
Chapter 11
Meta-Regression

Chang Xu and Suhail A. R. Doi

11.1 Basic Theory

11.1.1 The Classical Meta-Regression Method

Suppose θ̂ j is the effect estimated in the jth study, then under the fixed-effect model,

θ̂ j ∼ N (μ, σ 2
j )

The fixed-effect model assumes all the studies are from the same population so
there is no heterogeneity between these studies (Thompson and Higgins 2002). Now
let’s consider the random-effect model:

θ̂ j ∼ N (θ j , σ
2
j ); θ j ∼ N (μ, τ 2)

The heterogeneity term τ 2 is generated under the assumption that the difference
between the overall population parameter (μ) and the study population characteristics
modified effect (e.g. difference in mean age) is distributed normally with a common
variance (Thompson and Sharp 1999). The regression model is then

θ̂ j = μ + β1 · x1 + β2 · x2 + . . . + βi · xi + b j + ε j

C. Xu (B) · S. A. R. Doi
Qatar University, Doha, Qatar
e-mail: xuchang2016@runbox.com

S. A. R. Doi
e-mail: sardoi@gmx.net

© Springer Nature Singapore Pte Ltd. 2020
S. Khan, Meta-Analysis, Statistics for Biology and Health,
https://doi.org/10.1007/978-981-15-5032-4_11

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5032-4_11&domain=pdf
mailto:xuchang2016@runbox.com
mailto:sardoi@gmx.net
https://doi.org/10.1007/978-981-15-5032-4_11


244 C. Xu and S. A. R. Doi

Here x represents the study-level characteristics and ε j represents the random
error with the variance of σ 2

j and b the non-random error with the variance of τ 2,
both of which share the expectation (mean) of zero. Because all the characteristics
(independent variables) are mean or median based on the study-level, each study
is independent from another, and these variables are independent from each other.
To take account of the variance of error information into the meta-regression, the
weighted least square method can be used to get the parameter estimations.

Aproblemwithfixed-effectmeta-regression is thatmost studies are heterogeneous
and thus there is overdispersion of the data compared to themodel that random-effect
meta-regression tries to address (Harbord and Higgins 2008). However, it should be
pointed out that with increasing heterogeneity of studies, the random-effect weights
becomemore equal and the regression therefore becomesmore andmore unweighted
and this tends to lead to continued overdispersion with this model as well (Doi et al.
2015). As expected, when variables are added (or dropped) within the regression
model, the total weighted variance (Q) will change, while the within study variance
(σ 2

j ) is known to us and keeps the same. This will result in the change of the between
study variance (τ 2) so that when it reduces, this means that the variable can explain
part of the heterogeneity and when it increases, this means adding the variable will
make the fitting of the model poorer and the variable should not be added and of
course is not the source of heterogeneity. The proportion of heterogeneity explained
by the added variables is then

R2 = [(τ 2
0 − τ 2

model)
/

τ 2
0 , 0]

The equation implies that when the heterogeneity is reduced then the τ 2
model ≤ τ 2

0 ,
and when heterogeneity increased that τ 2

model > τ 2
0 , with the proportion tending

towards zero (Thompson and Higgins 2009). Here the proportion is actually the
same as the R square of the generic regression and is then indexed as R squared.

R2 = τ 2
0 − τ 2

model

τ 2
0

= 1 − SSres
SStotal

= SSmodel

SStotal

Here τ 2
0 is the heterogeneity when we did not add any variables into the regression

and obviously, the result of this model is the pooled effect estimate of the population
parameter μ(the constant term).

θ̂ j = μ + b j + ε j
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11.1.2 The Robust Error Meta-Regression Method

The classical meta-regression model is based on the random-effect meta-analytic
modelwhile thismodel has the limitationwenoted previously.An alternative solution
is to use the generic regression with the robust (Huber-Eicker-White-sandwich) error
variances to account for the underestimated variance in such analyses under the
regression model (Hedges et al. 2010). These standard errors are usually bigger than
the ordinary least squares (OLS) standard errors when effect sizes further from the
mean are more variable. Weights applied to this model are fixed-effect weights and
overdispersion is avoided through use of robust standard errors.

11.2 Application in MetaXL/STATA

11.2.1 The Meta-Regression Dataset

The IHDChol example uses 28 randomized trials of serum cholesterol reduction
(by various interventions), and the risk of ischaemic heart disease (IHD) events
observed. Both fatal IHD and non-fatal myocardial infarction were included as IHD
events, and the analysis is based on the 28 trials reported by Law et al. (Law et al.
1994). In these trials, cholesterol had been reduced by a variety of means, namely
dietary intervention, drugs, and, in one case, surgery. The meta-regression looks at if
increased benefit in terms of IHD risk reduction is associated with greater reduction
in serum cholesterol, in order to lend support to the efficacy of cholesterol reduction
and to predict the expected IHD risk reduction consequent upon a specified decrease
in serum cholesterol (Table 11.1).

11.2.2 The Robust Error Meta-Regression in STATA

Wemayfirst use the inverse-varianceweightswith the following command to conduct
a generic meta-analysis. The reason we use the inverse-variance weights is that with
the robust standard errors itmimics the IVhetmodel (Doi et al. 2015) ofmeta-analysis
which is a robust error fixed-effect model and results can then be compared against
the latter. The pooled OR under the IVhet model is 0.83 (95%CI: 0.72, 0.95) and the
relative heterogeneity (I2) is 45.7% and the between-study variance (τ 2) is 0.0188.
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Table 11.1 Comparisons on the IDH events of various interventions

Study name N1 Cases1 Non-cases1 N2 Cases2 Non-cases2 Chol_reduc

T1 5331 173 5158 5296 210 5086 0.55

T2 244 54 190 253 85 168 0.68

T3 350 54 296 367 75 292 0.85

T4 2222 676 1546 2789 936 1853 0.55

T5 145 42 103 284 69 215 0.59

T6 279 73 206 276 101 175 0.84

T7 1906 157 1749 1900 193 1707 0.65

T8 71 6 65 72 11 61 0.85

T9 1149 36 1113 1129 42 1087 0.49

T10 88 2 86 30 2 28 0.68

T11 2051 56 1995 2030 84 1946 0.69

T12 94 1 93 94 5 89 1.35

T13 4541 131 4410 4516 121 4395 0.7

T14 424 52 372 422 65 357 0.87

T15 199 45 154 194 52 142 0.95

T16 229 61 168 229 81 148 1.13

T17 221 37 184 237 24 213 0.31

T18 28 8 20 52 11 41 0.61

T19 130 47 83 134 50 84 0.57

T20 421 82 339 417 125 292 1.43

T21 6582 62 6520 1663 20 1643 1.08

T22 94 2 92 52 0 52 1.48

T23 23 1 22 29 0 29 0.56

T24 60 3 57 30 5 25 1.06

T25 1018 132 886 1015 144 871 0.26

T26 311 35 276 317 24 293 0.76

T27 79 3 76 78 4 74 0.54

T28 76 7 69 79 19 60 0.68
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From the results, we can see that there ismoderate heterogeneity (I2 = 45.7%, tau2

= 0.0294) between studies. The total variance based on Mantel-Haenszel estimates
is 49.69.

Using a robust error meta-regression without covariates, we can reproduce these
results as follows:

Wemay further investigate whether the amount of cholesterol reduction is associ-
ated with the lnORs across studies by the robust error meta-regression analysis with
inverse-variance weights and where _ES and _seES are the effect size and standard
error of the effect size respectively.
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The meta-regression analysis suggests there is significant association between
amount of cholesterol reduction and lnORs (p < 0.001) and each unit reduction in
cholesterol will lead to a 38% reduction of the odds (OR = 0.62, 95%CI: 0.52,
0.74). The proportion of between-study variance explained by cholesterol reduction
was 23.8% (R2 = mss

mss+rss , see below). Here mss indicate the model sum of square
(SSmodel ) while rss is the residual sum of squares (SSres). The ereturn list command
allows us to see the total variance when the chol_reduc variable was added into the
model. The e(r2_a) gives the adjusted R2 (20.9%).

We may observe that the total variance also reduced (Fmodel = 30.23). And we
can use the total variance to calculate the I2 statistic

I 2model = Fmodel − (d f _r)

Fmodel
= 30.23 − 26

30.23
= 13.99%

To depict this relationship we can create a twoway plot as follows:
twoway (scatter _ES chol_reduc [w = 1/(_seES2)], msymbol(oh)) (lfit _ES

chol_reduc [w = 1/(_seES2)], yline(–0.193) ytitle(“Effect size (interval scale)”))
Figure 11.1 presents the regression plot between amount of cholesterol reduction

and lnORs. The figure may help us to explain the reason for the reduction on total
variance. The dash line is the pooled lnOR by IVhet method [ln(0.825) = –0.193]
without adding the chol_reduc variable and the solid line is the linear prediction for
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Fig. 11.1 The regression plot between amount of cholesterol reduction and lnORs

cholesterol reduction and lnORs.Aswe known, the total variance is the sumweighted

distance for the observed value to the predicted value (Q = ∑
w j ·

(
θ − θ̂

)2
).

Obviously, the sum weighted distance for the observed value to the dash line is
different to the linear prediction and the latter shows better fitting.

As we add the chol_reduc variable into the regression model, the risk of IHD is
comparable when the cholesterol reduction is zero (OR = 1.13, 95%CI: 0.98, 1.30).

The meta-regression may also be done using the classic random-effect meta-
regression method using themetareg command. We then obtain the following results
where _seES is the standard error for the effect size (_ES) in each study from the
admetan command described earlier:
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The point estimates are similar but in this instance the confidence intervals are
slightly different given the Knapp-Hartung modification (Knapp and Hartung 2003).

11.2.3 Meta-Regression in MetaXL

The MetaXL add-in program in Excel also provide solutions for meta-analysis and
it allows us to generate data for meta-regression. The MARegresData function in
MetaXL allows the creation of a regression dataset that can be directly pasted in Stata
and used to run meta-regression analyses under this framework. The dataset appears
in a table under the Meta-Regression data tab that will show in the MAInputTable
output pop-up window when a MARegresData function is linked to the MAInput-
Table function. The MARegresData function creates all the necessary variables and
weights required for the analysis.

The regression dataset table consists of nine fixed columns that describe each
study’s characteristics, and any number of user-defined columns that describe each
study’s moderator variables. The fixed columns are defined in the table below
(Table 11.2).

Please note that the regression is performed on the transformed variables: the
transformed effect size called “t_es” as well as a weight under the model of interest
called “weight”. (The un-transformed variables u_es and its CI are there only for the
convenience of the user, useful when back-transformed outputs are cumbersome to
obtain, such as with the double arcsine transformation for prevalence). The variable
t_es is the outcome variable and this is regressed against the user-defined moderator
variables in the dataset.

We open the IHDCholMetaRegres example module and use the MAInputTable
and theMARegresData function preparing the meta-regression data byMetaXL.We
then see the meta-regression data is presented in the table (Fig. 11.2).

Table 11.2 Definition of variables for meta-regression in cholesterol reduction example

Variable name Contents

ID Study name

t_es Transformed effect size

se_t_es Standard error of the transformed effect size

var_t_es Variance of the transformed effect size

u_es Un-transformed effect size (i.e. natural scale)

lci_u_es Lower CI of the un-transformed effect size

uci_u_es Higher CI of the un-transformed effect size

inv_var Inverse of the variance of the transformed effect size

weight Weight of the study in the meta-analysis (normalized
weights that sum to 1)
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Fig. 11.2 The output sheet for meta-regression data prepared for meta-regression

Right-click on the “Meta-regression data” table in the results window and click
copy. Then we paste the data into Stata software and run the robust meta-regression.

11.3 Meta-Regression for Categorical Variables

In the above example we illustrated meta-regression for continues variable, there
comes to the question that when the variable is discontinuous how to conduct the
meta-regression? Let’s use the same dataset to simulate a categorical variable by
categorizing the cholesterol reduction into three levels (<0.5, 0.5 ~ 0.99, 1 ~ 1.5) and
assign 0, 1, 2 to these three dummy variables.
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recode chol_reduc (min/0.499 = 0) (0.5/0.999999 = 1) (1/max = 2),
gen(chol_grp)

Now we get the dataset as show in the following figure (Fig. 11.3).
Again, we run the meta-regression analysis with indicator variable for group to

allow a categorical robust meta-regression.

Fig. 11.3 Simulated categorical variable for meta-regression
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We may observe that when using the categorical variable, the proportion of
between-study variance explained is much less than the continues one (18.6% versus
23.8%). The constant takes the value of the zero category (reference group).

11.4 Multivariable Meta-Regression

Both classical meta-regression method and the robust error meta-regression method
allow us to achieve multivariable meta-regression just like the multivariable regres-
sion in individual-level data (Thompson and Higgins 2009). Sometimes multivari-
able meta-regression is necessary because single covariate generally is only able to
explain part of the between-study heterogeneity. In our above example, we know
that cholesterol reduction can explain 23.8% of the between-study heterogeneity but
not 100%. This means there is still a lot of between-study heterogeneity due to other
covariates, which may be the mean age, the region, the mean body mass index and
so forth. To address this, we may just add these variables into the meta-regression
model. For example, suppose we have another covariate of age in the above example,
we may then put both cholesterol and age into the model.

It is notable that more covariates mean we need more studies (one study is a
data point) to ensure the statistical power of meta-regression. Then, when we put
covariates into the meta-regression model, we should first ensure a sufficient number
of studies and note that for every covariate added we need at least 10 additional
studies. Therefore, two covariates need at least 20 studies to be present.When the total
number of studies is less than 10, it is not appropriate to employ a meta-regression
analysis and the subgroup analysis may be employed as an alternative solution to
detect the source of heterogeneity. Similarly, when the total number of studies is less
than 20, we may only use 1 covariate to fit the meta-regression.
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Some characteristics cannot be treated as a covariate for meta-regression, for
example, the sample size. This is because sample size in each study is highly corre-
lated with the standard errors of effect estimates. When entered into the meta-
regression model, it will break the assumption of orthogonality and make the
regression model invalid (Dobson and Barnett 2008).

It might be noted that subgroup analysis is a special case of meta-regression of
categorical variables. The difference is that subgroup analysis can only deal with one
variable each time and does not have a relative comparison to the reference group
within the analysis. The advantage of subgroup analysis to meta-regression is that it
does not have the restriction regarding the minimum number of studies. It is notable
that for subgroup analysis the interaction test of the potential difference of the effects
among sub groups is generally underpowered when there are 3 or more sub groups.

11.5 Summary

In this chapter, we give a detailed introduction to the meta-regression method,
including the basic theories, the step-by-step application for meta-regression in Stata
and MetaXL as well as the multivariable meta-regression. We suggest that readers
read this chapter with Chap. 13 which introduces dose-response meta-analysis, as
this may help readers acquire a deeper understanding of both meta-regression and
dose-response meta-analysis.
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