systemgradually
using refinement. Refinement enables us to introduce more detailed behaviour and
the required safety properties by transforming an abstractmodel to a concrete version.
At each refinement step, the events can be refined by (1) keeping the event as it is; (2)
splitting an event into several events; or (3) refining by introducing another event to
maintain state variables. Note that the refinement always preserves a relation between
an abstract model and its corresponding concrete model. The newly generated proof
obligations related to refinement ensures that the given abstract model is correctly
refined by its concrete version. Note that the refined version of the model always
reduces the degree of nondeterminism by strengthening the guards and/or predicates.
The modelling framework has a very powerful tool support (Rodin [35]) for project
management,model development, conducting proofs,model checking and animation
and automatic code generation. There are numerous publications and books available
for an introduction to Event-B and its related refinement strategies [3].

4 Modelling Methodology

In this section, we present a modelling methodology, which is described in [5].
Figure1 depicts a stepwise modelling methodology, which contains the different
modelling steps: domain modelling, system modelling, model annotation and model
verification. These modelling steps are described as follows:

1. Domain Modelling. Domain knowledge plays an important role in making
assumptions for a given system. Mostly, the required information related to a
domain may be considered hypothetically based on previous experiences and
the available domain knowledge. Note that an ontology modelling language can
be used to characterise and formally specify a domain knowledge in the form
of domain ontology through the definition of concepts, entities, relationships,
constraints and rules. In this work for modelling a domain model, we choose
the Event-B modelling language [3] to formalise the required domain concepts
derived from the domain ontology, which can be described in Event-B context
using sets, constants, axioms and theorems.

2. System Modelling. For developing a safe system considering all the required
functionalities is a challenging problem. In order to design a safe system, we
can use any formal modelling language to describe a desired behaviour under the

88 N. K. Singh et al.

Fig. 1 Four steps modelling
methodology

given specification. The selected modelling language and associated verification
approach allows us to check the required behaviour. In this work for modelling a
system model, we also choose the Event-B modelling language [3], which allows
us the progressive development of the system behaviour satisfying the required
safety properties using machines and contexts.
In many cases, we should develop a domain model before developing a system
model so thatwe can use the domainmodel during the systemmodel development.
If we do not have any domain model before developing a system model then we
need to introduce the domain-specific information implicitly to design a correct
system model and to check the system model independently. Note that during
the annotation for combining the system model and domain model, we need to
remove the implicit domain-specific concepts.

3. Model Annotation. Model annotation is a mechanism that allows us to establish
a relationship between the domain model and the system model by describing the
design model entities and ontology concepts. The annotation mechanism can be
defined independently and can be used to annotate both the system and domain
models. These models can be developed using the same formal notations or dif-
ferent formal notations. An independent annotation mechanism, like a plugin, can
be used to bind the domain model and the system model together. Developing a
new annotation mechanism is beyond the scope of this paper. Note that in our
current work, we have not used any specific annotation mechanism to apply our
approach. In fact, we have used the same modelling language (Event-B [3]) to
design the two models. Thus we have got a free implicit annotation mechanism
(i.e. see context relationship) for our purpose used to integrate the domain and sys-
tem models together. In order to integrate the domain model and system model in
Event-B, we use the domain model as a set of contexts during the development of
the system model for describing the desired properties and functional behaviour.

Formal Ontological Analysis for Medical Protocols 89

4. Model Verification. This is the last step of the modelling methodology, which
can be performed when a system model is annotated with a domain model. The
annotated design model is enriched by the domain properties expressed in the
ontology. For verifying the annotated model, we should apply the verification
in two steps. The first verification must be conducted on the designed system
model before annotation (may be no longer correct after annotation) to check the
consistency and then the second verification must be conducted on the designed
system model after annotation to check the overall consistency considering the
domain knowledge. Note that in the second step, the verification also allows us
for checking the new emerging properties due to the integration of domain model
and system model using annotation mechanism.

5 Case Study: ECG Protocol

An electrocardiogram (EKG or ECG) [10, 24, 44] reflects an electrical activity of
the heart that shows depolarization and repolarization of the atria and ventricles. The
typical one-cycle ECG is shown in Fig. 2, which is a sequence of different segments
and intervals to represent the time evolution of electrical activity in the heart. These
sequences are denoted as P-QRS-T-U to show different functionalities of the heart.
These sequences are described as follows:

Fig. 2 ECG Deflections

90 N. K. Singh et al.

• P-wave: It is a small deflection caused by the atrial depolarization before contrac-
tion to show an electrical wave propagation from the SA (sinus) node through the
atria;

• PR interval—It is an interval between the beginning of theP-wave to the beginning
of the Q-wave;

• PR segment—It is a flat segment between the end of the P-wave and the start of
the QRS interval;

• QRS interval: It is an interval between the P-wave and T-wave with greater ampli-
tude to show the depolarization of the ventricles;

• ST interval: It is an interval between the end of S-wave and the beginning of
T-wave;

• ST-segment—It is a flat segment starts at the end of the S-wave and finishes at
the start of the T-wave;

• T-wave: It is a small deflection caused by the ventricular repolarization, whereby
the cardiac muscle is prepared for the next cycle of ECG;

• U-wave: It is a small deflection immediately following the T-wave due to repolar-
ization of the Purkinje fibres;

For analysing the different heart conditions and possible behaviour, Electrocardio-
gram (ECG) plays a key role in clinical trials. Medical practitioners heavily depend
on the result of ECG interpretation. A series of deflections and wave of the ECG has
different characteristics to show the different clinical conditions, which can be used
for diagnosis purpose. To our knowledge, there are several databases and ontologies
to represent the ECG. In our work, we use the existing ontological definition [25] to
define the domain. The domain knowledge encapsulates all the required knowledge
in ontology relationship. For describing the conceptual knowledge of the biological
process, we use the OBO (Open Biomedical Ontologies) Process Ontology [11],
which can be automated using the first-order reasoning. The main OBO relations are
classified as the foundational relation, spatial relation, temporal relation and partic-
ipation relation [11].

5.1 Domain Modelling

According to our four steps modelling methodology, we develop a domain model
derived from the ontologyofECG. In thiswork,wedefine theOBOrelations using the
Event-B [3] modelling language then we use these formalised relations to describe
the ECG ontology to develop a domain model for capturing the required domain
knowledge. In the current work, we use the foundational relations as follows:

A is_a B = ∀x[instance_of (x, A) ⇒ instance_of (x, B)]
A part_of B = ∀x[instance_of (x, A) ⇒ ∃y(instance_of (y, B) & x PartO f _I nst y)]

The first relation states that every instance of class A is an instance of class B and
the second relation states that A part_of B holds if and only if: for every individual

Formal Ontological Analysis for Medical Protocols 91

x , if x instantiates A then there is some individual y such that y instantiates B and
x is a part of y. The instance_of is a relation between a class instance and a class
which it instantiates and the PartOf_Inst is a relation between two class instances.
The foundational relations, is_a and part_of , are defined in Event-B context using
axioms (axm1–axm5). axm2 and axm3 define is_a relation and part_of relation,
respectively. Other axioms (axm1, axm4 and axm5) are used to support the formal
definition of the defined relations. Note that these defined OBO relations are used
further to define the required domain knowledge for formalising the ECG protocol.

axm1 : H AS_I N ST ANCES = CLASS ↔ I N ST ANCE

axm2 : I S_A = {I s A|I s A ∈ CLASS ↔ CLASS ∧ (∀x, y ·(x ∈ CLASS ∧ y ∈ CLASS ∧ x �→ y ∈ I s A
⇔
union({r ·r ∈ H AS_I N ST ANCES|ran({x} � r)})
⊆
union({r ·r ∈ H AS_I N ST ANCES|ran({y} � r)})))}

axm3 : PART _OF = {PartO f |PartO f ∈ CLASS ↔ CLASS∧
(∀x, y ·(x ∈ CLASS ∧ y ∈ CLASS ∧ x �→ y ∈ PartO f
⇔
∀p · p ∈ union({r ·r ∈ H AS_I N ST ANCES|ran({x} � r)})⇒
(∃q ·q ∈ union({r ·r ∈ H AS_I N ST ANCES|ran({y} � r)}) ∧ p �→ q ∈ PartO f _I nst)))}

axm4 : PartO f _I nst ∈ I N ST ANCE ↔ I N ST ANCE

axm5 : (∀p · p ∈ I N ST ANCE ⇒ p �→ p ∈ PartO f _I nst)∧
(∀p, q · p ∈ I N ST ANCE ∧ q ∈ I N ST ANCE∧
p �→ q ∈ PartO f _I nst ∧ q �→ p ∈ PartO f _I nst ⇒ p = q)∧
(∀p, q, r · p ∈ I N ST ANCE ∧ q ∈ I N ST ANCE∧
r ∈ I N ST ANCE ∧ p �→ q ∈ PartO f _I nst ∧ q �→ r ∈ PartO f _I nst⇒
p �→ r ∈ PartO f _I nst)

In our work, we adopt the existing available work [1, 2, 17, 18, 24] for designing
and developing the domain model of ECG. Note that the developed ECG domain
model based on existing ontologies contains a very abstract information related to the
heart and ECG by hiding the main complexities. It is important to include complex
details to consider every aspect of the domain knowledge. For the sake of simplicity,
the produced domainmodel is used only for realising the case study of ECG protocol.

In order to define an ECG domainmodel, we define several small models based on
sub-ontologies. These sub-ontologies are human heart, blood circulation, bioelectric
phenomena and ECG, which are depicted in Fig. 3. All these sub-ontologies are con-
nected to each other using dependency relationships. For instance, the sub-ontology
of the human heart depends on the other sub-ontologies ECG, bioelectric phenomena
and blood circulation.
Human Heart. It is a domain model based on sub-ontology depicted in Fig. 4 to
describe a very high-level abstraction of the heart. The heart consists of four cham-
bers: left atrium, right atrium, left ventricle and right ventricle. There is the part_of
relationships between the heart and four chambers. These relationships indicate that
the heart has an only single chamber of each type. For instance, only one left atrium.

92 N. K. Singh et al.

Fig. 3 Overview of a domain model based on ontology

Fig. 4 Human heart domain model based on human heart sub-ontology

There is also the is_a relationship between the Chamber and four heart chambers.
Similarly, there is the is_a relationship between Muscle and four heart chambers.

The human heart domain model is formalised in the Event-B modelling language
using a context. This context is an extension of our previous context, which contains
the formal description of OBO relations. In this extended context, we use the is_a and
part_of relationships to describe the relational properties between different biolog-
ical entities according to the Fig. 4. All the possible relationships are defined using
axioms (axm1–axm6). The next axiom (axm7) is declared as an enumerated set to
define a set of physical units, which can be associated with variables and constants
to maintain the physical unit consistency between variables during a calculation. For
example, in our case, we define the beat per minute (bpm), centimetre (cm), millime-
tre (mm), micrometre (mu_m). axm8 defines a function to map between physical
units and integer numbers that can be associated with any class to describe the class
attributes. The next two axioms (axm9 and axm10) are used to define the heart rate

Formal Ontological Analysis for Medical Protocols 93

Fig. 5 ECG domain model based on ECG sub-ontology

considering the physical unit bpm. In a similar way, the next two axioms (axm11 and
axm12) are used to define the normal heart rate associating with the same unit. The
last axiom (axm13) defines the abnormal heart rate using the previous definitions of
the heart rate and normal heart rate.

axm1 : parti tion(CLASS, {Heart}, {Chamber}, {Muscle}, {Le f t Atrium}, {Right Atrium},
{Le f tV entricle}, {RightV entricle})

axm2 : {Heart �→ Chamber} ∈ I S_A ∧ {Heart �→ Muscle} ∈ I S_A
axm3 : {Le f t Atrium �→ Chamber} ∈ I S_A ∧ {Le f t Atrium �→ Muscle} ∈ I S_A∧

{Le f t Atrium �→ Heart} ∈ PART _OF
axm4 : {Right Atrium �→ Chamber} ∈ I S_A ∧ {Right Atrium �→ Muscle} ∈ I S_A∧

{Right Atrium �→ Heart} ∈ PART _OF
axm5 : {Le f tV entricle �→ Chamber} ∈ I S_A ∧ {Le f tV entricle �→ Muscle} ∈ I S_A∧

{Le f tV entricle �→ Heart} ∈ PART _OF
axm6 : {RightV entricle �→ Chamber} ∈ I S_A ∧ {RightV entricle �→ Muscle} ∈ I S_A∧

{RightV entricle �→ Heart} ∈ PART _OF
axm7 : parti tion(UN IT, bpm,mm, cm,mu_m)

axm8 : F_UN IT ∈ UN IT → P(Z)

axm9 : HEART _RAT E ∈ {Heart} ↔ F_UN IT
axm10 : HEART _RAT E = {Heart �→ (bpm �→ 1 .. 300)}
axm11 : NORMAL_HEART _RAT E ∈ {Heart} ↔ F_UN IT
axm12 : NORMAL_HEART _RAT E = {Heart �→ (bpm �→ 60 .. 100)}
axm13 : ABNORMAL_HEART _RAT E = HEART _RAT E \ NORMAL_HEART _RAT E

ECG. It is a domain model based on sub-ontology depicted in Fig. 5 to describe a
very high-level abstraction of the ECG. As we have previously described that the
ECG is a sequence of deflections. All these elementary deflections can be described
in different types of waves and segments, which form a typical ECG cycle. All these
elementary entities, such as waves, segments and cycle, of ECG are organised using

94 N. K. Singh et al.

the is_a and part_of relationships to show the conceptual knowledge. Elementary
entities are divided into two different types: Wave and Segment. There is the part_of
relationship between the elementary entity and the wave and segment entities. In a
typical ECG cycle, there are two kinds of segments, PQ Segment and ST-segment.
The is_a relationships are used to denote the relations between Segment, and ST-
segment and PQ segment. Similarly, theWave entity is also divided into the different
types ofwaves: P-wave,QRSwave,T-wave andU-wave.Thesewaves are also related
to the Wave entity using the is_a relationship. There is the part_of relationships
between the QRS Wave and Q-wave, R-wave and S-wave. In a similar way, the
Cycle entity and different waves (P-wave, Q-wave, R-wave, S-wave, T-wave and
U-wave) entities and segments (PQ segment and ST-segment) are connected with
the part_of relationship.

axm1 : parti tion(CLASS, {ElementaryForm}, {Wave f orm}, {Wave}, {Segment}, {Cycle},
{P_Wave}, {QRS_Wave}, {T _Wave}, {U_Wave}, {PQ_Segment},
{ST _Segment}, {Q_Wave}, {R_Wave}, {S_Wave})

axm2 : {Wave �→ ElementaryForm} ∈ I S_A
axm3 : {Segment �→ ElementaryForm} ∈ I S_A
axm4 : {Cycle �→ Wave f orm} ∈ PART _OF
axm5 : {P_Wave �→ Wave} ∈ I S_A ∧ {P_Wave �→ Cycle} ∈ PART _OF
axm6 : {QRS_Wave �→ Wave} ∈ I S_A
axm7 : {T _Wave �→ Wave} ∈ I S_A ∧ {T _Wave �→ Cycle} ∈ PART _OF
axm8 : {U_Wave �→ Wave} ∈ I S_A ∧ {U_Wave �→ Cycle} ∈ PART _OF
axm9 : {PQ_Segment �→ Segment} ∈ I S_A ∧ {PQ_Segment �→ Cycle} ∈ PART _OF
axm10 : {ST _Segment �→ Segment} ∈ I S_A ∧ {ST _Segment �→ Cycle} ∈ PART _OF
axm11 : {Q_Wave �→ QRS_Wave} ∈ PART _OF ∧ {Q_Wave �→ Cycle} ∈ PART _OF
axm12 : {R_Wave �→ QRS_Wave} ∈ PART _OF ∧ {R_Wave �→ Cycle} ∈ PART _OF
axm13 : {S_Wave �→ QRS_Wave} ∈ PART _OF ∧ {S_Wave �→ Cycle} ∈ PART _OF
axm14 : parti tion(LE ADS, {I }, {I I }, {I I I }, {aV R}, {aV L}, {aV F}, {V 1}, {V 2}, {V 3},

{V 4}, {V 5}, {V 6}
axm15 : RR_I nt_equidistant ∈ {Cycle} × LE ADS → BOOL
axm16 : PP_I nt_equidistant ∈ {Cycle} × LE ADS → BOOL
axm17 : P_Positive ∈ {P_Wave} × LE ADS → BOOL
axm18 : PP_I nterval ∈ {Cycle} × LE ADS → BOOL
axm19 : RR_I nterval ∈ {Cycle} × LE ADS → BOOL

The ECG sub-ontology is formalised in the Event-B modelling language using
the OBO relationships (is_a and part_of) according to the Fig. 5. All the possi-
ble relationships are defined in axioms (axm1–axm13). The next axiom (axm14)
defines a set of leads (12-leads) as an enumerated set that represents the heart’s elec-
trical activity recorded from electrodes on the body surface. The next five axioms
(axm15–axm19) are defined as functions to characterise the ECG signal. These
functions are RR_Int_equidistant to show the boolean state of the equidistant of
RR interval; PP_Int_equidistant to show the boolean state of the equidistant of PP
interval; P_Positive to show the positive visualisation of the P-wave, PP_Interval to
represent the PP interval; and RR_Interval to represent the RR interval.

Formal Ontological Analysis for Medical Protocols 95

5.2 System Modelling

This section describes the second step of our modelling methodology. To design a
systemmodel (ECG protocol) using the domain knowledge, we revisit our developed
case study of the ECG interpretation protocol [28, 42]. In this case study, our main
objective is to utilise the domain knowledge explicitly in the development of ECG
protocol. The ECG protocol is formalised to detect possible anomalies in the existing
ECG protocol. In this development, we use the Event-B [3] modelling language that
allows us to develop thewhole complexECGprotocol using a correct by construction
approach to introduce the detailed clinical properties of the ECG protocol. Figure7
depicts an incremental formal development of the ECG interpretation protocol. Every
refinement level introduces a diagnosis criteria for different components of the ECG
signal, and each new criterion helps to analyse a particular set of diseases. The whole
development of the ECG protocol is summarised below.

5.2.1 Abstract Model (Assessing Rhythm and Rate)

Figure6 depicts a standard clinical procedure for analysing the ECG protocol
abstractly that is taken from [24]. This is a basic procedure that is used by most
of the medical practitioners at the initial stage of clinical procedure for analysing
the different heart conditions. In this basic procedure, the ECG protocol assesses the
rhythm and heart rate to distinguish between the normal and abnormal heart condi-
tions. We have used this clinical step for modelling the abstract model and the other
clinical steps will be introduced progressively in the next refinement levels that are
also adopted from [24].

In order to define the static properties, we define State and YesNoState as enumer-
ated sets in axioms (axm1 and axm2). These two axioms are further used to define

Fig. 6 Basic diagram of assessing rhythm and rate [24]

96 N. K. Singh et al.

Fig. 7 Refinements of ECG
protocol

Formal Ontological Analysis for Medical Protocols 97

the normal and abnormal states of the heart in axm3 and the sinus states of the heart
in axm4.

axm1 : parti tion(State, {OK }, {KO})
axm2 : parti tion(YesNoState, {Yes}, {No})
axm3 : HState ∈ {Heart} → State
axm4 : HY NState ∈ {Heart} → YesNoState
CS1 : Clinical Prop1 = (λx �→ y ·x = Cycle ∧ y = P_Wave ∧ ((∃l ·l ∈ {I I, V 1, V 2}∧

PP_I nt_equidistant (x �→ l) = T RUE ∧ RR_I nt_equidistant (x �→ l) = T RUE∧
RR_I nterval(x �→ l) = PP_I nterval(x �→ l)) ∧ P_Positive(y �→ I I) = T RUE)|T RUE)

CS2 : Clinical Prop2 = (λx �→ y ·x = Cycle ∧ y = P_Wave ∧ ((∀l ·l ∈ {I I, V 1, V 2}⇒
PP_I nt_equidistant (x �→ l) = FALSE ∨ RR_I nt_equidistant (x �→ l) = FALSE ∨
RR_I nterval(x �→ l) = PP_I nterval(x �→ l)) ∨ P_Positive(y �→ I I) = FALSE)|T RUE)

In our development, we define the clinical steps for analysing the ECG protocol.
The first clinical step CS1 is defined as a function Clinical Prop1. This function
has two input parameters Cycle and P_Wave, which are used to assess the ECG
signal by the following clinical strategy: there exists equivalent in the PP interval,
equivalent in the RR interval, the RR interval and PP interval are equal in leads (II,
V1 and V2) and the positive visualisation of P-wave in lead II is T RUE . In order
to satisfy this property the function Clinical Prop1 results as T RUE . In a similar
way, we define the second clinical step CS2 defined as a function Clinical Prop2.
This function has also two input parameters Cycle and P_Wave, which are used
to assess the ECG signal by the following clinical strategy: the PP interval and RR
interval are not equidistant, the RR intervals and PP intervals are not equivalent in all
leads (II, V1 and V2), or the positive visualisation of P-wave in lead II is FALSE .
In order to satisfy this property the functionClinical Prop2 results as T RUE . Note
that these clinical properties are defined explicitly to build the domain knowledge of
the ECG protocol.

inv1 : Sinus ∈ HY NState
inv2 : Heart_Rate ∈ HEART _RAT E
inv3 : Heart_State ∈ HState
sa f 1 : P_Positive(P_Wave �→ I I) = FALSE ⇒ Sinus = Heart �→ No
sa f 2 : Sinus = Heart �→ Yes ⇒ Clinical Prop1(Cycle �→ P_Wave) = T RUE
sa f 3 : Clinical Prop2(Cycle �→ P_Wave) = T RUE ⇒ Sinus = Heart �→ No
sa f 4 : Heart_Rate ∈ NORMAL_HEART _RAT E ∧ Sinus = Heart �→ Yes⇒

Heart_State = Heart �→ OK
sa f 5 : Heart_Rate ∈ ABNORMAL_HEART_RAT E ∧ Sinus = Heart �→ Yes⇒

Heart_State = Heart �→ KO
sa f 6 : Heart_Rate ∈ NORMAL_HEART _RAT E ∧ Sinus = Heart �→ No⇒

Heart_State = Heart �→ KO

To define the initial clinical procedure for assessing the rhythm and heart rate,
we define three variables (inv1–inv3): Sinus to represent the sinus state of the heart;
Heart_Rate to represent the heart rate limit; and Heart_State to show the normal
or abnormal state of the heart. In the abstract model, we provide a list of safety
properties using invariants (sa f 1–sa f 6) to verify the required conditions for the
ECG interpretation protocol based on analysis of the signal features.

98 N. K. Singh et al.

All these invariants are generated from the ECG protocol and extracted from the
required documents with the help of medical experts. The first safety property (sa f 1)
states that if the positive visualisation of P-wave in lead II is FALSE , then there
is no sinus rhythm. The next safety property (sa f 2) states that if the sinus is yes
then the clinical property Clinical Prop1 must be T RUE . This clinical property
is defined in the context. Similarly, the next safety property (sa f 3) states that if the
clinical property Clinical Prop2 is T RUE then there is no sinus rhythm. The next
two safety properties (sa f 4 and sa f 5) state that if the heart rate belongs to the range
of the normal heart rate and sinus rhythm is yes then the heart state is OK, and if
the heart rate belongs to the abnormal heart rate and the sinus rhythm is yes then the
heart state is KO. The last safety property (sa f 6) states that if the heart rate belongs
to the range of the normal heart rate and the sinus rhythm is no then the heart state
is KO.

In this abstract model, we define three events Rhythm_test_TRUE, Rhythm_test_-
FALSE and Rhythm_test_TRUE_abRate. The guards of the first event state that the
clinical propertyClinical Prop1 is T RUE in the selectedCycle and P_Wave, and
the heart rate belongs to the normal heart rate. The action of this event shows that
the sinus rhythm is yes, the current heart rate is assigned and the heart state is OK.

EVENT Rhythm_test_TRUE
ANY rate
WHEN
grd1 : Clinical Prop1(Cycle �→ P_Wave) = T RUE
grd2 : rate ∈ NORMAL_HEART _RAT E

THEN
act1 : Sinus := Heart �→ Yes
act2 : Heart_Rate := rate
act3 : Heart_State := Heart �→ OK

END

In a similar way, the second event is used to assess the ECG to determine that the
sinus rhythm is no, the current heart rate is assigned and the heart state is KO. The
guards of this event state that the clinical property Clinical Prop2 is T RUE in the
selected Cycle and P_Wave, and the heart rate belongs to the heart rate.

EVENT Rhythm_test_FALSE
ANY rate
WHEN
grd1 : Clinical Prop2(Cycle �→ P_Wave) = T RUE
grd2 : rate ∈ HEART _RAT E

THEN
act1 : Sinus := Heart �→ No
act2 : Heart_Rate := rate
act3 : Heart_State := Heart �→ KO

END

The last event also represents the ECG assessment for determining the sinus
rhythm is Yes and the heart state is KO in the case of an abnormal heart rate. The

Formal Ontological Analysis for Medical Protocols 99

guards of this event state that the clinical property Clinical Prop1 is T RUE in the
selected Cycle and P_Wave, and the heart rate belongs to the abnormal heart rate.

EVENT Rhythm_test_TRUE_abRate
ANY rate
WHEN
grd1 : Clinical Prop1(Cycle �→ P_Wave) = T RUE
grd2 : rate ∈ ABNORMAL_HEART _RAT E

THEN
act1 : Sinus := Heart �→ Yes
act2 : Heart_Rate := rate
act3 : Heart_State := Heart �→ KO

END

5.2.2 An Overview of Refinement

This section describes an overview of the progressive development of the ECG proto-
col by defining new properties and introducing new recommended clinical practices
to identify the possible heart diseases. Note that all the refinement steps correspond
to the standard analyses steps of the ECG protocol [24]. Due to limited space, we
present only a summary of each refinement development to understand the overall
development process. A detailed formal development of the ECG protocol is avail-
able in the technical report [29].

• First Refinement (Intervals and blocks). To classify different types of heart
diseases, this refinement introduces a set of intervals and blocks. In particular, the
PR interval and QRS interval are introduced to characterise the ECG signal. These
intervals play an important role to assess the RBBB (Right Bundle Branch Block)
and LBBB (Left Bundle Branch Block). In this development, we introduce new
events for assessing the RBBB and LBBB through carefully analysing the QRS
complex signal, and assessing the first degree AV block using the PR interval.

• Second Refinement (Nonspecific intraventricular conduction delay and Wolff–
Parkinson–White syndrome).The second refinement step is used to introduce the
clinical analysis steps for the nonspecific intraventricular conduction delay (IVCD)
andWolff–Parkinson–White (WPW) syndrome. TheWPW syndrome may mimic
as an inferior MI, which is further analysed in the next refinements. According
to the standard clinical process if the WPW syndrome, RBBB or LBBB is not
detected during the clinical process then it indicates the presence of the nonspe-
cific intraventricular conduction delay (IVCD).

• Third Refinement (ST-segment elevation or depression). In this refinement,
we introduce the ST-segment to analyse the ST-segments elevation or depression
by defining the textual criteria, which is given in [24]. According to the clinical
analysis step, it is necessary to assess the ST-segment before assessing the T-waves,
QT-interval, electrical axis and hypertrophy because the diagnosis of acute MI or
ischemia is vital and depends on the careful assessment of the ST-segment. A list

100 N. K. Singh et al.

of events is introduced to assess the ST-segment elevation, detection of troponin
or CK-MB and acute inferior or anterior MI.

• Fourth Refinement (Q-wave). This refinement is used to introduce the Q-wave
for assessing the ECG signal. The introduction of Q-wave allows us to characterise
the different clinical conditions, such as normal Q-wave assessment, abnormal Q-
wave assessment for inferior MI (IMI) and anterolateral MI (AMI). In addition,
we also introduce the R-wave to analyse the normal and abnormal pathological
conditions of the R-wave together with the Q-wave.

• Fifth Refinement (P-wave). This refinement introduces clinical assessment steps
for analysing the P-wave to detect possible diseases due to an abnormality in the
P-wave and atrial hypertrophy in ECG.

• Sixth Refinement (Left and right ventricular hypertrophy). In this refinement,
we introduce the clinical step for assessing theLeftVentricularHypertrophy (LVH)
and Right Ventricular Hypertrophy (RVH). According to the clinical step, the LVH
and RVH do not require to determine if any bundle branch block (RBBB or LBBB)
is present. Thus, it is necessary to exclude the possible clinical assessment for the
LBBB and RBBB, which are described in the refinement 2 and refinement 3.

• Seventh Refinement (T-wave). In this refinement, we introduce the T-wave to
analyse the changing pattern of T-wave in ECG signal collected from 12-leads. The
T-wave changes are usually nonspecific, but the T-wave inversion associated with
other ST-segments indicates themyocardial ischemia, posteriorMI, Hyperkalemia
and pulmonary embolism.

• Eighth Refinement (Electrical Axis). During the clinical assessment of the ECG,
the electrical axis plays an important role to determine the different and correct
positions of leads for detecting a desired quality of the ECG signal. According
to the ECG protocol, there are two main criteria. First, if the leads I and aVF
are upright then the axis is normal. Second, the axis is perpendicular to the lead
with the most equiphasic or smallest QRS deflection. The left-axis deviation and
commonly associated left anterior fascicular block are always visible in the ECG.

• Ninth Refinement (Miscellaneous conditions). After several steps of clinical
analysis, there are still several diseases which group together. To distinguish each
disease at this level is very difficult due to the ambiguous nature of the clinical
protocol and the associated properties. In this refinement level, we introduce the
QT-interval and the required clinical steps for assessing theQT-interval.Moreover,
this refinement also determines that if the electronic pacing is required using a
pacemaker then there is no need to further assess the ECG signal. Otherwise, this
refinement allows grouping of multiple miscellaneous conditions of the ECG for
further clinical analysis.

• Tenth Refinement (Arrhythmias). This is the last refinement of the ECG inter-
pretation protocol, in which we introduce different types of tachyarrhythmias. In
particular, we introduce clinical steps for determining the narrow complex tachy-
cardia and the wide complex tachycardia to assess the different kinds of heart
diseases.

Formal Ontological Analysis for Medical Protocols 101

5.3 Model Annotation

In our selected case study,wehavedeveloped the domainmodel and theECGprotocol
as the system model. Both these models are formalised in Event-B. The domain
model is described according to the ontology descriptions (see Sect. 5.1) and the
ECG protocol is developed using the refinement approach by describing the intended
clinical steps and the required properties. The domain model and system model are
linked together with the annotation mechanism (i.e. see context relationship). In
fact, this step is performed by using the ECG domain model, defined in context, in
the ECG interoperation protocol for describing the stepwise clinical protocol. This
annotationmechanismprovides a specific relationship between theECGprotocol and
ECGontology concepts. For example, in the abstractmodel of themedical protocol, a
variable Heart_Rate is defined as the type of HEART _RAT E , which is described
in the domain model of the heart. Similarly, the two clinical assessment properties
(CS1 and CS2) are defined as the functions Clinical Prop1 and Clinical Prop2
in the context C0 to use in the process of assessment of the ECG protocol.

Figure8 depicts annotation relations between the domain model and ECG proto-
col.Note that the different arrow lines are used to show the use of ontology concepts of
the ECG domain knowledge in the ECG interpretation protocol. Each arrow is linked
with a specific refinement level, which uses required domain knowledge defined in
the ECG domain model. Note that this annotation mechanism allows us to link the
domain model and the system model explicitly.

5.4 Model Verification

This section describes the proof statistics of the generated proof obligations of the
developed ECG interpretation protocol using stepwise refinement by considering the
domain knowledge in the form of ontology and ECG protocol as a system model. In
this development, we use the Event-B modelling language, which supports the con-
sistency checking and refinement checking. The consistency checking guarantees that
all the events of the model preserve all the given invariants. The refinement checking
allows checking the correct refinement relation between progressively developed
models. Table1 shows the proof statistics of the revisited formal development of
the ECG protocol. To guarantee the correctness of the system behaviour, we pro-
vide a list of safety properties in the incremental refinements. This development
results in 592 (100%) POs, in which 401 (68%) POs are proved automatically, and
the remaining 191 (32%) POs are proved interactively using the Rodin prover and
SMT solver. These interactive proof obligations are mainly related to the refinement
and complex mathematical expressions, which are simplified through interaction,
providing additional information for assisting the Rodin prover. Some of the proofs
are quite simple that is achieved by simplifying the predicates. According to the
Table1 in this new development, the proof efforts have been decreased significantly

102 N. K. Singh et al.

Fig. 8 Annotation between domain model (ECG) and systemmodel (ECG interpretation protocol)

compared with the previous development of the ECG protocol [28, 42]. The pro-
posed modelling approach restructures the system model by integrating the domain
model explicitly. Note that the domain model has been developed progressively by
analysing the domain-specific ontology and previously developed the systemmodel.
For instance, in the development of ECG interpretation protocol, we use the existing
model and the ECGontology to design the domainmodel. Note that several elements,
such as constants, axioms, variables, invariants and functions, are removed/redefined
in the system model and domain model. The modelling and integration of system
model and domain model reduce the overall system complexity, proof efforts and
improves the model consistency. For example, the clinical properties (CS1 and CS2)
are defined once in the context model using the domain concepts. These properties
have been used later in the ECG system model to define safety properties (see sa f 2

Formal Ontological Analysis for Medical Protocols 103

Table 1 Proof statistics

Model Total number
of POs

Automatic
Proof

Interactive
Proof

Abstract model 45 22(49%) 23(51%)

First refinement 55 38(70%) 17(30%)

Second refinement 43 33(77%) 10(23%)

Third refinement 50 39(78%) 11(22%)

Fourth refinement 57 36(63%) 21(37%)

Fifth refinement 39 29(75%) 10(25%)

Sixth refinement 36 24(67%) 12(33%)

Seventh refinement 128 77(60%) 51(40%)

Eighth refinement 57 35(62%) 22(38%)

Ninth refinement 15 12(80%) 3(20%)

Tenth refinement 67 56(84%) 11(16%)

Total 592 401(68%) 191(32%)

and sa f 3) and guards (grd1 in all three events). Once these properties are proved
(CS1 and CS2) then these are used automatically in the process of proof automa-
tion for discharging the other POs. This indicates that the new development applying
domain knowledge explicitly in the system development has improved the modelling
processes and proof strategies.

5.5 Anomalies

In thiswork,we have discovered several anomalies in theECG interpretation protocol
that are categorised into threemain groups: ambiguity, inconsistency and incomplete-
ness. Ambiguity is a well known anomaly that can represent more than one possible
meaning of a fact, which causes possible confusion in a decision. For example, in our
work,we encountered a problem to determinewhether the terms “ST-depression” and
“ST-elevation” have the same meaning or not. Inconsistency anomaly always leads
to a conflicting result or different decision for similar data/input. For instance, in our
work we found an inconsistency in form of applicable conditions, which state that
the given conditions are applicable for both “male” and “female” subjects, however,
elsewhere in the protocol it is advised that the given conditions are not applicable
for “female”. Incompleteness anomaly is related to either missing piece of informa-
tion or insufficient information in the original document. For instance, the original
protocol contains “normal variant” factors to be considered for assessing T-wave.
However, the meaning of “normal variant” is not defined in the protocol. Note that
we have not listed all anomalies. In our work, we have identified these anomalies
which may help for improving the quality of medical protocols.

104 N. K. Singh et al.

6 Related Work

The use of ontology in software engineering for designing a complex systemhas great
interest by several researchers to consider the domain knowledge explicitly. In [4,
5, 43], authors proposed a new approach for handling domain knowledge in design
models. In this work, the domain models are developed using ontologies that can
be used further during the system development applying the annotation mechanism.
Hacid et al. [21, 22] have used the similar approach to develop a domainmodel based
on ontologies for developing a system model using stepwise development. In [31],
authors proposed a generic approach for integrating domain descriptions formalised
by ontologies into an Event-B development process.

From the last decade, several pioneering works have been done to develop and
analyse the medical guidelines and protocols based on expert’s requirements. Proto-
col representation languages, such as Asbru [39, 45], EON [32], PROforma [16] and
others [34, 47] are used to represent a formal semantics of guidelines and medical
protocols. The main objective of all these languages is to provide some standardi-
sation and to improve the clinical practices by modifying the existing or outdated
medical protocols. A detailed survey of different techniques and tools related to the
clinical guidelines is described in [23]. The simplification and verification of the
clinical guidelines using decision-table are presented in [40, 41] to guarantee the
properties of completeness and consistency.

Jonathan et al. [38] proposed interactive formal verification for finding a bug and
to improve the quality of medical protocols or guidelines. Simon et al. [9] used the
Asbru modelling language and temporal logic to represent the medical protocols
and then model checking approach was used for checking consistency and error
detection. A European project, Protocure [7], developed the techniques and tools
for improving the medical protocols by identifying anomalies like ambiguity and
incompleteness in medical guidelines and protocols by using formal methods. This
project used the Asbru [45] modelling language for describing the medical protocols
and KIV interactive theorem prover [8] was used for formal proof of the medical
protocol. Méry et al. [28, 29, 42] proposed a new approach for developing a complex
medical protocol using a correct by construction approach in Event-B. Note that this
case study is revisited in this work by developing the domain model and system
model separately, and then these models are linked through an annotation approach
(see context relationship) according to the four steps modelling methodology [5].

7 Conclusion

Wehave presented an approach to the development ofmedical protocols or guidelines
using a correct by constructionmethod that explicitly represents domain knowledge.
Considering domain knowledge in the system development can be an excellent way
for determining the confidence we have that a system model is safe, secure and

Formal Ontological Analysis for Medical Protocols 105

effective by respecting all the required domain properties, used physical units and
possible relations. In this work, we have presented a stepwise formal development of
themedical protocol. The development model contains two different models: domain
model and system model. The domain model describes the domain concepts based
on ontologies [15] and the system model describes the functional behaviour of the
medical protocol. The domain knowledge has been described in Event-B context
using ontology relations to capture the functional behaviour of the medical proto-
cols. The medical protocol is developed as a system model to assess the clinical
protocol. Note that both the domain model and system model are linked through
annotations, in which the system model uses all axioms and theorems defined in the
domain ontology model. The main objective of this work is to check the consistency
of a clinical medical protocol using a refinement based development that integrates
domain knowledge explicitly. Moreover, the same approach can be used for develop-
ing any other medical protocols. In this work, we have used an ECGmedical protocol
and conducted a systematical analysis to verify that the formalisation complies with
certain medically relevant protocol properties. This approach allows us to identify
possible anomalies and improve the quality of medical protocols.

References

1. http://aber-owl.net/ontology/ECG
2. https://bioportal.bioontology.org/ontologies/ECG
3. J.-R. Abrial, Modeling in Event-B - System and Software Engineering (Cambridge University

Press, Cambridge, 2010)
4. Y. Ait-Ameur, J.P. Gibson, D. Méry, On implicit and explicit semantics: integration issues in

proof-based development of systems (Springer, Berlin, 2014), pp. 604–618
5. Y. Ait-Ameur, D. Méry, Making explicit domain knowledge in formal system development.

Sci. Comput. Program. 121(C), 100–127 (2016)
6. M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K.

Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S.
Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology:
tool for the unification of biology. Nat. Genet. 25(1), 25–29, 5 (2000)

7. M. Balser, O. Coltell, J. Van Croonenborg, C. Duelli, F. Van Harmelen, A. Jovell, P. Lucas,
M. Marcos, S. Miksch, W. Reif, K. Rosenbr, A. Seyfang, A.T. Teije, Protocure: supporting
the development of medical protocols through formal methods, in SCPG-04, Studies in Health
Technology and Informatics, vol. 101 (IOS Press, Amsterdam, 2004), pp. 103–108

8. M. Balser, W. Reif, G. Schellhorn, K. Stenzel, Kiv 3.0 for provably correct systems, in Pro-
ceedings of the International Workshop on Current Trends in Applied Formal Method: Applied
Formal Methods, FM-Trends 98, London, UK (Springer, 1999), pp. 330–337

9. S. Bäumler, M. Balser, A. Dunets, W. Reif, J. Schmitt, Verification of medical guidelines by
model checking - a case study, inModelChecking Software, ed. byA.Valmari. LNCS (Springer,
Berlin, 2006), pp. 219–233

10. V.N. Batcharov, A.B. de Luna, M. Malik, The morphology of the Electrocardiogram, in The
ESC Textbook of Cardiovascular Medicine (Blackwell Publishing Ltd., Oxford, 2006)

11. T. Bittner, M. Donnelly, Logical properties of foundational relations in bio-ontologies. Artif.
Intell. Med. 39(3), 197–216 (2007)

12. O. Bodenreider, The unified medical language system (UMLS): integrating biomedical termi-
nology. Nucl. Acids Res. 32(Database-Issue), 267–270 (2004)

http://aber-owl.net/ontology/ECG
https://bioportal.bioontology.org/ontologies/ECG

106 N. K. Singh et al.

13. O. Bodenreider, A. Burgun, Biomedical ontologies (Springer US, Boston, 2005), pp. 211–236
14. C. Doulaverakis, G. Nikolaidis, A. Kleontas, I. Kompatsiaris, Galenowl: ontology-based drug

recommendations discovery. J. Biomed. Semant. 3(1), 14 (2012)
15. D. Fensel, Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce,

2nd edn. (Springer-Verlag New York, Inc, Secaucus, 2003)
16. J. Fox, N. Johns, A. Rahmanzadeh, Disseminating medical knowledge: the proforma approach.

Artif. Intell. Med. 14(1–2), 157–182 (1998)
17. B. Gonçalves, G. Guizzardi, J.G. Pereira Filho, An electrocardiogram (ECG) domain ontology

(2007)
18. B. Gonçalves, G. Guizzardi, J.G. Pereira Filho, Using an ECG reference ontology for semantic

interoperability of ECG data. J. Biomed. Inform. 44(1), 126–136 (2011)
19. T.R. Gruber, Toward principles for the design of ontologies used for knowledge sharing. Int.

J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)
20. N. Guarino, Formal Ontology in Information Systems: Proceedings of the 1st International

Conference, June 6–8, 1998, Trento, Italy, 1st edn. (IOS Press, Amsterdam, 1998)
21. K. Hacid, Y. Ait-Ameur, Annotation of engineering models by references to domain ontologies

(Springer International Publishing, Cham, 2016), pp. 234–244
22. K.Hacid,Y.Ait-Ameur, StrengtheningMDEand formal designmodels by references to domain

ontologies. A model annotation based approach (Springer International Publishing, Cham,
2016), pp. 340–357

23. D. Isern, A. Moreno, Computer-based execution of clinical guidelines: a review. Int. J. Med.
Inform. 77(12), 787–808 (2008)

24. M.G. Khan, Rapid ECG Interpretation (Humana Press, Totowa, 2008)
25. P. Lambrix, H. Tan, V. Jakoniene, L. Strömbäck, Biological ontologies (Springer US, Boston,

2007), pp. 85–99
26. D. Lee, R. Cornet, F. Lau, N. deKeizer, A survey of SNOMEDCT implementations. J. Biomed.

Inform. 46(1), 87–96 (2013)
27. K.N. Lohr, M.J. Field,Clinical Practice Guidelines: Directions for a New Program/Committee

to Advise the Public Health Service on Clinical Practice Guidelines, United States and Institute
of Medicine (National Academy Press, Washington, 1990)

28. D. Méry, N.K. Singh, Medical protocol diagnosis using formal methods, in Foundations of
Health Informatics Engineering and Systems - First International Symposium, FHIES (2011),
pp. 1–20

29. D. Méry, N.K. Singh, Technical report on interpretation of the electrocardiogram (ECG) sig-
nal using formal methods. Technical Report (2011), https://hal.inria.fr/inria-00584177/file/
TechRepoECG2011.pdf

30. G.A. Miller, Wordnet: a lexical database for english. Commun. ACM 38(11), 39–41 (1995)
31. L. Mohand-Oussaid, I. Ait-Sadoune, Formal modelling of domain constraints in Event-B

(Springer International Publishing, 2017)
32. M.A. Musen, S.W. Tu, A.K. Das, Y. Shahar, EON: a component-based approach to automation

of protocol-directed therapy (1996)
33. N.F.Noy,D.L.McGuinness, Ontology development 101: a guide to creating your first ontology.

Technical Report (Stanford University, 2001)
34. M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R.A. Greenes, S.Miksch, S. Quaglini, A. Seyfang,

E.H. Shortliffe, M. Stefanelli et al., Comparing computer-interpretable guideline models: a
case-study approach. J. Am. Med. Inform. Assoc. 10, 2003 (2003)

35. Project RODIN, Rigorous open development environment for complex systems (2004), http://
rodin-b-sharp.sourceforge.net/

36. C. Rosse, J.L.V. Mejino, The foundational model of anatomy ontology (Springer London,
London, 2008), pp. 59–117

37. R.K. Saripalle, Current status of ontologies in biomedical and clinical informatics. Int. J. Sci.
Inf. (2010)

38. J. Schmitt, A. Hoffmann, M. Balser, W. Reif, M. Marcos, Interactive verification of medical
guidelines, in FM 2006: Formal Methods, ed. by J. Misra, T. Nipkow, E. Sekerinski. LNCS
(Springer, Berlin, 2006), pp. 32–47

https://hal.inria.fr/inria-00584177/file/TechRepoECG2011.pdf
https://hal.inria.fr/inria-00584177/file/TechRepoECG2011.pdf
http://rodin-b-sharp.sourceforge.net/
http://rodin-b-sharp.sourceforge.net/

Formal Ontological Analysis for Medical Protocols 107

39. Y. Shahar, S. Miksch, P. Johnson, The ASGAARD project: a task-specific framework for the
application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 29–51 (1998)

40. R.N. Shiffman, Representation of clinical practice guidelines in conventional and augmented
decision tables. J. Am. Med. Inform. Assoc. 4(5), 382–393 (1997)

41. R.N. Shiffman, R.A. Greenes, Improving clinical guidelines with logic and decision-table
techniques: application to hepatitis immunization recommendations. Med. Decis. Mak. 14(3),
245–254 (1994)

42. N.K. Singh, Using Event-B for Critical Device Software Systems (Springer-Verlag GmbH,
Berlin, 2013)

43. N.K. Singh, Y. Aït Ameur, D.Méry, Formal ontology drivenmodel refactoring, in 23rd Interna-
tional Conference on Engineering of Complex Computer Systems, ICECCS 2018, Melbourne,
Australia, December 12–14, 2018 (2018), pp. 136–145

44. Societe française cardiologie, J.-Y. Artigou, J.-J.Monsuez,Cardiologie et maladies vasculaires
(Elsevier Masson, Paris, 2006)

45. A. TenTeije,M.Marcos,M.Balser, J. vanCroonenborg, C.Duelli, F. vanHarmelen, P. Lucas, S.
Miksch,W. Reif, K. Rosenbrand, A. Seyfang, Improvingmedical protocols by formal methods.
Artif. Intell. Med. 36(3), 193–209 (2006)

46. P.E. van der Vet, N.J.I. Mars, Bottom-up construction of ontologies. IEEE Trans. Knowl. Data
Eng. 10(4), 513–526 (1998)

47. D. Wang, M. Peleg, S.W. Tu, A.A. Boxwala, R.A. Greenes, V.L. Patel, E.H. Shortliffe, Repre-
sentation primitives, processmodels and patient data in computer-interpretable clinical practice
guidelines: a literature review of guideline representation models. Int. J. Med. Inform. 68(1–3),
59–70 (2002)

Deriving Implicit Security Requirements
in Safety-Explicit Formal Development of
Control Systems

Inna Vistbakka and Elena Troubitsyna

Abstract Nowadays, safety-critical control systems are becoming increasingly open
and interconnected. Therefore, while engineering a safety-critical system, we should
guarantee that the system safety is not jeopardised by the security attacks. However,
often the security requirements are not uncovered until the late design stages. Hence,
there is a clear need for themodelling techniques that enable a formal reasoning about
safety and security interdependencies at the early stages of the system development.
In this work, we present a formal approach that allows the designers to uncover the
implicit security requirements that are implied by the explicit system-level safety
goals. We rely on modelling and refinement in Event-B to systematically uncover
mutual interdependencies between safety and security and derive the constraints that
should be imposed on the system to guarantee its safety in the presence of accidental
and malicious faults.

1 Introduction

Nowadays, safety-critical control systems are becoming increasingly open and inter-
connected. Increasing reliance on networking not only offers a variety of business and
technological benefits but also introduces security threats. Exploiting security vulner-
abilities might result in a loss of control and situation awareness directly threatening
safety. Therefore, while engineering a safety-critical system, we should guarantee

I. Vistbakka (B)
Åbo Akademi University, Turku, Finland
e-mail: inna.vistbakka@abo.fi

E. Troubitsyna
KTH, Stockholm, Sweden
e-mail: elenatro@kth.se

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_6

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_6&domain=pdf
mailto:inna.vistbakka@abo.fi
mailto:elenatro@kth.se
https://doi.org/10.1007/978-981-15-5054-6_6

110 I. Vistbakka and E. Troubitsyna

that the system is protected not only against the random faults but also the malicious
ones, i.e. the security attacks.

However, often the security requirements are not uncovered until the late design
stages. Moreover, safety and security goals might result in the orthogonal functional
requirements that are hard to resolve at the implementation level. Hence, there is a
clear need for the modelling techniques that enable a formal reasoning about safety
and security interdependencies at the early stages of the system development. In this
work, we present a formal approach that allows the designers to uncover the implicit
security requirements that are implied by the explicit system-level safety goals.

We rely on modelling and refinement in Event-B [1] to systematically uncover
mutual interdependencies between safety and security and derive the constraints that
should be imposed on the system to guarantee its safety in the presence of accidental
and malicious faults. Event-B is a rigorous approach to correct-by-construction sys-
tem development by refinement. Development starts from an abstract specification
that models the most essential system functionality and then the abstract model is
transformed into a detailed specification. While refining the system model, we can
explicitly represent both nominal and failure behaviour of the system components, as
well as define the mechanisms for error detection and recovery. We can also explic-
itly represent the effect of security vulnerabilities such as tampering, spoofing and
denial-of-service (DOS) attacks and analyse their impact on system safety.

In our formal development,we adopt the systems approach, i.e. specify controlling
software together with the relevant behaviour of its environment—sensors, actuators
and controlled process. The security failures are modelled by their effect on the
system—altering or blocking messages sent over the communication channels. The
proposed approach is illustrated by a case study—a battery charging system of an
electric vehicle. We believe that the proposed approach facilitates an integration of
the security consideration into the safety-driven design of control systems. It allows
us to capture the dynamic nature of safety and security interplay, i.e. analyse the
impact of deploying the security mechanisms on safety assurance and vice versa.

2 Systems View on Safety and Security Interdependencies

In his seminal work [14], Parnas has introduced the four-variablemodel as an abstract
model of a computer-based control system. The four-variable model [14], shown in
Fig. 1 defines the dependencies between the controlled physical process, input/output
devices, and controlling software. The goal of the system is to control a certain
physical process. The input device—a sensor—monitors the state of the physical
process by measuring the value of the controlled parameter. Such a measurement
is taken as an input by the controller. Upon receiving the corresponding input, the
controller computes the output—the state of the actuator. The actuator affects the
behaviour of the controlled physical process, i.e. it changes the value of themonitored
variable to achieve the desired behaviour.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 111

Fig. 1 The four-variable
model

Fig. 2 Generic architecture
of a control system

An important requirement, which is usually imposed on the majority of control
systems, is to guarantee safety—a freedom of the accidents that might cause a loss
of human lives or environmental damage [12]. The four-variable model allows us
to derive the behaviour of controlling software that is acceptable from the safety
point of view. Thus, we should ensure that under the given definitions of the physical
process and behaviour of the input/output devices, the controlling software does not
generate the output that puts the monitored variable into the hazardous state.

By applying the four-variable model, we derive two main types of requirements
that should be implemented to guarantee safety. The first type is the fault tolerance
requirements. Since both the input and output devices can be unreliable, to cope with
their failures, either the system should contain redundancy or the controller should
be able to put the system in a failsafe state. Moreover, the controller should cater to
the imprecision of the sensor. The second type of the requirements is correctness.
We should guarantee that the output, which the controller computes, preserves the
safety boundaries of the monitored variable.

Nowadays safety-critical systems are increasingly relying on the networked tech-
nologies. In this work, we argue that the four-variable model should be extended to
take into account the impact of malicious attacks to which the communication chan-
nelsmight be vulnerable. In Fig. 2,we present our proposal to extend the four-variable
model to define a generic architecture of a networked control system.

We assume that the state of the controlled physical process is defined by the
(physical) variable p_real. The value of p_real is measured by the sensor. The sensor
can be a physical device, i.e. a hardware component that converts the physical value of
p_real into its digital representation p_sen. However, it can be also a logical sensor—
amodule of a controlling program that computes an estimate of p_real based on some
other measurements of the controlled process. In either case, the sensor corresponds
to the input device in the Parnas’s model.

In general, sensing is remote, i.e. the measured value p_sen is transmitted to the
input of the controller. Since the transmission channel between the sensor and the
controller s-c-chan might be untrusted, i.e. it might be a subject of security attack,
the value that is received by the controller—p_est might be different from p_sen.

112 I. Vistbakka and E. Troubitsyna

Fig. 3 Data control cycle

The controlling software checks the reasonableness of the received p_est and
decide to use it as the current estimate of p_real, i.e. p:=p_est or ignore it. The value
p that the controller adopts as its current estimate of the process state should pass
the feasibility check, i.e. should coincide with the predicted value and the freshness
check, i.e. should be ignored if the transmission channel is blocked due to a DOS
attack. If the controller ignores the received value p_est, it uses the last good value
of p_est and the maximal variation of the process dynamics to compute p.

The value of p is then used to calculate the next state of the actuator—the physical
device that affects the controlledprocess, i.e. causes the changes in thevalueofp_real.
The command from the controller to the actuator is transmitted over a network. In
a similar way, the transmission channel from the controller to the actuator c-a-chan
might be attacked. Hence, the command cmd_trans received by the actuator might
be different from the command cmd computed by the controller.

The behaviour of the system is cyclic. At each cycle, the sensor measures p_real,
produces p_sen and sends it over the s-c-chan channel to the controller. The controller
receives p_est, checks it and computes p and the actuator command cmd. After that
it sends cmd over the c-a-chan. The actuator receives the cmd_trans command and
applies it, which should result in the desirable change of the process state. Figure3
illustrates a generation and transmission of data within each cycle.

In this work, we focus on the failsafe systems, i.e. consider the control systems
that can be put into a safe nonoperational state to preclude an occurrence of a safety
failure [12]. Often system safety is defined over the parameters of the controlled
physical process. For instance, in our generic control system, we can define safety
as the following predicate

Safety = p_real ≤ safe_threshold ∨ failsafe=TRUE.

It means that the controlled process should be kept within the safety boundaries while
the system is operational; otherwise, a safe shutdown should be executed.

Design of any system relies on certain assumptions and properties of the domain.
In case of a safety-critical software-intensive control system, the aim of the design is
to construct controlling software,which is under the given assumptions andproperties
guarantees safety, i.e. allows us to proof the following judgement:

(ASM, DOM, SW) � Safety,

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 113

where ASM, DOM and SW stand for assumptions, domain and controlling software
properties, correspondingly. Below we define these three types of properties that
suffice to proof Safety for our generic control system

ASM
A1. p_sen = p_real ± �1
A2. p = p_sen ∧ �2 ∧ �2 = k�3
A3. (failsafe = FALSE ∧ cmd_trans = cmd) ∨ failsafe = TRUE

DOM
D1. cmd = incr ⇒ p_real(t + 1) ≥ p_real(t) for any t , while the system is operational
D2. cmd = decr ⇒ p_real(t + 1) < p_real(t) for any t , while the system is operational
D3. max |(p_real(t + 1) − p_real(t))| = �3
D4. failsafe=TRUE ⇒ p_real(t + 1) ≤ p_real(t) for any t , while the system is shutdown

SW
S1. p_est + �3

i=1�i ≥ safe_threshold ∧ failsafe=FALSE ⇒ cmd = decr

Straightforward logical calculations allow us to prove

(A1, ... , A3, D1, ... , D4, S1) � Safety.

Nowwe discuss these assumptions and link themwith safety and security require-
ments. The assumption A1means that the sensor measurements are sufficiently pre-
cise and unprecision is bounded. It implies a safety requirement: sensor should have
high reliability. Here �1 is the maximal imprecision value for the sensor.

The assumption A2 states that the controller always adopts a measurement of
the value of the process parameter that either coincides with p_sen, i.e. k = 0, or
is calculated on the basis of the last good value and �3—the maximal possible
increase of the value p_real per cycle (�2 = k�3, where k is the number of cycles).
This assumption implies both safety and security requirements. Firstly, we should
guarantee that the channel s-c-chan is tamper resistant and the sensor is spoofing
resistant. Secondly, we should ensure that the controlling software checks the validity
of the input parameter and ignores it if the check fails. The assumptionA2 also implies
that, in case of DOS attack on the channel s-c-chan, the system continues to function
for some time by relying on the last good value. The assumption A3 implies that
if a failure or an attack on the channel c-a-chan is detected then the system is shut
down. It means that the system should have some (possibly non-programmable) way
to execute a shutdown in case the channel c-a-chan becomes unreliable.

The domain properties define certain axioms about the physical environment of
the system and their interdependencies. The property D1 states that an execution of
the command incr results in the increase of the value p_real. The property D2 is
similar to D1. The domain property D3 states that the maximal possible increase of
p_real per cycle is known and bounded. D4 stipulates that when the system is put in
the failsafe state, the value of the physical parameter does not increase.

Finally, the software property S1 corresponds to the safety invariant that controller
should maintain: the controller issues the command decr to the actuator if at the next
cycle the safe threshold can be exceeded.

114 I. Vistbakka and E. Troubitsyna

Our system-level analysis has demonstrated that both safety and security aspects
are critical for fulfilling the system-level goal of ensuring safety. Hence, both these
aspects should be explicitly addressed during the system development. It is easy to
observe, that we had to define a large number of requirements even for a generic
high-level system architecture. To facilitate a systematic requirements derivation,
we propose to employ formal development framework Event-B.

3 Modelling and Refinement in Event-B

Event-B [1] is a state-based framework that promotes the correct-by-construction
approach to system development and formal verification by theorem proving. In
Event-B, a system model is specified using the notion of an abstract state machine
(ASM). ASM encapsulates the model state, represented as a collection of variables,
and defines operations on the state, i.e. it describes the dynamic behaviour of a
modelled system. A machine also has an accompanying component, called context,
which includes user-defined sets, constants and their properties given as axioms.

The dynamic behaviour of the system is defined by a set of atomic events. Gen-
erally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is a predicate
over the local variables of the event and the state variables of the system. The body
of an event is defined by a multiple (possibly nondeterministic) assignment over the
system variables. The guard defines the conditions under which the event is enabled,
i.e. its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system development.
Development typically starts from an abstract specification that nondeterministically
models themost essential functional requirements. In a sequence of refinement steps,
we gradually reduce nondeterminism and introduce detailed design decisions. In
particular, we can add new events, split events, as well as replace abstract variables
by their concrete counterparts, i.e. perform data refinement. When data refinement is
performed, we should define gluing invariants as a part of the invariants of the refined
machine. They define the relationship between the abstract and concrete variables.
The proof of data refinement is often supported by supplyingwitnesses—the concrete
values for the replaced abstract variables and parameters. Witnesses are specified in
the event clause with.

The consistency of Event-Bmodels, i.e. verification of well-formedness, invariant
preservation and correctness of refinement steps, is demonstrated by discharging
a number of verification conditions—proof obligations. The Rodin platform [19]
provides an automated support for formal modelling and verification in Event-B.
It automatically generates the required proof obligations and attempts to discharge
(prove) them automatically. It also provides a support for an interactive proving.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 115

4 Generic Development of a Control System

In this section, we present a generic methodology for the refinement-based devel-
opment of control systems that facilitates identifying implicit security requirements
that should be fulfilled to satisfy the safety goals.

4.1 Abstract Specification: Overall System Behaviour

In the initial Event-B model, we introduce an abstract representation of the system
architecture with the explicit definition of the communication channels as defined in
Fig. 2.The abstractmodel (given inFig. 4)—themachineControlSystem_SS_m0—
represents the overall behaviour of the system as an interleaving between the events
modelling the phases of the control cycle defined in Sect. 2.

We define a variable phase ∈ PHASES to designate the current stage of the control
cycle. The set PHASES={PROC, SEN, TO_CONTR, CONTR, TO_ACTUA, ACTUA}
contains the constants denoting the corresponding stages of the control cycle, while
phase is used to enforce the predefined cyclic execution order of events

Process → Sensor → S_C_Chan → Controller → C_A_Chan → Actuator → Process → ...

Process event models the behaviour of the monitored physical process. Sensor
event models the behaviour of the sensor, while Controller event specifies the
behaviour of the controlling software. The eventsS_C_Chan andC_A_Chanmodel
communication channels. Finally, Actuator event models the behaviour of the actu-
ator.

In the initial model, we also abstractly specify an occurrence of faults. The event
FailureDetection models a failure detection by nondeterministically assigning the
variable failure the value TRUE or FALSE. In our further refinement steps, we will
distinguish between the criticality of failures, and hence, will execute shutdown
(enable the event FailSafe) less often.

Process =̂
when phase=PROC then phase:=SEN end

Sensor =̂
when phase=SEN ∧ failure=FALSE
then phase:=TO CONTR end

S C Chan =̂ ...
when phase=TO CONTR ∧ failure=FALSE
then phase:=CONTR end

Controller =̂
when phase=CONTR ∧ failure=FALSE
then phase:=TO ACTUA end

C A Chan =̂
when phase=TO ACTUA ∧ failure=FALSE
then phase:=ACTUA end

Actuator =̂
when phase=ACTUA ∧ failure=FALSE
then phase:=PROC end

FailureDetection =̂ ...
FailSafe =̂ ...
end

Fig. 4 Events of the machine ControlSystem_SS_m0

116 I. Vistbakka and E. Troubitsyna

Let us note that in our initial specification, we have not yet formulated safety as a
model invariant. Since the initial model defines only the control flow, we do not have
the sufficiently detailed ‘knowledge’ to define and prove the desired safety property.
This goal will be achieved via the refinement process.

4.2 First Refinement: Introducing Model Data

Our first refinement step aims at augmenting the abstract model with the explicit
specification of the variables that are updated by the components and transmitted
via the communication channels within the control cycle. At this refinement step,
we also elaborate on the model of the controlled process, i.e. define the behaviour
of the physical process characterised by the variable p_real. We also model the
dependencies between the actuator state and the expected range of p_real value.

In the dynamic part of the Event-B model—the machine
ControlSystem_SS_m1—we introduce four variables that explicitly represent the
variable p_real and its ‘perception’ at each stage of the controlled process

• p_real—the current physical value defining the state of the process;
• p_sen—the value of the physical variablemeasured by the sensor. It can be affected
by the sensor imprecision or failures;

• p_est—the value of the sensor measurement received by the controller as an input.
It can be affected by the security attacks (hacking or spoofing);

• p—the value adopted by the controller as the current estimate of the process vari-
able value.

Moreover, we also introduce a representation of the controller output—the com-
mand issued to the actuator—and corresponding command received by the actuator

• cmd—the controller output;
• cmd_trans—the command received by the actuator. It can be affected by security
attacks (hacking or spoofing) on the transmission channel.

The type of the variables cmd and cmd_trans is defined as the enumerated set
COMMANDS that contains the elements {INCR, DECR, ND, DOS}. The constants
INCR and DECR stand for increasing and decreasing commands to the actuator,
ND—for the initialisation command. The constantDOS is an abstract representation
of aDOS attack or channel failure. It models the fact that the actuator does not receive
any (fresh) command at the current control cycle.

Finally, we define a variable act_state representing the current state of the actuator.
The actuator can be either switched off (consequently, act_state=OFF) or switched
on (act_state=ON). For simplicity, we assume that when the actuator is switched on
then the value of p_real is increasing and when it is switched off, it is decreasing
correspondingly.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 117

Process refines Process =̂
when phase=PROC
then phase:=SEN

p real := p func(p real �→ act state)
end

Sensor refines Sensor =̂
when phase=SEN ∧ failure=FALSE
then phase:=TO CONTR

p sen :∈ p real−delta1 ... p real+delta1
end

S C Chan normal refines S C Chan =̂
when phase=TO CONTR ∧ failure=FALSE
then phase:=CONTR

p est := p sen
end

S C Chan failed refines S C Chan =̂
when phase=TO CONTR ∧ failure=FALSE
then phase:=CONTR

p est : | (p est′ ∈ N∧p est′ �= p sen)
end

Controller refines Controller =̂
any k,delta3
where phase=CONTR ∧ failure=FALSE

k ∈ {0..3}∧delta3= delta2*k
then phase:=TO ACTUA

p :| (p′ ∈ {p est, p}∨ p′ ∈ p−delta3 .. p+delta3)
cmd :∈COMMANDS end

C A Chan normal refines C A Chan =̂
when phase=TO ACTUA ∧ failure=FALSE
then phase:=ACTUA || cmd trans := cmd
end

C A Chan failed refines C A Chan =̂
when phase=TO ACTUA ∧ failure=FALSE
then phase:=ACTUA || cmd trans :∈ COMMANDS end

Actuator normal refines Actuator =̂
when phase=ACTUA ∧ failure=FALSE

cmd trans ∈ {INCR,DECR}
then phase:=PROC

act state :| (cms trans=INCR⇒act state′ = ON)∨
(cms trans=DECR⇒act state′ = OFF)

end

Fig. 5 Events of the machine ControlSystem_SS_m1

The event Sensor models the behaviour of the sensor by assigning the variable
p_sen any value from the range p_real - delta1 .. p_real + delta1, where delta1 is
the maximal imprecision value for the sensor introduced as a constant in the model
context. Hence, we model the sensor imprecision defined in our assumption A1.
The event SensorFailure models the sensor failure. In case of failure, the sensor
produces the reading that is out of the expected range.

The abstract event S_C_Chan models the transmission of the sensor reading
(p_sen value) to the controller. Since the transmission channel s-c-chan might be a
subject of a security attack, the inputp_est receivedby the controllermight differ from
the p_sen value. We refine the event S_C_Chan by two concrete ones: modelling
the normal and abnormal transmissions.

The eventController is refined to abstractly specify the behaviour of the controller.
We model the procedure of computing the current estimate p. The controller either
accepts the current input or relies on the last good value, or calculates a new value p
on the basis of the last good value and the maximal possible increase per cycle. The
computed value of p is used to calculate the output—the next state of the actuator, i.e.
update the variable cmd. Similar to theS_C_Chan event, we refine the abstract event
C_A_Chan by two events modelling successful and failed command transmission
from the controller to the actuator (Fig. 5).

Upon receiving the command from the controller, the actuator changes its state
accordingly. This behaviour is modelled by the event Actuator. The actuator
behaviour preserves the following invariants, postulating that the actuator is switched
on when the increasing command is received, and vice versa

phase = PROC ∧ cmd_trans=INCR ⇒ act_state=ON,

phase = PROC ∧ cmd_trans=DECR ⇒ act_state=OFF.

118 I. Vistbakka and E. Troubitsyna

We also specify our knowledge about the environment process by introducing the
abstract function p_func into the extended model context:

p_func ∈ N × ACTUATOR_STATES → N.

The function models the next predicted value for the process p_real. It takes the
previous value of p_real, as well as the actuator state as the input, and returns a
new predicted value in the next cycle. While the actuator is switched on, the value of
p_real is increasing. Correspondingly, while the actuator is switched off, the value
of p_real is decreasing. We formulate these propertiesas the following model axiom:

∀n ·n ∈ N ⇒ p_func(n �→ INCR) ≥ n, ∀n ·n ∈ N ⇒ p_func(n �→ DECR) < n.

Let us note that they formalise the properties D1 and D2 discussed in Sect. 2.
Moreover, the following constraint in the context component

∀n ·n ∈ 0 .. p_max + delta1 ⇒ p_ f unc(n �→ INCR) ≤ safe_threshold.

requires that, if the process state is currently in the safe range [0..p_max + delta1],
it cannot exceed the critical range within the next cycle, i.e. the safety gap between
p_max and safe_threshold is sufficiently large.

4.3 Second Refinement: Specifying Controller Logic

Our second refinement step aims at introducing a detailed specification of the
behaviour of the controlling software.Namely,we refine the abstract eventController
to represent its different alternatives that depend on the received input.

The output of the controller—the next state of the actuator—depends on the value
of p adopted by the controller as the current estimate of the process state. Upon
receiving the input—p_est—the controller checks its reasonableness. If the check
is successful then p obtains the value of p_est. Then the controller proceeds by
checks whether p exceeds p_max or is in the safe range [0..p_max]. These alter-
natives are modelled by the events Controller_normal_DECR (see Fig. 6) and
Controller_normal, correspondingly.

If the input does not pass the reasonableness check, the controller calculates the
value of the process parameter using the last good input value and the maximal
possible increase of the value p_real per cycle delta2. Then, the controller checks
whether p exceeds p_max and computes the output. These alternatives are covered
by the eventsController_retry_DECR andController_retry, correspondingly.Here
the variable retry is introduced to model the number of retries (cycles) before the
failure is considered to be a permanent and system is shutdown.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 119

Controller normal DECR refines Controller =̂
where phase=CONTR ∧ failure=FALSE

p est= p func(p �→ act state)
p est> p max

with k=0
delta3=0

then phase:=TO ACTUA
p := p est
cmd := DECR
retry := 0

end

Controller retry DECR refines Controller =̂
any p new,delta3
where phase=CONTR ∧ failure=FALSE ∧

p est �= p func(p �→ act state) ∧
retry<= 2∧delta3= (retry+1)delta2
p new ∈ p-delta3...p+delta3∧p est> p max

with k=retry+1
then phase:=TO ACTUA

p := p new
cmd := DECR
retry := retry+1

end

Fig. 6 Some events of the machine ControlSystem_SS_m2

The behaviour of the controller preserves the following invariants:

phase = TO_ACTUA ∧ p > p_max ⇒ cmd=DECR,

phase = TO_ACTUA ∧ p ∈ 0..p_max ⇒ cmd=INCR ∨ cmd=DECR.

They postulate that the controller issues the commandDECR if the parameter p is
approaching the critically high value (safe_threshold). If the controlled parameter is
within the safety region then the controller output might be either DECR or I NCR.

4.4 Third Refinement: Attack Modelling

In a networked control system, the communication channels are used to transmit the
sensor data to the controller, as well as the commands issued by the controller to
the actuator. However, such channels could be possibly vulnerable to the security
attacks. The goal of our third refinement step is to introduce into the Event-B model
an abstract representation of the attacks and the system reaction on them.

To achieve this, we add several new events and variables into the refined system
specification as shown inFig. 7. Firstly,we introduce aneweventAttack_S_C_Chan
to model a possible attack on the channel s-c-chan. The attack can happen anytime
while transmitting the sensed data to the controller. The variable attack_s_c ∈ BOOL
indicates whether the system is under attack. If the event Attack_S_C_Chan is
triggered, the value of attack_s_c becomes TRUE, otherwise it equals to FALSE.
Let us note that the event Attack_S_C_Chan is merely an abstraction introduced
to represent the results of the security monitoring. In general, a security monitoring
relies on the anomaly detection including checks of well-formedness of data packets,
deviations in response time or periodicity, etc. (An implementation of the security
monitoring mechanisms is out of the scope of this paper.) Similarly to modelling the
attack on the channel s-c-chan, we introduce the event Attack_S_A_Chan to model
a possible attack on the channel c-a-chan.

120 I. Vistbakka and E. Troubitsyna

Events ...
Attack S C Chan =̂
when phase=TO CONTR ∧ attack s c=FALSE
then attack s c:=TRUE end

S C Chan normal refines S C Chan normal =̂
when ...∧ attack s c=FALSE
...

Attack C A Chan =̂
when phase=TO ACTUA ∧ attack c a=FALSE
then attack c a:=TRUE end

C A Chan failure ...
when phase=TO ACTUA ∧ ... ∧ attack c a=TRUE
then phase:=ACTUA

cmd := DOS
end

C A Chan AttackDetection refines FailureDetection
when ...∧ failure=FALSE ∧ cmd=DOS
then failure:=TRUE end

...
end

Fig. 7 Some events of the machine ControlSystem_SS_m3

We define the additional guards in the events S_C_Chan_normal and
C_A_Chan_normal to ensure that the events are enabled only if no attacks have
been detected, i.e. attack_s_c=FALSE or attack_c_a=FALSE, correspondingly.

According to the assumption A2, in case of an attack on the channel s-c-chan,
the system continues to function for some time: the controller relies on the last good
input received. If an attack on the channel c-a-chan has occurred then the controller
output would differ from the command received by the actuator. In case of the DOS
attack (or in general a channel unavailability), the actuator would not receive any
command at all. For simplicity, we model it by assigning the constant DOS to
the cmd_trans variable. (In practice, the DOS attack detection is implemented by
checking the timestamp of the received packet.) Safety cannot be ensured if an attack
on the channel c-a-chan is detected and hence the system should be shut down.

We formulate the following properties as the model invariants and prove them

attack_s_c=FALSE ∧ phase=CONTR ⇒ p_est=p_sen,

attack_c_a=FALSE ∧ phase=ACTUA ⇒ cmd=cmd_trans.

The properties describe the effect of the attacks on the controller input and output.
As a result of this refinement step, we arrive at a sufficiently detailed specification

to define and prove the following safety invariant: p_real ∈ 0 .. safe_threshold.
Next, we will demonstrate how the proposed generic refinement process can be

applied to develop a case study—a battery charging system.

5 Case Study: The Battery Charging System

In this section, we present our use case—a battery charging system and in the next
section, wewill demonstrate how to develop a detailed specification of this system by
refinement and uncover the mutual interdependencies between safety and security
requirements through the process of formal development. In our development we
will rely on the generic development presented in Sect. 4.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 121

5.1 Case Study Description

Our case study is a battery charging system (BCS) of an electric car. Charging of the
car battery is initiated when the vehicle gets connected to an external charging unit
[20]. Figure8 shows the main components of the system: the battery module, the
battery management system, the CAN bus, the charging station (with the associated
charging interface and the external charging unit). When the charging station detects
that an electrical vehicle got connected to its external charging unit, it starts the
charging procedure. While charging, the battery management system (BMS)—the
controlling software of the system, monitors the measurements received from the
battery and issues the signal to the charging station to continue or stop charging.

The communication between the BMS and the charging station goes through
the CAN bus. The system behaviour is cyclic: at each cycle, the charging station
receives the command from BMS to continue or stop charging. Correspondingly, it
either continues or stops to supply the energy to the battery of the car.

The main hazard associated with the system is overcharging of the car’s battery,
whichmight result in an explosion. Therefore, the safety goal of the system is to avoid
overcharging. In case the system cannot reliably assess the current battery charge or
stop charging using the programmable means, a safe shutdown should be executed.
Hence, the system architecture should have a reliable mechanism for controlling the
charging procedure and, in case of hazardous deviations, be able to abort charging,
i.e. make a transition to the failsafe state.

The top-level safety goal of BCS is to keep a battery level parameter within the
predefined boundaries. Let bl_real correspond to the real physical value of such a
parameter. The system safety property can be formulated as

0 ≤ bl_real ≤ bl_max_crit,

where 0 and bl_max_crit denote the lowest and highest boundaries correspondingly.
The safety goal is achieved by changing the state of the charging unit that supplies
an electricity to the battery.

Fig. 8 Architecture of battery charging system

122 I. Vistbakka and E. Troubitsyna

BCS is a typical example of a control system discussed in Sect. 2. Indeed, the
BMS acts as a controller, the charging station (with its associated charger unit)—as
an actuator and the battery unit as the process that the system controls. The battery
level parameter can be directly measured by the sensor of BMS or computed on the
basis of the alternative measurements obtained from the battery. At each cycle, BMS
assesses the battery level and sends the corresponding control command.

The charging station and in-car CAN bus are linked by the corresponding com-
munication channel that could be possibly vulnerable to the security attacks. In
particular, the attacker can use the in-car charging interface as an entry point by
compromising the external charger interface or tampering with the communication
between the interfaces to inject a malicious content into the CAN bus. Therefore,
while reasoning about the behaviour of such a system, we should also reason about
the impact of security threats on its safety. The analysis presented in Sect. 2 shows
that safety cannot be guaranteed when the controller-actuator channel is attacked.
Therefore, the BCS should include an additional hardware component that should be
installed in the car to break the charging circuit if the battery charge level becomes
dangerously high. Such a non-programmable switch can override the commands
from the controller and put the system in the failsafe state to guarantee safety.

Next, we present an abstract Event-B specification of BCS.

6 Event-B Development of the Battery Charging System

In this section, we will present a formal Event-B development of the described BCS.
Our development would rely on the generic development presented in Sect. 4. Since
the developedmodels are fairly large,we only highlight themost importantmodelling
solutions for the development.

6.1 Initial Specification

Westart with a simple Event-Bmodel of BCSwherewe define its essential behaviour.
Similarly to the behaviour of a control system, BCS’s behaviour is cyclic, yet with
several differences. At each cycle, the BMS reads the battery sensor data, makes
the decision either to continue or stop charging and sends the control signal to the
charging station. In the initial Event-B specification BatteryCharging_Abs, we
model these activities by the corresponding events.

By following the guidelines defined in Sect. 4, we introduce an abstract represen-
tation of the control cycle and define the variable phase, where phase ∈ PHASES.
Here the set PHASES = {BAT, EST, BMS, TRANSM, CHARGST, FIN}. The variable
phase is used to enforce the predefined cyclic execution of the data flow

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 123

Battery → BMS_estim → BMS_act → CAN_bus → ChargStation → Battery → ...

Battery event models the changes of the battery parameter bl_real while charg-
ing. BMS_estim event models the BMS estimation of this parameter (that is defined
by bl variable). BMS_act event specifies the BMS actions (i.e. sending the signal to
continue or stop charging) and CAN_bus event models transmission of the corre-
sponding command to the charging station. Finally, ChargStation event models the
required actions from the charging station upon receiving the signal from BMS.

In addition to modelling the control cycle, we also define the event Connect that
represents the beginning of the charging procedure (i.e. when a vehicle connects to
the charging station) and the eventChargingComplete representing its completion.

6.2 The First Refinement

In our first refinement step, we focus on modelling properties related to the safety.
In particular, we define the safety restrictions imposed on the charging procedure.
The procedure begins when a cable is connected. Only after it has been started, the
cable is electrified. If the cable is disconnected while charging, the vehicle system
and charging station will detect the change and discontinue the power supply to the
cable at their respective ends.

We introduce a variable cable_connected ∈ BOOL , which has the value FALSE
when the cable is connected, and T RUE otherwise. The variable cable_connected
is updated in the events Connect and ChargingCompletemodelling the beginning
and the progress of the charging procedure, respectively. Moreover, to model the
state of the energy supplying equipment, we define a variable cable_electrified ∈
EQUIPMENT_STATE, where EQUIPMENT_STATE = {OFF, ON }.

The status of charging is modelled by the variable status. It can obtain any of
three possible values from the set STATUSES={IDLE, CHARGING, CHARGED}.
When the external charger unit is not connected to the vehicle, status has the value
IDLE. The variable status obtains the value CHARGING if charging is in progress
and the value CHARGED when charging has been recently stopped.

The interdependencies between the variables are defined as following invariants
(Fig. 9):

cable_connected=FALSE ⇒ status=IDLE, status=CHARGED ⇒ cable_electrified=OFF,

cable_electrified=ON ∧ failure=FALSE ⇒ cable_connected=TRUE, ...

The abstract event ChargingStation is refined by three events:
ChargingStation_init, ChargingStation_cont and ChargingStation_stop. They
model the beginning of charging (i.e. supplying energy), its continuation and com-
pletion, respectively. If the cable is disconnectedwhile charging, to detect this change
and stop the power supply to the cable, we define the eventUnsafeUnconnect event.

124 I. Vistbakka and E. Troubitsyna

Connect =̂ refines Connect
where phase=INIT ∧ f ailure= FALSE∧
cable connected = FALSE
then phase := BAT

cable connected := TRUE
status := CHARGING

end

ChargingComplete =̂ refines ChargingComplete
where phase=FIN ∧ f ailure= FALSE∧
status=CHARGED ∧ cable electrified=OFF

then status := IDLE
cable connected := FALSE
phase := INIT

end

Fig. 9 Some events of the machine BatteryCharging_Ref1

6.3 The Second Refinement

Our second refinement step aims at introducing a detailed specification of the BMS
behaviour. We define the control algorithm. The controller calculates the commands
to be sent to the charging station using the current estimate of the battery level. At
this refinement step, we also elaborate on the dynamics of the controlled process,
i.e. define the changes in the real battery level bl_real and model different cases of
the charging station behaviour. Let us note that this refinement step combines two
corresponding refinement steps of our generic development described in Sect. 4.

At each control cycle, the controller receives the current estimate of the battery
level from the sensor. The controller checks whether the battery is still not fully
charged and it is safe to continue to charge it or charging should be stopped. The
decision to continue to charge can be made only if the controller verifies that the bat-
tery level at the end of the next cycle will still be in the safe range [0 ... bl_max_crit].

At this development step, we refine the event BMS_estim modelling the estima-
tion of the current value of battery parameter by BMS. Consequently, the variable bl
gets any value from the range bl_real - bl_delta .. bl_real + bl_delta, where bl_delta
is the maximal imprecision value for the battery sensor.

We also specify our knowledge about the process of the battery charging by
introducing the following abstract function into the model context: bl_fnc ∈ N → N.

The function models the next predicted value for the battery level parameter bl_real.
It takes the previous value of bl_real and returns its predicted value in the next cycle.
Obviously, while the battery is charging, its battery level is increasing, as rendered by
the following axiom defined in the context BatteryCharging_c1: ∀n ·n ∈ N ⇒ n <

bl_fnc(n). Moreover, the following constraint in the context

∀n ·n ∈ 0 .. bl_max + bl_delta ⇒ bl_fnc(n) ≤ bl_max_crit

defines that, if the battery level is currently in the safe range it cannot exceed the crit-
ical range within the next cycle, i.e. the safety gap between bl_max and bl_max_crit
is sufficiently large.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 125

BMS continue =̂ refines BMS control
where phase=BMS ∧ failsafe=FALSE ∧ status=CHARGING∧

bl < bl max ∧ sensor reading=OK
then phase := TRANSM

signal:=SUPPLY
end

CAN bus =̂ refines CAN bus
where phase=TRANSM ∧ failure=FALSE∧
status=CHARGING
then phase := CHARGST

bus out:=signal
end

Fig. 10 Some events of the machine BatteryCharging_Ref2

We also refine the abstract event BMS_control to represent the reaction of the
controller (BMS) on different values of the input: stopping the charge if themonitored
parameter exceeding bl_max and continuing it if the monitored parameter is in the
safe range [0..bl_max). Note that the monitored value bl that BMS relies on here is
different from the actual value of the physical process (bl_real) updated by the event
Battery.

The variable signal is used to model the control commands issued by the BMS to
continue or abort the charging. The abstract constants SUPPLY and STOP correspond
to the external charger being switched on and off. Upon receiving the command, the
charging station activates or deactivates the external charger unit (Fig. 10).

The BMS behaviour preserves the following invariants:

phase = TRANSM ∧ bl ≥ bl_max ⇒ signal=STOP

phase = TRANSM ∧ bl < bl_max ⇒ signal=SUPPLY

Indeed, BMS issues the signal to stop charging when the parameter bl is approaching
the critically high value (bl_max_crit), and continue otherwise. To give the system
a time to react, BMS sends the stopping command to the charging station whenever
the estimated value bl reaches the predefined value bl_max.

In this refinement step, we have elaborated on the control algorithm and the
model of the controlled physical process. However, we have abstracted away from
modelling the fact that the charging station reads the signal from the CAN bus. Such
an abstraction allows us to further refine the communication model and explicitly
define the impact of the security attacks on the system behaviour.

6.4 The Third Refinement

In the architecture of BCS, the CAN bus represents the communication channel in
the in-car system. This component is used to transmit the signal issued by the BMS
to the charging station. However, such a channel could be possibly vulnerable to the
security attacks. The attacker can use the in-car charging interface as an entry point by
compromising the external charger interface or tampering with the communications
between the interfaces to inject malicious content into the CAN bus. Therefore, the
goal of our third refinement step is to incorporate into themodel architecture a certain
mechanism that would allow the system to transmit the signal in a secure way. The

126 I. Vistbakka and E. Troubitsyna

Invariants ... (phase = CHARG∧bl ≥ bl max⇒bus out=STOP) ∧ ...

(attack = FALSE∧ phase = CHARG∧bus out=STOP⇒ signal=STOP) ∧ ...
Events
...
SecurityGateway no attack
where phase=CHARGST ∧ failure=FALSE∧
charg in=S0 ∧ attack=FALSE ∧ gateway=FALSE

then charg in := bus out || gateway= TRUE
end

ChargingStation stop =̂ refines ChargingStation stop
where phase=CHARG ∧ charg in= STOP∧

f ailure= FALSE
with sg=STOP
then status := CHARGED || phase := FIN

charg in := S0 || cable electrified := OFF
end

Fig. 11 Some events of the machine BatteryCharging_Ref3

possible solution here is to add a new component—security gateway—between the
CAN bus and the external charging unit. In general, such a security gateway could
control the network access according to predefined security policies and can also
inspect the packet content to detect intruder attacks and anomalies.

Some events of the refined model obtained by following the corresponding step of
our generic development are presented in Fig. 11. We introduce a new event Attack
to model a possible attack on the system. The attack can happen anytime while
transmitting the signal to the charging interface.

Secondly, we introduce two events SecurityGateway_no_attack and
SecurityGateway_attack and a new variable charg_in that specifies the input
buffer of the charging interface. It might obtain the values from the set of possible
signals, i.e. charg_in ∈ SIGNALS. If no attack occurred then the transmission results
in copying the signal from the output buffer of the CAN bus (bus_out variable) to
the input buffer charg_in of the charging interface. If a security failure occurred (e.g.
the system has been under attack) then output signal would differ from the sent sig-
nal. For the sake of simplicity, we consider here a DOS attack. Therefore, the input
buffer of the charging interface will get DOS value. This behaviour is modelled by
the events SecurityGateway_no_attack and SecurityGateway_attack presented
in Fig. 11. In case of the DOS attack, the system will detect this (modelled by the
event AttackDetection) and make a transition to a failsafe state.

However, while adding security protection to the system architecture, a security
gateway might introduce latency into communication between the CAN bus and
the charging station, and, in turn, increase the reaction time of charging unit. Thus,
a careful analysis should be performed while choosing a suitable value bl_max to
ensure the following constraint:

bl_max + bl_delta + max_increase ≤ bl_max_crit,

where max_increase is the maximal increase of the better level value peer cycle.
The specification obtained at this step is sufficiently detailed and allows us to

prove the desired safety property as a model invariant: bl_real ∈ 0 .. bl_max_crit.

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 127

6.5 Discussion

In the case study, we have followed the generic development process described in
Sect. 4. We had to introduce some adjustments while specifying BCS to cater to
the behaviour pertaining to this particular system. However, the deviations from the
generic development havebeenminor andhence,webelieve that the proposedgeneric
development pattern have been successfully validated. In our future work, we are
planning to elaborate on our approach and make it still more generic. In particular,
we are planning to formulate the proposed design solutions as separate Event-B
patterns. In the context of formal development in Event-B, patterns represent generic
modelling solutions that can be reused in similar developments via instantiation.

There are several observations, which we made as a result of the case study.
In our modelling, we have adopted an implicit discrete model of time. Namely, we
define the abstract function representing the change in the dynamics of the controlled
process, aswell as the constraints relating the components behaviour in the successive
iterations. Such an approach is based on our previous experience inmodelling control
systems [10, 11]. To enable verification of real-time properties, we can rely on the
approach proposed by Iliasov et al. [5] allowing to map Event-B specification into
UPPAAL. An alternative approach would be to support the explicit reasoning about
the continuous system behaviour, e.g. as proposed by Babin et al. [2].

To support reasoning about safety-security interplay, we have to explicitly model
the impact of accidental and malicious faults on the system behaviour, i.e. introduce
in our specification an explicit representation of failure modes. As a result, the com-
plexity of the specification can significantly increase. To address this issue, we can
rely on the modularisation approach [8], which supports compositional reasoning
and specification patterns [7]. Moreover, we can also extend the work proposed to
integrate the results of FMEA into the formal models [18].

Our approach has already demonstrated a good scalability and facilitates the devel-
opment of complex safety-critical control systems. However, to cope with the com-
plexity of a formal specification, which explicitly integrates the failure behaviour,
we can employ such an architectural mechanism as the mode-based reasoning, as
proposed, e.g. in [6]. We can distinguish between the normal operational mode, the
degraded mode caused by the accidental component failures, as well as the attacked
and failsafe modes. By defining and verifying such a high-level mode logic, we can
facilitate a structured analysis of the complex failure behaviour.

7 Related Work and Conclusions

Research investigating safety and security interaction has received a significant
attention. It has been recognised that there is a need for the approaches facilitat-
ing an integrated analysis of safety and security [16, 27–30]. This problem has been
addressed by several techniques demonstrating how to adapt conventional techniques

128 I. Vistbakka and E. Troubitsyna

for analysing safety risks (e.g. FMECA, fault trees) to perform a security-informed
safety analysis [4, 21]. The techniques aim at providing the engineers with a struc-
tured way to discover and analyse security vulnerabilities that have safety implica-
tions. Since the use of such techniques facilitates a systematic analysis of failure
modes and results in discovering important safety and security requirements, the
proposed approaches can provide a valuable input for our modelling.

There are several works that address the formal analysis of safety/security require-
ments interactions [9, 17]. Majority of these works demonstrate also how to find
conflicts between them. A typical scenario used to demonstrate this is a contradic-
tion between the access control rules and safety measure. In our approach, we treat
the problem of safety-security interplay at a more detailed level, i.e. we analyse the
system architecture, investigate the impact of security failures on safe implementa-
tion of system functions. Such an approach allows us to analyse the dynamic nature
of safety-security interactions. The work [17] presents ongoing work on a method
to co-engineering of security and safety requirements. Specifically, the paper illus-
trates how Goal-Oriented Requirements Engineering can support co-engineering to
address the safety and security dimensions in cyber-physical systems.

The distributed MILS approach [3] employs a number of advanced modelling
techniques to create a platform for a formal architectural analysis of safety and
security. The approach supports a powerful analysis of the properties of the data
flow using model checking and facilitates derivation of security contracts. Since our
approach enables incremental construction of complex distributed architectures, it
would be interesting to combine these techniques to support an integrated safety-
security analysis throughout the entire formal model-based system development.

An important aspect of demonstrating system safety is its quantitative evaluation.
The foundations of the quantitative probabilistic reasoning about safety using formal
specifications was established in [13, 22, 26]. This work has been further extended to
enable probabilistic assessment of safety and reliability using Event-B specifications
[24]. It would be interesting to quantitatively assess the impact of accidental and
malicious faults on safety.

The work proposed by Parnas [15] is also based on the four-variable model pro-
posed by Parnas. The authors show how this model is used in the development of
safety-critical systems in industry and helps to clarify the behaviours of, and the
boundaries between, the environment, sensors, actuators and software. Similarly, in
our work four-variable model allows us to derive the behaviour of controlling soft-
ware that is acceptable from the safety point of view. However, we further employ
formalmodelling technique to uncovermutual interdependencies between safety and
security.

In our work, we have assumed that the hazards associated with the system has
been already identified and correspondingly, focused onmodelling system behaviour
guaranteeing hazard avoidance. Our work can be complemented with the approaches
proposed in [23, 25], which address hazard identification and elicitation of safety
requirements.

In this work, we have proposed a formal approach enabling derivation of implicit
security requirements from system safety goals. The proposed approach allows us

Deriving Implicit Security Requirements in Safety-Explicit Formal Development … 129

in a systematic disciplined manner to derive the constraints that should be imposed
on the system to guarantee its safety even in the presence of the security attacks.
Our approach has relied on modelling and refinement in Event-B. While specifying
the system, we have followed the systems approach, i.e. modelled the controlling
software together with its environment. Such an approach has allowed us to systemat-
ically derive the constraints that should be imposed on components, communication
channels and software to guarantee safety in the presence of accidental (due to the
component failures) and security failures. A distinctive feature of our approach is a
support for the integrated consideration of safety and security.

The approach presented in this work generalises the results of our experience
with formal refinement-based development in the Event-B conducted in the context
of verification of safety-critical control system. The results have demonstrated that
the formal development significantly facilitates derivation of safety and security
requirements. We have also observed that the integrated safety-security modelling in
Event-B could be facilitated by the use of external tools supporting constraint solving
and continuous behaviour simulation. Such an integration would be interesting to
investigate in our future work.

References

1. J.R. Abrial, Modeling in Event-B (Cambridge University Press, Cambridge, 2010)
2. G. Babi, Y.A. Ameur, N.K. Singh, M. Pantel, A system substitution mechanism for hybrid

systems in event-B. ICFEM 2016, 106–121 (2016)
3. A. Cimatti, R. DeLong, D. Marcantonio, S. Tonetta, Combining MILS with contract-based

design for safety and security requirements, in SAFECOMP 2015 Workshops. LNCS, vol.
9338 (Springer, Berlin, 2015), pp. 264–276

4. I.N. Fovino, M. Masera, A.D. Cian, Integrating cyber attacks within fault trees. Rel. Eng. Sys.
Safety 94(9), 1394–1402 (2009)

5. A. Iliasov, A. Romanovsky, L. Laibinis, E. Troubitsyna, T. Latvala, Augmenting event-B mod-
elling with real-time verification, in FormSERA 2012 (IEEE, Piscataway, 2012), pp. 51–57

6. A. Iliasov, E. Troubitsyna, L. Laibinis, l. Romanovsky, K. Varpaaniemi, D. Ilic, T. Latvala,
Developing mode-rich satellite software by refinement in event-B. Sci. Comput. Program.
78(7), 884–905 (2013)

7. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, Patterns for refinement automation, in
FMCO 2009. LNCS, vol. 6286 (Springer, Berlin, 2010), pp. 70–88

8. A. Iliasov, E. Troubitsyna, L. Laibinis, A. Romanovsky, K. Varpaaniemi, D. Ilic, T. Latvala,
Supporting reuse in event-B development: Modularisation approach, in ABZ 2010 (Springer,
Berlin, 2010), pp. 174–188

9. S. Kriaa,M. Bouissou, F. Colin, Y. Halgand, L. Piètre-Cambacédès, Safety and security interac-
tions modeling using the BDMP formalism: case study of a PipeliLeve, in SAFECOMP 2014.
LNCS, vol. 8666 (Springer, Berlin, 2014), pp. 326–341

10. L. Laibinis, E. Troubitsyna, Fault tolerance in a layered architecture: A general specification
pattern in B, in SEFM 2004 (IEEE Computer Society, Washington, D.C., 2004), pp. 346–355

11. L. Laibinis, E. Troubitsyna, Refinement of fault tolerant control systems in B, in Proceedings
of the SAFECOMP 2004, vol. 3219 (Springer, Berlin, 2004), pp. 254–268

12. N.G. Leveson, Safeware: System Safety and Computers (Addison-Wesley, Boston, 1995)

130 I. Vistbakka and E. Troubitsyna

13. A. McIver, C. Morgan, E. Troubitsyna, The probabilistic steam boiler: A case study in prob-
abilistic data refinement, in Proceedings of the International Refinement Workshop (Springer,
Berlin, 1998), pp. 250–265

14. D.L. Parnas, J. Madey, Functional documents for computer systems. Sci. Comput. Program.
25, 41–61 (1995)

15. L.M. Patcas, M. Lawford, T. Maibaum, Implementability of requirements in the four-variable
model. Sci. Comput. Program. 111, 339–362 (2015)

16. S. Paul, L. Rioux, Over 20 years of research into cybersecurity and safety engineering: A short
bibliography, in Safety and Security Engineering VI (WIT Press, Southampton, 2015), p. 335

17. C. Ponsard, G. Dallons, P. Massone, Goal-oriented co-engineering of security and safety
requirements in cyber-physical systems, in SAFECOMP 2016 Workshops DECS (Springer
International Publishing, Berlin, 2016), pp. 334–345

18. Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi, T. Latvala, Derivation and for-
mal verification of a mode logic for layered control systems, in 18th Asia Pacific Software
Engineering Conference, APSEC 2011 (IEEE Computer Society, Washington, D.C., 2011),
pp. 49–56

19. Rodin: Event-B Platform. http://www.event-b.org/
20. C. Schmittner, Z. Ma, P. Puschner, Limitation and improvement of STPA-Sec for safety and

security co-analysis, in SAFECOMP Workshops 2016. LNCS, vol. 9923 (Springer, Berlin,
2016), pp. 195–209

21. C. Schmittner, Z. Ma, P. Smith, FMVEA for safety and security analysis of intelligent and
cooperative vehicles, in SAFECOMP Workshops 2014. LNCS, vol. 8696 (Springer, Berlin,
2014), pp. 282–288

22. K. Sere, E. Troubitsyna, Probabilities in action systems, in Proceedings of the 8th Nordic
Workshop on Programming Theory, pp. 373–387 (1996)

23. K. Sere, E. Troubitsyna, Safety analysis in formal specification, in FM’99 - Proceedings,
Volume II. LNCS, vol. 1709 (Springer, Berlin, 1999), pp. 1564–1583

24. A. Tarasyuk, E. Troubitsyna, L. Laibinis, Integrating stochastic reasoning into event-b devel-
opment. Formal Asp. Comput. 27(1), 53–77 (2015)

25. E. Troubitsyna, Elicitation and specification of safety requirements, in The Third International
Conference on Systems, ICONS 2008 (IEEE Computer Society, Washington, D.C., 2008), pp.
202–207

26. E. Troubitsyna, StepwiseDevelopment of Dependable Systems. Technical Report (TurkuCentre
for Computer Science, 2000)

27. Troubitsyna, E., Laibinis, L., Pereverzeva, I., Kuismin, T., Ilic, D., Latvala, T.: Towards
Security-Explicit Formal Modelling of Safety-Critical Systems. In: SAFECOMP 2016, Pro-
ceedings. LNCS, vol. 9922, pp. 213–225. Springer (2016)

28. E. Troubitsyna, L. Laibinis, I. Pereverzeva, T. Kuismin, D. Ilic, T. Latvala, Towards security-
explicit formal modelling of safety-critical systems, in SAFECOMP 2016. LNCS, vol. 9922
(Springer, Berlin, 2016), pp. 213–225

29. I. Vistbakka, E. Troubitsyna, T. Kuismin, T. Latvala, Co-engineering safety and security in
industrial control systems: A formal outlook, in SERENE 2017, Proceedings. LNCS, vol.
10479 (Springer, Berlin, 2017), pp. 96–114

30. W. Young, N.G. Leveson, An integrated approach to safety and security based on systems
theory. Commun. ACM 57(2), 31–35 (2014)

http://www.event-b.org/

Towards an Integration of Probabilistic
and Knowledge-Based Data Analysis
Using Probabilistic Knowledge Patterns

Klaus-Dieter Schewe and Qing Wang

Abstract Knowledge patterns combine rules defined by definite clauses with con-
ditions specifying when the rules are applicable, and conditions specifying when the
application of the rules is not permitted. In combination with an extensional ground
database the semantics of a set of knowledge patterns is defined by an inflationary
fixed-point. Originally, knowledge patterns have been introduced in connection with
the problem of record linkage emphasising intensional identity predicates, thus in the
fixed-point model equivalence relations on object identifiers are obtained. Known
failures in such a classification give rise to minimal changes to the conditions of
some knowledge patterns. However, the fixed-point semantics is not restricted to
equivalence relations. In this paper we define an extension to probabilistic knowl-
edge patterns, where the rules become clauses in probabilistic logic. Using maxi-
mum entropy semantics for the probabilistic logic the fixed-point construction can
be extended resulting in a probabilistic model, i.e. distributions for the randomised
relations. It is expected that statistical approaches to data analysis can be interpreted
in the context of probabilistic knowledge patterns such that learning of knowledge
patterns can be enabled, while the advantages of knowledge patterns with respect to
provenance can be preserved.

1 Introduction

Knowledge patterns have been introduced in [27] and further elaborated in [28]
as a logical approach to entity resolution (aka record linkage), i.e. the problem to
determine, whether two entity representations in a database or dataset refer to the
same real-world object or not. In a nutshell, a knowledge pattern combines rules

K.-D. Schewe
Laboratory for Client-Centric Cloud Computing, Linz, Austria
e-mail: kdschewe@acm.org

Q. Wang (B)
Research School of Computer Science, The Australian National University, Canberra, Australia
e-mail: qing.wang@anu.edu.au

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_7

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_7&domain=pdf
mailto:kdschewe@acm.org
mailto:qing.wang@anu.edu.au
https://doi.org/10.1007/978-981-15-5054-6_7

132 K.-D. Schewe and Q. Wang

defined by definite clauses (aka Horn clauses) with conditions specifying when the
rules are applicable, and conditions specifying when the application of the rules is
not permitted. Such conditions are formalised by positive and negative entries in a
pattern relation. In combination with an extensional ground database the semantics
of a set of knowledge patterns is defined by an inflationary fixed-point.

In the context of entity resolution applications, knowledge patterns exploit explicit
knowledge, whereas common similarity-based methods do not formulate such
explicit knowledge. Instead, they rely on the implicit probabilistic distribution that
underlies the given data and exploits this to compute similarity measures that can
be used for clustering. Thus, knowledge patterns provide the advantage to enable
the explicit capture of application knowledge, whereas similarity-based methods
provide strength with respect to uncertainty. Integrating both provides an example
for the integration of explicit and implicit semantics, which characterises these two
directions—this links our work to the general theme of the NII Shonan workshop.

Knowledge patterns complement the various similarity-based methods for entity
resolution (see [9] for a survey). For instance, the probabilistic theory of entity
resolution developed in [14] exploits probabilistic decision rules that are optimal
when the comparison attributes are independent. In [33] a cost-based Bayesian deci-
sion model is developed, which focuses on an optimal solution for the matching of
database records in the presence of inconsistencies, errors or missing values. In a
similar direction goes the ruled-based approach in [10], which emphasises similarity
joins. Statistical machine learning methods have been applied to the entity resolution
problem such as supervised learning and active learning [2, 26].

Froma theoretical angle knowledge patterns have been investigated in [29] empha-
sising minimality, containment and optimisation. It was shown that containment is
decidable, which follows from the decidability of the containment problem for con-
junctive queries. It was also shown that in a minimal knowledge pattern none of
the records in the pattern relation can be omitted without changing the result of the
fixed-point construction. Furthermore, optimised knowledge patterns result from a
three-step process and optimisation is proven to be NP-complete. In [35] a method
was developed that can capture the provenance of a record linkage decision, which
thus allows to infer minimal changes to exceptions in case a derived decision turns
out to be incorrect.

As statements with exceptions are conceptually very different from probabilis-
tic statements, none of the similarity-based methods can be used to substitute a set
of knowledge patterns nor the other way round. Therefore, an integration of these
fundamentally different methods provides several advantages, if uncertainty can be
adequately captured and provenance-based reasoning can be preserved. In this arti-
cle we make a first attempt to integrate probability distributions into knowledge
patterns. In doing so we also remove the technical restriction of knowledge patterns
to the application context of entity resolution. So far in the fixed-point model equiv-
alence relations on object identifiers are obtained, but the theory is not restricted to
equivalence relations.

For the integration of probabilities we can build on the long tradition of probabilis-
tic logics in artificial intelligence [3, 7, 8, 13, 15, 20, 24]. Of particular interests for

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 133

an extension of the knowledge pattern approach are Bayesian networks [15] which
exploit directed graphs with propositions as vertices subject to local Markov prop-
erty, which have been generalised to probabilistic conditional logic [21] andBayesian
logic programs [19], and Markov logics that combines first-order logic and proba-
bilistic models by attaching weights to first-order logic formulae [12, 25]. Markov
logic has already been studied for entity resolution in [31], though not in connection
with explicit default rules. We will exploit relational probabilistic conditional logic
[5, 16–18], which is the probabilistic logic with a format of rules that is closest to
the one used in knowledge patterns.

Relational probabilistic conditional logic extends probabilistic conditional logic to
the relational case and is grounded in an inference mechanism based on the principle
of maximum entropy [4, 6, 32]. Whenever dependence conditions for a probability
distribution are given there may bemany distributions satisfying these dependencies.
However, it is known that if among these possible choices the distribution with the
maximum entropy is chosen, then no additional assumptions will be made [23]. For
instance, if nothing is known about a distribution, the one with the maximum entropy
is the equal distribution. Furthermore, it has been shown that the distribution with
the maximum entropy is unique [22].

There are three locations in the theory of knowledge patterns, where probabilities
can be brought in:

1. As the rule part of a knowledge pattern is a Horn clause, it can be easily replaced
by a relational probabilistic conditional [17], i.e. add a probability p ∈ [0, 1] to
the clause to express that the implication holds with the probability p.

2. The positive entries in a pattern relation can be interpreted to have probability 1,
while the negative ones have probability 0. So more generally we could assign
a probability in [0, 1] to every record in a pattern relation. However, as the rule
part in our intended probabilistic extension already contains a probability p, we
will only investigate the restricted case that positive records will give rise to rule
instantiations with the same probability p, whereas negative records give rise to
instantiations with probability 0.

3. The ground database that is decisive for the definition of the fixed-point seman-
tics can be generalised to a probabilistic database, where each record carries a
probability. By default records that do not appear in the database will then have
the probability 0, and any two records in the ground database will be assumed to
be probabilistically independent.

On these grounds we generalise the fixed-point semantics of knowledge patterns
to probabilistic knowledge patterns. Following the work by Kern-Isberner et al. we
first address the interpretation of rules together with a grounding that is defined by a
probabilistic ground database. For this we investigate the aggregate semantics [17].
In addition, the restrictions defined by the pattern relation are taking into account.
In general, such a grounding defines constraints for the extension of the probability
distribution in the form of linear equations. In case of probabilistic independence
these equations only involve instances of the head predicates as variables.

134 K.-D. Schewe and Q. Wang

Second, the maximum entropy principle defines a unique solution under these
constraints, i.e. an extension of the probabilistic database. This follows fromvariation
theory using Lagrange multipliers [11]. In case of non-recursive rules it is then
straightforward to define again a fixed-point semantics, as an extension of the ground
database for a particular head predicate in one step of the iteration will not be affected
anymore in the following steps. In the recursive case, however, more care is needed,
as a follow-on iteration step may produce constraints that contradict the solution
obtained by the maximum entropy principle. This problem will be addressed by
accumulating the constraints rather than solving the linear optimisation problem for
the maximum entropy. The maximum entropy will thus only be used in a final step.

The remainder of this paper will be organised as follows. In Sect. 2 we present
a brief, yet more detailed review of relational knowledge patterns following mainly
previouswork in [28, 29, 35]. Then Sect. 3 contains the novel core contribution of this
paper, the definition of probabilistic knowledge patterns and their fixed-point seman-
tics grounded in relational probabilistic conditional logic with maximum entropy as
defined in previous work by Kern-Isberner et al. [17]. We conclude with a brief
summary and outlook in Sect. 4.

2 Relational Knowledge Patterns

In this section we present the definition of knowledge patterns [28, 29]. However, we
slightly deviate from our previous work, which permitted only intensional predicates
thatwere bound to equivalence relations.Weemphasise that properties of equivalence
relations could be captured by separate rules. In order to highlight the extension in
our notations we call these knowledge patterns relational in order to emphasise that
there semantics is defined on top of relational databases.

We then review the results of our previous investigation of knowledge patterns
concerning their optimisation [29] and provenance-based revision of inferences [35].
These results, however, have only been proven in the context of entity resolution,
i.e. they hold only, if all intensional predicates correspond to equivalence relations.
The generalisation of the results to the general relational case is an open research
problem.

2.1 Syntax and Fixed-Point Semantics

LetR = {R1, . . . , Rn} be a relational database schema, i.e. a set of relation symbols,
where each Ri ∈ R is associated with a set {A1, . . . , Am} ⊆ A of attributes. LetD be
a set of domains. Each attribute A ∈ A is associatedwith a domain dom(A) ∈ D. One
of the domains in D, say D0, is a countable set of identifiers. Let E = {E1, . . . , Ek}
be another relational database schema, disjoint from R.

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 135

A tuple t over a relation symbol R assigns to each attribute Ai a value t (Ai) ∈
dom(Ai). We write t = (A1 : t (A1), . . . , An : t (An)) or simply t = (t (A1), . . . ,

t (An)) when the order of the attributes is fixed. A finite set of tuples over R is called
a relation over R. A database (instance) I over the schema R is a family of rela-
tions I (Ri) over Ri , indexed by R, i.e. I = {I (Ri)}Ri∈R. Naturally, these definitions
extend to E or any other relational database schema.

Example 1 Let us consider a relational database schemaRwith the relation symbols
Person,Authorship andPublication. The attributes associatedwith the relational
symbols are as follows:

• Person = {ID, Author, Email, Affiliation};
• Authorship = {AuthID, PubID, Order};
• Publication = {PubID, Title, Year, DOI}.
A database instance over R is represented in the usual way by the tables in Fig. 1.

Let S = R ∪ E. Following the usual convention of Datalog [1] we usually call the
predicates Ri ∈ S extensional and the predicates E j ∈ S intensional to emphasise
their different usage in the rule part of knowledge patterns. An atom is a term ψ =
R(t1, . . . , tn), where R ∈ S and each ti is either a variable xi or a constant vi ∈
dom(Ai). Let var(ψ) denote the set of variables in the atom ψ .

PERSON
ID Name Email Affiliation
i1 S. Lee sl@gmail.com Faculty of Medicine, University of Otago
i2 Susan Lee sl@massey.ac.nz Massey University
i3 S. Maneth Faculty of Medicine, University of Otago
i4 S. A. Lee sl@otago.ac.nz University of Otago
i5 S. Lee sl@massey.ac.nz Massey University
i6 Ben Williams ben@otago.ac.nz University of Otago
i7 Ben Williams Massey University
i8 A. Timu ali@acm.org
i9 A. Timu atimu@stanford.edu Stanford University

AUTHORSHIP
AuthID PubID Order

i2 b1 1
i6 b1 2
i8 b1 3
i4 b2 1
i3 b3 1
i5 b3 2
i7 b3 3
i9 b3 4

PUBLICATION
PubID Title Year DOI
b1 An effective World Wide Web image . . . 2001 10.1177/. . .
b2 Irrigation in Modern Agriculture 1994 10.4321/. . .
b3 Algebraic Topology 2011 10.154/. . .

Fig. 1 A database instance for the schema R = {Person,Authorship,Publication}

136 K.-D. Schewe and Q. Wang

Originally, in the theory of knowledge patterns [29] each E j ∈ E is associatedwith
exactly two attributes {Ai

1, A
i
2} ⊆ A with dom(Ai

k) = D0 for each Ai
k (k = 1, 2).

Furthermore, in any valid database instance I over S each intensional predicate E j

always corresponds to an equivalence relation.

Definition 1 A (relational) knowledge pattern P over S is a pair (�, r) comprising

• a Horn clause � of the form ψ(x) ← ϕ(x, y), where the head is an atom with
an intensional predicate E j ∈ E and variables x and the body is a conjunction of
atoms with predicates in S and variables x ∪ y, and

• a pattern relation r of the arity n + 1, where n attributes that are in 1-1 correspon-
dence to the variables x ∪ y in ϕ, and the (n + 1)st attribute is a sign attribute A∗
with domain {+,−}. A special value λ /∈ ⋃

Di∈D Di may appear as value for any
attribute in r , except for the sign attribute A∗.

Example 2 Let us extend Example 1 by some relational knowledge patterns.
First define a name collaboration pattern NC= 〈ϕ1, r1〉: Two persons are identical

if they have the same name and there is another person whose name is not “Stephen
Smith”, whose affiliation is the same with one of the two persons and is “Faculty
of Medicine, University of Otago”, and who has co-authored a paper with the other
person. Assume that a person named “Stephen Smith” at “Faculty of Medicine,
University of Otago” has a colleague and a collaborator who are two different people
with the same name.

ϕ1 := Identical(x, y) ←
Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z

′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Identity(z, z
′
) ∧ Person(z, z3, z4, y4)

r1 :=
Ay4 Az3 ... A∗

Faculty of Medicine, University of Otago λ λ +
λ Stephen Smith λ -

Next define a co-authorship pattern CA=〈ϕ2, r2〉: Two persons are identical if they
have the same name and both have co-authored with at least one other author who is
not a person named “Sue Lee” with the email address “sl@otago.ac.nz”. We assume
that the person named “Sue Lee” with the email address “sl@otago.ac.nz” has co-
authored papers with two different persons who have the same name.

ϕ2 := Identical(x, y) ←
Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z

′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Authorship(y, z2, y1) ∧ Authorship(z, z2, y2)∧
Identity(z, z

′
) ∧ Person(z, z3, z4, z5)

r2 :=
Az Az′ Az1 Az2 Az3 Az4 Az5 ... A∗
λ λ λ λ λ λ λ λ +
λ λ λ λ Sue Lee sl@otago.ac.nz λ λ –

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 137

Definition 2 A (relational) knowledge model is a finite, nonempty setP of relational
knowledge patterns over S = R ∪ E.

Note that in the original case dedicated to entity resolution the requirement that
each intensional predicate E j should correspond to an equivalence relation gives
rise to implicit knowledge patterns capturing the rules for reflexivity, symmetry and
transitivity:

Reflexivity pattern. For reflexivity,wemay takeHorn clauses E j (x, x) ← Ri (. . . ,

x, . . .) and a pattern relation with a single tuple (λ, . . . , λ,+). That is, for each
extensional predicate Ri and each attribute with domain D0 that corresponds to
the attributes in E j we obtain such a reflexivity pattern, which enforces that every
identifier appearing in a database will become equivalent to itself.

Symmetry pattern. For symmetry, we may take a Horn clause E j (y, x) ←
E j (x, y) and a pattern relation with a single tuple (λ, λ,+).

Transitivity pattern. For transitivity, we may take a Horn clause E j (x, z) ←
E j (x, y) ∧ E j (y, z) and a pattern relation with a single tuple (λ, λ, λ,+).

In general, in relational knowledgemodels such specific patternsmust be specified
explicitly.

Let r+ and r− refer to the subset of tuples in r which have + and − in their
attribute values of A∗, respectively. Each tuple t ∈ r defines an instantiation of the
rule �

• For t (Ai) = vi �= λ, replace the variable xi corresponding to the attribute Ai by
vi .

• For t (Ai) = λ, do not replace xi .

We denote this instantiation by�t = ψ(x̄) ← ϕ(x̄, ȳ), where for each xi ∈ x ∪ y,
depending on the tuple t ∈ r , we either have xi = vi or xi = xi . Let z refers to the
sequence of variables in ϕ(x̄, ȳ). Then for a database instance I overR ∪ Ewe define
the interpretation �t (I) of �t as

{μ(ψ(x̄)) | μ is a valuation of the variables z and ϕ(x̄, ȳ) is true in I under μ}.

The interpretation P(I) of a relational knowledge pattern P = (�, r) with � =
ψ(x) ← ϕ(x, y) over I is thus defined as

P(I) =
⋃

t∈r+
�t (I) −

⋃

t∈r−
�t (I).

Example 3 For the co-authorship pattern CA in Example 2 we obtain two instanti-
ations of the rule:

138 K.-D. Schewe and Q. Wang

ϕ+
(2,1) := Identical(x, y) ←

Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z
′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Authorship(y, z2, y1) ∧ Authorship(z, z2, y2)∧
Identity(z, z

′
) ∧ Person(z, z3, z4, z5)

ϕ−
(2,2) := Identical(x, y) ←

Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z
′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Authorship(y, z2, y1) ∧ Authorship(z, z2, y2)∧
Identity(z, z

′
) ∧ Person(z, “Sue Lee", “sl@otago.ac.nz", z5)

and the following rule with Identity at both the head and the body.

Identity(x, y) ← q+
(2,1)(x, y) ∧ ¬q−

(2,2)(x, y)

For a relational knowledge model P of relational knowledge patterns over S the
semantics over a database instance I of R is defined by an inflationary fixed-point
analogous to Datalog [1]. For this let J0 = I , which is extended to S by J0(E j) = ∅.
Then for n > 0 define

Jn(E j) = Jn−1(E j) ∪
⋃

P∈PE j

P(Jn−1),

where PE j is the set of all patterns in P with head predicate E j and P(Jn−1) is the
interpretation of P over Jn−1 as defined above. Note that for extensional predicates
Ri ∈ R we always preserve Jn(Ri) = I (Ri), as extensional predicates never appear
in the head of Horn clause in a knowledge pattern.

As for each E j ∈ E the sequence {Jn(E j)}n≥0 is increasing monotonically, the
limit exists, and we obtain the inflationary fixed-point J∞ with

J∞(E j) =
⋃

n≥0

Jn(E j) and J∞(Ri) = I (Ri).

Finally note that for the application case of entity resolution, the implicit assump-
tion made in [29] that each intensional predicate E j corresponds to an equivalence
relation yields the same inflationary fixed-points for a given extensional database
instance I as the explicit definition of the reflexivity, symmetry and transitivity pat-
terns as elements of P.

2.2 Minimising Redundancy in Knowledge Patterns

The complexity of the inflationary fixed-point construction depends heavily on the
number of knowledge patterns and accordingly the number of instantiations defined
by tuples in the pattern relation of each of them. Therefore, the theoretical investi-

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 139

gation of knowledge patterns for entity resolution emphasised redundancy among
different patterns, as well as different instantiations within single patterns [29]. We
have redundancy between two knowledge patterns P1 and P2, i.e. one knowledge pat-
tern P2 contains another one P1, denoted by P1 ⊆ P2, iff on any database instance
I we always obtain P1(I) ⊆ P2(I). For a single knowledge pattern (�, r) we are
seeking that the number of tuples in r is minimal, and for knowledge patterns with
the same rule it is desirable to optimise the total number of tuples in their pattern rela-
tions. Minimality, containment and optimisation were thus the focus of the research
in [29]. However, all these results refer to the case of treating intensional predicates
in E as equivalence relations.

2.2.1 Minimisation

For the construction of the (inflationary) fixed-point it is desirable to minimise the
application of the immediate consequence operator.As for a single knowledge pattern
P = (�, r) this depends strongly on the number of tuples in r , the number of tuples
in r+ = {t ∈ r | t.A∗ = +} and r− = {t ∈ r | t.A∗ = −} should be minimal.

We define v � λ for every v ∈ Di ∪ {λ}. Then we define the notions of subsump-
tion, upward-subsumption and downward-subsumption as follows:

Definition 3 Let t1 and t2 be two tuples which are associated with the same set A′
of attributes including A∗. Then

• t1 subsumes t2 (denoted as t2 � t1) if t2(A) � t1(A) holds for each attribute A ∈ A′;
• t1 upward-subsumes t2 (denoted as t2 �↑ t1) if t2(A) � t1(A) holds for each non-
sign attribute A ∈ A′ − {A∗}, t1(A∗) = − and t2(A∗) = +;

• t1 downward-subsumes t2 (denoted as t2 �↓ t1) if t2(A) � t1(A) holds for each
non-sign attribute A ∈ A′ − {A∗}, t1(A∗) = + and t2(A∗) = −.

Then we define P to beminimal iff for t2 �� t1 and t2 ��↑ t1 hold for any two tuples
t1, t2 in r .

Example 4 Consider again the name collaboration pattern (ϕ1, r1) from Example 2
with the rule

ϕ1 :=Identical(x, y) ←
Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z

′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Identity(z, z
′
) ∧ Person(z, z3, z4, y4).

140 K.-D. Schewe and Q. Wang

However, change the pattern relation to become

Ay4 Az3 ... A∗
λ λ λ +

Faculty of Medicine, University of Otago λ λ +
λ Stephen Smith λ -

University of Otago Stephen Smith λ -

If these tuples are denoted t1, . . . t4, then we have that t1 subsumes t2 (i.e. t2 � t1).
Removing t2 from the pattern relation does not change the result for any fixed-point
construction that involves this knowledge pattern. The same holds for t4, as we have
t4 � t3.

The following result from [29] states that, for a minimal knowledge pattern P ,
none of the tuples can be omitted without changing the result of the immediate
consequence operator for at least one database instance.

Proposition 1 Let P = 〈�, r〉 be a pattern and r be minimal. Then the following
holds:

1. ϕi � ϕ j holds for any two different ϕi and ϕ j from �+
P .

2. ϕi � ϕ j holds for any two different ϕi and ϕ j from �−
P .

3. ϕi � ϕ j holds for any ϕi ∈ �+
P and ϕ j ∈ �−

P .

Therefore, if P is a minimal knowledge pattern, then for any different tuples
t1, t2 ∈ r+ and t ′1, t ′2 ∈ r− we have

Pt1 � Pt2 Pt ′1 � Pt ′2 and Pt1 � Pt ′1 ,

where Pt indicates a knowledge pattern that has the same rule as P but only has one
tuple t in the pattern relation, i.e., Pt (I) = �t (I) holds for every database instance I .

2.2.2 Containment of Knowledge Patterns

If P1(I) ⊆ P2(I) holds for every database instance I , i.e. the knowledge pattern P1
is contained in the knowledge pattern P2, naturally, P1 could be removed from a set
P of knowledge patterns containing also P2, as it would not contribute anything to
the inflationary fixed-point.

With the following result from [29] the containment problem of knowledge pat-
terns can be reduced to the containment problem of conjunctive queries, and thus is
decidable:

Proposition 2 For two knowledge patterns Pi = (�i , r
+
i , r−

i) (i = 1, 2) we have
P1 ⊆ P2 iff

1. for each t1 ∈ r+
1 , there exists a t2 ∈ r+

2 with Pt1 ⊆ Pt2 , and
2. for each t1 ∈ r+

1 and t ′2 ∈ r−
2 , there exists a t

′
1 ∈ r−

1 with Pt1 ∩ Pt ′2 ⊆ Pt1 ∩ Pt ′1 .

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 141

Example 5 Consider the following patterns P1 = (�1, r1) and P2 = (�2, r2).

�1 = R(x, y) ← R1(x, z1) ∧ R2(z2, y, z3)

r1 =
Az1 Az2 Az3 A∗

a a λ + t1
b b λ + t2
λ λ b – t3

�2 = R(x, y) ← R1(x, z1) ∧ R2(z1, y, z3)

r2 =
Az1 Az3 A∗

λ λ + t1
λ b – t2

To check whether P1 ⊆ P2 holds according to Proposition 2 we need to check the
conditions (1) ϕ

t1
1 ⊆ ϕ

t1
2 , (2) ϕ

t3
1 ∧ ϕ

t1
1 ⊆ ϕ

t2
2 ∧ ϕ

t1
1 , (3) ϕ

t2
1 ⊆ ϕ

t1
2 , and (4) ϕ

t3
1 ∧ ϕ

t2
1 ⊆

ϕ
t2
2 ∧ ϕ

t2
1 , where ϕ

t1
1 = ∃z3.R1(x, a) ∧ R2(a, y, z3), ϕ

t2
1 = ∃z3.R1(x, b) ∧ R2(b, y,

z3), ϕ
t3
1 = ∃z1, z2.R1(x, z1) ∧ R2(z2, y, b), ϕ

t1
2 = ∃z1, z3.R1(x, z1) ∧ R2(z1, y, z3)

and ϕ
t2
2 = ∃z1.R1(x, z1) ∧ R2(z1, y, b) hold.

2.2.3 Optimisation of a Set of Knowledge Patterns

Finally, optimisation aims to reduce the number of tuples in pattern relations in
cases, where neither a tuple can be simply removed to obtain minimality, nor two
knowledge patterns contain each other.

Therefore, we call P′ a positive optimisation of a set P of knowledge patterns iff
P and P′ are equivalent, the total number of tuples in positive pattern relation r ′+

i of
P′ does not exceed the total number of tuples in positive pattern relation r+

i of P, and
there is no other knowledge pattern P′′ also satisfying these properties with a strictly
lower number of tuples in positive pattern relation than P′.

Analogously, we call P′ a negative optimisation of a set P of knowledge patterns
iff P and P′ are equivalent, the total number of tuples in negative pattern relation r ′−

i
of P′ does not exceed the total number of tuples in negative pattern relation r−

i of
P, and there is no other knowledge pattern P′′ also satisfying these properties with a
strictly smaller number of tuples in negative pattern relation than P′.

An optimisation of P is a positive optimisation of P that cannot be further opti-
mised positively nor negatively. Now let us concentrate on knowledge patterns with
the same rule. We define the intersection t1 � t2 of two tuples by building the min-
imum on each attribute with respect to �. If this is not possible, the intersection is
not defined. Analogously, we define the union t1 � t2 of two tuples by building the
supremum on each attribute with respect to �. Then an optimisation of P can be
obtained by applying the following three steps:

Normalisation. For r+ = {t1, . . . , tn}, we replace P byn knowledge patterns Pi =
(�, {ti } ∪ r−), where i = 1, . . . , n.

Elimination. First, for t1 ∈ r−
1 and t2 ∈ r+

2 with t1 �↓ t2, we replace t1 by {t1 � t3 |
t3 ∈ r−

2 }, if r−
2 �= ∅, or otherwise omit t1. Then, we remove redundant knowledge

patterns based on containment of the knowledge patterns.
Composition. Wedefine twopatterns P1 and P2 to be compatible iff r

−
1 � r+

2 � r−
2

and r+
1 � r−

2 � r−
1 hold. Furthermore, if P1, . . . , Pn are pairwise compatible, then

t1 ∈ r−
i and t2 ∈ r−

j are mergeable iff for all tuples t ∈ r+
k there exists a tuple

142 K.-D. Schewe and Q. Wang

t− ∈ r−
k with t � (t1 � t2) � t−. Then we decompose the set P of knowledge

patterns into sets of pairwise compatible knowledge patterns and for each such
subset build a single knowledge pattern taking the union of the positive pattern
relations, and the union of negative pattern relations, such that mergeable tuples
t1, t2 are replaced by t1 � t2. We can choose the decomposition and the mergeable
tuples in such a way that the resulting negative pattern relation has a minimum
number of tuples, which is an NP-complete optimisation problem.

A sophisticated example for the optimisation of a set of relational knowledge
patterns has been given in [29, Sect. 5].

2.3 Provenance-Based Pattern Revision

The inferences based on knowledge patterns are de facto a default reasoning
approach, and the applicability conditions and exceptions represented by pattern rela-
tions merely reflect partial knowledge about an application. Thus, in reality knowl-
edge patterns will hardly be perfect. In particular, the inference may lead to two
identifiers id1 and id2 being identified as referring to the same entity, but at the same
time new information may violate this inference.

Therefore, in [35] we developed a method based on an entity resolution index
(ERI), which captures the provenance information of record linkage decisions, and
thus enables the analysis of inconsistencies, e.g. why inconsistencies did occur and
how they relate to the linkage process. In case a linkage decision turns out to be
incorrect, the method permits the inference of minimal changes to the exceptions and
can thus significantly reduce human efforts in identifying inconsistent knowledge.

An entity resolution index (ERI) is a data structure, in which each index entry has
the form (entity e, ER tree te), where te keeps track of the inferences on matching
decisions that are relevant to the entity e. More specifically, an ER tree te is a binary
tree in which each node represents a linkage decision, together with a labelling func-
tion θ such that:(1) θ assigns to each leaf a distinct label, which represents a record;
(2) θ also assigns to each edge a label which represents the record used in the infer-
ence for a linkage decision. This indexing technique ERI allows us not only to store
the provenance information of inferences but also to analyse inconsistent inferences.
Whenever an inconsistency is found, relevant inferences on linkage decisions can be
pinpointed, providing a unified view to understand such an inconsistency. In doing
so, the provenance information serves as a ground on which inconsistent inferences
can be identified in a meaningful and efficient way.

Two kinds of constraints, so-calledmust-link and cannot-link constraints [34] are
considered in [35]. A must-link constraint k1 � k2 means that two records k1 and
k2 must be matched to the same entity, and a cannot-link constraint k1 �� k2 means
that two records k1 and k2 cannot be matched to the same entity. Both must-link
and cannot-link constraints are instance-level constraints [34], and symmetric in the
sense that if k1 � k2 (resp. k1 �� k2) is satisfied, then k2 � k1 (resp. k2 �� k1) is also

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 143

satisfied. Although must-link and cannot-link constraints look simple, they serve as
the building blocks of expressing the integrity of inferences for record linkage. We
developed algorithms for two important operations—merge and split—which can
eliminate inconsistent inferences violating must-link and cannot-link constraints,
respectively. The algorithm for the split operation traverses an ER tree to identify and
remove erroneous inferences on matches in order to eliminate inconsistencies. Such
traversals downward and upward an ER tree are both efficient. A generic strategy,
called CSM, was developed to improve the effectiveness of identifying inconsisten-
cies by taking into account how must-link and cannot-link constraints interact based
on the provenance information represented by ERI.

3 Probabilistic Knowledge Patterns

LetS be a relational database schema, i.e. a finite set of relation symbols R1, . . . , Rk ,
where each Ri is associated with an arity ni . As in Sect. 2 we assume that S is
partitioned into an extensional subschema R and an intensional subschema Q, i.e.
S = R ∪ Q. As usual, a (relational) database db over S assigns to each Ri ∈ S
a finite relation db(Ri) of arity ni , i.e. a finite set of ni -tuples.1

Definition 4 A probabilistic database db overS is a family {db(Ri)}Ri∈S indexed
by S , where each db(Ri) is a finite relation of arity ni , and each tuple r ∈ db(Ri)

is assigned a probability pr ∈ [0, 1].
By default, if an ni -tuple r does not appear in db(Ri), its probability pr is 0. A

relational database instance over S appears as a special case of this definition with
all probabilities of tuples in the instance being 1.

Each ni -tuple r = (v1, . . . , vni) defines an event ev = Ri (v1, . . . , vni) with prob-
ability p(ev) = pr . Then the probability of the event ¬Ri (v1, . . . , vni) is 1 − pr .
Given a probabilistic database db over the extensional schema R, we asume all the
events defined by it to be probabilistically independent, i.e.

p(Ri (v1, . . . , vni) ∧ R j (w1, . . . , wn j)) = p(Ri (v1, . . . , vni)) · p(R j (w1, . . . , wn j)).

Example 6 Let us turn the relational database schema R from Example 1 into a
probabilistic one. For this we keep the relation symbols Person, Authorship and
Publication and the associated attributes as they are.We can then reuse the instance
from Fig. 1 by assigning probabilities to all tuples. This results in the probabilistic
database shown in Fig. 2.

1Throughout this section we dispense with any consideration of types, say, e.g. that the j’th com-
ponent in a tuple in db(Ri) must be an integer or a character string, etc. Types can be easily added,
but they are not relevant for the development of our theory.

144 K.-D. Schewe and Q. Wang

PERSON
ID Name Email Affiliation p
i1 S. Lee sl@gmail.com Faculty of Medicine, University of Otago 0.8
i2 Susan Lee sl@massey.ac.nz Massey University 1
i3 S. Maneth Faculty of Medicine, University of Otago 0.4
i4 S. A. Lee sl@otago.ac.nz University of Otago 0.7
i5 S. Lee sl@massey.ac.nz Massey University 0.9
i6 Ben Williams ben@otago.ac.nz University of Otago 1
i7 Ben Williams Massey University 0.6
i8 A. Timu ali@acm.org 1
i9 A. Timu atimu@stanford.edu Stanford University 0.7

AUTHORSHIP
AuthID PubID Order p

i2 b1 1 1
i6 b1 2 0.8
i8 b1 3 0.2
i4 b2 1 1
i3 b3 1 0.9
i5 b3 2 1
i7 b3 3 1
i9 b3 4 0.4

PUBLICATION
PubID Title Year DOI p
b1 An effective World Wide Web . . . 2001 10.1177/. . . 0.7
b2 Irrigation in Modern Agriculture 1994 10.4321/. . . 0.9
b3 Algebraic Topology 2011 10.154/. . . 0.7

Fig. 2 A probabilistic database instance for the schema {Person,Authorship,Publication}

3.1 Syntax and Interpretation of Probabilistic Knowledge
Patterns

As before an atom is a term ψ = R(t1, . . . , tn), where R ∈ S and each ti is either a
variable xi or a constant vi . If R ∈ Q holds (or R ∈ R, respectively), the atom is
called intensional (or extensional, respectively). We use var(ψ) denote the set of
variables in the atom ψ , and extend this notation such that var(ϕ) denotes the set of
variables in a formula ϕ that is composed from such atoms.

Definition 5 A relational probabilistic conditional takes the form ψ(x) ← ϕ(x, y)
[ς], where ψ(x) is an intensional atom with variables x, ϕ(x, y) is a conjunction of
atoms with variables x ∪ y, and ς ∈ [0, 1] is a probability.

That is, a relational probabilistic conditional is in essence a Horn clause, but its
validity is constrained by a probability.

Definition 6 A probabilistic knowledge pattern P over S is a pair (π, ρ) comprising

• a pattern rule π , which takes the form of a relational probabilistic conditional
ψ(x) ← ϕ(x, y)[ς] over S , and

• a pattern relation ρ of the arity n + 1, where the first n position are in 1-1 cor-
respondence to the variables x ∪ y in ϕ, and the (n + 1)st position can only take

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 145

values from {+,−}. A special variable λmay appear as value in the first n positions
in any tuple t ∈ ρ.

We call the probability ς in the pattern rule the pattern probability of P .

Definition 7 A probabilistic knowledge model is a finite, non-empty set P of prob-
abilistic knowledge patterns over S = R ∪ Q.

Example 7 Let us extend Example 6 by some probabilistic knowledge patterns.
For this we simply turn the relational knowledge patterns from Example 2 into
probabilistic ones.

The name collaboration pattern NC expressed that two persons are identical if
they have the same name and there is another person whose name is not “Stephen
Smith”, whose affiliation is the same with one of the two persons and is at “Faculty
of Medicine, University of Otago”, and who has co-authored a paper with the other
person. Assume that a person named “Stephen Smith” at “Faculty of Medicine,
University of Otago” has a colleague and a collaborator who are two different people
with the same name.

Now assume that this statement only holds with a probability of 0.9. Then the rule
ϕ1 becomes

ϕ1 := Identical(x, y) ←
Person(x, z6, x3, x4) ∧ Authorship(x, z1, x1) ∧ Authorship(z

′
, z1, x2)∧

Person(y, z6, y3, y4) ∧ Identity(z, z
′
) ∧ Person(z, z3, z4, y4)[0.9]

The pattern relation r1 remains unchanged. We can make a similar amendment to
the co-authorship pattern CA. These little changes have of course an impact on the
semantics of knowledge models.

In the following we show how the fixed-point semantics that we defined for
relational knowledge models can be generalised to probabilistic knowledge models.
The key difference is that in relational knowledge patterns, if the instantiation of
the rule body is satisfied in a database instance, the instantiation of the rule head
can be added to the instance. In the probabilistic case, however, we have to take
the probabilities into account as well, which leads to constraints for a probability
distribution over the ground atoms. Using the principle of maximum entropy [22] we
can exploit that there exists a unique distribution—the one with maximum entropy—
that does not make any additional assumptions.

As in the relational case, each tuple t ∈ ρ in the pattern relation defines an instan-
tiation of the pattern rule π :

• For ti = vi �= λ replace the variable xi by the constant vi .
• For ti = λ do not replace xi .
• For tn+1 = − replace the pattern probability ς by 0.

We denote this instantiation by �t = ψ(x̄) ← ϕ(x̄, ȳ)[ς], where for each xi ∈
x ∪ y depending on the tuple t ∈ r we either have xi = vi or xi = xi , and ς is either
the pattern probability or 0. Let z refers to the sequence of variables in ϕ(x̄, ȳ).

146 K.-D. Schewe and Q. Wang

In order to interpret these rule instantiations and thus the probabilistic knowledge
patterns take a probabilistic database instance db overS .Wewill use db as a ground-
ing for the relational probabilistic conditions resulting from the instantiations. While
the theory of relational probabilistic conditionals provides different interpretations,
we will concentrate here only on the aggregate semantics.

So let μ be a valuation of the variables z, and let �t,μ denote the grounding
μ(ψ(x̄)) ← μ(ϕ(x̄, ȳ))[ς] of the relational probabilistic conditional �t . We con-
sider only those valuations μ with constants that appear in at least one tuple in the
probabilistic database db with positive probability. We call such a valuation μ a
db-valuation. Let G denote the set of all db-valuations for �t . Then the validity of
�t under the aggregate semantics for the probability distribution p is defined by

p |=agg �t ⇔

∑

μ∈G
p(μ(ψ(x̄)) ∧ μ(ϕ(x̄, ȳ)))

∑

μ∈G
p(μ(ϕ(x̄, ȳ)))

= ς, (1)

where ς is the probability in the instantiation �t .

Definition 8 The interpretation P(db) of a knowledge pattern P = (π, ρ) on S
with respect to a probabilistic database db over S is the set E(P) of all equations
(1) defined by all instantiations �t with t ∈ ρ.

Note that this definition of the interpretation P(db) does not yet define the prob-
ability distribution p such that validity p |=agg �t holds for all t ∈ ρ. In general,
there may be many different solutions for p satisfying all the equations in P(db).
However, we will see in the next subsection that the maximum entropy principle will
enable a unique probability distribution to be defined. While this can be fruitfully
exploited to define again a fixed-point semantics for a probabilistic knowledgemodel
analogously to the relational case in Sect. 2, this can only be done for a non-recursive
knowledge model. The reason is that if we fix the probability distribution at some
stage of the fixed-point iteration, then in case of recursion additional equations may
still be produced, which may invalidate the distribution. We will look at the recursive
case separately.

3.2 Semantics for a Recursion-Free Set of Patterns

In Definition 8 we defined the semantics of a knowledge pattern P onS with respect
to a probabilistic database db over S merely by a set of constraining equations
for a probability distribution p rather than defining the distribution p itself. While
in general there may be many solutions to such sets of constraints, the maximum
entropy principle permits the selection of a distinguished solution, which comes
with no additional probabilistic assumptions. For instance, if nothing is known about
a probability distribution, the equal distribution gives rise to the maximum entropy.

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 147

Definition 9 The entropy of a probability distribution p over events Ω is defined as

H(p) = −
∑

ω∈Ω

p(ω) × log p(ω) (2)

Using the maximum entropy principle we proceed with the definition of a fixed-
point semantics for a probabilistic knowledge model P over S = R ∪ Q with
respect to a probabilistic database db over the extensional subschema R. However,
we will restrict the construction to recursion-free P.

Definition 10 A probabilistic knowledge model P over S = R ∪ Q is recursion-
free if there exists a partitionS = ⋃k

i=0 Si satisfying the following two conditions:

• S0 = R and
• whenever R ∈ Si (for i > 0) occurs as head predicate of a pattern ruleπ of P ∈ P,
then all predicates R j in the body of π satisfy R j ∈ Si(j) with i(j) < i .

We call Si the i’th stratum of the schema S .

Now let P be a recursion-free probabilistic knowledge model overS , let {Si }ki=0
denote the strata, and take a probabilistic database db over the extensional subschema
R. For any j = 0, . . . , k let P j denote the set of probabilistic knowledge patterns
from P, the rules π of which contain a predicate R ∈ ⋃ j

i=0 Si . With this we define
a sequence of probabilistic databases db j over

⋃ j
i=0 Si as follows:

• For j = 0 we have db0 = db.
• For j > 0 let E(P j) be the union of all the sets of constraints defined by the
interpretations of probabilistic knowledge patterns P ∈ P j with respect to db j−1,
i.e. E(P j) = ⋃

P∈P j
P(db j−1), and define p j as the probability distribution with

maximum entropy satisfying the constraints in E(P j), which determines the prob-
abilistic database db j .

Then the probabilistic database dbk over S defines the semantics of the proba-
bilistic knowledge model P with respect to the probabilistic database db.

Note that the construction of the sequence of databases db j is monotonic in the
sense that the step from db j−1 to db j only adds constraints for predicates in S j

and thus the probability distribution p j−1 is only extended to the distribution p j , or
equivalently db j−1 ⊆ db j holds for all j = 1, . . . , k. In this sense it is justified to
continue calling the semantics of P with respect to db an inflationary fixed-point
semantics.

3.3 Semantics for a Recursive Set of Patterns

The last remark in the previous section remains only partly true in the general recur-
sive case. If we start again with db0 = db and build the union of all the sets of

148 K.-D. Schewe and Q. Wang

constraints defined by the interpretations of probabilistic knowledge patterns P ∈ P
with respect to db0, we obtain again constraints for the probability distribution on
ground atoms with intensional predicates R that appear in the head of pattern rules
π , where the body contains only extensional predicates. However, different from
the non-recursice case these may not be all pattern rules with R in the head. That
is, if we fix a probabilistic database db1 according to a probability distribution that
satisfies these constraints, in particular using the maximum entropy principle, the
continuation of the fixed-point iteration may lead to additional constraints that are
not satisfied by this distribution. This holds analogously for each iteration step in the
fixed-point construction.

However, building the interpretations of probabilistic knowledge patterns P ∈ P
is still monotonic, as in each step constraints are only added. Therefore, it is sufficient
to consider the set of all equations (1) defined by all instantiations �t with t ∈ ρ for
all probabilistic knowledge patterns in P.

Definition 11 The interpretation P(db) of a set P of probabilistic knowledge pat-
terns P = (π, ρ) on S with respect to a probabilistic database db over Q is the
union of all sets E(P) of all Eq. (1) defined by all instantiations �t with t ∈ ρ using
all variable assignments with constants that appear in at least one tuple in a relation
in db with positive probability.

Definition 12 The fixed-point semantics of a probabilistic knowledgemodelP onS
with respect to a probabilistic database db overQ is the probabilistic database db∞
that corresponds to the probability distribution p with maximum entropy satisfying
all constraints in the interpretation P(db).

Due to the fact that we can still build the interpretationP(db) using an inflationary
fixed-point construction it is justified to call the semantics a fixed-point semantics,
though the interpretation can also be built in one step.

4 Discussion and Conclusion

We introduced probabilistic knowledge patterns extending the relational knowledge
patterns from [28, 29] in two ways: (1) removing the restriction that intensional
predicates in knowledge patterns must refer to equivalence relations, and (2) replac-
ing the Horn clause in a relational knowledge pattern by a relational probabilistic
conditional [17]. Then using a probabilistic ground database rather than a relational
one we defined first the semantics of rule in a probabilistic knowledge pattern using
the aggregate semantics for probabilistic implications. This gives rise to linear equa-
tions involving the probability distribution on instances of intensional predicates as
unknowns. These linear constraints give rise to a unique distribution with maxi-
mum entropy [4, 22], by means of which we generalise the infationary fixed-point
semantics for a set of relational knowledge patterns to a fixed-point semantics for the

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 149

probabilistics extension. In doing so, we make a first step to integrate probabilities
into knowledge patterns.

In doing so we achieve several results.

1. The integration can be seen as an exemplification of the theme of the NII Shonan
workshop on the integration of explicit and implicit semantics. In the field of entity
resolution the knowledge pattern approach exploits explicit knowledge about rules
that define identities among entities, whereas common similarity-based methods
exploit the existence of a distribution over identities that is implicitly manifested
in the given data.

2. For applications to entity resolution the integration removes the restriction that
entities are inferred to be either equal or not. Instead identities will come with
probabilities as in similarity-based approaches, but the computation is based on
the much stricter semantics of probabilistic logic with maximum entropy seman-
tics. On one hand, clustering techniques will become applicable to the result of
applying knowledge patterns, and on the other hands, the approach strengthens
the foundations of statistical approaches in this area.

3. By removing the restriction on the intentional predicates to correspond to equiva-
lence relations only we open up general data analysis applications beyond entity
resolution. For instance, many methods in data analysis are grounded in statis-
tical machine learning exploiting neural networks. Again, these methods exploit
implicit semantics, knowing that an unknown distribution that is known to exist,
can be obtained (up to some small error) from awell-chosen empirical distribution
in the training data. If the network topology, i.e. the number of intermediate lay-
ers and the feedback connections, reflect appropriately the implicit distribution,
the trained network will provably produce correct results.2 On the other hand,
each network realises a fixed-point computation, which is explicitly modelled in
knowledge patterns. It is not yet known, if all machine learning algorithms can
be represented by probabilistic knowledge patterns, but the prospective to further
investigate this seems promising. In doing so, the whole area of data analysis
would become an application area for the theory of knowledge patterns, which
opens up almost unlimited opportunities for research and applications.

Weexpect to be able to generalise the results concerning theoptimisationof knowl-
edge patterns [29] to the probabilistic case and to preserve the ability of provenance-
based explanation and minimal revision of inferences [35]. In particular, this would
enable to learn exceptions to the default reasoning approach provided by knowledge
patterns also under conditions of uncertainty. We further intend to generalise proba-
bilistic knowledge patterns even more capturing different probabilities for different
groundings of the same clause. We also believe that the contextual constraint theory
that was sketched in [30] for the case ofmonoids, can be generalised capturing further
constraint theories and coupling them with the probabilistic extension investigated
in this paper.

2Note that this exploit deep results in probability theory and statistics that are not known to all
researchers applying machine learning algorithms.

150 K.-D. Schewe and Q. Wang

However, our research aims to go beyond a theory of probabilistic knowledge
patterns for probabilistic default reasoning with contexts and exceptions. As claimed
in the introduction we want to show that common probabilistic methods in machine
learning can be captured by probabilistic knowledge patterns including the vari-
ous similarity-based methods for entity resolution [9] and methods based on neural
networks. This would enable known data-driven learning methods to be adapted
to knowledge patterns, and provide opportunities for a true integration of logical
and probabilistic methods in data analysis. It will further give rise to the interesting
research problem, if the fixed-point construction on grounds of probabilistic logic
with maximum entropy semantics can be exploited also directly in the common
machine learning methods. All these problems define a rather large spectrum of
open problems for future research.

References

1. S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases (Addison-Wesley, Boston, 1995)
2. A. Arasu, M. Götz, R. Kaushik: On active learning of record matching packages, in SIGMOD,

pp. 783–794 (2010)
3. C. Baral, M. Gelfond, J.N. Rushton, Probabilistic reasoning with answer sets. Theory Pract

Logic Program 9(1), 57–144 (2009)
4. C. Beierle, M. Finthammer, G. Kern-Isberner, Relational probabilistic conditionals and their

instantiations under maximum entropy semantics for first-order knowledge bases. Entropy
17(2), 852–865 (2015)

5. C. Beierle, G. Kern-Isberner: The relationship of the logic of big-stepped probabilities to stan-
dard probabilistic logics, in Foundations of Information and Knowledge Systems, 6th Interna-
tional Symposium, FoIKS 2010 eds. by S. Link, H. Prade. Lecture Notes in Computer Science,
vol. 5956 (Springer, Berlin, 2010), pp. 191–210

6. C. Beierle, G. Kern-Isberner, Semantical investigations into nonmonotonic and probabilistic
logics. Ann. Math. Artif. Intell. 65(2–3), 123–158 (2012)

7. J.S. Breese, Construction of belief and decision networks. Comput. Intell. 8, 624–647 (1992)
8. M. Chavira, A. Darwiche, M. Jaeger, Compiling relational bayesian networks for exact infer-

ence. Int. J. Approx. Reason. 42(1–2), 4–20 (2006)
9. P. Christen, Data Matching. Data-Centric Systems and Applications (Springer, Berlin, 2012)
10. W.W. Cohen, Data integration using similarity joins and a word-based information represen-

tation language. ACM Trans. Inf. Syst. 18(3), 288–321 (2000)
11. T.M. Cover, J.A. Thomas, Elements of Information Theory, 2nd edn. (Wiley, Hoboken, 2006)
12. P. Domingos, D. Lowd,Markov Logic: An Interface Layer for Artificial Intelligence. Synthesis

Lectures on Artificial Intelligence andMachine Learning (Morgan & Claypool Publishers, San
Rafael, CA, 2009)

13. R. Fagin, J.Y. Halpern, Reasoning about knowledge and probability. J. ACM 41(2), 340–367
(1994)

14. I.P. Fellegi, A.B. Sunter, A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210
(1969)

15. F.V. Jensen, T.D. Nielsen, Bayesian Networks and Decision Graphs (Springer, Berlin, 2007)
16. G. Kern-Isberner,Conditionals in Nonmonotonic Reasoning and Belief Revision—Considering

Conditionals as Agents. Lecture Notes in Computer Science, vol. 2087 (Springer, Berlin, 2001)
17. G. Kern-Isberner, C. Beierle, M. Finthammer, M. Thimm, Comparing and evaluating

approaches to probabilistic reasoning: Theory, implementation and applications, in Trans-
actions on Large-Scale Data- and Knowledge-Centered Systems VI, pp. 31–75 (2012)

Towards an Integration of Probabilistic and Knowledge-Based Data Analysis … 151

18. G. Kern-Isberner, M. Thimm, Novel semantical approaches to relational probabilistic condi-
tionals, in Principles of Knowledge Representation and Reasoning: Proceedings of the Twelfth
International Conference, KR 2010, eds. by F. Lin, U. Sattler, M. Truszczynski (AAAI Press,
New York, 2010)

19. K. Kersting, L. De Raedt, Bayesian logic programming: Theory and tool, in An Introduction to
Statistical Relational Learning, eds. by, L. Getoor, B. Taskar (MIT Press, Cambridge, 2007)

20. N.J. Nilsson, Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)
21. D. Nute, C. Cross, Conditional logic, in Handbook of Philosophical Logic, eds. by D. Gabbay,

F. Guenther, vol. 4 (Kluwer Academic Publishers, Dordrecht,2002), pp. 1–98
22. J.B. Paris, Common sense and maximum entropy. Synthese 117(1), 75–93 (1998). https://doi.

org/10.1023/A:1005081609010
23. J.B. Paris, A. Vencovská, In defense of the maximum entropy inference process. Int. J. Approx.

Reason. 17(1), 77–103 (1997). https://doi.org/10.1016/S0888-613X(97)00014-5
24. J. Pearl, Probabilistic reasoning in intelligent systems—Networks of plausible inference (Mor-

gan Kaufmann, Burlington, 1989)
25. M. Richardson, P. Domingos, Markov logic networks. Mach. Learn. 62(1–2), 107–136 (2006)
26. S. Sarawagi, A. Bhamidipaty, Interactive deduplication using active learning, in Knowledge

discovery and data mining, pp. 269–278 (2002)
27. K.D. Schewe, Q. Wang, On the decidability and complexity of identity knowledge repre-

sentation, in Database Systems for Advanced Applications - 17th International Conference
(DASFAA 2012), eds. by S. Lee, Z. Peng, X. Zhou, Y.S. Moon, R. Unland, J. Yoo. Lecture
Notes in Computer Science, vol. 7238 (Springer, Berlin, 2012), pp. 288–302

28. K.D. Schewe, Q. Wang, Knowledge-aware identity services. Knowl. Inf. Syst. 36(2), 335–357
(2013)

29. K.D. Schewe, Q.Wang, A theoretical framework for knowledge-based entity resolution. Theor.
Comput. Sci. 549, 101–126 (2014)

30. K.D. Schewe, Q. Wang, M. Rady, Knowledge-based entity resolution with contextual infor-
mation defined over a monoid, in Model and Data Engineering - 5th International Conference
(MEDI 2015), eds. by L. Bellatreche, Y. Manolopoulos. Lecture Notes in Computer Science,
vol. 9344 (Springer, Berlin, 2015), pp. 128–135

31. P. Singla, P. Domingos, Object identification with attribute-mediated dependences, in Knowl-
edge Discovery in Databases (PKDD) (Springer, Berlin, 2005), pp. 297–308

32. M. Thimm, G. Kern-Isberner, On probabilistic inference in relational conditional logics. Logic
J. IGPL 20(5), 872–908 (2012)

33. V.S. Verykios, G.V. Moustakides, M.G. Elfeky, A Bayesian decision model for cost optimal
record matching. VLDB J. 12(1), 28–40 (2003)

34. K. Wagstaff, C. Cardie, Clustering with instance-level constraints, in AAAI, p. 1097 (2000)
35. Q.Wang, K.D. Schewe,W.Wang, Provenance-aware entity resolution: Leveraging provenance

to improve quality, in Database Systems for Advanced Applications—20th International Con-
ference (DASFAA 2015), eds. by M. Renz, C. Shahabi, X. Zhou, M.A. Cheema. Lecture Notes
in Computer Science, vol. 9049 (Springer, Berlin, 2015), pp. 474–490

https://doi.org/10.1023/A:1005081609010
https://doi.org/10.1023/A:1005081609010
https://doi.org/10.1016/S0888-613X(97)00014-5

Proof Based Modelling

An Explicit Semantics for Event-B
Refinements

Pierre Castéran

Abstract We present a semi-shallow embedding in Coq of Event-B’s notions of
abstract machine and refinement. The abstract structure of Event-B developments,
including machines and refinement annotations, can be represented within Coq’s
type system, using inductive and dependent types. This formalization allows us to
reason at the meta-level on machines and their behaviors, considered as first-class
citizens. We show how this formalization of Event-B structures into Coq allows us to
model Rodin’s proof obligations, and prove how these obligations entail correctness
properties of a givenEvent-B project.Moreover, the correctness of a given refinement
is now an explicit theorem, instead of being an implicit consequence of a set of proof
obligations.

1 Introduction

Within the paradigm of correctness by construction, the notion of refinement is a way
to obtain a piece of software that is consistent with a given specification. For instance,
the Event-B method [1], considers the whole development of a reactive system as
a sequence of transition systems called abstract machines. The first element of this
sequence is the given specification, and the last one should be ready to be effec-
tively implemented through an automatic translation to a “classical” programming
language. This method consists in proving that each machine of the sequence is a
refinement of the preceding one, i.e., every execution of the refinement corresponds
to some execution of the abstract machine.

The Rodin tool [2] helps the user to apply the Event-B method. It is mainly com-
posed of a proof obligation generator and several automatic provers. Proof obliga-
tions (POs) are theorem statements generated from the Event-B sources. The user of
Rodin is happy when all the POs generated from the components of his/her project
are proved. The meaning of each PO and why its validity entails the correctness

P. Castéran (B)
LaBRI, University of Bordeaux, CNRS (UMR 5800) INP-Bordeaux, Bordeaux, France
e-mail: pierre.casteran@labri.fr

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_8

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_8&domain=pdf
mailto:pierre.casteran@labri.fr
https://doi.org/10.1007/978-981-15-5054-6_8

156 P. Castéran

of the whole development is described either semi-formally in tutorials, or in the
framework of simple set theory in [1].

We propose to go further, by the development of a formal, computer verified,
description of the notions of abstractmachines and refinements. Our plan is to express
withinCoq’s type system the abstract syntaxofEvent-Bprojects. Thenweassociate to
any abstractmachine a labeled transition system [3]. Finally,we study the relationship
between Event-B constructs, the proof obligations generated from the machines and
refinements, and the behavior of the associated transition systems.

For simplicity’s sake, we do not take into account some parts of the Event-B
formalism that are not directly related to machine refinement, mainly the WD proof
obligations and the set inclusion N ⊂ Z. In Coq, all functions are total and N is not
a subtype of Z. We adopt this point of view in our examples: partial functions are
expressed as total functions with possibly dependent types, and we use only natural
numbers. A thorough treatment of all POs generated from an Event-B component
remains to be done.
Convention: We shall use the tt font family for citing parts of Coq or Event-
B code. For readability’s sake, compound expressions will be surrounded by light
parentheses, which are not part of Coq’s syntax, like in (x + y). Otherwise, we
use italics for designing the current value of some variable like in “ x ≥ 33 ” or a
meta-variable, like in “let P be some invariant”.

2 A Small Example

For illustrating our definitions, we start by presenting a very simple and artificial
example, consisting in an Event-B context, an abstract machine and a refinement that
model a counter, a device that maintains a value bounded by some constant, with two
possible actions: jumping—if possible—to a greater value, and resetting the counter
value to 0.

2.1 Formalization in Event-B

The Event-B context C0 below declares the maximum value of the counter, as a
stricly positive natural number N. Thus, all the further development is parameterized
by this arbitrary value.

CONTEXT C0
CONSTANTS N
AXIOMS
axm1 : N ∈ N1

END

An Explicit Semantics for Event-B Refinements 157

MACHINE M0 SEES C0
VARIABLES
x
INVARIANTS
inv1 : x ∈ 0 .. N

EVENTS
INITIALISATION=̂
x := 0 END

jump=̂
ANY i WHERE 0 < i ∧ x + i ≤ N
THEN x := x + i END

reset=̂
WHEN x > 0 THEN x := 0 END
END

Fig. 1 The machine M0

The abstract machine M0 (see Fig. 1) models the counter through a variable x,
the range of which is the set of integers between 0 and N. Its two main events are as
follows:

jump: If the current value of x is less than N, then x is incremented by any value
compatible with the constraint x ≤ N .

reset: If x > 0, then x is set to 0.

We consider now a refinement M1 of M0, presented in Fig. 2, with three variables
and four events.

The three events start, jump, and incr are controlled by a Boolean variable
mode. More precisely, the one-shot event jump of machine M0 is refined in M1 by
the following sequence:

1. The event start sets the Boolean mode to TRUE and the variable y to the value
x + 1.

2. The event incr, which adds 1 to the value of y, is repeated any number of times,
provided that the value of y does not exceed N.

3. Finally, jump copies the value of y into x.

Please notice that, only the event jump of M1 is declared to refine the event jump
of machine M0. The events start and incr are new events, which correspond to
no transition in M0. This is a usual pattern in Event-B, due to its forward simulation
semantics: when some abstract event is refined by a sequence of events, only the last
event of that sequence refines the abstract event.

158 P. Castéran

MACHINE M1 Refines M0
VARIABLES
x y mode
INVARIANTS
inv1 : mode = TRUE ⇒ x < y
inv2 : y ≤ N

EVENTS:
INITIALISATION=̂
y, x, mode := 0, 0, FALSE

start=̂
WHEN mode = FALSE ∧ x < N
THEN y, mode := x + 1, TRUE END

incr=̂
WHEN mode = TRUE ∧ y < N
THEN y := y + 1
END

jump=̂
REFINES jump
WHEN mode = TRUE
WITH i: i = y - x
THEN x, mode := y, FALSE END

reset=̂
REFINES reset
WHEN mode = FALSE ∧ x > 0
THEN x, y := 0, 0 END

END

Fig. 2 The refinement M1 of M0

2.2 Interpretation of Machines as Transition Systems

Transition systems are a powerful and well-studied tool for describing reactive sys-
tems and their behavior. The reader may find in G. Tel’s book [3] a mathematical
treatment of transition systems and the notions of execution, invariant, fairness, etc.
Associating a transition system to any Event-B machine gives us access to all these
concepts and their properties.

Traditionally, labeled transition systems are represented as structures of four com-
ponents:

• A set C of global states, also called configurations,
• A set L of event labels,
• A function tr that maps every event label to a binary “before/after” relation on C ,
• A subset I ⊆ C of initial configurations.

An Explicit Semantics for Event-B Refinements 159

For instance the transition systemassociatedwith themachineM0 can be described
as follows1:

• Since M0 contains only one variable, each of its configurations can be represented
by a natural number: C = N.

• The set of event labels is L = {incr,reset}.
• The transition relations associated with the events reset and jump of M0 are,
respectively, described by the following expressions:

reset: λx x ′. (x > 0 ∧ x ′ = 0)

jump: λx x ′. ∃i ∈ N. (0 < i ∧ x + i ≤ N ∧ x ′ = x + i).

• The set of initial configurations is reduced to the singleton I = {0}, in other terms
the predicate λx . x = 0.

2.3 On Event Parameters

In the description of the transition system associated with M0, the event parameter
i is introduced by an existential quantifier in the relation associated with the event
jump. But the scope of a quantifier is local to the sub-formula it occurs in, thus
the variable i is unknown outside this quantification. This feature prevents us from
keeping the value of the parameter in traces of execution, and from giving a logical
meaning to the WITH clause of M1’s event jump, which contains a reference to i.

In the next section, we will show how dependent types allow us to formalize
properly transition systems with event parameters, giving a type to traces and WITH

clauses in the refined events.

3 A Very Short Presentation of the Coq Proof Assistant

Coq [4] is an interactive proof assistant, i.e., a tool that makes it possible to develop
proven programs and prove mathematical theorems, with a very high degree of con-
fidence. For instance, it has been used for building a certified C-compiler [5] and for
giving complete proofs of the four-color [6] and Feit–Thompson [7] theorems. Coq
is based on a very expressive type system called the Calculus of Inductive Construc-
tions (CIC). There is no room in this chapter for a presentation of the main features
of Coq, thus we shall limit ourselves to present the constructions that are actually
needed by our study.

1Following the Coq tradition, we represent sets [resp. binary relations] as unary [resp. binary]
predicates on types, with λ as the binding symbol for abstraction. For instance, the set of even
natural numbers is described by the predicate λ i : N, ∃ j : N, i = 2 × j .

160 P. Castéran

Besides its powerful type system, Coq provides the user with a large collection
of tools called tactics for building potentially large and complex proofs. The user
is also able to define her/his own tactics for semi-automating proof construction in
specific domains. Once built, every proof is checked to verify there is no missing
part nor bad application of a logical rule.

The interested reader may consult tutorials on Coq’s page [4] and Software Foun-
dations [8] or books like [9, 10].

3.1 Terms and Types

Unlike Event-B, which is based on classical set theory, Coq is based on type theory,
and implements higher order intuitionistic logic. Nevertheless, its syntax is very
close to mathematical logic, thus the reader will have no problem to understand the
following definitions.

3.1.1 Typing Judgements

In Coq, every well-formed term has a type. The judgement “t has type A” is written
“t : A”. The validity of such a judgement may depend on a context formed with
declarations and definitions. For instance, the following declaration introduces a
natural number i , an arbitrary type A and some object of type A.

Variables (i:nat) (A: Type) (a: A).

3.1.2 Basic Types

The following types are already defined in Coq’s standard library.

• nat is the type of natural numbers
• bool is the type of Boolean values
• unit is a singleton type, with a unique value called tt; the type unit plays a
role similar to C’s type void, and tt corresponds to (). In Sect. 4.2.2, unit is
used as a “default type” for parameterless events.

3.1.3 Function Types

If A and B are types, then A→B is the type of total functions from A to B. Note
that the operator is right associative, thus the type A→B→C is an abbreviation of
A→(B→C). The application of a function f to x is simply noted (f x). Func-
tion application is left-associative, so the expression (f x y) is an abbreviation of

An Explicit Semantics for Event-B Refinements 161

((f x) y). The λ-abstraction is written in Coq with the keyword fun. For
instance, the function that computes the arithmetic mean of two natural numbers
is written (fun x y : nat => (x + y)/2).

3.1.4 Product Types and Records

If A1, . . . , An are types, the product A1 × · · · × An is the type of tuples (a1, . . . , an),
where ai : Ai for every i such that 1 ≤ i ≤ n. In our formalization, we use also
records with named fields, quite similar to structures in C . The basic use of records
is commented in Sect. 4.1.1.

3.1.5 Propositions and Predicates

The sort Prop is the type of logical propositions. Predicates on type A are functions
of type A→Prop. Relations from A to B have type A→B→Prop.

Coq’s standard library introduces the abbreviations (Ensemble A) for A→Prop
and (relation A) for A→A→Prop.

For instance, the following expression describes the binary relation associated
with integer division by 2:

fun x y:nat => x = 2 * y \/ x = 2 * y + 1.

According to the Curry–Howard correspondence, the same symbol → is used
both for writing functional types and intuitionistic implication.

3.1.6 Dependent Types

Coq’s type system includes dependent types, i.e., types that may depend on data, pro-
grams, or proofs. For instance “vector of length n”, “prime number”, and “divisor of
p” are such types. Dependent types allow us to write formal specifications of pro-
grams. In this chapter, dependent types are used for giving a correct type to guarded
events and execution traces in generic definitions. The book byChlipala [10] presents
a state of the art on the use of dependent types for writing “certified” programs.

3.1.7 Heterogeneous Lists

Heterogeneous lists [10] are sequences where the type of every item can be computed
by calling some function. More precisely, let A be any type, and f : A→T ype be
some function that associates a type to any of its argument. Let now s = a0, . . . , an
be a list of values of type A. Then (hlist f s) is the type of the lists the i th
element of which has type f (ai).

162 P. Castéran

3.1.8 Module Notation

Coq’s module system allows us to share several identifiers, like event labels, machine
variables, etc., between various machines. Every machine description is considered
as a module, so, in case of ambiguity, we will use the module notation like M0.jump
or M0.x for designing the event jump or the variable x of machine M0.

4 Formalizing Abstract Machines in Coq

In Event-B, machines generally have several variables and invariants. In order to
simplify our meta-theory, we will consider that machines have a single global state,
called configuration, and only one invariant. This is not a loss of generality, since
the type of configurations may be a record type with several fields, and an invariant
may be a conjunction of more elementary invariants.

4.1 Configurations and Event Labels

Our definitions are parameterized with two type variables: the variable C for any type
of configurations, and L for event labels. In Coq, one has to declare both variables
of sort Type. This declaration is local to a Section named Definitions. At the
end of this section, every definition and theorem that depend on local variables will
be automatically generalized, making this part of the development fully generic.

Section Definitions.
Variable C : Type. (* Configurations *)
Variable L : Type. (* Event labels *)

An instantiation mechanism will allow us to replace these variables by more
concrete values in our examples. For sake of clarity, we will specify, for each piece
of Coq code, whether it is a generic definition or theorem or an application to our
example.

4.1.1 Examples

At the object level, the variables C and L can be instantiated to data types which
represent the configurations and event names of specific machines. For instance the
machine M0 contains a unique variable x and two event names: jump and reset.
Thus, the variable C can be instantiated by a record type config with one field
name x and L by an enumerated type evt with two values: jump and reset.

An Explicit Semantics for Event-B Refinements 163

(* "variables" *)
Record config := mk_conf {x : nat}.

(* Event labels *)
Inductive evt := jump | reset.

In machine M1, the types for configurations and event names are slightly more
complex. Configurations are records with three components which correspond,
respectively, to M1’s variables.

(* Configurations *)
Record config := mk_conf {x : nat; y : nat ; mode : bool}.

(* Event names *)
Inductive evt := incr | jump | reset | start.

The function mk_conf is a constructor that is used for building a new config-
uration when applied to two natural numbers and a Boolean. Reciprocally, if the
variable γ has type config, then the term (x γ) returns the value of the field x of
the configuration γ .

4.2 Dependently Typed Events

In Event-B, events are composed of guards and actions. A guard is a condition that
the current configuration must satisfy for the event to be triggered. The action part
describes the “before/after” relation that holds between the old and new configura-
tions.

The guard of the event M0.jump, depends on the parameter i of type nat. This
parameter is also used in the action part of jump. On the contrary, the other events
of machines M0 and M1 do not have any event parameter. For having a uniform
treatment of events and machines, we have decided to state that every event has a
unique parameter. Rodin’s parameterless events will be considered as parameterized
with Coq’s singleton type unit. Events with several parameters will be considered
as parameterized with Cartesian products or record types.

4.2.1 Guards and Actions

In Event-B, a guard is a proposition that depends on the machine’s variables and the
potential parameter of the event. In Coq, we can define a type of guards, indexed by
an arbitrary type Pa of event parameter.

Definition guard_t (Pa:Type) := C -> Pa -> Prop.

For instance, the guard of event M0.jump is the predicate λ γ i. (0 < i ∧ x γ +
i ≤ N) of type M0.config→nat→Prop, while the guard of M0.reset has
type M0.config→unit→Prop.

164 P. Castéran

The action part of an event describes the relation that links the configurations
before and after the execution of the event (called the before-after relation in Rodin’s
documentation). This relation may depend on the event parameter. We consider both
deterministic (i.e., functional) or non-deterministic assignments.

Inductive assignment (Pa: Type) :=
| det (f : C -> Pa -> C)
| ndet (r : C -> Pa -> Ensemble C).

The parameterized type guarded_event combines a guard and an assignment.

Record guarded_event (Pa:Type): Type :=
mk_evt {grd : guard_t Pa;

action : assignment Pa}.

For instance M0’s events are built through the constructor mk_evt. Please note
the argument of guarded_event, respectively, set to nat and unit.

Definition jump_evt : guarded_event nat :=
mk_evt (fun gamma i => 0 < i /\ x gamma + i <= N)

(det (fun gamma i => mk_conf (x gamma + i))).

Definition reset_evt : guarded_event unit :=
mk_evt (fun gamma _ => 0 < x gamma)

(det (fun gamma _ => mk_conf 0)).

4.2.2 Types of Abstract Machines

We have now all the ingredients for defining at the abstract level the structure of an
Event-B-machine. Recall that the variableC denotes any type of configurations, and L
any type of event labels. A machine is described by the three following components:

• A function param_type of type L→T ype that maps any event name e to the
type of its parameter.

• A function evts that maps any event label e to a guarded event. The type of evts
is a dependent product, where param_type is applied to determine the type of
the event’s parameter:

evts : forall e:L, guarded_event (param_type e)

• Finally, a set of initial configurations

Init : Ensemble C

4.2.3 Examples

The abstract machine M0 can be described by instantiating the variables
param_type, evts and Init or our model.

An Explicit Semantics for Event-B Refinements 165

Definition param_type (e:evt) : Type :=
match e with

| jump => nat
| reset => unit

end.

The function that maps every label to a guarded event of the right type is defined
as follows:

Definition evts (e:evt) : guarded_event (param_type e):=
match e with

| jump => jump_evt
| reset => reset_evt

end.

Finally, the set of initial configurations is described by its characteristic predicate.

Definition Init (gamma : config) := x gamma = 0.

Likewise, the abstract machine M1 is defined in Coq in Fig. 3.

Remark 1 Please note that, unlike Event-B, our description of M0 and M1 do not
contain any refinement nor invariant description. In our formalization, transition

Definition param_type (_ : evt) : Type := unit.

Definition evts (e:evt) : guarded_event config (param_type e)
:= match e with
| start => mk_evt
(fun gamma _ => mode gamma = false /\ x gamma < N)
(det (fun gamma _ => mk_conf (x gamma)

(1 + x gamma)
true))

| incr => mk_evt
(fun gamma _ => mode gamma = true /\ y gamma < N)
(det (fun gamma _ => mk_conf (x gamma)

(1 + y gamma)
(mode gamma)))

| jump => mk_evt
(fun gamma _ => mode gamma = true)
(det (fun gamma _ => mk_conf (y gamma)

(y gamma)
false))

| reset => mk_evt
(fun gamma _ => mode gamma = false /\ x gamma > 0)
(det (fun gamma _ => mk_conf 0 0 (mode gamma)))

end.

Definition Init (gamma:config) :=
y gamma = 0 /\ x gamma = 0 /\ mode gamma = false.

Fig. 3 Description of Machine M1 in Coq

166 P. Castéran

systems are just defined by guards, events, and initial configurations. Invariants and
refinement annotations refer to transition systems but are not parts of them as in
Event-B syntax.

5 Operational Semantics of Abstract Machines

The behavior of a given machine can be expressed through the set of its execu-
tions. A (finite) execution in a machine M is a (finite) sequence of configurations
γ0, γ1, . . . , γn , where γ0 is an initial configuration, and each γi+1 is obtained from
γi by the execution of some event of the machine. It is also possible in Coq to define
infinite executions, but we do not need this extension here.

For defining the set of executions, we need to associate a relation to the events of
the machine, i.e., to consider machines as transition systems. First, we associate a
binary “before/after” relation on configurations to any assignment (deterministic or
non-deterministic).

Definition a2rel {Pa: Type} (a:assignment Pa) gamma p :=
fun gamma’ =>

match a with
| det f => gamma’ = f gamma p
| ndet r => r gamma p gamma’

end.

Then, we restrict our relation to the configurations and parameters that satisfy the
guard.

Definition event_ba_dep {Pa : Type}(e: guarded_event Pa)(p:Pa)
:= fun gamma gamma’ => grd e gamma p /\

a2rel (action e) gamma p gamma’.

Finally, we abstract the parameter p, then the label event e, using existential
quantifications:

Definition event_ba {Pa : Type} (e: guarded_event Pa) :=
fun gamma gamma’ => exists p, event_ba_dep e p gamma gamma’.

Definition tr e gamma gamma’ : Prop :=
event_ba (Pa:= ev_params e) (evts e) gamma gamma’.

Definition transition: relation C :=
fun gamma gamma’ => exists e: L, tr e gamma gamma’.

The predicate transition is a description of the labeled transition system
associated with a machine. The reflexive and transitive closure of transition
allows us to define the following predicates:

An Explicit Semantics for Event-B Refinements 167

• The configuration γ ′ is reachable from γ :

Definition reachable_from : relation C :=
clos_refl_trans transition.

• The configuration γ is reachable (from some initial configuration):

Definition reachable : Ensemble C :=
fun gamma => exists gamma_i, Init gamma_i /\

reachable_from gamma_i gamma.

5.1 On Invariants

The notion of invariant we use is the same as G. Tel’s: an invariant is just a property
on configurations that holds in any initial state and is preserved by the transition
relation associated with the considered machine.

For instance, the following predicate is an invariant of machine M0:

Definition inv (gamma:config) := x gamma <= N.

For proving that inv is an invariant of M0, we have just to prove that any initial
configuration satisfies inv, and that the relations associated with the events jump
and resetmaintain this invariant. It is easy to write this proof usingCoq tactics, but
it presents no great interest, since it corresponds to Rodin’s INV proof obligations,
which are solved automatically by this tool.

Nevertheless, our formalization of machines contains at the meta-level the the-
orem that states that, if P is an invariant of any machine M , then this predicate is
“always true”, i.e., holds in any reachable configuration.

Lemma inv_true (P : C -> Prop) :
invariant P -> forall gamma, reachable gamma -> P gamma.

5.2 Deadlock Freeness

The theorem that ensures that a given machine M is deadlock-free can be defined
at the abstract level. First we define a predicate on configurations that state there
exists some event e whose guard is provable. Note that the following definition is
generic and applies to any machine, thanks to the function param_type and the
dependently typed function grd.

Definition DLF (gamma:C) :=
exists e, exists p:param_type e, (grd e) gamma p .

168 P. Castéran

For proving that a givenmachine is alive, it suffices to prove that, for any reachable
configuration γ , (DLF γ) holds, and that for every event e, the action associated
with e is feasible, i.e., leads to some configuration γ ′, provided the guard of e is true.

5.3 Traces

The traceof an execution is a sequence of transitions leading from some configuration
γ0 to another configuration γn . Each step of this sequence can be described as a triple
(ei , pi , γi), where ei is the event label, pi the value of the event parameter of ei , and
γi the configuration after the event execution.

Recall that the type of the parameter pi depends on the event label, thus a trace
must be represented as a sequence of values that may have different types.

The following definition implements traces as heterogeneous lists indexed by
sequences of event labels; if e is such a label, the corresponding element of a trace
is a pair composed of a parameter of type (param_type e) and a configuration.

Definition f_trace_t := hlist (fun e => ((param_type e) * C)).

If s is a sequence of event labels, then (f_trace_t s) is the type of traces
associated with s. We proved formally in Coq that, if a configuration γ ′ is reachable
from γ , then there exists some trace leading from γ to γ ′.

6 Formalizing Refinements

In Rodin refinements are declared as parts of the “concrete” machine MC that refines
an “abstract” machine MA, under the form of REFINES annotations at both the global
level of the machine and local level of events. The invariants of MC can refer to
variables of MA. The Rodin tool implicitly states that if a variable v is shared by
MA and MC , then it must have the same value in both machines during “similar”
executions.

As for the invariants in Sect. 5.1, we consider properties of refinements as predi-
cates on machines, instead of being part of the machines.

First, let us define refinements at the level of events, then we will extend this
notion to abstract machines.

6.1 Parameterization of the Definition

Our formal definition of refinement is parameterized by a concrete machine MC and
an abstract machine MA. Let us introduce the description of both machines, through
a set of variable declarations.

An Explicit Semantics for Event-B Refinements 169

Variables CC (*configurations of the concrete machine *)
CA (* configurations of the abstract machine *)
: Type.

(* types of event labels *)
Variables LC LA : Type.

(* Types of event parameters *)
Variable param_typeC : LC -> Type.
Variable param_typeA : LA -> Type.

(* guarded events *)
Variable evtsC : forall e, guarded_event CC (param_typeC e).
Variable evtsA : forall e, guarded_event CA (param_typeA e).

(* initial configurations *)
Variable InitC : Ensemble CC.
Variable InitA : Ensemble CA.

6.2 Event Refinement

An event of the concrete machine MC may refine or not several events of MA. Event
refinement is thus described through a binary relation between concrete and abstract
event labels. Please note that in the current state of our formalization, we do not take
into account Event-B merge refinement yet.

Let us call new any event that does not refine any event of MA.

Variable evt_refines : LC -> LA -> Prop.

For instance, the REFINES annotation of M1 can be described as follows:

Definition evt_refines (eC: C_evt) (eA : A_evt) : Prop :=
match eC, eA with

jumpC, jumpA | resetC, resetA => True
| _, _ => False
end.

Possible constraints relating the parameters of a concrete and an abstract event
are expressed by a dependently typed predicate. Please note that the hypothesis H
restricts this constraints to event refinements. These constraints express the WITH

annotations and the equality between parameters of the same name (for instance
when a parametrized event is extended).

parameter_constraints: forall (eC:evt_C) (eA : evt_A)
(H:evt_refines eC eA),
CC -> ev_paramsC eC ->
ev_paramsA eA -> Prop.

170 P. Castéran

For instance, the relationship between the configurations and parameters of the
pair of events M1.jumpC and M0.incrA is described by the following predicate:

fun (gC: CC) (_ : unit)
(i : nat) => (i = y gC - x gC))

6.3 Gluing Invariants

In Event-B, the invariants of the machine MC may refer to MA’s variables. Thus, we
propose to consider that, by default, an invariant is a gluing invariant, i.e., a predicate
that relates configurations of machines MC and MA. Let us define a type of “gluing
properties”:

Definition GlueP := CC -> CA -> Prop.

Note that machine MC ’s “proper invariants” can be easily transformed into gluing
invariants by the following “coercion”.

Definition Glue_lift (P : CC -> Prop) : GlueP :=
fun (gammaC:CC) (gammaA: CA) => P gammaC.

6.3.1 Example

The two following predicates are the direct translation of the invariants inv1 and
inv2 of Fig. 2.

Definition inv1 (gC: M1.config) (gA: M0.config) :=
mode gC = true -> x gC < y gC.

Definition inv2 (gC: M1.config) (gA: M0.config) := y gC <= N.

6.3.2 Variable Sharing

The implicit convention on variable sharing can bemade explicit by adding an invari-
ant stating that the common variables have always the same value in the concrete
and the abstract machine. In our example, the variable x is shared by the machines
M1 and M0. This is expressed by the following predicate:

Definition x_share (gC: M1.config) (gA: M0.config) :=
x gA = x gC.

Thus, the gluing invariant associated to our refinement is the conjunction of inv1,
inv2 and x_share.

An Explicit Semantics for Event-B Refinements 171

Fig. 4 Relation associated
to event refinement

6.4 Proving Gluing Invariants

In order to give an operational definition of refinement, we have to relate executions
and traces of the concrete and the abstract machines.

Figure4 describes in two parts the relation associated with the execution of an
event eC with parameter value pC .

• In diagram (1), eC refines some event eA. We assume that γC , pC , and pA satisfy
the constraint described in Sect. 6.2.

• Diagram (2) corresponds to a “new” event eC .

Both diagrams characterize a “before/after” relation between configurations of

the two machines. Let us denote this relation by γC , γA
eC/pC−−−→ γ ′

C , γ ′
A.

Let P : CC→CA→Prop be some predicate.We define the property “P is a gluing
invariant” if the two following propositions hold:

• For any γC ∈ InitC, there exists γA ∈ InitA such that P γC γA holds,
• For any reachable configurations γC and γA such that P γC γA holds, and any tran-

sition γC
eC/pC−−−→ γ ′

C , there exists some configuration γ ′
A such that γC , γA

eC/pC−−−→
γ ′

C , γ ′
A and P γ ′

C γ ′
A hold.

Proving that some predicate P is a gluing invariant corresponds tightly to the INV
proof obligations in Rodin.

6.4.1 Traces and Refinements

Figure5 shows how to make correspond an execution in MC with some execution
in MA. It is an iteration of the relation described in Fig. 4. Considering the traces tC
and tA of the respective executions, we define a relation “γC , γA

tC , tA−−→ γ ′
C , γ ′

A,

Fig. 5 Trace
correspondance with respect
to a refinement

172 P. Castéran

By induction on traces, we prove at the meta-level the following statement, which
describes formally the notion of machine refinement.

Theorem 1 Let P be some gluing invariant for machines MC and MA. Assume
P γC γA. Then for any execution in MC leading to some configuration γ ′

C with
trace tC , there exists some execution in MA leading from γA to some configuration

γ ′
A with trace tA, where the propositions γC , γA

tC , tA−−→ γ ′
C , γ ′

A and P γ ′
C γ ′

A hold.

Once proved within the context described in Sect. 6.1, this theorem is automati-
cally completed by universal quantifications over configuration types, machines and
invariants, and can be applied to specific Event-B components.

7 Conclusion and Future Work

The richness of Coq’s type system, and particularly dependent types, allows us to
give a precise definition of the operational semantics of Event-B components. Thus,
we are able to prove explicit theorems such as “every execution of M1 simulates
some execution in M0”, and all the corollaries that can be further deduced, with the
help of the proof assistant.

Our objective is not to use Coq for proving Rodin’s proof obligations, but to
explore formally the notions of machines and refinements considered as first-class
citizens. This work can be extended in the following directions:

• Design tactics for proving that the new events in a refinement cannot run forever.
In our example, we would say that the relation associated with the events start
and incr of machine M1 is well founded.

• Take into account the refinement of several abstract events by a given abstract
event (“merge refinement”).

• Automatize the translation into Coq of real Event-B projects. The formalization of
our examples have been typed by hand, but they should be obtained automatically
from the abstract syntax of Event-B components.

• Prove formally the correctness of Rodin’s proof obligation generator, and make
explicit the correspondance with Rodin’s POs and the hypotheses of theorems like
Theorem 1. It should be interesting to apply such theorems to statements expressed
and proved with Rodin.

• Provemeta-theorems like “being a refinement is a transitive relation onmachines”,
and apply this result to a full sequence of refinements.

• Study at the generic level how to compose several refinements of the samemachine,
and certify some machine transformations [11].

Acknowledgements This work has been supported by the project Impex of the French “Agence
Nationale de la Recherche”. We thank the referees for their many helpful comments on this chapter.

An Explicit Semantics for Event-B Refinements 173

References

1. J-R. Abrial, Modeling in Event-B - System and Software Engineering (Cambridge University
Press, Cambridge, 2010)

2. The Rodin development team. The Rodin Tool.https://sourceforge.net/projects/rodin-b-sharp/
3. G. Tel, Introduction to Distributed Algorithms (Cambridge University Press, Cambridge, 2000)
4. The Coq development team. The Coq proof assistant. coq.inria.fr
5. Xavier Leroy, Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115

(2009)
6. G. Gonthier, Formal proof – the four-color theorem. Not. Am. Math. Soc. 55(11) (2008)
7. Inria Marelle Team. Proof of the Feit-Thompson theorem. https://gforge.inria.fr/projects/

coqfinitgroup/
8. B.C. Pierce et al., Software foundations. https://softwarefoundations.cis.upenn.edu/current/

index.html
9. Y. Bertot, P. Castéran, Interactive Theorem Proving and Program Development - Coq’Art: The

Calculus of Inductive Constructions (Springer, Berlin, 2004)
10. A. Chlipala, Certified Programming with Dependent Types. (MIT Press, Cambridge, 2013)
11. G. Babin, Y.A. Ameur, M. Pantel, Correct instantiation of a system reconfiguration pattern: A

proof and refinement-based approach, in 17th IEEE International Symposium on High Assur-
ance Systems Engineering, HASE 2016, Orlando, FL, USA, January 7-9, 2016 (2016), pp.
31–38

https://sourceforge.net/projects/rodin-b-sharp/
https://gforge.inria.fr/projects/coqfinitgroup/
https://gforge.inria.fr/projects/coqfinitgroup/
https://softwarefoundations.cis.upenn.edu/current/index.html
https://softwarefoundations.cis.upenn.edu/current/index.html

Contextual Dependency in State-Based
Modelling

Souad Kherroubi and Dominique Méry

Abstract In conceptual modelling, context-awareness should be precisely high-
lighted. In this chapter, we recall and detail preliminary results on contextualization
and dependency in state-basedmodelling using the Event-Bmodelling language. The
contextualization of Event-B models is based on knowledge provided from domains
classified into constraints, hypotheses, and dependencies according to truthfulness
in proofs. The dependency mechanism between two models makes it possible to
structure the development of system models, by organizing phases identified in the
analyzed process. We illustrate via two simple case studies and on a voting protocol.

1 Introduction

Various informal, semi-formal and formalmethods, and techniques based on abstrac-
tion facilitate system design; they provide formal views of software-based systems
of varying levels of preciseness. They are supported by tools which include simple
tools such as editors (UML,SysML) aswell as very sophisticated tools such asmodel-
checkers [21], theorem provers or proof assistants [33, 36]. Tools are integrated into
formal IDEs [9, 31, 34, 35], which provide platforms for assisting developers of a
system following the correct-by-construction paradigm [26]. A very important fea-
ture in system design is the relevant acquisition of domain knowledge, allowing a
better understanding of the problem to solve as well as facilitating better commu-
nication between designers, specifiers, and domain experts. In fact, a conceptual
model integrates the intention of the designer and should provide a clear, correct,

This work was supported by grant ANR- 13- INSE- 0001 (The IMPEX Project http://
impex.loria.fr) from the Agence Nationale de la Recherche (ANR).

S. Kherroubi · D. Méry (B)
Université de Lorraine, LORIA UMR CNRS 7503, Campus scientifique, BP 239 - 54506,
Vandœuvre-lès-Nancy, France
e-mail: Dominique.Mery@loria.fr

S. Kherroubi
e-mail: souad.kherroubi@inria.fr

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_9

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_9&domain=pdf
mailto:Dominique.Mery@loria.fr
mailto:souad.kherroubi@inria.fr
https://doi.org/10.1007/978-981-15-5054-6_9

176 S. Kherroubi and D. Méry

and complete view of the system using a non-ambiguous semantics. Contextualism
focuses precisely on details of a specific application, as well as on the modelling
process itself. These details define a context and constitute the unique identity of
each modelling task.

Contextualization is an abstraction mechanism [37] that provides an organization
and structure to the collected data. The problem to solve is related to the differences
in perception between actors in the system, thus facilitating the organization and
rationalization of the perspectives of the same reality. The context is an important
element for verifying systems: whereas the use of the context in the development
phases makes it possible to situate the developed systems in space and time [32],
its use during the development process improves the validation of the produced
systems [14]. The validation is obtained by relating the real system to a model with
respect to the intended use cases (configurations and scenarios) of the model. This
chapter includes the notion of context and the introduction of a dependency relation
among formal state-based models; it completes and extends previous works [19, 22,
23].

The context has been widely recognized as important according to the various
research topics [7, 13, 27, 28]. For instance, the security domain, integrating knowl-
edge from attack patterns with limited knowledge related to the target system vulner-
abilities and potential threats strongly depends on the context of their application [6,
18]. The context is used to assess the impact and the plausibility of these attacks.
The reliability of a system is based on a systematic approach to recover require-
ments and strategies [25], by identifying, detecting, and mitigating risks and threats,
and developing secure mechanisms while helping designers to choose the appropri-
ate countermeasures to reduce attackers’ abilities. Thus, validation of assumptions
made by designers is performed on the modelling of threats associated with contex-
tual informations to protect the system against unauthorized modification of data or
disclosure of information. The context is therefore a key element in the choice of
the security patterns to be applied. Dines Bjørner [7] develops a domain engineering
from his triptych domain: system, requirements, and domains define the context.

Logics and ontologies are two main scientific fields, where the context has been
identified as an important notion. Recently, Barlatier [13] shows that this notion is
not absolute and is always defined with respect to a focus [8], an activity [12, 16, 24],
an intentional concept, i.e., an action [15]. Contexts are formal objects incrementally
constructed from an existing one corresponding to the context lifting (see for instance,
McCarthy [27]). The situation appears as a new parameter in predicates and thus,
predicates dependon a situation.At the proof-theoretical level, the context establishes
and validates trust relationships that provide valid interpretations in a specific domain
for certification purposes. In this paper, we are interested in the contextualization and
the context of proofs for the Event-Bmodelling language [1]. Event-B is a structuring
framework that ensures, through its language, a formal model for reactive systems.
The behavioral specifications in Event-B follow an assertional approach described
by means of components called contexts and machines. Since we are using the term
context in two different ways, we will use the term Event-B context, when we are

Contextual Dependency in State-Based Modelling 177

referring to a component context of Event-B. An Event-B model is a collection of
Event-B contexts and Event-B machines which are organized in Event-B projects.

Rather than considering contexts as formal objects like McCarthy, we consider
the context as the minimal knowledge being part of a system focused on proof.
The context is thus an effective part of proofs and constrains their semantics. We
propose to decompose the context in Event-B into: constraints, hypotheses, and
dependencies depending onwhether the knowledge is acquired, supposed, or derived
in a proof system. We define this new mechanism of dependency between Event-B
models, where the property of stable termination is a necessary condition for its
establishment. The constraints correspond to static properties defined in Event-B
contexts. The dependency mechanism is then defined by a combination of states and
static properties of Event-B contexts. The dependency is a relationship taking values
from existing facts in a situation that requires the definition of a new proof obligation.

The chapter is organized as follows. We briefly present the Event-B modelling
language in Sect. 2 and what we understand by context in this formalism. Section 3
defines dependency between Event-Bmodels by providing a new proof obligation for
establishing the dependency relationship. Section 4 illustrates the methodology for
developing models of a system using the dependency relationship. Section 5 summa-
rizes comments on the methodology and the role of dependency in the development
of systems. Finally, Sect. 6 concludes our work and gives perspectives.

2 Modelling in Event-B

An Event-B model is built with two main ingredients: a specification language based
on set theory and predicate logic, and a refinement mechanism that allows correct-
by-construction development. An Event-B model M is composed of contexts and
machines. A context C specifies the static part of a model and includes carrier sets s,
constants c, axioms, and theorems that establish constraints and properties of static
elements. A machine describes the dynamic part of the system by means of a finite
list of variables x which describe the state of the system, possibly modified by a list
of events {e0, ..., en}. The change of state must preserve assertions called invariants
Inv whichmust bemaintainedwhenever events in the system are observed. An event
is defined by a condition (guards) under which the event can be observed and actions
that define the evolution of the variable values in the model for the next state. In
Event-B, a situation S is called a state and a state includes variable values, as well as
values of sets and constants. Values of sets and constants are members of a domainD
which is used for interpreting terms as deferred sets or constants in Event-B contexts.

In an Event-B modelM, we have to express informations over the state as static
informations in Event-B contexts and as dynamic informations in Event-Bmachines.
The context Context (M) of an Event-B modelM is the minimal knowledge related
to the behavior of any action in the system satisfying the safety properties in a given
(state) situation. The context Context (M) includes axioms and theorems. Theorems
are derived from knowledges which are expressed as axioms or as others theorems.

178 S. Kherroubi and D. Méry

The minimality is linked to a given starting point in the reasoning using the context.
For instance, when considering the IEEE leader election protocol [2], the context
contains axioms for defining what are the properties of acyclic graphs and a theorem
expressing that, for any acyclic connected graph g and any node of the graph n, there
is a spanning tree for the graph g rooted with n. The minimal knowledge is divided
into three categories, explained in the following subsections.

2.1 Context as Constraints

The meaning of a model and its properties depends on the context of its conceptu-
alization. The semantic aspect of a conceptualization is the point of view based on
the model, its properties, and its context, which addresses the foundations of the sys-
tem according to the existing form, structure, and facts of a specific domain. These
features are called constraints. They correspond to the different concepts, roles, and
values of the attributes of the current domain. Constraints can be physical (i.e., they
exist in nature) such as the structure of the human body, the temperature in the
atmosphere, or they are fully conceived by human or artificial artifacts. For instance,
types of currency or types of vote (majoritarian voting, preferential voting, cumu-
lative voting,…) which make it possible to compute and give meaning to the result
of an election are constraints that define the context in which the proof is carried
out. Constraints are expressed in Event-B by the structures defined in the context,
namely, sets, constants, axioms, and theorems that establish their typing and their
static characteristics or properties. We denote these constraints by the form C_AX
and C_T M to illustrate axioms and theorems in a context of an Event-B model.

2.2 Context as Hypotheses

Assumptions or hypotheses on environment help to validate the system to build. They
are established by designers: assumptions are not always verified but only assumed,
accepted, or supposed. In the example of voting protocols, the objectives of each
voting protocol as well as the type of attacks described determine whether proofs
are successful or not. The use of cryptographic primitives to ensure the construction
of secure voting guaranteeing the required properties is based on assumptions about
difficulties in performing computations or solving some problems [17]. In the context
of the Belenios system [10] based on the version of Helios [11] with credentials and
zero-knowledge proofs, the proof scheme is constructed on the assumptions that
the registration authority and the bulletin board are not simultaneously dishonest,
and thus providing the correctness of the voting scheme is made under these trust
assumptions. Other works impose stronger hypotheses than these, such as in [38],
which assumes that bulletin boards are honest. We [19] have shown that these kinds
of assumptions can be expressed in Event-Bmodels, using refinement, by adding new

Contextual Dependency in State-Based Modelling 179

variables, events and properties in the machines. Hypotheses are restrictions on static
elements defined in Event-B contexts and are added to the Event-B context. Voting
protocols have been verified by making assumptions about the format of the ballots.
Thus, proofs are only possible using binary values of ballots (i.e., 1/0, yes/no, ...).
These restrictions are expressed by adding new constants and axioms in the Event-B
contexts. We note the hypotheses in the Event-B contexts by H_AX and H_T M to
illustrate the additional axioms and theorems in the contexts of an Event-B model.

2.3 Context as Dependencies

McCarthy has shown that predicates defining context, are parametrized by situa-
tions, thus defining a context lifting in his work. While the ontological point of
view considers that a context is a moment universals: A moment (from the Ger-
man Moment) [15] is an individual that existentially depends on other individuals.
Event-B is based on set theory and we have to consider a relation between Event-B
and ontologies. For instance, Barlatier [5] establishes a correspondence between set
theory and ontologies, namely, ontological concepts (i.e., types) are interpreted as
sets of elements and roles as relations between the elements of different concepts.
Starting from this observation, and by comparing with the situation theory, where
situations are interpreted as states in Event-B, and constraints as elements defined in
the Event-B contexts, we can define the context by a dependency relation between
the Event-B models. This relation results from the combination of situations (of the
values of states in the Event-B formalism) and of constraints expressed in Event-B
contexts by interpreting moment universals as stable termination properties. This
type of context can be illustrated by voting systems.

The voting process [19] consists mainly of three phases: (1) The preparation
phase: At the end of this phase, the lists of nominated candidates, as well as the
registered voters entitled to vote, shall be drawn up. The establishment of these lists
depends on the local laws of each country; (2) The vote registration phase: This
phase allows all eligible voters to express their choice on the basis of the list of
nominated representatives in the previous phase; Thus, by using the voters list, the
elector must authenticate himself as an eligible voter and cast his vote individually;
(3) The tallying phase: It covers the counting and results of the reports arising from the
recording phase. At the end of these phases, the interpretation of the results depends
on the method of voting adopted which constrains the final decision. Each phase of
the vote depends on the previous one. This notion of dependency exemplifies the
parties integrated into the entire voting system (“Whole”), ensuring them a separate
existence independent of the “Whole”.

The notion of existential dependency [20] states a general principle as follow:
Let the predicate ε denote existence. We have that an individual x is existentially
dependent on another individual y iff, as a matter of necessity, y must exist whenever

x exists, or formally ed(x, y)
de f= �(ε(x) ⇒ ε(y)).

180 S. Kherroubi and D. Méry

Thedependent constraints are expressedby D_AX and D_T M to illustrate depen-
dent axioms and theorems in the contexts of an Event-B model.

We have sketched the contextualization in Event-B, and we will describe the
notion of dependent Event-B models in order to enrich the structuring techniques in
this formalism. As refinement is themainmechanism used in the Event-B formalism,
we will explain in the next section how this mechanism is used to contextualize the
systemsunder study, allowing conceptualmodels to have abetter semantic integration
and thus improved reasoning.

3 Dependency of Models

The dependency between two Event-B modelsM1 andM2 is informally defined as
follows: (i) the Event-B contexts ofM1 andM2 may be related; (ii) some variables
of the first model M1 are transformed into constants in the target model M2; (iii)
the predicate characterizing the termination of the first model implies the constraints
defined in the Event-B context of the second component. In this case, a component
corresponds to an Event-Bmodel and possibly a set of models that refine this abstract
one, and it is requested that the refinement level for each phase (for instance, prepa-
ration, vote, result) must be sufficiently elaborate so that the set of constants in the
Event-B context of the phase that follows the current one finds its correspondent
(variable) in the last refinement of the phase on which it depends. In the following,
we adopt notations [4, 29], which express relational models and extensions to the
temporal aspects following TLA.

Given two Event-B modelsMi , with i ∈ 1..2 defined by:Mi =
∧

(T hi (si , ci), xi ,
Vali , Initi (xi), {ei0, ..., eini })
• T hi (si , ci) is the collection of Event-B contexts that define all elements and static
properties of the model Mi ;

• the state space Vali is the set of all possible values of the variables;
• DCi (si , ci) express the dependent constraints in the Event-B as the dependent
axioms D_AX (si , ci) and theorems D_T M(si , ci);

• the set of initial states Initi ;
• a set of events {ei0, ..., eini } and, for each event e, BA(e)(xi , x ′

i) is a relation
between xi and x ′

i values for variables xi ;• S pec(Mi) =
∧ Initi (xi) ∧ �[NEXTi]xi ∧ Li with NEXTi =

∧ ∃e.e∈{ei0, ..., eini }
∧ BA(e)(xi , x ′

i); x
′
i is the value of variables after the observation of the event

e; �[NEXTi]xi means that all state pair satisfies the relation NEXTi and the val-
ues of variables remain the same or change; and Li is a conjunction of weak and
strong fairness constraints on the combinations of events ei of the model Mi .

Contextual Dependency in State-Based Modelling 181

A set of traces generated over Vali , denoted by T race(Mi), is attached to each
relational model S pec(Mi) and are defined as follows:

T race(Mi) =
∧ {σ ∈ N −→ Vali |σ0 ∈ Initi ∧ ∀ j ∈ N.

(
(σ j , σ j+1) ∈ NEXTi
∨(σ j = σ j+1)

)
}

A trace σ ∈ T race(Mi) is fair with respect to Li , if σ satisfies Li and
t f air(Mi , Li) is the set of traces fair with respect to Li . To define the stable termina-
tion property, we modify the definition of the Leads to1 operator [4, 29]. It expresses
that we inevitably reach a future state satisfying Q and Q will remain true for any
next states.

Definition 1 (Stable termination) The stable termination property P �s Q is valid
for a trace σ ∈ T race(Mi), if ∀i.(i ≥ 0 ∧ P(σi) ⇒ ∃ j.(j ≥ i ∧ Q(σ j) ∧ ∀k.(k ≥
j ∧ Q(σk)))).

The notation P �s Qmeans that P leads to Q andwhen Q is true, it remains true.
We are using this property for a specification S pec(Mi) of a model Mi under the
fairness assumptions Li as follows: I ni ti �s Ti , where Ti is a set of states considered
as terminal states. I ni ti �s Ti should be true for any trace σ ∈ t f air(Mi , Li). The
stability implies that the predicate that characterizes the final states will remain true
for all reachable states afterwards. A proof of the progression by defining a variant
on a well-founded order is necessary to show convergence in the system [4, 29].

Definition 2 (Dependency between two Event-B models) The two modelsMi , with
i ∈ 1..2 (i.e.,M1 andM2) are dependent, andwe say that themodelM2 contextually
depends on the model M1 with respect to the property of termination T1 and we
denote Dep(M1, T1,M2, v1, c21), if

1. S pec(M1) � Init1 � T1 and T1 is the predicate characterizing the set of final
states at the stability of the model M1;

2. S pec(M1) � (∀x1, x ′
1.(T1(x1) ∧ NEXT1(x1, x ′

1) ⇒ T1(x ′
1)));

3. the dependent context extends the source context: T h2(s2, c2) extends
T h1(s1, c1);

4. there is a non-empty subset v1 of all set of variables x1 (v1 ⊆ x1) in the first model
M1 such that the following property is verified:

T h2(s2, c2) � (T1(x1) ∧ I nv1(s1, c1, x1) ∧ v1 = c21 ∧ c2 = c21c1c22) ⇒ DC2(s2, c2),

with c2 is the set of constants defined in the context of the first model M1 and
which is obtained by extension of the context T h1 according to the item 3, union
the variables v1 issued from the machine of the first model M1, to which the
constants c22 are added newly introduced in the Event-B context of the second

1Leads to: Under the fairness assumptions L of the model M, the specification of the model
S pec(M) satisfies the property P � Q, if for all traces σ ∈ t f air(M, L), the following property
holds:∀i.(i ≥ 0 ∧ P(σi) ⇒ ∃ j.(j ≥ i ∧ Q(σ j))).

182 S. Kherroubi and D. Méry

modelM2. Thevalues of c21 canbedefined according to the values of the variables
v1 in the first model.

Concretely, a modelM2 depends on another modelM1, if the predicate characteriz-
ing the set of terminal states of the first modelM1 satisfies the initial configuration
of the M2 defined by the content of sets, and values of constants of the context
T h2(s2, c2). T h2(s2, c2) is the structure defining the Event-B context of the second
model, i.e., all static properties (axioms and theorems) in conjunction that establish
the typing and the constraints of dependent and independent of the situations, while
DC2 are the constraints that must be satisfied by all final states of the first model,
i.e., which are dependent on situations. These situations are added to the context of
the second Event-B model, in conjunction with the properties that are independent
of the situations linked to the first model. This approach reflects the fact that at the
stabilization of the first phase, no modification can be made on these elements as
variables, since the latter in the first component maintain their values at termina-
tion. We then apply the new values of the variables defined in the first model to the
operator defining the predicate of the static constraints, which takes the list of sets
and constants defined in the context depending on. The correctness in Event-B is
defined by the set of proof obligations. The proof obligation to prove the dependency
mechanism between two models M1 and M2 which must be discharged is defined
as follows.

Definition 3 (Proof obligation of dependencies between M1 and M2)

T h2(s2, c2), I nv1(s1, c1, x1), v1 ⊆ x1, c21 ⊆ c2, T1(x1) � C2(s2, c2)(v1/c21)

The contexts2 form a partonomic relation where a context Cxt1 is a part of another
context Cxt2, if Cxt1 contains at least all the constraints verified in Cxt2. The second
model becomes dependent on the first one.

4 Case Studies

The dependency relation provides a structuring mechanism, when developing mod-
els. We are considering three case studies illustrating how the dependency relation is
used for. The first case study in Sect. 4.1 considers an experiment requiring the col-
lection of data prior to the processing of those data. The process is modelled into two
phases collecting and interpreting related by the dependency relation and the
data to process are first collected in the phase collecting and then the resulting set
of data is assigned to a constant for the second phase interpreting. The second case
study in Sect. 4.2 describes operations of a ERP management system. It concerns the
management of inventories by purchase and sale of articles, and a deferred account-
ing of revenues and expenditures. Finally, the last case study in Sect. 4.3 is addressing

2We will talk, indifferently, about Event-B contexts or models in partonomic relation.

Contextual Dependency in State-Based Modelling 183

the voting process which is modelled by three phases preparing, recording, and
tallying. The three phases are related as follow: the model recording depends on
the model preparing, and the model tallying depends on the model tallying.

4.1 Example of an Experiment

We illustrate required mechanisms using an experiment process. An experiment
requires the collection of data and the processing of collected data to produce an
indicator. We do not care what the experiment is and we consider the example as
illustrating the phasing of two processes, namely, collecting and interpreting.
The process collecting is simply collecting data from sensors and storing them
in a file; there is the possibility of invalid data, which is not stored in the file. One
assumes that there is a filter which states when a datum is valid or not. The process
interpreting applies an analysis of the results which are stored in store at the end
of the process collecting. The problem is to evaluate the value of sum(store)
when store is computed. The problem is clearly decomposed into two phases and is
first expressed by a machine stating the two different computations: (1) The process
collecting produces the final value of store; (2) The process interpreting returns
the value of the summationof all the values of store. First,wedefine the initial context
that helps to define the specification of the problem to solve. We define the function
sum which returns the value of the summation of data of a given set. We do not care
what is exactly sum and what we are really computing. The small example illustrates
our methodology for analyzing this class of problems. The machine exp0 simply
describes the two phases for producing the required result, namely, s = sum(store),
when the process is completed.

CONTEXT data0
SETS data, PH ASES
CONSTANTS valid, tmax, val, sum, collecting, interpreting, f inal
AXIOMS
axm1 : valid ⊆ data
axm2 : tmax ∈ N

axm3 : tmax = 0
axm4 : val ∈ N × data → N

axm5 : sum ∈ P(N × data) → N

axm6 : sum(∅) = 0
axm7 : ∀i, e �→ i �→ e ∈ N × data ⇒ sum({i �→ e}) = val(i �→ e)
axm8 : ∀p, i, e �→ p ⊆ N × data ∧ e ∈ data ∧ i ∈ N

⇒ sum(p ∪ {i �→ e}) = sum(p) + val(i �→ e)
axm7 : parti tion(PH ASES, {collecting}, {interpreting}, { f inal})

184 S. Kherroubi and D. Méry

MACHINE exp0
SEES data0
VARIABLES store, phase, s
INVARIANTS
inv1 : store ⊆ N × data
inv2 : phase ∈ PH ASES
inv3 : s ∈ N

inv4 : phase = f inal ⇒ s = sum(store)
EVENTS
EVENT INITIALISATION
BEGIN
act1 : store := ∅

act2 : phase := collecting
act3 : s := 0

END
EVENT collecting
WHEN
grd01phase = collecting

THEN
act1 : phase := interpreting
act2 : store : |(store′ ⊆ N × data ∧ ran(store′) ⊆ valid)

END
EVENT interpreting
WHEN
grd1 : phase = interpreting

THEN
act1 : phase := f inal
act2 : s := sum(store)

END

Each event (collecting and interpreting) describes a pre/post specification that is
supposed to be developed in another session. Now, we develop two separate models
that are modelling the two processes collecting and interpreting. Each event corre-
sponds to a phase and defines a required liveness property which is derived from the
definition of the process experimenting.

The main liveness property can be simply stating that the experiment starts and
ends after a time which is explicitly stated in the experiment requirements.

• at(experimenting) ∧ store = ∅ ∧ s = 0 ∧ t = t0 � a f ter(experimenting) ∧
s = sum(store) ∧ t = t f and the process experimenting is decomposed into the
two processes corresponding to models:

• phase collecting: at(collecting) ∧ store = ∅ ∧ s = 0 � a f ter(collecting) ∧
(store ⊆ N × data ∧ ran(store) ⊆ valid)

• phase interpreting: at(interpreting) ∧ (store ⊆ N × data ∧ ran(store) ⊆
valid) � a f ter(interpreting) ∧ s = sum(store).

Contextual Dependency in State-Based Modelling 185

The depends operation expresses that the variable store has a final value which is
used as an constant cstore in the model interpreting. The validity of the depends
operation is based on checking that the final value of store is satisfying the properties
of cstore, which are defined as axioms in the development of interpreting. The
depends operation is based on the definition and the proof of livenessbarl properties
and we are using the approach in [29] for combining and integrating the two phases.
The two phases collecting and interpreting are defined in the same machine; in a
next step, each event will be refined in separate machines which are dependent.
The dependency is used for structuring the refinement-based development and for
decomposing machines.

4.2 ERP Management System

The example presented here concerns the management of inventories by purchase
and sale of articles, and a deferred accounting of revenues and expenditures. This
modelling is a simplified representation and it does not describe all the manage-
ment details in an ERP system. The first model denoted byM_sp is described by a
context sales_purchases_cxt and a machine sales_purchases_machine. The system
manages purchases (buy event) and the sale (sale event) of articles. Sales are per-
formed according to the prices fixed in the context, while purchases are fixed by the
market. The imputation of the deferred accounting entries allows transactions to be
counted only at the time of the execution of the transfer operations.

CONTEXT sales_purchases_cxt
SETS

ART ICLES
CONSTANTS
de f erred_period, prices_art

AXIOMS
axm1 : de f erred_period ∈ N1
axm2 : prices_art ∈ ART ICLES → N1

The journal of accounting entries for sales and purchases is configured on
a deferred basis according to a closing period market “deferred period” noted
deferred_period. Purchases and sales can be performed during this period (grd3).

This period is decremented by the convergent event “forward_time”which decre-
ments the expression of the variant defined in this first machine, and is under a weak
fairness assumption. The printing of the various sales and purchases operations is
done through the two variables incomings and expenses, respectively.

186 S. Kherroubi and D. Méry

MACHINE sales_purchases_machine
SEES sales_purchases_cxt
INVARIANTS
inv1 : period ∈ 0 .. de f erred_period
inv2 : sold_art ⊆ ART ICLES
inv3 : incomings ∈ sold_art → N

inv4 : purchased_art ⊆ ART ICLES
inv5 : expenses ∈ purchased_art → N

inv6 : purchased_art ∩ sold_art = ∅

inv7 : ∀art, p �→ (art �→ p ∈ incomings
⇒ art �→ p ∈ prices_art)

VARIANT
de f erred_period − period

EVENTS
EVENT forward_time convergent
WHEN
grd1 : period ∈ 0 .. (de f erred_period − 1)

THEN
act1 : period := period + 1

END

EVENT sale
ANY art
WHERE
grd1 : art ∈ ART ICLES
grd2 : art /∈ sold_art ∧ art /∈ purchased_art
grd3 : period ∈ 0 .. (de f erred_period − 1)

THEN
act1 : sold_art := sold_art ∪ {art}
act2 : incomings(art) := prices_art (art)

END
EVENT buy
ANY art, p
WHERE
grd1 : art ∈ ART ICLES ∧ p ∈ N1
grd2 : art /∈ purchased_art ∧ art /∈ sold_art
grd3 : period ∈ 0 .. (de f erred_period − 1)

THEN
act1 : purchased_art := purchased_art ∪ {art}
act2 : expenses(art) := p

END ...

The closure of an operation period implies that the accounting of the income
and expenditure can begin when the value of the period variable will be equal to
deferred_period, i.e., at the stability of the first component. This is expressed by the
dependency relation between the two models. Accounting is described by the model
M_accounting defined by themachine accounting_machinewhich sees the context
accounting_cxt depending on the machine sales_purchases_machine. This context
extends the first one sales_purchases_cxt and contains all the constants defined as
variables in this latter (sales_purchases_machine) with constant period having as its

Contextual Dependency in State-Based Modelling 187

value deferred_period in the dependent context. We note the dependency between
the two models by

Dep(M_sp, period = de f erred_period,M_accounting, v1, c21), with: v1
all variables defined by the invariants inv1,...,inv7 in the first machine; and c21
corresponds to the same elements, but defined as constants in the dependent con-
text accounting_cxt, to which we add the following constraint: axm11 : period =
de f erred_period ⇒ (purchased_art = ∅ ∨ sold_art = ∅). The dependent
constraint in this example is period = de f erred_period ∧ axm11. The account-
ing consists of the computation using the variable balance, which is initialized to
0, of the difference between the incomings and expenses by means of the constant
total defined in the dependent context as a function that allows to sum the values of
arguments that it takes.

CONTEXT cxt_compt EXT ENDS cxt_achat_vente
CONSTANTS
period, sold_art,

AXIOMS
axm1 : period = de f erred_period
axm2 : sold_art ⊆ ART ICLES
axm3 : incomings ∈ sold_art → N

axm4 : purchased_art ⊆ ART ICLES
axm5 : expenses ∈ purchased_art → N

axm6 : purchased_art ∩ sold_art = ∅

axm7 : ∀art, p �→ (art �→ p ∈ incomings ⇒ art �→ p ∈ prices_art)...

MACHINE accounting_machine / ∗ dependent machine ∗ /

SEES accounting_cxt / ∗ dependent context ∗ /

INVARIANTS
inv1 : balance ∈ Z ∧ accounted ∈ BOOL
inv2 : period = de f erred_period ∧ accounted = FALSE

⇒ balance = 0
EVENT accounting
WHEN
grd1 : accounted = FALSE

THEN
act1 : balance := total(incomings) − total(expenses)
act2 : accounted := T RUE

END

This relation can be generalized to any number of Event-B models, as shown in
the diagram of Fig. 1. If we take for instance the example of a management system,
it is then possible to define a dependency between Human Ressources Service and
Payroll Service, and between this last service and the Accounting Service. Thus, the
dependency relation is irreflexive and transitive, since the extensions between Event-
B contexts have a meaning only in one way, i.e., if c2 extends c1, then c1 does not
extend c2.

188 S. Kherroubi and D. Méry

Human
Ressources
Service

Payroll Service
Sales and
Purchases
Service

Accounting Service

Fig. 1 ERP management system

4.3 Applying the Dependency Mechanism for Voting
Protocols

We have developed a voting system [19] as an Event-B composition via the depen-
dency mechanism. The models in our development are described by means of Event-
B contexts and machines linked by refinement describing the constants and the
dynamics of the system (see Fig. 2). The advantages of such modelling is that proofs
are more easily realized, and verification properties can be expressed separately. We
have, for instance, expressed Eligibility, No double voting, Confidentiality, in the
recording phase; and the Verifiability property in the tallying phase.

VARIABLES rec_votes, timer
INVARIANTS
inv1 : rec_votes ∈ Sig ↔ Choices
inv2 : timer ∈ start_time .. end_time

VARIANT end_time − timer
INITIALISATION
act1 :rec_votes := ∅

act2 :timer := start_time
EVENT register_votes
WHEN
grd1 :timer ≥ start_time ∧ timer < end_time
grd2 :∀i, j �→ i �→ j ∈ interrupt_sequences ⇒ timer /∈ i .. j

THEN
act1 :rec_votes : |rec_votes′ ∈ (Sig ↔ Choices)

END

Contextual Dependency in State-Based Modelling 189

EVENT forwarding_time
STATUS convergent
WHEN
grd :timer < end_time

THEN
act :timer := timer + 1

END
EVENT finish
WHEN
grd1 :timer = end_time

THEN
act :skip
END

Fig. 2 The structure of the refinement-based formal development of the voting system

190 S. Kherroubi and D. Méry

In the first abstract model M1_Recording the state of the system is character-
ized by two variables that represent the registered votes and the elapsed time in
the system. The votes are modelled as a relationship between all signatures (Sig)
and the electors’ choices (Choices). The invariant in this machine simply provides
a means for typing these variables. The precondition for this phase, as expressed by
the initialization event, is that the time is equal to the opening time of the offices
fixed in the context C0_Recording and that no vote has been recorded. A vote
modifies the variable rec_votes which is performed by the event register_votes.
In this model, we distinguish only the values of variables rec_votes which take
their values in Sig ↔ Choices without making precise the undertaken actions. The
event f orwarding_time changes the value of the variable timer introduced in this
machine to express the progression of time in the system. The variable value is incre-
mented by the action of the event f orwarding_time until the closing time of the
offices end_time is reached. We note that this event has a convergent status under
which a weak fairness assumption is made. Thus, this event (f orwarding_t ime)
will not be observable when the value of the timer variable has reached end_time.

4.3.1 Proving the Required Termination Property

The required termination property is defined as follows. Consider

T1 =∧ timer = end_time

We have x1 = {rec_votes, timer}. The fairness assumptions made in the current
machine are

LM1 =
∧
WFx1(f orwarding_t ime)

NEXT1 =
∧ ∨BA(register_votes)(x1, x ′

1)∨BA(f orwarding_t ime)(x1, x ′
1)∨BA(f inish)(x1, x ′

1)∨(x1 = x ′
1)

Init1(x1) =∧ timer = start_time
∧rec_votes = ∅

The stability property to prove is the following:

ΦM1 =
∧ Init1(x1) �s T1

which means that, from the opening time of polling stations, i.e., at the initialization,
when no vote has yet been registered, we inevitably reach a state where time will
progress until reaching the closing hour of polling station, with possibly a change of
the values of the recorded votes.We define: Initx1 =

∧
P0, V (t) =

∧
end_time − timer =

t .

Contextual Dependency in State-Based Modelling 191

The property of termination ΦM1 can be expressed as follows:

ΦM1 =
∧ {V (t) � V (t − 1) Φ1

, (∃t.V (t)) � V (0) Φ2

}

• Φ1 indicates that inevitably that we will reach a state where the counter value
decrease by 1;

• Φ2 indicates that wewill inevitably reach a statewhere the differencewill converge
to the closing time of the polling station, the value for which the variant will be
equal to zero;

By letting T1 =
∧
V (t) and T2 =

∧
V (t − 1), we have

P0 ∧ [NEXT1]x1 ⇒ (T ′
1 ∨ T ′

2)

We split the proof of this implication into the following proofs, according to the
definition of the NEXT1:

• T1 ∧ BA(f orwarding_time)(x1, x ′
1) ⇒ (T ′

1 ∨ T ′
2)• T1 ∧ BA(register_votes)(x1, x ′

1) ⇒ (T ′
1 ∨ T ′

2)• T1 ∧ BA(f inish)(x1, x ′
1) ⇒ (T ′

1 ∨ T ′
2)• T1 ∧ x1 = x ′

1 ⇒ (T ′
1 ∨ T ′

2)

The only event that ensures progress of time values is f orwarding_t ime, thus,
the value of the counter is modified only by the actions in this event. This event
is observable until the value of timer will reach end_time. The weak fairness
assumption made on the event f orwarding_time lets say that from (a): T1(x1) ∧
BA(f orwarding_time)(x1, x ′

1) ⇒ T2(x ′
1), and from the feasibility condition

of the event f orwarding_time we can deduce that (b): T1(x1) ⇒ (∃x ′
1.

BA(f orwarding_time)(x1, x ′
1)) are satisfied by the event f orwarding_t ime.

Thus, we can deduce from (a), T1 ∧ 〈NEXT ∧ f orwarding_t ime〉x1 ⇒ T2 and
from (b) we can deduce that T1 ⇒ EN ABLED〈 f orwarding_t ime〉x1 , with
EN ABLED〈 f orwarding_time〉x1 =∧ (∃y1.BA(f orwarding_t ime)(x1, y1)). The
WF1 rule allows the deduction that time will progress to decrease the variant, and
since no event disturbs the property V (t), except of the event f orwarding_t ime.
By applying the LATTICE rule over the set of well founded of natural integers, we
can deduce that the system will converge toward the value V (1). We can then deduce
that: S pec(M1) � Φ1.

Then we have: T1 = 1 = V (1). The observation of the event f orwarding_t ime
reaching V (1), and the weakest fairness assumption made on the same event, allow
us to conclude that: S pec(M1) � Φ2, from where the termination with stability is
reached, because once the variant reaches its minimum value, only the event f inish
will be activated in the system, and no changes can be made on the variables in
the system, since none of the events register_votes and f orwarding_t ime will be
activated.

192 S. Kherroubi and D. Méry

In all refinements that follow this abstract model, termination proofs are the same.
Since all events that will be introduced will also be guarded by the guards grd1 and
grd2 of the event register_votes, no event changes the time and f orwarding_t ime
and f inish remain unchanged. Termination with stability is also defined and proved
in the tallying phase of the patterns defined for voting protocols.

4.3.2 Condition for Dependencies

A vote is validated only when all the constraints defined in the dependent Event-B
context of the tallying phase are valid. The validation of these constraints is based on
facts or data generated during the recording phase. This implies the existence of states
in the model M8_Recording_T 1 (Fig. 2) satisfying these constraints that we call
context deduced or combination of situations and constraints. The satisfaction of
axioms thus defined, particularly the axioms dep_axm23 and dep_axm24, expresses
the “initial configuration” of this phase of the vote:

C0_Tallying_T 1(s2, c2) ∧ I ni t2

where s2 and c2 are, respectively, sets and constants of the B context C0_
Tallying_T 1. This relationship expresses a dependency between these two compo-
nents. In particular, the two axioms dep_axm23 and dep_axm24 should be validated
by properties over values of state variables of the previous phase.

The states that validate these constraints are the states which, in addition to sat-
isfying the axioms axm1 ...axm22, must also fulfill the conditions defined in the
axiom dep_axm24 which expresses constraints, such as

• the closing time of polls has arrived: timer = end_time;
• no corrupt signature has been recorded: alone_corrupt_signatures = ∅;
• no corrupt choices assigned to an envelope have been recorded:
corrupt_choices_envelopes = ∅;

• choices and signatures are registered in the polls provided the voters who made
these choices have signed at offices where they were registered to vote:
∀ s, v, h �→ (s �→ v ∈ rec_votes ∧ h �→ (s �→ v) ∈ registred_votes_offices ⇒
∃ elec �→ ((elec �→ s) �→ h ∈ voters_hosting));

• the number of correct votes is the same as the number of recorded envelopes:
correct_choices_envelopes ∈ valid_choices � valid_envelopes;

• a recorded vote (with valid choices and signatures) cannot belong to two dif-
ferent offices: ∀ v1, b1, b2 �→ (b1 �→ v1 ∈ registred_votes_offices ∧ b2 �→ v1 ∈
registred_votes_offices ⇒ b1 = b2);

• the number of correct choices is the same as the number of recorded bulletins:
choice_bulletins ∈ valid_choices � recorded_bulletins;

Contextual Dependency in State-Based Modelling 193

• at the closure of polling stations, we have the guarantee that all voters who
expressed their choice and have signed the electoral list will have a bulletin that
will be counted, and vice versa, that all the bulletins that will be counted, were
expressed by voters who expressed their choice and have correctly signed.

5 Contextualizing Systems Versus Refinement of Event-B
Models

The case study [19] illustrates how refinement mechanism in its various forms (hor-
izontal and vertical) contextualizes the target systems and provides a good compro-
mise between expressiveness and rigorous reasoning. Refinement can be seen as an
a posteriori approach, where implicit knowledge can be explicit by integration into
abstract models, thus avoiding some conflicts and ambiguities. Implicit semantics
play an important role in the identification and evaluation of the functionalities of
the studies systems.

Our investigations show that as long as there are semantically equivalent relations
between constraints, refinement mechanism remains a good integration approach
for the verification of systems that reconciles the different views of different actors
and parties involved in the system. The examples [3, 30] illustrate this point of
view. The work [3] deals with the design of an avionics system, where the part
that produces information such as altitude and flight speed communicates them to
the party responsible for their display via a unidirectional channel. These data are
exchanged by converting values expressed in inches, meter, and kilometer using
constants, axioms defined in Event-B contexts. While the component responsible for
calculating this information expresses the altitude in inches and the speed in meters
per hour, their display is carried out in meters and kilometers per hour, respectively.
The system [30] estimates wheel speed in kilometers per hour, while the calculation
for determining ground speed is estimated in miles per hour. This example also
introduces conversion of constants between the various units used to express the
requirements.

We have also modelled a toll system that considers a case of currency. In this
case study, the ticket price is a number that takes its values in the set of integers.
However, this value is interpreted for the system designer and for the users of the
services offered on the highway, it corresponds to the currency used to pay for the
access service to the highway. We have shown by refinement that this semantics can
be explained because there is a relation which establishes an equivalence between
the different values of the different currencies that can be used to settle the sum to
be paid. This is the exchange rate between two currencies which defines the rate at
which one currency will be exchanged for another. This is achieved by: adding new
sets, constants, and axioms by extending the B contexts; by modifying the events
concerned and by introducing the appropriate gluing invariants to better express the

194 S. Kherroubi and D. Méry

semantics of this context. The context treated in the various cases cited corresponds
to the context of constraints.

Accordingly, the carrier sets and logic quantifiers on which the Event-B is based
also allow a good parameterization of the models for the verification by an automatic
construction of invariants on systems covering enough behaviors to conceive design
patterns. The instantiation of the obtained patterns consists of configuring the system
to specify the values of the sets in Event-B contexts, this case has a link with the
validation issues and does not give rise to additional proof obligations; or to introduce
other refinements for the specific needs or requirements of designers. The refinement
in the Event-B formalism is defined by the addition of machines that refine other
machines to better define behaviors in the systems or to introduce other behaviors
that do not exist in the abstract models. This approach requires the use of Event-B
contexts that defined the static aspects in the models. Often, it is done by extension of
these Event-B contexts that one can integrate new concepts, useful mechanisms for
system functionalities. This method has a great advantage that consists in factoring
the efforts of proofs to be realized for possible reuse of the proofs and therefore of
the developed models.

Contrary to what we have claimed in the above, when no interpretation exists
between the constraints to elaborate the semantic of the context, refinement via
different extensions between the Event-B contexts is possible. The example of the
voting systems that we developed in [19] illustrates this case. Different elections have
different modes/types of voting and voting theory analyzes the advantages and disad-
vantages of each. For example, a majoritarian voting where a presidential candidate
must be elected is represented by paper ballot where every candidate has the option
to vote and each paper corresponds to one candidate (vote or poll). This constraint is
shown in Event-B by the following constant: axmt1 : bulletins_representatives ∈
Representatives � Bulletins, where Representatives corresponds to the set of all
representatives needed for a specific election including designations that may be
chosen by a voter. For instance, this set can contain: candidat1, candidat2,..., candi-
datn , None_of_the_above, in the case of a presidential election. It may also contain
favorable, unfavorable, if the choice in a referendum is an adherence to any law.

In the case of a preferential voting or cumulative voting, voters should make their
choice on paper ballot, where all candidates are listed on all these papers. This choice
corresponds to a preference ordermentioned next to each candidate on the same paper
ballot. This constraint corresponds to a Cartesian product presented as follows in the
Event-Bmethod: axmt2 : bulletins_representatives = Representatives × Bulletins.
These constraints situate our development and thus contextualize the proofs.We have
shown that constraints rely on the static part in the system, and we qualify them as a
context of constraints. Each type of voting is defined in a different Event-B context
as shown in Fig. 2.

Contextual Dependency in State-Based Modelling 195

6 Conclusion

The context lifting of McCarthy involves situations or times. Furthermore, the parto-
nomic relations between contexts in [13] express a change of structures which corre-
sponds to a change of models in our case. The context as knowledge is a notion which
depends on space and time, it can therefore be defined as a dependency betweenmod-
els in Event-B, where the termination as defined must be established. The principle
of dependency is a dual principle to the principle of invariance in Event-B machines,
claiming that states are constrained by invariants in order to establish safety in a proof
system. Aswell as improving productivity, this decomposition can also improve soft-
ware/system quality by providing guarantees with respect to avoidance of security
risks and attacks in the case of voting protocols. This modelling approach also makes
it possible to exploit the dependent Event-B contexts for validating ontologies.

The proof context in [14] refers to the environment in which the target system
is designed and interacts with this system. This environment is constructed as a
component with a set of finite but exhaustive behaviors. The context is the perimeter,
i.e., constraints and conditions, which characterize a set of interactions of the model
with its environment. Such a system is a model represented by context automata.
The modelling of the context is carried out in a context description language called
CDL. While in this formalism the analysis of the safety and liveness properties is
carried out by a composition of the model to be verified with the one containing
the environmental specification, in the Event-B formalism, this notion is part of
the developed models, since the considered systems are closed systems where the
environment is included in their modelling.

Future work will explore the use of the dependency relationship, when developing
technical systems, and questions related to the mechanization depends on relation
over Event-B components.

References

1. J-R. Abrial, Modeling in Event-B: System and Software Engineering (Cambridge University
Press, Cambridge, 2010)

2. Jean-Raymond Abrial, Dominique Cansell, Dominique Méry, A mechanically proved and
incremental development of IEEE 1394 tree identify protocol. Formal Asp. Comput. 14(3),
215–227 (2003)

3. Y. Ait Ameur, D. Méry, Making explicit domain knowledge in formal system development.
Sci. Comput. Program. 121(100–127) (2016)

4. M.B. Andriamiarina, Développement d’algorithmes répartis corrects par construction (Uni-
versité de Lorraine; Loria & Inria Grand Est, Thése, 2015)

5. Patrick Barlatier, Conception et implantation d’un modèle de raisonnement sur les contextes
basée sur une théorie des types et utilisant une ontologie de domaine (Université de Savoie,
Thése, 2009)

6. N. Benaïssa, D. Mér,. Cryptographic protocols analysis in event B, in Perspectives of Systems
Informatics, 7th International Andrei Ershov Memorial Conference, PSI 2009, Novosibirsk,

196 S. Kherroubi and D. Méry

Russia, June 15-19, 2009. RevisedPapers, ed. byA. Pnueli, I. Virbitskaite,A.Voronkov, volume
5947 of Lecture Notes in Computer Science (Springer, 2009), pp. 282–293

7. Dines Bjørner, Manifest domains: analysis and description. Formal Asp. Comput. 29(2), 175–
225 (2017)

8. P. Brézillon, C. Tijus, Représentation contextualisée des pratiques des utilisateurs, inExtraction
des connaissances : Etat et perspectives (Ateliers de la conférence EGC’2005), ed. by J-M.
Petit, N. Vincent, F. Cloppet, vol. E-5 of RNTI, Cépaduès-Éditions (2005), pp. 81–88

9. ClearSy. Atelier B. http://www.atelierb.eu/
10. Véronique Cortier, Georg Fuchsbauer, David Galindo, BeleniosRF: a strongly receipt-free

electronic voting scheme. IACR Cryptol. 2015, 629 (2015)
11. Véronique Cortier, David Galindo, Stéphane Glondu, Malika Izabachène, A generic construc-

tion for voting correctness at minimum cost - application to helios. IACR Cryptol. 2013, 177
(2013)

12. J.L. Crowley, J. Coutaz, G. Rey, P. Reignier, Perceptual Components for Context Aware Com-
puting (Springer, Berlin, Heidelberg, 2002), pp. 117–134

13. RichardDapoigny, PatrickBarlatier,Modeling contextswith dependent types. Fundam. Inform.
104(4), 293–327 (2010)

14. Philippe Dhaussy, Frédéric Boniol, Mise en œuvre de composants MDA pour la valida-
tion formelle de modèles de systèmes d’information embarqués. Ingénierie des Systèmes
d’Information 12(5), 133–157 (2007)

15. P. Dockhorn Costa, J.P. Andrade Almeida, L. Ferreira Pires, G. Guizzardi, M.J. van Sinderen,
Towards conceptual foundations for context-aware applications, in AAAI Workshop on Model-
ing and Retrieval of Context 2006, ed. by T.R. Roth-Berghofer, S. Schulz, D.B. Leake, AAAI
Technical Report, vol. WS-06, Menlo Park, CA, USA (AAAI Press, 2006), pp. 54–58

16. Paul Dourish, Seeking a foundation for context-aware computing. Human-Comput. Interact.
16(2–4), 229–241 (2001)

17. P-A. Fouque, Le partage de clés cryptographiques: Théorie et Pratique. Thése de doctorat,
Université Paris 7 (2001)

18. Igor Nai Fovino and Marcelo Masera. Through the description of attacks: A multidimensional
view. In Janusz Górski, editor, Computer Safety, Reliability, and Security, 25th International
Conference, SAFECOMP2006, Gdansk, Poland, September 27-29, 2006, Proceedings, volume
4166 of Lecture Notes in Computer Science, pages 15–28. Springer, 2006

19. J. Paul Gibson, S. Kherroubi, D. Méry, Applying a dependency mechanism for voting pro-
tocol models using event-B, in Formal Techniques for Distributed Objects, Components, and
Systems - 37th IFIP WG 6.1 International Conference, FORTE 2017, Held as Part of the 12th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2017,
Neuchâtel, Switzerland, June 19-22, 2017, Proceedings, ed. by A. Bouajjani, A. Silva texti-
tLecture Notes in Computer Science, vol. 10321 (Springer, 2017), pp. 124–138

20. G.Guizzardi,Ontological Foundations for Structural ConceptualModels. Ph.D. thesis, Univer-
sity of Twente, 2005. Published as the book “Ontological Foundations for Structural Concep-
tual Models”, Telematica Instituut Fundamental Research Series No. 15, ISBN 90-75176-81-3
ISSN 1388-1795; No. 015; CTIT PhD-thesis, ISSN 1381-3617; No. 05-74

21. G. Holzmann, The spin model checker. IEEE Trans. Softw. Eng. 16(5), 1512–1542 (1997)
22. S. Kherroubi, D. Méry, Contextualisation et dépendance en Event-B, in Approches Formelles

dans l’Assistance au Développement de Logiciels (AFADL), Montpellier, France (2017)
23. S. Kherroubi, D. Méry, Contextualization and dependency in state-based modelling - appli-

cation to event-B, in 7th International Conference on Model and Data Engineering (MEDI
2017), Model and Data Engineering, Barcelona, Spain (2017)

24. A. Kofod-Petersen, J. Cassens, Using activity theory to model context awareness, inModeling
and Retrieval of Context, Second International Workshop, MRC 2005, Edinburgh, UK, July 31
- August 1, 2005, Revised Selected Papers, ed. by T. Roth-Berghofer, S. Schulz, D.B. Leake,
Lecture Notes in Computer Science, vol. 3946 (Springer, 2005), pp 1–17

25. G. Kotonya, I. Sommerville, Requirements Engineering: Processes and Techniques, 1st edn.
(Wiley Publishing, New York, 1998)

http://www.atelierb.eu/

Contextual Dependency in State-Based Modelling 197

26. G.T. Leavens, J-R. Abrial, D.S. Batory, M.J. Butler, A. Coglio, K. Fisler, E. C.R. Hehner,
C.B. Jones, D. Miller, S.L. Peyton Jones, M. Sitaraman, D.R. Smith, A. Stump, Roadmap
for enhanced languages and methods to aid verification, in GPCE, ed. by S. Jarzabek, D.C.
Schmidt, T.L. Veldhuizen (ACM, 2006), pp. 221–236

27. J. McCarthy, Notes on formalizing context, in Proceedings of the 13th International Joint
Conference on Artifical Intelligence - Volume 1, IJCAI’93, San Francisco, CA, USA (Morgan
Kaufmann Publishers Inc, 1993), pp. 555–560

28. J. McCarthy Notes on formalizing context, in Proceedings of the 13th International Joint
Conference on Artificial Intelligence. Chambéry, France, August 28 - September 3, 1993, ed.by
R. Bajcsy (Morgan Kaufmann, 1993), pp. 555–562

29. D. Méry, M. Poppleton, Towards an integrated formal method for verification of liveness
properties in distributed systems. Softw. Syst. Model. (SoSyM) (2015)

30. D. Méry, S. Rushikesh, A. Tarasyuk, Integrating domain-based features into event-B: a nose
gear velocity case study, inModel andData Engineering - 5th International Conference, MEDI
2015, ed. by L. Bellatreche, Y. Manolopoulos, LNCS, vol. 9344 (Springer, Rhodes, Greece,
2015), pp. 89–102

31. project RODIN. Rigorous open development environment for complex systems. http://rodin-
b-sharp.sourceforge.net/ (2004). 2004–2007

32. A.G. Sutcliffe, S. Fickas, M. Moore Sohlberg, PC-RE: a method for personal and contextual
requirements engineering with some experience. Requir. Eng. 11(3), 157–173 (2006)

33. The Coq Development Team. The Coq Proof Assistant. INRIA, http://coq.inria.fr (1999–2017)
34. The FoCaLiZe Development Team. FoCaLiZe. INRIA, http://focalize.inria.fr/
35. The Frama-C Development Team. Frama-C . CEA, https://frama-c.com/
36. The Isabelle Development Team. Isabelle. Cambridge University and TUM, http://www.cl.

cam.ac.uk/research/hvg/Isabelle/index.html (1988–2017)
37. M. Theodorakis, A. Analyti, P. Constantopoulos, N. Spyratos, Contextualization as an abstrac-

tion mechanism for conceptual modeling. Technical Report TR255, University of Crete (1999)
38. Y. Tsiounis,M.Yung,On the security of elgamal based encryption, inPublicKeyCryptography,

First International Workshop on Practice and Theory in Public Key Cryptography, PKC ’98,
Pacifico Yokohama, Japan, February 5-6, 1998, Proceedings, ed. by H. Imai, Y. Zheng, Lecture
Notes in Computer Science, vol. 1431 (Springer, 1998), pp. 117–134

http://rodin-b-sharp.sourceforge.net/
http://rodin-b-sharp.sourceforge.net/
http://coq.inria.fr
http://focalize.inria.fr/
https://frama-c.com/
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html
http://www.cl.cam.ac.uk/research/hvg/Isabelle/index.html

Configuration of Complex
Systems—Maintaining Consistency
at Runtime

Azadeh Jahanbanifar, Ferhat Khendek, and Maria Toeroe

Abstract For management purposes, the sub-systems of a system are generally
described through various configurations, each fragment focusing on a specific sub-
system, e.g., platform, middleware, etc. To form a consistent system configuration,
these independently developed configurations, also known as partial configurations
or configuration fragments, need to be integrated together. This integration is a chal-
lenging task,mainly because of overlapping entities (different logical representations
of the same system resource) in the configuration fragments and/or complex rela-
tionships among the entities of the different configuration fragments. At runtime,
the system may be reconfigured to meet new requirements or in response to perfor-
mance degradations for instance. These changes may lead to inconsistency as they
may violate some constraints between entities. Maintaining the consistency, i.e.,
satisfying the defined constraints, and adjusting the system configuration at runtime
is another challenging task. In this book chapter, we describe our overall model-based
framework for tackling these important issues. We discuss briefly the modeling and
other approaches that compose this framework and elaborate on the runtime configu-
ration validation approach. With this approach, the runtime reconfiguration requests
are checked, before applying them, against a reduced set of the consistency rules
instead of the complete set of rules, and the reconfiguration requests are applied
only if they are safe, i.e., they preserve the configuration consistency and satisfy the
constraints. Using a reduced set of consistency rules reduces the validation time,
which is important for dynamic/runtime reconfigurations.

A. Jahanbanifar · F. Khendek (B)
Engineering and Computer Science, Concordia University, Montreal, Canada
e-mail: khendek@encs.concordia.ca

A. Jahanbanifar
e-mail: az_jahan@encs.concordia.ca

M. Toeroe
Ericsson Inc, Montreal, Canada
e-mail: maria.toeroe@ericsson.com

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_10

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_10&domain=pdf
mailto:khendek@encs.concordia.ca
mailto:az_jahan@encs.concordia.ca
mailto:maria.toeroe@ericsson.com
https://doi.org/10.1007/978-981-15-5054-6_10

200 A. Jahanbanifar et al.

1 Introduction

A system, e.g., new composite application or a system of systems such as in the cloud
architectures, is built by assembling together independently developed Commer-
cial Off-The-Shelf (COTS) components. Each of these components/sub-systems
may have its own perspective of the system described as a configuration. This
configuration specifies the organization and the characteristics of the resources the
component/sub-system is aware of and potentially manages. A system can also be
viewed from different perspectives or aspects (such as performance, security, or
availability) and thus have multiple configurations. Therefore, a composite system
may be described through various independently developed configuration fragments.
One of the main challenges of such systems is the integration of these configuration
fragments in a consistent manner that reflects the relations and constraints between
the entities of the different configuration fragments and ensures that the resulting
system meets the required properties such as availability, performance, and security.
The complexity of the integration task stems from the overlapping entities of the
different configuration fragments (i.e., different logical representations of the same
physical entity) and from the complex relationships among the entities of the different
configuration fragments. Manual and ad hoc integration of the fragments is difficult
and error-prone.

Furthermore, at runtime a system actor (i.e., the administrator or a management
application) may need to modify the configuration. These reconfigurations may be
needed to meet new requirements, respond to performance degradations, for elas-
ticity or upgrade purposes. Changes made to one configuration entity may have an
impact on other entities of the configuration because of the relations and dependen-
cies between the entities some ofwhich are only known by the integration framework,
but not by the actors requesting the changes. Nevertheless, the changes should be
conducted in a safe way not to compromise the consistency of the system configu-
ration and therefore jeopardize the system operations. Thus, the proposed changes
should be checked and the modified configuration needs to be validated to guarantee
its consistency and therefore to protect the system from malfunctioning. According
to [1], the consistency of a configuration is defined as the correctness of the data
which requires the satisfaction of the structural integrity requirements and the appli-
cation/domain constraints. The system configuration, especially for large systems, or
composite systems, may consist of thousands of entities each with several attributes
and complex relations between the entities. In such systems, the management and
control of the reconfiguration side-effects with an ad hoc or manual approach is a
difficult and error-prone task as the actor must know and take care of all the rela-
tions and constraints. This problem is even worse for real-time and highly available
systems as the validation and reconfiguration time should beminimal.Moreover, such
systems should not be shut down or restarted because of the reconfiguration. There-
fore, an automated and efficient approach is required to manage the reconfiguration
and protect the system consistency from invalid modifications.

Configuration of Complex Systems … 201

To address the aforementioned issues, we defined a model-based configuration
management framework for the integration, runtime validation, and adjustment of
system configurations. In this framework, Domain-Specific Modeling Languages
(DSML) capture the concepts, their relations, and consistency rules (constraints) of
configuration fragments. The Unified Modeling Language (UML) and its profiling
mechanism [2, 3] is our choice for defining the DSMLs. The constraints coming
from the application domain restrict the configuration entities and their relations by
governing both their structure and behavior. The constraints are expressed using the
Object Constraint Language (OCL) [4].

In this book chapter, we provide an overview of the framework and elaborate on
one of the approaches, namely, on the runtime configuration validation. Such runtime
validation is a prerequisite for systems with dynamic reconfiguration capabilities as
it detects the potential inconsistencies that can be caused by the reconfigurations
(changes to a single system entity or a bundle of changes to a number of entities).
Runtime reconfigurations often target only parts of the system and an exhaustive vali-
dation, i.e., checking against all the constraints, can be time and resource consuming.
We propose a partial validation of the configurations, which can be used at runtime to
reduce the validation time and overhead. A configuration model is validated against
the configuration profile including the OCL constraints. However, in our partial vali-
dation, only the constraints that are affected and need to be checked are selected—
hence it is referred partial—as the other ones remain valid. The approach consists of
filtering the set of constraints to be rechecked, categorizing them, and then validating
them. We perform an evaluation of the approach and provide a semi-formal proof of
its correctness.

The rest of the chapter is organized into five sections. In the next section, we
describe the modeling framework. In Sect. 3, we provide an overview of the configu-
rationmanagement framework. In Sect. 4, we discuss the partial validation approach.
We review related work in Sect. 5 before concluding in Sect. 6.

A semi-formal proof of our partial validation approach is given in the appendix.

2 Modeling Framework

A system configuration is a set of configuration entities and their relations. These
configuration entities are logical representations of the system resources. The config-
uration defines the arrangement and the rules that the system should obeywith respect
to the represented resources. The granularity and the definition of the configuration
entities depend on the application domain represented and its requirements. Compo-
nents, groups of components, sub-systems, virtual machines, and hardware elements
are examples of the resources the configuration entities represent in the context of
this chapter. For the representation and manipulation of configurations, a configu-
ration schema is required to specify the structure of the configuration entities and
their relations. We use UML and its profiling mechanism to define the configuration
schema. To capture the domain semantics and additional restrictions, we added the

202 A. Jahanbanifar et al.

consistency rules to the configuration profile as OCL constraints. In this section, we
explain our extension to OCL and its need.

Although the standard OCL is suitable for many applications, it is not always
sufficient. By extending OCL we can add more information to the constraints. An
example of extension is the addition of severity and a description to the constraints as
introduced in [5]. The configuration constraints are restrictions on the attribute values
and relations of the configuration entities. They are defined when the configuration
schema is designed to reflect the requirements of the system/application domain. In
the case of configurations, a constraint puts some restrictions on some entities but it
does not characterize the role of these entities in the constraint, i.e., if some entities
in the constraint influence the others. These dominant and dominated roles of entities
cannot be expressed by standard OCL. Knowing these roles, however, will help us in
identifying the constraints that need to be checked and the order in which they must
be checked whenever needed.

To illustrate our idea we use an example from the Open Virtualization Format
(OVF) domain [6] defined by the Distributed Management Task Force (DMTF) [7].
OVF is a packaging standard, which describes an extensible format for the packaging
and distribution of software products for virtual systems. It enables the cross-platform
portability by allowing software vendors to create pre-packaged appliances for which
the customers can have different choices of virtualization platforms [6]. The example
is shown in Fig. 1 where the upper part shows the structure of a simple two-tier
Petstore appliance. It consists of a Web Tier and a Database Tier. The Database Tier
itself consists of two Virtual Systems for fault tolerance. So, three Virtual Systems
(Web Server, DB1, and DB2) and three Virtual System Collections (Petstore, Web
Tier, and DB Tier) are included in the Petstore OVF package.

The OVF package definition allows for specifying the deployment of Virtual
Systems with specific proximity needs through the definition of placement group

Fig. 1 The structure of the
Petstore OVF package

Placement Group: PG1

Placement Group: PG2

Pet Store

DB Tier
PG1

Web Tier

DB1 DB2
PG2

Web Server
PG2

Host2Host1

OVF Package

Deployment

Placement Group PG1 Policy - Availability
Placement Group PG2 Policy - Affinity

Configuration of Complex Systems … 203

policies for the Virtual Systems and Virtual System Collections. The policies are as
follows[6]:

• Affinity Policy: It is used to specify that two or more Virtual Systems should be
deployed closely together, for example, because they need fast communication.

• Availability Policy: It is used to specify that two or more Virtual Systems should
be deployed separately because of HA or disaster recovery considerations.

In the illustrated Petstore appliance of Fig. 1, the DBVirtual Systems (DB1 andDB2)
should be deployed on different hosts for fault tolerance. Thus, the PG1 placement
group with the availability policy is specified for the Virtual System Collection of
the DB Tier. PG1 is a property of the DB Tier. On the other hand, the DB2 and Web
Server Virtual Systems should be deployed on the same host for fast communication,
so a placement group, i.e., PG2, with the affinity policy is specified for these two
Virtual Systems. PG2 is defined as a property for each the DB2 and the Web Server
Virtual Systems.

Figure 2 illustrates the relation between these entities of a simplified OVF domain
model. The restrictions that the policies impose on the deployment ofVirtual Systems
are expressed with the OCL constraints included in the figure.

At deployment time, the Virtual Systems with their placement groups dictate how
they should be deployed on the Hosts that are shown at the bottom of Fig. 1. Note that
the placement group may be defined for the Virtual System (e.g., in the Web Server
Virtual System), implied by the parent Virtual System collection (e.g., DB1 Virtual
System), or a combination of these two cases (e.g., DB2 Virtual System). The DB
Tier has a placement group PG1, which in turn has the “Availability” policy, thus, all
the Virtual Systems of the DB Tier (DB1, DB2) should be hosted on different Hosts
as shown on Host1 and Host2. On the other hand, the placement group PG2 defined
for DB2 and for theWeb Server has the “Affinity” policy, thus, they should be placed
on the same Host, i.e., Host2. An OCL constraint captures the restrictions on the
relation between the Virtual Systems and their Host(s) imposed by the placement
group policies. However, an OCL constraint cannot capture the role of the Virtual
Systems in the constraint as determining the Host entity selection. In the relation

PlacementGroup

Id: String
PlacementPolicy: Policy

VirtualSystem-
Collection

VirtualSystem

Host

0..1

<<enumeration>>
Policy

Availability
Affinity

Context VirtualSystemCollection
Inv C1: self.VscPg.PlacementPolicy=
‘Availability’ implies self.vs->
forAll(v1,v2:VirtualSystem| v1<>v2
implies v1.host<>v2.host)
AND
self.VscPg.PlacementPolicy=‘Affinity’
implies self.vs->
forAll(v1,v2:VirtualSystem|
v1<>v2 implies v1.host=v2.host)

vs

host

VscPg

VsPg0..1

Context VirtualSystem
Inv C2: self.allInstances()->
forAll(v1,v2:VirtualSystem|v1<>v2
and v1.VsPg.id=v2.VsPg.id and
v1.VsPg.PlacementPolicy=‘Availability’
implies v1.host<>v2.host)
AND
self.allInstances()->
forAll(v1,v2:VirtualSystem|v1<>v2
and v1.VsPg.id=v2.VsPg.id and
v1.VsPg.PlacementPolicy=‘Affinity’
implies v1.host=v2.host)

Fig. 2 Partial model of the Virtual Systems, their collection and placement policy in an OVF
package

204 A. Jahanbanifar et al.

between the Virtual System and the Host entities, the Virtual System entity has a
leader role and drives the Host entity, that is, the follower. This means that if the
Virtual System entity (including its Placement Group) changes and the constraint
becomes violated, the Host of the Virtual System should change too to follow the
Virtual System change and satisfy the constraint. On the other hand, if the Host of the
Virtual System changes and this change violates the constraint, the Virtual System
and its Placement Group cannot be changed as the role semantics does not allow
the leader entity to adjust to the changes of the follower entities. For instance, in
the Petstore example, the DB Tier (i.e., DB1, DB2) and the Web Server Tier are
the leader entities while Host1 and Host2 are the followers. Now let us assume that
Host1 fails. Since PG1 does not allow the collocation of DB1 and DB2, DB1 cannot
be re-deployed on the remaining Host2. On the other hand, if we want to change the
placement group of the DB Tier from PG1 to PG2, this change of the leader results
in changing the Host entity (follower) which means that now DB1 and DB2 should
be placed on the same Host (Host2).

As the standard OCL cannot express these roles for entities, we extended the OCL
by defining roles for the constrained entities to show the influence of some entities
over others in the constraint. Considering the semantics of the relations between
the entities we can identify a leadership flow between them. In other words, in a
constraint with multiple entities involved, changes in some entities (Leader) may
impact the others (Follower), but not the other way around. In other relations where
the entities have equal influence over each other, we call them Peer entities.

Figure 3 shows the extension of the constraints with the leadership information.
We extended the OCL to enrich the constraints without changing its grammar and
metamodel so that parsers and validators designed for the standard OCL remain
usable. We consider OCL together with our extension as our constraint profile.

The roles of the entities in the constraints of OVF example are shown in Fig. 4.
In this figure, constraints are shown as ovals. The participation of each entity in a
constraint is represented by an edge between the constraint and the constrained entity.
The role of the entity in the constraint is shown as a label on this edge (e.g., label
“L” represents the Leader role). This representation focuses on the role of entities in
the constraints and depicts how the constrained entities can affect each other.

It is worth mentioning that the roles of the constrained entities may change with
the application scenario. More specifically, we may define the leader/follower/peer
roles for the entities differently for design time and runtime. At design time we
generate the configuration according to an optimal design method. Once the system

<<Metaclass>>
ClassOCL Constraint

<<Stereotype>>

LeadershipInfo

Leader: Stereotype
Follower: Stereotype
Peer: Stereotype

<<extends>>

Fig. 3 OCL constraint enriched by the leadershipInfo

Configuration of Complex Systems … 205

PlacementGroup

Id: String
PlacementPolicy: Policy

VirtualSystem-
Collection

VirtualSystem

Host

0..1

<<enumeration>>
Policy

Availability
Affinity

C1

C2

L

L

L

F
L

L

F

Fig. 4 Representation of entity roles in constraints

is deployed we may be limited in the changes allowed. For example, due to budget
reasons, we may not add new hosts to the system and as a result we want the Virtual
Systems (including the software products) adopt and follow the Host restrictions in
this respect. This means that now the Host entity becomes a leader and the Virtual
System and Virtual System collection are followers. Note that the standard portion
of the OCL constraint between them remains unchanged. Defining the roles for the
entities through the leadership information has the advantage that we can define and
change the roles whenever it is needed without affecting the constraints themselves.

3 Overview of the Configuration Management Framework

As shown in Fig. 5 our model-based framework for configuration management
includes amodule for configurationgeneration at systemdesign time and amodule for
system runtime change management. In this section, we briefly discuss the different
parts of our configuration management framework.

3.1 System Configuration Design—Integration
of Configuration Fragments

As mentioned earlier, sub-systems of a system are described through several config-
uration fragments. These configuration fragments need to be integrated together to
form a consistent system configuration to ensure correct operation of the system.

206 A. Jahanbanifar et al.

Configuration
Fragment A

Configuration
Fragment C…

System Configuration

Configuration
Fragment B

Configuration Integration

Configuration
Validator

Configuration
Adjustment

Configuration
Generation Module
for the Integration of
Configuration
Fragments

Runtime Change
Management Module
for Consistency
Preservation of the
System Configuration

Mapping definition

Model Integration (Weaving)

Integration
Constraints

Modification
Request

Fig. 5 Overview of configuration management framework

The system configuration should ensure that the resulting system meets the required
properties.

We extend themodel weaving technique [8, 9] and usemodel transformation tech-
niques to devise an approach for the integration of configuration fragments targeting
specific system properties. We define the semantics of the relations between the enti-
ties of the configuration fragments as links at a higher level of abstraction which has
several advantages:

• It increases the reusability of the defined links (relations) to map other entities
between configurations.

• It allows adding/modifying the interpretation of the links and embedding them
into the integration process without modifying the links.

• It is easily extendible as various configuration profiles can be added to the
integration process using predefined or new links.

• The integration process is automated. The system configuration can be generated
automatically with the same rules for different input configurations.

We define the integration semantics as integration constraints to enrich the system
configuration profile. The integration constraints (describing the semantics of the
relation between the fragments) in addition to the union of the constraints of the
fragments form the system configuration constraints which guard the consistency of
system configuration models against unsafe runtime modifications. In other words,
the consistency is formally defined by the set of OCL constraints generated auto-
matically from the weaving and the constraints of all the fragments, which are by
construction non-contradictory. More details on the integration technique can be
found in [10, 11].

Configuration of Complex Systems … 207

3.2 System Runtime—Consistency Preservation with Change
Management

A reconfiguration may be performed for many reasons, e.g., in response to environ-
mental changes or for fine-tuning. These changes may compromise the consistency
of the configuration. To manage configuration changes, we propose the architecture
shown in Fig. 6 which includes a configuration validator to check the change requests
and an adjustment agent, which attempts to add complementary modifications to
resolve the potential inconsistencies detected during the validation phase.

Runtime Configuration Validation
At runtime the administrator or the management applications may need to change
the system configuration to control/manage the resources they are responsible for.
These changes may compromise the consistency of the system configuration and
jeopardize the system’s operation.Thus, the requested changes should be checked and
the modified configuration has to be validated to guarantee its consistency. As shown
in Fig. 6 the configuration validator is responsible for performing the validation with
respect to the system configuration profile and its constraints. The validation may
result in one of the three following cases:

(a) The requested changes do not violate the configuration constraints and respect
the profile. Therefore, the changes are safe and can be applied.

(b) The requested changes violate one or more constraints of the profile and these
violations cannot be resolved as there is no chance to propagate the changes
to other entities of the violated constraints to resolve the violations. Thus, the
requested changes are rejected.

System
Configuration

Profile

Validator

Adjustment Agent

Adjustment
Modifications

Change Request

Uses

(b) Constraint Violation
Changes Rejected

(a) No Constraint
Violation

Apply the
Changes(c) Constraint

Violation

Not Adjustable
Changes Rejected

Apply the
Modifications

Administrator/
Management Apps

System
Configuration

Respects

Consistency
Rules

Fig. 6 Runtime configuration validation and adjustment

208 A. Jahanbanifar et al.

(c) The requested changes violate one or more constraints of the profile; however,
the changed entities/attributes can impact other entities/attributes of the violated
constraints. Therefore, there may exist a chance to resolve the constraint viola-
tion by changing other constrained entities. Thus, the result of the validation
will be passed to an adjustment agent.

The decision of rejecting the requested changes (i.e., case b) or trying to adjust
the configuration (i.e., case c) is made based on the ability of the changed entities
to impact other entities of the violated constraints. The possibility of the impact is
determined based on the leadership information of the constraint. In the next section,
we elaborate on our technique for runtime configuration validation. We aim at an
efficient technique that can be applied at runtime.

Configuration Adjustment
Although a configuration validator can detect the constraint violations caused by
unsafe/incomplete change requests, it cannot tell if such violations or conflicts might
be resolved by adding complementary modifications that complete the initial set of
changes. The potential inconsistencies detected by the validation technique can be
due to the incompleteness of the set of changes as performed by the administrator
who is not aware of all the relations between all involved entities/attributes. In order
to resolve such inconsistencies, we devise a technique for complementing an incom-
plete set of changes and therefore adjust automatically the configuration at runtime.
The adjustment consists of modifications of other entities/attributes that re-establish
the configuration consistency. We achieve this by propagating the changes in the
configuration according to the system constraints following the possible impacts of
the configuration entities on each other. We minimize the complementary modifi-
cations to control the side-effects of the changes. The problem is formulated as a
Constraint Satisfaction Problem (CSP) [16, 17] which we solve using a constraint
solver. In our proposed framework, this task is done by the adjustment agent shown
in Fig. 6. It takes the validation result from the validator as input and uses the system
configuration profile and constraints. If a set of complementary changes can be found
that along with the requested changes satisfies all the constraints, the adjustment is
successful and the changes canbe applied to the configuration.Otherwise, the initially
requested changes are rejected. More details on this technique can be found in [12].

4 Partial Validation of Configurations

Runtime validation is a prerequisite for dynamic reconfiguration as detection and
correction of potential inconsistencies are required. The capabilities of dynamic (or
runtime) reconfiguration and runtime validation are needed for Highly Available
(HA) systems as they cannot be shut down or restarted for reconfiguration.

A systemconfigurationmay consist of hundreds of entities,with complex relations
and constraints. Runtime reconfigurations (changes to a single system entity or a

Configuration of Complex Systems … 209

bundle of changes to a number of entities) often target only parts of the configuration.
An exhaustive validation that checks all the consistency rules is not always required
and canbe substituted by apartial validation, inwhich the number of consistency rules
(constraints) to be checked are reduced and this results in reduction of the validation
time and overhead. In a partial validation, only the constraints that are impacted by
the changes are selected and checked. The other constraints remain valid and do not
need to be rechecked. Thus, by checking only a subset of the constraints we can
claim if the configuration is valid or not.

4.1 Partial Validation Technique

To validate a configuration model, we check its conformance to the configuration
profile. The profile defines the stereotypes, their relations (the structure of the model)
along with a set of constraints over these stereotypes and relations to assure well-
formedness. When a request for changing some entities of the configuration model
is received, the modified model needs to be checked for conformance against its
profile. The full validation can be time and resource consuming. Such overhead is
not desirable in live systems, especially in real-time and HA systems. A solution to
reduce the overhead and improve performance is to reduce the number of constraints
to be checked, i.e., check only what needs to be checked against. We refer to this as
partial validation.

In our approach, we minimize the number of constraints to be checked based on
the requested changes. This typically also leads to the reduction of the number of
configuration entities to be checked.We check only the entities whose stereotypes are
involved in the selected constraints. This new set of configuration entities includes
at least the changed entities and the ones related to them through their constraints.
In the appendix, we provide a semi-formal proof to establish that the results of our
partial validation approach are equivalent to the results of the full validation where
all the constraints are checked for every change request.

Figure 7 shows an example, a model and its profile, in which changes affect only
some of the constraints. The model entities conform to their respective stereotypes
in the profile, e.g., A1, A2 entities of the model conform to stereotype A, and B2, B3
entities conform to stereotype B and so on. The constraints of the profile are shown
as blue ovals (i.e., C1, C2, etc.). Assuming that the change set includes model entities
B2 and D1, to validate the model instead of checking all the constraints of the profile
(C1–C4), it is enough to select only the ones that are affected by these changes, i.e.,
constraints C2 and C3.

To reduce the validation overhead the time to select this set should be negligible
compared to the time saving we achieve by the partial validation. Note that in cases
where the modification request includes entities of many different stereotypes, the
number of constraints that need to be selected is considerable and the selection may
not be worthwhile anymore. The case is similar when although only a few constraints

210 A. Jahanbanifar et al.

The model
Changed Entities: {B2, D1}

The profile
Selected Constraints: {C2, C3}

Fig. 7 Model changes and affected constraints in the profile

are selected but they apply and should be checked for a large number of configuration
entities.

4.1.1 Filtering and Categorizing the Constraints

To identify the reduced set of constraints we filter the constraints based on the modi-
fication request. A request may consist of many changes each of which applies to
one or more entities of the configuration model—we call them the change set. We
represent the configuration entities of the change set as a model, which conforms
to a change profile. Figure 8 shows the change profile and an example change set.
The change profile has a stereotype called CEntity which extends the NamedEle-
ment metaclass of UML. The CEntity stereotype represents the configuration model
entities to be changed—referred to as changed entity. In the Petstore, for example,
we may need to reconfigure the Web Server, i.e., have it as the changed entity. The
operation requested on the model entities is represented by the Operation stereotype
in the change profile. It is specialized as the Add, Update, and Delete stereotypes.
Regardless of the requested operation, the constraints in which the entity is involved
should be checked. A change model is an input to the constraint filtering process.

Having the change model and the change profile as well as the configuration
profile, the stereotypes applied on each changed entity can be identified. These are
the stereotypes of the configuration profile and also of the CEntity stereotype. For the
validation, the stereotypes of the configuration profile are considered. The constraints
of the configuration profile are defined over these stereotypes and we also captured
their roles in the constraints through the leadership concept. By looking up the stereo-
type of each changed entity we can select from the constraints of the configuration
profile those that have the same stereotype as the stereotype applied to the entity of

Configuration of Complex Systems … 211

<<Stereotype>>
CEntity

Add Delete Update

<<Stereotype>>
Operation

DeleteDB1

Web Server Update

<<metaclass >>
NamedElement

<<extends>>

1

Change profile

Change model

Fig. 8 Change profile and a simple change model

the change model. The role/leadership information determines the relevance of the
constraint.

We also categorize each selected constraint based on the roles of the changed
entities in the constraint. For this purpose,weuse three sets: FConstraint, LConstraint,
and PConstraint. Algorithm 1 describes the filtering process and the categorization
of the filtered constraints. It starts with an empty set of stereotypes, set A, and
three empty sets, LConstraint, FConstraint, and PConstraint. The constraints of the
configuration profile are all in the set Constraint. In set A, we collect the stereotypes
of all changed entities (lines 6 to 8). For each constraint in the set Constraint, we
consider its LeadershipInfo and compare the Leader/Follower/Peer stereotypes with
the stereotypes in set A. If a common stereotype is found, then the constraint is added
to one of the sets, LConstraint, FConstraint, or PConstraint, while making sure that
each constraint will be added only to one of these output sets (line 10 to 19). If the
stereotype applied on a changed entity has a leader role in the constraint, we add the
constraint to LConstraint. Similarly, if the stereotype of a changed entity plays the
follower role, the constraint is added to FConstraint. The set PConstraint is for the
constraints whose entities have a peer role in the constraint and also appear in the
changemodel. Thefiltering and categorizing process ofAlgorithm1 are implemented
using transformations.

212 A. Jahanbanifar et al.

Algorithm 1. Filtering and Categorizing the constraints
Input: ConfigurationProfile, ChangeProfile, ConstraintProfile, Constraint, ChangeModel

Output: LConstraint, FConstraint, PConstraint

1: A := {}
2: LConstraint := {}
3: FConstraint := {}
4: PConstraint := {}
5: // Find all the stereotypes applied to the entities of the ChangeModel
6: for each ENTITYj in ChangeModel do
7: A:= A ∪ {ENTITYj.getAppliedStereotypes()}
8: end for
9: // Filtering and categorizing constraints of the Constraint
10: for each CONSTRAINTi in Constraint do
11: K:= CONSTRAINTi->LeadershipInfo
12: if {K.Leader} ∩ A ≠ {} then
13: LConstraint := LConstraint ∪ {CONSTRAINTi}
14: else if {K.Follower} ∩ A ≠ {} then
15: FConstraint := FConstraint ∪ {CONSTRAINTi}
16: else if {K.Peer} ∩ A ≠ {} then
17: PConstraint := PConstraint ∪ {CONSTRAINTi}
18: end if
19: end for

It is possible that a constraint can be categorized into more than one category. For
example, when both the leader and follower entities of a constraint are changed
within the same change set, the constraint can be categorized as FConstraint or as
LConstraint and added to either category. Considering the Petstore again a request
may, for example, change DB1, an instance of the DB Tier (leader) and Host1, an
instance of the Host (follower) in the same change set. In such a case, we have to
make a choice and add the constraint to the least restrictive set, i.e., LConstraint, to
allow for potential adjustments. Since at least one leader entity is involved in case of
constraint violation its follower(s), except the ones that are in the change request, can
be adjusted to satisfy the constraint. Similarly, the PConstraint category is preferred
over the FConstraint category.

4.1.2 Validation of the Constraints

After filtering and categorizing the constraints, the validation process considers first
the least flexible constraints before the more flexible ones. The constraints in the
FConstraint category are the least flexible ones because if they are violated, no
adjustment can be made within the context of the change set to resolve the incon-
sistency as the follower entities cannot affect the leader entities. Thus, in case of
detecting a violation of a constraint in FConstraint, the requested change is rejected
and the validation process stops. Next, the LConstraint and the PConstraint sets are
checked. If the validation fails in these cases, we consider this as a potential violation
of configuration consistency because we may be able to resolve it with additional
changes as leader entities can affect their followers and similarly peer entities can
affect their peers. The adjustmentmodulewill try to resolve the inconsistency through

Configuration of Complex Systems … 213

additional modifications relying further on the leadership concept. Initial results on
the partial validation technique have been reported in [18].

4.2 Evaluation

In this section, we present an evaluation of our partial validation approach using a
prototype implementation.

4.2.1 Setup and Scenarios

We used the UML profile of the Entity Type File (ETF) [13] as a configuration profile
and applied our partial validation approach to its instances. This ETF UML profile
had 28 stereotypes and 24 OCL constraints defined over these stereotypes.

We implemented the partial validation method in the Eclipse Modeling Frame-
work (EMF) [14], using theAtlas TransformationLanguage (ATL) [15] for constraint
selection and also the EMF OCL APIs for constraint validation in a standalone java
application. The experiments were performed on a machine with an Intel® Core™
i7 with 2.7 GHz and 8 Gigabytes RAM and a Windows 7 operating system.

We created an initial ETF model that conforms to the ETF UML profile. This
model had 50 entities.We considered three change sets to be applied to this model. In
each case, a certain number of model entities were randomly selected and changed.
This number was 10, 20, and 30 for the three cases, respectively. The selections
were made independently from each other. For the cases, we compared the number
of constraints selected in the constraints model and the total number of constraint
checks performed during the partial validation. We also measured the execution time
of the full validation and each of the cases of the partial validation. Each validation
test was executed five times and the average was considered as the validation time.

4.2.2 Results and Analysis

Table 1 presents the results for the different cases of partial validation in comparison
with the full validation. The first row of the table represents the results of the full
validation of themodel in which all entities are checked for all applicable constraints,
i.e., as if all entities have been changed. The second, third, and fourth rows present
the results for the partial validations for 10, 20, and 30 changed entities. As the
number of changed entities increases, more constraints are selected, more times they
are checked and the validation time increases.

As it was expected the validation time is proportional to the number of selected
constraints which in turn depends on the number of changed entities. However, the
number of selected constraints is not proportional to the number of changed entities,
which is due to the characteristics of the ETF profile. In the ETF profile, some entity

214 A. Jahanbanifar et al.

Table 1 Partial validation performance results

Number of
changed entities

Number of
selected
constraints

Total number of
constraint checks
performed

Partial validation
time (ms)

Initial model 50 24 70 6933

Test CASE 1 10 8 41 4432

Test CASE 2 20 15 55 5413

Test CASE 3 30 18 57 5845

types have only a few tagged values and constraints while others have a relatively
large number of each. Also, the frequency of use of different entity types in an ETF
model is different. In a given ETF model the number of component types is typically
higher than the number of other entity types. This means that in a random selection
of changes the probability is higher to select a change in a component type and
with that more constraints are selected. This is the reason that with only 10 changed
entities the number of selected constraints is already 8 and these constraints are
checked 41 times. The high ratio of checks is further explicable by the fact that the
component type is specialized into several specific component types (using the UML
generalization in the profile). Thus, each child component type inherits the tagged
values and the constraints of its parent component types. That is, if the constraint
of a parent stereotype is in the selected constraint set, then that constraint should be
checked over all the child entities of that parent.

The experiments show that the stereotype of the changed entity has a determining
role whether using partial validation results in the expected time gain. The char-
acterization of the configuration profile is necessary to determine whether partial
validation is beneficial and for which kind of change set.

In this evaluation, we did not include the constraint categorization as in these
preliminary measurements we focused on the time gain resulting from the partial
validation. In this respect,wehave shown that there is a timegain,;however, the results
are also showing that further analysis is needed to determine the circumstances. This
is important as the constraint selection process itself takes some time and it becomes
an additional overhead.

5 Related Work

The work reported in this book chapter touches upon several aspects, including
system configuration generation, configuration adjustment, but elaborated mainly
on configuration validation as prerequisite to dynamic reconfiguration. A lot of work
has been done in each of these aspects. For a full reviewanddiscussion of relatedwork
on configuration design, we refer the reader to [11], for the configuration adjustment

Configuration of Complex Systems … 215

aspect we refer to [22]. Hereafter, we discuss the work related to configuration
validation.

The validation of configurations against runtime changes has been thoroughly
investigated; it is not only critical for preventing invalid changes that risk the integrity
and consistencyof the configuration but also because it is a necessity for self-managed
systems. Some work in this context focus on the structural checking of the functional
configuration parameters [19–21], e.g., type correctness, checking the validity of the
values of the system entities’ attributes with respect to the constraints of each entity
and the relation between the entities. In the SmartFrog configuration management
framework [20], the components consist of three parts: the configuration data, the
life cycle manager, and the functionality of the component itself. Constraints of each
component are considered within its configuration data by attaching the conditions
as predicates on a description. For combining the components, the configuration
data should be extended and the conditions are propagated and additional predicates
may be added grouping the old and new predicates. The component developer is in
charge of defining the conditions (restrictions) for the components and their combi-
nation in the configuration data templates. The authors indicate that the validation of
the configuration data happens by checking these conditions; however, they do not
mention how the conditions are checked. In addition, the constraints for combining
the components can be expressed as simple conditions but it might not be possible
to describe more sophisticated constraints (coming from special requirements of the
domain) with the conditions in the configuration data templates.

In [22, 23], the authors propose a solution for dynamic reconfiguration. They
consider the validation of the structural integrity and runtime changes. They use
the predefined constraints for the validation of the requested modification on the
structural and current operational conditions of the system. The solution consists of
a model repository for storing the reference model and the constraints and an online
validator for performing the dynamic constraint evaluation. The online validator
takes the configuration modification request and the current system state as input
and validates the request by checking the configuration instance against the reference
model and the constraints. The solution uses an exhaustive validation, i.e., checks all
the system constraints, which can degrade the validation performance especially for
large configuration models. In our work, we check the structural integrity and also
validate only the constraints affected by the changes.

Some existing approaches for re-validatingmodels after changes also try to reduce
the number of constraints and/or the number of model entities to check. In [24,
25], a list of events that can violate the OCL constraints is defined and added to
their configuration schema to check the constraints only if changes are related to
these constraints and only on relevant entities. This approach cannot handle complex
constraints containing recursion, loops, or complex iterations. Bergmann et al. [26]
use a query language (IncQuery) based on graph pattern formalism on EMFmodels.
The queries are stored permanently in memory and they update the values of the
partial matches used in queries after each model change. This approach has consid-
erable memory consumption. In [27], an approach for incremental validation of OCL
constraints has been proposed. The validation log of each constraint over the model

216 A. Jahanbanifar et al.

entities is stored. A re-validation is triggered when the stored parts are changed. The
work is extended in [28] to improve the performance by only checking parts of the
constraints that are affected by changes and to avoid checking all the constraints.
This improvement achieves a better performance but consumes more memory.

6 Conclusion

In this book chapter, we provided an overview of a model-based framework for
configuration management to integrate configuration fragments in a consistent
manner at design time and to preserve the consistency of the generated system
configuration at runtime by validating and adjusting the configuration modification
requests whenever necessary and possible. In this framework, configuration profiles
are defined using the UML profiling mechanism to capture the concepts of each
configuration domain, relation, and constraints between the concepts. We extended
the OCL by defining roles for the constrained entities to represent the impact of
the entities on each other in a constraint, i.e., the leadership concept. We extended
the concept of model weaving for the purpose of semantic configuration fragments
integration.

We discussed in detail our partial validation approach for the validation of the
configurations at runtime. In our partial validation, only the subset of constraints
affected by the modifications is selected and checked as the other constraints remain
valid. Constraints are also categorized to specify the order in which they need to be
checked. For evaluating the partial validation approach, we semi-formally proved
its equivalence to the exhaustive validation which checks all the constraints. Also,
a quantitative evaluation demonstrates reduction of the validation time compared to
the exhaustive validation.

As future work, we will consider the validation of the complete framework with
real case studies.

Acknowledgements This work has been partially supported by Natural Sciences and Engineering
Research Council of Canada (NSERC) and Ericsson.

Appendix: A Semi-formal Proof for the Partial Validation
Approach

In this appendix, we provide a semi-formal proof of our validation approach which
shows that the reduced set of constraints contains all the required ones to guarantee
the validity of the whole configuration model.

Note that we do not distinguish the leader/follower/peer roles of the constrained
entities for the proof. This is because to prove the correctness of the validation we

Configuration of Complex Systems … 217

are only concerned about the sufficiency of the selected (filtered) constraints rather
than their categorization.

Definitions

A Profile (P) is defined as a set of Stereotypes (STP), the set of Relations between
them (RP), and their set of Constraints (ConsP).

P(STP,RP,ConsP)

For referring to the sets of stereotypes, relations, and constraints of a given Profile
we use the Profile’s name as the index of the set, e.g., STP1 is the set of stereotypes
of Profile P1.

Each relation Rl in the set RP consists of a source stereotype (Rl.SrcST) and a
destination stereotype (Rl.DstST). They specify the two ends of the relation Rl. A
tuple of Lowerbound and Upperbound also specifies the minimum and maximum
number of instances of the DstST in relation with a SrcST.

Rl(Rl.SrcST,Rl.DstST, (L,U))

For simplicity, the relations in this definition are considered to be associations. Other
types of relations (generalization, dependency, etc.) can be added with appropriate
modifications of the definition.

Each constraint ConsX in the set of ConsP consists of an Invariant (a Boolean
expression) and a set of stereotypes based on which the invariant is defined, i.e., the
constrained stereotypes. The set of constrained stereotypes is shown as STConsX.

ConsX(Invariant,STConsX)

A Model M is defined as a set of entities (enM) and a set of relations (rM).

M(enM, rM)

Each relation rl (rl∈rM) has a source entity represented as rl.SrcEn and a destination
entity represented as rl.DstEn.

rl(rl.SrcEn, rl.DstEn)

In order to be valid, a model should conform to its profile. This means that each entity
of the model should respect the stereotype(s) of the profile that is applied to and also

218 A. Jahanbanifar et al.

all the constraints of the profile should be valid in the model. These functions are
defined as follows:

Let us assume profile P is applied on model M. The function AST 1 for the input
of a model entity (that belongs to the entity set of a model M) returns as the output
the stereotype (that belongs to the stereotype set of the profile P), which is applied
on the entity.

S = AST(e), e ∈ enM, s ∈ STP

AtomicValid is defined over a constraint () and a subset of entities and relations () that
belong to a model (M). The result of this function is a Boolean value which shows
whether is satisfied with the values of the entities and relations in or not. Thus, is
a subset of M and contains the entities and relations that are related to constraint .
The entities in are defined as those entities of the model on which the stereotypes of
the constraint are applied. If the stereotypes of constraint are applied on the member
ends of a relation, the relation is included in . (enM and rM represent the set of entities
and relations in model M and STx represents the set of stereotypes of the constraint).

AtomicValid(K , x)

K (enK, rk) = {(e, r)|e ∈ enM , AST (e) ∈ STx , r ∈ rM , (AST (r.SrcEn) ∈ STx AND

AST(r.DstEn) ∈ STx)}

If the result of the AtomicValid is true, it means that the constraint is satisfied over
a subset of entities and relations of the model M (entities on which the stereotypes
of the constraint are applied). So we can conclude that the constraint is satisfied in
model M or in other words, the validity of the constraint x over model M is true.
Another function Valid is used to represent this statement.

AtomicValid(K , x) ↔ Valid(M, x)

Conformance of amodelM(enM, rM) to a profile P(STP, RP, ConsP) is defined through
the conform function which returns true if all the constraints of the P are valid over
themodelM and also all the entities and relations of themodel respect the stereotypes
and relations of the P. P and STP are the sets of constraints and stereotypes of the
profile P, respectively. enM and rM are the set of entities and relations of model M.
The Respect function is used to check if the entities and relations of themodel respect
the stereotypes and relations of the profile.

Conform(M,P) ↔ (∀x ∈ ConsP, Va(M, x)) AND

1Applied StereoType.

Configuration of Complex Systems … 219

(∀e ∈ enM ,AST(e) ∈ STP,Respect(e,AST(e))

AND(∀t ∈ rM , ∃z ∈ RP,AST(t.SrcEn)

= z.SrcST,AST(t.DstEn) = z.DstST,Respect(t, z))

Modifying the Model

We assume that we have an initial model M1 which is valid according to the profile
Pr, i.e., Conform(M1, Pr). The Change function takes the changeSet model and M1
as input and results in a new model M2 with the modified entities and relations, i.e.,
applies the changeSet to M1.

changeSet
(
enchangeSet, rchangeSet

)

M2 = Change(M1, changeSet)

To verify whether the changed model (M2) is also valid, we need to validate it by
checking its conformance to the reference profile (Pr). To do so instead of performing
a full validation and using Pr, we consider a second profile Pv which is created from
the reference profile Pr with the same stereotypes and relations as Pr but with a
reduced set of constraints. A filtering reduces the constraints of Pr based on the
entities of the changeSet. As a result Pv is a subset of Pr.

Pv = Filter(Pr, changeSet),Pv ⊆ Pr

According to the filtering function:

∀y ∈ enchangeSet, (if ∃ x ∈ ConsPr,AST(y) ∈ STx) → x ∈ ConsPv

AND ∀z ∈ rchangeSet, if ∃ g ∈ ConsPr,

(AST(z.SrcEn) ∈ STgAND AST(z.DstEn) ∈ STg) → x ∈ ConsPv

AND ∀s ∈ STPr → s ∈ STPv

AND ∀r ∈ RPr → r ∈ RPv

220 A. Jahanbanifar et al.

The Proof of Partial Validation

We prove by contradiction that the partial validation has the same result as the full (or
complete) validation. We make the assumption that the initial configuration model
(to which the changes should be applied) is valid, i.e., it conforms to its profile. Using
the mentioned definitions we prove that if a modified model (M2) conforms to the
filtered profile (Pv) then it also conforms to Pr. This means:

Conform(M2,Pv) → Conform(M2,Pr)

Prove by contradiction technique is used, whichmeans that we assume that the above
statement is not true and show considering the other assumptions a contradiction.

We add the negation of this statement to our assumptions:

Conform(M2,Pv) and Conform(M2,Pr)

Based on the definition of the conform function we can say that there is at least one
constraint of Pr that is not valid in M2 or at least one of the entities or relations of
M2 does not Respect the profile Pr.

Conform(M2,Pr) → (∃ e ∈ enM2,AST(e) ∈ STPr,Respect(e,AST(e))

or (∃t ∈ rM2,�z ∈ RPr,AST(t.SrcEn)

= z.SrcST,AST(t.DstEn) = z.DstST,Respect(t, z)))

or (∃x ∈ ConsPr,Valid (M2, x))

At first we show that if the first part of the “or” statement would be true, we face
a contradiction:

∃ e ∈ enM2,AST(e) ∈ STPr,Respect(e,AST(e))

From the definition of the Pv:

∀s ∈ STPr → s ∈ STPv

As the STPr = STPv, the STPr in the first statement can be replaced with STPv and
thus:

∃e ∈ enM2,AST(e) ∈ STPv,Respect(e,AST(e))

This is in contradiction with the assumption that Conform(M2, Pv) is true,
because:

Configuration of Complex Systems … 221

Conform(M2,Pv) ↔ (∀x ∈ ConsPv,Valid(M2, x)) AND

(∀e ∈ enM2,AST(e) ∈ STPv,Respect(e,AST(e)))

Similarly, it can be shown that if a relation of model M2 does not respect Pr, a
contradiction is encountered.

In the next step, we show that if there is a constraint in Pr which is violated by
M2, it would contradict to our initial assumptions. Three cases are possible:

First: The constraint x already belongs to Pv:

x ∈ ConsPv

which is in contradiction to the assumption that M2 conforms to Pv because:

∃x ∈ ConsPv,Valid (M2, x) ↔ Conform (M2,Pv)

Second: The constraint x does not belong to Pv (i.e., /∈‘Pv), and constraint involves
the change set entities, which means the stereotype set of constraint x has at least one
stereotypewhich is applied to at least one of the entities of the change set or constraint
x has stereotypes that are applied to the member ends (entities) of a changed relation
in the change set:

∃y ∈ enchangeSet, AST(y) ∈ STx OR
∃z ∈ rchangeSet, (AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx)

According to the Filter function:

∀y ∈ enchangeSet (i f ∃x ∈ ConsPr,AST(y) ∈ STx) → x ∈ ConsPv
∀z ∈ rchangeSet, if ∃x ∈ ConsPr,

(AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx) → x ∈ ConsPv

And as ∈Pr, it can be concluded that x should also belong to Pv, that is:

x ∈ ConsPr, ∃y ∈ enchangeSet , AS(y) ∈ STx → x ∈ ConsPv OR

x ∈ ConsPr, ∃z ∈ rchangeSet ,

(AST(z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx) → x ∈ ConsPv

This means that if such constraint exists in ConsPr, it should have been already added
in the ConsPv too because all the constraints that are relevant to the change set should
be in the ConsPv.

Third: The constraint x does not belong to the constraint set of Pv (i.e., /∈Pv), and
constraint does not involve the change set entities, which means the stereotype set

222 A. Jahanbanifar et al.

of constraint x does not have any stereotype which is applied to at the entities of the
change set or the member ends (entities) of the changed relations in change set:

x /∈ ConsPv,�y ∈ enchangeSet, AS(y) ∈ ST x
x /∈ ConsPv,�z ∈ rchangeSet, (AST (z.SrcEn) ∈ STx AND AST(z.DstEn) ∈ STx)

Based on our assumption:

Valid (M2, x) ↔ AtomicValid(K , x)

K (enK, rK) = {(e, r)|e ∈ enM2, AST (e) ∈ STx , r ∈ rM2, (AST (r.SrcEn) ∈ STx AND
AST(r.DstEn) ∈ STx)}

The constraint x does not have any stereotypes which is applied to the entities or
member ends of relations in the change set, so the intersection of the two sets change
set andK (set of entities and member ends of the relations of the modelM2 on which
stereotypes of constraint x is applied) is empty:

K ∩ changeSet = ∅

When none of the entities of K belongs to the changeSet, it can be deducted that all
the entities of K are in M1 model:

K ⊆ M1

ThusM2 model can be replaced withM1 in the previous assumption and state that:

K (enK, rK) = {(e, r)|c ∈ enM1, AST (e) ∈ STx , r ∈ rM1, (AST (r.SrcEn) ∈ STxAND
AST(r.DstEn) ∈ STx)}

And because K is in common between M1, M2, then:

Valid (M2, x) ↔ AtomicVali(K , x) ↔ Valid(M1, x)

And this is a contradiction to our first assumption because:

Valid (M1, x) ↔ Conform (M1,Pr)

Thus, we can conclude that the filtered constraints are sufficient for validating the
model.

Configuration of Complex Systems … 223

References

1. K.MoazamiGoudarzi, Consistency preserving dynamic reconfiguration of distributed systems.
Ph.D. Thesis (Imperial College, London, UK, 1999)

2. Object Management Group: Unified Modeling Language—Superstructure Version 2.4.1,
formal/2011–08-05. http://www.omg.org/spec/UML/2.4.1/

3. L. Fuentes-Fernández, A. Vallecillo-Moreno, An introduction to UML profiles. Upgrade Eur.
J. Inf. Prof. 5(2), 5–13 (2004)

4. Object Management Group, UML 2.0 OCL Specification, Version 2.4, formal/2014-02-03.
(2014). http://www.omg.org/spec/OCL/2.4/

5. J. Bézivin, F. Jouault, Using ATL for checking models. In: Proceedings of the 4th Int. Work-
shop on Graph and Model Transformation (GraMoT 2005), Electronic Notes in Theoretical
Computer Science, vol. 152 (2006) pp. 69–81

6. Open Virtualization Format Specification, DMTF Standard, Version 2.1.0, December 2013.
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf

7. Distributed Management Task Force. http://dmtf.org/
8. M.Didonet del Fabro, P.Valduriez, Towards the efficient development ofmodel transformations

using model weaving and matching transformations. J. Softw. Syst. Model. (SoSym) 8(3),
305–324 (2009)

9. M.Didonet del Fabro, J. Bezivin, F. Jouault, P. Valduriez, Applying genericmodelmanagement
to data mapping. In: Proceedings of the Journées Bases de Données Avancées (BDA05) (Saint-
Malo, France, 2005)

10. A. Jahanbanifar, F. Khendek, M. Toeroe, Amodel-based approach for the integration of config-
uration fragments. In: Proceedings of 11th European Conference on Modelling Foundations
and Applications (ECMFA) (Italy, 2015), pp. 125–136

11. A. Jahanbanifar, F. Khendek, M. Toeroe, Semantic weaving of configuration fragments into a
consistent system configuration. Inf. Syst. Front. Spring. 18(5), 891–908 (2016)

12. A. Jahanbanifar, F. Khendek, M. Toeroe, Runtime adjustment of configuration models for
consistency preservation. In: Proceedings of 17th Int. Symposium on High Assurance Systems
Engineering (HASE) (Orlando, USA, 2016), pp. 102–109

13. Service Availability Forum, Application Interface Specification, Software Management
Framework, SAI-AIS-SMF-A.01.02. http://www.saforum.org/HOA/assn16627/images/SAI-
AIS-SMF-A.01.02.AL.pdf

14. Eclipse Modeling Framework, EMF. http://www.eclipse.org/emf
15. Atlas Transformation Language (ATL) website. http://www.eclipse.org/atl/
16. E. Tsang, Foundations of constraint satisfaction. (Books on Demand, 2014)
17. V. Kumar, Algorithms for constraint satisfaction problems: A survey. AI Magaz. 13(1), 32–44

(1992)
18. A. Jahanbanifar, F. Khendek, M. Toeroe, Partial validation of configuration at runtime.

In: Proceedings of the 18th Int. Symposium on Real-Time Distributed Computing (ISORC)
(Auckland, New Zealand, 2015), pp. 288–291

19. I. Warren, J. Sun, S. Krishnamohan, T. Weerasinghe, An automated formal approach to
managing dynamic reconfiguration. In: Proceedings of the 21st IEEE/ACM Int. Conference
on Automated Software Engineering (Washington, USA, 2006), pp. 37–46

20. P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain, P. Murray, P. Toft, The
smartfrog configuration management framework. ACM J. SIGOPS Oper. Syst. Rev. 439(1),
16–25 (2009)

21. M. Burgess, A.L. Couch, Modeling next generation configuration management tools. In:
The Proceedings of the 20th Conference on Large Installation System Administration (LISA)
(Washington, USA, 2006), pp. 131–147

22. L. Akue, E. Lavinal, T. Desprats, M. Sibilla, Runtime configuration validation for self-
configurable systems. In: The Proceedings of the IFIP/IEEE Int. Symposium on Integrated
Network Management (IM) (Ghent, Belgium, 2013), pp. 712–715

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.4/
http://www.dmtf.org/sites/default/files/standards/documents/DSP0243_2.1.0.pdf
http://dmtf.org/
http://www.saforum.org/HOA/assn16627/images/SAI-AIS-SMF-A.01.02.AL.pdf
http://www.eclipse.org/emf
http://www.eclipse.org/atl/

224 A. Jahanbanifar et al.

23. L. Akue, E. Lavinal, T. Desprats, M. Sibilla, Integrating an online configuration checker with
existing management systems: application to cim/wbem environments. In: The Proceedings of
the 9th Int. Conference on Network and Service Management (CNSM) (Zurich, Switzerland,
2013), pp. 339–344

24. J. Cabot, E. Teniente, Incremental integrity checking of UML/OCL conceptual schemas. J.
Syst. Softw. 82(9), 1459–1478 (2009)

25. J. Cabot, E. Teniente, Computing the relevant instances that may violate an OCL constraint. In:
The Proceedings of the 17th Int. Conference on Advanced Information Systems Engineering
(CAiSE’05), eds. by O. Pastor, J. Falcão e Cunha, vol. 3520 (LNCS, Springer, 2005), pp. 48–62

26. G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, A. Ökrös, Incremental
evaluation of model queries over EMFmodels. In: The Proceedings of the 13th Int. Conference
on Model Driven Engineering Languages and Systems (MODELS), Part I (Springer, 2010),
pp. 76–90

27. I. Groher, A. Reder, A. Egyed, Incremental consistency checking of dynamic constraints. In:
The Proceedgins of Fundamental Approaches to Software Engineering (FASE), vol. 6013, eds.
by D.S. Rosenblum, G. Taentzer (LNCS, Springer, 2010), pp. 203–217

28. A. Reder, A. Egyed, Incremental consistency checking for complex design rules and larger
model changes. In: The Proceedings of the 15th Int. Conference on Model Driven Engineering
Languages and Systems (MODELS), vol. 7590 (Springer, 2012), pp. 202–218

Assurance Cases

Towards Making Safety Case Arguments
Explicit, Precise, and Well Founded

Valentín Cassano, Thomas S. E. Maibaum, and Silviya Grigorova

Abstract The introduction of safety cases into the practice of safety assurance has
revolutionized safety engineering. Via a ‘safety argument’, a safety case aims to
explicate, and to provide some structure for, the kind of reasoning involved in demon-
strating that a system is safe. To date, there are several notations for writing down
safety arguments. These notations suffer from not having a well-founded semantics,
making them deficient w.r.t. the requirements of a serious approach to engineering.
We consider that a well-founded semantics for safety arguments ought to be based
on logical principles in the form of a logical calculus. Logic is the basis for reason-
ing in mathematics, philosophy, and science, and the same should be true for safety
reasoning. With this goal in mind, we take some steps towards constructing a logical
calculus for safety arguments by exploring some of the features of this calculus.
Moreover, we look into the essential role that evidence plays in safety arguments.
Evidence sets apart safety arguments from their traditional logical counterpart, as
assumptions in safety arguments must be grounded on (i.e., justified by) data from
the empirical world. We present our thoughts on these matters, and illustrate them by
means of examples.We consider that ourwork establishes a framework for discussing
safety arguments in a more rigorous manner.

1 Introduction

The introduction of safety cases into the practice of safety assurance aims to make
explicit and to organize the justification for a claim that some engineered artefact is
safe. (What ‘safe’ means is, however, a totally different issue, which we choose to

V. Cassano · T. S. E. Maibaum (B) · S. Grigorova
McMaster Centre for Software Certification, McMaster University, Hamilton, Canada
e-mail: tom@maibaum.org

V. Cassano
e-mail: cassanv@mcmaster.ca

S. Grigorova
e-mail: grigorsb@mcmaster.ca

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_11

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_11&domain=pdf
mailto:tom@maibaum.org
mailto:cassanv@mcmaster.ca
mailto:grigorsb@mcmaster.ca
https://doi.org/10.1007/978-981-15-5054-6_11

228 V. Cassano et al.

set aside here.) A safety case is defined as: ‘A structured argument, supported by a
body of evidence that provides a compelling, comprehensible, and valid case that a
system is safe for a given application in a given operating environment’ (see [35]).
This widely accepted definition of a safety case as a structured argument is a big
step towards a more precise definition. Moreover, it sets a standard against which
competing definitions of a safety case can be assessed [16]. See also Sect. 2.

A significant amount of useful work has been accomplished in turning the idea
that a safety case is a structured argument into practical notations to support their
development (see [1, 33]). However, to date, existing notations for safety cases have
no semantics. This entails that, when presented with a safety case in one of these
notations, we have no means for deciding whether the structured argument it for-
mulates is syntactically well formed, never mind whether the reasoning it purports
to represent is sound. In other words, though safety cases have been developed and
used with some success, they seem to be largely supported by intuition and experi-
ence. This is in stark contrast to other disciplines of engineering where mathematical
rigour is the norm. The situation is worrisome. Canwe reasonably expect to deal with
the increasing complexity of systems such as cyber-physical systems or autonomous
cars largely based on intuition? It is well known that, in the end, intuition always fails
us when confronted by complexity. Would we have entrusted the lives of astronauts
to outer space missions had space shuttles been engineered based on intuition and
not science? Of course not.1 So why do we not hold the development of safety cases
to the same high standards? It does certainly seem to be appropriate. Moreover, how
do we teach new safety engineers the necessary rigour required in their field without
a proper scientific basis? Do we appeal to intuition and experience? Intuition only
takes us so far, and certainly not far enough to justify the safety of complex systems.
The moral of the story is that history clearly demonstrates that notations lacking a
well-founded semantics are deficient w.r.t. the requirements of a serious approach to
engineering. This state of affairs in safety assurance has persisted for too long. We
consider that it is time to bring this issue to the fore.

We do not think that the use of the term ‘structured argument’ is incidental in the
definition of a safety case.2 For this reason, our view is that a well-founded semantics
for safety cases should be based on logical principles in the form of a logical calculus.
We view the development of this logical calculus in the light of Logic Engineering
(see [36]). Logic Engineering addresses the development of logical frameworks for
specific purposes. In our case, the specific purpose is safety reasoning. As logic
engineers, we then need to identify among the available logical calculi if there is
one that is adequate for safety reasoning, and in case there is none, to construct one
(possibly by combining or borrowing elements from those that exist).

1This does notmean thatwe expect engineering to be perfect. Engineers domakemistakes.However,
engineers learn by experience and codify that knowledge in mathematical analyses and engineering
methods, on which they can rely to build systems that are reliable.
2Tim Kelly, the developer of one of the most commonly used notations for safety cases, the Goal
Structured Notation, see [33], and his PhD. supervisor John McDermid in [25] directly linked the
notation to the argument language developed by Toulmin in [34]. Moreover, the UKMoD standard
definition of a safety case, see [35], also links safety cases to arguments.

Towards Making Safety Case Arguments Explicit … 229

As a disclaimer, we do not propose to reduce safety reasoning to an existing logical
calculus, nor will we fully develop a logical calculus for safety reasoning; we do not
yet know enough to do so. Instead, we take some steps towards a logical calculus
for safety reasoning by presenting and discussing some of its main elements in the
form of working definitions. More precisely, we provide a precise definition of the
notion of a structured argument in a safety case and discuss some of the elements of
safety reasoning in relation to it. An important part of this reasoning is the essential
role that evidence plays in safety cases. Evidence sets apart the kind of arguments
involved in safety cases from their traditional logical counterpart, as assumptions in
safety cases must be grounded on (i.e., justified by) data from the empirical world.
An important source for ideas in this regard is the work of epistemologists such as
Carnap, Hempel, and Popper, amongst others, see [5, 18, 29]. In particular, we have
taken inspiration from Carnap’s Two Level Language of Science. This language is
a logical formalism that has a limited logic for observational reasoning, i.e., about
evidence, which is included in another language, the so-called theoretical language,
that is used for reasoning about universal generalizations. The current observations
about safety cases and the distinctions between reasoning about evidence versus
inferential reasoning of amore general nature are directly rooted in the ideas outlined
above.

Our work has two main outcomes. First, we set up a framework for discussing
the kind of reasoning involved in safety cases. Second, we set up a standard against
which progress can be measured by providing some working definitions. Working
definitions are the basis of science and engineering and are an essential tool against
which to measure scientific progress. Working definitions allow us to make further
progress in transforming safety cases into a properly grounded engineering tool,
enabling a systematic and rigorous construction and analysis. But, of course, our
working definitions should not be seen as defining a dogmatic position; we will
happily make changes as we learn more and are able to justify their necessity.

Structure: In Sect. 2, we beginwith some preliminary observations on safety cases.
In Sects. 3 and 4, we discuss some of the main elements of safety reasoning and offer
some working definitions. In Sect. 5, we put these elements together in an attempt
to present a coherent picture. In Sect. 6, we offer some conclusions and comment on
next steps.

2 Preliminary Observations

The first observation regarding safety cases concerns notations for their presenta-
tion/development (e.g., [1, 33]). To save us from having to continually refer to all of
them, we use the diagrams in the Goal Structured Notation (GSN) as our witness. In
our view, GSN diagrams do not present arguments in the usual logical sense of the
term. Instead, they present decomposition structures for safety goals, i.e., a strategy S
related to goals {Gi }i∈n,G expresses a decomposition of G into {Gi }i∈n . This is rem-
iniscent of problem solving by decomposition, a well-known technique for coping

230 V. Cassano et al.

Fig. 1 Goal decomposition

with the complexity of large problems (see [28]), where solutions to sub-problems
are combined in a prescribed way to solve the original problem. More closely, this
is reminiscent of goal structured requirements approaches such as KAOS (see [23]),
which apply problem decomposition ideas to requirements definition. (In fact, GSN
researchers often refer to the notation as supporting safety goal decomposition.) But
decomposition structures for safety goals and structured arguments in safety cases
are different: while a goal decomposition structure breaks down a complex goal G
into more manageable goals {Gi }i∈n , as stated in some underlying logical calculus,
a structured argument substantiates that G follows from the set {Gi }i∈n . This dif-
ference is immediate if we draw an analogy with goal decomposition structures in
KAOS. The following example, adapted fromone presented in [9], clarifies this point.
Figure1 illustrates the decomposition of a goal G stating that ‘if the train is ready to
depart, then, it eventually departs’ into goals G1, G2, and G3 stating that ‘if the train
is ready to depart and the go signal turns green (go), then, it eventually departs’;
‘if the train is ready to depart, then, the go signal turns green (go) eventually’; and
‘if the train is ready to depart, then, it remains in that state at least until it departs’;
respectively. In Fig. 1, goals G and G1 – G3 are formulated in (TK ; see [24]) as
r ⊃ � ♦ d, r ∧ g ⊃ ♦ d , r ⊃ ♦ g, and r ⊃ r W d, respectively. Figure2 illustrates
what we consider to be a structured argument in the context of this goal decomposi-
tion. In Fig. 2, single lines correspond to inference steps of TK , and double lines to
the use of lemmas in TK , i.e., combinations of inference steps (see [24]). Though
related, it can be readily seen that decomposition structures for goals and structured
arguments are not the same. GSN diagrams fall short at presenting structured argu-
ments. So-called strategies do not involve structured arguments akin to that presented
in Fig. 2, and what they do better at representing, a goal decomposition structure,
while very important, is hindered, from a scientific and engineering point of view,
by not having a properly defined semantics (as exists in KAOS).

Another popular notation for safety cases is CAE developed by Adelard (see
[1]). The ideas and motivations are similar to those of GSN in many ways. In CAE
claim decompositions can be viewed as logical conjunctions of the sub-claims. This
links directly intended logical meaning of claim decomposition to reasoning about
the claims. However, such a ‘semantics’ of claim decomposition is very limiting
and simplistic. As noted above, in problem solving by decomposition, the way sub-
solutions are put together to obtain a solution for the original problem must be well
defined, but the composition method may be more complicated than conjunction.

Towards Making Safety Case Arguments Explicit … 231

Fig. 2 Structured argument

Similarly, when we build proof procedures, another example of the principle of
problem solving by decomposition, putting proofs together may be much more com-
plex than simply ‘build the conjunction’ of the proofs. Breaking claims down to ones
that can be put together by conjunction enormously, and unnecessarily, complicates
the decomposition problem.3

There is also something to be said about attempts at reducing safety reasoning
directly to First-Order Logic (FOL) and using automated deduction support and proof
calculi for expressing a safety argument (see [31, 32]). These attempts try to provide a
strong, well defined, foundation for eliciting what is meant by a structured argument.
But they must also face up to the fact that safety reasoning is not FOL reasoning
(and, more generally, not that captured by classical deductive logical calculi). There
are several reasons for this. We proceed to enumerate some:

(i) Safety reasoning contains textbook examples of fallacies in FOL (e.g., argu-
ments fromauthority, such as expert opinions). Independently of howweexpress
them, including a fallacy in a proof renders the proof a fallacy, and thus a no-
proof.

(ii) Safety reasoning makes use of inductive generalizations (as in inductive rea-
soning, see [12]). An obvious example of this occurs when it is concluded from
a test set extracted from an universe of data, where every test case is successful,
that a corresponding property of the universe of data is the case. This kind of
generalization requires a truly inductive reasoning step. FOL is not the logic for
dealing with inductive generalizations.4

3When trying to define how components could be composed ‘in parallel’, researchers also proposed
that the semantics was conjunction. This was found to be very limiting, failing to deal well with
interaction and communication between components andwas soon replaced by the use of categorical
operations, such as co-limit, applied to diagrams of components and morphisms in an appropriate
category.
4The position that inductive generalizations correspond to reasoning at the level of evidence, that,
once this is sorted out, we can move to a more ‘pure’ form of reasoning, and that the non-evidential
part of the reasoning in a safety case can be done in FOL is difficult to sustain. There is no clear
distinction between when reasoning at the level of evidence stops and when we can move to ‘pure’
reasoning. In fact, the related literature categorically contradicts this position.When reasoning about
statements that make assumptions about evidence, it seems implausible, at least, that FOL will do.

232 V. Cassano et al.

(iii) Safety reasoning includes elements of defeasible reasoning (as discussed in the
field of non-monotonic logics; see [3]). Often safety reasoningmakes inferences
from incomplete information, i.e., neither are we certain that a property holds
for an artefact, nor that it does not, yet we still conclude something about
the artefact. Moreover, safety reasoning makes use of defeasible inferences.
These inferences are defeasible because further investigation may invalidate the
conclusions drawn from them, forcing their revision, or withdrawal. Defeasible
reasoning falls outside of the scope of FOL.

(iv) FOL is inadequate for reasoning about actions, modalities, and agency. This
part addresses the idea that modal reasoning can be better dealt with in FOL.
This does not mean that actions, modalities, and agency cannot be reasoned
about in FOL. It simply means that they are better dealt with by logics which
were developed with that particular purpose in mind (see [10, 27]). From the
perspective of logic engineering, these logics provide amore suitable formalism
for the task at hand.

(v) Safety case reasoning sometimes also uses a form of reasoning called elimi-
native induction (see [15]). Eliminative induction, first developed by Francis
Bacon, and taken up by philosophers such as John Stuart Mill, John Maynard
Keynes, Karl Popper, Jonathan Cohen, et al., works like this: Suppose that we
conclude property A and that, at the same time, we identify that A may not
be true in the presence of one or more properties B1, . . . ,Bn . The set of Pi s
associates some uncertainty to P. If none of the Pi s can be concluded, then, the
uncertainty associated with P is reduced. This form of reasoning is in fact an
example of a form of probabilistic reasoning that departs from the frequentist
based reasoning of probability and is more related to confidence (as in confi-
dence in a scientific theory). Confidence underlies reasoning about scientific
theories, legal cases, and other domains, and some valuable lessons can be
learned from those domains. For example, confidence is the basis on which
semantics for statements in law like ‘beyond a reasonable doubt’ or ‘on the bal-
ance of probabilities’ can be defined. (Toulmin includes ‘qualifiers’ as elements
in the logical statements he uses in his arguments. He would recognize the two
examples we just presented as examples of qualifiers. Safety case examples are
replete with qualified statements such as ‘sufficiently’ safe or acceptably safe.)
In safety reasoning, confidence is absolutely necessary for it manifests scientifi-
cally the conventional wisdom that safety cannot be absolutely guaranteed, and,
therefore, the degree of confidence becomes an essential aspect of reasoning.
Again, confidence falls outside of the scope of FOL.

(vi) Safety reasoning has a global rather than a compositional, inductive, nature.
Defeasible and probabilistic reasoning exhibit this particularity. In these forms
of reasoning it is not generally possible to put consequences together in a
soundness-preserving way (see [2]). This has grave consequences for the pos-
sibility of devising incremental safety approaches that support the well tried
and understood concept of incremental design improvement (see [37]). Lack of
compositionality is not a feature of FOL.

Towards Making Safety Case Arguments Explicit … 233

(i)–(vi) lead to the observation that FOL is not a suitable framework for safety
reasoning. There might be a need to look elsewhere for a logic for safety reasoning.

To summarize, it is unsurprising that safety reasoning presents a challenging topic
for research. The practical implications of this are plainly evident. Taking on this
challenge, we take some steps towards establishing a logical calculus for safety
reasoning.

3 Structured Arguments in Safety Reasoning

The concept of a safety case is a cornerstone of safety reasoning. But what do we
exactly mean by a safety case? A safety case is commonly defined as: ‘A structured
argument, supported by a body of evidence that provides a compelling, comprehen-
sible, and valid case that a system is safe for a given application in a given operating
environment’ (see [35]). The introduction of safety cases into safety reasoning is a
step in the right direction. Safety cases make a serious attempt to explicate, and to
provide some structure for, the inference licenses, a.k.a. rules of inference, used in
guaranteeing that a system is safe. Nonetheless, a striking feature of the definition
of a safety case just given is its logical vagueness. It is unclear what is to be taken
as constituting a structured argument, as in, what are its defining characteristics, and
how is such a structured argument to be assessed in terms of the soundness of the
reasoning it involves. In this section we discuss these issues from the perspective of
a logical calculus. This presentation extends and clarifies an earlier work of ours (see
[6]).

3.1 Background

Webegin by introducing some basic definitions and comments onGentzen’sCalculus
of Natural Deduction for Classical First-Order Logic (NK for short; see [8, 14]).
With this, we aim to provide a well-defined context for discussion. In the process,
we will fix the terminology that we will use in what follows, and we will make this
terminology precise.

As explained in [14, p. 291], with his NK , Gentzen intended to provide: ‘A
formalism that reflects as accurately as possible the actual logical reasoning involved
in mathematical proofs’. Gentzen offers as an example of this kind of reasoning:

(∃x∀yFxy) ⊃ (∀y∃x Fxy). The argument runs as follows: Suppose there is an x such that
for all y Fxy holds. Let a be such an x. Then for all y: Fay. Now let b be an arbitrary object.
Then Fab holds. Thus there is an x , viz., a, such that Fxb holds. Since b was arbitrary, our
result therefore holds for all objects, i.e., for all y there is an x , such that Fxy holds. This
yields our assertion. (See [14, p. 292].)

In essence, the program laid out by Gentzen in [14] consists of the integration of
the kind of mathematical proofs carried out above in an exactly defined calculus, his

234 V. Cassano et al.

NK . To this end, Gentzen provides precise definitions of so-called symbols, expres-
sions, and figures. Symbols are the alphabet of Classical First-Order Logic (FOL
for short). Expressions are the language of FOL, i.e., the set of all formulæ defined
recursively over the alphabet of FOL.Wewill need to refer to arbitrary formulæ in the
language of FOL. We indicate these arbitrary formulæ with uppercase boldface let-
ters. Figures are inference figures or proof figures. Inference figures consist of a finite
set of formulæ called upper formulæ and a single formula called a lower formula.
Regarding inference figures Gentzen explains in [14, p. 291] that: ‘We shall have
inference figures and they will be stated for each calculus as they arise’. The permis-
sible inference figures which make up the NK correspond to the well-known rules
of introduction and elimination of the logical connectives of the alphabet of FOL
and the law of the excluded middle (see [14, pp. 292–295]). Gentzen states these
permissible inference figures via a set of inference figure schemata. An inference
figure schema is to be understood as: The permissible inference figure obtains from
the inference figure schema by instantiating the syntactical variables for formulæ
by corresponding formulæ. Figure3 illustrates an inference figure schema (corre-
sponding to the introduction of material implication). Observe that in this inference
figure schema A, B, and A ⊃ B are not sentences, they are variables or templates for
sentences. Figure4 illustrates an instance of the inference figure schema in Fig. 3. In
this inference figure, {(∃x∀yFxy), (∀y∃xFxy)} is the set of upper formulæ, instan-
tiating A and B, respectively, and (∃x∀yFxy) ⊃ (∀y∃xFxy) is the lower formula,
instantiating A ⊃ B.

Proof figures, also called derivations, combine a number of formulæ to form
inference figures such that: ‘Each formula is a lower formula of at most one inference
figure; each formula (with the exception of exactly one: the endformula) is an upper
formula of at least one inference figure; and the system of inference figures is non-
circular, i.e., there is in the derivation no cycle [...] of formulæ of which each upper
formula of an inference figure has the lower formula as the next one in the series’
(see [14, p. 291]). Figure5 illustrates the result of incorporating the mathematical
proof given above inGentzen’sNK . (Numbering annotations in Fig. 5 identifywhere
formulæ are discharged and they are solely used for bookkeeping purposes.)

Introducing some further terminology that we will use later on, Gentzen calls the
formulæ of a derivation that are not lower formulæ of an inference figure initial; the
formulæof a derivationD-formulæ; the inferencefigures of a derivationD-inferences;
and a series of D-formulæ in a derivation, whose first formula is an initial one and
whose last formula is the endformula, and of which each formula but the last is an

Fig. 3 Inference figure
schema

Fig. 4 Inference figure

Towards Making Safety Case Arguments Explicit … 235

Fig. 5 Proof figure (a.k.a.
derivation)

upper formula of a D-inference figure whose lower formula is next in the series, a
branch. Note that, in Gentzen’s formulation of the NK , it is possible for some of
the initial formulæ of a derivation not to be discharged. We call such initial formulæ
premisses. At times, we need to refer to derivations without making their structure
explicit. For this purpose,we use symbol�NK .Weunderstand this symbol as a relation
between sets of formulæ and formulæ. The source of �NK is the set of undischarged
formulæ in the derivation, the target of �NK is the endformula of the derivation. For
example, we indicate the derivation in Fig. 5 as {} �NK (∃x∀yFxy) ⊃ (∀y∃xFxy).

3.2 Some Concepts

Wemake some observations about Gentzen’sNK as a prelude to what follows. First,
via the integration of mathematical proofs into NK , Gentzen provides a precise
definition of what is a mathematical proof, enabling an analysis of its scope and
limits. For us, the importance of this cannot be underestimated, in particular, because,
to a certain extent, the notion of a mathematical proof stands in analogy with that
of a structured argument in a safety case, or a safety argument for short: while a
mathematical proof aims at capturing the kind of reasoning involved in mathematics,
a safety argument aims at capturing the kindof reasoning involved in safety reasoning.
In that respect, we consider that safety arguments should be given a definition akin
to the one that Gentzen provides for mathematical proofs. Without such a definition
it is impossible to judge whether a proposed safety argument is indeed such. If
logic, logical methods, and their history have taught us anything at all, it is that only
through the provision of precise definitions and their analyses canwe avoid fallacious
reasoning steps. Two of the most important results about Gentzen’s definition of a
derivation are the Soundness and Completeness Theorems (see [8]); having, at the
very least, a soundness theorem for a logical calculus for safety reasoning would
greatly improve the state of the art in this domain of knowledge.

In light of the previous paragraph, we offer some clarifications to avoid any subse-
quent confusion.We are not saying that mathematical reasoning and safety reasoning
are one and the same. There are most definitely some points of departure between
the two, some of which we have already mentioned in Sect. 2, some of which we
will make clear below. Neither are we saying that without a definition of a safety
argument that stands on grounds analogous to Gentzen’s definition of a derivation,

236 V. Cassano et al.

safety reasoning is vacuous. Though with some reservations, even in the absence
of such a definition of safety argument, we see no major reason preempting logical
progress in safety reasoning. (After all, it is not as if mathematical reasoning could
not be carried out before Gentzen’s definition of a derivation.) Lastly, we are not
saying that the aforementioned definition of a safety argument can or shall be given
from the outset. This would be a clear impossibility given the current state of the
art of safety reasoning. Instead, our remarks are oriented towards the formulation of
a working definition of a safety argument that is (i) suitable for capturing as accu-
rately as possible the actual logical reasoning involved in safety assurance, and (ii)
amenable for the logical analyses that are needed to establish the well-formedness
and the soundness of the inference licenses to be used in safety assurance. It is rel-
ative to (i) and (ii) that a Logical Engineering approach proves its worth. We hope
that by discussing and refining such a working definition we can establish a strong
logical foundation on which to improve safety reasoning and ultimately develop a
logical calculus for safety reasoning.

One final discussion may be of importance in clarifying what we are trying to
do. It has been widely recognized that safety reasoning includes at least two forms
of reasoning: so-called evidential reasoning, to incorporate experimental observa-
tions that might be relevant to our conclusions about the safety of a system, and
so-called inferential reasoning, to enable us to manipulate statements that are not
directly about experimental data. There seems to be a consideration that inferen-
tial reasoning is logical, as in FOL, while evidential reasoning is not logical, but
so-called epistemological, based on conventional probability notions (see [31, 32]).
Now, though there are good reasons to distinguish the two kinds of reasoning, there
seems to be no good reason to demote evidential reasoning from the realm of logic.
There is a century-old history of trying to do exactly the opposite. Carnap’s Two
Level Language of Science was an attempt at characterizing the logic behind scien-
tific reasoning (see [5]). As in safety cases, Carnap had to deal with the incorporation
of observation in science with the more general forms of reasoning that any mathe-
matician, scientist, or logician would recognize. He divided his logical language into
two parts: one that has to do with observations, the other that has to do with general,
universal reasoning, e.g., about universal laws. The observational language was of
limited expressive power; it included observations as ground atomic formulae (e.g.,
‘this glass is blue’, ‘the output of this program run in this test harness, when the input
is a, is b’, etc); the observational logic had the usual connectives, but limited infer-
ential power (e.g., universal generalization is not allowed), only so-called empirical
generalizations (e.g., ‘all the swans we have observed are white’). The so-called
Theoretical Level of discourse, on the other hand, was more like FOL and allowed
universal generalization. This latter logic incorporated the former. Thus, reasoning
about evidence (observations) and inferential reasoning are integrated into a single,
coherent whole. When we refer below to a logic of safety cases, we have in mind a
logic analogous to Carnap’s. It incorporates elements for evidential reasoning as well
as general (inferential) reasoning. It seems to us that making evidential reasoning
not logical just leaves us with the non-trivial problem of integrating the two parts.

Towards Making Safety Case Arguments Explicit … 237

Fig. 6 s-inference figure
schema

Fig. 7 s-derivation

Following from these preliminary observations, similarly to Gentzen’s aim of
incorporating mathematical proofs into a logical calculus, Gentzen’s NK , what we
have in mind is also the integration of safety arguments into a logical calculus, which
we refer to as SK . This integration provides the sought after definition of a safety
argument. In working towards this end goal, we make precise first the concept of a
s-derivation. Reminiscent of Gentzen’s derivations, s-derivations consist of a number
of s-formulæ which are combined to form s-inference figures. For each s-derivation,
each s-formula is a lower s-formula of at most one s-inference figure; each s-formula
(with the exception of exactly one, the s-endformula) is an upper s-formula of at
least one s-inference figure; and the system of s-inference figures is non-circular.
We consider a s-inference figure to be an instance of the s-inference figure schema
in Fig. 6.5 In the s-inference figure schema in Fig. 6, A1, . . . , An, B, R are variables
for s-formulæ; the part corresponding to 〈R〉 is optional. We will have to consider
a particular s-inference figure schemata in the definition of our sought after SK ,
and these we will have to state precisely, but we are not in a position to do so yet.
Following Gentzen’s terminology, for a s-inference figure schema such as the one
given above, we call the instances of A1, . . . , An upper s-formulæ and the instances
of B lower s-formulæ. We call the instances of R s-rebuttals. We will return to
them shortly for they occupy a special place in s-derivations. We call the s-formulæ
participating in a s-derivation s-formulæ and the s-inference figures participating in
a s-derivation s-inference figures. Moreover, we call the s-formulæ of a s-derivation
that are not lower formulæ of a s-inference figure initial s-formulæ. The initial s-
formulæ of a s-derivation can be discharged (in the sense given by the introduction
of appropriate conditionals, modalities, or quantifiers) or not. We call those initial
assumptions of a s-derivation that are not discharged s-premisses. At times, we need
to refer to s-derivations but not their structure. For this purpose, we use symbol |∼SK .
We understand this symbol as a relation between sets of s-formulæ and s-formulæ.
The source of |∼SK is the set of undischarged s-formulæ in the s-derivation, the target
of |∼SK is the s-endformula of the s-derivation. We label |∼SK with the s-rebuttals of
the s-inference figures in the s-derivation.

5Technically, the s-inference figure schema in Fig. 6 is a s-inference figure schemata. We obtain a
s-inference figure schema for each value of n.

238 V. Cassano et al.

Fig. 8 Goal decomposition

Fig. 9 s-inference Figure

We illustrate what a s-derivation may look like in Fig. 7.6 In this s-derivation,
{r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} is its set of s-premisses, and r ⊃ ♦ d
is its s-endformula. With the exception of the s-inference figure in Fig. 9, to which
we will return, the s-inference figures used in this s-derivation are obvious; they are
inference figures of Temporal Logic (see [24]). We indicate the s-derivation in Fig. 7
as {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d .
We can understand the s-derivation in Fig. 7 in light of the goal decomposition in

Fig. 8. In this goal decomposition, we broke the top goal r ⊃ ♦ d into goals r ∧ g ⊃
♦ d, r ⊃ (r W d), and (s U g) ∧ (g U s). We borrowed r ⊃ ♦ d, r ∧ g ⊃ ♦ d, and
r ⊃ (r W d) from the goal decomposition example in Sect. 2 and they have the same
intuitive meaning. With (s U g) ∧ (g U s) we capture the idea that ‘the go signal
turns from green (go) to red (stop) and from red (stop) to green (go)’. With ¬v we
capture the idea that ‘the go signal is not visible to the operator of the train’. Relative
to the goal decomposition in Fig. 8, the s-derivation in Fig. 7 identifies clearly and
definitely a structured argument substantiating that the top goal follows from the
(sub)goals it has been broken into.

The definition of SK concludes with the definition of the language of s-formulæ,
and with the formulation of the permitted s-inference figures via s-inference figure
schemata.We envision the language of s-formulæ as theSK counterpart of the claims
involved in safety arguments, safety claims for short, and the permitted s-inference
figures as the SK counterpart of the inference licenses used in the formulation of
safety arguments. Their precise formulation is, however, an open research question
and part of what makes the definition of a safety argument, via its integration into an
exactly defined calculus, a working definition.

6In the s-derivation in Fig. 7, we assume that the language of Temporal Logic is part of the language
of s-formulæ and that the inference figures of Temporal Logic are permissible (see [24]).

Towards Making Safety Case Arguments Explicit … 239

3.3 Some Comments on the Logic of Safety Arguments

A significant and non-trivial part of our SK needs to be completed. We need to:
(i) provide a formal definition of s-formulæ; (ii) formulate the s-inference figure
schemata for the permissible s-inference figures of SK ; and, more importantly, (iii)
integrate a basic stock of examples into SK . However, even at this early stage, the
definition of a s-derivation allows us to discuss technically certain important issues
regarding safety reasoning.

3.3.1 Regarding s-Formulæ

The following observation made by Gentzen in [14] provides some context for dis-
cussion: ‘To the concept of “object”, “function”, “predicate”, “theorem”, “axiom”,
“proof”, “inference”, etc., in logic and mathematics there correspond, in the for-
malization of these disciplines, certain symbols or combinations of symbols’. What
Gentzen implicitly assumes is the translation of some ordinary language of mathe-
matics into the formal languageFOL.Arguing about the faithfulness of the translation
of statements in the ordinary language of mathematics into that of FOL is a moot
point, first, because, to a large extent, the language of FOL has been designed having
in mind the ordinary language of mathematics, and second, because statements in
mathematics are rigorously precise and unambiguous.After all, no onewill doubt that
the ordinary statement of mathematics ‘there is no natural number whose successor
is zero’ is expressed by the formula ¬∃n(S(n) = 0).

More generally, a faithful translation of an ordinary language, such as English,
into a formal language, such as that of FOL, brings with it a number of non-trivial
issues to address. In particular: Is there then a formal language in which to provide a
precise definition of s-formulæ that caters for a faithful translation of safety claims
formulated, say, in plain English? The answer to this question is, however, non-trivial.

It is not at all clear how to faithfully translate logical connectives in an ordinary
language such as English into a formal language. For instance, we have chosen to
translate the English claim ‘if the train is ready to depart, then, it eventually departs’
into the formula r ⊃ ♦ d. The problemwith this is that, ifwe assume that the inference
figure schemata ruling the introduction and elimination of ⊃ in the SK are similar
to those in Gentzen’s NK for ⊃, i.e., if ⊃ is like the material conditional, then, we
can establish r ⊃ ♦ d from r ∨ b ⊃ ♦ d. But there is something counter-intuitive in
this situation; in particular, if we understand the formula r ∨ b ⊃ ♦ d as a faithful
translation of the English claim ‘if the train is ready to depart or it is broken, then,
it eventually departs’; for, clearly, we would not want a broken train to depart. The
problems of conditional statements in ordinary English and material implication
discussed in [7] offer some further food for thought on this issue.

To further complicate matters, a quick perusal of some safety claims reveals a
heavy use of vaguely defined modal logical connectives, e.g., ‘acceptably’, ‘suffi-
ciently’, ‘adequately’, in combination with quantifiers of a restricted nature, e.g.,

240 V. Cassano et al.

‘All identified hazards’. It is well known in classical logical studies that these are
not easily dealt with, and adding modal logical connectives intertwined with logical
quantifiers to the mix does not simplify matters.

In addition to the above, there are also issues related to reasoning about actions,
and about qualifiers on actions, that pose some challenges in their own right.

At this point, some may wonder: Why should we even bother in developing
and proposing a formal language of s-formulæ if it is so devilishly complicated?
First, because formal languages are unambiguous, easier to provide a clear semantics
for, and, ultimately, more amenable to analyses and tool support. Second, because
the unrestricted use of ordinary languages, e.g., English, is known to be prone to
paradoxes, e.g., ‘This sentence has five words’, or the heinous ‘This sentence is
false’.

We are of the opinion that a version of a paradox of language is already present in
safety reasoning. To explain this observation, we draw an analogy between reasoning
about safety, and reasoning about correctness in Hoare’s Calculus (HK ; see [20]).

Hoare’s HK is a formalism enabling us to reason deductively about programs.
Its lore involves claims such as: ‘The program S is correct w.r.t. its precondition P
and its postcondition Q’. But we note here an important point: There is no formula
in the formal language of Hoare’sHK capturing such claims about correctness. The
formal language of Hoare’s HK consists of triples {P} S {Q}. These triples are
the formal counterpart of claims of the form: ‘If (the precondition) P is true before
the initiation of (the program) S, then, (the postcondition) Q will be true upon the
completion of S’. Claims such as ‘The program S is correct w.r.t its precondition
P and its postcondition Q’ are formulated outside of Hoare’s HK and refer, from
outside the calculus, to the existence of a derivation, inside the calculus, which has
the triple {P} S {Q} as an endformula. In other words, ‘The program S is correct w.r.t
its precondition P and its postcondition Q’ is defined to be ‘There is, in the HK ,
a derivation which has the triple {P} S {Q} as an endformula’. Figure10 illustrates
what a derivation in Hoare’s HK looks like. (In this figure, single lines correspond
to inference steps of Hoare’s HK , and double lines to the use of lemmas in the
calculus, i.e., combinations of inference steps).

The point is that the claim ‘The program x := x + y;y := x − y;x := x − y is
correct w.r.t. its preconditionx = X ∧ y = Y and its postconditionx = Y ∧ y = X ’
refers to the derivation in Fig. 10. But the claim of correctness does not belong to the
language of Hoare’sHK . Including a formula that can refer to correctness inside of
Hoare’sHK yields a calculus which can refer to its own notion of derivation, giving
rise to all sorts of logical problems, not to mention fallacies.

Our observation is that, though programs and systems are distinct entities, and
so is reasoning about correctness and safety, we consider that in the same way that
the correctness of a program in Hoare’s HK refers to the existence of a derivation
in the calculus, a statement about the safety of a system, whether acceptably, suf-
ficiently, adequately, etc., refers to the existence of a s-derivation and, as such, it
is not part of the s-derivation itself. In other words, a goal such as ‘The system is
acceptably/sufficiently/adequately safe’ can never be the top-level goal of any safety
argument. Instead, this top-level goal should correspond to a property akin to precon-

Towards Making Safety Case Arguments Explicit … 241

Fig. 10 A derivation in Hoare’s HK

ditions/postconditions in Hoare’s HK . After all, fallacious reasoning begins with
the use of formulæ that are, from the point of view of the candidate calculus, already
logically problematic.

The moral of the story is that we should exercise great care in the formulation
of safety claims, and what they are about, to avoid the kind of problems mentioned
above, or others of a similarly problematic logical nature. As a first step, we may
choose to restrict the formulation of safety claims to fragments of ordinary languages,
such as English, that are expressive enough to capture the safety claims that we need,
but that maintain a reasonable degree of logical tractability. This would provide us
with a basis on which to engineer a formal language for s-formulæ, and a corre-
sponding formal semantics, which caters for a faithful translation of safety claims,
catering for a thorough and systematic understanding of the sort of claims involved
in safety reasoning and how to reason about them.

3.3.2 Some Thoughts on Toulmin

The definition of a s-inference figure given in Fig. 6 provides a necessary level of
technicality for putting in context and discussing the appeal to Toulmin’s argument
patterns (see [34]) in the formulation of a safety argument, an important topic at the
heart of notations for safety arguments.

Let us recall some of the basics of Toulmin’s notion of an argument pattern. In
[34], Toulmin asks himself: How should we lay an argument out, if we want to
show the sources of its validity? In answering this question, Toulmin identifies the
following elements: claim (C), data (D), warrant (W), qualifier (Q), rebuttal (R), and
backing (B). Resorting to this basic stock of concepts, Toulmin lays out his famous
notion of an argument pattern as in Fig. 11.

Avery simple explanationof these concepts is offered in [19]. There, it is explained
that Toulmin articulates his argument patterns in the context of justifying an assertion
in response to a challenge. The challenge starts with the assertion of a claim (C), of
which we may be asked: What have we got to go on? To which we would offer the
data (D). Upon offering the data (D), we may be asked: How do you get there? (How

242 V. Cassano et al.

Fig. 11 Toulmin’s argument
pattern

do we get from D to C?) To which we would present the warrant (W). The warrant
is, thus, what allows us to infer the claim from the data. Warrants may be qualified
by modalities (Q), e.g., ‘probably’, ‘generally’, ‘necessarily, or ‘presumably’. If the
warrant is defeasible, i.e., open to revision or annulment, then, we would state the
conditions of rebuttal (R). Lastly, we may also be asked for a justification of the
warrant itself, to which we would present the backing (B).

Setting aside Toulmin’s notion of a backing (B), it is not difficult to see that,
though with some restrictions, our formulation of a s-inference figure schema in
Fig. 6 borrows elements from Toulmin’s argument patterns and articulates them in
Gentzen’s terminology. More precisely, incorporating the modalities (Q) into the
logical connectives of the language of s-formulæ, the set of Ai s, B, and R in Fig. 6
can be viewed as standing in analogy with Toulmin’s triple of data (D), claim (C),
and rebuttal (R) in the obvious way, i.e., D relates to the conjunction of the Ai s, C
relates to B, and R relates to R (this is the reason why we named the instances of R
rebuttals). Toulmin’s notion of a warrant can be viewed as standing in analogy with
the s-inference figure schema in Fig. 6.

The restrictions that we referred to above are linguistic and logical constraints on
the kind of rebuttals allowed. According to Toulmin, rebuttals indicate circumstances
in which the general authority of the warrant would have to be set aside (see [34,
p. 94]). There are, at least, two possible ways in which Toulmin’s view of a rebuttal
can be understood. First, (i) as indicating a set of circumstances in which the claim
licensed by the warrant would have to be set aside. Second, (ii) as indicating a
set of circumstances in which the warrant itself would have to be set aside. The
analogy between a warrant and a s-inference figure schema allows for the following
clarification: (i) Implies that an instance of the s-inference schema cannot be used
in a particular s-derivation; (ii) Implies that the s-inference schema cannot be part
of the s-inference figure schemata defining the SK . When understood in this sense,
(i) speaks to the defeasible aspect of s-derivations, whereas (ii) results in a denial
of the proposed calculus (intuitionistic reasoning, arising as a result of rejecting the
principle of the excluded middle, see [8]; or the various systems of Deontic logic,
arising in view of the so-called paradoxes of obligations and contrary-to-duties, see
[26], are examples of the second kind of rebuttals). In defining rebuttals as s-formulæ,
and under the proviso that the language for s-formulæ cannot refer to properties of
the SK , we preempt the formulation of rebuttals of the second kind. Including
rebuttals of the second kind makes room for paradoxes of language, as they can refer
to s-derivations. Paradoxes of language are something that we clearly wish to steer

Towards Making Safety Case Arguments Explicit … 243

away from. We consider that this restriction presents a firmer basis on which to start
building the SK .7

The relation between Toulmin’s argument patterns and s-inference figures places
the work of Toulmin in the context of safety reasoning: Toulmin’s argument patterns
present a framework in which to formulate what s-inference figures, or s-figure
schemata, may look like. However, Toulmin’s argument patterns are not s-inference
figures, nor s-figure schemata. This means that Toulmin’s argument patterns do not
define, at least not obviously, a calculus for safety reasoning, our sought after SK .
Such a calculus, which we view as a fundamental tool for analysing the logical well-
formedness of safety arguments, is only defined by the provision and justification of
a sensible set of s-inference figures via a set of s-inference figure schemata. In other
words, the appeal to Toumin’s argument patterns in the context of safety reasoning
is rather limited; it serves as a way of showing the sources of validity of a safety
argument, but it does not propose a way of assessing the validity of said sources.

3.3.3 Regarding s-Derivations

Two immediate questions may be asked about the SK : (i) Are s-derivations suitable
as the formal counterpart of safety arguments? (ii) Are s-derivations suitable for
supporting the logical analyses needed to establish the well-formedness and the
soundness of the inference licenses used in safety arguments?

Our answer to question (i) is, at this point, an expression of desire. Evidently, we
do consider that s-derivations present a suitable framework for incorporating safety
arguments. This view is partly justified by the intent of notations such as the GSN or
the CAE.Whether this view is fully justified is debatable. So far, we have been unable
to produce an example of the incorporation of a safety argument as a s-derivation.
This is, partly, due to our own limitations, to the lack of a language for s-formulæ,
and to the logical rigour that we intend to put in place in the integration of a safety
argument into a s-derivation (something that we hope to improve on); but this is also
due to the logical havoc reigning over the handful of examples of safety arguments
that we have inspected in detail (something that we expect to shed some light on).

Our answer to question (ii) is, even at this point, more satisfactory. In particular,
the concept of an s-derivation enables us to discuss some basic notion of well-
formedness. Let π1 and π2 be two s-derivations; if the s-premisses of π2 are a subset
of the s-premisses of π1 and the s-endformula of π2 belongs to the set of rebuttals of
the s-inference figures in π1, then, we call π2 a rebutting derivation for π1. We call a
s-derivation internally coherent in the absence of a rebutting s-derivation for it.8,9 The

7If we really wish to revise a logic supporting safety reasoning by revising its inference rules, then
this is a logic engineering job and we have not thought about what this may entail.
8We are calling a s-derivation internally coherent in the absence of a rebutting s-derivation for it,
not in the presence of a proof that such a rebutting s-derivation does not exist; the latter is far more
difficult to establish.
9Internally coherent s-derivations also make precise the role of rebuttals. They are not negated
premisses, nor premisses of any kind; they are a source of defeasibility. To consider rebuttals as

244 V. Cassano et al.

second footnote is in response to the comment that rebuttals are negated assumptions.
Obviously, s-derivations that are internally incoherent are logically ill-formed.

The concept of internal coherence makes precise in which sense a s-derivation
is defeasible, i.e., open to revision or annulment. To illustrate this point, let π be
the s-derivation in Fig. 7. As it stands, π is internally coherent. It remains so even
if we extend its set of s-premisses. However, if we are, from the extended set of
s-premisses, able to construct a s-derivation with ¬v as its s-endformula, then, π is
no longer internally coherent. Losing this status is a direct result of the s-inference
figure in Fig. 9. Intuitively, this s-inference figure may be read as: If ♦ g has been
established by means of s-premiss r , we have r ⊃ ♦ g, now without the s-premiss
r . The rebuttal ¬v states the conditions under which this inference license is locally
inapplicable, i.e., in those situations in which there is also a derivation of ¬v, i.e., in
those situations in which it is possible to establish that ‘the go signal is not visible’.
The s-inference figure in Fig. 9 is ‘locally inapplicable’ for there are situations in
which its use is perfectly permissible (e.g., in Fig. 7).

To be noted, the discovery of a rebutting s-derivation π1 for a s-derivation π calls
for a revision of π as a whole, and possibly establishes its annulment; as a ‘whole’,
because s-inference figures in s-derivations are not, in general, localized to parts of
the s-derivation; and, ‘possibly’, and not ‘necessarily’, because even in the presence
of a rebutting s-derivation, we may still be able to ‘repair’ the original s-derivation,
e.g., by resorting to s-inference figures not affected by the rebutting s-derivation.

The discussion on internal coherence is important for two main reasons. First,
because it sets apart safety reasoning from mathematical reasoning; the former is
defeasible while the latter is not. Second, because it has a bearing on compositional
safety reasoning. Let us explain this with an example. Suppose that the s-derivation
(i) {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d in Fig. 7 results
from composing two s-derivations, (ii) {(s U g) ∧ (g U s)} |∼{¬v}

SK r ⊃ ♦ g, and (iii)
{r ∧ g ⊃ ♦ d, r ⊃ ♦ g, r ⊃ (r W d)} |∼SK r ⊃ ♦ d , in the obvious way, i.e., by glu-
ing (ii) and (iii) together at r ⊃ ♦ g. This composition is reminiscent of Gentzen’s
Cut Rule.10 In this case, two internally coherent s-derivations, i.e., (ii) and (iii), are
composed into an internally coherent s-derivation, i.e., (i). But this is not the gen-
eral case, as there is no guarantee that we will not be able to obtain the rebuttal of
one of the s-inference figures in one of the composing s-derivations from the joint

premisses has some drawbacks. Suppose thatπ is an s-derivationwith rebuttalR. Letπ be internally
coherent, i.e., we do not have an s-derivation π ′ of R from the premisses of π . Adding R to the
premisses of π implies that we need to discharge it in some conditional; otherwise, we are changing
the set of premisses from which we argue. Not discharging an added rebuttal has the unwanted
consequence that it makes any s-derivation incoherent in the presence of the rule of reflexivity, i.e.,
we can always conclude what is in the premisses. Adding the ¬R also has unwanted effects. If it so
happens that from the premisses of π we can prove R, but we have not done so yet, e.g., because we
have not found such a s-derivation, adding ¬R to the premiss set of π means that we now have to
deal with a premiss set that involves a glaring contradiction, i.e., R and ¬R. The moral of the story
is: rebuttals occupy a special place in s-derivations as sources of defeasibility; considering them as
part of the premisses of a s-derivation needs to be done with extreme care.
10Gentzen’s Cut Rule: If {Ai } �NK B and {B j } ∪ {B} �NK C, then, {Ai } ∪ {B j } �NK C (see [14]).

Towards Making Safety Case Arguments Explicit … 245

set of premisses of the composed s-derivations. In other words, the composition of
internally coherent s-derivations to form a larger s-derivation may result in the larger
s-derivation being internally incoherent; and in order to establish whether the larger
s-derivation is internally coherent or not, we may have to revise this s-derivation as
a whole. In any case, compositionality is lost.

The preceding discussion on internal coherence also allows us to discuss tech-
nically the use of a form of eliminative induction in safety reasoning. As we men-
tioned in Sect. 2, eliminative induction was first developed by Bacon, and taken up
by philosophers such asMill, Keynes, Popper, et al. A reference to eliminative induc-
tion in safety reasoning is [15]. Briefly, eliminative induction works like this: Let us
suppose that we conclude a property P and that, at the same time, we identify that
this may not be the case in the presence of one or more properties Pi . The set of
Pi s associates some uncertainty to P. If none of the Pi s can be concluded, then, the
uncertainty associated with P is reduced. In the context of s-derivations and internal
coherence, eliminative induction takes the following form: For a s-derivation π , the
property P corresponds to the s-endformula of π . Each of the Pi s corresponds to a
rebuttal of π . Let us now suppose that π is internally coherent, i.e., that we have not
found a rebutting s-derivation for it. Internal coherence associates some uncertainty
to π , i.e., that expressed by its rebuttals. Since internal coherence alone does not
establish that there are no rebutting s-derivations for π , simply that we have not
found them, and since establishing that there are no rebutting s-derivations for π is
non-trivial, instead, as a form of eliminative induction, we can attempt to construct
s-derivations whose s-enformulæ are the negations of the rebuttals of π . The latter
s-derivations enable us to reduce the uncertainty associated with π , and thus with P.
This form of eliminative induction involves the presentation of a set of s-derivations.
In this set, one s-derivation is designated as a main s-derivation. The assumption is
that there is some uncertainty associated with this main s-derivation, as indicated
by its rebuttals. The remaining s-derivations in the set are intended to reduce this
uncertainty. This form of reasoning is an example of a form of probabilistic reason-
ing related to confidence, a topic that we discuss in more detail in Sect. 4.2.3. Let us
illustrate this view of eliminative induction with a simple example. As it stands, the
s-derivation {r ∧ g ⊃ ♦ d, (s U g) ∧ (g U s), r ⊃ (r W d)} |∼{¬v}

SK r ⊃ ♦ d in Fig. 7
is internally coherent. There is, associated to this s-derivation, some uncertainty,
namely, that indicated by ¬v. Recall that this s-derivation corresponds to an argu-
ment which concludes that ‘if the train is ready, then, it eventually departs’, that one
of the s-inference figures is contingent on the go signal being visible, and that the
s-formula¬v corresponds to the property ‘the go signal is not visible’. To reduce this
uncertainty, we can focus on constructing a s-derivation having v as its s-endformula,
i.e., an argument which concludes that ‘the go signal is visible’.

246 V. Cassano et al.

3.4 Some Final Remarks on Safety Arguments

There are some final remarks about the difference between s-derivations and GSN
diagrams that we can only elucidate at this point.

First, GSN strategies have no concept analogous to that of discharging an initial
s-formula. This limitation severely restricts most forms of conditional reasoning. Is
conditional reasoning forbidden in safety cases? How are we to reason conditionally
without suitable mechanisms for introducing and discharging conditionals?

Let us digress for a moment to the issue of an initial formula being discharged to
explain its ramifications in some detail. We begin by discussing what is the case in
Gentzen’sNK . In Gentzen’sNK , discharging an initial formula means: (i) incorpo-
rating said formula into the lower formula of some inference figure in the derivation
and (ii) eliminating said formula from the set of premisses of the derivation. Though
(ii) is not necessary, keeping initial formulæ that have been discharged as part of the
premisses of a derivation is superfluous; and this is something that we wish to avoid
(see [8]). In fact, what Gentzen is after with his NK is a derivation that is logistic,
i.e., one in which all initial formulæ in a derivation are discharged (see [14, p. 295]).
To achieve this, Gentzen proposes to convert any non-logistic derivation π1 into a
logistic derivation π2 whose endformula is an instance of A ⊃ B; in this instance
of A ⊃ B, the instance of B is the endformula of π1, and the instance of A is the
conjunction of the formulæ in the set of premisses of π1. In a more general setting,
Gentzen’s proposal requires the use of the Compactness and Deduction Theorems
for the logical calculus in which derivations are formulated (see [8]). It is not clear
to us whether or not such (meta) theorems hold for safety reasoning, i.e., whether
they hold in our sought after SK (and we are inclined to believe that they do not). In
other words, it seems that in safety reasoning we are required to be able to deal with
genuine premisses, i.e., premisses that cannot be discharged. To have at hand suitable
mechanisms for dealing with such premisses is of utmost importance. In addition, it
is well known that different discharge policies give rise to different conditionals. For
example, in the s-inference figure in Fig. 7 we allowed for the s-premiss r to be dis-
charged vacuously (as is usually done in the introduction of thematerial conditional).
If we forbid this, then, we obtain a form of a relevant conditional. Alternatively, if we
allow for r to be discharged only once, then, we obtain a form of linear conditional
(see [30]). It is clear to us that safety reasoning involves different kinds of condi-
tionals. Discussing what discharge policies are allowed in safety reasoning may shed
some light on which conditional we are referring to. How are we supposed to do
this without proper mechanisms for tracking which initial s-formulæ correspond to
which conditional? These issues are not at all properly dealt with in GSN diagrams.

Second, GSN diagrams have no concept analogous to rebuttals. In this sense, they
are more limiting than goal decomposition structures in KAOS, which incorporate
the notion of an obstacle to a goal (see [23]).Without rebuttals, the defeasible aspects
of safety arguments are left implicit or are simply ignored.

In summary, the discussion that we have presented in this section is not a matter
of logical pedantry. Instead, our discussion pinpoints some important issues to be

Towards Making Safety Case Arguments Explicit … 247

addressed if safety reasoning is meant to be grounded on logical principles, and it
exposes the leading causes of fallacies and the challenges in safety reasoning by
bringing them into the foreground with the use of appropriate logical machinery.

4 Evidence in Safety Reasoning

As we mentioned in Sect. 3, safety cases are a cornerstone of safety reasoning. In
addition to structured arguments, a defining characteristic of safety cases is the use
of evidence as a grounding mechanism for safety arguments. In this section, we pay
close attention to the concept of evidence, to how it can be incorporated into our
program for formalizing safety reasoning in the form of a logical calculus, and to
some of the challenges that it brings with it.

4.1 Evidence in Safety Cases

To provide some context for discussion, let us recall some basic facts about the role
of initial formulæ in Gentzen’s NK . Gentzen mentions in [14, p. 292] that a distin-
guishing feature of hisNK is that derivations start from what he calls assumptions,
to which logical deductions are then applied. Gentzen’s assumptions are the initial
formulæ of a derivation. As we have noted in Sect. 3.1, in Gentzen’s formulation
of the NK , it is possible for the initial formulæ of a derivation to be discharged or
not. We have called initial formulæ that are not discharged premisses. An important
characteristic of the premisses of a derivation is that they are, in a sense, given deus
ex machina. This is not the case in safety reasoning, where the safety claims from
which a safety argument is built need to be provided with a rationale which justifies
their postulation. In other words, the s-premisses in a s-derivation cannot be taken
as being given deus ex machina. This is reminiscent of the notion of justified belief
in studies in epistemology or scientific explanation. It is at this point that evidence
makes an appearance.

The definition of a s-derivation given in Sect. 3.2 enables us to discuss the use of
evidence in safety cases in technical terms. However, in order to do so, we need, first
and foremost, to be (i) precise about what we mean by evidence and to be (ii) able
to refer to evidence in the language of s-formulæ.

As to (i), the uses of ‘evidence’ that we have observed in safety arguments, in
particular in those referred to as solutions in GSN diagrams, refer to results obtained
via testing, simulation, model analyses, or other observation-based mechanisms,
including past experiences. These uses regard ‘evidence’ as some kind of data. This
view of evidence is problematic for data does not, and cannot, in and of itself, be
used as a basis for constructing a safety argument. To explain this issue, we take an
example presented in [38, p. 195]. In a court of law, a bloodied knife, i.e., a piece
of data, can be used both by the prosecution or the defense in their respective cases.

248 V. Cassano et al.

The use of the bloodied knife in court, i.e., the use of this piece of data in court,
may involve claims such as: ‘the bloodied knife was found at the crime scene’, ‘the
bloodied knife was used by the accused to stab the victim’, ‘the bloodied knife was
planted at the crime scene’, etc. The bloodied knife is a source of many such claims
(some of which may be incompatible with others). What this example shows is that,
in isolation, a piece of data is not a truth bearer, i.e., it cannot be assigned a truth
value; a truth bearer is a claim about it. In other words, data becomes evidence, in the
epistemological or scientific sense of the term, when it stands in a precisely defined
testing relationship with some claims postulated about it. To avoid any confusion,
we will refer to a piece of data as evidence, and to a claim about a piece of data as
an evidential claim.

Let us now turn our attention to (ii). Immediately from the distinction between
evidence and evidential claim, we would need evidence terms and evidence formulæ
in the language of s-formulæ. Evidence terms would include, at least, constants for
concrete pieces of evidence, and variables for arbitrary pieces of evidence. Evidence
formulæ would include, at least, quantifiers binding variables in evidence terms.
An evidence formula is grounded if it has no free variables (where ‘free variable’
has the usual meaning). An evidence formula is said to be ground atomic if it has
no quantifiers and if its testing relationship with its evidence term is self-evident
(intersubjectively agreed).

Evidence terms and evidence formulæ can be understood by drawing an analogy
between terms and formulæ in the language of FOL. More precisely, in the language
of FOL, terms denote objects; formulæ are the formal counterpart of claims about
objects. For instance, in their standard interpretation, the terms S(n), 0, denote the
successor of a natural number, and the natural number zero, respectively. In these
terms, the variable n is used to indicate an arbitrary natural number, and the constant
0 to indicate the number zero. In turn, the formula ¬∃n(S(n) = 0) is the formal
counterpart of ‘there is no natural number whose successor is zero’. In this formula,
the existential quantifier binds the variable n. If we understand evidence terms and
evidence formulæ in this way, the former serve as a way to denote pieces of evidence,
while the latter are the formal counterpart of claims about evidence.

We are now in a position to make precise in which sense a safety argument is to be
taken as being grounded on evidence.We do this in relation to s-derivations. Namely,
we define a s-derivation as grounded on evidence if its s-premisses, i.e., its undis-
charged initial s-formulæ, are ground atomic evidence formulæ. In consequence,
a safety argument is grounded on evidence if its incorporation into a s-derivation
results in the latter being grounded on evidence.

4.2 Some Comments on Evidence in Safety Arguments

Aswith safety arguments, a significant part of the definitions of an evidence term and
an evidential s-formula needs to be completed and fully worked out. Nevertheless,
evidence terms and evidential s-formulæ allow us to discuss technically some aspects
of the use of evidence in safety cases.

Towards Making Safety Case Arguments Explicit … 249

4.2.1 Regarding Ground Atomic Evidence Formulæ

Wehave defined a safety argument as being grounded on evidence if its incorporation
into a s-derivation results in the latter beinggroundedon evidence. Thefirst part of this
definition corresponds to our program of making precise what is a safety argument
via its incorporation into a logical calculus (our sought after SK). The second part
of this definition corresponds to our view of the use of evidence in safety cases and
its logical characterization. The idea is that a ground atomic evidence formula plays
a role similar to an axiom of a classical logical theory, i.e., a formula that is regarded
as accepted or self-evident. This is precisely what a ground atomic evidence formula
aims to capture. More elaborate evidence formulæ, e.g., those that are not ground
atomic, must perforce involve some reasoning.

To illustrate the points above, let us suppose that the go signal example in Sects. 2
and 3, indicating whether the train can depart or not, consists, among other things, of
a piece of software toggling the light from red to green, and from green to red. Let us
suppose further that this piece of software is proven correct in Hoare’sHK , i.e., that
there is, for this piece of software, a derivation π akin to that in Fig. 10. Technically
speaking, π is not a proof that the piece of software itself is correct, but rather a proof
of the correctness of a (syntactical) model of the piece of software in Hoare’s HK
in relation to some specification. But the piece of software itself and its (syntactical)
model in Hoare’sHK are different things. Now, let us suppose that we use the proof
of correctness of the (syntactical) model of the piece of software in Hoare’sHK to
argue that the piece of software itself is dependable (in a more general sense than
‘correct’). In this context, the former is a piece of evidence and the latter is an evidence
claim. In the language of s-formulæ, we would then have an evidence term to denote
the piece of evidence, i.e., π , and an evidence formula as the formal counterpart of
the evidence claim, i.e., that the piece of software itself is dependable, respectively.
A question that we could ask ourselves at this point is: Would this evidence formula
meet the criterion of being ground atomic? The answer is no. The problem is that
the testing relationship between the evidence term and the evidence formula is not
self-evident, i.e., it already involves some reasoning, e.g., about the adequacy of the
proof of correctness of the (syntactical) model of the piece of software in relation to
a claim about the dependability of the piece of software itself. For this reason, the
evidence formula cannot be used as a premiss in a s-derivation. What can be used as
a ground atomic evidence formula is the formal counterpart of a claim along the lines
of ‘the (syntactical) model of the piece of software meets its specification’. It is the
role of a safety argument to take us from this basic claim about evidence (possibly
in conjunction with other basic claims about evidence), to the claim that the piece of
software itself is dependable.

The preceding discussion shows that the burden is on finding ground atomic evi-
dence formulæ, i.e., evidence terms and evidence formulæwhose testing relationship
is self-evident. These ground atomic evidence formulæ serve as the basis on which
we would construct the s-derivation that would take us to a s-endformula. The dan-
ger is that, without a proper formulation of a ground atomic evidence formula, or
set thereof, a significant amount of effort needs to be devoted to eliciting in which

250 V. Cassano et al.

sense a piece of evidence relates to an evidence claim, something that is prone to
error. An open question is whether the testing relationship between evidence terms
and evidence formulæ is part of the SK or is external to it.

4.2.2 Regarding Multiple Atomically Grounded Evidence Formulæ

The discussion about ground atomic evidence formulæ raised to the surface the use
of multiple pieces of evidence in relation to a single evidence claim.

To illustrate this phenomenon, let us take up again the go signal example in
Sects. 2 and 3. Namely, let us suppose that the go signal, indicating whether the train
can depart or not, consists, among other things, of a piece of software toggling the
light from red to green, and from green to red. In addition, let us suppose that this
piece of software is proven correct in Hoare’s HK , i.e., that there is, for this piece
of software, a derivation π akin to that in Fig. 10. Let us suppose further that we
use π to argue that the piece of software itself is dependable (in a more general
sense than ‘correct’). Repeating ourselves, in this context, the former is a piece of
evidence and the latter is an evidence claim; which would cause us to have, in the
language of s-formulæ, an evidence term to denote the piece of evidence, and an
evidence formula as the formal counterpart of the evidence claim, respectively. In
Sect. 4.2.1 we discussed that this evidence formula is not ground atomic for it already
involves some reasoning, e.g., about the adequacy of π in relation to a claim about
the dependability of the piece of software itself. Among other things, the adequacy
of π in relation to a claim about dependability hinges on how faithful the model of
the piece of software in Hoare’s HK is to the piece of software itself, something
which depends, in turn, on some assumptions on the piece of software itself, e.g., that
arithmetic computations do not result in an overflow. The use of input/output testing
data on the piece of software itself presents an interesting use of evidence to validate
this kind of assumption. Moreover, this leads in a more or less natural way to the use
of different input/output testing data, e.g., obtained from different testing methods,
to validate the same assumption, e.g., because the different testing methods cover
different aspects of the assumption. In technical terms, we are in a scenario in which a
s-formula, i.e., the formal counterpart of one of the assumptions, is the s-endformula
of various s-derivations, each of which has as its premisses ground atomic evidence
formulæ whose evidence terms denote the different input/output testing data. To put
all these different s-derivations together in one single s-derivation, we need to relax
the definition of a s-derivation to allow for the upper s-formula of a s-inference figure
to be the lower s-formula ofmore than one s-inference figure. Such a relaxation has no
analogy in Gentzen-like derivations, for in traditional logical calculi, one derivation
of an endformula is as good as any other. However, the situation is different in safety
arguments due to the confidence value that we tend to associate with them. We have
here an example of what has sometimes been referred to as a multi-legged argument
(see [2]). The idea is that each leg is logically sufficient, but the legs taken together
provide greater confidence in the logical result. We discuss this in Sect. 4.2.3, after
we introduce some basics on confidence measures.

Towards Making Safety Case Arguments Explicit … 251

4.2.3 Evidence and Confidence

As previously mentioned, there is an inherent uncertainty associated with safety
arguments. To begin with, the use of data in evidential reasoning naturally involves
uncertainty. There is uncertainty in gathering data, in the processes of observation
andmeasurement fromwhichwe obtain the data, in how the data is used, in the claims
that we formulate about data, etc. For example, we often use some form of inductive
reasoning to assert a universal conclusion from a finite number of observations,
e.g., in testing of programs, and this inherently involves some lack of certainty in
the universal conclusion, e.g., whether the test cases are sufficient to justify the
conclusion. Second, multi-legged arguments are often used to reduce the uncertainty
(i.e., increase confidence) in an argument, and this clearly means that we are not
entirely sure of the conclusion of some arguments, no matter how stringent we might
have been in developing the argument. Thirdly, the use of eliminative induction
involves uncertainty of various kinds. For example, we cannot be certain that all the
possibilities for issues to be examined have been discovered. We may also not be
able to positively eliminate all possible cases, leaving some open as the risk involved
is deemed too low to worry about. Modelling this uncertainty is key to evaluating
the confidence we place in the safety argument, and in the claim that it establishes.
In the previous section, we focused on rebuttals as a source of uncertainty. In this
section, we focus on evidence.

Thekindof uncertainty associatedwith evidence thatwehave inmindgoes beyond
uncertainty associated with statistical values (e.g., test cases returned the expected
result 8 out of 10 times). It also includes the uncertainty associated with the way
in which the evidence is obtained (e.g., the test cases are devised properly, they are
executed in the right environment, the results are repeatable, etc). The latter kind
of uncertainty associated with evidence is typically systematized by using accep-
tance criteria for the inclusion of certain data as evidence. The various confirmation
measures for work products proposed in ISO 26262 provide an example of such
acceptance criteria (see [21]).11 In the cases where we have a pass/fail acceptance
criterion, things are relatively simple, i.e., the data item either gets included in the
safety argument, or not, i.e., the data is accepted as evidence or not. However, if there
is a degree of acceptability, and a certain threshold that needs to be met in order for
the data to be acceptable as evidence, we would like to have acceptability values at
handwhen evaluating the confidence wemay place in the safety argument. For exam-
ple, consider the following confirmation measure found in ISO 26262: ‘The work
products referenced in the safety case are available and sufficiently complete’ (see
[21, pt. 2, p. 21]). Checking whether the work products are available is not difficult,
but measuring whether they are sufficiently complete is not trivial, as this needs to
be precisely defined, so as not to be open to arbitrary interpretation. Unfortunately,
this kind of precision is often missing.

11ISO 26262 is a safety standard developed to fit the needs of the automotive domain. The standard
applies to electrical and/or electronic (E/E) systems within road vehicles (see [21]).

252 V. Cassano et al.

The above focuses our attention on one of the biggest issues that plague confi-
dence modelling and evaluation. There is a lack of precise definitions, benchmarks,
and evaluation techniques, all of which hinder the possibility of defining meaningful
acceptance criteria, i.e., ones to which we can assign values. This is very similar
to the situation in quality management, where vague definitions are common. Let
us draw an analogy to elaborate on this point. In quality management, some con-
cepts are associated with an abundance of definitions and quality measures. This
has meant that something as simple as the efficiency of a computer program might
mean completely different things to different stakeholders. In addition, since there
are various models and methods for product quality assurance, e.g., various ways
of measuring the efficiency of a computer program (memory usage and/or speed),
any value associated with one of the quality characteristics of a product has to be
accompanied by additional information in order for this value to be meaningful (see
[17]). The same is clearly true for confidence modelling in the safety domain. To
refer back to the example above, if an expert has stated that the safety case references
work products that are sufficiently complete, this expert needs to provide a definition
of sufficiently complete in measurable terms, and explain themeasurement procedure
used to arrive at this conclusion. If done in this way, the claim made by the expert
can be reviewed and potentially compared on a more objective basis, an otherwise
well-nigh impossible task. Of course, objective measures are difficult to come by,
and sometimes relying on subjective measures is the only practical approach. But
these subjective measures still ought to be given explicit definitions to enable results
to be reproduced. This is crucial for the validation of confidence metrics and the
measures associated with them.

In addition to providing a precise definition of the confidence metrics and the
measures associated with them, we need rules for combining and decomposing those
measures. One example of the latter in the safety-critical domain is the decomposition
of Automotive Safety Integrity Levels, ASILs, in ISO 26262 (see [21, pt. 9]). In more
detail, in ISO 26262, each safety requirement of the E/E system being considered has
an ASIL associated with it. The stringency of the ASIL depends on the criticality of
the safety requirement. Note that ISO 26262 allows for ASILs to be weakened during
the decomposition of a safety requirement. In this respect, the obvious question
that arises is: What is needed to guarantee that the weakened ASILs associated
with the decomposed safety requirements guarantee the ASIL of the original safety
requirement? The problem is that the decomposition of ASIL levels suggested in
ISO 26262 has not been explicitly justified. Instead, it rests on domain experience, as
does its validation. This is clearly a shortcoming. One way in which the combination
of different measures is addressed in the field of quality management is through
utility functions. Though the definition of such utility functions may be subjective,
when explicitly defined, they enable us to reproduce results and to interpret these
results in a repeatable and objective fashion.

In light of the above, and in order to make some progress, we need to start with
widely agreed upon definitions of confidence and what its evaluation entails. With-
out this, the production of confidence measures becomes very vague and is largely
based on the opinions and prejudices of experts. In [16], we find a survey of con-

Towards Making Safety Case Arguments Explicit … 253

fidence modelling approaches suggested for use in the safety-critical domains. All
the various approaches are illustrated by means of examples. Borrowing from them,
though we are not yet ready to provide a more complete working definition for this
framework, we can outline some of its key elements. First, each evidence term has to
be associated with a confidence value (or a tuple of values), produced as a reflection
of its acceptance criteria as well as additional sources of uncertainty. The measures
for these confidence values have to be precise and to meet the representation condi-
tion of measurement theory (see [11]), namely, that the mapping from the empirical
domain of attributes to the formal domain of measures is a homomorphism (i.e., that
the assignment of measures to attributes does not violate properties of attributes,
e.g., that height does not make a baby’s height bigger than a grown person’s). In
addition, the measurement statements must be meaningful, i.e., the truth value of
the measurement statements must remain invariant under all admissible scale trans-
formations (e.g., ‘the temperature in Toronto is 20C and is twice as much as in
Buenos Aires, where it is 10C’ is not a meaningful statement as the transforma-
tion of Celsius to Fahrenheit, an admissible transformation, does not preserve the
truthfulness of the statement). The measurement scales might exhibit different prop-
erties (being classified, being ordered, having quantified differences, etc.) based on
the scale used. This would in turn depend on the property (subject to uncertainty)
being modelled. To again make a parallel with quality management, we know that
quality measures can take a number of forms (non-numeric, or quantitative, both
of which are further subdivided and correspond to different scales) depending on
the domain-specific content they model. In fact, due to the fact that the different
types of measures sometimes cannot be meaningfully combined, it is possible that
instead of a single confidence value, we end up with a tuple of confidence values.
Transforming between different types of measures is not impossible, but it might
not bring any added benefit, and might instead obscure some valuable information
(e.g., through transforming a precise value into a range one). The difference between
confidence modelling and quality management, and indeed the biggest issue, lies in
the propagation of confidence measures associated with uncertainty. One possible
way in which this issue may be addressed is through the use of Jøsang’s Subjective
Logic (see [22]). After introducing well-defined confidence measurement scales and
procedures, and utility functions for combining the confidence values as well as a
logic for propagating them, we should proceed to empirically validate our framework
and make any necessary adjustments.

An additional challenge to modelling confidence is what some people call the
three Ps: Process, Product, and People. For example, ISO 26262 states that we need
to explicitly note the qualifications and level of independence of the people tasked
with carrying out the confirmation measures (see [21, pt. 2, p. 12]). This may be
construed as a form of multi-legged argument. Each leg of the argument corresponds
to how an independent team arrives at a conclusion, the premisses of each leg would
then correspond to items of evidence that have been independently obtained, or, alter-
natively, independently vetted. Let us illustrate this by extending our train example.
Suppose that we recognized the visibility of the go sign as one of the sources of
uncertainty. In other words, for whatever reason, we cannot be totally sure whether

254 V. Cassano et al.

the go sign is visible or not. This said, we do want to establish, with some level of
confidence, that the go sign is visible. To reach this conclusion, we approach two
experts in the field of vision inspection, who will conduct independent experiments.
Each expert starts out with the same set of experiment participants (the train opera-
tors), and the same experimental environment (riding in the train alongside the train
operators). Though both experts start with the same premisses, i.e., in the same set-
ting, the individual experiments that they conductmight be devised in a different way,
e.g., based on the different impediments to visibility that they might have thought of
and decided to check against. For example, both experts might take into account the
fact that one of the train operators uses allergy medication, reported to cause blurry
vision as a side effect, but only one of them considers the use of sunglasses, and
that their lens hue and tint density might negatively affect visibility in certain condi-
tions (pink, blue, and green lenses can make red lights indistinguishable). Having the
experts design their experiments independently guards against confirmation bias and
leads to increased confidence in the final result, i.e., that the go signal is visible. The
results, observations, claims, and the like, made by each of the experts would then
be included in their own leg of the overall safety argument. Each leg by itself may
not provide sufficient confidence, but when put together they reduce the uncertainty
and increase the confidence in the claim that ‘the go signal is visible’.

5 Discussion

In Sects. 3 and 4, we discussed some various bits and pieces of the puzzle of safety
reasoning independently from each other. In this section, we put these bits and pieces
together in an attempt to present a coherent picture.

We frame our discussion in the context of our running example: a train departing
from a station. Our goal is to establish that this is done safely, for whichwewould like
to build a safety case, i.e., a structured argument. This structured argument is our claim
of safety. The structured argument itself corresponds to a s-derivation π in the SK .
As a first step in the construction of π , we need to determine its s-endformula. This
s-endformula is the property which, if established, via a structured argument, assures
safety. (It is not directly a claim of ‘safety’, for such a claim of ‘safety’ is outside the
structured argument and the logical calculus in which we state it, and it is associated
with our conception ofwhat itmeans for the train to depart safely.) Let us suppose that
this property is ‘the train departs iff it is ready’. To this property, there corresponds,
in the language of s-formulæ, the s-formula (r ⊃ ♦ d) ∧ (¬r ⊃ ¬♦ d). Given the
structure of the s-endformula, we can think of proceedingwith the construction of the
s-derivation which establishes separately in two s-derivations, π1 and π2; π1 would
have r ⊃ ♦ d as its s-endformula; π2 would have ¬r ⊃ ¬♦ d as its s-endformula; π
would obtain by combining π1 and π2. π1 would correspond to a structured argument
establishing that ‘if the train is ready then it eventually departs’.π2 would correspond
to a structured argument establishing that ‘if the train is not ready then it does not
eventually depart’. We have shown what π1 may look like in Fig. 7. We have also

Towards Making Safety Case Arguments Explicit … 255

shown that there is some uncertainty associated with π1, namely, that indicated by
¬v. The latter s-formula corresponds to the property ‘the go signal is not visible’.
As we have said, in the absence of a s-derivation which has ¬v as its s-enformula,
π1 is internally coherent. Since finding that there are no such derivations, what we
can do instead, is to construct a s-derivation π3, which has v as its s-endformula.
This s-derivation corresponds to a structured argument making a case for ‘the go
signal is visible’. In this way, π1 would be accompanied by a π3, with π3 being there
to reduce the uncertainty associated with π1. This is an application of eliminative
induction. The case with π2 would be similar. We are now in a situation in which we
have two internally coherent s-derivations, π1 and π2, which we want to combine
in a single internally coherent s-derivation, π . A priori, we could glue π1 and π2

together to form π by introducing the missing logical connective, ∧. However, to
guarantee that π is internally coherent, we would have to inspect π as a whole. This
is a necessary step to eliminate the possibility of one of the rebuttals of π1 being
established from the combination of the s-premisses of π1 in combination with those
of π2, and similarly with the rebuttals of π2.

Thus far, nothing has been said about π being grounded on evidence, i.e., the
s-premisses of π could be arbitrary s-formulæ. This is a situation that we would
wish to remedy. For this, we would have to show how the s-premisses of π that
are not ground atomic evidence s-formulæ can be obtained from ground atomic
evidence s-formulæ. This involves an extension of π . This extension is also a s-
derivation, let us call it π ′. In contrast to π , the s-premisses in π ′ are ground atomic
evidence s-formulæ. It would seem thatπ ′ contains a distinguished part that is ‘purely
evidential’, i.e., obtained through evidential reasoning (this distinction is, although
with a different flavour, also noted in [32]). It is open to debate where this ‘purely
evidential’ part ends. Perhaps Carnap’s distinction between the observable and the
theoretical in the language of science (see [5, ch. 23]) provides a foundation onwhich
to settle this debate. But this thesis needs further investigation. It should be noted
that ‘purely evidential’ reasoning needs not appear solely when there is a need to
make a s-derivation grounded on evidence. It may also appear while attempting to
remove the uncertainty associated with a s-derivation. For example, in the example
above, it is possible, perhaps even natural, for π3, i.e., the s-derivation corresponding
to a structured argument making a case for ‘the go signal is visible’, to be ‘purely
evidential’.

Emerging from our discussion in Sect. 4.2.3, we would associate with each s-
derivation a confidence value. In order to assign a confidence value (or a tuple of
values) to each evidence term, we shall start by reviewing the sources of uncertainty
associated with it, including any acceptance criteria that have been specified. If
the acceptance criteria have been properly defined, they would provide the scale of
measurement and themeasurement procedure to be used. However, for the sources of
uncertainty that have not been explicitly considered we would need to add two steps.
Firstly, based on the property beingmodelled (availability, objectivity, independence,
etc.), we would select a scale for its measurement such that we can formulate useful
and truth-preserving measurement statements. Then, we would select and describe
a measurement procedure, which is practical and reliable (it should return the same

256 V. Cassano et al.

result under the same conditions). After defining the confidence measurement scales
and procedures, and obtaining precise confidence values for the evidence terms,
we would introduce utility functions for combining them (these might vary across
products and companies), and a logic for propagating them. Lastly, the framework
shall be empirically validated and adjusted so as to make sure that the representation
condition still holds after the use of our chosen utility functions and logic. Resuming
the example above, we would associate with π , i.e., the s-derivation corresponding
to a structured argument making a case for ‘the train departs iff it is ready’, some
confidence value. This value will, in turn, be the value associated with our claim of
safety.

6 Conclusions

The present practice of safety cases, recorded in some notation, is the result of over
25 years of work. However, to date, notations for safety cases have no semantics.
This makes their understanding and assessment difficult, if not well nigh impossible,
and prone to error, with the apparent negative consequences. In this work, we have
started to travel the long road to providing a semantics for safety cases. Our work
builds on the idea that the semantics for what is a structured argument should be
based on a logical calculus. We have discussed the main ingredients of such a logical
calculus, as well as the challenges that its development represents.

The situation with notations for safety cases is not new. Immediately coming to
mind is the Unified Modelling Language (UML) (see [4]). This language underwent
a similar historical development over a similar period of time. In both cases it has
become clear that simply providing a loose syntax is not enough. Engineering dis-
ciplines rely on scientific theories and mathematics to enable precision in design
and analyses to support sound engineering decisions. This was acknowledged by the
OO community, who started to incorporate mathematical precision into its notations
some years ago, not without its hurdles and sometimes against the protests of the
notation’s inventors! The safety case community is slowly awakening to this. The
increasing complexity of safety-critical systems, and the recognition that relying on
the informal understanding and intuition of individuals, regardless of their experi-
ence, is not only unscientific, but a historic invitation to disaster, have been the major
forces pushing the need for proper engineering guarantees about safety; notations
for safety cases are no exception.

We propose to develop a proper scientific and engineering basis for safety case
understanding and construction on logical grounds. To this end, we have introduced
a working definition of a safety case via its incorporation in a precisely defined cal-
culus. In line with other researchers in the area (see [25]), we observe that assurance
case reasoning is more akin to the argument based reasoning ideas of Toulmin than to
the conventional deductive logic reasoning well known to mathematicians and soft-
ware engineers (or computer scientists). This form of reasoning is already known in
domains such as legal reasoning and scientific reasoning/explanation (from which

Towards Making Safety Case Arguments Explicit … 257

we have taken some of our ideas). The logical roots of our proposal are based on
Gentzen’s program for formalizing mathematical reasoning in terms of a logical lan-
guage, inference rules to support reasoning steps, and proofs to capture the ‘informal’
notion of argument used by mathematicians. One can debate about the adequacy of
Gentzen’s formalization, but if one accepts it, and most mathematicians have, then
one can make remarkable progress in analysing mathematical reasoning, including
developing automated tools such as theorem provers and model checkers. Though
safety reasoning is very different in character from mathematical reasoning, we can
use an analogous approach to that of Gentzen. In particular, we can focus on the
same ingredients, i.e., a formalized logical language for expressing safety claims, a
well-defined notion of inference step (enlarged by incorporating some of the ideas
of Toulmin’s definition of an argument pattern), a well-defined notion of derivation
(capturing what is a safety argument), and a new ingredient, grounded proofs, i.e.,
the idea that all initial formulæ in a derivation cannot be taken for granted but that
they need to be justified by evidence. The latter enables a proper understanding of
the notion of evidence and the role it plays in safety arguments. We hope to have
taken some steps in the right direction.

References

1. Adelard, Claim, Argument, EvidenceNotation. Adelard (2015), http://www.adelard.com/asce/
choosing-asce/cae.html

2. R. Bloomfield, B. Littlewood,Multi-legged arguments: the impact of diversity upon confidence
in dependability arguments, in International Conference onDependable Systems and Networks
(DSN’03) (IEEE, 2003), pp. 25–34

3. A. Bochman, Non-monotonic reasoning, in Handbook of the History of Logic: The Many
Valued and Nonmonotonic Turn in Logic, vol. 8, ed. by D. Gabbay, J. Woods (North-Holland,
Amsterdam, 2007), pp. 555–632

4. G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling Language User Guide, 2nd edn.
(Addison-Wesley Professional, Boston, 2005)

5. R. Carnap, An Introduction to the Philosophy of Science, 5th edn. (Dover, Mineola, 1966)
6. V. Cassano, T. Maibaum, S. Grigorova, A (proto) logical basis for the notion of a structured

argument in a safety case. In: 18th International Conference on Formal Engineering Methods
(ICFEM’16). LNCS, vol. 10009 (2016), pp. 1–17

7. W. Cooper, The propositional logic of ordinary discourse. Inquiry 11(1–4), 295–320 (1968)
8. D. van Dalen, Logic and Structure, 5th edn. (Springer, Berlin, 2013)
9. R. Darimont, A. van Lamsweerde, Formal refinement patterns for goal-driven requirements

elaboration, in 4th ACM SIGSOFT Symposium on Foundations of Software Engineering (SIG-
SOFT’96) (ACM, 1996), pp. 179–190

10. J. van Eijck, M. Stokhof, The gamut of dynamic logics (2011), in [13], pp. 499–600
11. N.E. Fenton, Software measurement: a necessary scientific basis, in Predictably Dependable

Computing Systems (Springer, Berlin, 1995), pp. 67–78
12. D. Gabbay, J. Woods (eds.),Handbook of the History of Logic: Inductive Logic, vol. 10 (North-

Holland, Amsterdam, 2011)
13. D. Gabbay, J. Woods (eds.), Handbook of the History of Logic: Logic and the Modalities in

the Twentieth Century, vol. 7 (North-Holland, Amsterdam, 2011)
14. G. Gentzen, Investigations into logical deduction. Am. Philos. Q. 1(4), 288–306 (1964)

http://www.adelard.com/asce/choosing-asce/cae.html
http://www.adelard.com/asce/choosing-asce/cae.html

258 V. Cassano et al.

15. J. Goodenough, C. Weinstock, A. Klein, Eliminative induction: a basis for arguing system
confidence, in 35th International Conference on Software Engineering (ICSE’13) (2013), pp.
1161–1164

16. P. Graydon, M. Holloway, An investigation of proposed techniques for quantifying confidence
in assurance arguments. Saf. Sci. 92, 53–65 (2017)

17. S.Grigorova, The elusive quest: software product quality evaluation.Master’s thesis,McMaster
University, Canada, 2009

18. C. Hempel, Aspects of Scientific Explanation: And Other Essays in the Philosophy of Science
(Free Press, New York, 1965)

19. D. Hitchcock, Toulmin’s warrants, in Anyone Who Has a View: Theoretical Contributions to
the Study of Argumentation, ed. by F. van Eemeren et al. (Springer, Berlin, 2003), pp. 69–82

20. C. Hoare, An axiomatic basis for computer programming. Commun. ACM 12(10), 576–580
(1969)

21. International Organization for Standardization, ISO 2626: Road Vehicles – Functional Safety.
Version 1 (2011)

22. A. Jøsang, Subjective Logic: A Formalism for Reasoning Under Uncertainty (Springer Inter-
national Publishing, Berlin, 2016)

23. A. van Lamsweerde, Requirements Engineering: From System Goals to UML Models to Soft-
ware Specifications (Wiley, Hoboken, 2009)

24. Z. Manna, A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems: Specification
(Springer Science+Business Media, Berlin, 1991)

25. J. McDermid, Safety arguments, software and system reliability, in 2nd International Sympo-
sium on Software Reliability Engineering (ISSRE’91) (IEEE, 1991), pp. 43–50

26. P. McNamara, Deontic logic (2011), in [13], pp. 197–288
27. P. Øhrstrøm, P. Hasle, Modern temporal logic: the philosophical background (2011), in [13],

pp. 447–498
28. G. Pólya, How to Solve It, 2nd edn. (Princeton University Press, Princeton, 2004)
29. K. Popper, An Introduction to the Philosophy of Science (Routledge, Abingdon, 2002)
30. G. Restall, Proof Theory and Philosophy. Draft Book (2006), http://consequently.org/writing/

ptp
31. J. Rushby, Logic and epistemology in safety cases, in 32nd International Conference on Com-

puter Safety, Reliability, and Security (SAFECOMP’13). LNCS, vol. 8153 (2013), pp. 1–7
32. J. Rushby, On the interpretation of assurance case arguments, in New Frontiers in Artificial

intelligence - JSAI-ISAI 2015 Workshops, LENLS, JURISIN, AAA, HAT-MASH, TSDAA, ASD-
HR, and SKL (Revised Selected Papers). LNCS, vol. 10091 (2015), pp. 331–347

33. The GSNWorking Group, Goal Structuring Notation. The GSNWorking Group (2011), http://
www.goalstructuringnotation.info/

34. S. Toulmin, The Uses of Argument (Cambridge University Press, Cambridge, 2003)
35. UK Ministry of Defense, Defence standard 00-56 issue 4: safety management requirements

for defence systems (2007)
36. S. Veloso, P. Veloso, R. de Freitas, An application of logic engineering. Log. J. IGPL 13(1),

29–46 (2005)
37. W. Vincenti,What Engineers Know and How They Know It: Analytical Studies from Aeronau-

tical History (Johns Hopkins University Press, Baltimore, 1993)
38. T. Williamson, Knowledge and Its Limits (Oxford University Press, Oxford, 2000)

http://consequently.org/writing/ptp
http://consequently.org/writing/ptp
http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/

The Indefeasibility Criterion
for Assurance Cases

John Rushby

Abstract Ideally, assurance enables us to know that our system is safe or possesses
other attributes we care about. But full knowledge requires omniscience, and the
best we humans can achieve is well-justified belief. So what justification should be
considered adequate for a belief in safety? We adopt a criterion from epistemology
and argue that assurance should be “indefeasible,” meaning that we must be so
sure that all doubts and objections have been attended to that there is no (or, more
realistically, we cannot imagine any) new information that would cause us to change
our evaluation. We explore application of this criterion to the interpretation and
evaluation of assurance cases and derive a strict but practical characterization for a
sound assurance case.

1 Introduction

One widely quoted definition for a safety case comes from the UK Ministry of
Defence [1]:

A safety case is a structured argument, supported by a body of evidence that provides a
compelling, comprehensible, and valid case that a system is safe for a given application in
a given operating environment.

An assurance case is simply the generalization of a safety case to properties other
than safety (e.g., security) so, mutatis mutandis, we can accept this definition as a
basis for further consideration.

Key concepts thatwe can extract from the definition are that an assurance case uses
a structured argument to derive a claim or goal (e.g., “safe for a given application in
a given operating environment”) from a body of evidence. The central requirement is
for the overall case to be “compelling, comprehensible and valid”; here, “compelling”
and “comprehensible” seem to be subjective judgments, so I will focus on the notion

J. Rushby (B)
Computer Science Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park,
CA 94025, USA
e-mail: Rushby@csl.sri.com

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_12

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_12&domain=pdf
mailto:Rushby@csl.sri.com
https://doi.org/10.1007/978-981-15-5054-6_12

260 J. Rushby

of a “valid” case and, for reasons I will explain later, I prefer to use the term sound
as the overall criterion.

There are two ways one might seek a definition of “sound” that is appropriate to
assurance cases: one would be to fix the notion of “structured argument” (e.g., as
classical deduction, or as defeasible reasoning, or as Toulmin-style argumentation)
and adopt or adapt its notion of soundness; the other is to look for a larger context in
which a suitable form of soundness can be defined that is independent of the style of
argument employed. I will pursue the second course and, in Sect. 3, I will argue for
the indefeasibility criterion from epistemology. I will apply this to assurance case
arguments in Sect. 4 and argue for its feasibility in Sect. 5. Then, in Sect. 6, I will
consider how the indefeasibility criterion applies in the evaluation of assurance case
arguments.

Surrounding these sections on assurance are sections that relate assurance to sys-
tem behavior and to certification. The top-level claim of an assurance case will
generally state that the system satisfies some critical property such as safety or secu-
rity. Section2 relates confidence in the case, interpreted as a subjective probabilistic
assessment that its claim is true, to the likelihood that critical system failures will be
suitably rare—which is the basis for certification. Section7 considers probabilistic
assessments of an assurance case in support of this process. Section8 presents brief
conclusions and speculates about the future.

2 Assurance and Confidence in Freedom from Failure

A sound assurance case should surely allow—or even persuade—us to accept that
its claim is true. There are many different words that could be used to describe the
resulting mental state: we could come to know that the claim is true, or we could
believe it, or have confidence in it. I will use the term “belief” for this mental state
and will use “confidence” to refer to the strength of that belief.

So an assurance case gives us confidence in the belief that its claim is true. For a
system-level assurance case, the top-level claim is generally some critical property
such as safety (i.e., a statement that nothing really bad will happen), but we may also
have “functional” claims that the system does what is intended (so it is useful as well
as safe). A system-level assurance case will often be decomposed into subsidiary
cases for its subsystems, and the functional and critical claims will likewise be
decomposed. At some point in the subsystem decomposition, we reach “widgets”
where the claims are no longer decomposed andwe simplydemand that the subsystem
satisfies its claims.

Software assurance cases are generally like this: software is regarded as a widget
and its local claim is correctness with respect to functional requirements, which then
ensure the critical requirements of its parent system; of course there is a separate
assurance task to ensure that the functional requirements really do ensure the critical
requirements and hence the top-level claim. This division of responsibility is seen
most clearly and explicitly in the guidelines for commercial aircraft certification,

The Indefeasibility Criterion for Assurance Cases 261

where DO-178C [2] focuses on correctness of the software and ARP 4754A [3] pro-
vides safety assurance for its requirements. If we assume the requirements are good
and focus strictly on software assurance, any departure from correctness constitutes a
fault, so a software assurance case gives us confidence that the software is fault-free.
Confidence can be expressed numerically as a subjective probability so, in principle,
a software assurance case should allow us to assess a probability pnf that represents
our degree of confidence that the software is free of faults (or nonfaulty).

What we really care about is not freedom from faults but the absence of failure.
However, software can fail only if it encounters a fault, so software that is, with high
probability, free of faults will also be free of failures, with high probability. More
particularly, the probability of surviving n independent demands without failure,
denoted psrv(n), is given by

psrv(n) = pnf + (1 − pnf) × (1 − pF | f)n, (1)

where pF | f is the probability that the software Fails, if faulty.1 A suitably large
n can represent the system-level assurance goal. For example, “catastrophic failure
conditions” in commercial aircraft (“those which would prevent continued safe flight
and landing”) must be “so unlikely that they are not anticipated to occur during the
entire operational life of all airplanes of one type” [5]. If we regard a complete flight
as a demand, then “the entire operational life of all airplanes of one type” can be
satisfied with n in the range 108–109.

The first term of (1) establishes a lower bound for psrv(n) that is independent of
n. Thus, if assurance gives us the confidence to assess, say, pnf ≥ 0.9 (or whatever
threshold is meant by “not anticipated to occur”) then it seems we have sufficient
confidence to certify the aircraft software. However, we also need to consider the
case where the software does have faults.2 We need confidence that the system will
not suffer a critical failure despite those faults, and this means we need to be sure that
the second term in (1) will be well above zero even though it decays exponentially.

This confidence could come from prior failure-free operation. Calculating the
overall psrv(n) can then be posed as a problem in Bayesian inference: we have
assessed a value for pnf , have observed some number r of failure-free demands,
and want to predict the probability of seeing n − r future failure-free demands. To
do this, we need a prior distribution for pF | f , which may be difficult to obtain and
difficult to justify. However, Strigini and Povyakalo [4] show there is a distribution
that delivers provably worst-case predictions; using this, we can make predictions
that are guaranteed to be conservative, given only pnf , r , and n. For values of pnf
above 0.9, their results show that psrv(n) is well above the floor given by pnf , provided
r > n

10 .

1I am omitting many details here, such as the interpretation of subjective probabilities, and the
difference between aleatoric and epistemic uncertainty. The model and analysis described here are
due to Strigini and Povyakalo [4], who give a comprehensive account.
2Imagine using this procedure to provide assurance for multiple aircraft types; if pnf = 0.9 and we
assure 10 types, then one of them may be expected to have faults.

262 J. Rushby

Thus, in combination with prior failure-free experience (which is gained incre-
mentally, initially from tests and test flights, and later from regular operation), an
assessment pnf > 0.9 provides adequate assurance for extremely low rates of critical
failure, and hence for certification. I have presented this analysis in terms of software
(where the top claim is correctness) but, with appropriate adjustments to terminology
and probabilities, it applies to assurance of systems and properties in general, even
autonomous systems. (It also applies to subsystems; one way to mitigate faults and
failures in low-assurance subsystems is to locate them within a suitable architecture
where they can be buttressed with high-assurance monitors or other mechanisms
for fault tolerance; Littlewood and Rushby [6] analyze these cases.) This analysis
is the only one I know that provides a credible scientific account for how assurance
and certification actually work in practice. Those who reject probabilistic reasoning
for critical properties need to provide a comparably credible account based on their
preferred foundations.

Failures of the assurance process do not invalidate this analysis. For example,
the Fukushima nuclear meltdown used inappropriate assessment of hazards, and the
Boeing 737MaxMCASappears to have violated every principle and process of safety
engineering and assurance. Sections3–6 consider how to structure and evaluate an
assurance case so that aberrations such as Fukushima and the 737Max MCAS are
reliably detected and rejected. In the remainder of this section and in Sect. 7, I focus
on how a probabilistic assessment such as pnf ≥ 0.9 can be derived from a successful
assurance case.

One approachwould be to give a probabilistic interpretation of the argument of the
case. It is certainly reasonable to assess evidence (i.e., the leaves of the argument)
probabilistically, and I will discuss this in Sect. 4. However, a fully probabilistic
interpretation requires the interior of the argument to be treated this way, too, which
will take us into probability logics or their alternatives such as fuzzy set “possibility
theory” or the Dempster–Shafer “theory of evidence.” Unfortunately, despite much
research, there is no generally accepted interpretation for the combination of logic
and probability. Furthermore, it is not clear that any proposed interpretations deliver
reliable conclusions for assurance case arguments. Graydon and Holloway [7, 8]
examined 12 proposals for using probabilistic methods to quantify confidence in
assurance case arguments: 5 based on Bayesian Belief Networks (BBNs), 5 based
on Dempster–Shafer or similar forms of evidential reasoning, and 2 using other
methods. By perturbing the original authors’ own examples, they showed that all the
proposed methods can deliver implausible results.

An alternative approach is to revert to the original idea that the overall case should
be sound in some suitable sense, and the probabilistic assessment is a measure of
our confidence in that soundness. So now we need a suitable interpretation for the
soundness of an assurance case. The intent is that a sound case should lead us, col-
lectively, to believe its claim, and that claim should be true. The means by which the
case induces belief is by providing justification, so it looks as if soundness should
involve these three notions: belief, justification, and truth. As it happens, epistemol-
ogy, the branch of philosophy concerned with knowledge, has traditionally (since
Plato) combined these three terms to interpret knowledge as Justified True Belief

The Indefeasibility Criterion for Assurance Cases 263

(JTB), so we may be able to draw on epistemology for a suitable characterization of
a sound assurance case. This idea is developed and explored in the following four
sections; we then return, in Sect. 7, to consider probabilistic assessment of confidence
in the resulting process.

3 Epistemology and the Indefeasibility Criterion

Fewphilosophers today accept the basic versionof JTBdue towhat are called “Gettier
cases”; these are named after Edmund Gettier who described two such cases in 1963
[9]. Gettier’s is the most widely cited modern work in epistemology with over 3,000
citations, many of which introduce new or variant cases. However, these all follow
the same pattern, which had previously been exemplified by the “stopped clock case”
introduced by Bertrand Russell in 1912 [10, p. 170]:

Alice sees a clock that reads two o’clock, and believes that the time is two o’clock. It is in
fact two o’clock. However, unknown to Alice, the clock she is looking at stopped exactly
twelve hours ago.

The general pattern in these cases is “bad luck” followed by “good luck”; in the
stopped clock case, Alice believes that it is two o’clock and her belief is justified
because she has looked at a clock. But the clock is stopped (“bad luck”) so her belief
could well be false; however, the clock stopped exactly twelve hours ago (“good
luck”) so her belief is in fact true. Thus, Alice has a belief that is justified and true—
but the case does not seem to match our intuitive concept of knowledge, so there
must be something lacking in the JTB criterion.

Those interested in assurance will likely diagnose the problem as weakness in
Alice’s justification: if this were an assurance case it would be criticized for not
considering the possibility that the clock is wrong or faulty. Many epistemologists
take the same view and seek to retain JTB as the definition of knowledge by tightening
the notion of “justification.” For example, Russell’s student Ramsey proposed that
the justification should employ a “reliable process” [11], but this just moves the
problem on to the definition of reliable process. A more widely accepted adjustment
of this kind is the indefeasibility criterion [12–14]. A justified belief is indefeasible
if it has no defeaters, where a defeater is a claim which, if we were to believe it,
would render our original belief unjustified. (Thus, a defeater to an argument is like
a hazard to a system.)

There are difficulties even here, however. A standard example is the case of Tom
Grabit [12]:

We see someone who looks just like Tom Grabit stealing a book from the library, and on this
basis believe that he stole a book. Unbeknownst to us, Tom’s mother claims that he is away
on a trip and has an identical twin who is in the library. But also unbeknownst to us, she has
dementia: Tom is not away, has no brother, and did steal a book.

The problem is that the claim by Tom’s mother is a defeater to the justification
(we saw it with our own eyes) for our belief that Tom stole a book. But this defeater

264 J. Rushby

is itself defeated (because she has dementia). So the indefeasibility criterion needs
to be amended so that there are no undefeated defeaters to our original belief, and
this seems to invite an infinite regress. Some current work in epistemology attempts
to repair, refute, or explore this and similar difficulties [15, 16], but at this point I
prefer to part company with epistemology.

Epistemology seeks to understand knowledge, and one approach is to employ
some form of justified true belief. But truth is known only to the omniscient; as
humans, the best we can aspire to is “well-justified” belief.Much of the inventiveness
in Gettier’s examples is in setting up a poorly justified belief (which is defeated by
the “bad luck” event) that is nonetheless true (due to the second, “good luck,” event).
For assurance, we are not interested in poorly justified beliefs that turn out to be true,
and many of the fine distinctions made by epistemologists are irrelevant to us. We
are interested in well-justified beliefs (since that is our best approach to truth) and
what we can take from epistemology is indefeasibility as a compelling criterion for
adequately justified belief.3

Observe that there are two reasons why an assurance case might be flawed: one is
that the evidence is too weak to support the claim (to the extent we require) and this is
managed by our treatment of theweight of evidence, as will be discussed in Sect. 4.1;
the other is that there is something logically wrong or missing in the case (e.g., we
overlooked some defeater), and these are eliminated by the notion of indefeasible
justification.

Hence, the combination of justification and indefeasibility is an appropriate cri-
terion for soundness in assurance cases. To be explicit, I will say that an assurance
case is justified when it is achieved by means of a valid argument (and I will explain
validity in Sect. 4), and I will say that an assurance case is justified indefeasiblywhen
there is no (or, more realistically, we cannot imagine any) new information that would
cause us to retract our belief in the case (i.e., no defeaters). A sound case is one that
is justified indefeasibly and whose weight of evidence crosses some threshold for
credibility.

In addition to contributing to the definition of what it means for a case to be
sound, another attractive attribute of indefeasible justification is that it suggests how
reviewers can challenge an assurance case: search for defeaters (flaws in the valid
argument providing justification are eliminated by checking its logic, which can be
automated). I discuss this in more detail in Sect. 6.

3When I said “truth is known only to the omniscient” I was implicitly employing the correspondence
criterion for truth, which is the (commonsense) idea that truth is that which accords with reality.
There are other criteria for truth, amongwhichPeirce’s limit concept is particularly interesting: “truth
is that concordance of a…statement with the ideal limit towards which endless investigation would
tend to bring …belief” [17, Vol 5, para 565]. Others paraphrase it as that which is “indefeasible—
that which would not be defeated by inquiry and deliberation, no matter how far and how fruitfully
we were to investigate the matter in question” [18]. Russell criticized Peirce’s limit concept on the
grounds that it mixes truth with epistemology, but I think it is interesting for precisely this reason:
independent inquiries, performed 50 years apart, converge on indefeasibility as the fundamental
basis for justification, knowledge, and truth.

The Indefeasibility Criterion for Assurance Cases 265

There are two immediate objections to the indefeasibility criterion. The first is that
to establish indefeasibility we must consider all potential defeaters, and that could
be costly as we might spend a lot of resources checking potential defeaters that are
subsequently discarded (either because they are shown not to defeat the argument
or because they are themselves defeated). However, I believe that if a case is truly
indefeasible, then potential defeaters can either be quickly discarded (because they
are not defeaters, for reasons that were already considered and recorded in justifying
the original case), or themselves quickly defeated (for similar reasons). The second
objection is that indefeasibility is unrealistic: how can we know that we have thought
of all the “unknown unknowns”? I address this objection in Sect. 5, but note here
that the demanding character of indefeasibility is precisely what makes it valuable:
it raises the bar and requires us to make the case that we have, indeed, thought of
everything.

A variant on both these objections is the concern that indefeasibility can provoke
overreaction that leads to prolix arguments, full of material included “just in case”
or in anticipation of implausible defeaters. A related concern is that indefeasibility
gives reviewers license to raise numerous imagined defeaters. The first of these must
be excluded by good engineering management: proposed defeaters, or proposed
counterevidence for acknowledged defeaters, must first be scrutinized for relevance,
effectiveness, and parsimony. For the second, note that rather than inviting “nuisance”
defeaters during development or review, indefeasibility is a tool for their exclusion.
An indefeasible case anticipates, refutes, and records all credible objections that
might be raised by its reviewers. So as a case approaches completion and we become
more confident that all defeaters have been recognized, so it becomes easier to discard
proffered “nuisance” defeaters—because either they are not new or not defeaters,
for reasons that have already been considered, or because they can themselves be
defeated (for similar reasons).

4 Interpretation and Application of Indefeasibility

An assurance case justifies its claim by means of a structured argument, which is a
hierarchical collection of individual argument steps, each of which justifies a local
claim on the basis of evidence and/or lower level local subclaims. A trivial example
is shown on the left in Fig. 1, where a top claim C is justified by an argument step AS1

on the basis of evidence E3 and subclaim SC1, which itself is justified by argument
step AS2 on the basis of evidence E1 and E2.

Assurance cases often are portrayed graphically, as in the figure, and two such
graphical notations are in common use: Claims-Argument-Evidence, or CAE [19],
andGoal StructuringNotation, orGSN [20] (the notation in Fig. 1 is generic, although
its element shapes are those of GSN). In a real assurance case, the boxes in the
figure will contain, or reference, descriptions of the artifacts concerned: for evidence
(circles) this may be substantial, including results of tests, formal verifications, etc.;
for claims and subclaims (rectangles) it will be a careful (natural language or formal)

266 J. Rushby

C

SC E

E E

AS

AS1

3

21

2

1

C

SC

E

ES

SC

E

RS

ES

E321

1

1

2 n

n
EE

ES

21 E3

C

Fig. 1 A structured argument in free (left) and simple form (center) and refactored (right)

statement of the property claimed; and for argument steps (parallelograms) it will
be a detailed justification or “warrant” why the cited subclaims and evidence are
sufficient to justify the local parent claim.

It is important to note that this interpretation of assurance case arguments applies
to CAE, for example, but that GSN, although it appears similar, uses a very different
interpretation. What I call argument steps (pictured as parallelograms) are called
“strategies” in GSN and their purpose is to describe how the argument is being made
(e.g., as an enumeration over components or over hazards), rather than to state an
inference from subclaims to claim. In fact, GSN strategies are often omitted and sets
of “subgoals” (i.e., subclaims) are connected directly to a “goal” (i.e., claim), and
the implicit argument is taken to be some obvious decomposition. I do not attempt to
provide an interpretation for GSN strategies. In the interpretation described here, and
in CAE “blocks” [21], an argument step that employs a decomposition must provide
a narrative justification (i.e., warrant) and possibly some supporting evidence for the
decomposition employed (e.g., why it is necessary and sufficient to enumerate over
just these hazards, or why the claim distributes over the components).

As a concrete example of our interpretation, let us suppose that the left side of
Fig. 1 is a (trivialized) software assurance case, where the claim C concerns software
correctness. Evidence E1 might then be test results, and E2 a description of how the
tests were selected and the adequacy of their coverage, so that SC1 is a subclaim
that the software is adequately tested and argument step AS2 provides a warrant or
justification for this. In addition, we need to be sure that the deployed software is
the same as that tested, so E3 might be version management data to confirm this
and argument step AS1 provides a warrant that the claim of software correctness
follows if the software is adequately tested, and the tested software is the deployed
software. Of course, a real assurance case will concern more than testing and even
testing will require additional items of supporting evidence (e.g., the trustworthiness
of the test oracle), so real assurance cases are large. On the other hand, evidence must
support a specific claim, and claims must contribute to an explicit argument, so there

The Indefeasibility Criterion for Assurance Cases 267

is hope that assurance cases can be more focused and therefore more succinct than
current processes driven by guidelines such as DO-178C that require large quantities
of evidence with no explicit rationale.

Observe that the argument stepAS1 on the left of Fig. 1 uses both evidenceE3 and a
subclaim SC1. Later, in Sect. 5, I will sketch how to interpret such “mixed” argument
steps, but it is easier to understand the basic approach in their absence. By introducing
additional subclaims where necessary, it is straightforward to convert arguments into
simple form where each argument step is supported either by subclaims (boxes) or
by evidence (circles), but not by a combination of the two. The mixed or free form
argument on the left of Fig. 1 is converted to simple form in the center by introducing
a new subclaim SCn and a new argument step ESn above E3.

The benefit of simple form is that argument steps are now of two kinds: those
supported by subclaims are called reasoning steps (in the example, argument step
AS1 is relabeled as reasoning step RS1), while those supported by evidence are called
evidential steps (in the example, these are the relabeled step ES2 and the new step
ESn) and the key to our approach is that the two kinds of argument step are interpreted
differently.

Specifically, evidential steps are interpreted “epistemically,”while reasoning steps
are interpreted “logically.” The idea is that evidential steps whose “weight of evi-
dence” (as described below) crosses some threshold are treated as premises in a
conventional logical argument in which the reasoning steps are treated as axioms.
This is a systematic version of “Natural Language Deductivism” (NLD) [22], which
interprets informal arguments as attempts to create deductively valid arguments.NLD
differs from deductive proof in formal mathematics and logic in that its premises are
“reasonable or plausible” rather than certain, and hence its conclusions are likewise
reasonable or plausible rather than certain [23, Sect. 4.2]. Our requirement that the
weight of each evidential step must cross some threshold systematizes what it means
for the premises to be reasonable or plausible or, as we often say, credible. (Hence,
there is no conceptual problemwith evidence based on expert opinion, or incomplete
testing, provided these are buttressed by warrants, and possibly additional evidence,
for their credibility.)

Our treatment of reasoning steps shares with NLD the requirement that these
should be deductively valid (i.e., the subclaimsmust imply or entail the parent claim);
this differs from other interpretations of informal argumentation, which adopt criteria
that are weaker (e.g., the subclaims need only “strongly suggest” the parent claim)
[24], or different (e.g., the Toulmin style of argument) [25]. Weaker (or different)
criteria may be appropriate in other argumentation contexts: indeed, the very term
“natural language deductivism” was introduced by Govier [26] as a pejorative to
stress that this style of argument does not adequately represent “informal argument.”
However, our focus is not informal arguments in general, but the structured argu-
ments of assurance cases, where deductive validity is a natural counterpart to the
requirement for indefeasibility, and so we can adopt the label NLD with pride. We
consider the case of those who assert the contrary in Sect. 4.2.

Because our treatment is close to that of formal logic, we adopt its terminology
and say that an argument is valid if its reasoning steps are logically so (i.e., true in all

268 J. Rushby

interpretations) and that it is sound if, in addition, its evidential steps all cross their
thresholds for credibility.4 Thus, our requirement for a sound assurance case is that
its argument is sound in the sense just described (which we also refer to as a justified
argument), and indefeasible.

We now consider the two kinds of argument steps in more detail.

4.1 Evidential Steps

My recommended approach for evidential steps is described in a related paper [27];
here, I provide a summary and connect it to the indefeasibility criterion.

When we have an evidential step with some collection of evidence E , our task
is to decide if this is sufficient to accept its local claim C as a premise. We cannot
expect E to prove C because the relation between evidence and claims is not one
of logic but of epistemology (i.e., it concerns knowledge and belief). Thus, when
an evidential step uses two or more items of evidence to support a subclaim (as, for
example, at the lower left of the arguments in Fig. 1), the interpretation is not that the
conjunction of the evidence logically supports the subclaim, but that each supports
it to some degree and together they support it to a greater degree. The reason we
have several items of evidence supporting a single claim is that there are rather few
claims that are directly observable. Claims like “correctness” can only be inferred
from indirect and partial observations, such as testing and reviews. Because these
observations provide indirect and incomplete evidence, we combine several of them,
in the belief that, together, their different views provide an accurate evaluation of that
which cannot be observed directly. Furthermore, an observation may provide valid
evidence only in the presence of other evidence: for example, testing is credible
only if we have a trustworthy way of assessing test results (i.e., an oracle), so an
evidential step concerning testing must also include evidence for the quality of the
oracle employed.

Thus, as previously noted, the assessment of evidential steps is not a problem in
logic (i.e., we are not deducing the claim from the evidence) but in epistemology: we
need to assess the extent to which the evidence allows us to believe or know the truth
of the subclaim. Subjective probabilities provide a basis for assessing and reporting
confidence in the various beliefs involved and we need to combine these in some
way to yield a measure for the “weight” of the totality of evidence E in support of
claimC . This topic has been studied in the field of Bayesian confirmation theory [28]
where suitable confirmation measures have been proposed. The crucial idea is that E
should not only support C but should discriminate between C and other claims, and
the negation ¬C in particular. This suggests that suitable measures will concern the

4It is because these usages are standard in logic that we prefer sound to valid in [1].

The Indefeasibility Criterion for Assurance Cases 269

difference or ratio of the conditional probabilities P(E |C) and P(E | ¬C).5 There
are several such measures but among the most recommended is that of Kemeny and
Oppenheim [29]

P(E |C) − P(E | ¬C)

P(E |C) + P(E | ¬C)
;

thismeasure is positive for strong evidence, near zero forweak evidence, and negative
for counterevidence.

When an evidential step employs multiple items of evidence E1, . . . , Ei , which
may not be independent of one another, we need to estimate conditional probabilities
for the individual items of evidence and combine them to calculate the overall quan-
tities P(E1, . . . , Ei |C) and P(E1, . . . , Ei | ¬C) used in the chosen confirmation
measure; Bayesian Belief Nets (BBNs) and their tools provide ways to do this ([27]
gives an example).

This probabilistic model, supported by suitable BBN tools, can be used to calcu-
late a confirmation measure that represents the weight of evidence in support of an
evidential claim, and a suitable threshold on that weight (which may differ from one
claim to another) can be used to decide whether to accept the claim as a premise in the
reasoning steps of the argument. I concede that it is difficult to assign credible prob-
abilities to the estimations involved, so in practice the determination that evidence
is sufficient to justify a claim will generally be made by (skilled) human judgment,
unassisted by explicit probabilistic calculations. However, I believe that judgment
can be improved and honed by undertaking numerical examples and “what if” exper-
iments using the probabilistic model described here. And I suggest that assurance
templates thatmay bewidely applied should be subjected to quantitative examination
of this kind. The example in [27] provides an elementary prototype for this kind of
examination.

The probabilistic model helps us understand how the various items of evidence in
an evidential step combine to lend weight to belief in its claim. Applying the model
to a specific evidential step, whether this is done formally with BBNs or informally
by human judgment, involves determination that the collection of evidence is “valid”
(e.g., does not contain contradictory items) and credible (i.e., its weight crosses our
threshold for acceptance). The indefeasibility criterion comes into play when we
ask whether the evidence supplied is also “complete.” Specifically, indefeasibility
requires us to consider whether any defeaters might exist for the evidence supplied.
For example, testing evidence is defeated if it is not for exactly the same software as
that under consideration, and formal verification evidence is defeated if its theorem
prover might be unsound.

It might seem that since testing merely samples a space, it must always be incom-
plete and therefore vulnerable to defeat. This is true, but I maintain that this kind
of “graduated” defeat is different in kind and significance to true “noetic” defeat.

5It might seem that we should be considering P(C | E) and its variants rather than P(E |C); these
are related by Bayes’ rule but it is easier to estimate the likelihood of concrete observations, given
a claim about the world, than vice versa.

270 J. Rushby

Almost all evidence is imperfect and partial; that is why evidential steps are eval-
uated epistemically and why we use probabilities (either formally or intuitively) to
record our confidence. Testing is no different than other forms of evidence in this
regard. Furthermore, we can choose how partial is our testing: depending on the
claim, we can target higher levels of “coverage” for unit tests, or higher levels of
statistical validity for random system tests. Some other kinds of evidence share this
“graduated” character: for example, we can choose how much effort to devote to
human reviews. Thus, the potential for defeat in graduated forms of evidence is
acknowledged and managed. It is managed through the “intensity” of the evidence
(e.g., effort applied, as indicated by hours of human review, or coverage measures
for testing) and probabilistic assessment of its resulting “weight.” If that weight is
judged insufficient, then evidence that is vulnerable to graduated defeat might be
buttressed by additional evidence that is strong on the graduated axis, but possibly
weaker on others. Thus testing, which considers interesting properties but for only a
limited set of executions, could, for suitable claims, be buttressed by static analysis,
which considers all executions, but only for limited properties.

“Noetic” defeat is quite different from graduated defeat: it signifies something is
wrong or missing and undermines the whole basis for given evidence. For example,
if our test oracle (the means by which we decide whether or not tests are successful)
could be faulty, or if the tested components might not be the same as those in the
actual system, then our tests have no evidential value.

The indefeasibility criterion requires us to eliminate noetic defeaters and to man-
agegraduatedones.Considerationof potential noetic defeatersmay leadus to develop
additional evidence or to restrict the claim. According to the dependencies involved,
additional evidence can be combined in the same evidential step as the original evi-
dence or it can be used in dedicated evidential steps to support separate subclaims
that are combined in higher level reasoning steps. For example, in the center of Fig. 1,
evidence E3 might concern version management (to counter the noetic defeater that
the software tested is not the same as that deployed), and it supports a separate claim
that is combined with the testing subclaim higher up in the argument. On the other
hand, if this were evidence for quality of the oracle (the means by which test results
are judged) it would be better added directly to the evidential step ES2 since it is not
independent of the other evidence in that step, leading to the refactored argument on
the right of Fig. 1.

We now turn from evidential steps to reasoning steps.

4.2 Reasoning Steps

Evidential steps are the bridge between epistemology and logic: they establish that
the evidence is sufficient, in its context, to treat their subclaims as premises in a
logical interpretation of the reasoning steps. That logical interpretation is a “deduc-
tive” one, meaning that the conjunction of subclaims in a reasoning step must imply
or entail its claim. This interpretation is not the usual one: most other treatments

The Indefeasibility Criterion for Assurance Cases 271

of assurance case arguments require only that the collection of subclaims should
“strongly suggest” the claim, a style of reasoning generally called “inductive” (this
is a somewhat unfortunate choice as the same term is used with several other mean-
ings in mathematics and logic). The deductive interpretation is a consequence of
our requirement for indefeasibility: if a reasoning step is merely inductive, we are
admitting a “gap” in our reasoning that can be filled by a defeater.

Some authors assert that assurance case arguments cannot be deductive due to
complexity and uncertainty [30, 31]. I emphatically reject this assertion: the whole
point of an assurance case is to manage complexity and uncertainty. In the interpreta-
tion advocated here, all uncertainty is confined to the evaluation of evidential steps,
where (formal or informal) probabilistic reasoning may be used to represent and
estimate uncertainty in a scientific manner. In the inductive interpretation, there is no
distinction between evidential and reasoning steps so uncertainty can lie anywhere,
and there is no requirement for indefeasibility so the argument can be incomplete as
well as unsound.

Nonetheless, the requirement for indefeasibility, and hence for deductive reason-
ing steps, strikes some as an unrealizable ideal—a counsel of perfection—so in the
following section I consider its feasibility and practicality.

5 Feasibility of Indefeasibility

One objection to the indefeasibility criterion for assurance cases is that it sets too
high a bar and is infeasible and unrealistic in practice. How can we ever be sure, an
objector might ask, that we have thought of all the “unknown unknowns” and truly
dealt with all possible defeaters? My response is that there are systematic ways to
develop deductive reasoning steps and techniques that shift the doubt into evidential
steps where it can be managed appropriately.

Many reasoning steps represent a decomposition in some dimension and assert
that if we establish some claim for each component of the decomposition then we
can conclude a related claim for the whole. For example, we may have a system X
that is composed of subsystems X1, X2, …, Xn and we argue that X satisfies claim
C, which we denote C(X), by showing that each of its subsystems also satisfies C:
that is, we use subclaims C(X1), C(X2), …, C(Xn). We might use this reasoning
step to claim that a software system will generate no runtime exceptions by showing
it to be true for each of its software components. However, this type of argument
is not always deductively valid—for example, we cannot argue that an airplane is
safe by arguing that its wheels are safe, its rudder is safe, …and its wings are safe.
Deductive validity is contingent on the property C, the nature of the system X, and the
way in which the subsystems X1, X2, …, Xn are composed to form X. Furthermore,
claim C(X) may not follow simply from the same claim applied to the subsystems,
but from different subclaims applied to each: C1(X1), C2(X2), …, Cn(Xn). For
example, a system may satisfy a timing constraint of 10ms if its first subsystem
satisfies a constraint of 3ms, its second satisfies 4ms, and its third and last satisfies

272 J. Rushby

2ms (together with some assumptions about the timing properties of the mechanism
that binds these subsystems together).

I assert that we can be confident in the deductive character of systematically con-
structed reasoning steps of this kind by explicitly stating suitable assumptions or
side conditions (which are simply additional subclaims of the step) to ensure that the
conjunction of component subclaims truly implies the claim. In cases where the sub-
claims and claim concern the same property C, this generally follows if C distributes
over the components and the mechanism of decomposition, and this would be an
assumption of the template for this kind of reasoning step. In more complex cases,
formal modeling can be used to establish deductive validity of the decomposition
under its assumptions. Bloomfield and Netkachova [21] provide several examples of
templates for reasoning steps of this kind, which they call “decomposition blocks.”

Deductiveness in these steps derives from the fact thatwe have a definitive enumer-
ation of the components to the decomposition and have established suitable assump-
tions. A different kind of decomposition is one over hazards or threats. Here, we do
not have a definitive enumeration of the components to the decomposition: it is pos-
sible that a hazard might be overlooked. In cases such as this, we transform concerns
about deductiveness of the reasoning step into assessment of evidence for the decom-
position performed. For example, we may have a general principle or template that a
system is safe if all its hazards are eliminated or adequately mitigated. Then we per-
form hazard analysis to identify the hazards—and that means all the hazards—and
use a reasoning step that instantiates the general principle as a decomposition over
the specific hazards that were identified and attach the evidence for hazard analysis
as a side condition. Thus our doubts about deductiveness of the reasoning step that
enumerates over hazards are transformed into assessment of the credibility of the
evidence for the completeness of hazard analysis (e.g., the method employed, the
diligence of its performance, historical effectiveness, and so on).

This is not a trick; when reasoning steps are allowed to be inductive, there is no
requirement nor criterion to justify how “close” to deductive (i.e., indefeasible) the
steps really are. Under the indefeasibility criterion, we need to justify the deduc-
tiveness of each reasoning step, either by reference to physical or logical facts (e.g.,
decomposition over enumerable components or properties) or to properly assessed
evidence, such as hazard analysis, and this is accomplished by the method described.

Both kinds of decomposition discussed above employ assumptions or side con-
ditions (or as will be discussed below, “provisos”) to ensure the decomposition is
indefeasible. Assumptions (as we will call them here) are logically no different than
other subclaims in an argument step. That is, an argument step

p1 AND p2 AND · · · AND pn IMPLIES c, ASSUMING a

is equivalent to

a AND p1 AND p2 AND · · · AND pn IMPLIES c. (2)

The Indefeasibility Criterion for Assurance Cases 273

If the original is an evidential step (i.e., p1, p2, . . . pn are evidence) and a is a sub-
claim, then (2) is a mixed argument step involving both evidence and subclaims.
In Fig. 1 of Sect. 4, we explained how such arguments could be converted to simple
form. By that method we might obtain

p1 AND p2 AND · · · AND pn IMPLIES c1 (3)

a AND c1 IMPLIES c (4)

and an apparent problem is that the required assumption has been lost from (3).
However, this is not a problem at all. The structure of an assurance case argument
(as we have defined it) is such that every subclaim must be true. Hence, it is sound
to interpret (3) under the assumption a even though it is established elsewhere in the
tree of subclaims. In the same way, evidence E3 in the left or center of Fig. 1 can be
interpreted under the assumption of subclaim SC1. This treatment can lead to circu-
larity, and checks to detect it could be expensive. A sound and practical restriction is
to stipulate that each subclaim or item of evidence is interpreted on the supposition
that subclaims appearing earlier (i.e., to its left in a graphical presentation) are true.
Thus, mixed argument steps like (2) are treated as reasoning steps subject to the
evidentially supported assumptions represented by a and this interpretation can be
applied either directly or via the conversion to simple form.

Beyond the objection, just dismissed, that the indefeasibility criterion is unrealistic
or infeasible in practice is the objection that it is thewrong criterion—because science
itself does not support deductive theories.

This contention derives from a controversial topic in the philosophy of science
concerning “provisos” (sometimes spelled “provisoes”) or ceteris paribus clauses
(a Latin phrase usually translated as “other things being equal”) in statements of
scientific laws. For example, we might formulate the law of thermal expansion as
follows: “the change in length of a metal bar is directly proportional to the change
in temperature.” But this is true only if the bar is not partially encased in some
unyielding material, and only if no one is hammering the bar flat at one end, and….
This list of provisos is indefinite, so the simple statement of the law (or even a
statement with some finite set of provisos) can only be inductively true. Hempel [32]
asserts there is a real issue here concerning the way we understand scientific theories
and, importantly, the way we attempt to confirm or refute them. Others disagree:
in an otherwise sympathetic account of Hempel’s work in this area, his student
Suppe describes “where Hempel went wrong” [33, pp. 203, 204], and Earman and
colleagues outright reject it [34].

Rendered in terms of assurance cases, the issue is the following. During devel-
opment of an assurance case argument, we may employ a reasoning step asserting
that its claim follows from some conjunction of subclaims. The assertion may not
be true in general, so we restrict it with additional subclaims representing necessary
assumptions (i.e., provisos) that are true (as other parts of the argument must show) in

274 J. Rushby

the context of this particular system. The “proviso problem” is then: how dowe know
that we have not overlooked some necessary assumption? I assert that this is just a
variant on the problem exemplified by hazard enumeration that was discussed earlier,
and is solved in the same way: we provide explicit claims and suitable evidence that
the selected assumptions are sufficient. Unlike inductive cases, where assumptions
or provisos may be swept under the rug, in deductive cases we must identify them
explicitly and provide evidentially supported justification for their correctness and
completeness.

Some philosophers might say this is hubris, for we cannot be sure that we do
identify all necessary assumptions or provisos. This is, of course, true in the abstract
but, just as we prefer well-justified belief to the unattainable ideal of true knowledge,
so we prefer well-justified assumptions to the limp veracity of inductive arguments.
With an inductive reasoning step, we are saying “this claim holds under these provi-
sos, but there may be others,” whereas for a deductive step we are saying “this claim
holds under these assumptions, and this is where we make our stand.” This alerts our
reviewers and raises the stakes on our justification. The task of reviewers is the topic
of the following section.

6 Challenges and Reviews

Although reasoning steps must ultimately be deductive for the indefeasible interpre-
tation, I recommend that we approach this via the methods and tools of the inductive
interpretation. The reason for this is that assurance cases are developed incremen-
tally: at the beginning, we might miss some possible defeaters and will not be sure
that our reasoning steps are deductive. As our grasp of the problem deepens, we may
add and revise subclaims and argument steps and only at the end will we be confident
that each reasoning step is deductive and the overall argument is indefeasible. Yet
even in the intermediate stages, we will want to have some (mechanically supported)
way to evaluate attributes of the case (e.g., to check that every subclaim is eventually
justified), and an inductive interpretation can provide this, particularly if augmented
to allow explicit mention of defeaters.

Furthermore, even when we are satisfied that the case is deductively sound, we
need to support reviewbyothers. Themainobjection to assurance cases is that they are
prone to “confirmation bias” [35]: this is the human tendency to seek information that
will confirm a hypothesis, rather than refute it. The most effective counterbalance
to this and other fallibilities of human judgment is to subject assurance cases to
vigorous examination by multiple reviewers with different points of view. Such a
“dialectical” process of review can be organized as a search for potential defeaters.
That is, a reviewer asks “what if this happens,” or “what if that is not true.”

The general idea of a defeater to a proposition is that it is a claimwhich, if wewere
to believe it, would render our belief in the original proposition unjustified. Within
argumentation, this general idea is refined into specific kinds of defeaters. Pollock
[36, p. 40] defines a rebutting defeater as one that (in our terminology) contradicts

The Indefeasibility Criterion for Assurance Cases 275

the claim to an argument step (i.e., asserts it is false), while an undercutting defeater
merely doubts it (i.e., doubts that the claim really does follow from the proffered
subclaims or evidence); others subsequently defined undermining defeaters as those
that doubt someof the evidence or subclaimsused in an argument step. This taxonomy
of defeaters can be used to guide a systematic critical examination of an assurance
case argument.

For an elementary example, we might justify the claim “Socrates is mortal” by
a reasoning step derived from “all men are mortal” and an evidential step “Socrates
is a man.” A reviewer might propose a rebutting defeater to the reasoning step by
saying “I have a CD at home called ‘The Immortal James Brown,’6 so not all men
are mortal.” The response to such challenges may be to adjust the case, or it may
be to dispute the challenge (i.e., to defeat the defeater). Here, a proponent of the
original argument might rebut the defeater by observing that James Brown is dead
(citing Google) and therefore indubitably mortal. An undercutting defeater for the
same reasoning step might assert that the claim cannot be accepted without evidence,
and an adjustment might be to interpret “mortal” as “lives no more than 200 years”
and to supply historical evidence of human lifespan. An undermining defeater for the
evidential step might challenge the assumption that Socrates was a historical figure
(i.e., a “real” man).

I think the record of such challenges and responses (and the narrative justification
that accompanies them) should be preserved as part of the assurance case to assist
further revisions and subsequent reviews. The fields of defeasible and dialectical rea-
soning provide techniques for recording and evaluating such “disputed” arguments.
For example, Carneades [37] is a system that supports dialectical reasoning, allow-
ing a subargument to be pro or con its conclusion: a claim is “in” if it is not the target
of a con that is itself “in” unless…(the details are unimportant here). Weights can be
attached to evidence, and a proof standard is calculated by “adding up” the pros and
cons supporting the conclusion and their attendant weights. For assurance cases, we
ultimately want the proof standard equivalent to a deductive argument, which means
that no con may be “in” (i.e., every defeater must be defeated). Takai and Kido [38]
build on these ideas to extend the Astah GSN assurance case toolset with support for
dialectical reasoning [39].

7 Probabilistic Interpretation

In Sect. 2, we explained how confidence in an assurance case, plus failure-free expe-
rience, can provide assurance for extremely low rates of critical failure, and hence for
certification. Sections3–6 have described our approach to interpretation and evalua-
tion of an assurance case, so we now need to put the two pieces together. In particular,
we would like to use the determination that a case is sound (i.e., its argument is valid,
all its evidential steps cross the threshold for credibility, it is indefeasible, and all

6The CD in question is actually called “Immortal R&B Masters: James Brown.”.

276 J. Rushby

these assessments havewithstood dialectical challenge) to justify expressions of con-
fidence such as pnf ≥ 0.9 in the absence of faults. This is a subjective probability,
but one way to give it a frequentist interpretation is to suppose that if 10 systems
were successfully evaluated in the same way, at most one of them would ever suffer
a critical failure in operation.

This is obviously a demanding requirement and not one amenable to definitive
demonstration. One possibility is to justify pnf ≥ 0.9 for this assurance case by a
separate assurance case that is largely based on evidential steps that cite historical
experience with the same or similar methods (for example, no civil aircraft has ever
suffered a catastrophic failure condition attributed to software assured toDO-178B/C
Level A7). For this reason among others, I suggest that assurance for really critical
systems should build on successful prior experience and that templates for their
assurance cases should be derived from existing guidelines such as DO-178C [2]
rather than novel “bespoke” arguments.

Different systems pose different risks, and not all need assurance to the extreme
level required for critical aircraft software. Indeed, aircraft software itself is “grad-
uated” according to risk. So a sharpened way to pose our question is to ask how a
given assurance case template can itself be graduated to deliver reduced assurance
at correspondingly reduced cost or, dually, how our overall confidence in the case
changes as the case is weakened. Eliminating or weakening subclaims within a given
argument immediately renders it defeasible, so that is not a viable method of gradu-
ation. What remains is lowering the threshold on evidential steps, which may allow
less costly evidence (e.g., fewer tests), or the elimination or replacement of some
evidence (e.g., replace static analysis by manual review). When evidence is removed
or changed, some defeaters may be eliminated too, and that can allow the removal
of subclaims and their supporting evidence (e.g., if we eliminate static analysis we
no longer need claims or evidence about its soundness).

It is difficult to relate weakened evidence to explicit reductions in the assessment
of pnf . Again, we could look to existing guidelines such as DO-178C, where 71
“objectives” (essentially items of evidence) are required for Level A software, 69
for Level B, 62 for Level C, and 26 for Level D. Alternatively, we could attempt to
assess confidence in each evidential step (i.e., a numerical value for P(C | E)) and
assess pnf as some function of these (e.g., the minimum over all evidential steps).
The experiments by Graydon and Holloway mentioned earlier [7, 8] suggest caution
here, but some conservative approaches are sound. For example, it follows from a
theorem of probability logic [40] that doubt (i.e., 1 minus probabilistic confidence) in
the claim of a reasoning step is no worse than the sum of the doubts of its supporting
subclaims.

7This remains true despite the 737Max MCAS crashes; as far as we know, the MCAS software
satisfied its requirements; the flaws were in the requirements, whose assurance is the purview of
ARP 4754A [3], which Boeing apparently failed to apply with any diligence.

The Indefeasibility Criterion for Assurance Cases 277

It has to be admitted that quantification of this kind rests on very subjective
grounds and that the final determination to accept an assurance case is a purely
human judgment. Nonetheless, the model of Sect. 2 and the interpretation suggested
here do establish a probabilistic approach to that judgment, although there is clearly
opportunity for further research.

8 Conclusion

I have reviewed the indefeasibility criterion from epistemology and argued that it
is appropriate for assurance case arguments. I also proposed a systematic version
of Natural Language Deductivism (NLD) as the basis for judging soundness of
assurance case arguments: the interior or reasoning steps of the argument should
be deductively valid, while the leaf or evidential steps are evaluated epistemically
using ideas from Bayesian confirmation theory and are treated as premises when
their evaluation crosses some threshold of credibility. NLD ensures correctness or
soundness of the argument, while indefeasibility ensures completeness. I derived
requirements for the evidential and reasoning steps in such arguments and argued that
they are feasible and practical, and that postulating defeaters provides a systematic
way to challenge arguments during review.

I propose that assurance case templates satisfying these criteria and derived from
successful existing assurance guidelines (e.g., DO-178C) can provide a flexible and
trustworthy basis for assuring future systems.

The basis for assurance is systematic consideration of every possible contingency,
which requires that the space of possibilities is knowable and enumerable. This is
true at design time for conventional current systems such as commercial aircraft,
where conservative choices may be made to ensure predictability. But more recent
systems such as self-driving cars and “increasingly autonomous” (IA) aircraft pose
challenges, as do systems that are assembled or integrated from other systems while
in operation (e.g., multiple medical devices attached to a single patient). Here, we
may have software whose internal structure is opaque (e.g., the result of machine
learning), an imperfectly known environment (e.g., a busy freeway where other road
users may exhibit unexpected behavior), and interaction with other systems (possibly
due to unplanned stigmergy via the plant) whose properties are unknown. These
challenge the predictability that is the basis of current assurance methods. I believe
this basis can be maintained and the assurance case framework can be preserved by
shifting some of the gathering and evaluation of evidence, and assembly of the final
argument, to integration or run time [41–43], and that is an exciting topic for future
research.

Acknowledgements This work was partially funded by SRI International and builds on previous
research that was funded by NASA under a contract to Boeing with a subcontract to SRI Interna-
tional.

278 J. Rushby

I have benefited greatly from extensive discussions on these topics with Robin Bloomfield of
Adelard and City University. Patrick Graydon of NASA provided very useful comments on a
previous iteration of the paper, as did the editors and reviewers for this volume.

References

1. UKMinistry of Defence: Defence Standard 00-56, Issue 4: Safety Management Requirements
for Defence Systems. Part 1: Requirements (2007)

2. Requirements and Technical Concepts for Aviation (RTCA)Washington, DC: DO-178C: Soft-
ware Considerations in Airborne Systems and Equipment Certification (2011)

3. Society of Automotive Engineers: Aerospace Recommended Practice (ARP) 4754A: Certifi-
cation Considerations for Highly-Integrated or Complex Aircraft Systems (2010). Also issued
as EUROCAE ED-79

4. L. Strigini, A. Povyakalo, Software fault-freeness and reliability predictions, in SafeComp
2013: Proceedings of the 32nd International Conference on Computer Safety, Reliability, and
Security. Lecture Notes in Computer Science, vol. 8153, Toulouse, France (Springer, 2013),
pp. 106–117

5. Federal Aviation Administration: System Design and Analysis (1988). Advisory Circular
25.1309-1A

6. B. Littlewood, J. Rushby, Reasoning about the reliability of diverse two-channel systems in
which one channel is “possibly perfect”. IEEE Trans. Softw. Eng. 38, 1178–1194 (2012)

7. P.J. Graydon, C.M. Holloway, An investigation of proposed techniques for quantifying confi-
dence in assurance arguments. Saf. Sci. 92, 53–65 (2017)

8. P.J. Graydon, C.M. Holloway, An investigation of proposed techniques for quantifying confi-
dence in assurance arguments. Technical Memorandum NASA/TM-2016219195, NASA Lan-
gley Research Center, Hampton VA (2016)

9. E.L. Gettier, Is justified true belief knowledge? Analysis 23, 121–123 (1963)
10. B.Russell,HumanKnowledge: Its Scope andLimits (GeorgeAllen&Unwin,London,England,

1948)
11. F.P. Ramsey, Knowledge, in Philosophical Papers of F. P. Ramsey, ed. by D.H. Mellor. (Cam-

bridge University Press, Cambridge, UK, 1990), pp. 110–111 (original manuscript, 1929)
12. K. Lehrer, T. Paxson, Knowledge: undefeated justified true belief. J. Philos. 66, 225–237 (1969)
13. P.D. Klein, A proposed definition of propositional knowledge. J. Philos. 68, 471–482 (1971)
14. M. Swain, Epistemic defeasibility. Am. Philos. Q. 11, 15–25 (1974)
15. J. Turri, Is knowledge justified true belief? Synthese 184, 247–259 (2012)
16. J.N.Williams,Not knowing you know: a newobjection to the defeasibility theory of knowledge.

Analysis 75, 213–217 (2015)
17. C. Hartshorne, P. Weiss, A.W. Burks (eds.), Collected Papers of Charles Sanders Peirce, vols.

1–8 (Harvard University Press, Cambridge, MA, 1931–1958)
18. C. Misak, Review of “Democratic Hope: Pragmatism and the Politics of Truth” by Robert B.

Westbrook. Trans. Charles S. Peirce Soc. 42, 279–282 (2006)
19. AdelardLLPLondon,UK:ASCAD:Adelard SafetyCaseDevelopmentManual (1998). https://

www.adelard.com/resources/ascad.html
20. T. Kelly, Arguing Safety—A Systematic Approach to Safety Case Management. DPhil thesis,

Department of Computer Science, University of York, UK (1998)
21. R. Bloomfield, K. Netkachova, Building blocks for assurance cases, in ASSURE: Second Inter-

national Workshop on Assurance Cases for Software-Intensive Systems, Naples, Italy, IEEE
International Symposium on Software Reliability Engineering Workshops (2014), pp. 186–191

22. L. Groarke, Deductivism within pragma-dialectics. Argumentation 13, 1–16 (1999)
23. L. Groarke, Informal logic, in The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta,

Spring 2017 edn. (Metaphysics Research Lab, Stanford University, 2017)

https://www.adelard.com/resources/ascad.html
https://www.adelard.com/resources/ascad.html

The Indefeasibility Criterion for Assurance Cases 279

24. J.A. Blair, What is informal logic? in Reflections on Theoretical Issues in Argumentation
Theory. Argumentation Library, vol. 28, ed. by F.H. van Eemeren, B. Garssen (Springer, 2015),
pp. 27–42

25. S.E. Toulmin, The Uses of Argument (Cambridge University Press, 2003) Updated edition (the
original is dated 1958)

26. T. Govier, Problems in Argument Analysis and Evaluation. Studies of Argumentation in Prag-
matics and Discourse Analysis, vol. 5 (De Gruyter, 1987)

27. J. Rushby, On the interpretation of assurance case arguments, in New Frontiers in Artificial
Intelligence: JSAI-isAI 2015 Workshops, LENLS, JURISIN, AAA, HAT-MASH, TSDAA, ASD-
HR, and SKL, Revised Selected Papers. Lecture Notes in Artificial Intelligence, vol. 10091,
Kanagawa, Japan (Springer, 2015), pp. 331–347

28. J. Earman, Bayes or Bust? A Critical Examination of Bayesian Confirmation Theory (MIT
Press, 1992)

29. K. Tentori, V. Crupi, N. Bonini, D. Osherson, Comparison of confirmationmeasures. Cognition
103, 107–119 (2007)

30. V. Cassano, T.S. Maibaum, S. Grigorova, Towards Making Safety Case Arguments Explicit,
Precise, and Well Founded (This volume)

31. M.Chechik, R. Salay, T.Viger, S.Kokaly,M.Rahimi, Software assurance in an uncertainworld,
in International Conference on Fundamental Approaches to Software Engineering (FASE).
Lecture Notes in Computer Science, vol. 11424, Prague, Czech Republic (Springer, 2019), pp.
3–21

32. C.G. Hempel, Provisoes: a problem concerning the inferential function of scientific theories.
Erkenntnis 28, 147–164 (1988). Also in conference proceedings “The Limits of Deductivism,”
ed. by A. Grünbaum, W. Salmon (University of California Press, 1988)

33. F. Suppe, Hempel and the problem of provisos, in Science, Explanation, and Rationality:
Aspects of the Philosophy of Carl G. Hempel, ed. by J.H. Fetzer (Oxford University Press,
2000), pp. 186–213

34. J. Earman, J. Roberts, S. Smith, Ceteris Paribus lost. Erkenntnis 57, 281–301 (2002)
35. N. Leveson, The use of safety cases in certification and regulation. J. Syst. Saf. 47, 1–5 (2011)
36. J.L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person (MIT Press, 1995)
37. T.F. Gordon, H. Prakken, D. Walton, The Carneades model of argument and burden of proof.

Artif. Intell. 171, 875–896 (2007)
38. T. Takai, H. Kido, A supplemental notation of GSN to deal with changes of assurance cases,

in 4th International Workshop on Open Systems Dependability (WOSD), Naples, Italy, IEEE
International Symposium on Software Reliability Engineering Workshops (2014), pp. 461–466

39. Astah: (Astah GSN home page). http://astah.net/editions/gsn
40. E.W. Adams,APrimer of Probability Logic (Center for the Study of Language and Information

(CSLI), Stanford University, 1998)
41. J. Rushby, Trustworthy self-integrating systems, in 12th International Conference on Dis-

tributed Computing and Internet Technology, ICDCIT 2016. Lecture Notes in Computer Sci-
ence, Bhubaneswar, India, vol. 9581, ed. by N. Bjørner, S. Prasad, L. Parida (Springer, 2016),
pp. 19–29

42. J. Rushby, Automated integration of potentially hazardous open systems, in Sixth Workshop on
Open Systems Dependability (WOSD), ed. by M. Tokoro, R. Bloomfield, Y. Kinoshita (Keio
University, Tokyo, Japan, DEOS Association and IPA, 2017), pp. 10–12

43. J. Rushby, Assurance and assurance cases, in Dependable Software Systems Engineering
(Marktoberdorf Summer School Lectures, 2016). NATO Science for Peace and Security Series
D, vol. 50, ed. by A. Pretschner, D. Peled, T. Hutzelmann (IOS Press, 2017), pp. 207–236

http://astah.net/editions/gsn

Refinement Based Modelling

An Event-B Development Process for the
Distributed BIP Framework

Badr Siala, Jean-Paul Bodeveix, Mamoun Filali, and Mohamed Tahar Bhiri

Abstract We present a refinement-based methodology to design correct by con-
struction distributed systems specified as Event-B models. Our approach makes
explicit the transition from formal requirements to a distributed executable model.
Starting from an Event-B machine, we propose successive steps in order to split
and schedule the computation of complex events and then to map them on sub-
components. The specification of these steps is done through two domain-specific
languages. From these specifications, two refinements are generated. Eventually, a
distributed code architecture is also generated. The correctness of the process relies
on the correctness of the refinements and the translation. We target the distributed
BIP framework.

1 Introduction

Usually, the development of distributed systems starts with some requirements and
leads to the proposal of a set of distributed components. As a matter of fact, the
BIP framework is proposed to support the corresponding deployment which can be
executed. Continuing the work outlined in [27], we propose here to make explicit
the transition from formal requirements to distributed executable models. It relies on
Domain-Specific Languages (DSL)-guided step by step refinements supported by the
Event-B method. More precisely, we are concerned with providing tool support to

B. Siala · M. T. Bhiri
Université de Sfax, Sfax, Tunisia
e-mail: siala@irit.fr

M. T. Bhiri
e-mail: tahar_bhiri@yahoo.fr

B. Siala · J.-P. Bodeveix · M. Filali (B)
Université de Toulouse IRIT CNRS UPS, Toulouse, France
e-mail: filali@irit.fr

J.-P. Bodeveix
e-mail: bodeveix@irit.fr

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_13

283

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_13&domain=pdf
mailto:siala@irit.fr
mailto:tahar_bhiri@yahoo.fr
mailto:filali@irit.fr
mailto:bodeveix@irit.fr
https://doi.org/10.1007/978-981-15-5054-6_13

284 B. Siala et al.

assist system design using a safe refinement-based process. The considered systems
will be seen as a collection of interacting actors. The first levels of the process provide
a centralized viewof the systembehavior. Itwill be built by taking into account system
requirements incrementally, in the form of a series of abstract machines written in
Event-B [5, 12]. Then, we propose dedicated, user guided through several DSLs,
refinement generators to take into account the distributed nature of the designed
system. As a result, we obtain a set of interacting machines of which composition
is proven to conform to the abstract levels. The system can then be executed on
a distributed platform via a translation to the BIP (Behavior, Interaction, Priority)
language [8]. By now, it should be clear that our aim is not to fully automate the
distribution process but to assist it. While keeping modest, the difference is similar
to that between a model checker where the proof of a judgement is automatic and
a theorem proving assistant where the user has to compose basic strategies in order
to make his proof. Actually, while a theorem proving assistant helps to construct the
proof of a goal, we intend to help in the elaboration of a distributed model through
refinement patterns [25]. Moreover, our objective is not to address the development
of distributed algorithms as [7] but to help in decomposing a centralized specification
over a fixed number of subcomponents during a deployment step.

The semantics of Event-B and BIP are based on labeled transition systems thereby
promoting their coupling. Event-B is used for the formal specification and the decom-
position of initially centralized reactive systems. BIP is used for the implementation
and the deployment of distributed systems specified and verified in Event-B. The
skeleton of the BIP code is automatically generated from Event-B.

Sections2 and 3 present Event-B composition/decomposition techniques and the
component-basedmodel BIP. Section4 presents Event-B patternsmodeling BIP con-
nectors and associated problems. Section5 proposes our development process of
distributed systems by coupling Event-B and BIP. Section6 relates our distributed
systems development approach to existing work. We conclude the paper in Sect. 7
and present some perspectives.

2 Event-B

In this section, we introduce the Event-B language and method and take the elec-
tronic hotel key system as an illustrative key study. Then we present extensions of
Event-B for model composition and decomposition and the limits of the shared event
decomposition tooling.

An Event-B Development Process for the Distributed BIP Framework 285

Fig. 1 Event-B development step

2.1 Introduction to Event-B

The Event-B method allows the development of correct by construction systems and
software [5]. It supports a formal development process based on a refinement mech-
anism with mathematical proofs. Static data models are introduced incrementally
through a chain of context extensions. Dynamic data updated by events are intro-
duced in machines and subsequently refined. Each machine can access context data
through the sees link (Fig. 1).

Contexts define abstract data types through sets, constants, and axioms while
machines define symbolic labeled transition systems. The state of a transition system
is defined as the value of machine variables. Labeled transitions are defined by events
specifying the new value of variables while preserving invariants. Moreover, the
theorem clause expresses facts that should be satisfied. Proof obligations for well-
formedness, invariant preservation, and theorems are automatically generated by the
Rodin tool [3]. They can be discharged thanks to automatic proof engines (CVC4,
Z3 …) or through human-assisted proofs.

For the most part, Event-B uses standard set theory and its usual set notation.
As a matter of fact, in Event-B, arrays and functions are both considered as sets of
couples. Some notations are specific to Event-B:

• pair construction: pairs are constructed using the maplet operator �→. A pair is
thus denoted a �→ b instead of (a, b). The set of pairs a �→ b where a ∈ A and
b ∈ B is denoted A × B.

• A subset of A × B is a relation. The set of relations from A to B is denoted A ↔
B = P(A × B). A relation r ∈ A ↔ B has a domain: dom(r) and a codomain:
ran(r). When a relation r relates an element of dom(r)with at-most one element,
it is called a function. The set of partial functions from A to B is denoted A �→B,
the set of total functions is denoted A → B. The image of a set A by a relation r
is denoted r [A].

• The composition of two relations r1 ∈ A ↔ B and r2 ∈ B ↔ C is denoted as
r1; r2.

286 B. Siala et al.

• The direct product r1 ⊗ r2 of relations r1 ∈ A ↔ B1 and r2 ∈ A ↔ B2 is the
relation containing the pairs (x �→ (y1 �→ y2))where x �→ y1 ∈ r1 and x �→ y2 ∈
r2.

• domain restriction: D � r = {x �→ y | (x �→ y) ∈ r ∧ x ∈ D}
• range restriction: r � D = {x �→ y | (x �→ y) ∈ r ∧ y ∈ D}
• overwrite: f �−g = ((dom(f)\dom(g)) � f) ∪ g. For instance, such a notation
is used to denote a new array obtained by changing the element of an array a at
index i : a�−{i �→ e′}.
As already said, Event-B machines specify symbolic transitions through events.

An event has three optional parts: parameters (any p1 …pn), guards (where …)
specifying constraints to be satisfied by parameters and state variables, and actions
(then…)specifying state variables updates.Guards are defined in set-based predicate
logic. Concurrent updates of distinct variables may be deterministic (x := e), non-
deterministic (x :∈ E or x :| P(x, x ′)). In x :∈ E , x takes any value belonging to the
set E . In x :| P(x, x ′), the new value x ′ of x is specified by the predicate P .

2.2 Case Study

As a running example, we will consider the electronic hotel key system case
study [24]. As said in [5], the purpose of such a system is to guarantee that between
your checking and checkout of the hotel, you can enter the room you booked and
no-one else can do so. The behavior of the considered system is not exactly the
intended one: the previous owner of a room can enter the room while the next one
has not introduced his card in the room card reader. It means that this action ends
checkin and starts checkout. Given this event mapping, the informal specification is
fulfilled.

The context (Listing 1) introduces basic data structures: guests, rooms, and cards
defined as ordered pairs of keys. State variables (Listing 2) declare the current key
of a room (currk), the rooms owned by a guest (owns), the cards issued by the
hotel, and cards owned by a guest.

context cho t e l
sets ROOM GUEST KEY
constants CARD
axioms

@crd CARD = KEY × KEY
end

Listing 1 Hotel context

machine ho t e l sees cho t e l
var iab les cu r r k owns issued cards
i nva r i an ts

@currk_ty cu r r k ∈ ROOM → KEY
@owns_ty owns ∈ ROOM → P (GUEST)
@issued_ty issued ∈ P (CARD)
@cards_ty cards ∈ GUEST → P (CARD)

Listing 2 Hotel state variables

The dynamics of the system is described by events, one of which, named
register being given in Listing 3.

An Event-B Development Process for the Distributed BIP Framework 287

This is a non-deterministic event, parametrized by the variables g for the incoming
guest, r for the room to be chosen, and c for the card to be issued. The where part
specifies which of these triples are allowed: the room should be free (g1), the card
should not have been issued (g2), and the card should open the door (g3). The then
part specifies how the state space is updated: the current key of the room will be the
second key of the card (a1) , the card has been issued (a2), which is owned by the
guest (a3) who owns the room (a4).

event r e g i s t e r
any g r c where

@tg g ∈ GUEST
@tr r ∈ ROOM
@tc c ∈ CARD
@g1 owns (r) = ∅
@g2 c /∈ i ssued
@g3 p r j 1 (c) = cu r r k (r)

then
@a1 cu r r k (r) := p r j 2 (c)
@a2 issued := issued∪ { c }
@a3 cards (g) := cards (g)∪ { c }
@a4 owns (r) := { g }

end

Listing 3 Hotel register event

2.3 Event-B Extensions

Recently, Event-B has been enhanced by reuse techniques such as genericity [28],
abstraction [19], composition and decomposition [6, 29]. In this paper, we aremainly
concernedby composition, anddecomposition. They allow the formal combination of
specifications through the refinement mechanism. Two methods of composition/de-
composition were identified for Event-B: shared variable [30] and shared event [29].
Shared variable composition/decomposition is suitable for shared-memory parallel
systems whereas shared event composition/decomposition is suitable for message-
passing distributed systems. In this paper, we limit ourselves to the shared event
composition/decomposition approach inspired by CSP where processes synchronize
on the same event and may exchange messages. In Event-B, subcomponents (sub-
specifications) can synchronize through shared events and exchange data specified
by the common value of their parameters.

2.3.1 Shared Event Composition

The shared event composition of Event-B machines is represented by a new con-
struct called composed machine [29]. This operation requires the disjointness of
the sets of state variables of the machines to be composed. It is defined as a machine
merging subcomponents’ properties: conjunction of invariants, union of variables,
and parallel synchronization of events. The composition of two events which have
common parameters p is defined as follows [29]:

288 B. Siala et al.

E1 � any p , x where G(p , x , u) then S(p , x , u) end
E2 � any p , y where H(p , y , v) then T (p , y , v) end
E1 | | E2 � any p , x , y where G(p , x , u)∧H(p , y , v) then S(p , x , u) | | T (p , y , v) end

where x, y, p are sets of parameters from the events E1 and E2 and u and v are the
variables of the two subcomponents. Sending a value d can be modeled by using a
guard of the form p = d while a receipt will bemodeled by an action u:=p. The other
guards will constrain the sent value either at the sending point or at the receiving
point. This design pattern originating from CSP has been proposed by Butler for
action systems [11] and in [29] for Event-B.

The composedmachine is supposed to satisfy theEvent-B standard ProofObliga-
tions (POs) related to invariants and refinements. Moreover, during the composition
of several subcomponents, it is possible to add a composition invariant relating the
states of subcomponents.

Like CSP parallel composition, Event-B shared event composition is monotonic
under refinement [29]. Actually, the composition of refined subcomponents is a
refinement of the composition of initial subcomponents.

2.3.2 Shared Event Decomposition

Decomposition is a mean to master the complexity (divide and conquer) or to intro-
duce architectural aspects (see Sect. 5). It can be seen as the inverse of composi-
tion where an Event-B model is split into several simpler subcomponents. Con-
cretely, decomposition is specified by a set of subcomponent names and a partition
of variables, each class being mapped to a subcomponent. An important point is that
the composition of subcomponents refines the initial centralized model. However,
decomposition fails if a guard or an action refers to variables mapped to different
locations.Within the scope of distributed systems, we propose a support to help solv-
ing these problems. Decomposition can also fail if the synthesized typing invariant
is not strong enough. It could lead to a badly formed expression where some partial
functions are applied outside their definition domain. We do not consider this prob-
lem here. It is a real challenge to address this problem automatically. Experiments
have been done to keep stronger invariants in the projection [26].

2.3.3 Shared Event Decomposition Limits

The shared event decomposition plugin has strong restrictions. First, it does not apply
onmodels where guards or actions access variables mapped on different components
as the tool would not know how to split them. Moreover, even if each guard or action
refers to only one variable, the resulting components produced by this tool could be
unusable. Consider two variables a and b mapped on components C1 and C2 and the
event ev (Listing 4):

An Event-B Development Process for the Distributed BIP Framework 289

Applying [29] is possible: each ofC1 andC2 gets a copy of evwith respectively g1 and
g2 as their unique guard, but this leads to another problem: we get two synchronized
events specifying constraints over the parameter p. Their separate refinement could
lead to incompatible choices and thus to a deadlock resulting from the assembly. The
transformations we propose in Sect. 5 will allow the user to avoid these problems by
guiding the refinement process.

e v e n t e v
a n y p w h e r e

@ g 1 a > p
@ g 2 p < b

t h e n
@ a p 1 := p

e n d

Listing 4 Event split

2.3.4 Shared Event Composition/Decomposition Tool

The Rodin platform provides an interactive tool [30] as a plugin allowing the shared
event composition/decomposition of Event-B specifications. Composition is defined
by editing a composed machine which designates the subcomponents and defines
synchronization events as a product of subcomponent events. Conversely, decom-
position is built by naming subcomponents and mapping variables on them. In case
of success, the tool generates a machine for each subcomponent and a composed
machine. Given that the decomposition of the invariants depends on the scope of the
variables, invariants containing variables distributed over several subcomponents are
discarded.

3 The BIP Component-Based Model

The BIP language [8] allows to build component-based systems. To achieve this, it
offers a means to describe atomic components and composition operators describing
composite components. In BIP, an architecture is a hierarchical model consisting of a
structured collection of components obtained by composition of atomic components
which represent the leaves of the hierarchical model.

3.1 Atomic Components

An atomic BIP component declares data, ports, and a behavior. Data variables (data)
are typed. Ports (port) give access to some variables and constitute the component
interface. The behavior is defined by a port, a guard, and a variable update function.
According to the component-based paradigm, a BIP component is a design-time
concept (a type) and a runtime concept (an instance). This is also true for ports. List-
ings 5 and 6 present, respectively, the port types and an atomic component ty_Desk
produced by our BIP code generator (see Sect. 5.4).

290 B. Siala et al.

port type t y_empty_por t ()
port type t y _ r eg i s t e r _Desk (INT reg i s t e r _g , INT r e g i s t e r _ c)
port type t y _ r eg i s t e r _Gues t (INT r eg i s t e r _g , INT r e g i s t e r _ c)

Listing 5 Port types

atom type ty_Desk ()
/∗ s t a t e v a r i a b l e s ∗ /
data INT cu r r k . . .
/∗ temporary v a r i a b l e s ∗ /
data INT r e g i s t e r _ g
data INT r e g i s t e r _ c
/∗ po r t i n s t ances ∗ /
export port t y_empty_por t compu te_ reg i s t e r_ r ()
export port t y _ r eg i s t e r _Desk r e g i s t e r (r e g i s t e r _ g , r e g i s t e r _ c)
place P0
i n i t i a l to P0 do /∗ i n i t i a l i z e v a r i a b l e s ∗ /
/∗ t r a n s i t i o n s ∗ /
on compu te_ reg is te r_c from P0 to P0 provided reg is te r_g_computed
on r e g i s t e r from P0 to P0 provided reg is te r_g_computed do /∗ ac t i o n ∗ /

end

Listing 6 Atomic component ty_Desk

3.2 Coordination Between BIP Components

The component-based model BIP has three layers called Behavior, Interaction, and
Priority. The Behavior layer describes the behavior of atomic components (see
Sect. 3.1) while layers Interaction and Priority describe the architectural aspects
of a component-based system. This separation between behavioral and architectural
aspects is an asset in BIP [8]. The synchronization constraints between BIP compo-
nents are expressed through interactions defined by the connector construct whereas
scheduling constraints between these interactions are expressed through the Priority
concept.

BIP connectors. A connector is a design-time concept when declared as a type and
can be instantiated to a runtime concept. A BIP connector is defined by

• a set of ports {p1, …, pn} of subcomponents involved in an interaction.
• an optional port p with variables exported by the connector allowing to compose
the connectors.

• a set of interactions which are subsets of {p1, …, pn}. Every interaction can be
annotated by a guard, an upstream transfer functions (up) and downstream transfer
functions (down). The guards of the interactions involve variables in the scope
of ports and connector variables. Here, we limit ourselves to simple connectors
restricted to data transfer (Sect. 4).

For example, Listing 7 defines two connector types.1 The first one denotes a pure
synchronization and the second one a synchronization with data exchange.

1Produced by our BIP code generator in Sect. 5.4.

An Event-B Development Process for the Distributed BIP Framework 291

connector type t y _compu te_ reg i s t e r _ r
(t y_empty_por t Desk , t y_empty_por t Guest)

def ine Desk Guest
on Desk Guest down { }

end
connector type t y _ r e g i s t e r

(t y _ r eg i s t e r _Desk Desk , t y _ r eg i s t e r _Gues t Guest)
def ine Desk Guest
on Desk Guest down {

Guest . r e g i s t e r _ c =Desk . r e g i s t e r _ c ; Desk . r e g i s t e r _ g =Guest . r e g i s t e r _ g ;
}

end

Listing 7 Connector types

Composite component. In BIP, a composite component is both present at design-
time (as a type) and at runtime (as an instance). It includes the following elements:

• atomic or composite components declared by the keyword component;
• connectors which connect the components forming the composite component
declared by the keyword connector;

• priority rules declared by the keyword priority;
• exported ports that define the interface of the composite component.

Listing 8 presents a composite component. It contains two atomic components
and a connector for coordinating them.

compound type t y_ho te l _decompos i t i on ()
component ty_Desk Desk ()
component ty_Guest Guest ()
connector t y _ r e g i s t e r r e g i s t e r (Desk . r e g i s t e r , Guest . r e g i s t e r)
. . .

end

Listing 8 The Hotel root component type

3.3 BIP Execution and Operational Semantics

The BIP execution engine starts with the computation of executable interactions
(Interaction layer). Then, it schedules these interactions, taking into account the
priority constraints (Priority layer). Finally, the transitions of the atomic components
involved in the interaction are executed (Behavior layer).

Step 1 (Initialization): each component executes its initialization transition in its
own thread.

Step 2 (Stable Situation): each thread runs until it reaches a port synchronization.
Step 3 (Executable Interactions): this step aims at computing the set of legal inter-

actionswhere components are ready to synchronize on interaction ports and satisfy
the associated guard.

Step 4 (Selection of an executable interaction): selection takes into account prior-
ity constraints: an interaction can be elected if no interaction of greater priority is
legal. The selection is non-deterministic.

292 B. Siala et al.

Step 5 (Execution of the elected interaction): the execution of an interaction
comes to running its down statement which performs data transfer between port
variables of subcomponents.2

Step 6 (Evolution of atomic components): the transitions of atomic components
concerned by the interaction are executed.

Step 7: jump to Step 2.

3.4 The BIP Tool-Chain

The BIP tool-chain includes translators from other languages to BIP, formal verifi-
cation tools, and code generators from a BIP model. The BIP language features a
static checker called D-Finder [8]. It is a compositional verification tool (invariants,
deadlock). Likewise, the BIP language has a runtime verification tool [17]. The code
generators take the BIP model and generate single-threaded or multi-threaded code
that can be executed and analyzed [21].

4 Distributed Event-B and BIP

In this section, we present Event-B event definition schemes that model the syn-
chronization of events to be executed on subcomponents. They must match the BIP
connectors that perform only data transfer. These schemaswill be seen as elements of
an Event-B0 language targeted by automatic or manual refinement steps. They can
be seen as describing a shallow embedding of BIP connectors within Event-B and
are supposed be the source of the shared event decomposition plugin [29] introduced
in Sect. 2.3.1 to build the specification of BIP subcomponents and connectors.

4.1 Decomposable Machine and Synchronization Event

Our aim being the development of systems implemented as a set of communicating
distributed components made executable via their BIP transcription, we must be able
to represent distribution in Event-B. This goes through the notion of decomposition
with synchronization on shared events as introduced by Butler [29] and presented in
Sect. 2.3.1. The mapping of variables to subcomponents makes it possible to asso-
ciate with a decomposable machine a set of BIP machines composed via connectors
expressing the semantics of the synchronization events. Each event thus corresponds
to a connector connected to the components synchronized via ports giving read/write

2We have omitted to speak about the up transfer function which is used to transfer data upwards in
the connector hierarchy.

An Event-B Development Process for the Distributed BIP Framework 293

access to some of their variables. Projected events become synchronized transitions
on these same ports. The guards and actions of the Event-B event are checked/exe-
cuted by the component or by the connector according to the location of the accessed
data. The parameters represent either a data transfer or non-determinism which must
be eliminated in order to obtain an executable model. After raising the problem of the
decomposition of non-deterministic events, we detail the authorized synchronization
schemes.

4.2 Decomposition of a Non-deterministic Event

One of the characteristics of an Event-B machine is its ability to express non-
determinism. This non-determinism derives either from the existence of several trig-
gerable events in a given state, or from a non-determinism internal to an event. Let
us consider this second case and the Listing 9.

var iab les
c1 / / on C1
c2 / / on C2

event ndet
any i where

@i1 i < c1 / / on C1
@i2 i < c2 / / on C2

end

Listing 9 Non-deterministic event

var iab les
c1

event ndet
any i where

@i1 i < c1
end

Listing10 Projection
on C1

var iab les
c2

event ndet
any i where

@i2 i < c2
end

Listing11 Projection
on C2

This machine is decomposable on components C1 and C2. The event ndet then
becomes a non-deterministic synchronization event. Its two projections produce a
non-deterministic choice of value for the parameter i. As in CSP, if the choices are
identical, the synchronized event will be triggerable. However, as the projections
are non-deterministic, the a priori separate development of each component consists
in restricting the choice of values for i and proposing an algorithm determining a
local solution. Synchronization can then become impossible and lead to a deadlock.
To avoid this problem, we impose the determinism of synchronization events and
provide a tool named event splitting to help eliminate non-determinism (Sect. 5.2).
It will remove the parameters of events entended to be synchronized.

4.3 Data Transfer

This first pattern represents the transfer of data stored in the variable x of the com-
ponent C0 to the variables xi of the components Ci. The centralized event exports
the value of x via the parameter vx. This pattern is represented in BIP by an n-ary
connector (Fig. 2) whose down action copies the value of x read via the port p0 in
each of the variables xi modified via the ports pi. The shape of the event makes

294 B. Siala et al.

Fig. 2 N-ary connector cnt

explicit the transfer of the data and the mapping of actions to components, the right
part of the assignments not referring to remote variables.

event cn t
any vx where

@g1 x = vx / / on C0
then

@a1 x1 := vx / / on C1
. . .

@an xn := vx / / on Cn
end

Listing 12 Event cnt

4.4 Using a Remote Variable in an Action

This schema (Fig. 3) generalizes the previous one bymodeling the use of the received
value in any expression in order to update the state of the receiver components. On the
Event-B side, the synchronization parameter appears in the right-hand expression.
On theBIP side, an actionmust be added to each receiver subcomponent to exploit the
transferred value. It is important here to note that the actions of the subcomponents
are performed after the data transfers. The semantics of the BIP model is therefore
consistent with that of the Event-B model.

event cn t
any vx where

@g1 x = vx / / on C0
then

@a1 a1 := a1+vx / / on C1
.
.
.

@an an := an+vx / / on Cn
end

Listing 13 Event cnt

An Event-B Development Process for the Distributed BIP Framework 295

Fig. 3 N-ary connector cnt

4.5 Using a Remote Variable in a Guard

Thenext patternmodels an n-ary synchronization inwhich each component compares
the transmitted value (vx) with local data (ai).

event cn t
any vx where

@g x=vx / / on C0
@g1 vx > a1 / / on C1
. . .
@gn vx > an / / on Cn

end

Listing 14 Event cnt

First attempt in BIP.A direct translation in BIP (Figs. 4) inspired from the previous
paragraph would be incorrect since the transfer of data is carried out after the test
of the guards. The test would, therefore, be performed with the old values of the xi
variables receiving a copy of the remote variable x.

In order to take into account the transmitted value, the guards should be tested
by the connector which should therefore make a copy of the ai and then the test
of the n guards (Figs. 5). However, in order to preserve the usual meaning of a
connector, that is a synchronization and data transfer mean, we forbid computations
inside connectors and thus consider this schema as incorrect. The Event-B model is
therefore not part of the Event-B0 subset and must be transformed.
The transformed model. Since guards can only use local data, copies of the remote
data should be performed.Herewe declare thexi variables located on theCi compo-
nents and intended to receive a copy of x. The Boolean variable x_fresh indicates
whether the copies are up to date. This update is performed by the share_x event.
The cnt event now compares each local copy with the local data of the component
when the copies are up to date. The Sect. 5.3 will generalize this transformation and
introduce it as a refinement of the initial model in order to establish its correctness.

296 B. Siala et al.

Fig. 4 Incorrect n-ary connector cnt

Fig. 5 Forbidden n-ary connector cnt

var iab les
x i / / copy o f x on Ci
x_ f resh / / on C0

i nva r i an ts
@invi x_ f resh = TRUE ⇒ x i = x

events
event share_x
any vx where

@vx vx = x / / on C0
@nfr x_ f resh = FALSE / / on C0

then
@xi x i := x / / on Ci
@fr i x_ f resh := TRUE / / on C0

end
event cn t
any vx where

@fr x_ f resh = TRUE / / on C0
@gi x i > a i / / on Ci

end

Listing 15 Refinement introducing local copies

The BIPmodel (Fig. 6) introduces two n-array connectors, one per event. The first
one, share_x copies the variable x on each component, while cnt synchronizes
the tests of now local guards.

An Event-B Development Process for the Distributed BIP Framework 297

Fig. 6 The two n-ary connectors cnt and share_x

5 Toward a Distribution Process

Our goal is to provide a process for guiding the user refinements in order to map
an initial “centralized” design (as explained in Sect. 2) on a distributed architecture.
The proposed process can be seen as a continuation of the basic methodology which
captures requirements as successive refinements of an initial specification. However,
as we target a system engineering process, our aim is not to propose a fully automatic
distribution tool. For example, in the hotel case study, the behavior of the guest should
be mapped on a Guest component. Figure7 illustrates the proposed process. It is
based on three steps: a splitting step which splits events in order to allow the incre-
mental and local resolution of non-determinism, a mapping step which introduces
components, andmappings of variables over these components and a distributed code
generation step.

5.1 The Decomposition Process

In order to support such a process,we consider twodomain-specific languages (DSL),
one for specifying event parameters computation order and the other for specifying
the mapping of machine variables and possibly the location of guard computations.
The transformation steps are explicitly specified through the proposed DSLs. These
two specifications are used to generate refined models and projections for subcom-
ponents automatically. The correctness of the refinements ensures the correctness of
the development. Our process, applied to the hotel case study, is illustrated by Fig. 8.

Fig. 7 Process steps

298 B. Siala et al.

Fig. 8 Hotel transformations

Fig. 9 Event splitting step

5.2 The Event Splitting Step

The splitting step allows the user to inject heuristics for computing event parameters
specified by a set of constraints: an event can be split in order to allow the incremental
resolution of its non-determinism. This transformation can be useful if the event
is non-deterministic and intended to be shared by several subcomponents. Non-
determinism will be constrained to occur on local events so that data exchanged will
be locally computed before. This step is guided by the user as he may want to control
the order in which non-determinism is resolved.3

Figure9 illustrates the profile of the transformation implemented as a Rodin plu-
gin. It takes as input anEvent-Bmachine and a splitting specification, whose structure
is described by a domain-specific language.

event ev when p1 . . . pn parameter p init v with g1 . . . gm
when … parameter …

We specify for some of the model events, e.g., ev, the parameters (p) to be
computed, the parameters on which it depends (pi), the default value v of p (for
typing purposes) and the guards (gi) acting as the specification of the value of p. The
plugin generates a refinement of the input machine.

Such a specification provides a partial order on event parameters. It is used to
schedule newly introduced events aiming at computing and storing in a state variable

3We consider here that non-determinism is only introduced through event parameters.

An Event-B Development Process for the Distributed BIP Framework 299

the value of their associated parameter.Ordering constraints are implemented through
the introduction of one boolean variable for each parameter, its computed state. The
machine invariant is extended by the properties of the newly introduced variables:
if a variable has been computed, its specification, given by its guards, is satisfied.
When all the parameters of an event have been computed as state variables, the event
itself can be fired. The progress of parameters computation is ensured by a variant
defined as the number of parameters remaining to be computed. More precisely,
the previous specification for parameter p of event ev will produce the following
machine contents:

machine generated re f ines input_machine
var iab les

ev_p ev_p_computed / / w i t n e s s and s t a t u s f o r param . p o f ev
i nva r i an ts

@ev_gi ev_p_computed ⇒ g i / / where p i s r e p l a c e d by ev_p
var ian t / / c o u n t o f t h e r ema i n i n g p a r ame t e r s t o compu te

{FALSE �→ 1 , TRUE �→ 0 } (ev_p_computed) + . . .
events

event INITIALISATION extends INITIALISATION
then

@ev_p ev_p := v
@ev_p_comp ev_p_computed := FALSE

end

convergent event compute_ev_p / / c ompu t e s p a r ame t e r p o f e v e n t ev
any p where
@gi g i / / g ua rd s a c t i n g as p s p e c i f i c a t i o n
@pi ev_pi_computed = TRUE / / p a r ame t e r s , p d epend s on , a r e compu ted
@p ev_p_computed = FALSE / / p r ema i n s t o be compu ted
then

@a ev_p := p / / compu ted v a l u e s t o r e d i n s t a t e v a r i a b l e ev_p
@computed ev_p_computed := TRUE / / makes t h e v a r i a n t d e c r e a s e

end

event ev re f ines ev
when

@p_comp ev_p_computed = TRUE
with

@p p = ev_p / / p a r ame t e r p o f i n h e r i t e d e v e n t i s r e f i n e d t o ev_p
then

@pi ev_pi_computed := FALSE / / f o r a l l e v _ p i w i t h upda t e d gua r d s
. . . / / r e p l a c e p by ev_p i n a c t i o n s o f t h e r e f i n e d e v e n t

end
end

Listing 16 Generated machine for the splitting refinement

An important point is that we get a refinement of the input machine. It should be
proved by the user by discharging the standard proof obligations generated by Rodin
and has actually been proved for the hotel example. Three main properties should be
established: convergent events refine skip as they do not modify inherited state vari-
ables and preserve the invariant. They cannot be launched indefinitely as they make
the variant (a natural number) decrease. Lastly, the event ev is refined as new state
variables which take place of the parameters of the inherited event to satisfy their
guards. The refined invariant is also preserved thanks to the reset of the computed
state of parameters which depend on guards using updated variables. However, it has
to be noted that this transformation can introduce deadlocks. Consider, for example,
an event which assigns x and y such that x ≥ 0, y > 0, y < x . If two events are

300 B. Siala et al.

introduced in sequence, one for computing x and one for y, the second event will be
blocking if 0 is chosen for x . In such a case, the user should introduce by himself
x > 0 as a new constraint for x . This strengthening does not introduce deadlocks as
it is a consequence of the initial guard. This knowledge will be automatically added
by the plugin as a new invariant. Thanks to this enriched invariant, the absence of
deadlock can be established.

To sum up, in the methodology we propose, the user is expected to add derived
properties (annotated as theorems) to guards. These properties are transferred to the
invariant section by the plugin and can be used to prove the absence of deadlock.

Application to our example.With respect to our example, theregister event (see
Listing 3) has three parameters: g,r,c. We specify that the parameter g should be
computed first as the arrival of a guest is supposed to trigger the various actions. Then,
a room is chosen in r and its associated card is computed in c. For each parameter,
we specify its initial value and the name of guards which constitute its specification.
The dependencies for the register event (see Listing 3) are specified as follows:

sp l i t t i n g h o t e l _ s p l i t t e d re f ines ho t e l
events
event r e g i s t e r
parameter g i n i t g0 with t g / / t g doe s ¬depend on r , c
when g parameter r i n i t r0 with t r g1 / / f i r e d a f t e r c ompu t a t i o n o f g
when g r parameter c i n i t c0 with t c g2 g3 / / f i r e d a f t e r g , r

end

Listing 17 Splitting specification

An executable refinement of the register event should find a value for each
of its parameters so that the guards are satisfied. First, a value for g can be selected
so that the guard @tg g ∈ Guest is satisfied. This will be the goal of the event
associated to g introduced by the splitting plugin. Once g has been chosen, the
parameter r should be selected so that guards @tr r ∈ ROOM and @g1 owns(r)
= ∅. Last, an event is created to compute the parameter c specified by the guards
@tc c ∈ CARD @g2 c /∈ issued and @g3 prj1(c)=currk(r). These three
events will be scheduled in this order to use the value selected for one parameter to
compute the next one.

It has to be noted that such a transformation can introduce a deadlock: let us
consider the room entering event and the same parameter splitting: if the chosen guest
has no valid card for the chosen room, the event in charge of selecting the card cannot
be fired. This problem can be solved by allowing to fire again the events associated
to the selection of g, r , or c until a solution satisfying all the constraints is found.
As a consequence, the variant will not decrease but it concerns environment events,
not system events. The solution we have adopted is to tag system parameters. Only
system parameters should make the variant decrease, which means that responses to
external events should take finite time.

An Event-B Development Process for the Distributed BIP Framework 301

Fig. 10 Local copies and distant access

5.3 The Mapping Step

The aim of this step is to generate a distributed implementation over subcompo-
nents of an Event-B centralized model. As for the splitting step, the mapping step
takes as input a machine and a mapping specification described using a dedicated
domain-specific language. The user can thus provide a set of subcomponent names
and declare a mapping from machine variables and possibly event guards to sub-
components. Then, the tool generates a refinement of the input machine and one
projection machine for each subcomponent. This step has two phases: the first one,
called the replication phase, replicates the variables over the components in order
to allow a local access to remote variables; the second one, called the projection
phase, isolates each component as such. The first phase generates a refinement of
the input machine which is in turn refined by the product of its projections, thanks
to the shared event decomposition mechanism [30].
The replication phase.Given the mapping of machine variables to subcomponents,
this phase builds a refinement of the input machine by introducing local copies of
distant variables accessed by guards. It maps each guard or action to a component
and performs some renaming.

Figure10 presents a component-based view of the transformed model. The focus
is put on event ev of component C j :

ev � G(vi) =⇒ v j := F(v j , vi , vk)

Its guard reads the local copy of vi while the action has remote access to vk . Event
synchronization ensures that the local copy of vi is up-to-date and gives access to
vk by constraining the event parameter (lk in the figure, local_vk in the code
pattern).

Listing 18 presents the transformation pattern focused on component Ci . The
resulting machine should refine the input machine. This is for the moment verified
by discharging the proof obligations generated by Rodin. As previously, we plan to
establish this result at the meta-level and the arguments will be very similar to those
given for the splitting transformation.

302 B. Siala et al.

machine generated re f ines input_machine var iab les
v i / / i n h e r i t e d v a r i a b l e s , on Ci
C j_v i / / copy o f v i mapped on Cj (u s ed by a Cj guard)
v i _ f r e s h / / t r u e i f v i has been cop i ed , on Ci

i nva r i an ts
@Cj_vi_f v i _ f r e s h = TRUE ⇒ C j_v i = v i / / copy i s s y n c h r o n i z e d

var ian t {FALSE �→ 1 , TRUE �→ 0 } (v i _ f r e s h) + . . .
events

convergent event sha re_v i / / s h a r e d by Ci and Cj
any l o c a l _ v i where

@g v i _ f r e s h = FALSE / / on Ci
@l l o c a l _ v i = v i / / on Ci

then
@to_Cj C j _ v i := l o c a l _ v i / / on Cj
@done v i _ f r e s h := TRUE / / on Ci

end
event ev re f ines ev / / s h a r e d by Ci , Cj , Ck
any l o c a l _ v k where

@vj_access l o ca l _ v k = vk / / on Ck , a c c e s s t o r emo t e v a r i a b l e s
@vi_f resh v i _ f r e s h = TRUE / / on Ci , copy t o Cj has been done
@g [v i:=C j _ v i] g / / i n h e r i t e d guard on Cj , a c c e s s t o l o c a l copy o f v i

then
@a v j := [v i := C j _ v i | | vk := l o ca l _ v k] e / / on Cj

end
end

Listing 18 Replication phase

Furthermore, as for the splitting plugin, the freshness of copies is reset when the
source variable is updated by an action.

The projection phase. It generates a machine for each component, as would do the
shared event decomposition plugin [30]. However, thanks to the replication phase,
guards and actions over remote variables are now accepted. For component C j , we
get the following code template:

machine Cj
var iab les v j C j _ v i
i nva r i an ts . . . / / k e ep o n l y t h o s e r e f e r r i n g v j and C j _ v i
events

event sha re_v i / / s y n c w i t h Ci e v e n t , i m p o r t v i
any l o c a l _ v i then

@to_Cj C j _ v i := l o c a l _ v i
end
event sha re_v j / / s y n c w i t h Cl e v e n t , e x p o r t v j
any l o c a l _ v j then

@to_Cl l o c a l _ v j := v j
end
event ev
any l o c a l _ v k / / r ead by some Cj a c t i o n
where

@vj_f resh v j _ f r e s h = TRUE / / n e eded by Cl , v j has been e x p o r t e d
@g [v i := C j _ v i] g / / mapped on Cj , a c c e s s t o copy o f v i

then
@a v j := [v i := C j _ v i ; vk := l o ca l _ v k] e

end
end

Listing 19 Projection phase

We have to note that some invariants may be lost: we only keep those who refer
variables local to the considered component. It means that the correctness of the

An Event-B Development Process for the Distributed BIP Framework 303

resulting machines (i.e., the fact that events preserve the remaining invariants) is not
guaranteed and should be proven. If this is not possible, invariants should be added
by the user. However, the composition of the projections, as defined in [30], to which
lost invariants are added is, by construction, the machine we had before decomposi-
tion. As a consequence, thanks to the monotony of composition, the design process
can be pursued on each component machine.

Application to our example. Listing 20 specifies hotel subcomponents and the
mapping of the variables currk owns issued on the component Desk and the
variable cards on the component Guest.

mappings
var iab les cu r r k owns issued �→ Desk ;
var iab le cards �→ Guest ;
var iab les r e g i s t e r _ r r e g i s t e r _ c �→ Desk ;

Listing 20 Hotel components and mapping specification

5.4 The Code Generation Step

This step assumes that the input Event-B model conforms to a subset of Event-B, we
called Event-B0, which plays the role of the subset B0 of the B language that is trans-
lated to C or Ada. In the considered subset, shared events should be those resulting
from the application of the replication phase of the mapping step. Thus parameter-
ized events should conform to the send/receive pattern used to represent the access
to remote variables. Furthermore, we suppose that subcomponent machines do not
need to be refined. Events should be deterministic (constraints on parameters present
in guards should be in solved form) and use a subset of the Event-B expression and
predicate languages for which there exists a direct mapping to their BIP counter-
parts, i.e., quantifications should not be used. For this purpose, we require that set
expressions and predicates have been refined to calls to a set library [15] of which
signature has a C implementation within the BIP framework. Here, we present how
the architectural part of the BIP code is generated. The generator takes as input the
mapping specification (subcomponent names, variable, and guards mappings) and
the refined machine produced by the mapping step.

Port type generation. For each shared event and each component of which variables
are referenced by this event, we generate a port type taking as parameter the type
of exported variables (variables mapped to this component and used by guards or
actions mapped to other components). A port type for synchronization purpose only
is generated for all events that do not export variables. Listing 6 provides port types
generated for our example.

Connector type generation. For each event which uses variables of several com-
ponents, we generate a connector type taking as parameters ports specified by the

304 B. Siala et al.

previously introduced port types. They are supposed to be synchronous. They define
a down actionwhich copies (via the ports) variables of one component to their copies
located in components which need them. Listing 7 illustrates the application of this
rule in our example.

Subcomponent skeleton generation. For each subcomponent, we generate an
atomic BIP component. It contains

• variables mapped to this component as well as variables of other components
referenced by guards or actions mapped to this component.

• instances of the port types associated to this component
• for each event, a transition synchronized on the corresponding port instance, and
the BIP translation of guards and actions mapped to this component.

As an illustration, Listing 6 gives an extract of the atomic component type
ty_Desk generated by our plugin.

Composite component generation. The root component contains an instance of
each subcomponent and connector. Each connector instance takes as parameter a
port instance defined in one of the concerned subcomponents. Listing 8 provides the
code of our example resulting from this step.

The generated BIP architecture should for now be completed manually by the
data types and behaviors of atomic components. To achieve this, we envision to use
the Theory component [15] of the Rodin platform. Indeed, the Theory component
allows to develop proved mathematical theories (datatypes, operators, rewrite rules,
inference rules). This allows the extension of Event-B by useful data structures such
as arrays, linked lists, and hash tables.

6 Related Work

Several formalisms such as process algebra, input/output automata, UNITY and
TLA+ have been proposed to model and mostly to reason over concurrent and dis-
tributed systems. However, to the best of our knowledge, their effective use within
development frameworks leading to a distributed implementation has not yet been a
general tendency. We can also cite Action Systems adapted to the specification and
design of distributed systems (Disco [23]), but it does not support vertical refinement
and, to the best of our knowledge, does not offer any verification environment.

Modeling distributed systems in Event-B has been addressed for a long time. We
can cite the Leader Election Algorithm [4]. However, the deployment on distributed
platforms was not their main concern. The automatic generation of source code from
formal specifications is supported by few formal methods such as B and Event-
B. In [9], an approach is developed allowing the generation of efficient code from
B formal developments by using an imperative intermediate language B0. Several
Event-B source code generators have been proposed [14, 18, 31, 32]. Indeed, an

An Event-B Development Process for the Distributed BIP Framework 305

Event-B model can represent sequential, concurrent, or distributed code as well as
reactive, distributed, or hybrid systems. The work described in [31] proposes a set
of plugins for the Rodin development tool that automatically generates imperative
sequential code from an Event-B formal specification. In [32], Java code is extracted
from an Event-B model structured to represent a distributed system. These works
do not take into account Event-B composition. Whereas the works described in [16]
generate concurrent Ada code restricted to binary synchronization. The automatic
refinement of B machines is also possible thanks to the Bart tool [13]. Also, in
Event-B, the atomicity decomposition plugin [25] defines a DSL to parametrize the
refinement generator. However, the refinement pattern is dedicated to event splitting
and does not apply to our problem.

7 Conclusion

In this paper, we have presented a distribution process for system design formally
expressed as Event-Bmodels. Starting from an Event-Bmachine, the studied process
proposes successively the splitting step and the mapping step. The specification of
these two steps is done through two domain-specific languages. Eventually, a dis-
tributed Event-Bmodel and a distributedBIP code architecture are also automatically
generated. In our work, we make explicit the distribution of Event-B models through
domain-specific languages.Aswe said in the introduction, our primary aim is to assist
the user in the design of distributed systems. Providing a fully automatic (implicit)
process is not in our objectives as we target system engineering and requirements
mayprovide constraints in functions/data to componentmapping. Each proposed step
generates refinements. The proof obligations generated by Rodin for these refine-
ments remain to be discharged in order to assert the correctness of the developed
model. Our experiments show that these proof obligations concern essentially the
well-definedness of some generated expressions and are easy to discharge.

The correctness of the process relies on the correctness of the refinements and
of the machines defining the introduced subcomponents. These correctness prop-
erties are thus implicitly stated by the usual Event-B proof obligations. Thus, the
user is asked to establish the correctness of the plugin applications. However, the
final translation to BIP is not verified. This could rely on translation validation or
transformation verification and is left to future work.

As future work, we also envision to enhance the tooling of our process. Currently,
the splitting and mapping steps have been implemented with the xtext [2] language
infrastructure, and the refinements and the BIP code have been generated with the
accompanying xtend language [1] which provides support for writing code genera-
tors. We are interested in achieving a distributed code generator plugin for the Rodin
platform by taking into account types and the translation of Event-B expression and
predicate languages.

With respect to the code generation step, we are also interested in targetting
kernels for critical applications. We are especially interested in the so-called Raven-
scar [33] and RTSJ [10, 20] profiles. The challenge here will be to consider how to

306 B. Siala et al.

integrate high-level applicative properties with low-level properties pertaining to the
underlying physical architecture. We are also interested in studying how the proof
obligations generated by the refinements can be discharged definitively at the meta-
level. In the long term, we seek to enrich the set of transformations and to provide a
library of certified transformations dedicated to the development of distributed sys-
tems for various architectures. Finally, our framework could be extended to support
parameterized distributed systems (token ring, spanning tree, …) and could benefit
from the recently proposed BIP extension [22].

Acknowledgements We thank the anonymous reviewers for their constructive and helpful com-
ments.

References

1. Java 10, today! http://www.eclipse.org/xtend/. Accessed 16 Jan 2006
2. Language engineering for everyone! https://eclipse.org/Xtext. Accessed 16 Jan 2006
3. J. Abrial, M.J. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, L. Voisin, Rodin: an open toolset

for modelling and reasoning in Event-B. STTT 12(6), 447–466 (2010)
4. J. Abrial, D. Cansell, D. Méry, A mechanically proved and incremental development of IEEE

1394 tree identify protocol. Formal Asp. Comput. 14(3), 215–227 (2003)
5. J.-R. Abrial, Modeling in Event-B: System and Software Engineering, 1st edn. (Cambridge

University Press, New York, 2010)
6. J.-R. Abrial, S. Hallerstede, Refinement, decomposition, and instantiation of discrete models:

application to Event-B. Fundam. Inf. 77(1–2), 1–28 (2007). Jan
7. R. Back, R. Kurki-Suonio, Decentralization of process nets with centralized control. Distrib.

Comput. 3(2), 73–87 (1989)
8. A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, J. Sifakis, Rigorous

component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)
9. D. Bert, S. Boulmé, M.-L. Potet, A. Requet, L. Voisin, Adaptable translator of B specifications

to embedded C programs, in FME, LNCS, vol. 2805 ed. by K. Araki, S. Gnesi, D. Mandrioli
(Springer, Berlin, 2003), pp. 94–113

10. J. Bodeveix, R. Cavallero, D. Chemouil, M. Filali, J. Rolland. A mapping from AADL to Java-
RTSJ, in Proceedings of the 5th International Workshop on Java Technologies for Real-time
and Embedded Systems, JTRES 2007, Institute of Computer Engineering, Vienna University of
Technology, 26-28 September 2007, Vienna, Austria, ACM International Conference Proceed-
ing Series ed. by G. Bollella (ACM, 2007), pp. 165–174

11. M. Butler, A CSP Approach to Action Systems. Ph.D. thesis, Oxford University (1992)
12. D. Cansell, D. Méry, Formal and incremental construction of distributed algorithms: On the

distributed reference counting algorithm. Theor. Comput. Sci. 364(3), 318–337 (2006)
13. Clearsy. Bart (B automatic refinement tool), http://tools.clearsy.com/wp-content/uploads/sites/

8/resources/BART_GUI_User_Manual.pdf
14. A. Edmunds, M. Butler, Tasking Event-B: an extension to Event-B for generating concurrent

code. Event Dates: 2nd April 2011, February 2011
15. A. Edmunds, M.J. Butler, I. Maamria, R. Silva, C. Lovell, Event-B code generation: Type

extension with theories, in ABZ proceedings (2012), pp. 365–368
16. A. Edmunds, A. Rezazadeh, M.J. Butler, Formal modelling for ada implementations: tasking

event-b, in Reliable Software Technologies - Ada-Europe 2012 - 17th Ada-Europe Interna-
tional Conference on Reliable Software Technologies, Stockholm, Sweden, June 11-15, 2012.

http://www.eclipse.org/xtend/
https://eclipse.org/Xtext
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/BART_GUI_User_Manual.pdf
http://tools.clearsy.com/wp-content/uploads/sites/8/resources/BART_GUI_User_Manual.pdf

An Event-B Development Process for the Distributed BIP Framework 307

Proceedings, Lecture Notes in Computer Science, vol. 7308, ed. by M. Brorsson, L.M. Pinho
(Springer, 2012), pp. 119–132

17. Y. Falcone, M. Jaber, T.-H. Nguyen, M. Bozga, S. Bensalem, Runtime verification of
component-based systems in the BIP framework with formally-proved sound and complete
instrumentation. Softw. Syst. Model. 14(1), 173–199 (2015)

18. A. Fürst, T. Hoang, D. Basin, K. Desai, N. Sato, K. Miyazaki, Code generation for Event-B,
in IFM, LNCS, vol. 8739 ed. by E. Albert, E. Sekerinski (Springer, 2014), pp. 323–338

19. A. Fürst, T. S. Hoang, D. Basin, N. Sato, K. Miyazaki, Formal systemmodelling using abstract
data types in Event-B, in ABZ proceedings, LNCS, vol. 8477 (Springer, 2014), pp. 222–237

20. J. Gosling, G. Bollella, The Real-Time Specification for Java (Addison-Wesley Longman Pub-
lishing Co. Inc, Boston, 2000)

21. M. Jaber, Centralized and Distributed Implementations of Correct-by-construction
Component-based Systems by using Source-to-source Transformations in BIP. Theses, Uni-
versité Joseph-Fourier - Grenoble I, 2010

22. I. Konnov, T. Kotek, Q. Wang, H. Veith, S. Bliudze, J. Sifakis, Parameterized systems in
BIP: design and model checking, in Proceedings of the 27th International Conference on
Concurrency Theory (CONCUR 2016) (2016), pp. 30:1–30:16

23. R. Kurki-Suonio, H.-M. Järvinen, Action system approach to the specification and design of
distributed systems, inProceedings of the 5th InternationalWorkshop on Software Specification
and Design, IWSSD ’89, New York, NY, USA (1989). ACM, pp. 34–40

24. T. Nipkow, Verifying a hotel key card system, in Theoretical Aspects of Computing (ICTAC
2006), vol. 4281 ed. by K. Barkaoui, A. Cavalcanti, A. Cerone (2006), pp. 1–14

25. A. Salehi Fathabadi, M. Butler, A. Rezazadeh, A Systematic Approach to Atomicity Decompo-
sition in Event-B (Springer, Berlin, 2012), pp. 78–93

26. B. Siala, Décomposition formelle des spécifications centralisées Event-B : application aux
systèmes distribués BIP. Ph.D. thesis, Université Paul Sabtier. Toulouse (2017)

27. B. Siala, M.T. Bhiri, J. Bodeveix, M. Filali, An event-b development process for the distributed
BIP framework, in Formal Methods and Software Engineering - 18th International Confer-
ence on Formal Engineering Methods, ICFEM 2016, Tokyo, Japan, November 14-18, 2016,
Proceedings, Lecture Notes in Computer Science, vol. 10009 ed. by K. Ogata, M. Lawford,
S. Liu (2016), pp. 313–328

28. R. Silva, M. Butler, Supporting reuse of Event-B developments through generic instantiation,
in ICFEM ’09 Proceedings (2009), pp. 466–484

29. R. Silva, M. Butler, Shared event composition/decomposition in Event-B, in FMCO Formal
Methods for Components and Objects (2010)

30. R. Silva, C. Pascal, T.S. Hoang, M. Butler, Decomposition tool for Event-B. Softw. Pract.
Exper. 41(2), 199–208 (2011)

31. N.K. Singh, Eb2all: an automatic code generation tool, in Using Event-B for Critical Device
Software Systems (Springer, London, 2013), pp. 105–141

32. M. Tounsi, M. Mosbah, D. Méry, From event-b specifications to programs for distributed
algorithms, in 2013 Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises (2013), pp. 104–109

33. T.Vardanega, J. Zamorano, J.A. de la Puente,On the dynamic semantics and the timing behavior
of Ravenscar kernels. Real-Time Syst. 29(1), 59–89 (2005)

Explicit Exploration of Refinement
Design in Proof-Based Approach:
Refinement Engineering in Event-B

Fuyuki Ishikawa, Tsutomu Kobayashi, and Shinichi Honiden

Abstract Control of abstraction levels is key to tackling the increasing complexity of
emerging systems such as cyber-physical systems. Formalmethods for dependability
assurance have been used to explore this point by using refinement mechanisms, with
which complex models are gradually constructed and verified. However, refinement
mechanisms to derive the whole specification of systems are relatively new, as with
the Event-B method, and refinement design is still an “art.” In this chapter, we
discuss the problem of refinement design and present our approach for explicitly
exploring and manipulating possible refinement designs. Specifically, we report our
experiences on refinement planning and refactoring to support engineering activities
on refinement.

1 Introduction

One of the key challenges for system dependability is how to deal with the increas-
ing complexity in system modeling and verification. Event-B is a formal method for
tackling this challenge with its flexible refinement mechanism [3]. With this refine-
ment mechanism, we can gradually introduce and verify concepts and constraints
in a system while moving from abstract prescriptive representations into concrete
realizable ones. Due to its flexibility, this refinement mechanism requires designing
the refinement steps. In other words, we need to examine how symbols, predicates,

F. Ishikawa (B) · T. Kobayashi · S. Honiden
National Institute of Informatics, Tokyo, Japan
e-mail: f-ishikawa@nii.ac.jp

T. Kobayashi
e-mail: t-kobayashi@nii.ac.jp

S. Honiden
e-mail: honiden@nii.ac.jp

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_14

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_14&domain=pdf
mailto:f-ishikawa@nii.ac.jp
mailto:t-kobayashi@nii.ac.jp
mailto:honiden@nii.ac.jp
https://doi.org/10.1007/978-981-15-5054-6_14

310 F. Ishikawa et al.

and their proofs in the whole specification are decomposed and modularized into
refinement steps. This type of problem was not dominant in classical refinement
mechanisms for transforming a specification to a code. For example, data refine-
ment, as with the classical B-Method [1], can be supported using automated tools
using typical patterns, e.g., converting a set-based representation to an array-based
one with a loop [6].

Refinement design can affect various quality attributes on an Event-B model. For
example, it can affect the verifiability of the model. A “bad” design leads to large
refinement steps, which are difficult for engineers or automated provers to verify.
Another example is reusability. As each refinement step depends on the preceding
steps, reuse of some steps succeeding from the most abstract step is very straight-
forward by just throwing away the unnecessary concrete steps. However, reusing
aspects scattered throughout various steps of the model is not trivial.

Nevertheless, refinement design has been an “art.” In other words, the “design
space” of refinement and the process to explore it has been implicit. Although there
are models that are believed to be “good” according to textbooks or case studies, only
the resultingmodels are presentedwith a fewwords on the design.Current approaches
for supporting refinement design are based on experiences such as guidelines or
patterns [7, 20, 24, 26]. There has been little effort in supporting methods or tools
for explicitly manipulating the refinement design (space) to support engineers.

In this chapter,wepresent our approach for explicitly exploring refinement designs
and their spaces on the basis of our experiences [15–17]. This explicit approach
enables us to provide supporting methods and tools by manipulating refinement
designs and spaces. Specifically, we tackled the problem of planning, i.e., exploration
of the possible design space.Wealso tackled the problemof refactoring, i.e., changing
the design to another one in an existing model. We discuss quality attributes of
Event-B models, specifically, comprehensibility, verifiability, and reusability. These
attributes can be clearly examined with our approach.

In the remainder of this chapter, we first introduce the refinement mechanism of
Event-B for system modeling and verification (Sect. 2). We then discuss the impact
of a refinement design (Sect. 3). We present our investigations in refinement plan-
ning and refactoring (Sect. 4). Finally, we give an overview of the relevant literature
(Sect. 5) before concluding remarks (Sect. 6).

2 Preliminary: Refinement in Event-B

In this section, we briefly give an overview of Event-B [3], focusing on its refinement
mechanism.

Explicit Exploration of Refinement Design in Proof-Based … 311

2.1 Characteristics of Refinement Mechanisms

Event-B is a method that emerged after the success of its ancestor B-Method. B-
Method targets software components and their correct implementation [1, 2]. By
contrast, Event-B primarily targets modeling and verification of system models that
can contain not only software components but also physical elements controlled by
them and environmental elements that interact with them. The difference in the focus
leads to different definitions of refinement mechanisms, the common core feature of
the two methods.

A refinement mechanism generally allows for gradual stepwise transition from
abstract representations to concrete representations. Thus, a model consists of mul-
tiple steps with different abstraction levels. Concrete steps inherit a certain set of
aspects and their constraints from their preceding steps in a manner defined by the
refinement mechanism of the target method. This transformation from abstract rep-
resentations to concrete ones is generally the core of software development. This is
enhanced in the context of formal methods by rigorous definitions and mechanisms
for consistency between steps.

With B-Method, the refinement mechanism aims at gradually obtaining the code
proved to be correct in terms of the specification. A model in B-Method defines
states and operations in each software component. The interface is defined in the
most abstract step and strictly inherited in the succeeding concrete steps. The rep-
resentations on the inside of each component and operation are transformed from
abstract ones to concrete ones to finally define an implementation as a program code.
As a typical example, internal data and their processing are represented with sets and
set operators (e.g., union) in abstract steps. The functionality of all the operations
is thus rigorously defined. Through refinement, the operations are transformed into
implementable arrays and loops on them in concrete steps. The observable func-
tionality is not changed from the first step. In this type of refinement, it is easy to
define and reuse patterns of refinement design that frequently occur [6]. In addition,
refinement design does not significantly impact the quality of the process or model,
e.g., which set operators are made concrete as loops in which order.

With Event-B, by contrast, the refinement mechanism aims at gradually obtaining
the whole specification of a complex system. In other words, Event-B can be used
to obtain the input to B-Method. A model in Event-B defines states and events in
the target system. Events can represent a variety of state changes such as uncontrol-
lable state changes of the environment, and reactive actions by controllable software
components. States and events represented in abstract steps can be partial or under-
constrained, which are not only conceptual and far from realization.

Consider a system for room security. Abstract steps may only state the founda-
tional aspects of the system, e.g., users move from one room to another physically
connected by corridors. Through refinement, the notion of an access list is introduced
and themovement is restricted to occur only if a user has permission. Then the notions
of card keys, card readers, and a central server are introduced with additional events
of the authorization procedure. Constraints introduced in abstract steps are strictly

312 F. Ishikawa et al.

inherited: a movement can occur only if two rooms are physical connected and the
user has a permission. However, aspects (dimensions) of the state space, events, and
the represented functionality of the system are flexibly extended to obtain the whole
specification in a stepwise manner. In this refinement mechanism, refinement design
affects the quality of the model as discussed later in this chapter.

This direction for stepwisemodeling and verification of an entire system is becom-
ing increasingly significant. This is because current and emerging systems are very
complex containing various elements even at the specification level, e.g., Cyber-
Physical Systems [19] and Internet-of-Things [5].

2.2 Example of Event-B Models

Wenowgive a concrete example of anEvent-Bmodel.Weonly describe theminimum
essence of its refinement mechanisms. Readers who are interested in Event-B can
check other resources such as a book [3] or website.1

We use the room security system mentioned above (a variation of Chap. 16 in
[3]). The (partial) model of this system is shown in Fig. 1, which contains four
components. The first one, Context0, is a context component that defines carrier
sets (sets used as types) and constants as well as axioms regarding them. The other
three aremachinemodels that define the states and events (state changes) of the target
system with different abstraction levels.

The machine M0 is the most abstract step in this model. States of the system are
represented as variables. In this case, one variable represents areas in which each
user is currently located. State changes are defined as events, in this case, only one
event that represents a movement by a user. Each event has guard conditions, in
the WHERE clause, specifying under what conditions the event is triggered. It also
has actions, in the THEN clause, specifying what effects the event has on the states
(variables). In M0 the event move represents movement of a user to a destination
dst area (move_act0) only if there is a physical connection (door) between his/her
current location and the destination (move_grd0).

The machine M1 refines M0 and thus defines a more concrete description of the
system. Specifically, the notion of an access control list (ACL) is introduced, which
is represented as a variable acl as a relation between users and areas. Now the
location of each user is restricted within areas permitted in the ACL, defined as
the invariant inv1 (constraint that the system states should always satisfy). The
move event is refined to further constrain it by an additional guard condition on acl
(move_grd1). The original guard condition and action in M0 are inherited without
any change. Additional events should be introduced to manage the ACL, such as
granting permission for a user to enter an area, which is omitted in this figure.

1http://www.event-b.org/.

http://www.event-b.org/

Explicit Exploration of Refinement Design in Proof-Based … 313

Fig. 1 Example of Event-B model

Correctness or consistency of Event-B models is defined in the form of proof
obligations, i.e., properties that should be proved. We introduce a few of essential
proof obligations defined in Event-B.

• Invariant Preservation. Occurrence of each event must not lead to a state that
violates the invariants (assuming that the invariants and guard conditions held
before the occurrence). In M0, the move event does not lead to violation of inv1
as it is “guarded” by the guard condition move_grd1.

• Guard Strengthening. Guard conditions of an event that refines an event in the
preceding abstract step must be equivalent to or stronger than (i.e., must imply)
the guard conditions of the refined event. In M1, the guard conditions of the move
event are stronger than those in the preceding stepM0, i.e., inheritingmove_grd0
and adding a new one move_grd1. This proof obligation of guard strengthening
is necessary so that the concrete step does not invalidate the proof on invariant
preservation in the abstract step. For example, suppose that in the following step
after M1, the guard condition move_grd1 is removed. As this condition con-

314 F. Ishikawa et al.

tributes to invariant preservation of inv1, removing it invalidates the proof in
M1, thus making it uncertain that the invariant always holds in the concrete step.

• Action Simulation. Similarly, actions of an event that refines an event in the
preceding abstract step must inherit the effects on the states from the actions of
the refined event.

• Equality of Preserved Variable. Event actions in a concrete step cannot change
values of the variables inherited from the abstract step unless the event refines
an event that changes the values in the abstract step. In other words, one cannot
introduce additional events that freely change values of inherited variables not
constrained by the proof obligations of action simulation. This is necessary for the
same reason, i.e., not to invalidate proofs on invariant preservation in the preceding
steps.

A platform for Event-B, called Rodin, provides relevant functionality to modeling
as well as generating and verifying proof obligations.2

We now explain the last step M2, shown in Fig. 1, which refines M1. In M1, the
move event has a guard condition move_grd1 as if the user would check the ACL.
This description was abstract and prescriptive, which is far from realization. Step M2
is one step forward to a realizable specification and takes into account an authorization
action before movement. A new variable authorized is introduced to represent
users who are authorized for access to certain areas. A new event authorize
is introduced to represent the authorization action by the system (set the user as
authorized as in action auth_act0). Now, the move event does not check the ACL
directly in its guard conditions (acl in move_grd1 of M1). Instead, it checks the
authorization status (authorized in move_grd1’ in M2). The invariant inv2
requires that authorization to enter an area be given to a user only if the user has
permission. Notable points regarding the proof obligations are described below.

• Guard Strengthening inmove. The guard conditionmove_grd1 inM1 is replaced
with move_grd1’ in M2. The invariant inv2 ensures that the new guard holds
only if the original guard holds (the concrete event can occur onlywhen the abstract
event can occur).

• Invariant Preservation. The newly introduced inv2 is not violated because of the
guard condition auth_grd1 in the event authorize, which is equivalent to
move_grd1 in the abstract event in M1.

• Equality of Preserved Variable. The new event authorize does not refine any
event of the previous step, i.e., M1. It must not change the inherited variables
location and acl and actually does not. Thus, this event does not break the
proof of the invariant preservation of inv1 in M1.

Step M2 is still not a realizable specification. The variable authorized is con-
ceptual, and we need to introduce specific realizations such as door locks, a central
software controller, and communication between them. We need further steps after
M2. We also have not fully demonstrated how flexible the refinement mechanism is,

2https://sourceforge.net/projects/rodin-b-sharp/.

https://sourceforge.net/projects/rodin-b-sharp/

Explicit Exploration of Refinement Design in Proof-Based … 315

either. For example, some variables are not inherited to concrete steps. In our exam-
ple, authorized may be such a one, as the concept is realized with door locks.
As another example, it is possible to split or merge events by refinement. However,
we now stop talking about concrete models and discuss refinement design.

3 Refinement Design and Its Impact

In this section, we discuss how refinement design affects the quality of an Event-B
model, which has been somewhat implicit.

We use the very small example given in Sect. 2.2 to discuss the differences in
refinement design. Even in this small example, we can think of different possibilities
of refinement design and discuss their impact.

3.1 Comprehensibility and Verifiability

As one example, we can consider another “packed” version of the Event-B model in
Fig. 1 where the same system is defined within just one step. This version is shown
in Fig. 2. This version is almost the same as the last step M2 in Fig. 1. However,
it contains inv1, which was originally separated into another abstract step (M1).
It also lacks the guard move_grd1 (commented out), which originally supported
preservation of inv1 and was replaced with move_grd1’.

One may still keep move_grd1 in the one-step version. But this representation
is prescriptive, not describing what actually occurs, as a user directly sees the ACL.
Thus, this condition should be considered as a “theorem” that can be derived from
move_grd1’, the realizable representation of the guard. Event-B has a notion of
theorem to allow for this distinction regarding predicates that can be derived from
the other invariants.

The one-step version can be considered as a result of merging the three steps in
the original model (or in reverse decomposing a step). This change in refinement
design obviously affects the local complexity within each step. We have more ele-
ments (variables and predicates) newly introduced in MALL of the one-step version
than in M2 of the original version (though the difference is only inv1 in the very
small example). Thus, the one-step version has more local complexity, while this is
mitigated in multiple steps of the original version. Instead, the original version has
more global complexity in managing multiple steps and their consistency.

Why does local complexity matter? Let us focus on the essential invariant of the
system: a user resides only in the areas specified in the ACL (inv1). The proof on
preservation of this invariant is intrinsically stepwise because the user (or the guard
condition of the move event) does not directly check the ACL but requests autho-
rization (from the software controller). In other words, there is a chain of reasoning.

316 F. Ishikawa et al.

Fig. 2 Packed version of
Event-B model

• The guard move_grd1 in the move event ensures that the user moves to the area
only if the movement is authorized.

• The fact the user is authorized to move to an area means that the user-area pair is
contained in the ACL (inv2).

• This fact is ensured by the guard auth_grd1 in the authorize event.

The original version explicitly represents the stepwise reasoning, while the one-step
version makes it implicit. Thus, it is somewhat more difficult to understand or replay
the proof in the one-step version. First, it is necessary to guess the causal structure,
i.e., which predicates (invariants and guards) are relevant to satisfaction of a certain
predicate. Second, the above chain is implicit: specifically, the guard move_grd1 is
implicit (unless this is added as a theorem). In this way, increasing local complexity
matters in terms of comprehensibility by human engineers as well as verifiability by
human engineers or automated provers. The impact of the differences is trivial in
this small example but can be large in practice (discussed in Sect. 4).

The above discussion does not mean that granular steps are always better in
refinement design. It is simply bothersome to manage multiple steps, e.g., switch

Explicit Exploration of Refinement Design in Proof-Based … 317

between steps to understand something. The number of model elements can increase
as move_grd1 in the example. The number of proof obligations also increases
as it is necessary to consider proof obligations for each step. This point can be
explained as a result of making the chain explicit. Obviously, it does not make sense
to decompose a step or make the reasoning chain explicit if the step or chain can be
handled reasonably by human engineers or automated provers.

It is necessary to investigate the good balance of local and global complexity
aspects between two extremes of one monolithic step that is too complex and too
many trivially tiny steps. This point seems analogous to modular design in program-
ming languages. The good balance can be explored only empirically as done for
programming languages. Unfortunately, we do not have sufficient data sets to dis-
cuss this point empirically for refinement design as we do not currently have large
“open-source” model repositories.

3.2 Reusability

Another point is how refinement design affects reusability. As we consider a type
of modularization, it is natural to discuss whether a certain module, or description
of a certain aspect (concepts and constraints), can be exported to be used in another
model.

Each refinement step is therefore not really a reusable module as it depends on
the preceding steps. For example, in the original version of the Event-B model
in Fig. 1, inv1 is defined in M1 and inherited by means of proof obligations of
Guard Strengthening and Action Simulation. If we only extract M2 by removing the
REFINES clauses, the invariant on the variable location is lost. We can only
reuse a sequence of successive steps from the initial most abstract step in a straight-
forward manner, e.g., “M0 and M1” and “M0, M1, and M2.”We demonstrate this point
below by focusing on two scenarios for the simple example.

First, suppose a system in which users move around (without any restriction)
guided by a software controller to obtain items or reach the destination area. In this
case, we may reuse M0 from the original model and refine it to introduce guidance
by the software, and so on. In the one-step version, this reuse is at least not so
straightforward because we need to identify relevant elements (variables, events,
and predicates) to be extracted.

Second, suppose a system in which users are authorized for areas but they give
control commands to the areas instead of moving there. In this case, we may reuse
the variable authorized and the structure of two events “authorize then act
(originallymove).”This reuse is not straightforward even in the original version. This
is because the authorization aspect is introduced in a later step (M2) in the original
version while we want to forget what was introduced in the preceding steps such as
location. We may imagine a different version of the step preceding (refined by)
M2 that only deals with the aspect we want to reuse this time. This version is shown

318 F. Ishikawa et al.

Fig. 3 Different possibilities
of abstract step of Event-B
model (with renaming for
generalization)

in Fig. 3, in which some names have been changed to match the new context (move
into act, dst into target).

In this way, the ordering affects reusability: in what order concepts and constraints
are introduced. Earlier steps should generally be more generic to facilitate reuse,
though it is sometimes difficult to predict beforehand what types of reuse will be
necessary.

4 Our Experiences: Planning and Refactoring of
Refinement Design

Wehave been investigating engineeringmethods for refinement to investigate quality
aspects such as those discussed in Sect. 3. Specifically, we investigated methods
for explicitly manipulating refinement design. In this section, we summarize our
approach and insights obtained from our experiences. We simplify the discussion
by addressing only an essential part of Event-B. Interested readers may refer to the
original papers [15–17].

Explicit Exploration of Refinement Design in Proof-Based … 319

4.1 Explicit Manipulation of Refinement Design

To simplify the discussion, let us represent a refinement design as a sequence of steps
in which variables and invariants are gradually introduced. In the example in Sects. 2
and 3, the steps of the original version (Fig. 1) can be captured as follows:

[< {location}{} >, < {acl}{inv1} >, < {authori zed}{inv2} >]

The one-step version (Fig. 2) contains all the model elements in one step, including
inv1 as a theorem.

[< {location, acl, authori zed}{inv1, inv2} >]

The other version, which introduces the authorization first (Fig. 3 without renaming),
is described as follows:

[< {acl, authori zed}{inv2} >, < {location}{inv1} >]

Our approach involves explicitly considering the manipulation of these designs.
We enumerate potential designs, such as the above three, which we call refinement
planning. We also consider changing the design of an existing model into another
one, which we call refinement refactoring. We discuss our experiences in these two
directions below, including the following points:

• What are valid refinement designs among the possible permutations of steps that
represent the distribution of model elements?

• How can an automated tool support the task of refinement design?
• What happens in discharged proof obligations when we change the refinement
design of an existing model to refactor?

• Is it possible to fully automate the refactoring of refinement design?

4.2 Refinement Planning

4.2.1 Technical Approach

It is easy to imagine all possible permutations of the steps, which represent how the
model elements (now simply variables and invariants) are distributed, as shown in
Sect. 4.1; however, some are obviously invalid. For example, suppose we swap the
order of introducing the invariants, inv1 and inv2, in the original design of the
example.

[< {location}{} >, < {acl}{inv2} >, < {authori zed}{inv1} >]

320 F. Ishikawa et al.

This design is invalid in the sense that it has an error in the second step: inv2
contains the variable authorized but this variable is not yet defined there. This
point means that we need to apply a principle: when a model element is introduced in
a step, the elements it depends on must be introduced in the step or preceding steps.

The notion of dependencies is key. The above example uses a dependency type
of “a variable is necessary to describe a predicate.” In this chapter, we do not get
into more detail of what types of dependencies are considered given the full details
of Event-B.

Let us consider another version of the original design by further decomposing it.

[< {location}{} >, < {acl}{} >, < {}{inv1} >, < {authori zed} >, < {}{inv2} >]

The second and third steps of the original versions are now decomposed by delaying
the introduction of the invariants into another step. In the new version, the second
step does not entail proofs regarding the newly introduced variable acl except for
type check. Thus, it allows for arbitrary changes in the variable value. Essential
proofs appear in the third step; then, the possible changes in the variable value
are investigated for the first time. In this sense, we may think that the second step
is “nonessential,” which suggests the following principle: When a model element
depends only on the elements that are introduced in the current or preceding steps,
it should be introduced in the current step.

This principle is helpful to avoid nonessential steps and consolidate model ele-
ments, i.e., putting model elements in the same step when they are relevant in terms
of the dependencies. However, this principle is optional as its violation does not
cause any error. For example, some of the invariants may be separated to distinguish
generic reusable ones from very specific ones.

It should be noted that the design space is not amere enumeration of all the possible
orders. Suppose there are two invariants a and b that depend on other elements as
shown in Fig. 4, e.g., a depends on p, which depends on q. The figure shows two
plans regarding which invariant to introduce first, a or b. If we take a first as in the
left side, we introduce p and q together in the first step. The remainder is handled in
the second step. On the other hand, if we take b first, as on the right side, we need to
introduce everything due to the dependencies. Then a should be introduced together
in the first step by following the second principle. We can clearly see that the second
plan fails to mitigate the local complexity.

The two principles shown above are fundamental and do not depend on spe-
cific domains. Such principles can come from the rules of Event-B, which have
been radically omitted in this chapter, or from empirically well-known guidelines
on abstraction or proof structuring. For example, a possible principle is to introduce
variables that are relevant to goals, or target of control, such as user location, before
those for realization such as card key and door lock. Domain-specific knowledge
will help define principles that reflect insights into what are more stable and com-
mon (reusable) and what are fragile and specific (not reusable). Design principles or
strategies can generally be represented as constraints on grouping and ordering of
model elements.

Explicit Exploration of Refinement Design in Proof-Based … 321

Fig. 4 Example of dependency consideration in refinement plans

• An element e1 must/should be introduced together with another element e2.
• An element e1 must/should be introduced no later than another element e2.

The user of our planning method can provide constraints to customize the plan-
ning. The input of constraints can be intuitively partial, e.g., “let’s introduce a before
b.” Our method can then automatically complement the necessary relevant elements
according to the dependencies.

4.2.2 Use Cases

It is necessary to have the list of model elements as the input to define the design
space of refinement. We first expect that the whole specification is available as the
input for Event-B modeling. This means that we consider that the primary use case
of Event-B is to validate a given specification expected to contain the necessary
elements. Although there can be defects such as lack of a proper guard condition to
support an invariant, the essential concepts and constraints are clear. In other words,
we do not consider exploratory use of Event-B to elicit requirements or even develop
new ones.

In addition to the model elements obtained from the whole specification, our
refinement planning method requires the information of dependencies. This is basi-
cally trivial as the default principles only take into account “necessary to define”
dependencies, which can be automatically extracted. Other principles may require
tagging on model elements such as “goal” and “means.”

Given the list of model elements, our refinement planning tool can support the
user to explore possible refinement designs. This tool applies default principles such
as the two introduced in this chapter. The user may also add grouping or ordering
constraints. The tool then outputs all the possible refinement designs under the given
constraints. Sometimes the design space is still too large to explore. In this case, the
user may give further constraints after looking at the design space derived from the
currently given constraints.

322 F. Ishikawa et al.

4.2.3 Experiences and Insights

We defined generic principles to define default constraints used with our refinement
planning method and tried them with several models. Figure 5 shows an example of
the output from this method. The nodes represent what variables have been intro-
duced thus far. The directed edges and their labels represent which new variables
are introduced. Thus, an edge represents a refinement process to obtain the next step
where additional variables are introduced. The top node in the figure represents a
virtual step where nothing is defined. The next node is the first step of refinement.
This graph suggests that we can only start with introducing D and N first due to
the dependency, i.e., other variables depend on them. Different edges from one node
represent different possibilities of refinement. The graph thus represents different
refinement plans, which finally reaches the same node at the bottom where all the
variables are introduced.

This example was based on a model in the Event-B book [3], and the result made
it explicit that there are possible refinement designs other than the one shown in the
book, which was implicitly selected by the author.

This example in Fig. 5 is based on a relatively small model and comprehensible in
size. There are cases in which the refinement design space is too large and difficult
for human engineers to capture. The size of the design space depends not only on
the size of the target model but also on the “density” of the dependencies. The
more constrained the design is, the smaller space we have. When the model is large,
it is sometimes necessary to give more constraints, especially dividing the model
elements into groups so that planning targets each group. When the density of the
dependencies is low, the design space is too large. However, thismeans that engineers
have almost free choice of the design.

Wealso conducted a sensitivity test regarding the quality of the input. The planning
results were mostly stable even when we had defects (e.g., missing guard condition)
in the input list of model elements.

Fig. 5 Example of graph for
refinement plans

Explicit Exploration of Refinement Design in Proof-Based … 323

4.3 Refinement Refactoring

4.3.1 Technical Approach

In the general context, refactoring (of programcode) refers to the activity that changes
the design of code structure without changing its behavior or breaking its correct-
ness to improve quality aspects such as maintainability and reusability. Refactoring
is essential because it is very difficult to work on quality aspects while working to
have code that runs properly. Another reason is that we cannot perfectly predict what
types of evolution or reuse we will have as demands for these emerge through expe-
riences. Refactoring is typically achieved through a combination of small changes,
e.g., extracting a method, so that it is easy to ensure that each change will not break
the current behavior.

We can imagine the usefulness of refactoring regarding refinement design in a
similarmanner.We startwith amodel inwhich all the proof obligations are discharged
and obtain another one with a different refinement design. With our approach, we
define two types of small changes that allow for arbitrary change of the refinement
structure by combination.

One of the change operations is merging refinement steps. The input is three steps
of Ma , Mb, and Mc where Mb refines Ma and Mc refines Mb:

[< {va1, va2, . . .}, {pa1, pa2, . . .} >, < {vb1, vb2, . . .}, {pb1, pb2, . . .} >,

< {vc1, vc2, . . .}, {pc1, pc2, . . .} >]

Then we merge steps Mb and Mc:

[< {va1, va2, . . .}, {pa1, pa2, . . .} >, < {vb1, vb2, vc1, vc2, . . .},
{pb1, pb2, pc1, pc2, . . .} >]

This merge operation is straightforward as it does not break existing proofs. We omit
a detailed discussion here but as all the necessary predicates are preserved and we
can therefore discharge the proof obligations of the new model without modifying
the model.

The other change operation is decomposition of refinement steps, the inverse of
the above merge operation. Given two steps of Ma and Mc, where Mc refines Ma ,
we derive Mb that refines Ma and is refined by Mc. This operation is not trivial as
discussed below.

The choice of elements for Mb is not identical and the user needs to determinewhat
elements should be extracted according to the objective of refactoring. However, a
naive choice easily leads to a step with error, e.g., when a variable necessary for a
chosen invariant is not chosen. Such invalid choices can be prevented by checking
with the dependencies as in the case of planning (Sect. 4.2.1). It is also necessary to
choose common elements in Ma and Mc into Mb as they are inherited through the
refinement steps.

324 F. Ishikawa et al.

Fig. 6 Tool interface to support choice for step decomposition

Figure 6 shows the graphical interface of our tool. Some of the elements are auto-
matically chosen as common elements, and one invariant is chosen by the user. There
is a warning about elements (variables) that must be accompanied with the current
choice, which may be automatically chosen by the tool (according to the interaction
preference). There is also a suggestion of elements that should be introduced as these
elements depend only on the chosen elements (the second principle in Sect. 4.2.1).

It is difficult to preserve existing proofs with the decomposition operation. Let
us go back to our discussion in Sect. 3.1. The original version of the Event-B model
has granular steps, and thus requires local proofs using the variables in each step.
Specifically, it was necessary to give the proof:

the user only enters an area permitted in the ACL, given that he/she moves only if entrance
to the destination area is permitted in the ACL (inv1 and move_grd1).

In the one-step version, this proof becomes implicit or hidden in the reasoning process
of human engineers or automated provers because the proof target is:

the user only enters an area permitted in the ACL, given that he/she moves only if entrance
to the destination area is authorized (inv1 and move_grd1’).

Therefore, decomposing a step may require making a local proof explicit.
In other words, move_grd1 is optional in the one-step version. Thus extracting

elements from the one-step version cannot lead to M1 of the original version, unless
we somehow add the missing guard condition. We call such predicates complemen-
tary predicates, which are necessary to discharge local proofs that emerge after step
decomposition.

Fortunately, we have countermeasures to this problem. As a theoretical founda-
tion, we can prove that there always exists a complementary predicate to complete

Explicit Exploration of Refinement Design in Proof-Based … 325

the proofs in the generated step Mb. This also suggests automated generation of
complementary predicates. Another practical approach is to reuse logs of existing
proofs in the original version before step decomposition because it is likely that the
implicit predicates were found and used internally by the automated prover.

With the merge and decomposition operations, arbitrary (valid) changes of the
refinement design are supported. To radically change the design, it is possible to
merge all steps and then extract steps one by one.

4.3.2 Use Cases

There are several potential use cases of the refinement refactoring method since the
objectives of refactoring vary. This method can also be used for maintenance or
reverse engineering in a similar manner as program slicing [10]. We present typical
use cases below.

• Complexity Mitigation. We can decompose a large step to improve comprehensi-
bility and verifiability, as discussed in Sect. 3.1, or maintainability in general.

• Extraction of Reusable Part of Model. We can extract reusable parts by moving
designated elements to earlier steps.

• Extraction of Abstract Explanation. We can extract the essence we want to focus
on by filtering out unnecessary details.

4.3.3 Experiences and Insights

First, we refer to an experimental result of verifiability by complexity mitigation
through step decomposition in Table 1. In this experiment, a large step was decom-
posed into four steps. The Model Elements column shows the number of variables
and invariants introduced in each step (variables may be removed as well). The orig-
inal step was somewhat large, with 72 invariants, in which it is difficult to see how
each invariant is relevant to other predicates such as guard conditions.

The Complementary Predicates column shows the number of unique comple-
mentary predicates and the total number of complementary predicates. The number
of unique complementary predicates affects the effort for discharging proof obliga-
tions and is somewhat limited against the number of proof obligations. In almost all
cases, it was also possible to reuse logs of existing proofs in the original model.

The Proof Obligations column shows the number of manually discharged proof
obligations and the total number of proof obligations. The numbers for only proof
obligations of the invariant preservation type are in parentheses. Even though the total
number increased slightly (from 1127 to 1159) by step decomposition, the number of
manual efforts reasonably decreased (from 175 to 147). Specifically, the number of
manual efforts decreased for the invariant preservation type (from 163 to 134). Proof
obligations of this type are often difficult as they work on new constraints introduced

326 F. Ishikawa et al.

Table 1 Example of statistics regarding verifiability

Model elements Complementary
predicates

Proof obligations

Variables Invariants Unique/Total Manually
discharged/Total
(those for INV)

Original −2+10 72 – 175/1127
(163/1088)

Decomposed 1 −1+3 7 4/17 6/112

Decomposed 2 −1+3 17 8/17 30/261

Decomposed 3 +2 14 2/3 30/202

Decomposed 4 +2 34 0/0 81/584

All decomposed −2+10 72 14/37 147/1159
(134/1088)

Step 1 Persons somehow move between locations according to the authorization of persons to locations.
Step 2 Physical connections between locations are introduced. Persons move between physically connected locations.
Step 3 Doors with red/green lights are introduced. Doors somehow authenticate persons.
Step 4 ID cards are introduced. Doors read cards and communicate with a controller by messages to authenticate.
Step 5 Physical movements of doors, persons, and lights are considered. Communication is a reaction to a physical event.

(the underlined parts are extracted while the slanted parts are abandoned)

Fig. 7 Example for extraction of reusable part

in each step. Step decomposition contributes to mitigating this difficult part. Thus,
controlling the local complexity has a reasonable effect on verifiability.

Second, we show another experiment result for extraction of reusable part in
Fig. 7. The underlined elements are extracted for reuse while the italicized elements
are abandoned. The problem is a full version of our simple example in Sects. 2 and 3.
As in the simple example, the original steps took into account the user movement as
the key starting aspect. However, the expected reusewill abandon the usermovement,
and the elements to be reused are scattered among the steps.

In this case, we can simplymerge all the steps automatically, then extract elements
to reuse in the unit of steps according to the refinement design of the new model. In
this case study, almost everything went automatically except for selection to provide
a refinement design for the new model. No complementary predicate was necessary,
probably because the proofs were simple or supporting predicates were explicit.

5 Related Work

In this section, we give an overview of the literature relevant to the points discussed
thus far.

Explicit Exploration of Refinement Design in Proof-Based … 327

5.1 Engineering Disciplines in Proof-Based Approaches

It is somewhat obvious that we need engineering disciplines for various types of
internal quality, i.e., quality of models that are important for engineers, when we
consider the use of formal methods in team-based work in a large project. Since such
use is limited compared with the use of programming languages, there have been
few studies on explicitly investigating internal quality with formal methods.

The term “proof engineering” was used in a report of industrial application of for-
mal verification for Pentium processors [13]. The authors reported that lack of clear
principles resulted in an extensive amount of proof rewriting work, which suggests
the significance of proof design and engineering. The discussion focused on structur-
ing and formulation, or modularization, and mentions its use for comprehensibility
and reusability.

The significance of proof engineeringwas again emphasized in another large study
on verified microkernel, in which over 400,000 lines of proof scripts in Isabelle/HOL
were constructed [14]. The questions raised by the author also include those regarding
Integrated Development Environment (IDE) including the refactoring functionality,
as well as management of abstraction and modularity.

The issues discussed in this chapter are very relevant to the demands discussed
in those studies. Whereas those studies used generic theorem provers, we applied
the Event-B formalism. Thus, our work has focused on more specific “refinement
engineering,” which especially deals with control of abstraction levels.

Experience in industrial application projects of Event-B is reported in [22]. Var-
ious approaches to reusability were mentioned explicitly for some of the projects,
which suggests the significance of reusability. There was one project in which pre-
liminary design for reusability was difficult. Our approach flexibly allows for later
consideration of reusability, in terms of refinement steps, and even trial and error for
the refinement design when making a design choice is not so obvious.

5.2 Refinement Support in Event-B

Refinement is the key aspect in Event-B, and there have been many studies on sup-
porting it. A set of case studies by different teams for the same problem resulted
in different refinement designs [7]. Trial and error for refinement design was also
reported by some teams. Through such experiences, the work in [26] discussed spe-
cific guidelines in the domain of control systems.

It is common to use partially or semi-formal models as the input to construct
formal models. Naturally, there have been studies considering the refinement design
at the level of such input models. Tree-based models, typically models for Goal-
Oriented Requirements Analysis, have been considered as the input for Event-B [20,
24]. Typical patterns have been discussed on those tree models.

328 F. Ishikawa et al.

In those studies, refinement designwas discussed in intuitive terms by experiences
rather than trials to systematically or formally capture the essence. Our study was
unique in that we tried to make various aspects of refinement designs much more
explicit: such as principles or constraints to eliminate invalid steps and the impact of
differences in refinement designs.

We have an intensive program on education and practical studies for the industry
[12]. Our experience showed the demands and effectiveness of explicit practices. We
therefore had strongmotivations to tackle tomake the implicit practices of refinement
design explicit.

5.3 Other Approaches for Quality of Formal Models

The quality of formal models includes more aspects than what we discussed in this
chapter.

There are other approaches for modularization in Event-B to tackle complexity,
or to improve comprehensibility, verifiability, and reusability. Decomposition of sys-
tems (not refinement steps) into components is another significant approach [4, 8].
This approach can be said horizontal modularization, whereas refinement is verti-
cal modularization. An effective combination of these two types of decomposition
should be investigated.

Refactoring for formalmodels has been investigated such as a study forUML+OCL
[9] and one for Alloy [11]. The study in [25] is more relevant as it considers refac-
toring of proofs. However, it is based on manipulation of general proof structures
and tactics. Our approach is unique in its specific focus on refinement, or control of
abstraction levels.

Modularization by refinement steps is not the only approach to increase com-
prehensibility of formal models. Practices for comprehensibility include naming
conventions and separation of elements with different roles, as naturally invented
in industrial application [18]. Other possible approaches include view transforma-
tion or visualization as well as traceability recovery. We previously investigated the
visualization of Event-B in state charts with clear traceability between refinement
steps [21]. We also investigated traceability recovery by presuming predicates that
are relevant to a given predicate (e.g., which guard conditions in a concrete step are
relevant to each guard condition in the abstract step) [23].

The direction of our work should be effectively complemented from these other
directions in practice.

6 Prospects

In this chapter, we discussed the problem of refinement design and presented our
approach for explicitly exploring and manipulating possible refinement designs.

Explicit Exploration of Refinement Design in Proof-Based … 329

Specifically, we reported our experiences on refinement planning and refactoring
to support engineering activities on refinement.

Refinement planning is an intrinsically difficult problem as the design space can be
very large and involves fuzzy human decisions. Nevertheless, we believe that poten-
tials have been demonstrated as a unique approach of systematically and explicitly
capturing refinement designs.

The effectiveness of our refinement refactoring method has been demonstrated.
It potentially has many use cases not limited to the presented ones, and it is easy to
apply with highly automated support.

We focused on the control of abstraction levels as the key to tackle the increasing
complexity of emerging systems.We believe that this point is not specific to Event-B
and can be investigated in a general context or for other formalisms.

We will continue to investigate what information should be made explicit to sup-
port engineering activities on refinement, or on general proof-based development
methods.

References

1. J.-R. Abrial, The B-Book: Assigning Programs to Meanings (Cambridge University Press,
Cambridge, 1996)

2. J.-R. Abrial, Formal methods in industry: achievements, problems, future, in The 28th Inter-
national Conference on Software Engineering (ICSE’06) (2006), pp. 761–768

3. J.-R. Abrial, Modeling in Event-B: System and Software Engineering (Cambridge University
Press, Cambridge, 2010)

4. J.-R. Abrial, S. Hallerstede, Refinement, decomposition, and instantiation of discrete models:
application to Event-B. J. Fundam. Inform. 77(1–2), 1–28 (2007)

5. L. Atzoria, A. Ierab, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15),
2787–2805 (2010)

6. F. Badeau, A. Amelot, Using B as a high level programming language in an industrial project:
Roissy VAL, in ZB 2005: Formal Specification and Development in Z and B (2005), pp. 334–
354

7. F. Boniol, V. Wiels, Y. Aït-Ameur, K.-D. Schewe, The landing gear case study: challenges and
experiments. Int. J. Softw. Tools Technol. Transf. 19(2), 133–140 (2017)

8. M. Butler, Decomposition structures for Event-B, in The 7th International Conference on
Integrated Formal Methods (IFM 2009) (2009), pp. 20–38

9. G. Engels, B. Opdyke, D.C. Schmidt, F. Weil, An empirical study of the impact of OCL
smells and refactorings on the understandability of OCL specifications, in ACM/IEEE 10th
International Conference on Model Driven Engineering Languages and Systems (MODELS
2010) (2007), pp. 76–90

10. K.B. Gallagher, J.R. Lyle, Using program slicing in software maintenance. IEEE Trans. Softw.
Eng. 17(8), 751–761 (1991)

11. R. Gheyi, P. Borba, Refactoring alloy specifications. Electron. Notes Theor. Comput. Sci. 95,
227–243 (2004)

12. F. Ishikawa, N. Yoshioka, Y. Tanabe, Keys and roles of formal methods education for industry:
10 year experience with top SE program, in The First Workshop on Formal Methods in Software
Engineering Education and Training, FMSEET 2015 (2015), pp. 35–42

13. R. Kaivola, K. Kohatsu, Proof engineering in the large: formal verification of pentium® 4
floating-point divider. Int. J. Softw. Tools Technol. Transf. 4(3), 323–334 (2004)

330 F. Ishikawa et al.

14. G. Klein, Proof engineering considered essential, in The 19th International Symposium on
Formal Methods (FM 2014) (2014), pp. 16–21

15. T. Kobayashi, Supporting planning and refactoring of refinement structure of Event-B models.
Ph.D. thesis, The University of Tokyo (2017)

16. T. Kobayashi, F. Ishikawa, S. Honiden, Understanding and planning Event-B refinement
through primitive rationales, in The 4th International ABZ 2014 Conference (2014), pp. 277–
283

17. T. Kobayashi, F. Ishikawa, S. Honiden, Refactoring refinement structures of Event-Bmachines,
in The 21st International Symposium on Formal Methods (FM 2016) (2016)

18. T. Kurita, F. Ishikawa, K. Araki, Practices for formal models as documents: evolution of VDM
application to “Mobile FeliCa” IC chip firmware, in 20th International Symposium on Formal
Methods (FM 2015) (2015)

19. E.A. Lee, Cyber physical systems: design challenges, in The 11th IEEE International Sympo-
sium on Object Oriented Real-Time Distributed Computing (ISORC 2008) (IEEE, 2008), pp.
363–369

20. A. Matoussi, F. Gervais, R. Laleau, A goal-based approach to guide the design of an abstract
Event-B specification, in The 16th IEEE International Conference on Engineering of Complex
Computer Systems (ICECCS 2011) (2011), pp. 139–148

21. D. Morita, F. Ishikawa, S. Honiden, Construction of abstract state graphs for understanding
Event-B models, in Symposium on Dependable Software Engineering - Theories, Tools and
Applications (SETTA 2017) (2017)

22. A. Romanovsky, M. Thomas (eds.), Industrial Deployment of System Engineering Methods
(Springer, Berlin, 2013)

23. S. Saruwatari, F. Ishikawa,T.Kobayashi, S.Honiden,Extracting traceability betweenpredicates
in Event-B refinement, in The 24th Asia-Pacific Software Engineering Conference (APSEC
2017) (2017)

24. K. Traichaiyaporn, T. Aoki, Refinement tree and its patterns: a graphical approach for Event-B
modeling, inThe 2nd International Workshop on Formal Techniques for Safety-Critical Systems
(FTSCS 2013) (2013), pp. 246–261

25. I.J. Whiteside, Refactoring proofs. Ph.D. thesis, The University of Edinburgh (2013)
26. S. Yeganefard, M. Butler, A. Rezazadeh, Evaluation of a guideline by formal modelling of

cruise control system in Event-B, in The 2nd NASA Formal Methods Symposium (NFM 2010)
(2010), pp. 182–191

Constructing Rigorous Sketches for
Refinement-Based Formal Development:
An Application to Android

Shin Nakajima

Abstract Event-B allows us to develop descriptions incrementally with its refine-
ment mechanism. Correctness of the resultant artifact is ensured by construction.
This refinement task can be transparent if we have a refinement plan that mentions
how an initial specification is elaborated into a target artifact. Unfortunately, we do
not have such a target artifact before starting the refinement-based development. We
have informal or narrative documents on the target only. In order to resolve this
chicken-and-egg situation, we firstly introduce an iterative process to use Alloy for
studying the documents. Its outcome is possibly under-constrained, but unambigu-
ous Alloy descriptions, which acts as a rigorous sketch of the target for us to make
a refinement plan. The proposed modeling method was assembled as educational
materials for Event-B.

1 Introduction

Constructing awholemodel is not easy if the software artifact is large and complex.A
commonpractice is to build a detailedmodel gradually, starting froma simple one to a
model close to the target. This notion of stepwise development is also useful to ensure
correctness of programs. It is referred to as correct by construction,which allows to let
the correctness proof andmodel growhand in hand [5]. Awhole development process
is decomposed into a series of small refinement steps. Each step connects an abstract
model with a refined one, and the correctness of the refinement is ensured. Because
the refinement-based approaches are promising to achieve expected reliability levels
of software-intensive systems, formal methods including the B-method [2] or Event-
B [3] provide the notion of refinement in the first place.

Although a goal of refinement steps is obtaining a model faithfully incorporating
requirements, these requirements in practice are mostly informal, or semi-formal at
best. Requirements are desirable to be well-organized so that traceability between

S. Nakajima (B)
National Institute of Informatics, Chiyoda-Ku, Tokyo, Japan
e-mail: nkjm@nii.ac.jp

© Springer Nature Singapore Pte Ltd. 2021
Y. Ait-Ameur et al. (eds.), Implicit and Explicit Semantics Integration
in Proof-Based Developments of Discrete Systems,
https://doi.org/10.1007/978-981-15-5054-6_15

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5054-6_15&domain=pdf
mailto:nkjm@nii.ac.jp
https://doi.org/10.1007/978-981-15-5054-6_15

332 S. Nakajima

requirements and models is transparent. A standard approach, in Event-B [3], is to
adopt requirements document (RD) consisting of a set of simple statements; each
refers to either functional or other types of requirements. Existing works propose a
way of rewriting industrial documents to be well-formed RD [18], a domain-specific
methodology for structuring RD [19], or a tool support for tracing requirements
into Event-B models [7]. In addition, a pre-formal notation is desirable for map-
ping requirements to Event-B [6]. However, requirement documents in practice take
divergent forms, including UML-like graphical notations, or using styles in favor of
operational interpretations. These are quite different from the original recommended
style of requirements appropriate for RD.

In theory, as mentioned before, refinement is a process to build a model gradually,
from an abstract one to a concrete model by adding details. In practice, however, a
refinement process itself involves trial-and-error, and refinement steps proceed in an
adaptive way as we incorporate a fragment of requirements into the model. Resultant
models may be formal, but awkward, for which later refactoring is desirable. In some
cases, formal models become unnecessarily complex, and thus correctness proofs at
a certain step require a huge manual guidance, or even the steps are stuck because
of a failed proof. We may abandon such a process and proceed again, from the start,
to go through alternative steps.

Refinement-based development can be made predictive and avoid trial-and-error
processes ifwe follow a refinement plan as a guide.A refinement plan, not necessarily
formal, mentions how an initial model is elaborated into a final one through a series of
refinement steps. Figuring out a refinement plan requires some pieces of knowledge
about the final artifact, although it contradicts with the fact that no final model exists
before refinement-based development starts.We need to resolve this chicken-and-egg
situation.

This paper illustrates a two-staged method for refinement-based modeling with
Event-B. Firstly, we use Alloy [10] to study given technical documents iteratively
involving trial-and-error. Alloy is a lightweight formal method [9] and supports these
iterative formalization activities. We obtain, as a result, possibly under-constrained,
but unambiguous Alloy models. Then, using the Alloy models as a rigorous sketch
of the final artifact, we figure out a refinement plan with an appropriate initial model.
By following this refinement plan, we construct Event-B models verified using the
RODIN tool [17]. Thus, we can avoid cumbersome trial-and-error activities in the
refinement-based development with Event-B/RODIN.

2 Refinement-Based Modeling with Event-B

Event-B [3] is a formalmethod to support the refinement-based development practice.
A central language element is event; it is a basic unit to be refined. An Event-B
event is conceptually a tuple of enabling conditions (guard conditions) and actions
consisting of generalized substitutions. Both the enabling conditions and generalized

Constructing Rigorous Sketches for Refinement-Based … 333

substitutions refer to a set of variables. Variablesmay be accompaniedwith invariants
declared explicitly.

Refinement in Event-B is defined basically in terms of forward simulation relation
between two events, abstract and concrete. The relation provides a sufficient con-
dition for refinement (Chap.14 of [3]). Moreover, refinement checking follows the
posit-and-prove paradigm; we introduce abstraction relations as well as both abstract
and concrete events, and then ensure correctness of the refinement by discharging
proof obligations referring to these pieces of information (Chap.5 of [3]). The proof
obligations includeGRD (guard strengthening) and SIM (simulation). Below, instead
of presenting the mathematical formulation, we will see roles of refinements from
specifiers’ viewpoints. Event-B, indeed, allows two distinct uses of refinements, ver-
tical refinement and horizontal refinement.

Vertical refinement is a classical notion of data refinement [8] and is a rigorous
basis for stepwise developments of programs. Abstract variables in an abstract event
are replaced by concrete variables. Through vertical refinement steps, we elaborate
an initial abstract specification to obtain concrete descriptions at a program level. An
abstract event is a specification, against which a refined concrete event is checked.
When such a check is successful, the correctness of the implementation with respect
to the specification is ensured. In a special case where an abstract event is taken as
a property to be satisfied, the refinement can be a way to check whether a refined
concrete event satisfies the property.

In horizontal refinement, abstract variables are retained and possibly newvariables
are added. This style is sometimes called superposition refinement [4] because the
steps add new functional features incrementally. In a standard practice with Event-
B, each statement in a given requirements document (RD) is incorporated into a
new refined event. In addition, the horizontal refinement allows introducing a new
event to incorporate a new piece of RD. Horizontal refinement steps stop when a
whole RD is taken into account in a final set of refined events. All the events are at
the same abstraction level. This is in contrast with the vertical refinement in which
the refinement goes down to an executable program level, from an initial abstract
specification.

An important observation is that a refinement process consists of successive steps,
and that their order is often significant. Furthermore, refinement steps are indeed a
mixture of both vertical and horizontal refinements. Because the two refinement
methods play different roles, planning in advance is needed to make it explicit how
each method is used in the whole refinement steps. For vertical refinement, the
order is mostly clear because the steps go toward a program implementation level.
In horizontal refinement, however, the order of adding new features is flexible if
adding a particular feature does not interfere with existing ones. Alternatively, we
may decide the order so that each refinement checking, namely, correctness proof, is
simple enough, ideally amenable to automatic proving. These pieces of information
on the refinement order are desirable to be made explicit.

We introduce a notion of refinement plan, which involves an initial model, a
target artifact, and pre-planned refinement steps linking the initial one with the target
description. Because the refinement concerns with ensuring the correctness of the

334 S. Nakajima

target artifact, the plan itself is a piece of reason for the correctness. It is valuable
in view of documenting the development process and is as important as a product
aspect, which refers to model descriptions of software artifact and properties to be
checked.

Please note that plans need not be formal, but can be informal, because human
specifiers follow the plan. We do not expect that refinement plans are a kind of
meta-level directives to control refinement steps automatically.

3 Two-Staged Method

As discussed in Sect. 2, a refinement plan is valuable because the information therein
can be a guideline whichwe follow so that we can conduct refinements in a predictive
style, but not in an ad hoc manner.

A refinement plan describes how an initial model is elaborated into a final one
through successive refinement steps. A plan need not be detailed enough to record all
the refinement steps precisely,1 but is an informal document to illustrate a refinement
process as a whole. A rough sketch of a final model, although not definitive, is
needed to figure out such a plan. This contradicts with the fact that no final model
exists before refinement starts. We present in this section a new method to facilitate
figuring out refinement plans by resolving this chicken-and-egg situation.

Requirements’ documents, in practice, take divergent forms.Documents are infor-
mal using diagrams, such as UML, or are operational describing a set of use cases.
These pieces of information together describe a target artifact from various perspec-
tives. A consistent description of a final artifact is not there but must be reconstructed
by collecting fragmented pieces of the information. It requires us to study the require-
ments documents iteratively and to draw a sketch in a trial-and-error manner. We use
a tool-supported lightweight formal method [9] to construct such a sketch, a model
rigorous enough for automatic analysis. Then, we obtain an unambiguous sketch
whose functional behavior is validated with the tool. The sketch can be a basis for us
to figure out a refinement plan with an appropriate initial specification description.

Figure1 illustrates our proposed two-staged method. In the first stage, we study
given documents with a help of the Alloy tool. The outcome is possibly under-
constrained, but unambiguous descriptions, which acts as a rigorous sketch of the
target. Then, given an appropriate initial model, we figure out a refinement plan, a
series of refinement steps.

At this point, we figure out how the two notions of refinements, vertical and
horizontal, are used. We may take into account the role of initial or intermediate
models; a model may refer to a property to be checked, or to a tiny system model to
be elaborated (see Sect. 2).

In the second stage, we use the RODIN tool to construct an Event-B model. We
follow a refinement-based development process. Because we use the refinement plan

1Our early work [13] introduces a refinement planning sheet, referring to detailed steps.

Constructing Rigorous Sketches for Refinement-Based … 335

Informal, Narrative
Descriptions

First Stage :
Adaptive

Under-constrained
Descriptions in Alloy

Second Stage :
Predictive

Verified Descriptions
in Event-B

Fig. 1 The two stages

as a guide, the process can be predictive.Wemay expect that the final Event-Bmodel
is acceptable to faithfully represent what we expect, because its functional behavior
is validated in the first stage with Alloy and correctness of refinements is ensured in
the second stage with RODIN.

We, here, present a rationale to employ Alloy in the first stage. Alloy [10] is a
model-based formal specification language with a scope-bounded automatic analysis
method. The mathematical model is based on relational logic, with which we can
represent formal descriptions in a set-theoretic style. Thus, there is not a large syn-
tactical gap in formulas between Alloy and Event-B. Although the scope-bounded
analysis is not complete (Chap.5 of [10]), Alloy descriptions are analyzable, finding
models of logical formulas that the descriptions are defining. Because this analy-
sis method searches for possible models to satisfy the formulas, Alloy can return
appropriate answers even when the formulas are under-constrained. In such cases,
the answers contain redundant instances, but we can ensure, by inspection, that the
obtained results do not conflict with our expectations. Alternatively, we can add fur-
ther constraints to the Alloy descriptions so that the tool returns exactly what we
expect. In this way, we can validate functional behavior with the automated analysis
method. Because of these, Alloy is considered an appropriate formal method for
drawing a sketch of a target artifact.

4 A Case Study

We illustrate the proposed two-staged method with a case study of an application to
Android.

4.1 Android Application

Imagine thatwe see the home screen of anAndroid smartphone, a specific application
icon appearing on the display. Clicking the icon invokes the main activity of the
application. Then pushing aGUI button, provided by this main activity, starts another
activity to occupy the screen. The main activity is suspended at this time. When we

336 S. Nakajima

press the BACK button while this second activity is executing, the activity terminates
to disappear and the main one resumes its execution. Alternatively, if we press the
HOME button, the second activity is suspended. The display is returned to the home
screen. When we click the same icon again, the suspended second activity, not the
main activity, resumes its execution.

The Android framework defines a lifecycle behavior of activities and employs
a back stack, which keeps the order of activities that are launched. The standard
Developers Document [1] explains the lifecycle behavior in a narrative way, and the
descriptions are scattered in many pages. Definitions of basic terminologies are not
clearly given, and they need further interpretations to remove ambiguities. After an
iterative process of studying the document, we found that the lifecycle of activities
was essentially a state transition machine (Fig. 2). Invoking a callback method is
considered as a transition event and is attached to a transition arc. In the state transition
machine description, on completing a callback method, an activity is in a stable
lifecycle state.

The Developers Document introduces an alternative view of activities. An activity
is accompanied with a specific attribute regarding its visibility on the screen. Firstly,
an activity is visible when a human user can see its GUI image on the screen but is
hidden otherwise. Secondly, a visible activity is foreground when it is running and
can accept GUI events from users. These events are generated by users’ actions, for
example, a finger touch on the screen. An activity is background otherwise.

Those attributes and states in the lifecycle behavior are related, but their relations
are not clearly mentioned in the Developers Document. According to Fig. 2, an
activity is running only when it is in the resumed state. It, further, implies that a
foreground activity is definitely on top of the back stack. However, in the started
state, an activity is visible, but background, while it is on top of the back stack
as well. Therefore, an activity location in the back stack and activity attributes of
foreground/background is not one-to-one.

Both the lifecycle behavior and attributes are two different views on the states
of an activity. Attributes are, indeed, more or less related to intuitive views of user
interactions. The lifecycle behavior is best encoded as a state transition system, an
operational design description. Because of these, wemay regard the attribute changes
as properties to be checked against the system description of the lifecycle behavior.

4.2 Alloy Descriptions

Although the state transition machine is a concise description of the target, the stan-
dard document [1] does not include such as the one in Fig. 2. We extracted, from
the scattered descriptions in many pages, what we thought essential. Its correctness
may be checked whether it can reconstruct usage scenarios documented in the other
pages. Furthermore, the diagram is still informal and may be ambiguous. Through
an iterative process of constructing Alloy models and checking them, we elaborate
details of the diagram to be unambiguous.

Constructing Rigorous Sketches for Refinement-Based … 337

onCreate onStart onResume

onPause / commit changes

onStop onRestart

onStart

onDestroy

Kill (visible process)

Kill (background process)

Kill (empty process)

null resumed restarted

stopped

created started

destroyed

Fig. 2 State transition machine of lifecycle

4.2.1 Lifecycle Behavior

We construct Alloy descriptions of the state transition machine in Fig. 2. Firstly, we
define State, a set of constants, each of which denotes a particular state.We followed
a standard method of introducing a set of constants in Alloy.

abstract sig State {}
one sig null extends State {}
one sig created extends State {}
. . .

Wemay regard that null and created are declared to be two constants of type State.
World consists of a BackStack element and a set of Activity. A map statusmain-

tains states of each activity referred to by activities.

sig World {
back : BackStack,
activities : set Activity,
status : activities ->some State

}

A state transition caused by a callback method is encoded as a state transformer of
two World instances. Below is onCreate which is also checking the back stack and
manipulating it as needed.

pred onCreate (w1, w2 : World, x : Activity) {
(w1.status)[x] in null
(some w1.back.indices) implies not((w1.status)[top[w1.back]] = resumed)
w2.status = w1.status ++ (x -> created)
push[w1.back, w2.back, x]

}

The ++ symbol stands for an overriding operator, and thus the state of the specified
activity is assigned to created in the post-state without changing the states of the

338 S. Nakajima

other activities. This activity is also pushed onto the back stack in the post-state. The
next shows another example, onDestroy, which also manages the back stack (pop).

pred onDestroy (w1, w2 : World, x : Activity) {
(w1.status)[x] in stopped
top[w1.back] = x
w2.status = w1.status ++ (x -> destroyed)
pop[w1.back, w2.back]

}

The onDestroy ensures that the activity is equal to the one on the top. It is because
this callback method can only be executed on an activity which is at the top of the
back stack.

We introduce a general one-step transition relation consisting of all possible tran-
sitions between a pair of pre-state and post-state.

pred trans (w1, w2 : World, x : Activity) {
onCreate[w1, w2, x] or onStart[w1, w2, x] or onResume[w1, w2, x]

or onStop[w1, w2, x] or onPause[w1, w2, x] or onRestart[w1, w2, x]
or onDestroy[w1, w2, x]

}

4.2.2 Scope-Bounded Analysis Scenarios

We use a technique of scope-bounded checking to see how the Android application
activities behave dynamically. It is to explore all possible transition sequences from
an initial state within a given scope. We here consider a case for the scope in which
the number of World instances is five.

one sig ScenarioOne {
w1, w2, w3, w4, w5 : World

}{
all w : World | w in w1+w2+w3+w4+w5

}

pred ichi (s : ScenarioOne, x : Activity) {
init[s.w1.back] and s.w1.status = x -> null

and trans[s.w1, s.w2, x] and trans[s.w2, s.w3, x]
and trans[s.w3, s.w4, x] and trans[s.w4, s.w5, x]

}

run ichi for 2 but 5 World, 5 BackStack

In the above, we assume that the initial state is empty in which no activity is in
World. The command run instructs the Alloy analyzer to search for a sequence of
four transitions.We use a solution enumeration technique to obtainmultiple answers.
The first may be the one in Fig. 3a, and the next one is shown in Fig. 3b. They are
two possible instances of transitions from the initial state.

Occasionally, we want to choose a particular state to be a start, from which the
bounded analysis is conducted. Since a global state, in ourAlloymodel, is determined
completely by World, we set up such an initial world.

Constructing Rigorous Sketches for Refinement-Based … 339

(a) onCreate; onStart; onResume; onPause

(b) onCreate; onStart; onStop; onRestart

Fig. 3 Alloy GUI snapshot

pred toS (w : World, x : Activity, s : State) {
some b : back | {

init[b] and push[b, w.back, x]
w.status = x -> s

}

Next,we introduce a property P to be checked. The example below is to checkwhether
a specified activity is in the restarted state.

pred P (w : World, x : Activity) {
w.status[x] = restarted

}

We can check whether P is satisfied or not at each transition state.

pred ichi (s : ScenarioOne, x : Activity) {
toS[w1, x, resumed]

and trans[s.w1, s.w2, x] and trans[s.w2, s.w3, x]
and trans[s.w3, s.w4, x] and trans[s.w4, s.w5, x]
and (P[s.w1, x] or P[s.w2, x] or P[s.w3, x]

or P[s.w4, x] or P[s.w5, x])
}

This example is satisfied for transition sequences such as in Fig. 3b. The method
is, indeed, a special case of bounded model checking (BMC) of linear temporal
logic (LTL) formulas, ♦P where ♦ is an eventually operator. Thus, ♦P states that the
property P is eventually satisfied.

We check scenarios so as to ensure that the description is just as intended. If the
check fails, we may fix faults in Alloy models. At the end, we have unambiguous
Alloy descriptions of the target artifact. We refer to a companion paper [15] for
details about the descriptions and further analyses using Alloy.

340 S. Nakajima

4.3 Refinement Plan

4.3.1 A Global Plan

We now have an Alloy model of Android activities, which is a rigorous sketch for
Event-B model that we shall construct. Please note that the Alloy model is a result of
an iterative process. The Alloy model incorporates, in itself, all requirements, which
are scattered in many pages and are not expressed succinctly in the Developers
Document.

One naive idea may be translating the Alloy model into Event-B equivalent.
However, we prefer to using a refinement-based development method, starting with
an initial model and following refinement steps so that the correctness of the final
Event-B model is ensured with respect to some given criteria. We now have two
problems, what an appropriate initial model is, and how refinement steps, possibly
mixing vertical and horizontal refinements, are conducted.

As explained in Sect. 4.1, theDevelopersDocuments present two alternative views
of activity behavior, lifecycle behavior and attribute changes. We regard changing
attributes as properties to be checked against the system description of the lifecycle
behavior. Unfortunately, the Developers Documents do not present concisely when
attributes are changed, and thus the property to be checked is not well defined. We
introduce a series of refinement steps starting with an almost trivial property so that
a refined one is detailed enough to be checked against the lifecycle behavior.

We divide a whole refinement step into two. The early part is focusing on refining
properties, for which we use the vertical refinement because properties are elabo-
rated and detailed. Independent of these property descriptions, we construct lifecycle
behavior that is comparable to the rigorous sketch written in Alloy. Starting with a
bare state transition machine, we may use the horizontal refinement method to add
back stack features. Then,we insert a refinement step to connect the property and state
transition machine. The step is intended to ensure that the state transition machine
satisfies the required properties of chaining attributes, which is depicted as a view
shift in Fig. 4.

Fig. 4 A global plan
Set-based State Changes

Concrete State Transition Machine

View Shift

Constructing Rigorous Sketches for Refinement-Based … 341

4.3.2 A Detailed Plan

As in Fig. 4, we divide the whole refinement steps into two parts. This strategy is
a kind of top-down decomposition of a whole refinement step. Now, we consider
refinement plans for each.

Firstly, we adopt set-based abstract representations to encode changes in attribute
values. Each activity belongs to a set, and belonging to a particular set indicates that
an activity instance has a particular attribute value. Then, changing values is encoded
as moving the activity instance from a set to another. This view is useful when we
gradually elaborate the sets. In fact, we start from a big set and then gradually divide it
into detailed subsets. These elaboration steps are data refinement. Figure5a illustrates
that they consist of two refinements involving three machines (M0, M1, and M2).

Secondly, we construct a concrete state transition machine. Each state in the
machine is uniquely identified with a named label. Changing states is encoded as
rewriting the label from an old to a new. This view is useful when we enumerate all
the states beforehand. As shown in Fig. 5b, we start with a simple transition system
(L0) and then add features referring to the back stack (L1). The horizontal refinement
is suitable because of the addition.

Last, the view shift (Fig. 4) connects the two models, M2 and L0, by the verti-
cal refinement. Because we regard M2 to represent abstract behavior viewed from
outside, this refinement step is inserted to ensure that the concrete state transition
system satisfies the required property of M2.

4.4 Event-B Descriptions

We now start constructing Event-B models following the refinement plan. Firstly, we
define Context C0 that essentially introduces a set Activity, its elements denoting an
activity instance.

SETS
Activity

Machine M0, seeing Context C0, introduces two of set-valued variables, new and
current. They refer to subsets of Activity and are disjoint with each other (Fig. 5a).

VARIABLES
new
current

INVARIANTS
inv1 : current ⊆ Activity
inv2 : new ⊆ Activity
inv3 : current ∩ new = ∅

Create event inMachineM0 is creating a new activity instance that becomes current.
The event is defined so that an element (x) is moved from new to current. The activity
referenced by x changes its status.

342 S. Nakajima

currentnew

Create

new dormant foreground

Awake

Sleep

new hidden foregroundvisible

Prepare
Hide

Show

M0

M1

M2

onCreate onStart onResume

onPause / commit changes

onStop onRestart

onStart

onDestroy

Kill (visible process)

Kill (background process)

Kill (empty process)

null resumed restarted

stopped

created started

destroyed

L0

L1L0 + Back Stack

(a) Set-based State Changes (b) Concrete State Transition Machine

Fig. 5 Refinement Steps

Create
�=

any
x

where
grd1 : x ∈ new

then
act1 : new := new \ { x }
act2 : current := current ∪ { x }

end

Next, we refine M0 to have M1. We elaborate the set current divided into two
dormant and foreground. As the variable names suggest, instances in foreground
are running, but those in dormant are suspended. Two events Awake and Sleep
change their execution status and are defined similar to Create above. Below, inv1 is
a gluing invariant to connect variables in M0 and M1, current in M0, and dormant
and foreground in M1. We introduce an additional constraint to state that the size of
the foreground set is 0 or 1, which indicates that at most one activity instance can be
running.

INVARIANTS
inv1 : partition(current, dormant, foreground)
inv2 : finite(foreground) ∧ card(foreground) ≤ 1

The refinement M2 is defined similarly. The set dormant is further decomposed into
hidden and visible. Three events, Show, Hide, and Prepare, change status of activity
instances as shown in Fig. 5a.

We now construct a concrete state transition machine, which is essentially repre-
senting the diagram in Fig. 2.We introduce a set Status in Context C10, each ofwhose
element refers to a particular state of the machine. These elements are constants.

SETS
Status

CONSTANTS
created, started, . . .

AXIOMS
axm1 : partition(Status, {created}, {started}, . . .)

Constructing Rigorous Sketches for Refinement-Based … 343

Behavioral aspects of the state transition machine are encoded as events in Machine
L0, seeing both C0 and C10. A new variable manages state changes of activity
instances.

VARIABLES
status

INVARIANTS
inv1 : status ∈ Activity 	→ Status

State transition is encoded similar to Alloy descriptions in Sect. 4.2. As an example,
an event onCreate defines a state transition from the null to created states. Below is
an Event-B version. Note that the Event-B snippet is almost a direct translation of
the Alloy counterpart. Section5 will compare these descriptions.

onCreate
�= refines Create

any
x

where
grd1 : (x 	→ null) ∈ status

then
act1 : status := status �− { x 	→ created }

end

We show here a final version of onCreate event defined in Machine L1. It adds
features relating to the back stack and retains grd1 and act1, namely, L0 and L1 are
related by horizontal refinement. This event is comparable to the Alloy version of
onCreate.

onCreate
�= refines onCreate

any
x

where
grd1 : (x 	→ null) ∈ status
grd2 : (ms > 1) ⇒ ((y 	→ resumed) /∈ status)

then
act1 : status := status �− { x 	→ created }
act2 : body := body �− { ms 	→ x }
act3 : ms := ms + 1

end

We now look at the refinement relation between Machines M2 and L0. Because
there is a view shift, we introduce a gluing invariant to connect elements in the two
machines. As it is a large formula, we show here its part only.

INVARIANTS
inv2 : ∀ x · (x ∈ Activity) ∧ ((x ∈ new ⇔ (x 	→ null) ∈ status)

∧ (x ∈ hidden ⇔ ((x 	→ stopped ∈ status) ∨ (x 	→ restarted ∈ status)) . . .

All the proof obligations (POs) in those refinement steps were discharged. POs in
machos M0, M1, and M2 are mostly trivial. For machine L1, 14 out of 17 POs were
automatically discharged. In machine L0, however, there are 24 POs, half of which
required manual proof. It is because the gluing invariants responsible for the view
shift from Machine M2 to L0 are more complicated than the others. Thus, the ratio
of manual proof was large.

344 S. Nakajima

5 Discussions

We recall our motivation for using Alloy. In B-method, refinement is starting from
an abstract model to reach a concrete model comparable to executable programs
[2]. Because we are familiar with the computational models of executable programs,
figuring out a final model before starting refinements is not difficult. In Event-B,
however, a final refined model is not necessarily an executable program, but usually
represents a set of requirements. Their abstraction levels are arbitrary, and thus we
need to have a kind of mental computational model before starting refinements. We
used Alloy to study given requirements for obtaining a rigorous sketch of the final
model.

Alloy is a lightweight formal method. We construct a formal model and check
it, which gives us a quick feedback whether the model faithfully represents what
we need to have. The automated analysis is based on model finding, with which we
are able to use Alloy for bounded model checking. The formal analysis is helpful
to validate the constructed model. After checking a set of scenarios, the level of
our confidence in the behavioral model can be acceptable, and thus we adopt it as a
rigorous sketch for a refinement-based development with Event-B.

In using refinement-based development, the importance is widely recognized as
the step from informal requirements to a formal model. In Event-B community, a
standard approach is assuming Requirements Document (RD), which is a collection
of one-sentence requirement statement in English. Su et al. [18] proposed a way of
rewriting industrial documents to be well-formed RD. ProR [7] is a tool for tracing
requirements, as a form of RD, into Event-B models. Yeganefard et al. [19] and
Gimehlich et al. [6] adopt Problem Frames as a pre-formal notation before RD. Our
approach is to use Alloy as such a pre-formal tool,2 although it is a lightweighted
formal method itself.

We now compare models in Alloy and Event-B using the lifecycle behavior. In
fact, state transitions are encoded similarly. For Alloy, we introduce the following
snippets to maintain that a certain activity is in a particular state.

activities : set Activity,
status : activities ->some State

pred onCreate (w1, w2 : World, x : Activity) {
(w1.status)[x] in null
w2.status = w1.status ++ (x -> created)

}

Event-B counterpart takes essentially a similar approach.

VARIABLES
status

INVARIANTS
inv1 : status ∈ Activity 	→ Status

2Event-B is formal, but the others are all pre-formal here.

Constructing Rigorous Sketches for Refinement-Based … 345

onCreate
�= refines Create

any
x

where
grd1 : (x 	→ null) ∈ status

then
act1 : status := status �− { x 	→ created }

end

Note slight differences in Alloy and Event-B. The Event-B uses a partial function
(→), while the Alloy version uses a total function (->) and its domain is activities,
a subset of Activity. Updating the name of the state is similar to use overriding
operators, ++ in Alloy and �− in Event-B. These differences come from differences
in language specifications in these two formal methods.

In regard to combining Event-B with Alloy, Matos and Silva [12] proposed to
encode Event-B descriptions into Alloy so that they make use of scope-bounded
analysis of Alloy for bounded model checking Event-B descriptions that use set-
theoretic constructs. We do not consider such syntactical translations. As seen in
the above simple snippets, we may need a lot of rules to bridge detailed differences
between Alloy and Event-B. We adopt the Alloy model for a rigorous sketch of the
final refined model of Event-B.

Last, because we employed the scope-bounded method to analyze the Alloy
descriptions, we had enough confidence in the correctness of the Event-B descrip-
tions.When RODIN automatic prover fails for a certain PO, we need not worry about
faults hidden in the descriptions. Those failures are due either to probable weakness
of the automatic prover or to the descriptions being under-constrained. It is not easy
for software engineers, who are not familiar with interactive prover, to consider two
different issues at the same time, one for a possible fault in model descriptions and
another for a probable weakness of the automatic prover. Our conjecture is that the
proposed two-staged method may lower a potential barrier for software engineers to
use refinement-based development methods such as Event-B.

6 Conclusion

We used the presented material3 in an introductory course on formal methods, a
revised course of what is reported in [14]. In addition to teaching the basics of
Event-B and RODIN tool usages, the course includes material for obtaining skills
in modeling. Since Event-B is refinement-based method, we view that making a
refinement plan is one of the major concerns. Thus, we introduced the proposed
method as a Learning by Doing (e.g., [11]) style material. Last, although the
Android example was small and concise, choosing it was successful because it drew
much students’ attention. Actually, analyzing the lifecycle behavior is technically
interesting as it is related to energy consumption behavior of theAndroid applications
(e.g., [16]).

3It includes the Alloy descriptions and the RODIN archive.

346 S. Nakajima

Acknowledgements The idea of the two-staged method grew out of a position statement of this
author at an ICFEM 2014 panel discussion session, Are Formal Engineering Methods and Agile
Methods Friend or Enemy?, organized by Professor Shaoying Liu of Hosei University, to whom
we express our sincere thanks for motivating us to consider the subject matter.

References

1. Android, http://developer.android.com
2. J.R. Abrial, The B-Book - Assgining Programs to Meanings (Cambridge University Press,

Cambridge, 1996)
3. J.R. Abrial, Modeling in Event-B - System and Software Engineering (Cambridge University

Press, Cambridge, 2010)
4. R.-J. Back, K. Sere, Superposition refinement of reactive systems. Form. Asp. Comput. 8(3),

324–346 (1996)
5. E.W. Dijkstra, The Humble Programmer – ACM Turing Award Lecture (1972)
6. R. Gmehlich, C. Jones, Experience of deployment in the automobive industry, in [17] (2013),

pp. 13–26
7. S. Hallerstede, M. Jastram, L. Ladenberger, A method and tool for tracing requirements into

specifications. J. Sci. Comput. Programm. 82, 2–21 (2014)
8. J. He, C.A.R. Hoare, J.W. Sanders, Data refinement refined - resume, in Proceedings of the

ESOP’86 (1986), pp. 187–196
9. D. Jackson, J. Wing, Lightweight formal methods. IEEE Comput 29(4), 21–22 (1996)
10. D. Jackson, Software Abstractions – Logic, Language, and Analysis, Rev. edn. (TheMIT Press,

Cambridge, 2012)
11. P.G. Larsen, J.S. Fitzgerald, S. Riddle, Learning by doing: practical courses in lightweight

formal methods using VDM++, CS-TR-992, University Newcastle upon Tyne (2006)
12. P.J. Matos, J.M. Silva, Model checking Event-B by encoding into alloy (an extended abstract),

in Proceedings of the ABZ 2008 (2008), p. 346
13. S. Nakajima, A refinement planning sheet, in Rodin User and Developer Workshop 2010,

Dusseldorf (2010)
14. S. Nakajima, Using alloy in introductory courses of formal methods, in Proceedings of the 4th

Workshop on SOFL+MSVL (2015), pp. 97–110
15. S. Nakajima, Analyzing lifecycle behavior of android application components, in Proceedings

of the COMPSAC Workshop 2015 (2015), pp. 586–591
16. S. Nakajima, Model-based analysis of energy consumption behavior, in Trustworthy Cyber-

Physical Systems Engineering (CRC Press, Boca Raton, 2016), pp. 271–305
17. A. Romanovsky, M. Thomas (eds.), Industrial Deployment of System Engineering Methods

(Springer, Berlin, 2013)
18. W. Su, J.-R. Abrial, R. Huang, H. Zhu, From requirements to development: methodology and

example, in Proceedings of the ICFEM 2011 (2011), pp. 437–455
19. S. Yeganefard, M. Butler, Structuring functional requirements of control systems to facilitate

refinement-based formalization. ECEASST 46 (2011)

http://developer.android.com

	Preface
	Contents
	 Domain Modelling
	 Modelling an E-Voting Domain for the Formal Development of a Software Product Line: When the Implicit Should Be Made Explicit
	1 Introduction
	2 E-Voting Machines
	2.1 Complex, Interacting Requirements
	2.2 Remote Electronic Voting
	2.3 End-to-End Verifiable Systems
	2.4 Laws Standards and Recommendations

	3 Need for a Formal Domain Model: Ontology
	3.1 Terminology: Dictionaries and Glossaries
	3.2 When the Explicit Should Be Implicit: Ontologies and Domain-Specific Languages

	4 E-Voting: Examples of When the Implicit Should Be Explicit
	4.1 DUALVOTE—E-Pen
	4.2 Implicit Programming Language Semantics
	4.3 Negative Counts—Can Anything Be Too Obvious?
	4.4 Vote Coercion in a Typical Voting Station

	5 A SPL for E-Voting
	5.1 A Feature Tree Model for E-Voting
	5.2 Formalisation in Event-B
	5.3 A Pipeline Design Pattern
	5.4 Feature-Driven Refinement Towards Implementation

	6 Conclusions
	References

	 Domain-Specific Developments Using Rodin Theories
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 Theory Plug-in

	3 Theory Instantiation
	4 Case Study
	4.1 System Descriptions
	4.2 Development Strategy
	4.3 Development Using ADTs

	5 Conclusion
	5.1 Summary
	5.2 Advantage of This Approach

	References

	 Integrating Domain Modeling Within a Formal Requirements Engineering Method
	1 Introduction
	2 Background
	2.1 Event-B
	2.2 SysML/KAOS

	3 Expression of the Semantics of SysML/KAOS Models in Event-B
	3.1 Semantics of Goal Models
	3.2 Toward an Event-B Expression of the Semantics of Domain Models

	4 State of the Art on Domain Modeling in Requirements Engineering
	4.1 Existing Domain Modeling Approaches
	4.2 A Study of Ontology Modeling Languages

	5 Our Approach for Domain Modeling
	5.1 Presentation
	5.2 Illustration

	6 Conclusion
	References

	 Knowledge Based Modelling
	 Operations over Lightweight Ontologies and Their Implementation
	1 Introduction
	2 A Formal Framework
	2.1 A Brief Review of Basic Concepts
	2.2 Definition of the Ontology Operations
	2.3 Lightweight Description Logic

	3 Basic Procedures for Lightweight Inclusions
	3.1 A Decision Procedure for Lightweight Inclusions
	3.2 Minimizing the Set of Constraints of a Lightweight Ontology

	4 Implementation of the Operations
	4.1 A Brief Discussion on the Implementation of the Operations
	4.2 Implementation of Projection
	4.3 Implementation of Intersection
	4.4 A Note on Difference

	5 Selected Related Work
	6 Conclusions
	References

	 Formal Ontological Analysis for Medical Protocols
	1 Introduction
	2 Ontology
	2.1 Ontology in Medical Domain

	3 The Modelling Framework: Event-B
	4 Modelling Methodology
	5 Case Study: ECG Protocol
	5.1 Domain Modelling
	5.2 System Modelling
	5.3 Model Annotation
	5.4 Model Verification
	5.5 Anomalies

	6 Related Work
	7 Conclusion
	References

	 Deriving Implicit Security Requirements in Safety-Explicit Formal Development of Control Systems
	1 Introduction
	2 Systems View on Safety and Security Interdependencies
	3 Modelling and Refinement in Event-B
	4 Generic Development of a Control System
	4.1 Abstract Specification: Overall System Behaviour
	4.2 First Refinement: Introducing Model Data
	4.3 Second Refinement: Specifying Controller Logic
	4.4 Third Refinement: Attack Modelling

	5 Case Study: The Battery Charging System
	5.1 Case Study Description

	6 Event-B Development of the Battery Charging System
	6.1 Initial Specification
	6.2 The First Refinement
	6.3 The Second Refinement
	6.4 The Third Refinement
	6.5 Discussion

	7 Related Work and Conclusions
	References

	 Towards an Integration of Probabilistic and Knowledge-Based Data Analysis Using Probabilistic Knowledge Patterns
	1 Introduction
	2 Relational Knowledge Patterns
	2.1 Syntax and Fixed-Point Semantics
	2.2 Minimising Redundancy in Knowledge Patterns
	2.3 Provenance-Based Pattern Revision

	3 Probabilistic Knowledge Patterns
	3.1 Syntax and Interpretation of Probabilistic Knowledge Patterns
	3.2 Semantics for a Recursion-Free Set of Patterns
	3.3 Semantics for a Recursive Set of Patterns

	4 Discussion and Conclusion
	References

	 Proof Based Modelling
	 An Explicit Semantics for Event-B Refinements
	1 Introduction
	2 A Small Example
	2.1 Formalization in Event-B
	2.2 Interpretation of Machines as Transition Systems
	2.3 On Event Parameters

	3 A Very Short Presentation of the Coq Proof Assistant
	3.1 Terms and Types

	4 Formalizing Abstract Machines in Coq
	4.1 Configurations and Event Labels
	4.2 Dependently Typed Events

	5 Operational Semantics of Abstract Machines
	5.1 On Invariants
	5.2 Deadlock Freeness
	5.3 Traces

	6 Formalizing Refinements
	6.1 Parameterization of the Definition
	6.2 Event Refinement
	6.3 Gluing Invariants
	6.4 Proving Gluing Invariants

	7 Conclusion and Future Work
	References

	 Contextual Dependency in State-Based Modelling
	1 Introduction
	2 Modelling in Event-B
	2.1 Context as Constraints
	2.2 Context as Hypotheses
	2.3 Context as Dependencies

	3 Dependency of Models
	4 Case Studies
	4.1 Example of an Experiment
	4.2 ERP Management System
	4.3 Applying the Dependency Mechanism for Voting Protocols

	5 Contextualizing Systems Versus Refinement of Event-B Models
	6 Conclusion
	References

	 Configuration of Complex Systems—Maintaining Consistency at Runtime
	1 Introduction
	2 Modeling Framework
	3 Overview of the Configuration Management Framework
	3.1 System Configuration Design—Integration of Configuration Fragments
	3.2 System Runtime—Consistency Preservation with Change Management

	4 Partial Validation of Configurations
	4.1 Partial Validation Technique
	4.2 Evaluation

	5 Related Work
	6 Conclusion
	Appendix: A Semi-formal Proof for the Partial Validation Approach
	Definitions
	Modifying the Model
	The Proof of Partial Validation
	References

	 Assurance Cases
	 Towards Making Safety Case Arguments Explicit, Precise, and Well Founded
	1 Introduction
	2 Preliminary Observations
	3 Structured Arguments in Safety Reasoning
	3.1 Background
	3.2 Some Concepts
	3.3 Some Comments on the Logic of Safety Arguments
	3.4 Some Final Remarks on Safety Arguments

	4 Evidence in Safety Reasoning
	4.1 Evidence in Safety Cases
	4.2 Some Comments on Evidence in Safety Arguments

	5 Discussion
	6 Conclusions
	References

	 The Indefeasibility Criterion for Assurance Cases
	1 Introduction
	2 Assurance and Confidence in Freedom from Failure
	3 Epistemology and the Indefeasibility Criterion
	4 Interpretation and Application of Indefeasibility
	4.1 Evidential Steps
	4.2 Reasoning Steps

	5 Feasibility of Indefeasibility
	6 Challenges and Reviews
	7 Probabilistic Interpretation
	8 Conclusion
	References

	 Refinement Based Modelling
	 An Event-B Development Process for the Distributed BIP Framework
	1 Introduction
	2 Event-B
	2.1 Introduction to Event-B
	2.2 Case Study
	2.3 Event-B Extensions

	3 The BIP Component-Based Model
	3.1 Atomic Components
	3.2 Coordination Between BIP Components
	3.3 BIP Execution and Operational Semantics
	3.4 The BIP Tool-Chain

	4 Distributed Event-B and BIP
	4.1 Decomposable Machine and Synchronization Event
	4.2 Decomposition of a Non-deterministic Event
	4.3 Data Transfer
	4.4 Using a Remote Variable in an Action
	4.5 Using a Remote Variable in a Guard

	5 Toward a Distribution Process
	5.1 The Decomposition Process
	5.2 The Event Splitting Step
	5.3 The Mapping Step
	5.4 The Code Generation Step

	6 Related Work
	7 Conclusion
	References

	 Explicit Exploration of Refinement Design in Proof-Based Approach: Refinement Engineering in Event-B
	1 Introduction
	2 Preliminary: Refinement in Event-B
	2.1 Characteristics of Refinement Mechanisms
	2.2 Example of Event-B Models

	3 Refinement Design and Its Impact
	3.1 Comprehensibility and Verifiability
	3.2 Reusability

	4 Our Experiences: Planning and Refactoring of Refinement Design
	4.1 Explicit Manipulation of Refinement Design
	4.2 Refinement Planning
	4.3 Refinement Refactoring

	5 Related Work
	5.1 Engineering Disciplines in Proof-Based Approaches
	5.2 Refinement Support in Event-B
	5.3 Other Approaches for Quality of Formal Models

	6 Prospects
	References

	 Constructing Rigorous Sketches for Refinement-Based Formal Development: An Application to Android
	1 Introduction
	2 Refinement-Based Modeling with Event-B
	3 Two-Staged Method
	4 A Case Study
	4.1 Android Application
	4.2 Alloy Descriptions
	4.3 Refinement Plan
	4.4 Event-B Descriptions

	5 Discussions
	6 Conclusion
	References

