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Preface

The main purpose of this book is to make meta-analysis easy for all researchers and
users, especially for the students, health scientists, public health workers and
nontechnical scholars who wish to perform meta-analysis and interpret the results
for the first time. It simplifies all concepts, methods, computations and models
related to meta-analysis through heuristic examples and illustrations using real-life
data. It takes a step-by-step approach to performing meta-analyses using different
statistical models for various effect size measures.

Evidence-based approach has been adopted in many areas of modern
decision-making. It is more frequently used in all branches of the health sciences as
well as in education, psychology and social sciences. The evidence-based
decision-making primarily relies on the systematic reviews which often includes
meta-analysis.

Meta-analysis is a very important component of many systematic reviews and is
the best way to provide systematic review of quantitative data. It enables
researchers to pool summary statistics/data of individual independent studies to
synthesise the results for all the studies under investigation.

The idea of writing this book evolved from my efforts in preparing notes and
making presentations in a series of workshops on statistical meta-analysis with
applications in health sciences in Malaysia, Brunei, Japan and Bangladesh.

Effect Size

Meta-analyses are conducted on the summary data on various effect size measures
that numerically evaluate the effectiveness of any intervention or treatment. In most
studies, meta-analytic methods are used to estimate the unknown common popu-
lation effect size. The effect size is the common name to a family of indices that
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measure the magnitude of a treatment or intervention effect. Depending on the type
of study and the underlying outcome variables, there are various measures that can
be used to determine the effect size for the intervention of interest.

If the underlying outcome variable is binary (or categorical with two arms), the
effect size is measured by Relative Risk or Risk Ratio (RR) or Odds Ratio (OR) or
simple proportion or difference of two proportions. If the outcome variable is
continuous, the effect size is measured by Standardised Mean Difference (SMD) or
Weighted Mean Difference (WMD). If the outcome of interest is the linear rela-
tionship between two quantitative variables, the correlation coefficient is the effect
size measure.

Statistical Model

Every meta-analysis uses statistical models regardless of the effect size measure
involved in the investigation. The oldest statistical model is the Fixed Effect
(FE) model. This is applicable when effect size of interest is homogeneous across
all studies, that is, there is no heterogeneity in the data, and variation among the
observed effect size is only due to within studies random fluctuation attributable to
chance causes. It also assumes that the random error (in the data) follows a normal
distribution. To address the issue of heterogeneity, the Random Effects (REs) model
is used. Under this model, the studies included in any investigations are considered
to be a random sample from the population of all studies, and there is significant
between-study variation along with the within-study variation. It assumes that both
random error and treatment effect follow normal distribution. A more recent
approach to tackle heterogeneity is the Inverse Variance Heterogeneity (IVhet)
model that does not require any of the unrealistic assumptions of REs.

Meta-analysis is about estimating the common population effect size of all studies
based on the observed data available from the selected primary studies. Normally
point estimates (and standard deviations) of the common effect size observed from
the individual studies are used to obtain the confidence intervals. The results pro-
duced by any meta-analysis are usually presented in a forest plot which is a scat-
terplot of 95% confidence intervals of the effect size of every individual studies, and
that of the common effect size using the pooled/synthesised estimate.

In any specific investigation involving meta-analysis, the researcher requires to
identify the type of outcome variable involved, decide appropriate effect size
measure, select correct statistical model and then proceed to perform meta-analysis
using preferred statistical software (e.g. MetaXL), and finally interpret the results
produced by the meta-analytic methods.
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Simplified Approach

This book simplifies meta-analytical methods by dedicating a chapter for each
of the commonly used effect size measures such as RR, OR, SMD, WMD, etc.
When any researcher identifies the effect size measure of interest, it is easy to go to
the relevant chapter of the book to find all related concepts, methods and
step-by-step guidance to perform meta-analysis.

The book uses a very easy to use free software as an add-on to MS Excel to
demonstrate meta-analytical methods with real datasets. The MetaXL package is
available for free download from Internet and comes with an Instruction Manual to
guide the users to perform meta-analysis. For the benefit of the users, the book also
provides Stata codes to perform meta-analysis on each of the popularly known
effect size measures.

The Contents Covered

Chapter 1 introduces the systematic review as a general premise of synthesising
independent studies within the framework of evidence-based decision-making. The
second chapter discusses elementary concepts related to meta-analysis along with
introducing some issues and statistical fundamentals. These two chapters form
Part I of the book.

Part II of the book consists of three chapters on general introduction to the
relevant concepts, definitions, illustrations and interpretation of effect size measures
for binary outcomes of two arms studies. Chapter 3 introduces the relative risk or
risk ratio and odds ratio. Chapter 4 covers meta-analysis of Relative Risk (RR) with
illustrative examples including construction of forest plot using MetaXl under
different statistical models and interpretation of results. Similar contents on odds
ratio (OR) are provided in Chap. 5. Subgroup analysis and detection of publications
bias (details in Chapter 2) using funnel plot and Doi plot are briefly introduced in
these chapters. The one proportion problem is covered in Chap. 6, and the risk
difference in Chap. 7.

The meta-analytic methods for continuous outcome variables are covered in
Part III which includes Standardised Mean Difference (SMD) in Chap. 8, Weighted
Mean Difference (WMD) in Chap. 9 and correlation coefficient in Chap. 10.

Part IV includes special topics in meta-analysis, namely, Meta-regression
in Chap. 11, Publication bias in Chap. 12, and Dose-response meta-analysis in
Chap. 13.
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Part I
Introduction to Systematic Review
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Chapter 1
Introduction to Systematic Review

In the era of evidence-based decision-making systematic reviews and meta-analyses
are being widely used in many medical practices, public health departments, govern-
ment programs, business offices, and academic disciplines including education
and psychology. Obviously, not everyone involved in the evidence-based decision-
making is evidence-informed, and aware of the various levels and/or quality of
the evidence as well as the issues that directly impact on the validity and trust-
worthiness of the results. Research synthesis is an essential part of evidence-based
decision-making.

1.1 Introduction to Evidence-Based Decision-Making

Theworld is increasinglymoving towards evidence-based decision-making due to its
proven ability to guide practitioners and policymakers to find outwhich interventions
ormethods or programswork effectively andwhich don’t. It enables decision-making
on programs, methods, interventions, treatments, practices, or policies based on the
best available evidence in the formof historical record, experiential outcome, relevant
data, contextual understanding and discipline knowledge. The main emphasis is to
find out the method or procedure that has produced expected and reliable results and
delivered the targeted outcome. The decision-makers use evidence to decide which
method/intervention works the best to achieve the objectives, and avoid the ones
that are ineffective. Thus the effectiveness of the evidence-based decisions directly
depend on the quality of the evidence and it is crucial to be evidence-informed, that
is, the decision-makers must be aware of the factors that impact on the quality of
evidence along with any shortcomings in the process of gathering, processing and
presenting evidence.

© Springer Nature Singapore Pte Ltd. 2020
S. Khan, Meta-Analysis, Statistics for Biology and Health,
https://doi.org/10.1007/978-981-15-5032-4_1
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4 1 Introduction to Systematic Review

Although evidence-based decision-making originated and has been frequently
used in medical procedures and health sciences, it is also used in a wide range of
areas including agriculture, education,management, business, psychology, and social
sciences. Obviously the validity of overall evidence, and hence the decisions based
on them, are directly dependent on the quality of the underlying sources of evidence
and the methodology employed to extract and process them. Hence the quality of
evidence is crucial to any good evidence-based decision-making.

In an article (Breckon 2016) states that the policy-makers often pay lip-service
to the idea of basing decisions on available evidence, but anyone who has ever tried
to get evidence listened to and acted upon knows how hard it can be to achieve cut-
through. What, then, are the best ways for getting research used by public decision-
makers? It is hard to know when there are so many approaches to choose from.
A recent review, conducted by the Evidence for Policy and Practice Information
and Co-ordinating Centre (EPPI-Centre) at University College London, counted 150
different techniques in all. This article cited the recent work of (Langer et al. 2016)
to summarise the grouping of the above techniques used to form evidences into
six categories: Awareness, Agree, Access and communication, Interact, Skills, and
Structure and process.

1.2 Gathering Research Data

Gathering of research data is a crucial first part of any systematic review, and
research synthesis is the foundation of evidence-based decision-making. Evidence
from different sources on a specific research question or topic of interest is gath-
ered and analysed using systematic review methodologies. This is followed by the
combination of quantitative study outcomes from independent studies to find an esti-
mate of the synthesized outcome representing the unknown population parameter of
interest—a process known as meta-analysis. The strict implementation, assessment
and monitoring of the underlying selection and exclusion criteria, study protocol and
quality assessment ensure that the results of the synthesis are reproducible.

Gathering and reviewing data systematically is called the systematic reviewwhose
first step is to identify studies that satisfy the predetermined inclusion criteria, and
extract the relevant summary statistics from the selected studies adhering to agreed
review procedures and protocols.Meta-analysis, on the other hand, is the quantitative
part of the synthesis and enables us to arrive at a numerical summary of results
(discussed in detail in other chapters).

The quality of the results produced through research synthesis depends on the
quality of the studies and their design. If the selected studies are of high quality,
then the results constitute the highest level of evidence. However, there are genuine
issues related to such syntheses that directly impact on the quality of the final result.
It is absolutely essential that policy-makers, and the producers and end users of such
syntheses are aware of the weaknesses and strengths of the underlying processes and
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techniques so that they could assess the robustness of their results. This chapter intro-
duces some basic concepts andmethods in research synthesis and critically examines
the strengths and weaknesses of the technique to provide insightful guidance to help
professionals who are engaged in evidence-based decision-making.

Introduction of research synthesis in the process of the evidence-based decision-
making is a milestone to avoid selection bias, achieve consistency and maintain
high quality in assessing the studies with uniform standard. A number of rigorous
systems with specific selection criteria have been introduced to improve the system-
atic reviews to achieve repeatability or reproducibility of studies. The statistical
meta-analysis is the key to synthesise quantitative summary data from independent
studies to estimate the common effect size (Khan et al. 2016).

1.3 Essentials of the Systematic Review

In a general term, the synthesis starts off with a systematic review which is a process
of searching, gathering and investigating the literature on a specific topic to identify,
select and analyse any evidence of interest. It is rigorous and comprehensive to make
it transparent, minimise bias and enable future replicability. In the past, narrative
reviewswere used to assess evidence andwas conducted by key leaders in the field on
broad topics in some informal, unsystematic and subjective ways. Since the narrative
reviews are conducted by individuals there is a very high chance of personal bias
in the conclusion or evidence even if the authors are expert in the area. Narrative
reviews are normally not objective in assessing the literature and evidence, and hence
not replicable. The systematic review, on the other hand, is an attempt to objectively
identify all the relevant literature with a view to selecting studies based on specific
criteria, collect the documents, review their contents and critically analyse them to
assess the underlying evidence.This kindof review is objective and free frompersonal
bias or preferences. Khan et al. (2003) describes five different steps in performing a
systematic review to ensure its objectivity.

1.3.1 Steps in Systematic Reviews

Systematic reviews must be comprehensive, exhaustive and meet the expectation
of reproducibility. To ensure these key characteristics, the following five steps have
been suggested: (1) Framing the research or study questions for the intended review,
(2) identifying all relevant work in the published and unpublished literature, (3)
assessing the quality of studies, (4) extracting and summarizing the evidence, and
(5) interpreting the findings.
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There are studies, including (Yannascoli et al. 2013), that provide comprehensive
summary of the steps in conducting good quality systematic reviews. In spite of some
differences in the details, the key steps in any systematic review literature are about
the same. Readers may find a recent study by Memon et al. (2020) useful.

Any systematic review should start with good planning and agreed strategies to
implement the plan focused to addressing the research question. The research team
requires agreement on the list of tasks and the stratergies to handle any foreseeable
problems to be addressed. The team should decide on an agreed list of what to be
done, who will do what, how the tasks will be distributed/managed, and under what
timeframe they will work. The distribution of the tasks to the members of the team
and any back-up arrangements should also be a part of the planning. The successful
implementation of the planning would require regular monitoring, assessment and
review of the progress and adjustment in any areas of the review.

To implement any systematic review, formation of a research team comprising of
experts from all relevant areas covering the study topic is the first step.

(a) Reasons for the study

The research team must clearly specify and agree on the reasons for the study as
these are the driving force for any systematic reviews. The team must be fully aware
and convinced of the reasons behind the proposed review and why the study is
important. If the reasons behind any systematic review are not convincing and strong
and the potential outcomes are not important it may not be worth spending time and
resources. The stronger the reasons for the review, the firmer will be the commitment
of the members of the research team and better will be the quality of the outcome.
It is essential to keep in mind that the expected contribution of the review to the
existing literature and how to minimize, if not eliminate any review bias to make it
reproducible.

(b) Research question

One of the very first and key issues the research team must address is the formula-
tion of the research question. This requires initial literature review to check if the
research question to be investigated has already been addressed by others, and if there
are enough accessible materials to answer the research question. Once determined,
research question is the key driver of the review. All the planning considerations
and activities will be centred around the research question. The review team must
critically discuss the appropriateness of the research question, its importance and
validity, and how to address it with the available literature relevant to the problem.

(c) Inclusion and exclusion criteria

Strict inclusion and exclusion criteria to be laid down at the outset of gathering
research data to determine which identified studies to be included in the review
are essential to avoid personal or selection bias in selecting studies identified by
literature search. The specific conditions and protocols to select studies or articles in
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the proposed review should be explicitly stated before searching databases. There are
many considerations that could potentially impact on the inclusion/exclusion criteria
but the most relevant ones (e.g., study period, study type/design, RCTs, language,
outcomemeasures) must be clearly stated and implemented throughout the searching
process of the review.

1.4 Literature Search—Strategies, Terms, and Databases

Extensive and comprehensive search of all literature relevant to the research question
are undertaken to identify and collect all materials pertaining to the review. Search
should be inclusive of all published and unpublished studies in any language and from
any country. Before embarking on the search, the teammust prepare a search strategy,
list the relevant databases and appropriate search engines, create access account to
databases (e.g. PubMed, Cochrane, EMBASE, Medline, ISI etc. for health/medical
studies), if needed. Study time period should be specified for the search to reflect that
only the studies conducted within the relevant period are considered for the review.
During the search all different combinations of the key/technical words, phrases and
terms as well as their all possible combinations related to the topic of interest must
be included using all available search engines. The search should be extended to
all major languages to make sure that the publications in non-English languages are
fully covered. It is important to record the search date to note the cut-off date up to
which the review entries are included from a particular database.

(a) Reviewing the search outcomes—independent search

At least two members of the review team should conduct independent searches in
all relevant databases and resources taking into account both electronic and paper
version of the materials, and then reconcile the information gathered independently
bymembers of the team from the identified studies. If needed, a third reviewermay be
engaged to reach agreement on the selection of any disputed studies. Any limitations
or weaknesses of the search should be documented and included in the review report.

At the first stage, the selection of studies is based on the checking the title/heading
of the articles by the independent reviewers. The studies selected at the first stage
are then critically analysed and checked based on the abstract to decide next stage of
selection. The full-text review is then conducted on the studies selected in the second
stage. Thus the identified studies could be excluded in several stages (title, abstract,
full-text) based on the selection and exclusion criteria.

The list of references or bibliographies of the items selected by full-text checking
should be reviewed to identify any additional studies on the topic of interest. The same
search, review, and checking processes and stages should be applied to any studies
identified during this reference search stage to decide on their inclusion/exclusion.
Use of platforms such as Rayyan (rayyan.qcri.org) and Endnote should be considered
when selecting studies for inclusion/exclusion.
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(b) Collection of studies and extraction of data

Once the members of the team who are responsible to conduct the search indepen-
dently identify the articles/studies to be included in the systematic review all related
documents, and records including full-text article, must be collected and listed for
review and record. A well-documented summary of key information on each study
may help conduct the review in a systematic and orderly way. The analytical and crit-
ical review of these documents would lead to the review report and ultimate evidence
to address the research question.

Data extraction from the included study documents is the next step. Data on the
items of interest should be independently collected on a spreadsheet in a predeter-
mined format. The format should allow sufficient flexibility to accommodate vari-
ation as different author may report the data in different format or scale or unit. It
may be a good idea to pilot the data extraction sheet with a subset of the studies
to make sure that the format is robust enough to deal with the diversities, if any.
Data extraction should be conducted by at least two independent reviewers. The data
from independent studies should be compared item by item, and agreement should
be reached on the final figures before embarking on the analyses of the data. In case
of any dispute/disagreement a third reviewer or an expert in the field should be called
to make the final choice.

For the better management of resources all relevant documents from the selected
studies may be saved in a separate folder with a back-up copy in a separate device.
Referencing softwares such as EndNote are invaluable to keep track of all documents
and make referencing easy and handy. In case of any missing or confusing data, the
authors of the relevant articles should be contacted for clarification or requesting the
missing information.

1.4.1 Reporting a Flow-Chart for Study Selection

Here is an example of reporting flowchart of selecting studies for the systematic
review of D1 versus D2 gastrectomy for gastric adenocarcinoma (cf. Memon et al.
2011). In this study the initial search resulted in 29 records, but finally only 6 of them
satisfied the inclusion critera and were included in the meta-analysis (Fig. 1.1).

If any other team of researchers were doing the same systematic review and meta-
analysis independently they should be reporting exactly the same flowchart up till
date of the search. This is because every systematic review must be reproducible.

1.5 Levels of Evidence

Not every type of study provides the same level of evidence. The level of evidence
in any systematic review depends on the design of the primary studies. Often the
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Fig. 1.1 Flow chart providing information through the different phases of study selection

research question of the investigation determines the choice of study design. The
primary studies provide the original data and analysis for the research synthesis.
An example of a primary literature source is a peer-reviewed research article. Other
primary sources include preprints, theses, reports and conference proceedings.

The level of evidence from primary sources are broadly categorised based on the
study design as follows (highest to lowest):

(a) Experimental: Randomised or non-randomised controlled trials
(b) Quasi-experimental studies (such as before-and-after study, interrupted time

series)
(c) Observational analytic studies (e.g. cohort study, case-control study).

More detailed rating (highest to lowest) of level of evidence for quantitative questions
in the healthcare studies is found in (Melnyk and Fineout-Overholt 2011).
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1.6 Assessing Quality of Studies

The quality of the selected studies thatmeet inclusion criteria in the systematic review
directly impact on the quality of evidence produced by the review.

By quality we mean the internal validity of the studies. Internal validity is the
extent to which the analytic study is free from systematic errors and any difference
between interventions is therefore only due to the intervention of interest. The internal
validity is threatened by the methodological errors and varieties of biases such as
selection, information and confounding biases. Depending on the type of study,
scholars/experts have suggested different tools to improve study quality. There are
more than a hundred such tools, and sometimes classified by study design. In addition,
checklists exist to ensure the reporting protocol for the systematic reviews. The
most popular and frequently used tools for assessing quality of primary studies are
summarised in the next section.

The Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group
(Moher et al. 2000) proposed a checklist containing specifications for reporting of
meta-analyses of observational studies. On the other hand the Preferred Reporting
Items for Systematic review and Meta-Analysis Protocols (Moher et al. 2009) was
published in 2015 aiming to facilitate the development and reporting of systematic
review protocols that can be adopted for randomised controlled trials.

There are several measures of study quality in the literature. One old measure
to assess the quality of studies to be included in meta-analysis that are based on
the randomised controlled trials is the Jadad score (Jadad et al. 1996). This score is
also known as the Oxford Quality Scoring System which ranges from zero to five,
zero being the lowest quality and five being the highest achievable quality based
on reporting of randomization, blinding, and withdrawals reported during the study
period.

In qualitative syntheses, researchers stop at the systematic review stage and
the information from independent studies selected by systematic search addresses
the findings without conducting meta-analysis. However, in quantitative syntheses,
numerical data from the selected studies are pooled through meta-analysis. In both
cases the synthesis must be based on all the trials/studies, both published and unpub-
lished, selected via a comprehensive literature search. A general perception is that
the quality ofmeta-analysis is of the highest level if the study is based on independent
randomised controlled trials (RCTs).

1.6.1 Tools for Assessing Study Quality

To make sure that the evidence is of high quality various tools have been suggested
to assess the quality of the study. Researchers have been continuously trying to come
up with safeguards against biases and design flaws of the individual studies. These
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safeguards comprise the tools against which studies are assessed. A brief summary
of some key tools are discussed below.

QUOROM TheQuality of Reporting ofMeta-analyses (QUOROM) addresses stan-
dards for improving the quality of reporting of meta-analyses of clinical randomised
controlled trials (RCTs) was proposed by Moher et al. (1999). The QUOROM docu-
ment consists of statements, a checklist, and a flow diagram. The checklist describes
the preferred way to present the abstract, introduction, methods, results, and discus-
sion sections of a report of a meta-analysis. The flow diagram provides information
about both the numbers of RCTs identified, included and excluded, and the reasons
for exclusion of trials.

CONSORT ConsolidatedStandards ofReportingTrials encompasses various initia-
tives developed by the CONSORT Group (Moher et al. 2012) to deal with the prob-
lems arising from inadequate reporting of randomized controlled trials (RCT). The
CONSORT Statement consists of a minimum set of recommendations for reporting
randomized trials. It offers a standard way for authors to prepare reports of trial find-
ings, facilitating their complete and transparent reporting, and aiding their critical
appraisal and interpretation.

PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) is an evidence-based minimum set of items for reporting in system-
atic reviews and meta-analyses (Moher et al. 2009). PRISMA team focuses on the
reporting of reviews evaluating randomized trials, but can also be used as a basis for
reporting systematic reviews of other types of research, particularly evaluations of
interventions.

PRISMA-P Preferred Reporting Items for Systematic Review and Meta-Analysis
Protocols (Moher et al. 2015) aiming to facilitate the development and reporting of
systematic review protocols.

MOOSE The Meta-analysis Of Observational Studies in Epidemiology (MOOSE)
group (Stroup et al. 2000) proposed a checklist containing specifications for reporting
of meta-analyses of observational studies in epidemiology, including background,
search strategy, methods, results, discussion, and conclusion. Use of the check-
list should improve the usefulness of meta-analyses for authors, reviewers, editors,
readers, and decision makers.

ROBINS-I Risk Of Bias In Non-randomised Studies of Interventions (ROBINS-I)
proposed by Sterne et al. (2016) is a new tool for evaluating risk of bias in estimates
of the comparative effectiveness (harm or benefit) of interventions from studies that
did not use randomisation to allocate units (individuals or clusters of individuals) to
comparison groups. The tool is particularly useful to those undertaking systematic
reviews that include non-randomised studies.

Themain aim of all these processes and protocols is tomake the systematic review
as objective as possible by removing potential bias from all possible sources to ensure
high level of evidence. Needless to say that the success of these protocols depends
on the strict adherence to the criteria throughout the systematic review.
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1.7 Concluding Remarks

It is inevitable that more and more decision-makers and organisations will be using
systematic reviews and meta-analyses as the practice of evidence-based decision-
making continues to growwider. It is essential that everyone involved in the evidence-
based decision-making be evidence-informed so that they could evaluate the studies
for inclusion and their quality so that any recommendations by any systematic review
can be viewed in the context of their overall study quality. The research teammust be
well-skilled to decide on what should and should not be included strictly following
the agreed procedure and criteria as well as meeting the underlying assumptions
and satisfying the technical requirements. In case of disagreement/dispute, expert
opinion, past experience and discipline knowledge will be a useful guide for the
research team.
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Chapter 2
Introduction to Meta-analysis

Meta-analysis is a statistical method used to combine numerical summary results on
effect sizemeasures, extractedduring the systematic reviewprocess fromindependent
studies to synthesize a pooled result. The synthesis of a summary statistic from aggre-
gate data in all available independent trials/studies is achieved by pooling them to find
an estimate of the unknown population effect size. Meta-analysis enables us to arrive
at a better estimate of the population effect size (parameter) compared to that reported
in individual studies especially when results of independent studies are conflicting.

Like the systematic review, the quality of the studies is important for the robustness
of results produced by meta-analyses. If the selected studies are of high quality, and
the meta-analysis is appropriately conducted, then the results constitute the highest
level of evidence. However, there are genuine issues related to meta-analyses that
directly impact on the robustness of the final results. As a result, it is incumbent on
the policy-makers, and the producers and end users of meta-analyses, to be aware of
the weaknesses and strengths of the underlying processes and techniques of meta-
analysis. In this chapterwe introduce the fundamental concepts and differentmethods
used in meta-analysis. We also critically examine the pros and cons of the different
methods to provide insightful guidance to help professionals who are engaged in
evidence-based decision-making via meta-analysis.

2.1 The Effect Size in Meta-analysis

In a systematic reviewwemay extract numeric or quantitative data on a specific inter-
vention from the selected independent studies. Often these are aggregate summary
statistics (e.g. mean and standard deviation for continuous outcome variables and
odds/risk ratios for binary/categorical outcome variables) as measures of an under-
lying effect size. These effect sizes are calculated based on the sample data in different
primary studies as estimates of the unknown common population effect size. Unfor-
tunately, the sample effect size differs from study to study and the study-specific
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values of the estimated effect size are not only different but also may have opposite
direction (sign), producing conflicting results and misleading evidence. In the face
of inconclusive or conflicting evidence from different primary studies, the challenge
is to reconcile the results to come up with a single valid estimate of the population
effect size. In other words, it is about pooling the summary effects from different
selected studies to estimate a common effect size. This is where the statistical meta-
analytical methods are essential to combine the evidence from independent primary
studies.

If the raw data (e.g. individual patient data) from all selected studies are avail-
able then one could analyse the individual-patient-data (IPD) using mega-analysis
methods. Unfortunately, in reality, it is almost impossible to access the raw data
from different authors, and hence almost universally evidence is computed from the
summary results or statistics via aggregate meta-analysis methods.

Due to the increased use of evidence-based decision-making the application of
meta-analysis has become more widespread (Khan and Doi 2015). This increased
demand for meta-analysis has also attracted statisticians to come forward in
addressing the statistical issues related to the current methods and come up with
new methods to deal with the existing and emerging complexities to improve the
quality of meta-analysis. See http://www.statsoc.org.au/general/statistical-meta-ana
lysis-potential-for-new-research-opportunities/.

The forest plot
A common way to represent the results of meta-analyses is via a graph called the
forest plot. This graph shows the confidence intervals on the unknown effect size
based on the estimates of the individual studies and the pooled estimate on the same
chart. A forest plot contains a plot of confidence intervals of the effect size against
the study identifier. A typical forest plot of risk ratio (RR) is presented in Fig. 2.1.

Fig. 2.1 A typical forest plot of effect size for treatment and control groups

http://www.statsoc.org.au/general/statistical-meta-analysis-potential-for-new-research-opportunities/
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Explanations of Forest Plot
A forest plot is a graph of 95% confidence intervals (horizontal lines bounded by
the limits) of population effect size against the study identifier of each primary
study separately and their synthesis (as meta-analysis) along with two vertical lines
representing no-effect (black solid line at RR = 1) and point estimate of the pooled
effect (dotted line through the middle of the diamond).

The point estimate of the effect size of each primary study is indicated by the
middle most point of the respective black square. The size/area of the square repre-
sents the relative weight of the individual studies in the meta-analysis. The length of
the horizontal lines on both sides of the black square represent the width of the 95%
confidence interval.

The diamond near the bottom of the graph represents the 95% confidence interval
and the point estimate for population effect size calculated by pooling results from all
individual studies. The middle most point of the diamond represents the pooled point
estimate of the population effect size and the two pointed horizontal ends represent
the limits of the 95% confidence interval for the common effect size.

The measurement scale of the effect size is represented by the horizontal axis at
the bottom of the forest plot. The values of the estimated effect size to the left side of
the no-effect vertical line (at RR = 1 here) favours the treatment and the right side
favours the control. If the diamond touches (or crosses) the no-effect vertical line
then the treatment is not significant (at the 5% level of significance).

In a primary study each subject or patient is the study unit from which data is
collected. But in meta-analysis each study/trial is the study unit, and the summary
statistics come from study-level results/data.

2.2 Statistical Background for Meta-analysis

Meta-analysis is conducted based on a number of statistical methods and models.
It uses summary statistics from independent studies as the data to synthesize the
results from primary studies. It also contains results of statistical hypothesis test.
Hence basic knowledge of statistical inference—estimation and test—are essential
for the understanding and interpretation of results produced by meta-analyses.

In every meta-analyses, the interest is to estimate the common population effect
size of an intervention—outcome association through the effect size (e.g. mean
difference). Apart from the understanding of some elementary statistical concepts
and descriptive statistics meta-analyses involve inferential statistics, estimation of
parameters and test of hypotheses. The most commonly used statistical concepts,
methods and techniques are covered below.

2.2.1 Basic Statistical Concepts

In statistics, the collection of all elements, items, cases or subjects on which an
outcome variable is measured is called a population. Any numerical characteristic of
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a population of an outcome variable is called a parameter. For example, population
mean (μ) and standard deviation (σ) are parameters. Often the word population refers
to the distribution of a random or outcome variable, and the underlying parameters
of the distribution specify the population. The parameters are often unknown and are
estimated from sample data.

A sample is a representative part of a population that retains the characteristics
of the population. This requires the samples to be randomly selected so that every
elements in the population has equal chance to be included in the sample. Results
from any non-random sample are usually biased and can’t be extended beyond the
observed data and hence it is of no use for any inferences.

Any function (e.g. sum) of a random sample from an outcome variable is called
a statistic or estimator which is used to estimate a related unknown parameter. An
estimator or a statistic (e.g. formula for samplemean) is a rule that is used to calculate
any characteristic of the sample data.

For example, if Y (emphasis is on upper case Y) is an outcome variable with
population mean μ, then based on a random sample of size n, from the population
Y, the statistic Ȳ = (Y1 + Y2 + … +Yn)/n (uppercase Y’s) sets up the rule that
instructs one to ‘add all the sample realizations and divide the sum by the number
of values’. This statistic (sample mean) is often used as an estimator of the popu-
lation mean μ. Any numerical quantity calculated from an observed sample is a
realized (and hence known) value of a statistic or estimator. This is called an esti-
mate (a fixed quantity). For example, if (y1, y2, …, yn) represents the values of n
sample obsevations from the population Y then the observed value of Ȳ becomes ȳ
= (y1 + y2 + … +yn)/n (lowercase y’s) which is an estimate of the population mean
μ. Note that the uppercase letters represent random variables and its function is also
a random variable (or estimator), whereas the lowercase letters represent fixed values
and its function is an estimate. So, Ȳ is a random variable (estimator) and it follows
a distribution. But its observed value ȳ is a fixed value (and is a point estimate).

Since any estimator or statistic is a random variable it has a distribution, and its
distribution is called the sampling distribution. If an outcome variable Y follows a
normal distribution with mean μY = μ and standard deviation σY = σ , then for
a random sample of size n, the statistic Ȳ also follows a normal distribution with
mean μȲ = μ and standard deviation σȲ = σ

/√
n. Clearly the spread (variability)

of the sampling distribution of Ȳ becomes smaller as the sample size n grows larger.
Note that the sample standard deviation of an estimator or statistic is called standard
error. If the population standard deviation of the variable Y, σ is estimated by the
sample standard deviation s (that is, σ̂ = s) based on a random sample of size n, then
the estimated standard deviation, that is, standard error of Ȳ is σ̂Ȳ = s

/√
n.

2.2.2 Confidence Interval (CI)

Confidence intervals are used to estimate unknown parameters (e.g. mean, μ) using
the sample data. Every confidence interval has a confidence level, usually (1 − α)×
100% (and for α = 0.05 the confidence level becomes 95%). The level of confidence
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impacts on the critical value of the underlying sampling distribution such as the
z-score. Higher the level of confidence, larger is the critical value such as the z-score.

If the populationmeanμof an outcomevariableY is estimated by the samplemean
Ȳ then the later is a point estimate ofμ. As youmay imagine (in repeated sampling of
the same sample size from the same population) the sample mean changes from one
sample to another, and it is unlikely that any of the sample means would be exactly
the same as the population mean μ. But as the sample size increases the sample
mean is likely to be closer to the population mean. However, any point estimate is
uncertain and does not best represent the population parameter.

An interval estimate, such as confidence interval (CI), is often preferred over a
point estimate as the CI provides a range of likely values of the parameter (within the
lower and upper limits) with an associated confidence level (usually 95%). In most
of the meta-analyses the confidence interval is about a parameter (population effect
size) whose estimator follows a normal distribution. Hence the confidence intervals
are based on the critical value (z-score) of the standard normal distribution.

A (1 − α) × 100% confidence interval for the population mean μ is given by

ȳ ± z α
2

× SE
(
Ȳ

)
or ȳ ± z α

2
× σ̂Ȳ or ȳ ± z α

2
× σ̂√

n
,

where n is the sample size
SE is the standard error
ȳ is the sample mean
σ̂ = s is the sample standard deviation
(1 − α) × 100% is the confidence level
z α

2
is the critical value of the standard normal distribution (z) such that

P
(
Z > z α

2

) = α
2 and

‘±’ represents the plus and minus signs.

Note that here z-score and the standard error of Ȳ are used in the computation
of the confidence interval because the sampling distribution of Ȳ is normal with
standard error σ̂

/√
n.

A confidence interval is represented by two limits (or bounds)—the lower limit
(LL) and upper limit (UL):

LL = ȳ − z α
2

× σ̂√
n
andUL = ȳ + z α

2
× σ̂√

n

The term z α
2
× σ̂√

n
is called themargin of error (ME). The width of any two-sided

confidence interval is twice its margin of error. The larger is the margin of error, the
wider is the interval. The margin of error increases as the confidence level and/or the
spread/variability increases, and it decreases as the sample size increases.

In the context of meta-analysis, the value of α is set at 5%, so that the confidence
level becomes (1 − 0.05) × 100% = 95%. In that case, the critical value becomes
z 0.05

2
= 1.96 (some people use a closer round number 2.00). Then we get
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LL = ȳ − 1.96 × σ̂√
n
and UL = ȳ + 1.96 × σ̂√

n
.

The width of a (two-sided) confidence interval is twice its margin of error or
difference between the upper limit and the lower limit. That is, width of a two-sided

(1 − α) × 100% confidence interval is Width = 2 ×
[
z α

2
× σ̂√

n

]
.

Comment: The width of the confidence interval depends on three factors

(a) Confidence level—the width of the confidence interval increases as the confi-
dence level grow larger (e.g. from 90%with z= 1.645 to 95%with z= 1.96).

(b) Sample size—the width of the confidence interval decreases as the sample
increases.

(c) Sample variance (as a consequence the standard error)—the width of the confi-
dence interval increases as the sample variance increases.

2.2.3 Test of Hypothesis

Another commonly used statistical method in meta-analysis is the test of hypotheses,
especially the significanceof the effect size. If the population effect size of anoutcome
variable denoted by Y with unknown mean μ and standard deviation σ then the
hypotheses to be tested are, the null hypothesis

H0 : μ = μ0 = 0 (mean effect size is zero) against the alternative hypothesis
HA : μ �= 0 (mean effect size is NOT zero) if the test is two sided
or
HA : μ > 0 (mean effect size is greater than zero) if the test is one sided, upper
tailed.

From the population of Y, select a random sample of size n, (y1, y2, . . . , yn), find
the sample mean ȳ and sample standard deviation σ̂ . Since the sampling distribution
of the estimator of μ, say Ȳ , follows a normal distribution with mean μȲ = μ and

standard error σ̂Ȳ = σ̂
/√

n, the statistic Z∗ = Ȳ−μ0

σ
/ √

n
, where μ0 is a specific value of

μ assigned by the null hypothesis (in the case of zero mean effect μ0 = 0), follows
a standard normal distribution.

Since σ is unknown, it is estimated by the sample standard deviation σ̂ = s.

Then another statistic T = Ȳ−μ0

σ̂
/ √

n
is defined using the estimate of the unknown

standard deviation σ. This statistic follows a Student-t distribution with (n − 1)
degrees of freedom.However, if the sample size is large (that is, n ≥ 30), the Student-t
distribution will have large number of degrees of freedom, (n− 1) ≥ 29. In that case
the distribution of the T statistic can be approximated by the normal distribution (by
the Central Limit Theorem). For this reason, in almost all meta-analyses, the statistic
T (or Z∗) is modified to define the following statistic Z = Ȳ−μ0

σ̂
/ √

n
which follows an

approximate normal distribution.
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Hence to test H0 : μ = μ0 = 0, against a two-sided alternative, reject the null
hypothesis at the α level of significance if the observed absolute value of Z (ignore
the negative sign) is larger than or equal to the critical value of Z, that is, z α

2
.

Here z α
2
is such that the following probability statement holds:

P
(|Z| ≥ z α

2

) = 1 − α or equivalently,

P
(
Z ≤ −z α

2

)
+ P

(
Z ≥ z α

2

)
= 2 × P

(
Z ≤ −z α

2

)
= 2 × P

(
Z ≥ z α

2

)
= 1 − α.

The P-value is often used to decide whether to reject a null hypothesis or not. A
P-value is the probability of observing sample data as extreme or more extreme than
that produced by the observed sample, if the null hypothesis is true. In notation, for
a two-sided test based on the Z statistic,

P-value = P(|Z| > z0|H 0 : μ = μ0), where z0 is the observed value of the test
statistic Z calculated from the sample data, that is, z0 = Ȳ−μ0

s
/ √

n
. For any given value

of the level of significance, α, the null hypothesis is rejected if the P-value of the test
is less than or equal to α.

Comment: The P-value is the calculated probability of finding the observed, or
more extreme, sample results when the null hypothesis of a study is true. Further the
observed result (sample statistic) away from the value of the relevant parameter under
the null hypothesis smaller is the P-value. That is, as the difference between the value
of the parameter under the null hypothesis and its estimate from the sample, (Ȳ −μ0)

increases the value of the Z statistic increases and hence the P-value decreases (as a
result the credibility of the null hypothesis decreases leading to its rejection).

For a two-sided test (when the alternative hypothesis is two-sided) the P-value is
sum of the areas from both the tails of the distribution of the test statistic.

Decision Roles
Critical value approach: Reject H0 at the α level of significance if the calcu-
lated/observed value of the Z statistic (say z0) satisfies |z0| ≥ zα/2, where zα/2 is
the α/2 level upper cut-off point of the standard normal distribution; otherwise don’t
reject the null hypothesis.

P-value approach: Alternatively, rejectH0 at the α level of significance if the P-value
is less than or equal to a preselected significance level, α; otherwise don’t reject the
null hypothesis.

Remark Another distribution used in meta-analysis is the chi-squared distribu-
tion. This is a skewed to the right distribution with degrees of freedom as the only
parameter. In testing the heterogeneity of effect size among the independent studies
Cochran’s Q statistic is used which follows a chi-squared distribution.
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Fig. 2.2 Normal distribution curve showing α
2 area at each tail and (1 − α) area in the middle

2.2.4 Transformation of Effect Sizes for Binary Outcomes

For the confidence interval (and test of significance) of the population effect size it
is essential to know the sampling distribution of the estimator of effect size along
with its standard error. For the continuous outcome variables, if the sample size
is large, the distribution of the sample mean is approximately normally distributed
by the well-known central limit theorem (CLT). Therefore normal distribution of
the estimator of effect sizes based on sample mean (and differences of two sample
means) is used for statistical inference within meta-analysis.

Unfortunately the sampling distribution of the estimator of the population effect
size based on the binary or categorical outcome variables (e.g. odds ratio (OR) or
risk ratio (RR)) are not readily available. However, the natural logarithm of the
OR/RR (that is, lnOR or lnRR) is approximately normally distributed, and hence
the distribution of lnOR (or lnRR) is used to for the statistical inference including
calculating or finding the critical value (z-score) of the confidence interval (and for
the testing of significance of effect size). Based on the standard normal distribution,
for a 95% confidence interval the critical value is z = 1.96. By convention, this
critical value is used for all confidence intervals in meta-analysis.

While testing significance of effect size (e.g. populationRRorOR) the test statistic
is based on the log transformation. Therefore, the test statistic is defined as the ratio
of the sample ln RR/OR and the standard error of it. All calculations are based on
the ln RR/OR and hence the confidence limits are found in log scale of the RR or
OR. For reporting, the confidence interval, calculated from the lnOR (or lnRR), is
usually transformed to the original scale using the reverse (or back) transformation,
exp[lnOR] = OR.

The distribution of OR/RR and the log transformation of OR/RR are displayed in
Fig. 2.3.

2.3 Effect Size Measures for Meta-analysis

The effect size is the name given to a family of indices that measure the magnitude of
a treatment or intervention effect. Depending on the type of study there are various
measures that can be used to determine the effect size for the intervention of interest.
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Fig. 2.3 The distribution of RR/OR and that of log transformation of RR/OR

While the effect size is independent of sample size, we can perform statistical signif-
icance tests to find if any effect size is different from the null or if the difference
between two or more effect sizes (e.g. across groups) is significantly different or not.

The effect size measure broadly depends on the type of outcome variables
involved. There are two major categories of effect measures in meta-analysis based
on the kind of outcome variable used to determine the effect size. There are those
based on binary or categorical outcome variables such as the proportion, relative risks
(RR) or odds ratios (OR). The other category is those effect measures for continuous
outcome variables such as the standardised mean difference (SMD), weighted mean
difference (WMD), and Pearson’s product moment correlation coefficient.

Effect size is the foundation block for any meta-analysis. Every meta-analysis
combines effect size of an intervention which is measured based on a specific under-
lying outcome variable from selected independent studies to estimate the unknown
common effect size for all the studies.

The popular effect size measures for meta-analyses based on continuous outcome
variables include Cohen’s d (Cohen 1969),Hedges’ g (Hedges 1981) and Glass’ �

(Glass et al. 1981) statistics. Details on these are covered in Chap. 9.

2.3.1 Relationship Between Effect Size Measures

The relationship between the standardisedmeandifference (d), log odds ratio (lnOR),
and correlation coefficient (r) allows us to convert one effect measure to another one.
The following relationships are useful.

From ln OR to d: d = ln OR ×
√
3

π
, where π = 22

7 is a mathematical constant.
From d to ln OR: ln OR = dπ√

3
.

From r to d: d = 2r√
1−r2

.
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2.4 Inverse Variance Method and Redistribution of Weights

The main objective of any meta-analysis is to pool effect size statistics (e.g. sample
mean, OR) from independent studies with a view to synthesising them to calculate
an estimate of the common effect size. This is essentially a process of weighted
averaging and different methodologies use different formulae to generate the weights
for weighted averaging of individual studies in computing the pooled estimate. The
simplest case is that of the arithmetic mean, where the weights for each study are
equal to 1/k if there are k studies in the meta-analysis. The weight 1/k is termed
as the natural weight and is equal for every study. This arithmetic mean estimator
is unbiased, but in meta-analysis we aim to sacrifice unbiasedness for decrease in
squared error in order to increase accuracy of the pooled estimator. The arithmetic
mean or the estimate based on the equal weights is not optimal as it does notminimise
the variance of the estimator, and hence it is not used in meta-analysis. Figure 2.2
diplays the normal distribution curve.

Conventionally, the inverse variance weights have been used in meta-analysis.
This empiricalweight generates the best trade-off between bias and variance. It iswell
known that the sample variance is inversely related to the sample/study size (n), and
hence larger studies (with higher sample size) will receive higher weights under the
principle of inverse variance weight than the smaller studies. But this redistribution
of weights only considers random error, and systematic error is ignored and thus may
lead to allocating higher than appropriate weight to the lower quality larger studies
and vice versa.

There are other methods for creating empirical weights as well such as the inverse
variance heterogeneitymodel, the randomeffectsmodel and the quality effectsmodel
and these will be discussed later. It is a fact that the model that generates the weights
must also have a mechanism for generating the appropriate error estimation (vari-
ance) around the point estimate that maintains nominal coverage of relevant confi-
dence interval, and different weighting models may or may not achieve correct error
estimation.

2.5 Meta-analytic Models for Non-heterogeneous Studies

Different statistical models have been used for meta-analyses under different condi-
tions or circumstances. The main difference among the models is the way they allo-
cate the empirical weights to the individual studies. The objective of redistribution of
weights among the studies is to minimise squared error of the estimator of the pooled
effect size to achieve an estimate with improved accuracy (closest to the population
parameter).

Since meta-analyses are based on the summary statistics of individual studies, the
between study variation must be taken into account in the analysis. So it is essential
to check if heterogeneity is present in the data. This requires testing the equality
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of effect sizes of the studies. [If the effect sizes are not significantly different there
is no heterogeneity in the data]. If the between studies variation is not significant,
the meta-analysis becomes simple and straightforward. In such cases the fixed effect
(FE) model is appropriate to meta-analyse the data.

The FE meta-analytic model assumes that there is a common unknown true effect
size for all the studies under investigation and the study effects depart from this true
effect due to random error alone. For the FE model the observed effect size for any
study i is represented by θ̂i = θ + εi, where error term εi is the difference between
the common true effect size, θ and the observed sample effect size for study i, θ̂i.
The errors are assumed to be independent and follow normal distribution with mean
0 and variance σ 2

i , that is, εi ~ N (0, σ 2
i ) for i = 1,2, …, k. The fixed effect model

assumes that there is only one source of variation, the within-study variation, which
is the estimation error εi. The variance of the estimation error for the ith study, σ 2

i is
estimated by the sample variance, that is, σ̂ 2

i = vi. For very large studies the sampling
errors become very small. Under the FEmodel, the common effect size θ is estimated

by using the inverse variance weight, θ̂FE =
k∑

i=1
wi θ̂i

/
k∑

i=1
wi, where wi = 1

vi
, is the

weight in which vi is the sample variance. The variance of the estimator of θ is

estimated by Var(θ̂FE) =
(

k∑

i=1

1
vi

)−1

. The confidence interval and test of hypothesis

for the effect size θ are based on the critical value of the standard normal distribution.
However the variance expression above is known to grossly underestimate the actual
variance and may lead to inflated Type 1 errors under heterogeneity. Thus when
testing the significance of the meta-analytic effect there is the possibility of spurious
significance if the studies are not homogeneous, and this method therefore is limited
to meta-analysis of homogeneous studies (Fig. 2.4).

2.6 Meta-analytic Models for Heterogeneous Studies

Heterogeneity
In many meta-analytical studies the between studies variation is significant, that is,
heterogeneity among the effect sizes of the independent studies is significant. In such
cases the meta-analysis must take care of this fact in computing the pooled effect
size and the confidence interval. Different approaches are available to address the
issue of heterogeneity in the context of meta-analysis. Obviously, not all of them are
equally effective and provide real remedy to the problem.

As in the main stream statistics literature, the heterogeneity issue has prompted
many discussions in meta-analysis literature. Some of the commonly used methods
to overcome the heterogeneity problem are discussed below.
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Fig. 2.4 Graphical illustration of fixed effect model

2.6.1 Assessing Heterogeneity

The assessment of the presence of heterogeneity among the study-level effect size
measure is conducted by performing statistical test of hypothesis. That is, by testing

H0 : θ1 = θ2 = . . . = θk againstHa :not all θ ′
i s are equal. The test of heterogeneity

is based on the Cochrane’s Q-statistic defined as

Q =
k∑

i=1

wi θ̂
2
i −

[
k∑

i=1
wi θ̂i

]2

k∑

i=1
wi

.

The Q-statistic follows a chi-squared distribution with (k−1) degrees of freedom
(df) under the null hypothesis of equality of means. The main problem with this
statistic is that its value increases as the number of studies in the meta-analysis grows
larger. Another statistic that quantifies heterogeneity is I2 = ([

Q − df
]/

Q
)×100%,

and is viewed as the proportion of between studies variation and total variation (within
studies plus between studies variation).

Comment: Different approaches andmethods are used formeta-analysis if hetero-
geneity is present in the data. These include use of different statistical models, meta-
regression, subgroup analysis, sensitivity analysis etc. Section 2.7 of this chapter
elaborates on them.
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2.6.2 Random Effects (REs) Model

The commonly used model to handle heterogeneity is the random effects (REs)
model. Proposed by (DerSimonian and Laird 1986), the REs model uses weights
that try to parameterize extraneous variation beyond random error alone. In so doing
the model assumes that the observed treatment effect for a study is a combination of
a treatment effect common to all studies (the average of true effects) and a ‘random
effect’ specific to that study alone. The REs model re-distributes the weights to the
individual studies in computing the pooled or synthesised estimate of the common
effect size using two (within and between study) sources of variation.

The two sources of error/variation in the REs model are the within-study, or
estimation or random error, and between-study or variation of the true effect size.
Under the REs model, the observed effect size for any study i is represented by
θ̂i = θ + ζi + εi, where ζi = θi − θ and εi = θ̂i − θi represent the two sources of
variation with the assumption that both follow normal distribution, ζi ∼ N (0, τ 2)

and εi ∼ N (0, σ 2
i ) for i= 1, 2,…, k. The sample estimates of τ 2 is τ̂ 2. The combined

variance of study i, that is, σ 2∗
i = (

σ 2
i + τ 2

)
is estimated by v∗

i = (
vi + τ̂ 2

)
, and then

the weight for study i under the REs model becomes w∗
i = (

vi + τ̂ 2
)−1

. The pooled
effect size estimator under the RE model is

θ̂RE =
k∑

i=1
w∗
i θ̂i

k∑

i=1
w∗
i

, and Var(θ̂RE) =
(

k∑

i=1
w∗
i

)−1

.

Under the REsmodelmoreweights are redistributed from larger to smaller studies
as heterogeneity increases. Thus, the REs model method of synthesising the pooled
mean effect size takes away weights from the larger studies and re-distributes them
to smaller studies. With gross heterogeneity this may lead to the estimator moving
towards the arithmetic mean (Fig. 2.4).

The random effects model (unjustifiably) assumes that the studies in the meta-
analysis are a random sample from a population of studies. Thus the validity of the
results of the REs model is dependent on meeting this assumptions of the model,
which is unrealistic in practice. Unfortunately, hardly anyone ever checks the validity
of the assumptions, but accepts the results for granted. The consequence is that this
model though aiming to be more conservative than the FE model fails to be so and
even the larger variance under the model comes with a higher squared error thus
suffering from over-dispersion and faulty error estimation.

2.6.3 Inverse Variance Heterogeneity Model

Recently, (Doi et al. 2015a) introduced the inverse variance heterogeneity (IVhet)
model. It emphasises that the fixed effect model based estimator variance can be
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Fig. 2.5 Graphical illustration of random effects model

made closer to the observed variance by modelling over-dispersion through a quasi-
likelihood approach. This implies that the meta-analysis is performed under a fixed
effect assumption (τ 2 = 0) and the variance of the estimator is inflated to account for
the heterogeneity. This has the advantage of being based purely on the variance-to-
mean relationship rather than on distributional assumptions with variance appropri-
ately inflated using a scale parameter,ψi. The latter can be defined by interpreting the
multiplicative factor as an intra-class correlation (ICC) as described by (Kulinskaya
and Olkin 2014), where the ICCi = τ 2

/
(τ 2 + vi) and the scale parameter is defined

as ψi = v−1
i σ 2

i = (1 − ICCi)
−1.

The expression of the variance of any weighted mean estimator θ̂w represented
by var(θ̂w), for the ith study, is expressed as w2

i var(θ̂i) which is then inflated to
w2
i var(θ̂i)ψi based on expression ofψi above, and this inflation of the inverse variance

weights using a quasi-likelihood approach.

The IVhet estimate of the common effect size θ is given by θ̂IVhet =
k∑

i=1
wi θ̂i and

Var(θ̂IV het) =
k∑

i=1

[(
1
vi

/
k∑

i=1

1
vi

)2

(vi + τ̂ 2)

]

.

Through extensive simulations (Doi et al. 2015c) showed that the IVhet model
performs better than the REs model under varieties of conditions (Fig. 2.5).

Note that φ2
j is the additional variance contribution from internal study biases.
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Fig. 2.6 Graphical illustration of inverse variance heterogeneity model

2.6.4 Advantages of IVhet Model Over REs Model

The IVhet model has clear advantages over the REs model as it resolves the two
main problems of the latter model. The first advantage of the IVhet model is that
the coverage (probability) of the confidence interval remains at the nominal (usually
95%) level, unlike that of the REs model for which the coverage drops significantly
with increasing heterogeneity. The second advantage is that the IVhet model main-
tains the inverse variance weights of individual studies, unlike the REs model which
allocates more weights to the small studies (and therefore less weights to larger
studies) with increasing heterogeneity. The latter property of the IVhet model means
that its squared error is less than the REs model estimator.

In the presence of larger heterogeneity, the individual studyweights under the REs
model become equal and thus the REsmodel estimator returns to the arithmetic mean
of the individual effect sizes rather than the intended weighted average. The IVhet
model does not suffer from this side-effect of the REs model. Thus it differs from the
REs model estimate in two ways: (1) larger trials contribute more (weights) to the
pooled estimates (as opposed to penalising larger trials in the REs model), and (2)
yields confidence intervals that maintain the nominal coverage (probability) under
uncertainty due to increased heterogeneity. In addition, no distributional assumptions
on the estimator of the effect size is required for the IVhetmodel, andhence it provides
a robust statistical method compared to the REs model with less squared error.
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2.6.5 Quality Effects Model

Doi and Thalib (2008) introduced a quality-effects (QE) approach that combines
evidence from a series of trials comparing two interventions. This approach incorpo-
rates the heterogeneity of effects in the analysis of the overall interventional efficacy.
However, unlike the random-effects model based on observed between-trial hetero-
geneity, it suggests adjustment based on measured methodological heterogeneity
between studies.

The QE model was updated by Doi et al. (2015b) to improve two specific
aspects of the model. First, over-dispersion observed with the initial estimator has
been corrected using an intra-class correlation based multiplicative scale parameter.
Second, the quality scores are relative to the best study in the meta-analysis and thus
rescaled between 0 and 1 by dividing by the maximum value of the scores within
the meta-analysis before it is input into the model. This still keeps the scores in the
0–1 range but allows them to reflect the relative nature of these scores, relative to the
best study in the meta-analysis.

The IVhet estimator is actually the QE estimator when quality information set to
uninformative (equal). Under the QE model study quality is allowed to vary and the
estimator of the pooled effect size θ is given by

θ̂QE =
k∑

i=1
w

′
i θ̂i, where the modified weight w

′
i =

(
Qi

vi
+ τ̂i

)/
k∑

i=1

(
Qi

vi
+ τ̂i

)
.

For the explanation of the notations, expression of variance of the estimator and
other details please refer to the Appendix A of (Doi et al. 2015b).

2.7 Dealing with Heterogeneity

In the presence of heterogeneity, different meta-analytical methods are used to assess
reasons for this. Some of the most popular ones are discussed below. Details on the
methods and interpretation of results will be provided in the forthcoming chapters.

2.7.1 Meta-Regression

In the presence of heterogeneity sometime meta-regression method is used if
additional data on related variables are available.

Meta-regression is a moderator (or covariate) analysis method that refers to using
a regression method in an attempt to find and account for systematic differences in
the size of the effect of interest. The meta-regression is conducted by regressing the
observed effect sizes on one or multiple study characteristics. For heterogeneous
effect sizes the meta-regression may explain why heterogeneity occurred in the first
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place.However, inmany studies there is insufficient information on anyusefulmoder-
ator variables as reporting them may not have been a part of the focus of individual
primary studies.

In the absence of appropriate good moderator characteristics of all individual
studies meta-regression would be either impossible or ineffective or misleading.
Sometimes even if there are moderator variables they may not be the causes of
heterogeneity and hence unhelpful to explain the diversity of variation among the
studies. Any association evident from meta-regression are observational having no
causal impact on the interpretation of the effect size estimate. This method is covered
in Chap. 11.

2.7.2 Subgroup Analysis

Another way to explain moderator effects in meta-analytic studies is to group the
studies based on the value of a moderator variable. Separate meta-analyses are
conducted on each of the subgroups and this allows within subgroup results to be
examined. This is exactly the same as meta-regression and is used when a single
categorical moderator is of interest. This method is illustrated in Sects. 4.7, 5.7 and
9.7.

2.7.3 Sensitivity Analysis

Sensitivity analysis is useful to check the impact on the result of changing selection
criteria of the studies on the pooled effect size. It provides some useful insight into
the robustness of the results and how sensitive they are to inclusion/exclusion criteria.
One variant is the exclusion sensitivity analysis which examines if individual studies
impact on the meta-analysis result unduly.

2.8 Issues in Meta-analysis

In this section some important issues in the implementation, analysis and interpre-
tation of results of meta-analyses are discussed.

2.8.1 Reporting Variation of Summary Statistics

The summary statistics on the outcome variables are reported in the individual studies
often using different scale and/or unit of measurement. Depending on the type of
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the outcome variable the summary statistics could be mean and standard devia-
tion, or correlation coefficient (for quantitative outcome variables) and odds/risk
ratio/difference (for categorical outcome variables) along with the sample size. For
the computation of any confidence interval for the unknown population effect size,
the point estimate of the same for each of the individual studies along with their
standard deviation and sample/study size are essential. Also, the distribution of the
estimator of the population effect size must be identifiable in order to be able to
determine the critical value of the underlying statistic at a predetermined confidence
level.

In many cases authors of different articles selected for meta-analysis use different
effect measures and units of measurement. For example, instead of reporting mean
and standard deviation of the quantitative outcome variables some authors report
median and inter quartile range (IQR) or median and minimum/maximum or range
statistics. This kind of variation of unit of measurement makes it difficult (but not
impossible) to include them in the synthesis process. Therefore, before undertaking
any meta-analysis the effect size of all selected studies must be converted to one
single effect measure with the same unit of measurement. See Hozo et al. (2005) for
details on some useful transformation formulae on this problem.

2.8.2 Publication and Reporting Bias in Meta-Analysis

Publication bias is a serious problem in meta-analysis. It arises because of reporting
bias as studies with negative or non-significant effects are not normally accepted for
publication in profession journals. Also, the sponsors of research projects and the
authors often prefer not to publish results of the studies that do not support their
intentioned outcome. Either way, results from some studies are published which
are identified in systematic reviews and included in the meta-analysis, but many
other studies remain unreported/unpublished and hence excluded. This phenomenon
impacts on the ultimate results of the meta-analysis, sometimes without realising the
extent of the exclusion and their potential impact on the final results.

The language bias is also a reality. Most of the articles are published in English
language journals or other publications. As a results often publications in other
languages remain undetected or are overlooked.

The funnel plot is used to assess the publication bias in a meta-analysis. It is used
primarily as a visual aid for detecting or systematic heterogeneity. A funnel plot
is a scatterplot of treatment effect against a measure of study precision such as the
estimated standard error or sample size of each of the studies. Asymmetry in funnel
plots may be due to publication bias in meta-analysis (among other reasons including
chance), but the shape of the plot in the presence of bias is sometimes difficult to
ascertain. Certain P-value based tests exist to quantify asymmetry of the funnel plot
but have poor power. For details on effect of selecting various study sizes see Sterne
and Egger (2001).
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Doi plot is another graphical method to identify the publication bias. This method
also comes with the LFK index quantifying the degree of asymmetry in the plot.
The Doi plot has a much less ambiguous visual appearance and the LFK index has
much greater power than the corresponding tests used for the funnel plot. Illustration
of both the plots is found in Sects. 4.9, 5.9 and 8.8. Details on publication bias are
covered in Chap. 12.

2.8.3 Presentation and Reporting of Main Results

The usual way to present the results of meta-analyses is to show the confidence
intervals of individual studies and the combined meta-analysis on the same graph in
the form of a forest plot. The middle of the confidence intervals of the individual
studies is marked by dark squares and the size/area of the associated squares repre-
sents the level of weight of the study. For the meta-analysis of the common effect
size, the confidence interval is represented by a diamond. The horizontal edges of
the diamond represent the limits of the confidence interval. The relative location of
the diamond with respect to the no-effect vertical line indicates which intervention
is supported by the data. If appropriate, subgroup analyses are also included in the
forest plot along with the combined meta-analysis.

2.9 A Brief Appraisal of Meta-analysis

The termmeta-analysiswas formally coined byGlass (1976) as a statistical procedure
to re-analyse the published statistical analyses from a large number of independent
studies for the purpose of synthesising and integrating the findings in the context of
educational research. Referring to the oversupply of information, he noted that some
had termed it as a predicament “themisinformation explosion”. But his viewwas that
we face an abundance of information, and problem is to find the knowledge in the
information by introducing methods for the orderly summarization of studies so that
knowledge can be extracted from the myriad individual researches. His choice of the
term came from the spirit of meta-mathematics, meta-psychology, meta-evaluation
etc. Since then statistical meta-analysis has been extensively used in medical/health
sciences, psychology, education, agriculture, andmany other areas of evidence-based
decision-making including government departments and businesses.

The strengths and limitations of meta-analysis are briefly noted below. For further
discussion on the topic refer to Khan et al. (2019).
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2.9.1 Strengths of Meta-Analysis

Meta-analysis is a scientifically valid statisticalmethodwith solidmathematical foun-
dation. The results of meta-analyses are correct if the underlying model assumptions
are met and there is no bias in the selection of studies and no error in the extraction
of data.

Meta-analysis provides more statistical power due to increased sample size than
that of any single study. So the results produced by meta-analyses are more precise
and reliable.

Meta-analysis is a statisticalmethod that produces objective results. The outcomes
of meta-analyses are solely based on the summary data from the systematic reviews.

Meta-analysis is the only method capable of combining quantitative data of every
individual studies to estimate the pooled effect size in any systematic reviews.

Because of its ability to combine data from individual studies it is able to produce
the synthesised pooled estimate of the common effect size even if the results of
the individual studies are inconclusive, conflicting (with opposing directions) and
diversity of values.

Due to the pooling of summary statistics from many primary studies the meta-
analysis improves the statistical precision of the point estimate, width of the
confidence interval, and power of the test of the common mean effect size.

When needed, meta-analysis can be performed to estimate the common effect size
for a subset of the selected studies sharing certain common characteristics or time
period under the provision of subgroup analysis.

Meta-analyses based onwell-conducted randomized controlled trials provides the
highest levels of evidence by controlling extraneous variation and bias.

The selection and implementation of correct statistical model for the meta-
analyses produce accurate statistics and appropriate confidence intervals leading
to the high quality evidence.

Inconclusive meta-analyses may suggest the need for further independent trials
or studies to help produce decisive results.

2.9.2 Limitations of Meta-Analysis

Like many other statistical methods, meta-analysis is a very powerful technique
for synthesising summary statistics, even with conflicting quantitative data, from
individual studies, to reach decisive conclusions. But, it is equally venerable and
open for abuse by people who are not evidence-informed or ignorant or with ill-
motive. Because there are many situations when this highly effective method can be
abused or misused if the research team is not careful or aware of the problems that
would invalidate the results of meta-analyses.

Although, meta-analysis method only depends on the input data or summary
statistics of the independent studies, the quality of the results of meta-analyses are
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dependent on the quality of the trials/studies included in the synthesis, presence of
reporting or publication bias, and presence of heterogeneity.

Meta-analysis is inappropriate if there is no common underlying effect size that
each of the independent studies is attempting to estimate. If different individual
studies are estimating different effects, there will be no common effect size and
hence synthesis by meta-analysis must not be attempted.

Meta-analysis must not be used if the effect size measure of outcome variables are
not the same for all studies. Mixing of different effect size measures or samemeasure
with different scale or unit ofmeasurement in ameta-analysis is like combining apples
and oranges.

Whatever data values are feed into the meta-analysis software the computer will
produce some results based on the selected procedure regardless of the quality of the
data. However, the appropriateness and correctness of the results must be verified
before using them for any decision-making. Inappropriate procedure and/or wrong
input data will never produce any good evidence.

Meta-analysis can be inconclusive if there are conflicting evidences from different
studies or trials. This may suggest no significant effect of the intervention or the need
for further investigations or trials.

The presence of bias in the individual studies is a serious consideration for any
inclusions in meta-analysis. Inclusion of studies with significant bias in the meta-
analysis will definitely lead to the misleading results. It will not only produce
incorrect results and complicate the analysis but also seriously limit any useful
interpretation.

Selection of wrong model, especially to deal with the heterogeneity among the
studies, means that the results of the meta-analysis is likely to be misleading.

Obviously, in the presence of significant publication bias or reporting anomalies
or both the results of meta-analysis will not be accurate.

2.10 Concluding Remarks

Meta-analysis is a powerful tool to combine diverse quantitative results of inde-
pendent studies and synthesise the results of individual primary studies to find the
pooled estimate of population effect size. Meta-analytical methods could provide
much needed high quality evidence for making appropriate decisions if the under-
lying processes, protocols and methods are properly and strictly observed. However,
every step in a systematic review and meta-analysis must be scrutinized for potential
bias, from the formulation of the research question to the interpretation and discus-
sion of the results, to ensure the quality and applied value of the final product (Bernard
2014).
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Part II
Meta-Analysis for Binary Outcomes



Chapter 3
Introduction to Ratio Measures

Fundamental concepts, definitions, calculating formulae and interpretations of risks
and odds as well as the risk ratio and odds ratio are introduced in this chapter. The
meta-analytical methods of these two very important and frequently used effect size
measures, risk ratio and odds ratio, are covered in Chaps. 4 and 5.

3.1 Introduction

Most of the meta-analyses endeavor to estimate the unknown common population
effect size and present the results in forest plots. In this chapterwe introduce the effect
size measures, namely risk ratio and odds ratio, to study the degree of association
between two categorical or binary outcome variables. Here both the intervention (e.g.
exposure and non-exposure) and outcome (e.g. cases or non-cases) are categorical.

Effect size
The effect size is the common name to a family of indices that measure themagnitude
of a treatment or intervention effect. Depending on the type of study there are various
measures that can be used to determine the effect size for the intervention of interest.

The effect size measure depends on the type of outcome variable of interest. For
binary (categorical) outcome variables relative risk or risk ratio (RR) and odds ratio
(OR) are used as effect size measure.

Effect measures such as a single proportion (of incidences) or difference between
two proportions (also called risk difference) are also applicable to binary outcome
variables. [See Chaps. 6 and 7 for details.] For continuous outcome variables the
effect size is measured by standardised mean difference (SMD) or weighted mean
difference (WMD), and correlation coefficient for linear relationship between two
quantitative outcome variables. [These are covered in Chaps. 8–10.]

When the outcome of interest is a binary or categorical variable, ratiomeasures are
used to investigate the association between the two variables. The most popular ratio

© Springer Nature Singapore Pte Ltd. 2020
S. Khan, Meta-Analysis, Statistics for Biology and Health,
https://doi.org/10.1007/978-981-15-5032-4_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-5032-4_3&domain=pdf
https://doi.org/10.1007/978-981-15-5032-4_3


40 3 Introduction to Ratio Measures

measures are the relative risk or risk ratio (RR) and odds ratio (OR). Both the RR and
OR are used as effect size measures for binary outcome variables. The choice of a
particular ratiomeasure is a decision of the researchers based on the type of study and
objective of the investigation. McNutt et al. 2003 used the RR in cohort studies and
clinical trials of common outcomes. Some exploration on the relationship between
RR and OR are found in Shrier and Steele 2006 and a conversion formula of RR
from OR is provided by Zhang and Yu 1998. Further discussions on the choice of
effect measure for epidemiological data are found in Walter 2000 and Barger 2018.

In this chapter we introduce the concept, computational method and interpretation
of risk ratio (RR) and odds ratio (OR) as a prelude to meta-analytical methods when
they are dealt with as appropriate effect size measures in the forthcoming chapters.

3.2 Relative Risk or Risk Ratio (RR) and Odds Ratio (OR)

The risk ratio (or relative risk) and odds ratio are used to assess the association
between two binary (categorical) variables, namely the explanatory variable (factor,
e.g. Intervention or Treatment and Control, or Exposure and No Exposure) and
outcome variable (Success and Failure, or Cases and No Cases, or Disease and No
Disease, or Event andNoEvent). Although the purpose of the two ratios, RR andOR,
is the same, they are not the same, and hence they should not be used as synonymous.

3.2.1 Root Causes for Differences in RR and OR

To appreciate the difference between theRRandOR it is important to carefully under-
stand the difference between proportion and ratio. Although both have numerator and
denominator, there are fundamental differences in the definition and interpretation
of the two ratios.

Ratio: In mathematics, the ratio is described as the comparison of the size of two
quantities of the same unit, which is expressed in terms of times i.e. the number of
times the first value contains the second. The ratio is used to compare the quantities of
two different categories like the ratio of men to women in a population. For example,
in a study of 10 mens and 20 womens, the ratio of men to women is 10/20 = 1/2 =
0.5.

Proportion: Proportion is a mathematical concept, which states the equality of two
ratios or fractions. A proportion is the quantity of one category over the total, like
the proportion of men out of total people living in a population. For example, in a
study of 10 men and 20 women, the proportion of men to women is 10/(10 + 20) =
1/3 or 0.3333, that is, 33.33%.

Odds: In statistics, the odds for or odds of some event reflects the likelihood that
the event will take place, while odds against reflects the likelihood that it will not.
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An odds is a number that is obtained by dividing one number (e.g. cases or events)
by another (e.g. noncases or no events), both measuring the same outcome variable.
For example, in a study of 10 men and 20 women, the odds of men is 10/20 = 0.5
relative to women.

Probability: Probability is a numerical description of how likely an event is to
occur. For example, in a study of 10 men and 20 women, the probability of randomly
selecting a man is 10/30 = 0.3333 or 33.33%. This is the same as the proportion of
men in the study.

Clearly, odds is different from proportion and, or, probability. Proportion is often
used a synonymous to risk and probability. Both odds and risk (probability) have the
same numerator but different denominator, that is, they are on different scales.

3.2.2 Reasons for Differences Between RR and OR

Conceptually there is a fundamental difference between the risk (proportion) and
odds, as the definitions are different, and hence, in general, the RR and OR are not
the same. The risk of an intervention is defined as the ratio of number of cases/events
relative to the total number of subjects (combining cases and non-cases) in the study,
and hence it perfectly resembles probability. But the odds of an intervention is defined
as the ratio of number of cases relative to the number of non-cases (excluding number
of cases from total number of subjects) in the study, and hence it is different from the
notion of probability. In both cases, what is common is the ‘likelihood’ or ‘chance’
(but not probability) of happening of cases/events, but relative to two different things.
Often the two ratios are mixed and used synonymously by mistake because both
ratios have the same numerator and represent some kind of ‘likelihood’ or ‘change’
ignoring the fact that the two ratios have totally different denominators. The RR is a
ratio of two proportions (or percentages) and OR is a ratio of two odds.

To avoid confusion, make a clear note that odd reflects ‘relative likelihood’ or
better yet ‘odds’, unlike risk which reflects ‘probability’. The value of odds ratio is
close to that of the risk ratio only if incidence (number of cases) is very small in both
the exposed and the unexposed groups. If the incidence (number of cases) is high in
either or both exposed and unexposed groups, then the value of RR is very different
from OR.

3.2.3 Why OR is More Appropriate Than RR?

Some people do use the probability ratio, aka the relative risk (RR) to measure the
effect of the intervention (X, risk factor) on the outcome (Y, disease). The disadvan-
tage of the RR is that it is not a constant effect of X. The probability ratio changes
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depending on the value of X. But the OR does not change with a change in X (that is,
it is constant with respect to X). The effect of X on the probability of Y has different
values depending on the value of X. So if you want to know how X affects Y, odds
ratio is the appropriate effect measure.

Odds is not a measure of likelihood of events out of all possible events. It’s a ratio
of number of events to number of non-events. You can switch back and forth between
risk and odds—theywill give you different information as they are on different scales.
No wonder, the term ‘odds’ is commonplace, but not always clear, and often used
inappropriately. Schmidt and Kohlmann 2008 discussed when to use the odds ratio
or the relative risk in the context of epidemiological studies and emphasised that
in the absence of meaningful prevalence or incidence data, the OR provides a valid
effect measure.

3.2.4 Towards Defining RR and OR

The relative risk (or risk ratio) is defined based on the ratio (proportion) of two proba-
bilities (or risks), and odds ratio is defined as the ratio of two odds. The understanding
of the difference between the two different ratios depends on appreciating the basic
difference in the definition of risk and odds.

Probability is the ratio of the number of times event (success) occurred
compared/relative to the total number of trials/subjects. Probability is a number
between 0 and 1. Probability = 0.5 implies success and failure are equally likely.

Odds is the ratio of the number of times success (event) occurred compared/relative
to the number of times failure occurred. Odds is a number between 0 and∞ (infinity).
The two terms (probability and odds) are related but not synonymous, rather they are
very different with the same numerator but different denominator. Equal odds is 1,
that is, 1 success for every 1 failure.

To explain and illustrate the concepts of risk (probability) and odds, consider
the following count data of binary outcomes from an hypothetical experiment on
immunization for a particular disease as noted in Table 3.1.

There are two possible outcomes—disease (success/event) with count ‘a’or no
disease (failure/no event) with count ‘b’ among the participating ‘(a + b)’ subjects.
The numbers in brackets are the observed counts (number of subjects) in the call.

3.2.5 Probability

Probability of disease (success) is the proportion of the ‘number of patients with
disease’ (event) relative to the ‘total number of patients (Disease plus no Disease)’,
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Table 3.1 Incidences of disease data

Disease No disease Total

a (20) b (60) a + b (80)

that is, P(Disease)=a
/
(a + b) = 20

/
80 =0.25 andP(NoDisease)= b

/
(a + b) =

60
/
80 = 0.75.

The occurrence of success (Disease) is complementary to the occurrence of failure
(No Disease). So, P(Disease) = 1 − P(No Disease).

3.2.6 Risk

The risk of an event (Disease) in the Treatment group is the probability of
the event. This is a proportion of ‘number of events’ relative to the ‘total
of number of events and no-events’ in the Treatment group. For the data in
Table 3.1, the risk of the event in the Treatment group is calculated as RT =
a
/
(a + b) = 20

/
(20 + 60) = 20

/
80 = 1/4 or (25%), that is P(Disease) = 1/4.

Then P(No Disease) = 60/80 = 3/4. Hence P(Disease) + P(No Disease) =
1/4 + 3/4 = 1.

3.2.7 Odds

Odds of disease (success) is the ratio of the ‘number of patients with disease’
relative to the ‘number of patients with no disease’, that is, Odds (Disease) =
a
/
b = 20

/
60 = 1

/
3 = 0.33. Similarly, Odds (No Disease)= b

/
a = 60

/
20 = 3.

Note thatOdds (NoDisease)= 1
/
Odds(Disease). That is, 3 = 1

1/ 3 for the count
data in the above example. Odds of Disease is reciprocal of odds of ‘No Disease’,
and vice versa.

Remark: Sum of risk of Disease and risk of ‘No Disease’ is one. Product of odds
of Disease and odds of ‘No Disease’ is one.

Odds ranges from 0 to ∝(infinity).
Odds (Disease) = 1 implies that success (Disease) and failure (No Disease) are
equally likely.
Odd (Disease) > 1 implies that success (Disease) is more likely than failure (No
Disease).
Odd (Disease) < 1 implies that success (Disease) is less likely than failure (No
Disease).

Both relative risk or risk ratio (RR) and odds ratio (OR) assesses or measures asso-
ciation between two categorical variables, namely a binary outcome (or response)
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variable (Y) and a binary predictor (or explanatory) variable (X). Sometimes these
two ratios are wrongly used interchangeably. They are not the same, and shouldn’t
be confused because they’re actually defined and interpreted very differently. So it’s
important to keep them separate and to be precise in the language used in the inter-
pretation of the two measures. The obvious difference is appreciated due to the fact
that the odds ratio is the ratio of two odds whereas the risk ratio is the ratio of two
risks.

3.2.8 Calculations of RR and OR

The concepts of RR and OR, and their differences, are explained using the following
2 × 2 contingency table representing an outcome variable (Y with two levels, event
and non-event) and an exposure variable or intervention (Xwith two levels, treatment
and control). The values in each of the cells in the two-way table represent the counts
(frequencies) (Table 3.2).

3.3 Relative Risk (RR)

The probability (or risk) of an event (Disease) in the Treatment group is RT =
a
/
(a + b). This is a proportion of ‘number of events’ relative to the ‘total of number

of events and non-events’ in the Treatment group. It’s the number of patients in the
Treatment group who experienced an event (Disease) out of the total number of
patients with and without event (Disease and No Disease) in the Treatment group.
This is to say that if a patient was treated (vaccinated), what is the probability (or
risk) of having the disease (event)?

Similarly, the probability (or risk) of an event (Disease) in the Control group is
RC = c

/
(c + d). Again, it’s just the proportion of the number of patients who had

the disease (event) relative to the total number of patients with or without disease
in the Control group. Although each of these probabilities (i.e., risks) is itself a

Table 3.2 Incidences of disease and vaccination data

Y = Outcome variable

Event (e.g.
disease)

Non event (e.g. no
disease)

Row total

X = Exposure
variable

Treatment (e.g.
vaccinated)

a (20) b (60) a + b (80)

Control (e.g.
unvaccinated)

c (80) d (20) c + d (100)

Column total a + c (100) b + d (80) 180
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proportion, none of them is the risk ratio. The risk of having an event (Disease) for
the subjects in the Treatment group needs be compared to that in the Control group
to measure the effect of the Treatment.

The ratio of the above two probabilities (risks), RRT and RRC , is the relative risk
or risk ratio:

RR = RT
/
RC = a

/
(a + b)

c
/
(c + d)

.

So the RR is the ratio of the probability (risk) of the event (Disease) in the
Treatment group relative to that in the Control group.

If the Treatment worked (i.e., less subjects had disease in the Treatment group),
the relative risk should be smaller than one (RR < 1), since the risk of having disease
(event) should be smaller in the Treatment group.

If the relative risk is 1, that is, RR = 1, the Treatment (vaccination) made no
difference at all.

If it’s above 1, that is, RR > 1 then the Treatment group actually had a higher
risk (i.e., more subjects had disease in the vaccination group) than that in the Control
group.

Using the count data in the above contingency tablewe calculate the risk of disease
for the Treatment and Control groups as follows:

RT = a/
(a + b) = 20/

80 = 1
/
4 (or 25%) and

RC = c/
(c + d) = 80/

100 = 4
/
5(or 80%).

Then the relative risk (RR) of the Treatment (relative to the Control) becomes

RR = RT
/
RC = 1

/
4

4
/
5

= 5

16
(or 31.25%).

Since the RR is much less than 1, the Treatment reduced the risk of disease in the
exposed/intervention group.

3.3.1 Interpretations of RR

Because RR is a ratio and expresses how many times more probable the outcome
(Disease) is in the Treatment group, the simplest way to interpret the RR is to use
the phrase “times the risk” or “times as high as” compared to those in the Control
group.

If you are interpreting a risk ratio, you will always be correct by saying: “Those
who received vaccine (Treatment) had RR ‘times the risk’ compared to those who did
not have the vaccine (Control).” Or “The risk of Disease among those who received
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vaccine (Treatment) was RR ‘times as high as’ the risk of Disease among those who
did not receive vaccine (Control).”

For the above example RR = 0.3125. Thus, the risk of disease for those who
received the vaccine (Treatment) is RR= 0.3125 ‘times the risk’ of disease for those
who did not receive vaccine (Control). Since the RR is less than 1 (actually less than
1/3), there is less risk of disease in the Treatment group than that in the Control group,
and hence the Treatment works. Smaller the value of RR weakest is the association
between the two categorized variables.

For inference (confidence interval and hypothesis test) on RR, use the log
transformation Ln(RR) with its approximate variance,

Var[Ln(RR)] = 1

a
− 1

(a + b)
+ 1

c
− 1

(c + d)

and standard error

SE[Ln(RR)] =
√
1

a
− 1

(a + b)
+ 1

c
− 1

(c + d)
.

For the data in the above example, the standard error becomes

SE[Ln(RR)] =
√

1

20
− 1

(20 + 60)
+ 1

80
− 1

(80 + 20)
= √

0.04 = 0.2.

3.4 Odds Ratio (OR)

The odds of event (Disease) in the Treatment group is ODT = a/b. This is the ratio
of the number of events (Disease) relative to the number of non-events (No Disease)
in the Treatment group. The numerator is the same as that of the probability, but the
denominator here is different (in fact smaller). It’s not a measure of events (Disease)
relative to the all possible ‘events and non events’, rather it is relative to the non-events
(No Disease) only.

Similarly, the odds of event (Disease) in the Control group is ODC = c/d. This
is the ratio of the number of events divided by number of non-events in the Control
group.

The odds ratio (OR) of the Treatment group relative to the Control group is then
defined as the ratio of the two odds, that it,

OR = ODT

ODC
= a

/
b

c
/
d

= a × d

c × b
.
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Now using the count data in the contingency table we calculate the odds for the
Treatment and Control groups as follows:

ODT = a/
b = 20/

60 = 1
/
3 and ODC = c/

d = 80/
20 = 4.00.

Then the odds ratio (OR) of the Treatment (against the Control) becomes

OR = ODT
/
ODC = 1

/
3

4
= 1

12
.

Since the OR is much less than 1, the Treatment has reduced the odds of disease
in the exposed/intervention group.

3.4.1 Interpretations of OR

For the above example OR = 1/12 = 0.0833.
Thus, the odds ratio of event (Disease) for the vaccine (Treatment) group is 1/12 (or

0.0833). The odds of event (Disease) for those who received the vaccine (Treatment)
is OR = 0.0833 ‘times the odds’ of event to those who did not receive vaccine
(Control).

Since this is much less than 1, there is much less odds of event (Disease) in the
Treatment group, and hence the Treatment works. This implies that the Treatment
(vaccine) works to reduce the incidences of events (Disease).

For inference (confidence interval and hypothesis test) on OR, use the log
transformation Ln(OR) with approximate variance,

Var[Ln(OR)] = 1

a
+ 1

b
+ 1

c
+ 1

d

and standard error

SE[Ln(OR)] =
√
1

a
+ 1

b
+ 1

c
+ 1

d
.

For the data in the above example, the standard error becomes

SE[Ln(OR)] =
√

1

20
+ 1

60
+ 1

80
+ 1

20
= √

0.129167 = 0.359398.

Avoid division by zero
In many cases a slightly amended estimator of OR is used by adding 0.5 to each cell
count to avoid division by 0 as suggested by Agresti, A 1996, p. 25 and Soukri M.M
1999, p. 49. Hence, for the above example the two amended odds become
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OD∗
T = (a + 0.5)/

(b + 0.5) = (20.5)/
(60.5) = 0.3388 and

OD∗
C = (c + 0.5)/

(d + 0.5) = (80.5)/
(20.5) = 3.9268.

Then the amended odds ratio (OR*) of the Treatment (against the Control)
becomes

OR∗ = OD∗
T

/
OD∗

C = 0.3388

3.9268
= 0.0863.

Obviously, this amended OR∗ = 0.0863 is slightly different from the original
OR = 0.0833.

Comment: All statistical packages have this option to adjust for continuity
correction. MetaXL allows a number of choices to be added to zero including 0.5.

3.4.2 Properties of OR

If OR = 1, the odds of event (Disease) in the Treatment group is the same as that in
the Control group.

If 1 < OR < ∞, then the odds of event (Disease) is higher in the Treatment
group than in the Control group. As an example, if OR = 4 then the odds of evert
(Disease) in the Treatment group is four ‘times the odds’ of event (Diseases) in the
Control group. So the subjects in the Treatment group is 4 times more likely to have
event (Disease) than the Control group.

If OR = 0.25 then the odds of event (Disease) in Treatment group is 0.25 ‘times
the odds’ of event (Disease) in the Control group.

Smaller the value of the OR weaker is the association (dependence) between the
two categorical variables, exposure variable (X—Treatment or Control) and outcome
variable (Y—Event and No Event).

For example, when OR = 4 then the association/dependence of (Exposure and
Outcome variables, X and Y) is higher than when OR = 2 (or less). Similarly, OR =
0.50 indicates more dependence between (Explanatory and Outcome variables) than
OR = 0.25 (or less).

3.5 Comparison of RR and OR

1. The RR and OR are comparable in magnitude when the event/disease studied is
rare or very uncommon in both exposed and unexposed groups.

2. The OR > RR when the event/disease is more common. But OR should not be
viewed as risk, it is a ratio of odds.
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3. In case-control studies, risks and RR can’t be calculated but OR can be calcu-
lated and use as an approximation of RR if event/disease is uncommon in the
population.

4. The OR can be used to describe results of both case-control and prospective
cohort studies.

5. One advantage ofOR is that it is not dependent onwhetherwe focus on the event’s
occurrence or its failure. That is, the OR is symmetric to which outcome level is
of interest, but RR is not symmetric. That is, Odds(Event) = 1

Odds(No−Event) .
6. If the OR for an event (success) deviates from 1 substantially, the OR of its non-

event (failure) will also deviate from 1 substantially, although in the opposite
direction.

3.5.1 When OR is Equal (or Close) to RR?

If the event (Disease) is rare, in both the exposed and unexposed groups, then the
OR is closer (or equal) to the RR.

Consider the following modified count data with rare (or very small) number of
events (2 for the Treatment group and 5 for the Control group) to illustrate how/when
OR is closer to the RR (Table 3.3).

For the above count data, the number of events (Disease) for both the Treatment
and Control groups are small, say 2 and 5 respectively, and the RR of the Treatment
group is RRT = a/ (a+b)

c/ (c+d) = 2/ 80
5/ 100 = 2×100

80×5 = 1
2 (or 50%) and the OR of the Treatment

group is ORT = a/ b
c/ d = 2/ 78

5/ 95 = 2×95
78×5 = 19

39 (or 0.48) which is closer to the RR of
50%.

Furthermore, if the number of events (Disease) for both the Treatment and Control
groups are even smaller, say 1 for each group, that is, (a* = 1, b* = 79, c* = 1, d*
= 99) then

RRT = a∗/ (a∗+b∗)
c∗/ (c∗+d∗) = 1/ 80

1/ 100 = 1×100
80×1 = 5

4 (or 125.00%) and

ORT = a∗/ b∗
c∗/ d∗ = 1/ 79

1/ 99 = 1×99
79×1 = 99

79 (or 125.31) which is much closer (almost equal)
to the RR of 125%.

Table 3.3 Revised incidences of disease and vaccination data

Y = Outcome variable

Event (e.g.
disease)

Non event (e.g. no
disease)

Row total

X = Exposure
variable

Treatment (e.g.
vaccinated)

a (2) b (78) a + b (80)

Control (e.g.
unvaccinated)

c (5) d (95) c + d (100)

Column total a + c (7) b + d (173) 180
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Thus for very small number of events (Disease), in both the exposed and
unexposed groups, the OR is not much different from the RR.

3.5.2 Incidence and Prevalence

Incidence and prevalence are very commonly used terms in epidemiology and public
health. They may be related but very different.

Prevalence (also called prevalence rate) indicates the probability that a member
of the population has a given condition at a point in time. So, it is the actual number
of cases alive, with the disease either during a period of time (period prevalence) or
at a particular date in time (point prevalence).

Incidence (also called incidence rate) is a measure of the occurrence of new cases
of disease during a span of time.

The relationship between incidence and prevalence depends greatly on the natural
history of the disease state being reported. In the case of a corona pandemic, the
incidence may be high but not contribute to much growth of prevalence because of
the high, spontaneous rate of disease resolution.

The changes in the values of RR and OR with the changes in the value of the
incidence rate (I0) at a time is presented in a graph found in Schmidt and Kohlmann
2008. In Fig. 1 of this paper the changes in the values of RR and ORwith the changes
in the incidence rate is displayed. Lowest (almost diagonal) line with incidence rate
0.01 represents the equality of RR and OR. The value of OR grows larger and larger
as the incidence rate increases. But the value of RR becomes smaller and smaller as
the incidence rate increases.

3.6 Conversion of OR to RR

There is no need to convert OR to RR if OR is properly interpreted and understood.
However, some researchers try to convert OR to RR, may be to make it easily under-
standable to the non-specialised readers. But every researcher in the epidemiology
and public health areas requires to understand odds and OR, and be prepared to
interpret results based on OR.

Greenland and Holland 1991 and Zhang and Yu 1998 independently proposed a
popular conversion formulas of OR to RR given by

RR = OR

1 − IC + IC × OR
.

It is interesting to note that (1 − IC) = 1 − c
c+d = d

c+d = I 0C which is the non-
incidence rate in the control group. Clearly, sum of IC and I 0C is one. Similarly, for
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the intervention/treatment group, (1 − IE ) = 1 − a
a+b = b

a+b = I 0E , and hence IE
and I 0E add to one.

3.7 Misuse and Misinterpretation of OR

There has been widespread unintentional misuse of odds ration (OR), especially
its inappropriate interpretation as risk or probability of events. Readers may note
the following examples in the epidemiological and public health literatures where
odds is inappropriately used interchangeably with probability and/or risk and fails
to acknowledge that odds is different from risk.

In the eight edition of the book (Merrill, 2021) notes OR as the ‘relative probabil-
ities’ of disease in case-control studies without recognising that ‘probabilities’ are
different from odds. It also recommends that odds ratios are generally interpreted
as if they were risk ratios when the outcome occurs relatively infrequently (<10%).
However, this ‘rare disease’ assumption is very infrequent.

In discussing the difference between “Probability” and “Odds” the (Boston
University, 2020) notes,that the odds are defined as the probability that the event will
occur divided by the probability that the event will not occur. Then illustrates OR
with the following hypothetical pilot study on pesticide exposure and breast cancer
and comes up with OR = (7/10) / (6/57) = 6.65. Interestingly, neither the numerator
nor the denominator of the OR here is a probability, and that is correct because they
should be odds. Yet, the definition above defines OR as ratio of probabilities.

Diseased Non-diseased

Pesticide Exposure 7 10

Non-exposed 6 57

Referring to (Bland&Altman, 2000), (Chen, Cohen,&Chen, 2010) report, “Odds
ratio (OR) originally was proposed to determine whether the probability of an event
(or disease) is the same or differs between the two groups, generally a high-risk group
and a low-risk group.”

3.8 Conclusions

The most popular ratio measures to investigate the association between two categor-
ical variables, the RR and OR, are covered in this chapter. Meta-analyses based these
effect size measures are presented in the upcoming chapters. In conducting meta-
analysis for the RR or OR the log transformation of the ratio is essential. However,
the final results for forest plots must be expressed in the original ratio scale by
inverse/back (exponential) transformation.
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Schmidt and Kohlmann 2008 note that the direct computation of RR is feasible
if meaningful prevalence or incidence data is available. Cross-sectional data may
serve to calculate RR from prevalence data. Cohort study designs allow for the direct
calculation of RR from incidence.

The situation is more complicated for case-control studies. If meaningful preva-
lence or incidence data are not available, the OR provides a valid effect size measure.
It describes the ratio of disease odds given exposure status. The OR for a given expo-
sure is routinely obtained within logistic models while controlling for confounders.
The availability of this approach in standard statistical software largely explains the
popularity of this measure. However, it does not have as intuitive interpretation as
the RR. Often people wrongly describe an OR of “2” in terms of a “double risk” of
developing a disease given exposure.

Often selection of RR or OR depends on the study objective or design and choice
or priority of the researcher. However, if you want to know how any exposure (e.g.
smoking) affects the outcome (e.g. cancer), odds ratio is the best effect size measure.

There are some other ratio measures, such as proportion, which are covered
separately in forthcoming chapters. They include single proportion and difference
between two proportions (also known as risk difference).
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Chapter 4
Meta-analysis of Risk Ratio

Starting from this chapter meta-analysis of each of the commonly used effect sizes
is covered in seperate chapters. This chapter is devoted to exclusive meta-analysis of
risk ratio (also called relative risk). It provides meta-analyses of RR under different
statistical models along with subgroup analysis and detection of publication bias
with illustrative examples.

4.1 Introduction

If an experiment (or a study) has two arms or interventions and the outcome of interest
is a binary or categorical variable, ratio measures are used to analyse the association
between the two categorical variables. The data of such experiments/studies are
typically presented in a two-way contingency table of counts or frequencies. The
most popular ratio measures of association are the risk ratio (RR) and odds ratio
(OR). Details on the definition and interpretation of RR and OR are provided in
Chap. 3. In this chapter, we cover the meta-analysis for the risk ratio (RR) as an
effect size measure.

4.2 Estimation of Effect Size RR

For any experiments with binary exposure and outcome variables the association
between the variables can be assessed by risk ratio (RR). In almost all cases, the
population data are unavailable and hence population characteristics or parameters
are unknown. In reality the unknown population parameters such as population RR is
estimated from the available sample data. For any two arms experiment with binary
outcome variables the sample data are presented in a contingency table of counts. The
unknown population RR is then estimated from the sample data. Using the sampling
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distribution of the estimator (statistic) of unknown parameter, RR and its standard
error (SE), confidence interval is calculated for the unknown population RR.

The point estimate of the risk ratio (RR) is required to find the confidence interval
(and perform hypothesis tests) for the unknown population RR (parameter). For both
confidence interval and test of hypotheses, the sampling distribution of the estimator
(statistic) of the parameter of interest is essential. The critical value of the statistic
(e.g. z or t) in the confidence interval, and the choice of appropriate test statistic
depend on the type of sampling distribution of the estimator. Refer to Chap. 2 for
details.

The distribution of the estimator of population RR is not known as it does not
follow any commonly known probability (statistical) distribution. However, the log
transformation of RR follows an approximate standard normal distribution. There-
fore, for both confidence interval and test of hypothesis the estimator (statistic) of
RR is replaced by that of Ln(RR), so that the distribution of the transformed statistic
can be used. Although the log transformation does not affect the outcome of the
test (statistic and hence the P-value) in the hypothesis testing process, inverse (or
back) transformation of the lower and upper limits are required for the limits of the
confidence interval to be expressed in the original RR scale (of measurement).

For both the confidence interval and test of hypothesis, in addition to the trans-
formed statistic Ln(RR), the standard error (SE) of the transformed statistic Ln(RR)
is required (and used).

Confidence interval for RR
Inmeta-analysis, one of themain interest is to find the 95%confidence interval for the
effect size of individual studies as well as for the common effect size by combining
summary statistics from selected independent studies.

The generic form of a (1−α)×100% (95% if α = 0.05 or 5%) confidence interval
for the common population effect size θ is give by

θ̂ ± zα/2 × SE(θ̂ ),

where θ̂ is the point estimate of θ , common effect size of all studies, zα/2 is the
critical value (cut-off point) of the standard normal distribution leaving α/2 area to
the upper and lower tail of the distribution, and SE(θ̂ ) is the standard error of the
estimator of θ . For the ith study the confidence interval for θi is θ̂i ± zα/2 × SE(θ̂i )

for i = 1, 2, …, k.
To find the confidence interval for the unknown population parameter θ (= RR)

a natural log transformation, θ∗ = ln(θ ) = ln(RR) is used. An estimator of trans-
formed parameter θ∗ is given by θ̂∗ = ln(θ̂) which follows an approximate normal
distribution. Here θ̂ is the estimated RR calculated from the sample count data.

The standard error of θ̂∗ = ln(θ̂) is

SE(θ̂∗) =
√

1
a − 1

a+b + 1
c − 1

c+d .
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Table 4.1 Vaccination and disease data

Y = Outcome variable

Event (e.g.
disease)

Non event (e.g. No
disease)

Row total

X = Exposure
variable

Treatment (e.g.
vaccinated)

a (20) b (60) a + b (80)

Control (e.g.
unvaccinated)

c (80) d (20) c + d (100)

Column total a + c (100) b + d (80) 180

Then the (1−α)×100% confidence interval for θ∗ = ln(θ) is represented by the
lower limits: L L∗ = θ̂∗ − zα/2 × SE(θ̂∗), where zα/2 is the critical value of Z for a
two-sided test at theα level of significance and upper limitU L∗ = θ̂∗+zα/2×SE(θ̂∗)
in the ln RR scale, and then L L = exp(L L∗) and U L = exp(U L∗) in the original
RR scale.

Example 4.1 (CI for RR) Consider the Vaccination and Disease data in Table 4.1.
Find the point estimate and 95% confidence interval for the unknown population RR.

From the Vaccination and Disease data in Table 4.1 we have the point estimate of
the population RR,

θ̂ = R R = a/(a + b)

c/(c + d)
= 20/80

80/100
= 1/4

4/5
= 1 × 5

4 × 4
= 5/16 = 0.3125.

To find the confidence interval for the population RR we need to find the log of
the point estimate (lnRR) and standard error of the estimator of lnRR.

Here, the sample lnRR becomes

θ̂∗ = ln(θ̂) = ln(0.3125) = −1.16315081 and

SE(θ̂∗) = SE[ln(R R)] =
√
1

a
− 1

a + b
+ 1

c
− 1

c + d
=

√
1

20
− 1

80
+ 1

80
− 1

100
.

= √
0.04 = 0.2.

Then the 95% confidence interval for the population RR, θ is given by the lower
and upper limits:

L L∗ = θ̂∗ − zα/2 × SE(θ̂∗) = −1.16315081 − 1.96 × 0.2 = −1.55515081 and

U L∗ = θ̂∗ + zα/2 × SE(θ̂∗) = −1.16315081 + 1.96 × 0.2 = −0.77115081

in the ln RR scale, and using the back transformation we get
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L L = exp(L L∗) = exp(−1.55515081) = 0.211157536 and

U L = exp(U L∗) = exp(−0.77115081) = 0.462480535 in the original RR scale.

Thus the 95% confidence interval for θ (population RR) becomes (0.2111,
0.4625).

4.3 Significance Test on Effect Size RR

To test the significance of the population RR, θ the null hypothesis is H0 : θ = 1
(the risk is the same for the treatment and control groups) we actually need to test
the null hypothesis H0 : θ∗ = ln(θ) = ln(1) = 0 (that is, there is no significant
difference of risk for the two groups) since the sampling distribution of estimator of
θ is unknown but that of θ∗ is approximately normal.

The appropriate test statistic to test H0 : θ∗ = 0 against HA : θ∗ �= 0 is Z = θ̂∗
SE(θ̂∗)

which follows a standard normal distribution.

Example 4.2 (Test for RR) Consider the count data in Table 4.1. Perform a test of
significance on the population RR.

For the Vaccination and Disease data in Table 4.1 we have from Example 4.1.
θ̂ = RR = 5/16 = 0.3125, θ̂∗ = ln(θ̂) = ln(0.3125) = −1.16315081 and

SE(θ̂∗) = SE[ln(R R)] = 0.2.
Hence the observed value of the Z statistic becomes

z0 = θ̂∗

SE(θ̂∗)
= −1.16315081

0.2
= −5.8157 ≈ −5.82.

The two-sided P-value = P(|Z| > 5.82) = P(Z < −5.82) + P(Z > 5.82) = 2 × P(Z
> 5.82) = 0 (from the Normal Table).

Since the P-value is 0, the test is highly significant. That is, there is a very strong
sample evidence against the null hypothesis of ln(RR) = 0, (that is, RR = 1). Hence
we reject the null hypothesis in favour of the alternative hypothesis (and conclude
that there is strong association/dependency between the outcome and intervention).
In other words, the incidence of disease is dependent on the intervention—treatment
(vaccination) or control (no vaccination). So there is an association between the
exposure variable (treatment/vaccinated or control/unvaccinated) and the outcome
variable (event/disease or non-event/no-disease).

More details on the tests of hypotheses for meta-analysis and their powers are
found in Hedges and Pigott (2001).

The meta-analysis method for the RR is provided in the forthcoming sections
under different statistical models.
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4.4 Fixed Effect (FE) Model

The fixed effect (FE) and other statistical models are applicable for meta-analysis
of effect size measure of studies involving both binary and continuous outcome
variables. The FE model is used if there is no significant heterogeneity of effect
size among the independent studies. In this section, the FE model is presented in a
general framework for the meta-analysis of RR with example. An introduction to the
FE model is found in Borenstein et al. (2010) and in Chapter 11 of Borenstein et al.
(2009).

Let us consider k independent studies selected for ameta-analysis after systematic
review of all studies on a particular topic of interest. Let the outcome variable of
interest be binary. The underlying assumption is that there is an unknown common
effect size (RR), θ based on the binary outcome variable for all the independent
primary studies.Meta-analysis enables us to pool results from all independent studies
to estimate the common population effect size θ .

Let θi be the unknown true (population) study specific effect size of interest which
includes systematic bias specific to the study (if no systematic bias then θi = θ ) and
σ 2

i be the unknown population variance of the ith study for i = 1, 2,…, k. The sample
estimate of the population effect size for the ith primary study based on a random
sample of size ni is denoted by θ̂i and the sample variance by vi . The unknown
inverse variance population weight ωi = 1

σ 2
i
of the ith study is estimated by wi = 1

vi
.

Normally, individual primary study reports the sample estimate of the effect size(
θ̂i

)
and the sample variance (vi ) of the estimator of the population effect size along

with the sample size ni . Based on these information, a 95% confidence interval for
θi is constructed for each of the studies if the sampling distribution of θ̂i is known.
Obviously, the confidence intervals vary from one study to another, and some of the
studies may even provide conflicting results (with even opposing signs). Therefore,
it is important to combine the results from all the k studies by pooling the summary
statistics into a single point estimate and find a confidence interval for the common
effect size θ .

The fixed effect (FE) model assumes that all studies share a common effect size
and attempt is made to estimate the unknown population common effect size from
the sample data.

Under the FE model, the estimator of the transformed common effect size θ∗
FE =

Ln(θFE ) is given by

θ̂∗
FE =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

, (4.1)

wherewi = 1
vi
is the weight of the ith study. The pooled estimate under the FEmodel

is the weighted mean of the estimated effect sizes of all the independent studies. The
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denominator is to ensure that the sum of the weights is 1. The sample variance of the

estimator of the common effect size θ̂∗
FE is V ar(θ̂∗

FE ) = 1

/
k∑

i=1
wi . Therefore, the

standard error of the estimator of the common effect size under the FE model is

SE(θ̂∗
FE ) =

√√√√√
1

k∑
i=1

wi

. (4.2)

The estimator inEq. (4.1) and standard error inEq. (4.2) are used in the formulation
of the confidence interval and test statistic.

The confidence interval
Although the distribution of θ̂FE is unknown, we could use its log transformation
as the distribution of log of θ̂FE is approximately normal. Thus, first we find the
confidence interval in LnRR scale (from log θ̂FE ) and then apply the back/reverse
transformation to find the confidence interval in the original RR scale.

Define θ̂∗
FE = ln(θ̂FE ) and standard error of LnRR SE(θ̂∗

FE ) =
√

V ar(θ̂∗
FE ).

Then the (1−α)×100% confidence interval for LnRR is given by the limits L L∗ =
θ̂∗

FE − zα/2 × SE(θ̂∗
FE ) and U L∗ = θ̂∗

FE + zα/2 × SE(θ̂∗
FE ).

Here zα/2 is the α
2 th cut-off point of standard normal distribution. For a 95%

confidence interval zα/2 = z0.05/2 = 1.96.
Now using the back/reverse transformation of LnRR on the above limits we get

the confidence interval in RR scale as

L L = exp(L L∗)
U L = exp(U L∗).

Test of hypothesis
To test the significance of the common effect size (RR) under the FE model, test the
null hypothesis, H0 : θ = 0 (null) against Ha : θ �= 0 using the test statistic

Z = θ̂∗
FE − 0

SE(θ̂∗
FE )

,

where the statistic Z follows the standard normal distribution.

Decision Rules
Critical value approach: For a two-tailed test, reject H0 at the α level of significance
if the calculated/observed value of the Z statistic (say z0) satisfies |z0| ≥ zα/2, where
zα/2 is the α/2 level upper cut-off point of the standard normal distribution; otherwise
don’t reject the null hypothesis.
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Table 4.2 Count data on the number of patients with ablation in the low-dose and high-dose
groups

Treatment (high dose) Control (low dose)

Study name N1 Cases Non-cases N2 Cases Non-cases

Doi (2000) 49 23 26 39 25 14

Ramacciotti (1982) 9 3 6 20 12 8

Angelini (1997) 426 226 200 180 101 79

Liu (1987) 40 14 26 20 11 9

Lin (1998) 21 6 15 25 11 14

McCowen (1976) 28 10 18 36 15 21

Maxon (1992) 37 6 31 26 6 20

P-value approach: Alternatively, for a two-tailed test, reject H0 at the α level of
significance if the P-value is less than or equal to a preselected significance level, α;
otherwise don’t reject the null hypothesis in Table 4.2.

Example 4.3 Consider the data in Table 4.2 on the number of patients with high dose
radio-active iodine versus lowdose after thyroidectomy in patientswith differentiated
thyroid cancer. The study looked at the risk of ablation (surgical removal of tissue)
as the outcome variable. For illustration we consider seven independent studies as in
the Table 4.2.

For the above ablation data, find the sample RR, the ln RR (LnRR), the variance
of ln RR [Var(LnRR)] and the 95% confidence interval for the population RR.

Solutions
The relative risk (RR) of the Treatment (High dose) group, log of RR (LnRR), vari-
ance of LnRR, weight (W), limits of 95% confidence interval and other calculations
for individual studies are shown in the following table (Table 4.3).

Example 4.4 Consider the ablation data in Example 4.3.

Under the fixed effect model, find

(i) The point estimate of the population RR
(ii) Standard error of the estimator of the population LnRR
(iii) The 95% confidence interval for the population RR and
(iv) Test the significance of the population RR.

Solution:

(i) Under the FE model the point estimate of the common effect size (RR) is

θ̂∗
FE =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

=

7∑
i=1

W Ln R R

7∑
i=1

W

= −29.883

217.085
= −0.1377 in the ln RR scale,
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Table 4.3 Calculations for LnRR, Var(LnRR), W(LnRR), W × LnRR, 95% confidence intervals,
and sum of W(LnRR) and sum of W × LNRR

Study name RR LnRR Var(LnRR) W(LnRR) W ×
LnRR

95%
CI LL

UL

Doi (2000) 0.7322 −0.3116 0.037429 26.7172 −8.3262 0.5012 1.0699

Ramacciotti (1982) 0.5556 −0.5878 0.255556 3.91304 −2.3 0.2063 1.4964

Angelini (1997) 0.9455 −0.0561 0.006423 155.695 −8.7295 0.808 1.1063

Liu (1987) 0.6364 −0.452 0.087338 11.4498 −5.1751 0.3566 1.1357

Lin (1998) 0.6494 −0.4318 0.169957 5.88385 −2.5405 0.2894 1.4568

McCowen (1976) 0.8571 −0.1542 0.103175 9.69231 −1.4941 0.4567 1.6087

Maxon (1992) 0.7027 −0.3528 0.267845 3.73351 −1.3173 0.2548 1.9378

217.085 −29.883

and hence the estimated effect size in the RR scale, under the FE model,
becomes

θ̂FE = exp(θ̂∗
FE ) = exp(−0.1377) = 0.8714.

(ii) The standard error of the estimator of Ln RR is

SE(θ̂∗
FE ) =

√√√√√
1

k∑
i=1

wi

=
√√√√√

1
7∑

i=1
W

= √
0.004606 = 0.06787.

(iii) The 95% confidence interval for the (transformed) common effect size (θ∗) in
Ln RR scale is

L L∗ = θ̂∗
FE − 1.96 × SE(θ̂∗

FE ) = −0.1377 − 1.96 × 0.06787 = −0.27068

U L∗ = θ̂∗
FE + 1.96 × SE(θ̂∗

FE ) = −0.1377 + 1.96 × 0.06787 = −0.00463.

Then the 95% confidence interval for the common effect size (θ ) in the original
RR scale is

L L = exp(L L∗) = exp(−0.27068) = 0.7628 ≈ 0.76

U L = exp(U L∗) = exp(−0.00463) = 0.9954 ≈ 1.00.

Remark: The above point estimate (0.87) and the 95% confidence interval (0.76,
1.00) are reported at the bottom row of the forest plot in Fig. 4.1.

(iv) To test H0 : θ = 0 (that is, LnRR = 0) against Ha : θ �= 0 the observed value
of the test statistic Z = θ̂∗

SE(θ̂∗)
is z0 = −0.1377

0.06787 = −2.0289 ≈ −2.03.
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The two-sided P-value is P(|Z| > 2.03) = P(Z < −2.03) + P(Z > 2.03) = 2 ×
0.0212 = 0.0424 (<0.05). So, at the 5% significance level the RR is significant.

The effect size (RR) of ablation after thyroidectomy in patients is significantly
different for the low dose and high dose patients at the 5% level of significant.

Forest plot for RR under FE model using MetaXL
The forest plot under the FE model (indicated by “IV” in the MetaXL code) is
produced by using MetaXL code

=MAInputTable(“Thyroid RR FE”,”NumRR”,”IV”,B17:H23).

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘= MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Thyroid RR FE” in the above code (user may choose any appropriate title
here, but RR is chosen to indicate the relevant effect size measure here and FE is
chosen to indicate fixed effect model). Then in the second quote enter the type of
effect measure, e.g. “NumRR” in the above code tells that the outcome variable is
numerical and the effect size measure is risk ratio. Within the third quote enter the
statistical model, e.g. “IV” in the above code stands for the fixed effect (abbreviated
by FE) model. Each quotation is followed by a comma, and after the last comma
enter the data area in Excel Worksheet, e.g. B17:H23 in the above code tells that the
data on the independent studies are taken from the specified cells. The code ends
with a closing parenthesis.

The forest plot of the meta-analysis of RR using the above MetaXL code is found
to be in Fig. 4.1.

Explanations of Forest plot
The point estimate of the effect size of any individual study is represented by the
middle most point of the relevant blue square, the size/area of the square indicates the
redistributed study weight allocated by the model, and horizontal lines on both sides
of the square represent the limits of the 95% confidence interval for the unknown
effect size of the study.

The vertical solid line is the line of no effect (i.e. RR = 1, the position at which
there is no clear difference between the intervention group and the control group).

If the outcome of interest is adverse (e.g. mortality), the results to the left of the
vertical line favour the intervention over the control. That is, if result estimates are
located to the left, it means that the outcome of interest (e.g. mortality) occurred less
frequently in the intervention group than in the control group (RR < 1).

If the outcome of interest is desirable (e.g. remission), the results to the right of
the vertical line favour the treatment over the control. That is, if result estimates are
located to the right, it means that the outcome of interest (e.g. remission) occurred
more frequently in the intervention group than in the control group (RR > 1).
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Thyroid RR FE

RR
21

Study 

Ramacciotti 1982 

Liu 1987 
Lin 1998 

Maxon 1992 

Doi 2000 A 

McCowen 1976 

Overall 
Q=4.45, p=0.62, I2=0%

Angelini 1997 

RR  (95%CI) % Weight

0.56 (0.21,  1.50) 1.8

0.64 (0.36,  1.14) 5.3
0.65 (0.29,  1.46) 2.7

0.70 (0.25,  1.94) 1.7

0.73 (0.50,  1.07) 12.3

0.86 (0.46,  1.61) 4.5

0.87 (0.76,  1.00) 100.0

0.95 (0.81,  1.11) 71.7

Fig. 4.1 Forest plot of RR for the ablation of low-dose and high-dose patients using fixed effect
model

The diamond at the bottom represents the 95% confidence interval for the pooled
common effect size. The vertical line through the middle of the diamond represents
the commoneffect size estimate, and the twohorizontal ends of the diamond represent
the lower and upper limit of the 95% confidence interval.

If the diamond touches the vertical line (at RR= 1), the overall (combined) result
is not statistically significant. Itmeans that the overall outcome rate in the intervention
group is much the same as in the control group (except for random variation).

Interpretation of forest plot in Fig. 4.1
From the above meta-analysis presented in the forest plot, the estimated common
RR is 0.87 and the 95% confidence interval is (0.76, 1.00). The RR is not statistically
significant (as RR = 1 is included in the confidence interval).

The high dose patients have lower risk of ablation compared to the patients with
low dose after thyroidectomy differentiated thyroid cancer. The patients with high
dose have 13% (1–0.87) less risk of ablation than those with low dose. But the result
is not statistically significant.

4.4.1 Measuring Heterogeneity Between the Study Effects

Heterogeneity occurs when the values of the effect size measures across the inde-
pendent studies are significantly different. It is a real concern in meta-analysis as
it is common in many meta-analyses and makes the analyses much more difficult.
Ignoring heterogeneitywould lead to inappropriate andmisleading results. It is essen-
tial for every meta-analysis to investigate the presence of heterogeneity among the
individual studies so that an appropriate statistical model/method could be used to
analyse the data properly. For this reason every forest plot contains results on the
measure of heterogeneity such as the Cochran’s Q statistic Cochran (1973) and I 2

index. For further insight into the heterogeneity measures in meta-analysis refer to
Higgins et al. (2003).
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Here we cover the Cochran’s Q statistic and I 2 index to measure heterogeneity
among the studies as most of the popular statistical packages on meta-analysis
including MataXL, routinely use these measures.

To test the heterogeneity between study effect sizes, we test the null hypothesis,
H0 : θ1 = θ2 = . . . = θk against the alternative hypothesis, Ha: not all θi ’s are equal
for i = 1, 2, .., k using the following Q statistic

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

,

where Q follows a chi-squared distribution with (k − 1) degrees of freedom. The
value of Q statistic increases as the number of independent studies included in the
meta-analysis increases. This problem is addressed by Higgin’s I 2 index defined as

I 2 =
(

Q − d f

Q

)
× 100%.

Example 4.5 For the ablation data in Example 4.3, find the value of the Q and I 2

statistics.

To answer this question, first the summary statistics are calculated as in Table 4.4.
For the above data, using the sums (in bold fonts) from the last row of Table 4.4

the value of the Q statistic is found as

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

=
7∑
1

W × Ln RR2 −

[
7∑
1

W × Ln RR

]2

7∑
1

W

Table 4.4 Calculations of LnRR, Var(LnRR), W(LnRR), W × LnRR, W × LnRR2, and sum of
W(LnRR), sum of W × LNRR and sum of W × LNRR2

Study name RR LnRR Var(LnRR) W(LnRR) W × LnRR W × LnRR2

Doi (2000) 0.7322 −0.3116 0.0374 26.7172 −8.3262 2.594765

Ramacciotti (1982) 0.5556 −0.5878 0.2556 3.913043 −2.3 1.35193

Angelini (1997) 0.9455 −0.0561 0.0064 155.6954 −8.7295 0.489448

Liu (1987) 0.6364 −0.452 0.0873 11.44981 −5.1751 2.339089

Lin (1998) 0.6494 −0.4318 0.17 5.883851 −2.5405 1.096962

McCowen (1976) 0.8571 −0.1542 0.1032 9.692308 −1.4941 0.230313

Maxon (1992) 0.7027 −0.3528 0.2678 3.733506 −1.3173 0.464758

217.0852 −29.883 8.567264
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= 8.567264 − (−29.8827)2

217.0852
= 4.4538 ≈ 4.45.

The Q statistic follows a chi-squared distribution with (k− 1)= 7 – 1= 6 degrees
of freedom. Then the P-value of testing equality of population effect sizes becomes
p = P

(
χ2
6 > 4.45

) = 0.62. Using chi-squired distribution table, it is found that the
P-value is between 0.50 and 0.75 (which includes 0.62). Since the P-value is very
large (much larger than 5%), there is insignificant heterogeneity between the study
means, and we don’t reject the null hypothesis.

Then, the value of the I 2 statistic becomes

I 2 =
(

Q − d f

Q

)
× 100% =

(
4.45 − 6

4.45

)
× 100% = −0.35% → 0

(negative values of I 2 is truncated to 0). Since the value of I 2 is 0, there is no
significant heterogeneity between the study effects.

Remarks: Note that I 2 is the percentage of variation across studies that is due to
heterogeneity rather than chance. Higgins et al. (2003) suggest that the I 2 values
of 25%, 50% and 75% indicate low, moderate and high heterogeneity respectively
among the population effect sizes.

If I 2 ≤ 25% studies are considered to be homogeneous, and a fixed effect model
of meta-analysis can be used.

Comment: Thevalues ofQand I 2 statistics are calculated from the sample summary
data and they are not dependent on any statistical models.

4.5 Random Effects (REs) Model

Under the random effects (REs) model there is no common effect size for the k
independent studies. In stead, it is assumed that every primary study has a different
population effect size which is a random variable. As such, there is variation between
the effect sizes of the individual studies. So, the variance of effect size under the REs
model is the sum of within study and between studies variances. As suggested by
DerSimonian and Laird (1986) the between studies variance is estimated by method
of moments. In recent years many researchers have criticized the REsmodel pointing
out its shortcomings including simulation comparison as in Doi et al. (2015b).

Since, under the REs model, there are two sources of variance, so the overall
study error variance has two components. First, the within-study error variance,vi

and second, the between-study variance. The population between-studies variance
is the variance of θi about θ and is denoted by τ 2 which is estimated by the variance
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of θ̂i about θ and is denoted by τ̂ 2. Thus, under the REsmodel the estimated variance
of any observed effect size θ̂i about θ is the sum of the within-study and between-
study variances, that is, v∗

i = vi + τ̂ 2. Therefore, the weight assigned to each study
is different from that in the fixed effect model, and is given by

w∗
i = 1

vi + τ̂ 2

which is an estimate of the unknown population weightω∗
i = 1

σ 2
i∗
with σ 2

i∗ = σ 2
i +τ 2.

The common effect size estimator under the random effects (REs) model is

θ̂∗
RE =

k∑
i=1

w∗
i θ̂i

k∑
i=1

w∗
i

in the LnRR scale

with the standard error of the estimator of LnRR

SE(θ̂∗
RE ) =

√√√√√
1

k∑
i=1

w∗
i

.

Estimation of τ 2: The between studies variance τ 2 is estimated as a scaled excess
variation as follows

τ̂ 2 = Q − d f

C
,

where

Q =
k∑

i=1

wi θ̂
∗2
i −

(
k∑

i=1
wi θ̂

∗
i

)2

k∑
i=1

wi

, C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

and d f = (k − 1) in which k is the number of studies.

Illustration of RR under REs Model

Example 4.4 Table 4.5 provides summary data on the number of patients with
heartburn after surgery for Gastro-Esophageal Reflux Disease using Laparoscopic
Anterior (LAF) versus Posterior Fundoplication (LPF). Details are found in Memon
et al. (2015).
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Table 4.5 Count data on number of heartburn patients after LAF and LPF surgery

LAF LPF

Study name N1 Cases Non-cases N2 Cases Non-cases

Watson et al. (1999) 54 5 49 53 5 48

Hagedorn et al. (2003) 47 25 22 48 10 38

Watson et al. (2004) 60 11 49 52 2 50

Spence et al. (2006) 40 6 34 39 5 34

Khan et al. (2010) 31 7 24 29 3 26

Raue et al. (2011) 30 1 29 27 1 26

Cao et al. (2012) 49 8 41 47 8 39

Find the value of the

(i) Q and C statistics for the heartburn data
(ii) Estimate of τ 2

(iii) Modified weight for the first study (Watson et al. 1999) under the REs model.

To answer the above questions, first calculate sample values of RR, LnRR and
Var(LnRR) W × LnRR, W × LnRR2 and W2 as found in Table 4.6.

Illustration of calculations in the above table
For example, for the first study (Watson et al. 1999):

The risk of LAF is Risk(LAF) = 5/54 = 0.0926 and the risk of LPF is Risk(LPF)
= 5/53 = 0.0943, and hence the risk ratio (of LAF relative to LPF) is RR =
0.0926/0.0943 = 0.9815. Then log of RR become LnRR = ln(0.9815) = −0.0187
(this is rounded to −0.02 in the above table).

The variance of the estimator of LnRR is

Table 4.6 Calculation of LnRR and Var(LnRR), W(LnRR), W × LnRR, W × LnRR2 and W2

along with the sums of W(LnRR), W × LnRR, W × LnRR2 and W2 for the heartburn data

Study name RR LnRR Var(LnRR) W(LnRR) W ×
LnRR

W ×
LnRR2

W2

Watson et al. (1999) 0.98 −0.02 0.36261 2.75776 −0.0515 0.000964 7.60522

Hagedorn et al. (2003) 2.55 0.94 0.09789 10.2155 9.5755 8.975517 104.357

Watson et al. (2004) 4.77 1.56 0.55501 1.80176 2.8137 4.394038 3.24635

Spence et al. (2006) 1.17 0.16 0.31603 3.1643 0.4968 0.078001 10.0128

Khan et al. (2010) 2.18 0.78 0.40945 2.4423 1.9065 1.488209 5.96484

Raue et al. (2011) 0.9 −0.11 1.92963 0.51823 −0.0546 0.005753 0.26857

Cao et al. (2012) 0.96 −0.04 0.20832 4.80042 −0.2 0.008336 23.044

25.7003 14.486 14.95082 154.499



4.5 Random Effects (REs) Model 69

V(LnRR) = 1

a
− 1

a + b
+ 1

c
− 1

c + d
= 1

5
− 1

54
+ 1

5
− 1

53
= 0.3626.

Now we could answer the questions as follows:

(i) The value of the Q statistic is found to be

Q =
k∑

i=1

wi θ̂
∗2
i −

(
k∑

i=1
wi θ̂

∗
i

)2

k∑
i=1

wi

=
7∑

i=1

W × Ln R R2 −

(
7∑

i=1
W × Ln RR

)2

7∑
i=1

W

= 14.9508 − (14.4863)2

25.7003
= 6.7854, and

C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

=
7∑

i=1

W −

7∑
i=1

W 2

7∑
i=1

W

= 25.7003 − 154.4990

25.7003
= 19.6887,

and d f = k − 1 = 7− 1 = 6.
(ii) Then, the estimated value of τ 2 becomes

τ̂ 2 = Q − d f

C
= 6.7854 − 6

19.6887
= 0.0399.

(iii) The modified weight under the REs model for the first study (Watson et al.
1999).
Becomes w∗

1 = 1
v1+τ̂ 2 = 1

0.3626+0.0399 = 2.4844 (as shown in Table 4.7).

Table 4.7 Calculation of LnRR, Var(LnRR), τ2, W*(LnRR), and W* × LnRR2 along with the
sums of W*(LnRR) and W* × LnRR2 for the heartburn data

Study name RR LnRR Var(LnRR) τ2 W*(LnRR) W* × LnRR

Watson et al. (1999) 0.98 −0.02 0.3626 0.0399 2.484432 −0.0464

Hagedorn et al. (2003) 2.55 0.94 0.0979 0.0399 7.257786 6.80304

Watson et al. (2004) 4.77 1.56 0.555 0.0399 1.680942 2.62504

Spence et al. (2006) 1.17 0.16 0.316 0.0399 2.809631 0.44112

Khan et al. (2010) 2.18 0.78 0.4094 0.0399 2.225473 1.73722

Raue et al. (2011) 0.9 −0.11 1.9296 0.0399 0.507737 −0.0535

Cao et al. (2012) 0.96 −0.04 0.2083 0.0399 4.028875 −0.1679

Sum 20.99488 11.3386
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Example 4.7 Consider the heartburn data in Example 4.6.

Under the REs model, find the

(i) estimated value of the unknown combined population LnRR
(ii) standard error of the estimator of population LnRR
(iii) 95% confidence interval for unknown combined population LnRR
(iv) Test the significance of unknown combined population LnRR.

To answer the above questions, we need the computations of the summary statistics
as in Table 4.7. The second last column of the table gives themodifiedweights,W* of
the LnRR which is used to calculate the pooled estimate of the common population
LnRR under the REs model.

(i) The effect size estimator of LnRR under the random effects (REs) model
becomes

θ̂∗
RE =

k∑
i=1

w∗
i θ̂i

k∑
i=1

w∗
i

=

7∑
i=1

W ∗Ln RR

7∑
i=1

W ∗
= 11.3386

20.9949
= 0.54 in LnRR scale.

(ii) The standard error is

SE(θ̂∗
RE ) =

√√√√√
1

k∑
i=1

w∗
i

=
√√√√√

1
7∑

i=1
W ∗

=
√

1

20.9949
= 0.2182.

(iii) The 95% confidence interval for the unknown common population parameter
LnRR is given by

LL∗ = θ̂∗
RE − 1.96 × SE(θ̂∗

RE ) = 0.54 − 1.96 × 0.2182 = 0.1123 and

UL∗ = θ̂∗
RE + 1.96 × SE(θ̂∗

RE ) = 0.54 + 1.96 × 0.2182 = 0.9678 in LnRR scale.

Then the 95% confidence interval of the pooled population RR in the original RR
scale becomes

LL = exp(LL∗) = exp(0.1123) = 1.1189 ≈ 1.12 and

UL = exp(UL∗) = exp(0.0.9678) = 2.6322 ≈ 2.63.

Note that the point estimate of the combined population parameter RR is

θ̂RE = exp(θ̂∗
RE ) = exp(0.54) = 1.7162 ≈ 1.72.
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Heartburn RR RE

RR
20.516.412.38.24.10

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=6.79, p=0.34, I2=12%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI) % Weight

0.90 (0.06, 13.70) 2.4
0.96 (0.39,  2.35) 19.2

0.98 (0.30,  3.19) 11.8

1.17 (0.39,  3.52) 13.4

1.72 (1.12,  2.63) 100.0

2.18 (0.62,  7.65) 10.6

2.55 (1.38,  4.71) 34.6
4.77 (1.11, 20.53) 8.0

Fig. 4.2 Forest plot of RR for the ablation of heartburn for the LAF and LPF patients under the
random effects model

Remark : The forest plot in Fig. 4.2 reports the above point estimate (1.72) and
confidence interval (1.12, 2.63) of RR in the last row and represented by the diamond.

(iv) To test the significance of common population LnRR the null hypothesis is
H0 : Ln RR = 0 (same risk for both groups) against Ha : Ln RR �= 0. Based
on the sample data the observed value of the test statistic Z is

z0 = 0.54

0.2181
= 2.4759 ≈ 2.48.

The two-sided P-value is P(|Z| > 2.48) = 2 × P(Z > 2.48) = 2 × 0.0066 = 0.0132.
Therefore the test is significant at the 5% level of significance, that is, the RR is
significantly different from 1. So the chance of heartburn of patients in the LPF
group is much (1.72 times) higher than that in the LAF group.

REs Meta-analysis of RR with MetaXL
In MetaXL, use the following code to produce the forest plot under the REs model:

=MAInputTable(“Heartburn RR RE”,”NumRR”,”RE”,N5:T11),

where “N5:T11” indicates the data area in Excel sheet, and “RE” represents REs
model.

Remark:Explanations ofMetaXLCode For this type ofmeta-analyses inMetaXL
the ‘opening’ code starts with MA Input Table ‘ = MAInputTable’. This is followed
by an open parenthesis inside which the first quote contains the text that appears as
the ‘title of the output of the forest plot’ e.g. “Heartburn RR RE” in the above code
(user may choose any appropriate title here). Then in the second quote enter the type
of effect measure, e.g. “NumRR” in the above code tells that the outcome variable
is binary and the effect size measure is relative risk or risk ratio. Within the third
quote enter the statistical model, e.g. “RE” in the above code stands for the random
effects (abbreviated by RE) model. Each quotation is followed by a comma, and after
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the last comma enter the data area in Excel, e.g. N5:T11 in the above code tells that
the data on the independent studies are taken from the specified cells in the Excel
Worksheet. The code ends with a closing parenthesis.

The following forest plot produced by MetaXL shows the 95% confidence inter-
vals of individual studies and the pooled effect size along with redistributed modified
weights.

Interpretation: The pooled effect size estimate of heartburn is found to be RR =
1.72 with 95% confidence interval (1.12, 2.63). The RR of heartburn for the patients
after surgery for Gastro-Esophageal Reflux Disease using Laparoscopic Anterior
(LAF) and Posterior Fundoplication (LPF) is significant (because 1 is not included
in the confidence interval). There is higher risk (1.72 times higher) of heartburn for
the patients with LPF compared to those with LAF. The risk of heartburn in the LPF
group is 72% (or 1.72 times) higher than those in the LAF group.

Aside: If fixed effect model is used for the same data the following forest
plot is produced by MetaXL with code: = MAInputTable(“Heartburn RR
FE”,”NumRR”,”IV”,N5:T11) (Fig. 4.3).

Remarks: Note that the value of the pooled estimate of RR under REs model is
1.72 and that under FE is 1.76. The difference in the two estimates of the RR is due
to the use of different (redistributed) weights under the two models. The width of
the confidence interval under the REs model is much higher (1.51) compared to that
of the FE model (1.40). This is due to higher variance of the REs model (0.2181)
compared to 0.06787 for the FE model. The redistribution of weights under the REs
and FEmodels are significantly different. The REs model allocates more weights for
smaller studies than the FE model.

Heartburn RR FE

RR
01 21 41 61 81 02

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=6.79, p=0.34, I2=12%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI) % Weight

0.90 (0.06, 13.70) 2.0
0.96 (0.39,  2.35) 18.7

0.98 (0.30,  3.19) 10.7

1.17 (0.39,  3.52) 12.3

1.76 (1.19,  2.59) 100.0

2.18 (0.62,  7.65) 9.5

2.55 (1.38,  4.71) 39.7
4.77 (1.11, 20.53) 7.0

0 2 4 6 8

Fig. 4.3 Forest plot of RR for the ablation of heartburn for the LAF and LPF patients under the
fixed effect model
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4.6 Inverse Variance Heterogeneity (IVhet) Model

The inverse variance heterogeneity (IVhet) model was proposed byDoi et al. (2015a)
as a better alternative to the random effects (REs) model to deal with heterogeneous
meta-analyses. The weights under the IVhet model would be identical to that of the
FE model weights, and thus the form of the weighted FE estimator and weighted
IVhet estimator is identical but the IVhet model derives the variance differently. Thus
the IVhet model estimate of the transformed common effect size RR, LnRR (= θ∗)
is given by

θ̂∗
I V het =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

.

But the variance of the estimator of LnRR (= θ∗) under the IVhet model is given
by

V ar(θ̂∗
I V het ) =

k∑
i=1

⎡
⎢⎣

⎛
⎝ 1

vi

/ k∑
i=1

1

vi

⎞
⎠
2

(vi + τ̂2)

⎤
⎥⎦ =

k∑
i=1

⎡
⎢⎣

⎛
⎝wi

/ k∑
i=1

wi

⎞
⎠
2

(vi + τ̂2)

⎤
⎥⎦.

For the computation of the confidence interval of the common effect size based
on the IVhet model use the following standard error

SE(θ̂∗
I V het ) =

√
Var(θ̂∗

I V het ).

Then, the (1−α)×100% confidence interval for the common effect size θ under
the IVhet model is given by the lower limit (LL) and upper limit (UL) in the LnRR
scale as follows:

L L = θ̂∗
I V het − zα/2 × SE(θ̂∗

I V het ) and

U L = θ̂∗
I V het + zα/2 × SE(θ̂∗

I V het ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

Illustration of IVhet Model for Risk Ratio

Example 4.8 Table 4.8 provides summary data on the number of patients with
heartburn after surgery for Gastro-Esophageal Reflux Disease using Laparoscopic
Anterior (LAF) versus Posterior Fundoplication (LPF). The full data set is found in
Memon et al. (2015).
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Table 4.8 Count data of incidences of heartburn for the LAF and LPF surgeries of patients

LAF LPF

Study name N1 Cases Non-cases N2 Cases Non-cases

Watson et al. (1999) 54 5 49 53 5 48

Hagedorn et al. (2003) 47 25 22 48 10 38

Watson et al. (2004) 60 11 49 52 2 50

Spence et al. (2006) 40 6 34 39 5 34

Khan et al. (2010) 31 7 24 29 3 26

Raue et al. (2011) 30 1 29 27 1 26

Cao et al. (2012) 49 8 41 47 8 39

Calculate the modified variances and weights for all the studies under the IVhet
model.

For the above data, the effect size measure RR and its log transformation (LnRR),
variance (Var), estimated value of between studies variance (τ2), modified variance
(V*) and modified weight (W*) are provided in Table 4.9.

Illustration of calculations: For the first study (Watson et al. 1999),
W(LnRR) = 1/Var(LnRR) = 1/0.362614 = 2.75776, the weight of LnRR

The modified variance, V*((LnRR) = Var(LnRR) + τ2 = 0.362614 + 0.0399 =
0.40251, and modified weight for the IVhet model

W ∗ (IVhet) =
[

W (Ln RR)∑
W (Ln RR)

]2
× V ∗(Ln RR) =

[
2.75776

25.7003

]2
× 0.40251 = 0.004635.

Example 4.9 Consider the heartburn data in Example 4.6.

Under the IVhet model, find the

Table 4.9 Calculations of LnRR, Var(LnRR), τ2, V*(LnRR), W*(LnRR), and sums of W(LnRR),
V*(LnRR) and W*(LnRR) of heartburn data

Study name RR LnRR Var(LnRR) τ2 W(LnRR) V*(LnRR) W*(IVhet)

Watson et al. (1999) 0.98 −0.019 0.362614 0.0399 2.75776 0.40251 0.004635

Hagedorn et al. (2003) 2.55 0.9373 0.09789 0.0399 10.2155 0.13778 0.021769

Watson et al. (2004) 4.77 1.5616 0.555012 0.0399 1.80176 0.5949 0.002924

Spence et al. (2006) 1.17 0.157 0.316026 0.0399 3.1643 0.35592 0.005395

Khan et al. (2010) 2.18 0.7806 0.40945 0.0399 2.4423 0.44934 0.004058

Raue et al. (2011) 0.9 −0.105 1.92963 0.0399 0.51823 1.96952 0.000801

Cao et al. (2012) 0.96 −0.042 0.208315 0.0399 4.80042 0.24821 0.00866

25.7003 4.15819 0.048241

Note V*(LnRR) is the sum of the within and between studies variances of LnRR
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(i) Estimate of the unknown common population LnRR (θ∗)
(ii) Standard error of the estimator of LnRR
(iii) 95% confidence interval for unknown common population LnRR (θ∗)
(iv) Test the significance of the unknown common population LnRR (θ∗)

To answer the above questions, first we need to find the statistics in Table 4.10.

(i) The IVhet model estimate of the transformed common effect size LnRR is
given by

θ̂∗
IV het =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

= 14.48629

25.7003
= 0.56366 ≈ 0.56 in the LnRR scale.

(ii) The variance of the estimator of LnRR under the IVhet model is given by

Var(θ̂∗
IV het ) =

k∑
i=1

⎡
⎣

(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤
⎦

=
7∑

i=1

⎡
⎣

(
W

/
7∑

i=1

W

)2

(vi + τ̂ 2)

⎤
⎦ = 0.048241.

Hence the standard error becomes

SE(θ̂∗
IV het ) =

√
V ar(θ̂∗

I V het ) = √
0.048241 = 0.219638.

(iii) The 95% confidence interval for the common effect size LnRR under the IVhet
model is given by

L L∗ = θ̂∗
I V het − 1.96 × SE(θ̂∗

I V het ) = 0.5637 − 1.96 × 0.219638 = 0.133209 and

U L∗ = θ̂∗
I V het + 1.96 × SE(θ̂∗

I V het ) = 0.5637 + 1.96 × 0.219638 = 0.994199 in LnRR scale.

Then the 95% confidence interval in the original RR scale becomes

LL = exp(LL∗) = exp(0.133209) = 1.142487 ≈ 1.14 and

UL = exp(UL∗) = exp(0.994199) = 2.702537 ≈ 2.70.

The IVhet point estimate of the common effect size RR is
RR = exp(θ̂∗

IV het ) = exp(0.5637) = 1.757162 ≈ 1.76 in original RR scale.

Remark: The above point estimate (1.76) and confidence interval (1.14, 2.70) are
reported at the bottom row of the forest plot in Fig. 4.4 and is represented by the
diamond.
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(iv) To test the significance of population LnRR, test the null hypothesis H0 :
Ln R R = 0 (same risk for both groups) against Ha : Ln R R �= 0. Based on the
sample data the observed value of the test statistic Z is

z0 = 0.56366

0.219638
= 2.5663 ≈ 2.57.

The two-sided P-value is P(|Z| > 2.57)= 2xP(Z > 2.57)= 2× 0.00508= 0.01016.
Therefore the test is significant at the 5% level, that is, the RR is significantly different
from 1.

IVhet Meta-analysis of RR with MetaXL
In MetaXL use following code:

=MAInputTable(“Heartburn RR IVhet”,”NumRR”,”IVhet”,N5:T11),

where “N5:T11” indicates the data area in Excel Worksheet, and “IVhet” represents
IVhet model.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Heartburn RR IVhet” in the above code (user may choose any appropriate title
here). Then in the second quote enter the type of effect measure, e.g. “NumRR” in the
above code tells that the outcome variable is numerical and the effect size measure is
risk ratio. Within the third quote enter the statistical model, e.g. “IVhet” in the above
code stands for the inverse variance heterogeneity (abbreviated by IVhet) model.
Each quotation is followed by a comma, and after the last comma enter the data area

Fig. 4.4 Forest plot of RR for the ablation of heartburn for the LAF and LPF patients under the
IVhet model
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in Excel, e.g. N5:T11 in the above code tells that the data on the independent studies
are taken from the specified cells. The code ends with a closing parenthesis.

The following forest plot, under the IVhet model, produced by MetaXL shows
the 95% confidence intervals of individual studies and the pooled effect size along
with redistributed weights.

Interpretation:
The estimated value of the common effect size RR under the IVhetmodel is 1.76with
95% confidence interval (1.14, 2.70). The RR of heartburn is significantly different
(since 1 is not included in the confidence interval) for the patients treated with LAF
and LPF surgeries. The patients with LPF surgery have higher risk of heartburn
compared to those with LAF surgery. There is 76% (or 1.76 times) higher risk of
heartburn for the patients receiving LPF surgery than those received LAF surgery.

4.7 Subgroup Analysis

In the presence of heterogeneity often researchers look for ways to deal with the
problem by dividing the studies into homogeneous subgroups. It is also used when
there is an interest to compare the effect size for different regions or period/size of
the studies. Subgroup analysis is a special case of meta-regression when the only
explanatory (moderator) variable is categorical.

Subgroup analysis is appropriate when the studies could be divided into different
groups based on some distinguishing characteristics of the studies. This is done if
there is a reason to suspect real differences in the effect size estimate among thegroups
of studies. The procedure is explained below for the heartburn data meta-analysis.

The seven studies in the heartburn data in Example 4.4 are divided into two groups
by their study period (Old studies 1999-2006, and Recent studies 2010–2012) for
subgroup analyses. The aim here is to perform separate meta-analysis for each of the
two subgroups and present the results of the meta-analysis of all the studies on the
same forest plot to compare the effect size estimate between the subgroups and the
overall studies.

Interested readers may refer to Paget et al. (2011) for an example of subgroup
analysis. Some useful advices on subgroup analysis are found in Yusuf et al. (1991).

Steps in Subgroup analysis using MetaXL

Step 1: First run the following MetaXL code to create a forest plot (in cell C16, say)
so that “Heartburn Subgroup RR RE” is shown on this cell.

=MAInputTable(“Heartburn Subgroup RR RE”,”NumRR”,”re”,B5:H11)

Step 2: Then create a table of groups (as shown below) of studies by any
distinguishing characteristic, e.g. studies published before 2010 (Old studies), and
those published in 2010 or later (Recent studies) in separate columns. For the current
example, to illustrate the subgroup analysis in Fig. 4.5, the ‘Old studies’ group
consists of four studies and ‘Recent studies’ group consists of three studies as follows:
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Heartburn Subgroup RR RE by Study Period

RR
01 51 020

Study or Subgroup

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Recent studies subgroup

Old studies 

Q=4.27, p=0.23, I2=30%

Recent studies 

Q=1.15, p=0.56, I2=0%

Overall
Q=6.79, p=0.34, I2=12%

Old studies subgroup

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI)          % Weight

0.90 (0.06, 13.70) 2.4
0.96 (0.39,  2.35) 19.2

0.98 (0.30,  3.19) 11.8

1.17 (0.39,  3.52) 13.4

1.24 (0.61,  2.50) 32.2

1.72 (1.12,  2.63) 100.0

1.95 (1.07,  3.55) 67.8

2.18 (0.62,  7.65) 10.6

2.55 (1.38,  4.71) 34.6
4.77 (1.11, 20.53) 8.0

5

Fig. 4.5 Forest plot of subgroup analysis of old and recent studies of RR of heartburn for the LAF
and LPF patients under the random effects model in RR scale

Old studies Recent studies

Watson et al. (1999) Khan et al. (2010)

Hagedorn et al. (2003) Raue et al. (2011)

Watson et al. (2004) Cao et al. (2012)

Spence et al. (2006)

Step 3: Finally, run the following MetaXL code to produce the forest plot of
subgroup analysis as in Fig. 4.5:

=MASubGroups(“Study Period”,C16, I4:J8)

Note the cell “C16” refers to the Excel Worksheet where meta-analysis of all
the studies is restored, and the range of cells “I4:J8” indicates the area in the Excel
Worksheet where table of subgroups is located.

The above code creates a forest plot of subgroup analysis with three subplots -
one for each of the two separate study periods and another one combining all studies
across the two groups.

Without conducting subgroup analysis, across all the studies, the LPF group has
higherRR than theLAFgroup.But the subgroup analysis reveals that the ‘old studies’
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subgroup favours the LAF as the RR for the APF patients (RR = 1.95) is much high
compared to that of the ‘recent studies’ subgroup (pooled RR = 1.24).

Interpretation of subgroup analysis:
For the Old studies subgroup the risk of heartburn in the LPF group is 1.95 times
higher than that in the LAF group. The confidence interval does not cross the vertical
line at RR = 1, and hence the effect size is significant at the 5% level of significance.

But for the Recent studies subgroup, the risk of heartburn in the LPF group is
1.24 times higher than that in the LAF group. The effect size in this subgroup of Old
studies is not significant as the confidence interval includes RR = 1.

The pooled results (combining all Old and Recent studies) show that the risk of
heartburn is 1.72 times higher in the LAF group compared to the LPF group. The
confidence interval for the pooled effect size does not cross the vertical line at RR =
1, and hence the pooled effect size is significant at the 5% level of significance.

So, the incidence of heartburn is much higher in the LPF group than the LAP
group across all the time and over all the studies.

The forest plot in Fig. 4.5 is reproduced in log RR scale for better visibility as
in Fig. 4.6. The confidence intervals in this forest plot are more clear than that of
the RR scale, but the final results are the same. Make XL provide the flexibility to
present the forest plot either in RR or log RR scale.

Heartburn Subgroup RR RE by Study Period

ln RR
3210-1-2-3

Study or Subgroup

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Recent studies subgroup

Old studies 

Q=4.27, p=0.23, I2=30%

Recent studies 

Q=1.15, p=0.56, I2=0%

Overall
Q=6.79, p=0.34, I2=12%

Old studies subgroup

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI) % Weight

0.90 (0.06, 13.70) 2.4
0.96 (0.39,  2.35) 19.2

0.98 (0.30,  3.19) 11.8

1.17 (0.39,  3.52) 13.4

1.24 (0.61,  2.50) 32.2

1.72 (1.12,  2.63) 100.0

1.95 (1.07,  3.55) 67.8

2.18 (0.62,  7.65) 10.6

2.55 (1.38,  4.71) 34.6
4.77 (1.11, 20.53) 8.0

Fig. 4.6 Forest plot of subgroup analysis of old and recent studies of RR of heartburn for the LAF
and LPF patients under the random effects model in ln RR scale
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4.8 Discussions and Comparison of Results

The forest plots can be displayed in the Ln RR scale for better exposure of the
confidence intervals as in Figs. 4.7, 4.8, and 4.9. These plots only change the
second column (panel containing scatterplot of confidence intervals) of the forest
plot keeping the study names in the first column, point estimates and confidence
intervals in the third and fourth columns and weights in the fifth column the same
(as it is in the forest plot of original RR scale).

As always, the point estimate of the common effect size RR is the same (1.76)
for the FE and IVhet models. But the confidence interval for the FE is (1.19, 2.59)
and that for the IVhet is (1.14, 2.70) with the same redistribution of weights among
the studies. Thus the IVhet model meta-analysis enables higher width (2.70 – 1.44
= 1.66) of the confidence interval than the FE model (width, 2.59 – 1.19 = 1.40) by
allowing for higher variance in the way of inclusion of between studies variation.

Heartburn RR FE

ln RR
3210-1-2-3

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=6.79, p=0.34, I2=12%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR (95%CI) % Weight

0.90 (0.06, 13.70) 2.0
0.96 (0.39,  2.35) 18.7

0.98 (0.30,  3.19) 10.7

1.17 (0.39,  3.52) 12.3

1.76 (1.19,  2.59) 100.0

2.18 (0.62,  7.65) 9.5

2.55 (1.38,  4.71) 39.7
4.77 (1.11, 20.53) 7.0

Fig. 4.7 Forest plot of RR of heartburn data for FE model in LnRR scale

Heartburn RR RE

ln RR
3210-1-2-3

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=6.79, p=0.34, I2=12%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI) % Weight

0.90 (0.06, 13.70) 2.4
0.96 (0.39,  2.35) 19.2

0.98 (0.30,  3.19) 11.8

1.17 (0.39,  3.52) 13.4

1.72 (1.12,  2.63) 100.0

2.18 (0.62,  7.65) 10.6

2.55 (1.38,  4.71) 34.6
4.77 (1.11, 20.53) 8.0

Fig. 4.8 Forest plot of RR of heartburn data for REs model in LnRR scale
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Heartburn RR IVhet

ln RR
3210-1-2-3

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=6.79, p=0.34, I2=12%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

RR  (95%CI) % Weight

0.90 (0.06, 13.70) 2.0
0.96 (0.39,  2.35) 18.7

0.98 (0.30,  3.19) 10.7

1.17 (0.39,  3.52) 12.3

1.76 (1.14,  2.70) 100.0

2.18 (0.62,  7.65) 9.5

2.55 (1.38,  4.71) 39.7
4.77 (1.11, 20.53) 7.0

Fig. 4.9 Forest plot of RR of heartburn data for IVhet model in LnRR scale

For the REs model, the point estimate of the combined effect size RR is 1.72 with
confidence interval (1.12, 2.63). The redistribution of weights among the studies
under this model is very different from that under the IVhet model. Contradictory
to common logic, under the REs model, the smaller studies receive higher weights
than the larger studies.

The width of the confidence interval under the REs model (2.63 – 1.12 = 1.51) is
wider than that under the FEmodel (1.40) but shorter than that under the IVhet model
(1.66). Note that because of the shorter width, the coverage probability under the REs
model is compromised and falls short of the nominal confidence level (of 95%). This
does not happen to the IVhet model which maintains the nominal confidence level.

Under all threemodels the common/combined effect size RR is significant (higher
RR of heartburn for higher LPF group). The heterogeneity is insignificant as the value
of I 2 = 12% and the P-value of the Q statistic is 0.34. Note that the Q statistic and
the I 2 index are note, dependent on any statistical model.

Obviously, the point estimates and confidence intervals of all individual studies
remain the same in the forest plot regardless of the statistical model of analysis.
Only changes are in the pooled estimate and confidence interval due to the different
redistributed study weights under different models.

4.9 Publication Bias

For various reasons not all research studies, including randomised control trials, are
published and hence results or summary statistics on the research question of interest
are not always publicly accessible for meta-analysis. Absence or unavailability of
some studies that from meta-analysis causes publication bias. One major reason for
publication bias is the results of intervention that are not significant are not usually
published due to the choice of the journal editor or as a result of the instructions
of funding agency to avoid publishing negative or unfavourable results. Sometimes
studies published in non-English literatures are not included in meta-analysis
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causing publication bias. There are methods to identify or assess and deal with
publication bias. This topic is covered in details in Chap. 12.

The publication bias is a real and serious problem, and hence received considerable
attention among the researchers including Sterne et al. (2000); Elvik (2011, 2013);
Mathew and Charney (2009); and Uesawa et al. (2010).

4.9.1 The Funnel Plot

Publication bias is usually detected by using funnel plot. A funnel plot is a scatter
plot of standard error of the studies against effect size (or transformed effect size).
If a funnel plot is symmetrical about the vertical line in the middle, then there is
no publication bias. However, if the funnel plot is asymmetrical there is publication
bias in the study. There are some methods in the literature to deal with the impact
of publication bias. The two graphical methods to identify and assess publication
bias are described in this section.

The funnel plot is not dependent on any of the statistical models. But is it produced
as part of fixed effect model meta-analysis procedure by MetaXL.

Interpretation:
From the funnel plot in Fig. 4.10 it is evident that there is publication bias in the
study as the plot is asymmetrical. There are more (four) studies/points on the left
side of the “no effect” vertical line than on the right. Also there is one study with
very small value of standard error on the left side of the vertical line.

4.9.2 The Doi Plot

Another graphical method to study publication bias is the Doi plot. It is a scatter plot
of absolute z-score of the value of effect size versus the effect size (or transformed

Heartburn RR FE

ln RR
3210-1-2
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1.4
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0.8

0.6

0.4

Fig. 4.10 Funnel plot of Ln RR of heartburn data
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Fig. 4.11 Doi plot of RR of heartburn

effect size). The individual dots on the graph are then connected with a continuous
curve. Details are found in Doi (2018), and Furuya-Kanamori et al. (2018).

Like the funnel plot, theDoi plot is used to alert researchers to possible publication
bias, but the Doi plot is more sensitive than the funnel plot. The interpretation,
however, is much like that of the funnel plot: a symmetrical plot gives no reason to
suspect publication bias, an asymmetrical one does.

Smaller less precise trialswill produce an effect size (ES) that scatters increasingly
widely, and the absolute Z-score will gradually increase for both smaller and larger
ES’s on either side of that of the precise trials. Thus, a symmetrical triangle is created
with a Z-score close to zero at its peak. If the trials are homogeneous and not affected
by selection or other forms of bias, the plot will therefore resemble a symmetrical
mountain with similar number of studies and equal spread on each side.

The Doi plot also displays the LFK index of asymmetry, including an assessment
of severity and suggesting ‘No’ or ‘Minor’ or ‘Major’ asymmetry.

The above Doi plot in Fig. 4.11 is showing asymmetry indicating presence of
publication bias. The LFK index (−2.70) also suggests major asymmetry.

Remark: Similar to the funnel plot, Doi plot does not depend on any statistical
models, and hence can be obtained from any forest plot regardless of the model. The
above Doi plot in Fig. 4.11 is produced under the FE model, but the REs and IVhet
models will produce the same Doi plot and funnel plot.
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Appendix 4—Stata Codes for Risk Ratio (RR) Meta-analysis

A4.1 Thyroid ablation data

Study_name TrN1 TrCases TrNon-cases ConN2 ConCases ConNon-cases

Doi (2000) 49 23 26 39 25 14

Ramacciotti (1982) 9 3 6 20 12 8

Angelini (1997) 426 226 200 180 101 79

Liu (1987) 40 14 26 20 11 9

Lin (1998) 21 6 15 25 11 14

McCowen (1976) 28 10 18 36 15 21

Maxon (1992) 37 6 31 26 6 20

A4.2 Stata code for meta-analysis of ablation data

ssc install admetan
FE model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, rr model(fixed)

study(study_name) effect(Relative Risk)
REs model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, rr model(random)

study(study_name) effect(Relative Risk)
IVhet model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, rr model(ivhet)

study(study_name) effect(Relative Risk)

A4.3 Heartburn data

Study_name TrN1 TrCases TrNon-cases ConN2 ConCases ConNon-cases

Watson et al. (1999) 54 5 49 53 5 48

Hagedorn et al. (2003) 47 25 22 48 10 38

Watson et al. (2004) 60 11 49 52 2 50

Spence et al. (2006) 40 6 34 39 5 34

Khan et al. (2010) 31 7 24 29 3 26

Raue et al. (2011) 30 1 29 27 1 26

Cao et al. (2012) 49 8 41 47 8 39

A4.4 Stata code for heartburn data

FE model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, rr model(fixed)

study(study_name) effect(Relative Risk)
REs model meta-analysis
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admetan TrCases TrNoncases ConCases ConNoncases, rr model(random)
study(study_name) effect(Relative Risk)

IVhet model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, rr model(ivhet)

study(study_name) effect(Relative Risk)
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Chapter 5
Meta-analysis of Odds Ratio

Odds ratio is an appropriatemeasure of association between two categorical variables
(intervention and outcome). Themeta-analysis of odds ratio is covered in this chapter.
Meta-analysis under different statistical models along with subgroup analysis and
detection of publication bias are also covered.

5.1 Odds Ratio (OR)

For two arms experiments or studies, if the outcome variable of interest is binary or
categorical, ratio measures are used to analyse the association between the two vari-
ables. The most popular ratio measures are the odds ratio (OR) and risk ratio (RR).
The choice between the OR and RR depends on the objective of the study and to be
decided by the researchers. Formal definition, example, computation and interpreta-
tion ofORare covered inChap. 3. This chapter provides detailed on themeta-analysis
methods of independent studies when odds ratio (OR) is the appropriate effect size
measure.

5.2 Estimation of Effect Size OR

The point estimate of OR (from the sample data) is required to find confidence
interval (and perform hypothesis tests) for the unknown population OR (parameter).
For both confidence intervals and test of hypotheses, the sampling distribution and
standard error of the estimator of the population OR are essential. The critical value
of appropriate statistic (e.g. z) is required for the confidence interval and the choice
of appropriate test statistic depends on the sampling distribution of the estimator of
OR.
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The distribution of the estimator of population OR is not known as it does
not follow any commonly known probability (statistical) distribution. However, the
natural log transformation of the estimator of OR follows an approximate normal
distribution (see Chap. 2 for details). Therefore, for both confidence interval and test
of hypothesis the point estimate of OR is replaced by Ln(OR), and the distribution of
the transformed statistic is used. Although the log transformation does not effect the
value of the test statistic (and hence the P-value) in the hypothesis testing process,
inverse (or back) transformation of the lower and upper limits of the confidence
interval is required to express the limits in the original scale (of OR).

For both the confidence interval and test of hypothesis, in addition to the trans-
formed statistic Ln(OR), the standard error of the transformed statistic is also
required. This is true for all statistical models of meta-analysis.

Let the population effect size measured by OR be denoted by θ. Then its log trans-
formation is defined as θ∗ = ln(θ). For the inference on the population OR this trans-
formed parameter θ∗ is used as the distribution of the estimator of the transformed
parameter, say θ̂∗, is known to follow an approximate normal distribution.

Confidence interval for population OR
To find the 95% confidence interval for θ = OR, the log transformation, θ∗ = ln(θ )
= ln(OR) is used.

An estimator of the population θ = OR is defined as (the sample OR)

θ̂ = OR = a/b

c/d
= a × c

b × d
,

where a, b, c and d are the cell counts in the contingency table (see Table 5.1 below).
Hence an estimator of the transformed population OR (θ∗) becomes

θ̂∗ = ln(θ̂).

The standard error of θ̂∗ is given by

SE(θ̂∗) =
√

1
a + 1

b + 1
c + 1

d .

Then the (1−α)×100%confidence interval for θ∗ = ln(θ )= ln(OR) is represented
by the lower and upper limits as follows:

LB∗ = θ̂∗ − zα/2 × SE(θ̂∗) and

UB∗ = θ̂∗ + zα/2 × SE(θ̂∗)

in the LnOR scale, and then using the back transformation
LL = exp(LL∗) and
UL = exp(UL∗)

in the original OR scale.
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Table 5.1 Vaccination and disease data

Y = Outcome variable

Event (e.g. Disease) Non event (e.g. No
disease)

Row total

X = Exposure
or Explanatory
variable

Treatment (e.g.
Vaccinated)

a (20) b (60) a + b (80)

Control (e.g.
Unvaccinated)

c (80) d (20) c + d (100)

Column total a + c (100) b + d (80) 180

Example 5.1 (CI for OR) Consider the count data on Vaccination and Disease from
Table 5.1.

Find the (i) point estimate of θ and θ∗ (ii) standard error of estimator of θ∗ and
(iii) 95% confidence intervals for θ∗ and θ .

Solution:

(i) For the above Vaccination and Disease data in Table 5.1 we have the point
estimate of the population OR of Disease in the Treatment/Vaccination group,

θ̂ = OR = a/b

c/d
= 20/60

80/20
= 1/3

4/1
= 1/12 = 0.083333.

So, θ̂∗ = ln(θ̂) = ln(0.083333) = −2.48490665.

(ii) The standard error of θ̂∗ is SE(θ̂∗) =
√

1
20 + 1

60 + 1
80 + 1

20 = 0.359397644.

(ii) The 95% confidence interval for the population θ∗ = ln(θ ) is given by

LL∗ = θ̂∗ − zα/2 × SE(θ̂∗) = −2.48490665 − 1.96 × 0.359397644 = −3.18932603 and

UL∗ = θ̂∗ + zα/2 × SE(θ̂∗) = −2.48490665 + 1.96 × 0.359397644 = −1.78048727

in the ln OR scale, and that of θ , obtained by back transformation, as

LL = exp(LL∗) = exp(−3.18932603) = 0.041199629 and
UL = exp(UL∗) = exp(−1.78048727) = 0.168555995 in the original OR scale.

Thus the 95% confidence interval for θ = OR becomes (0.0412, 0.1686).

5.3 Significance Tests on OR

To test the significance of the population OR, θ the null hypothesis is H0 : θ = 1(the
odds is the same for the treatment and control groups) we actually need to test the
null hypothesis H0 : θ∗ = ln(θ) = ln(1) = 0 since the sampling distribution of
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estimator of θ is unknown but that of θ∗ is approximately normal. Note that testing
θ = 1 is the same as testing θ∗ = ln(1) = 0.

The appropriate test statistic to test H0 : θ∗ = 0 against HA : θ∗ �= 0 is
Z = θ̂∗

SE(θ̂∗)
which follows a standard normal distribution.

Example 5.2 (Test for OR) Consider the count data on the Vaccination and Disease
in Table 5.1.

Test the significance of θ∗ = ln(θ).

Solution:

From the above count data we have
θ̂ = OR = 1/12 = 0.083333, θ̂∗ = ln(θ̂) = ln(0.083333) = −2.48490665 and
SE(θ̂∗) = 0.359397644.
Hence the observed value of the test statistic Z is

z0 = θ̂∗

SE(θ̂∗)
= −2.48490665

0.359397644
= −6.914.

The P-value = P(|Z| > 6.914) = P(Z < −6.914) + P(Z > 6.914) = 0.
So, the test is highly significant. That is, there is very strong sample evidence

against the null hypothesis of ln(OR) = 0, that is, OR = 1. Hence we reject the null
hypothesis in favour of the alternative hypothesis (and conclude that there is strong
association/dependency between the outcome and exposure/intervention).

Comment There is a strong association between the two categorical variables (inter-
vention or exposure) and outcome (disease or non disease). The same conclusion is
arrived by either testing the RR or OR. However, the test for OR yields a larger
absolute (ignoring sign) value of Z statistic (−6.914) than the test on RR (with z =
−5.82 in Chap. 4), and hence the test on OR is more significant than that on RR.

5.4 Fixed Effects (FEs) Model

The fixed effect (FE) and other statistical models are applicable for meta-analysis of
studies involving both binary and continuous outcome variables. In this section, the
FEmodel is presented in the context of meta-analysis for odds ratio (OR). But the FE
model can also be used for the meta-analyses of all kind of effect sizes regardless of
types of outcome variables. The FE model is used for meta-analysis if the between
studies variation is insignificant.

A basic introduction to the FE model meta-analysis is found in Borenstein et al.
2010 and in Chap. 11 of Borenstein et al. (2009).
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Let us consider k independent primary studies selected for a meta-analysis after
systematic review of all studies on a particular topic of interest. The underlying
assumption is that there is an unknown common effect size (OR), θ for all the
independent studies included in the investigation. Meta-analysis enables us to pool
results fromall independent studies to estimate the commoneffect size.Meta-analysis
provides a method to combine the effect size measure of all the studies to get a more
accurate estimate of the common effect size.

The ith individual study measures the common effect size θ by the individual
effect size θi . Then the unknown population parameter θi is estimated by the sample
effect size, θ̂i which includes errors (combination of sampling error and errors due
to individual study bias), θi = θ + εi . Let σ 2

i be the unknown (within) population
variance of the ith study for i = 1, 2, …, k. The sample estimate of the population
effect size for the ith primary study based on a random sample of size ni is denoted
by θ̂i and the sample variance by vi . Then the unknown inverse variance population
weight ωi = 1

σ 2
i
of the ith study is estimated by the sample weight wi = 1

vi
.

Normally, the ith individual study reports the sample estimate of the effect size,
(θ̂i ) the sample variance (vi ) of the estimator of effect size and the sample size
ni . Based on these information, a 95% confidence interval for θi is constructed
for each of the studies if the sampling distribution of θ̂i is known. Obviously, the
confidence intervals vary from one study to another, and some of them may even
provide conflicting results. Therefore, it is important to combine the results from all
the k studies by pooling the summary statistics data into a single point estimate and
find a confidence interval for the common effect size θ .

The fixed effect (FE) model assumes that the errors follow a normal distribution
with mean 0 and variance σ 2

i . Hence θi is also distributed normally with mean θ

and variance σ 2
i . So, under the FE model all studies share a common effect size and

attempt is made to estimate the unknown population common effect size from the
sample data. Under the FE model, the common effect size estimator for the log OR,
θ∗ = LnOR is given by

θ̂∗
FE =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

(5.1)

which is the weighted mean of the estimated effect sizes of all the independent
studies. The denominator in Eq. (5.1) ensures that the sum of the weights is 1. The
variance of the estimator of the common effect size θ∗ is
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Var(θ̂∗
FE ) = 1

k∑
i=1

wi

. Therefore, the standard error of the estimator of the common

effect size under the FE model is SE(θ̂∗
FE ) =

√
1

k∑
i=1

wi

.

The confidence interval under FE model
The (1− α) × 100% confidence interval for the transformed effect size θ∗ under the
FE model is given by the lower limit (LL) and upper limit (UL) as follows:

LL∗ = θ̂∗
FE − zα/2 × SE(θ̂∗

FE ) and
UL∗ = θ̂∗

FE + zα/2 × SE(θ̂∗
FE ) in ln OR scale, and then

LL = exp(LL∗) and
LU = exp(LU ∗) in the original OR scale.
Here zα/2 is the α

2 th cut-off point of standard normal distribution. For a 95%
confidence interval zα/2 = z0.05/2 = 1.96.

Test of hypothesis
To test the significance of the common effect size, θ∗ under the FE model, of all
studies, test the null hypothesis

H0 : θ∗ = 0 (that is, LnOR = 0) against Ha : θ∗ �= 0 using the test statistic

Z = θ̂∗

SE(θ̂∗)
,

where the test statistic Z follows the standard normal distribution.

Decision Rules:

Critical value approach: For a two-tailed test, reject H0 at the α level of significance
if the calculated/observed value of the Z statistic (say z0) satisfies |z0| ≥ zα/2, where
zα/2 is the α

2 level upper cut-off point of the standard normal distribution; otherwise
don’t reject the null hypothesis.

P-value approach: For a two-tailed test, reject H0 at the α level of significance if
the P-value is less than or equal to α; otherwise don’t reject the null hypothesis.

Illustration of FE model for OR

Example 5.3 Consider the data on the number of patients with high dose radio-
active iodine versus low dose after thyroidectomy in patients with differentiated
thyroid cancer. The study looked at the risk of ablation (surgical removal of tissue)
as the outcome variable. For illustration we consider seven independent studies as in
Table 5.2 below.

Find the (i) point estimate and (ii) standard error of the estimator, (iii) 95%confidence
interval, and (iv) test the significance of the population OR under the FE model.
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Table 5.2 Count data on the number of thyroid cancer patients with ablation in the low-dose and
high-dose groups

Treatment (High dose) Control (Low dose)

Study name N1 Cases Non-cases N2 Cases Non-cases

Doi (2000) 49 23 26 39 25 14

Ramacciotti (1982) 9 3 6 20 12 8

Angelini (1997) 426 226 200 180 101 79

Liu (1987) 40 14 26 20 11 9

Lin (1998) 21 6 15 25 11 14

McCowen (1976) 28 10 18 36 15 21

Maxon (1992) 37 6 31 26 6 20

Solution:

The odds ratio (OR) of the Treatment (high dose) group, log of OR (LnOR), variance
of log OR, weight (W), 95% confidence levels and other calculations for individual
studies are shown in Table 5.3 below.

Using the summary statistics in Table 5.3 we answer the above questions as
follows:

(i) The point estimate of the common pooled effect (OR) under the FE model is
found as

θ̂∗
FE =

7∑
i=1

wi θ̂
∗
i

7∑
i=1

wi

= −15.364
49.694 = −0.3092 in the LnOR scale, and hence the estimated

effect size in the OR scale under the FE model becomes

θ̂FE = exp(θ̂∗
FE ) = exp(−0.3092) = 0.73406.

Table 5.3 Calculations and summary statistics for the thyroid cancer with ablation data for the FE
model

Study name OR LnOR Var(LnOR) W(OR) WxLnOR 95%
CI LL

UL

Doi (2000) 0.4954 −0.7024 0.1934 5.1715 −3.6326 0.2092 1.1729

Ramacciotti (1982) 0.3333 −1.0986 0.7083 1.4118 −1.551 0.064 1.7349

Angelini (1997) 0.8839 −0.1235 0.032 31.266 −3.8599 0.6225 1.2549

Liu (1987) 0.4406 −0.8197 0.3119 3.206 −2.628 0.1474 1.3164

Lin (1998) 0.5091 −0.6751 0.3957 2.5274 −1.7063 0.1484 1.7468

McCowen (1976) 0.7778 −0.2513 0.2698 3.7059 −0.9313 0.281 2.1529

Maxon (1992) 0.6452 −0.4383 0.4156 2.4062 −1.0545 0.1824 2.2825

49.694 −15.364
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(ii) The standard error of the estimator of population lnOR under the FE model is

SE(θ̂∗
FE ) =

√√√√√
1

7∑
i=1

wi

=
√

1

49.694
= 0.141856.

(iii) The 95% confidence interval for the common effect size in ln OR scale is

LL∗ = θ̂∗
FE − 1.96 × SE(θ̂∗

FE ) = −0.3092 − 1.96 × 0.141856 = −0.5872 and

UL∗ = θ̂∗
FE + 1.96 × SE(θ̂∗

FE ) == −0.3092 + 1.96 × 0.141856 = −0.03113

Then the 95% confidence interval in the OR scale is

LL = exp(LL∗) = exp(−0.5872) = 0.5559 and

UL = exp(UL∗) = exp(−0.03113) = 0.9693.

Hence the 95% confidence interval for the population OR of ablation is (0.56,
0.97).

Comment The above point estimate 0.73 (rounded) and confidence limits 0.56 and
0.97 are reported in the last row of the forest plot in Fig. 5.1.

(iv) To test H0 : θ = 0 (that is, LnOR = 0) against Ha : θ �= 0 the observed value
of the test statistic

Z = θ̂∗

SE(θ̂∗)
is

z0 = −0.3092

0.148156
= −2.1794 ≈ −2.18.

Thyroid OR FE

OR
21.510.50

Study 

Ramacciotti 1982 

Liu 1987 

Doi 2000 A 

Lin 1998 

Maxon 1992 

Overall 
Q=3.98, p=0.68, I2=0%

McCowen 1976 

Angelini 1997 

    OR (95%CI) % Weight

0.33 (0.06,  1.73) 2.8

0.44 (0.15,  1.32) 6.5

0.50 (0.21,  1.17) 10.4

0.51 (0.15,  1.75) 5.1

0.65 (0.18,  2.28) 4.8

0.73 (0.56,  0.97) 100.0

0.78 (0.28,  2.15) 7.5

0.88 (0.62,  1.25) 62.9

Fig. 5.1 Forest plot of OR for Thyroid data under the FE model using MetaXL
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The two-sided P-value is P(|Z| > −2.18) = 2 × P(Z < −2.18) = 2 ×
0.0146 = 0.0292 (< 0.05). So, at the 5% significance level the OR is signifi-
cant.

The effect size (OR) of ablation after thyroidectomy is significantly different for
the low dose and high dose patients.

Measuring Heterogeneity of between study ORs
In many statistical analyses heterogeneity is a major problem. This is more so for
meta-analysis. In the presence of heterogeneity in the data special methods are
required for the analysis. So, it is essential for every meta-analysis to investigate
the heterogeneity before selecting any specific statistical model.

In meta-analysis, the heterogeneity among the studies are measured by Cochran’s
Q statistic Cochran 1973 andHiggin’s I 2 index. Higgins et al. (2003) provides further
insight into the heterogeneity measures in meta-analysis.

To test the heterogeneity amongpopulation effect size (θi ), test the null hypothesis,
H0 : θ1 = θ2 = . . . = θk against the alternative hypothesis Ha : not all θi ’s are

equal for i = 1, 2, . . . , k using the test statistic defined as

Q =
k∑

i−1
wi θ̂

∗2
i −

(
k∑

i=1
wi θ̂

∗
i

)

k∑
i=1

wi

2

using the ln OR as the effect measure.

Example 5.4 Consider the ablation data in Exercise 5.3.

Calculate the value of the Q and I 2 statistics for the effect size OR.

Solution:

For the above data set in Example 5.3, using the summary statistics from theTable 5.4,
we get

Table 5.4 Calculations and summary statistics for the thyroid cancer with ablation data for Q and

I 2 statistics

Study name OR LnOR Var(LnOR) W(LnOR) WxLnOR WxLnORˆ2

Doi (2000) 0.4954 −0.70242 0.193368 5.17148 −3.6326 2.551581

Ramacciotti (1982) 0.3333 −1.09861 0.708333 1.41176 −1.551 1.703928

Angelini (1997) 0.8839 −0.12346 0.031984 31.2656 −3.8599 0.476524

Liu (1987) 0.4406 −0.81971 0.31191 3.20605 −2.628 2.154223

Lin (1998) 0.5091 −0.67513 0.395671 2.52735 −1.7063 1.151964

McCowen (1976) 0.7778 −0.25131 0.269841 3.70588 −0.9313 0.23406

Maxon (1992) 0.6452 −0.43825 0.415591 2.40621 −1.0545 0.462154

49.6944 −15.364 8.734434
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Q =
7∑

i=1

wi θ̂
∗2
i −

(
7∑

i=1
wi θ̂

∗
i

)2

7∑
i=1

wi

=
7∑

i=1

WLnOR2−

(
7∑

i=1
WLnOR

)2

7∑
i=1

W

= 8.734434 − (−15.3636)2

49.69437
= 3.984578 ≈ 3.98.

The above Q statistic follows a chi-squared distribution with (k−1) = 7–1 = 6
degrees of freedom. Then the P-value of testing equality of population effect sizes
(OR) becomes

p = P
(
χ2
6 > 3.98

) = 0.68.

Using chi-squired distribution table, it is found that the P-value of the test is
between 0.50 and 0.75 (which includes 0.68). The exact critical value of the chi-
squared statistic is rarely found from the chi-squared Table but can easily be obtained
by using any statistical package.

Since the P-value is very large, there is insignificant heterogeneity between the
study effect sizes.

The value of the I 2 statistic is found to be

I 2 =
(
Q − d f

Q

)
× 100% =

(
3.98 − 6

3.98

)
× 100% = −0.51% → 0%

(negative values of I 2 statistic is truncated to 0%). Hence there is no significant
heterogeneity between the study effects.

Comment The I 2 statistic above represents the percentageof variation across studies
that is due to systematic heterogeneity rather than chance.

Forest plot for OR using MetaXL:
The forest plot under the FE model (indicated by “IV” in the code) is produced by
using MetaXL code

=MAInputTable(“Thyroid OR FE”,“NumOR”,“IV”,B17:H23),
where “B17:H23” refers to the data area in Excel sheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table “ = MAInputTable”. This is followed by an open parenthesis inside which
the first quote contains the text that appears as the ‘title of the output of the forest
plot’ e.g. “Thyroid OR FE” in the above code (user may choose any appropriate
title here). Then in the second quote enter the type of effect measure, e.g. “NumOR”
in the above code tells that the outcome variable is numerical and the effect size
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measure is odds ratio. Within the third quote enter the statistical model, e.g. “IV”
in the above code stands for the fixed effect (inverse variance is abbreviated by IV)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B17:H23 in the above code tells that the data on
the independent studies are taken from the specified cells in the Excel Worksheet.
The code ends with a closing parenthesis.

The forest plot of the meta-analysis of OR using the above MetaXL code is given
in Fig. 5.1.

Comment For the explanations and components on the forest plot please see the FE
model forest plot of RR in Chap. 4.

Interpretation:
From the forest plot of meta-analysis in Fig 5.1, the odds of ablation of thyroid
patients with low dose of after thyroidectomy differentiated thyroid cancer is 0.73
relative to the high dose patients. The patients with high dose have 0.27 times less
odds of ablation than those with low dose.

Aside: The use of the term ‘probability’ for the word ‘odds’ is inappropriate
since by definition the two terms are very different. Hence the two terms are not
interchangeable.

The 95% confidence interval (0.56, 0.97) does not include OR = 1 (odds are no
different) indicating the effect size is significant at the 5% level of significance. This
is also evidenced by the fact that the diamond does not cross the vertical line at OR
= 1.

The value of the Q statistic is 3.98 with P-value = 0.68 indicating absence of
heterogeneity among the population effect sizes. The 0% value of the I 2 statistic
also leads to the same conclusion of no heterogeneity in the data.

5.5 Random Effects (REs) Model

General discussions on the random effects (REs) model are found in Chap. 2. Under
the REs model, the assumption is that there is no common effect size for the k
independent studies. In stead, it is assumed that every primary study has a different
population effect size which is a random variable, and follows normal distribution.
As such, there is variation between the effect sizes of the individual studies. So, the
variance of effect size under the REs model is the sum of within study and between
studies variances. As suggested by DerSimonian and Laird (1986), the between
studies variance is estimated by method of moments. Some serious flaws of the REs
model have been discussed by many authors and the shortcomings of REs model has
been explained by simulation comparison as in Doi et al. (2015b).

The REs model assumes, θ̂i = θ + ςi + εi in which ςi = θi − θ is distributed
normally with mean 0 and variance τ 2 and εi = θ̂i − θi follows a normal distribution
with mean 0 and variance σ 2

i .
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Since, under the REs model, there are two sources of variation, the overall study
error variance has two components. First, thewithin-study error variance, and second,
the between-study variance. The population between-studies variance is the variance
of θi about θ and is denoted by τ 2 which is estimated by the sample variance of θ̂i
about θ and is denoted by τ̂ 2. Thus, under the REs model the estimated variance of
any observed effect size θ̂i about θ is the sum of the within-study and between-study
variances, that is, v∗

i = vi + τ̂ 2. Therefore, the weight assigned to the ith study under
the REs model is given by

w∗
i = 1

vi + τ̂ 2

which is an estimate of the unknown population weightω∗
i = 1

σ 2
i∗
with σ 2

i∗ = σ 2
i +τ 2.

The combind effect size (LnOR = θ∗) estimator under the random effects (REs)
model is

θ̂∗
RE =

k∑
i=1

w∗
i θ̂

∗
i

k∑
i=1

w∗
i

(5.2)

with standard error

SE(θ̂∗
RE ) =

√√√√√
1

k∑
i=1

w∗
i

.

Estimation of τ 2

The between-studies variance is estimated as a scaled excess variation as follows

τ̂ 2 = Q − d f

C
,

where

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

, . . .C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

and d f = (k − 1) in which k is the number of studies.
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Table 5.5 The count data for the heartburn of patients

LAF LPF

Study name N1 Cases Non-cases N2 Cases Non-cases

Watson et al. (1999) 54 5 49 53 5 48

Hagedorn et al. (2003) 47 25 22 48 10 38

Watson et al. (2004) 60 11 49 52 2 50

Spence et al. (2006) 40 6 34 39 5 34

Khan et al. (2010) 31 7 24 29 3 26

Raue et al. (2011) 30 1 29 27 1 26

Cao et al. (2012) 49 8 41 47 8 39

Illustration of Random Effects Model for OR

Example 5.5 The Table 5.5 provides summary data on the number of patients with
heartburn after surgery for Gastro-Esophageal Reflux Disease using Laparoscopic
Anterior (LAF) versus Posterior Fundoplication (LPF). Reference Memon et al.
(2015).

Find the estimated value of the between studies variance τ 2 for the heartburn data.

Solution:

From the data, the calculated sample values of OR, LnOR, Var(LnOR) and other
statistics are found in Table 5.6.

Illustration of calculations:
For example, for the first study (Watson et al. 1999):

The odds of LAF is OD(LAF)= 5/49= 0.10204 and the odds of LPF is OD(LPF)
= 5/48 = 0.10417, and hence the odds ratio (odds of LAF relative to LPF) is OR
= 0.10204/0.10417 = 0.9796 or 0.98 (rounded). Then log of OR become LnOR =
ln(0.9796) = −0.0206 or −0.021 (rounded).

The variance of the estimator of LnOR is
V(LnOR) = 1

a + 1
b + 1

c + 1
d = 1

5 + 1
49 + 1

5 + 1
48 = 0.4412.

To estimate the value of between studies variance, τ 2 we need to find the values
of following statistics (note that the sample value of LnOR for the ith study is θ̂i in
the formulae) below:

Q =
7∑

i=1
wi θ̂

2
i −

(
7∑

i=1
wi θ̂i

)2

7∑
i=1

wi

= ∑
W × LnOR2 −

∑
(W×LnOR)2∑
W (LnOR)

(from notations in

Table 5.6).
That is, Q = 16.4568 − (11.46928)2

16.53557 = 8.50158 ≈ 8.502 and
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C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

=
∑

W (LnOR) −
∑

[W (LnOR)]2∑
W (LnOR)

= 16.53557 − 50.03969

16.53557
= 13.50939 ≈ 13.51.

Then, the estimated value of τ 2 becomes

τ̂ 2 = Q − d f

C
= 8.502 − 6

13.51
= 0.1852,

where df = k–1 = 7–1 = 6.

Example 5.6 Consider the heartburn data in Example 5.5

Under the REs model, find the (i) point estimate and (ii) standard error of the
estimator, (iii) 95% confidence interval and (iv) test the significance of the population
effect size OR for the heartburn data.

To answer the above questions, we need to use the calculations of summary
statistics in Table 5.7.

In Table 5.7, Tau2 represents estimated value of τ 2, Var* represents the combined
variance as the sum of Var and Tau2, and W* is the modified weight calculated as
the inverse of Var*.

For the illustration of computations, note that the modified variance for the ith

study under the REs model becomes.
w∗

i = 1
vi+τ̂ 2 which is W ∗

i = 1
Var∗

i +Tau2 in the table notation.
For example, for the first study (Watson et al. 1999) the modified weight, under

REs model, based on modified variance becomes

w∗
1 = 1

v1 + τ̂ 2
= 1

Var1 + Tau2
= 1

0.4412 + 0.1852
= 1.5963.

Table 5.7 Calculations for REs model meta-analysis of OR for the heartburn data

Study name OR LnOR Var(LnOR) Tauˆ2 Var* W* W*xLnOR

Watson et al. (1999) 0.98 −0.021 0.44124 0.1852 0.6264 1.596318 −0.03291

Hagedorn et al. (2003) 4.32 1.463 0.21177 0.1852 0.397 2.51908 3.684997

Watson et al. (2004) 5.61 1.725 0.63132 0.1852 0.8165 1.224714 2.112571

Spence et al. (2006) 1.2 0.182 0.42549 0.1852 0.6107 1.637491 0.29855

Khan et al. (2010) 2.53 0.927 0.55632 0.1852 0.7415 1.348584 1.250596

Raue et al. (2011) 0.9 −0.109 2.07294 0.1852 2.2581 0.442841 −0.04836

Cao et al. (2012) 0.95 −0.05 0.30003 0.1852 0.4852 2.060873 −0.10307

10.8299 7.162376
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Using the summary statistics in Table 5.7 the answers to the questions Example
5.6 are provided as follows:

(i) The point estimate of the common effect size estimate of LnORunder the random
effects (REs) model is

θ̂∗
RE =

k∑
i=1

w∗
i θ̂i

k∑
i=1

w∗
i

=
∑

W ∗×LnOR∑
W ∗ = 7.162376

10.8299 = 0.6614, in ln OR scale.

Then, the point estimate of population OR becomes θ̂RE = OR = exp
(
θ̂∗
RE

)
=

exp(0.6614) = 1.937503 ≈ 1.94 in original OR scale.

(ii) The standard error is found as

SE(θ̂∗
RE ) =

√√√√√
1

k∑
i=1

w∗
i

=
√

1∑
W ∗ =

√
1

10.8299
= 0.30387.

(iii) The 95% confidence interval for the unknown population parameter LnOR is
given by

LL∗ = θ̂∗
RE − 1.96 × SE(θ̂∗

RE ) = 0.66 − 1.96 × 0.30387 = 0.064415 and
UL∗ = θ̂∗

RE +1.96× SE(θ̂∗
RE ) = 0.54+1.96×0.30387 = 1.255585 in ln OR scale.

Then the 95% confidence interval in the original RR scale becomes

LL = exp(LL∗) = exp(0.064415) = 1.067 ≈ 1.07 and

UL = exp(UL∗) = exp(1.255585) = 3.50989 ≈ 3.51.

Remark The above value of the point estimate (1.94) and the confidence interval
(1.07, 3.51) of the population OR are reported in the bottom row of the forest plot
and represented by the diamond as in Fig. 5.2.

(iv) To test the significance of population OR the null hypothesis is H0 : OR = 1
(same odds for both groups) against Ha : OR �= 1. That is, test H0 : ln OR = 0
versus H1 : ln OR �= 0. Based on the heartburn data the observed value of the
test statistic, Z is

z0 = θ̂∗
RE

SE
(
θ̂∗
RE

) = 0.6616

0.30387
= 2.17659 ≈ 2.18.
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Heartburn OR RE

OR
26242220181614121086420

Study

Raue et al 2011
Cao et al 2012

Watson et al 1999

Spence at al 2006

Overall
Q=8.50, p=0.20, I2=29%

Khan et al 2010

Hagedorn et al 2003
Watson et al 2004

OR % Weight

0.90 (0.05, 15.07) 4.1
0.95 (0.33,  2.78) 19.0

0.98 (0.27,  3.60)       14.7

1.20 (0.33,  4.31) 15.1

1.94 (1.07,  3.51) 100.0

2.53 (0.59, 10.90) 12.5

4.32 (1.75, 10.64) 23.3
5.61 (1.18, 26.64) 11.3

(95%CI)

Fig. 5.2 Forest plot of OR for heartburn data under REs model using MetaXL

The two-sided P-value is P(|Z| > 2.18)= 2× P(Z > 2.18)= 2× 0.0146= 0.0292.
Therefore the test is significant at the 5% level, that is, the RR is significantly different
from 1.

REs Model Working with MetaXL for OR
In MetaXL use following code:

=MAInputTable(“Heartburn OR RE”,”NumOR”,”RE”,N5:T11),
where “N5:T11” indicates the data area in Excel sheet, and “RE” represents REs

model.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ of the code starts with ‘
= MAInputTable’. This is followed by an open parenthesis inside which the first
quote contains the text that appears as the ‘title of the output of the forest plot’ e.g.
“Heartburn OR RE” in the above code (user may choose any appropriate title here).
Then in the second quote enter the type of effect measure, e.g. “NumOR” in the above
code tells that the outcome variable is numerical and the effect size measure is odds
ratio. Within the third quote enter the statistical model, e.g. “RE” in the above code
stands for the random effects (abbreviated by RE) model. Each quotation is followed
by a comma, and after the last comma enter the data area in Excel, e.g. N5:T11 in the
above code tells that the data on the independent studies are taken from the specified
cells. The code ends with a closing parenthesis.

Interpretation
The estimated value of the combined effect size OR under the REs model is 1.94.
The odds of heartburn in the LAF group is 1.94 times the odds of LPF group. So the
LPF group has much (1.94 times) higher odds than the LAF group.

The 95% confidence interval is (1.07, 3.51) which does not contain 1 (equal odds
of heartburn for LAP and LPF group patients). Since the 95% confidence interval
does not include OR = 1, the effect size is significant at the 5% level of significance.
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Heartburn OR FE

OR
2721.616.210.85.40

Study 

Raue et al 2011 
Cao et al 2012 

Watson et al 1999 

Spence at al 2006 

Overall 
Q=8.50, p=0.20, I2=29%

Khan et al 2010 

Hagedorn et al 2003 
Watson et al 2004 

OR (95%CI) % Weight

0.90 (0.05, 15.07) 2.9
0.95 (0.33,  2.78) 20.2

0.98 (0.27, 3.60) 13.7

1.20 (0.33,  4.31) 14.2

2.00 ( 1.24,  3.24) 100.0

2.53 (0.59, 10.90) 10.9

4.32 (1.75, 10.64) 28.6
5.61 (1.18, 26.64) 9.6

Fig. 5.3 Forest plot of OR for the heartburn data under FE model using MetaXL

The Q statistic is not significant as the P-value is (0.20) large. Similarly, the value
of I 2 = 29% is low, indicating no significant heterogeneity among the studies.

Aside: Compare FE model results
If fixed effect (FE) model is used for the same heartburn data the in Fig. 5.3 forest
plot is produced by MetaXL with code:

=MAInputTable(“Heartburn OR FE”,”NumOR”,”IV”,N5:T11)

Comparative Interpretations
From Fig. 5.3, the estimated value of the combined effect size OR under the FE
model is 2.00 with the 95% confidence interval (1.24, 3.24).

From Fig. 5.2, the estimated value of the combined effect size OR under the REs
model is 1.94 with 95% confidence interval is (1.07, 3.51).

Although, under both FE and REs models the effect size is significant, the value
of the point estimate is higher (2.00) for the FE model than that under the REs model
(1.94), the 95% confidence interval is much wider under the REs model than the FE
model.

As always, the values of Q and I 2 statistics are unchanged under the two models.
In fact, the two statistics are not dependent on any statistical models.

5.6 Inverse Variance Heterogeneity (IVhet) Model

The inverse variance heterogeneity (IVhet)model is a better alternative to the random
effects (REs) model to deal with heterogeneous meta-analyses. As explained in Doi
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et al. (2015a, 2015b) the IVhet model has much better statistical properties than the
REs model.

Here we adopt the model to analyse the odds ratio (OR) as an effect size measure.
The IVhet estimate of the transformed common effect size LnOR (= θ∗) is given by

θ̂∗
IV het =

k∑
i=1

wi θ̂
∗
i

k∑
i=1

wi

.

Then the variance of the transformed estimator under the IVhet model is given by

Var(θ̂∗
IV het ) =

k∑
i=1

⎡
⎢⎣
⎛
⎝ 1

vi

/ k∑
i=1

1

vi

⎞
⎠
2

(vi + τ̂2)

⎤
⎥⎦ =

k∑
i=1

⎡
⎢⎣
⎛
⎝wi

/ k∑
i=1

wi

⎞
⎠
2

(vi + τ̂2)

⎤
⎥⎦.

For the computation of the confidence interval of the common effect size, θ∗,
based on the IVhet model use the following standard error

SE(θ̂∗
IV het ) =

√
Var(θ̂∗

IV het ).

Then, the (1−α)×100% confidence interval for the transformed common effect
size θ∗ = ln OR under the IVhet model is given by the lower limit (LL*) and upper
limit (UL*) as follows:

LL∗ = θ̂∗
IV het − zα/2 × SE(θ̂∗

I V het ) and
UL∗ = θ̂∗

IV het + zα/2 × SE(θ̂∗
I V het ) in lnOR scale,

where zα/2 is the α
2 th cut-off point of standard normal distribution.

So, the (1 − α) × 100% confidence interval for the common effect size θ = OR
under the IVhet model is given by the lower limit (LL) and upper limit (UL) as
follows:

LL = exp(LL∗) and
UL = exp(UL∗), in original OR scale.

Test of significance
To test the significance of population OR the null hypothesis is H0 : OR = 1 (same
odds for both groups) against Ha : OR �= 1. Under the IVhet model, the test statistic
is

Z = θ̂∗
IV het

SE
(
θ̂∗
IV het

) which follows the standard normal distribution under the null

hypothesis.
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Illustration of IVhet Model for OR

Example 5.7 Consider the heartburn data in Example 5.5.

Under the IVhet model, find the (i) point estimate and (ii) standard error of the
estimator, (iii) 95% confidence interval and (iv) test the significance of the population
effect size OR for the heartburn data.

Solution:

To answer the above questions, we need to use the calculations of the summary
statistics in Table 5.8 below.

For the first study (Watson et al. 1999), weight of LnOR is
W(LnOR) = 1/Var(LnOR) = 1/0.441241 = 2.26633, the modified variance

of LnOR is V*((LnOR) = Var(LnOR) + Tau2 = 0.441241497 + 0.185173 =
0.626414497, and the modified weight under the IVhet model is

W*(IVhet) =
[

W (LnOR)∑
W (LnOR)

]2 × V ∗(LnOR) = [
2.26633
16.5356

]2 × 0.62641 = 0.011767.

To find the estimated value of the population LnOR under the IVhet model the
sums of columns of W(LnOR) and WxLnOR, that is,

∑
W (LnOR) = 16.5356 and∑

W × LnOR = 11.46928, from Table 5.8 are required.
Now, using the summary statistics in Table 5.8 we answer the questions in the

above example.

(i) The point estimate of the transformed common effect size LnOR under the IVhet
model is given by

θ̂∗
IV het =

7∑
i=1

wi θ̂
∗
i

7∑
i=1

wi

=
∑

W×LnOR∑
W (LnOR)

= 11.46928
16.5356 = 0.693611 ≈ 0.69 in the LnOR scale.

So, the point estimate of OR in the original OR scale is given by θ̂IV het =
ORIVhet = exp

(
θ̂∗
IV het

)
= exp(0.693611) = 2.000928 ≈ 2.00.

(ii) The variance of the estimator of LnOR = θ∗ under the IVhet model is given by
the sum of the last column of the above table, that is,

Var(θ̂∗
IV het ) =

7∑
i=1

⎡
⎣
(
1

vi

/
7∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤
⎦ =

7∑
i=1

[
Wi∑
Wi

]
× V ∗

i = 0.094364.

Hence the standard error becomes

SE(θ̂∗
IV het ) =

√
Var(θ̂∗

IV het ) = √
0.094364 = 0.307187.

(iii) Then, the 95% confidence interval for the transformed common effect size
LnOR under the IVhet model is given by
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LL∗ = θ̂∗
IV het − 1.96 × SE(θ̂∗

IV het ) = 0.6931 − 1.96 × 0.307187 = 0.09101 and
UL∗ = θ̂∗

IV het + 1.96 × SE(θ̂∗
IV het ) = 0.6931 + 1.96 × 0.307187 = 1.29519

in ln OR scale.
Then the 95% confidence interval in the original OR scale becomes

LL = exp(LL∗) = exp(0.09101) = 1.09528 ≈ 1.10 and
UL = exp(UL∗) = exp(1.29519) = 3.65168 ≈ 3.65.

Remark The above point estimate (2.00) of the pooled OR and confidence interval
(1.10, 3.65) are reported in the forest plot in the last row in Fig. 5.4 with the diamond
representing the values.

IVhet Meta-analysis of OR with MetaXL
In MetaXL use following code:

=MAInputTable(“Heartburn OR IVhet”,”NumOR”,”IVhet”,N5:T11),

where “N5:T11” indicates the data area in Excel sheet, and “IVhet” represents IVhet
model.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Heartburn OR IVhet” in the above code (user may choose any appropriate title
here). Then in the second quote enter the type of effect measure, e.g. “NumOR” in the
above code tells that the outcome variable is numerical and the effect size measure
is odds ratio. Within the third quote enter the statistical model, e.g. “IVhet” in the
above code stands for the inverse variance heterogeneity (abbreviated by IVhet)
model. Each quotation is followed by a comma, and after the last comma enter the

Heartburn OR IVhet

OR
2721.616.210.85.40

Study 

Raue et al 2011 
Cao et al 2012 

Watson et al 1999 

Spence at al 2006 

Overall 
Q=8.50, p=0.20, I2=29%

Khan et al 2010 

Hagedorn et al 2003 
Watson et al 2004 

    OR (95%CI) % Weight

0.90 (0.05, 15.07) 2.9
0.95 (0.33,  2.78) 20.2

0.98 (0.27,  3.60) 13.7

1.20 (0.33,  4.31) 14.2

2.00 (1.10,  3.65) 100.0

2.53 (0.59, 10.90) 10.9

4.32 (1.75, 10.64) 28.6
5.61 (1.18, 26.64) 9.6

Fig. 5.4 Forest plot of OR of heartburn under inverse variance heterogeneity model using MetaXL
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data area in Excel, e.g. N5:T11 in the above code tells that the data on the independent
studies are taken from the specified cells. The code ends with a closing parenthesis.

The following forest plot produced by MetaXL shows the 95% confidence
intervals of individual studies and the pooled effect size along with redistributed
weights.

Interpretation
Under the IVhet model, the point estimator of OR is (2.00) and the 95% confidence
interval is (1.10, 3.65). Since the 95% confidence interval of the OR of heartburn
is significantly different for the patients treated with LAF and LPF surgeries. The
patients with LPF surgery have higher odds of heartburn compared to those with
LAF surgery. There is 2 ‘times higher odds’ of heartburn for the patients receiving
LPF surgery than those received LAF surgery.

The P-value of the Q statistic is not small (0.20) and hence the heterogeneity
among the studies is not significant. This is also supported by the I 2 = 29%.

5.7 Subgroup Analysis

Subgroup analysis is appropriate when the studies could be divided into different
groups based on some distinguishing characteristics of the studies. This is done
if there is a reason to suspect real differences in the effect size estimate among
the groups of studies. Subgroup analysis is also conducted if there are significant
heterogeneity among the studies. It provides an opportunity to compare the results
among different subgroups and also with the pooled results of all studies. Subgroup
analysis is a special case of meta-regression when the only explanatory (moderator)
variable is categorical.

Interested readers may refer to Paget et al. (2011) for an example of subgroup
analysis. Moreover, some useful advices on subgroup analysis are found in Yusuf
et al. (1991).

The subgroup analysis method and procedure are illustrated and explained below
for the heartburn data meta-analysis using MetaXL.

Steps in Subgroup analysis using MetaXL
Step 1: First run the following MetaXL code to create a forest plot (in cell C16, say)
so that “Heartburn Subgroup OR RE” is shown on this cell.

=MAInputTable(“Heartburn Subgroup OR RE”,”NumOR”,”RE”,B5:H11)
Step 2: Then create a table of subgroups of studies (as below) by study period

e.g. studies published before 2010 (Old studies), and those published in 2010 or
later (Recent studies) in separate columns. For the current example, to illustration
the subgroup analysis in Fig. 5.5, the ‘Old studies’ group consists of four studies and
‘Recent studies’ group consists of three studies as shown in Table 5.9 below.

Step 3: Finally, run the following MetaXL codes to produce the forest plot of
subgroup analysis as in Fig. 5.5:
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Heartburn Subgroup OR RE by Study Period

OR
2520151050

Study or Subgroup 

Raue et al 2011 
Cao et al 2012 

Watson et al 1999 

Spence at al 2006 

Recent studies subgroup 

Old studies 

Q=5.70, p=0.13, I2=47%

Recent studies 

Q=1.19, p=0.55, I2=0%

Overall 
Q=8.50, p=0.20, I2=29%

Old studies subgroup 

Khan et al 2010 

Hagedorn et al 2003 
Watson et al 2004 

    OR (95%CI) % Weight

0.90 (0.05, 15.07) 4.1
0.95 (0.33,  2.78) 19.0

0.98 (0.27,  3.60) 14.7

1.20 (0.33,  4.31) 15.1

1.29 (0.57,  2.96) 35.6

1.94 (1.07,  3.51) 100.0

2.35 (1.01,  5.49) 64.4

2.53 (0.59, 10.90) 12.5

4.32 (1.75, 10.64) 23.3
5.61 (1.18, 26.64) 11.3

Fig. 5.5 Forest plot of OR for subgroup analysis heartburn data under REs model using MetaXL

Table 5.9 Distribution of studies in two subgroups

Old studies Recent studies

Watson et al. (1999) Khan et al. (2010)

Hagedorn et al. (2003) Raue et al. (2011)

Watson et al. (2004) Cao et al. (2012)

Spence et al. (2006)

=MASubGroups(“Study Period”,C16, I4:J8)
The seven studies in the heartburn data example are grouped by study period (4

Old studies 1999–2006 and 3 Recent studies 2010–2012) for subgroup analyses.
Without conducting subgroup analysis, across all the studies the LPF has 1.94

times higher odds than the LAF. But, as in Fig. 5.5, the subgroup analysis reveals
that the ‘Old studies’ subgroup favours the LAF as the OR for the APF patients
(pooled OR = 2.35) is much high compared to that of the ‘Recent studies’ subgroup
(pooled OR = 1.29).

Interpretation of subgroup analysis:
For the Old studies subgroup the odds of heartburn in the LPF group is 2.35 times
higher than that in the LAF group. The confidence interval (1.01, 5.49) does not cross
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Heartburn Subgroup OR RE by Study Period

ln OR
3210-1-2-3

Study or Subgroup 

Raue et al 2011 
Cao et al 2012 

Watson et al 1999 

Spence at al 2006 

Recent studies subgroup 

Old studies 

Q=5.70, p=0.13, I2=47%

Recent studies 

Q=1.19, p=0.55, I2=0%

Overall 
Q=8.50, p=0.20, I2=29%

Old studies subgroup 

Khan et al 2010 

Hagedorn et al 2003 
Watson et al 2004 

    OR (95%CI) % Weight

0.90 (0.05, 15.07) 4.1
0.95 (0.33,  2.78) 19.0

0.98 (0.27,  3.60) 14.7

1.20 (0.33,  4.31) 15.1

1.29 (0.57,  2.96) 35.6

1.94 (1.07,  3.51) 100.0

2.35 (1.01,  5.49) 64.4

2.53 (0.59, 10.90) 12.5

4.32 (1.75, 10.64) 23.3
5.61 (1.18, 26.64) 11.3

Fig. 5.6 Forest plot of OR of heartburn data with graphical display of confidence intervals in ln
OR for subgroup analysis under REs model using MetaXL

the vertical line at OR = 1, and hence the effect size is significant at the 5% level of
significance.

But for the Recent studies subgroup, the odds of heartburn in the LPF group is
1.29 times higher than that in the LAF group. The effect size of this group is not
significant as the confidence interval (0.57, 2.96) includes OR = 1.

The pooled results (combining all Old and Recent studies) show that the odds of
heartburn is 1.94 times higher in the LAF group compared to the LPF group. The
confidence interval (1.07, 3.51) for the pooled effect size does not cross the vertical
line at OR= 1, and hence the effect size is significant at the 5% level of significance.

So, the incidence of heartburn is much higher in the LPF group than the LAP
group across all the time periods and over all the studies.

Forest plot in ln OR scale
The forest plot in Fig. 5.5 used the horizontal axis in OR scale, but in Fig. 5.6 it is
in the ln OR scale. The graphical display of confidence intervals represented in ln
OR (scale) as in the forest plot in Fig. 5.6 is much clearer than that in original OR
(scale) in Fig. 5.5.

5.8 Discussions and Comparison of Results

The forest plots with graphical display of confidence intervals in ln OR scale better
display the graph of the confidence intervals as in Figs. 5.7, 5.8, 5.9. These plots,
in ln OR scale, only changes the second column (panel containing scatterplot of
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Fig. 5.7 Forest plot of OR of heartburn for FE model in LnOR scale
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Fig. 5.8 Forest plot of OR of heartburn for REs model in LnOR scale
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Fig. 5.9 Forest plot of OR of heartburn for IVhet model in LnOR scale
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confidence intervals) of the forest plot keeping the study names in the first column,
point estimates and confidence intervals in the third and fourth columns and weights
in the fifth column the same (as it is in the forest plot of original OR scale).

From the definition, the point estimate of the common effect size OR is the same
(2.00) for the FE and IVhet models. But the confidence interval for the FE is (1.24,
3.24) shorter than that for the IVhet is (1.10, 3.65), but with the same redistribution
of weights among the studies. Thus the IVhet model meta-analysis enables higher
width of the confidence interval than the FE model by allowing for higher variance
in the way of inclusion of between studies variation.

For the REs model, the point estimate of the common effect size OR is 1.94 with
confidence interval (1.07, 3.51). The redistribution of weights among the individual
studies under this model is very different from those under the IVhet model. Contra-
dictory to common logic, under the RE model, the smaller studies receive higher
redistributed weights than the larger studies.

Under all three models the common effect size OR is significant (higher OR
of heartburn for higher dose group). The heterogeneity under all the models is
small/insignificant as the P-value of he Q statistic is 0.20 and the value of I 2 = 29%.

The point estimate of the population OR (2.00) is the same under the FE and IVhet
model regardless of the level of heterogeneity. The redistributed weights in both FE
and IVhet models are about the same. However, the 95% confidence interval under
FE model (1.24, 3.24) is shorter than that under the IVhet model (1.10, 3.65).

The redistributed weights are very different for the REs model than the FE or
IVhet model. As a result the point estimate (1.94) under the REs model is different
from the FE and IVhet models. The 95% confidence interval under the REs model
(1.07, 3.51) with width 2.44 is wider than that of the FE model (1.24, 3.24) with
width 2.00, but shorter than that of the IVhet model (1.10, 3.65) with width 2.55.

Obviously, the point estimates and confidence intervals of all individual studies
remain the same in the forest plot regardless of the statistical model of analysis.
Only changes are in the pooled estimate and confidence interval due to the different
redistributed study weights under different statistical models.

5.9 Publication Bias

Publication bias is detected by using funnel plot and Doi plot. A funnel plot is a
scatter plot of standard error of the studies against respective effect size. If a funnel
plot is symmetrical about the vertical line, then there is no publication bias. However,
if the funnel plot is asymmetric there is publication bias in the study.

The publication bias is a real and serious problem, as it has the potential to produce
misleading results and hence received considerable attention among the researchers
including Sterne et al. (2000), Elvik (2011) and Elvik (2013), Mathew and Charney
(2009) and Uesawa et al. (2010).

Chapter 13 covers the publication bias issue in details with illustrative examples.
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5.9.1 The Funnel Plot

From the funnel plot below it is evident that there is publication bias in the meta-
analysis as the plot is asymmetric. One particular study (at the bottom) with very
large standard error stands out from rest of the studies (Figs. 5.10 and 5.11).
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3210-1-2
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1.4
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1

0.8

0.6

0.4

Fig. 5.10 Funnel plot of OR (in LnOR scale) showing slight asymmetry in the heartburn data study

Fig. 5.11 Doi plot of LnOR showing minor asymmetry in the heartburn study
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5.9.2 The Doi Plot

Another graphical method to study publication bias is the Doi plot. It is a scatter plot
of absolute z-score of the value of effect size versus the effect size (or transformed
effect size). The individual dots on the graph are then connected with a continuous
curve.Details onDoi plot are found inDoi (2018) and Furuya-Kanamori et al. (2018).

The Doi plot below shows presence of publication bias. The LFK index (1.61)
indicates minor asymmetry in the study.

Appendix 5—Stata Codes for Odds Ratio Meta-analysis

A5.1 Thyroid ablation data

Study_name TrN1 TrCases TrNon-cases ConN2 ConCases ConNon-cases

Doi (2000) 49 23 26 39 25 14

Ramacciotti (1982) 9 3 6 20 12 8

Angelini (1997) 426 226 200 180 101 79

Liu (1987) 40 14 26 20 11 9

Lin (1998) 21 6 15 25 11 14

McCowen (1976) 28 10 18 36 15 21

Maxon (1992) 37 6 31 26 6 20

A5.2 Stata code for meta-analysis of ablation data

ssc install admetan

FE model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(fixed)

study(study_name) effect(Relative Risk)

REs model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(random)

study(study_name) effect(Relative Risk)

IVhet model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(ivhet)

study(study_name) effect(Relative Risk)
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A5.3 Heartburn data

Study_name TrN1 TrCases TrNon-cases ConN2 ConCases ConNon-cases

Watson et al. (1999) 54 5 49 53 5 48

Hagedorn et al. (2003) 47 25 22 48 10 38

Watson et al. (2004) 60 11 49 52 2 50

Spence et al. (2006) 40 6 34 39 5 34

Khan et al. (2010) 31 7 24 29 3 26

Raue et al. (2011) 30 1 29 27 1 26

Cao et al. (2012) 49 8 41 47 8 39

A5.4 Stata code for heartburn data

FE model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(fixed)

study(study_name) effect(Relative Risk)

REs model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(random)

study(study_name) effect(Relative Risk)

IVhet model meta-analysis
admetan TrCases TrNoncases ConCases ConNoncases, or model(ivhet)

study(study_name) effect(Relative Risk)

A5.5 Subgroup analysis

A5.5.1 Heartburn data for subgroup analysis
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A5.6 Stata code for subgroup analysis of heartburn data

admetan LnOR SELnOR, eform model(random) by(study_period)
study(study_name) effect(Odds Ratio)
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Chapter 6
Meta-analysis on One Proportion

Proportion is an appropriate effect size measure when we are interested in the inci-
dence or prevalence of certain disease in a population. Meta-analysis under different
statistical models along with subgroup analysis is covered here with illustrative
examples.

6.1 Introduction to Proportion

The majority of meta-analyses are devoted to establishing the effects of exposures
or interventions, and therefore the aim is to get a pooled estimate of effect size based
on the difference between two groups. However, meta-analytical methods can be
useful to get a more precise estimate of disease frequency, such as disease incidence
and prevalence proportions. Unlike the ratio measures, proportion as such is not
a realistic measure of effect size to measure association between two categorical
variables representing exposure and control groups. But proportion is an appropriate
effect size measure when we are interested in the prevalence of a disease in a specific
population. In this chapter, meta-analysis of single proportion is considered.

6.2 Estimation of Effect Size

Let the population proportion of prevalence (of any disease) in a single intervention
group be π . This population proportion is a parameter and usually unknown. Based
on a random sample of size n, π can be estimated by the sample proportion p. Here
p is a point estimate of the unknown population proportion π , that is, π̂ = p. If x is
the number of people with the prevalence in the sample, then the sample proportion
of prevalence is p = x

n , where n is the total number of people in the sample. Here
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p is the sample effect size (prevalence proportion) which estimates the unknown
population effect size π .

The variance of the estimator of π is given by Var (p) = p(1−p)
n .

For the ith study, the estimate of the effect size (πi ) is denoted by pi and the
variance of the estimator of πi is given by Var (pi ) = pi (1−pi )

ni
for i = 1, 2, …, k.

For the inverse variance weighting method, the weight for the ith study becomes
wi = 1

Var(pi )
.

Then the pooled sample prevalence (proportion) of all studies is obtained as

p =

k∑

i=1
wi pi

k∑

i=1
wi

with standard error of the estimator,

SE(p) =
√
√
√
√
√

1
k∑

i=1
wi

.

Remark: The sampling distribution of the estimator of population proportion π ,
the sample proportion, p follows an approximate normal distribution with mean
μ(p) = π and variance Var(p) = π(1−π)

n if the sample size, n is large (usually 30
or more). Since the distribution of the estimator of population effect size, p is known
(normal), there is no need to transform the effect size to make inferences about π .

Example 6.1 For a single experiment involving one group of human subjects the
sample size for the group is n = 80. The observed number of prevalence in the
sample is 48. [Adapted from Hartung et al. (2008), p. 18].

Find the (i) point estimate of the effect size (population proportion) and (ii)
standard error of its estimator.

Solution:

(i) The point estimate of the effect size θ (= π ) is θ̂ = p = 48
80 = 0.60.

(ii) The variance of the estimator of π is Var(p) = p(1−p)
n = 0.60×0.40

80 = 0.003 and
hence the standard error becomes SE(p) = √

Var(p) = √
0.003 = 0.054772.

The confidence interval
The confidence interval for the unknown population effect size (π ) based on the
sample prevalence proportion (p) is given by the lower limit (LL) and upper limit
(UL) as follows:

LL = p − zα/2 × SE(p) and

UL = p + zα/2 × SE(p).



6.2 Estimation of Effect Size 121

Here zα/2 is the α
2 th cut-off point of the standard normal distribution and SE(p) =√

Var(p).

Example 6.2 Consider the prevalence data in Example 6.1

Find the 95% confidence interval for the unknown effect size (population
proportion), π .

Solution:

From Example 6.1, we have p = 0.6 and SE(p) = 0.0548. So, the 95% confidence
interval for the effect size π is found by calculating the lower limit (LL) and upper
limit (UL) as follows:

LL = p − zα/2 × SE(p) = 0.6 − 1.96 × 0.0548 = 0.49 and

UL = p + zα/2 × SE(p) = 0.6 + 1.96 × 0.0548 = 0.71.

So the 95% confidence interval for π is (0.49, 0.71). Note the 95% confidence
interval does not include 0 (null effect size), and hence the effect sizeπ is statistically
significant.

6.3 Tests on Effect Size

To test the null hypothesis that the population proportion, π (effect size) is zero, that
is,

H0 : π = 0 against the alternative hypothesis, Ha : π �= 0 use the test statistic
Z = p−0

SE(p) which follows standard normal distribution under the null hypothesis.

Example 6.3 Consider the prevalence data in Example 6.1

Test the significance of the unknown effect size (population proportion), π at the
5% level of significance.

Solution:

Here to test,

H0 : θ = π = 0 against Ha : π �= 0 calculate the value of the test statistic Z,

z0 = p − 0

SE(p)
= 0.6 − 0

0.0548
= 10.949.
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Then the P-value is p = P(|Z | > 10.949) = 2 × P(Z > 10.949) = 0, so we
reject the null hypothesis at the 5% significance level. Since the P-value is too small,
there is very strong sample evidence to reject the null hypothesis (that the population
proportion π = 0).

6.4 Fixed Effect (FE) Model

The fixed effect (FE) model assumes that all studies share a common effect size and
attempt is made to estimate the unknown population effect size from the sample data.
Refer to Borenstein et al. (2010), Chapter 11 of Borenstein et al. (2009), Doi et al.
(2015a, b, c) for fixed effect and other statistical meta-analytic models.

For the common effect size of population proportion, let the parameter is θ = π ,
be estimated by the sample proportion, θ̂ = p.

Under the fixed effect (FE) model the estimate of the common effect size, base
on k independent studies, is given by the pooled estimate

θ̂FE =

k∑

i=1
wi θ̂i

k∑

i=1
wi

=

k∑

i=1
wi pi

k∑

i=1
wi

= pFE (6.1)

which is the weighted mean of the estimated effect size of all the indepen-
dent studies. The denominator

(∑
wi

)
in Eq. (6.1) is to ensure that the sum

of the weights is 1. The variance of the estimator of the common effect size is
Var(θ̂FE ) = 1

k∑

i=1
wi

= Var(pFE ).

Therefore, the standard error of the estimator of the common effect size is SE(θ̂FE ) =√
1

k∑

i=1
wi

= SE(pFE ).

The confidence interval
The (1 − α) × 100% confidence interval for the common effect size θ (=π ), under
the FE model, based on the sample estimates from independent studies is given by
the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂FE − zα/2 × SE(θ̂FE ) = pFE − zα/2 × SE(pFE ) and

UL = θ̂FE + zα/2 × SE(θ̂FE ) = pFE + zα/2 × SE(pFE ).

Here zα/2 is the α
2 th cut-off point of standard normal distribution. For a 95%

confidence interval zα/2 = z0.05/2 = 1.96.
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Test of hypothesis
To test the significance of the common effect size of all studies, under the FE model,
test the null hypothesis H0 : θ = 0 (that is, π = 0) against Ha : θ �= 0 using the test
statistic

Z = θ̂FE

SE(θ̂FE )
= pFE

SE(pFE )
,

where Z follows the standard normal distribution.
Reject H0 at the α level of significance if the calculated/observed value of the

Z statistic (say, z0) satisfies |z0| ≥ zα/2, where zα/2 is the α/2 level upper cut-off
point of the standard normal distribution; otherwise don’t reject the null hypothesis.
Alternatively, reject H0 at the α level of significance if the P-value is less than or
equal to α; otherwise don’t reject the null hypothesis.

Illustration of FE Model for Proportion

Example 6.4 Data on the prevalence of acute schizophrenia in the population with
schizophrenia from six independent studies is taken from the Examples of MetaXL
Package. Conduct meta-analysis on the appropriate effect size (proportion of acute
schizophrenia) for the data in Table 6.1 using fixed effect (FE) model.

Solution:
For the calculation of estimated value of the common effect size and standard

error of the estimator, and Q and I 2 statistics we need to find the summary statistics
such as p (sample proportion), Var (variance of p), SE (standard error of p), W (study
weight), Wp (product of weight and p) and Wp2 (product of weight and squared p)
as in Table 6.2.

The point estimate of the common effect size (proportion) of acute schizophrenia
under the FE model is found to be

θ̂FE =

k∑

i=1
wi pi

k∑

i=1
wi

= 13244

22509
= 0.5884 ≈ 0.59.

Table 6.1 Prevalence data on schizophrenia

Study name N Cases

Bondestam et al. (1990) 10 6

Shen et al. (1981) 300 154

Zharikov (1968) 1429 715

Babigian (1980) 3319 2058

Fichter et al. (1996) 7 5

Keith et al. (1991) 305 210
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Table 6.2 Calculations of summary statistics for meta-analysis

Study name N Cases p Var SE W Wp Wp2

Bondestam et al. (1990) 10 6 0.6 0.024 0.1549 41.6667 25 15

Shen et al. (1981) 300 154 0.512 0.0008 0.0289 1200.69 614.75 314.75

Zharikov (1968) 1429 715 0.5 0.0002 0.0132 5716 2858 1429

Babigian (1980) 3319 2058 0.62 7E-05 0.0084 14087.4 8734.2 5415.2

Fichter et al. (1996) 7 5 0.75 0.0268 0.1637 37.3333 28 21

Keith et al. (1991) 305 210 0.69 0.0007 0.0265 1425.9 983.87 678.87

22509 13244 7873.8

The standard error of the estimator becomes

SE(θ̂FE ) =
√
√
√
√
√

1
k∑

i=1
wi

=
√

1

22509
= 0.006665.

So, the 95% confidence interval for the common effect size (proportion) of acute
schizophrenia, under the FE model, is provided by the lower limit (LL) and upper
limit (UL) as follows:

LL = θ̂FE − zα/2 × SE(θ̂FE ) = 0.5884 − 1.96 × 0.006665 = 0.57

UL = θ̂FE + zα/2 × SE(θ̂FE ) = 0.5884 + 1.96 × 0.006665 = 0.60.

Test of hypothesis
To test the significance of the commoneffect size of all studies, test the null hypothesis
H0 : θ = 0 (that is, π = 0) against Ha : θ �= 0 using the test statistic

z = θ̂FE

SE(θ̂FE )
= 0.5884

0.006665
= 88.27.

So, the P-value is P(|Z| > 88.27) = 0. Hence the test is significant at the 5%
level of significance. Thus the proportion of prevalence of acute schizophrenia is
significantly different from 0.

Remark: The 95% confidence interval (0.57, 0.60) does not include 0, and hence
the effect size is significant. So, the test of hypothesis and confidence interval lead
to the same inference.

Measuring Heterogeneity of between study effects
The heterogeneity of effect size between the studies is measured by Cochran’s Q
statistic and Higgin’s I 2 index.
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To test the heterogeneity between study effect sizes, we test the null hypothesis,
H0 = θ1 = θ2 = . . . = θk against the alternative hypothesis Ha : not all θi ’s are
equal for i = 1, 2, . . . , k using the Q statistic,

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

.

For the data set in Example 6.4, using the summary statistics of Table 6.2, we get

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

= 7873.8 − (13244)2

22509
= 81.4430 ≈ 81.44.

The Q statistic follows a chi-squared distribution with (k – 1) = 6 – 1= 5 degrees
of freedom. Then the P-value of testing equality of population effect sizes becomes

p = P
(
χ2
5 > 81.44

) = 0.

Using chi-squired distribution table, it is found that the P-value is smaller than
0.001 (exact 0.001 if Q = 20.515).

Since the P-value is very small, there is highly significant heterogeneity between
the study proportions.

The value of the I 2 statistic is found to be

I 2 = Q − d f

Q
× 100% =

(
81.44 − 5

81.44

)

× 100% =
(
76.44

81.44

)

× 100%

= 93.86 × 100% = 94%.

Hence there is very high heterogeneity between the study proportions.

FE model meta-analysis of proportion using MetaXL
The forest plot under the FE model (indicated by “IV” in the code) is constructed
using MetaXL code

=MAInputTable(“Schizophrenia Proportion FE”,”Prev”,”IV”,B9:D14),

where “B9:D14” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘= MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’ e.g.
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Schizophrenia Proportion FE

Prevalence
14.0 6.0 8.0

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95%CI) % Weight

   0.50  (  0.47,  0.53)     26.6
   0.51  (  0.46,  0.57)      5.6

   0.59  (  0.57,  0.60)    100.0

   0.60  (  0.28,  0.89)      0.2

   0.62  (  0.60,  0.64)     61.8

   0.69  (  0.64,  0.74)      5.7
   0.75  (  0.36,  1.00)      0.1

Fig. 6.1 Forest plot of proportion of schizophrenia under fixed effect model

“Schizophrenia Proportion FE” in the above code (user may choose any appropriate
title here). Then in the second quote enter the type of effect measure, e.g. “Prev”
in the above code tells that the outcome variable is prevalence and the effect size
measure is proportion. Within the third quote enter the statistical model, e.g. “IV”
in the above code stands for the fixed effect (inverse variance is abbreviated by (IV)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B9:D14 in the above code tells that the data on the
independent studies are taken from the specified cells. The code ends with a closing
parenthesis.

The forest plot of the meta-analysis of acute schizophrenic proportion using the
above MetaXL code is found to be (Fig. 6.1).

Interpretation
The estimated pooled common effect size (proportion) is 0.59 with the 95% confi-
dence interval (0.57, 0.60). Thus the prevalence of acute schizophrenia in the
population is highly significant (as 0 is not included in the confidence interval).

6.5 Random Effects (REs) Model

Under the random effects (REs) model the variance of sample effect size θ̂i of the ith
study about the population effect size θ is the sum of the within-study and between-
study variances, that is, v∗

i = vi + τ̂ 2. Therefore, the modified weight assigned to
the ith study becomes

w∗
i = 1

vi + τ̂ 2
.

Then the common effect size estimator of the population proportion (θ ) under the
random effects (REs) model is given by
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θ̂RE =

k∑

i=1
w∗

i θ̂i

k∑

i=1
w∗

i

,

with the standard error of the estimator

SE(θ̂RE ) =
√
√
√
√
√

1
k∑

i=1
w∗

i

.

Estimation of τ 2

The between studies variance is estimated as a scaled excess variation as follows

τ̂ 2 = Q − d f

C
,

where

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

,

C =
k∑

i=1

wi −

k∑

i=1
w2

i

k∑

i=1
wi

and d f = (k − 1) in which k is the number of studies.
Illustration of Random Effects Model for Proportion

Example 6.5 Consider the prevalence of acute schizophrenia data of Example 6.4.

Using the summary statistics in Table 6.2, we get

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

= 7873.8 − (13244)2

22509
= 81.4430 ≈ 81.44.

Then
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Table 6.3 Calculations of summary statistics for meta-analysis under random effects model

Study name N Cases p Var τ2 W* W* × p

Bondestam et al. (1990) 10 6 0.6 0.024 0.006325 32.97609 19.78566

Shen et al. (1981) 300 154 0.512 0.0008 0.006325 139.7067 71.52983

Zharikov (1968) 1429 715 0.5 0.0002 0.006325 153.8474 76.9237

Babigian (1980) 3319 2058 0.62 7E-05 0.006325 156.3481 96.93581

Fichter et al. (1996) 7 5 0.75 0.0268 0.006325 30.2017 22.65128

Keith et al. (1991) 305 210 0.69 0.0007 0.006325 142.3222 98.20231

655.4021 386.0286

C =
k∑

i=1

wi −

k∑

i=1
w2

i

k∑

i=1
wi

= 22509.028 − 234606499.3

22509.028
= 12086.25

and hence

τ̂ 2 = Q − d f

C
= 81.44304 − 5

12086.25
= 0.006325.

For the calculation of estimated value of the common effect size and standard
error of the estimator under the random effects model, we need to find the summary
statistics such as τ2 (between studies variance), W* (the modified weight which is
the reciprocal of the sum of within and between studies variances), and W* × p
(product of modified weight and p) as in Table 6.3.

From the summary statistics in the above table, the estimated common effect size
of population proportion under the random effects model becomes

θ̂RE =

6∑

i=1
w∗

i pi

6∑

i=1
w∗

i

=

6∑

i=1
W ∗

i × pi

6∑

i=1
W ∗

i

= 655.4021

386.0286
= 0.58899 ≈ 0.59,

with the standard error of the estimator

SE(θ̂RE ) =
√
√
√
√
√

1
6∑

i=1
w∗

i

=
√
√
√
√
√

1
6∑

i=1
W ∗

i

=
√

1

655.4021
= 0.039061244.

The 95% confidence interval for the combined effect size (π ) is given by the lower
and upper limits:
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LL = θ̂RE − 1.96 × SE(θ̂RE ) = 0.5889 − 1.96 × 0.0390 = 0.5124 ≈ 0.51 and

UL = θ̂ RE + 1.96 × SE(θ̂RE ) = 0.5889 + 1.96 × 0.0390 = 0.6653 ≈ 0.66.

To test the significance of the combined population effect size, θ under the REs
model, test H0 : θ = 0 against Ha : θ �= 0, based on the observed value of the test

statistic Z, z0 = θ̂RE

SE(θ̂RE )
= 0.58899

0.039061 = 15.079 ≈ 15.08 with P-value = P(|Z| > 15.08)
= 0.

Hence the test is significant. Therefore, reject the null hypothesis at the 5% level of
significance, and conclude that the population prevalence (proportion) is significantly
different from 0.

Forest plot of proportion under REs model using MetaXL
The forest plot under the REs model (indicated by “RE” in the code) is constructed
using MetaXL code

=MAInputTable(“Schizophrenia Proportion RE”,”Prev”,”RE”,B9:D14),

where “B9:D14” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘= MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’ e.g.
“Schizophrenia Proportion RE” in the above code (user may choose any appropriate
title here). Then in the second quote enter the type of effect measure, e.g. “Prev”
in the above code tells that the outcome variable is prevalence and the effect size
measure is proportion. Within the third quote enter the statistical model, e.g. “RE”
in the above code stands for the random effects (abbreviated by RE) model. Each
quotation is followed by a comma, and after the last comma enter the data area in
ExcelWorksheet, e.g. B9:D14 in the above code tells that the data on the independent
studies are taken from the specified cells. The code ends with a closing parenthesis.

The forest plot of the meta-analysis of prevalence of acute schizophrenia
(proportion), under the REs model, using the above MetaXL code is found to be
(Fig. 6.2).

Interpretation
The estimated value of the combined effect size, proportion, under the REs model is
0.59 with 95% confidence interval (0.51, 0.66). The 95% confidence interval does
not contain 0 (proportion of patients with acute schizophrenia). Hence the prevalence
(proportion) of acute schizophrenia is statistically significant.

6.6 Inverse Variance Heterogeneity (IVhet) Model

Under the inverse variance heterogeneity (IVhet) model, the pooled estimate of the
common effect size, proportion π (=θ ) is given by
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Schizophrenia Proportion RE

Prevalence
14.0 6.0 8.0

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95% CI) % Weight

   0.50  (  0.47,  0.53)     23.7
   0.51  (  0.46,  0.57)     21.5

   0.59  (  0.51,  0.66)    100.0

   0.60  (  0.28,  0.89)      5.2

   0.62  (  0.60,  0.64)     24.0

   0.69  (  0.64,  0.74)     21.6
   0.75  (  0.36,  1.00)      4.0

Fig. 6.2 Forest plot of prevalence of schizophrenia (proportion) under random effects model

θ̂IV het =

k∑

i=1
wi θ̂i

k∑

i=1
wi

.

Then the variance of the estimator under the IVhet model is given by

Var(θ̂IV het ) =
k∑

i=1

⎡

⎣

(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤

⎦.

For the computation of the confidence interval of the common effect size,
proportion, based on the IVhet model use the following standard error

SE(θ̂IV het ) =
√

Var(θ̂IV het ).

Then, the (1−α)×100% confidence interval for the common effect size θ under
the IVhet model is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂IV het − zα/2 × SE(θ̂IV het )

UL = θ̂IV het + zα/2 × SE(θ̂IV het ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

To test the significance of the population proportion, test H0 : θ = 0, (that is,

π = 0) against Ha : θ �= 0 using the test statistic Z = θ̂IV het

SE(θ̂IV het )
which follows a

standard normal distribution under the null hypothesis.
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Table 6.4 Calculated summary statistics formeta-analysis of schizophrenia data under IVhetmodel

Study name N Cases p Var W Wp Var* V*

Bondestam et al. (1990) 10 6 0.6 0.024 41.6667 25 0.0303 1.04E-07

Shen et al. (1981) 300 154 0.51 0.0008 1200.69 614.7541 0.0072 2.04E-05

Zharikov (1968) 1429 715 0.5 0.0002 5716 2858 0.0065 0.000419

Babigian (1980) 3319 2058 0.62 7E-05 14087.4 8734.211 0.0064 0.002505

Fichter et al. (1996) 7 5 0.75 0.0268 37.3333 28 0.0331 9.11E-08

Keith et al. (1991) 305 210 0.69 0.0007 1425.9 983.871 0.007 2.82E-05

22509 13243.84 0.0905 0.002973

Illustration of IVhet Model for Proportion

Example 6.6 Consider the prevalence of acute schizophrenia data in Example 6.4.

Conduct meta-analysis on the appropriate effect size (proportion of acute
schizophrenia) under the inverse variance heterogeneity (IVhet) model.

Solution:

For the prevalence of acute schizophrenia data in Table 6.1 the effect size measure
of interest, sample proportion (p), variance of estimator (Var), estimated value of
modified variance (Var*) by taking into account the between studies variance (τ2)
and modified weight (W*) are provided in Table 6.4.

Illustration of computation in Table 6.4
For the first study (Bondestam et al. 1990):

W = 1/Var = 1/0.024 = 41.6667, the weight,
Var* = Var + τ2 = 0.024 + 0.006325 = 0.0303, the combined variance, and

V* =
[

w∑
w

]2 × Var∗ = [
41.6667
22509

]2 × 0.0303 = 0.0000000104, the modified

variance under the IVhet model.
To find the estimated value of the population proportion (θ ) under the IVhet model

the sums of columns of W and W × p, that is,
∑

W = 22509 and
∑

W × p =
13243.84, of Table 6.4 are required.

The IVhet model estimate of the common effect size, proportion, is given by

θ̂IV het =

k∑

i=1
wi pi

k∑

i=1
wi

= 13243.84

22509
= 0.5889 ≈ 0.59

and the variance of the estimator under the IVhet model is given by the sum of the
last (W*) column of Table 6.4, that is,
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Var(θ̂IV het ) =
k∑

i=1

⎡

⎣

(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤

⎦ = 0.002973.

Hence the standard error becomes

SE(θ̂IV het ) =
√

Var(θ̂IV het ) = √
0.002973 = 0.054527.

Then, the 95% confidence interval for the common effect size proportion under
the IVhet model is given by the lower and upper limits:

LL = θ̂IV het − 1.96 × SE(θ̂IV het ) = 0.5884 − 1.96 × 0.054527 = 0.4815 ≈ 0.48 and

UL = θ̂IV het + 1.96 × SE(θ̂IV het ) = 0.5884 + 1.96 × 0.054527 = 0.6953 ≈ 0.69.

Comment: The above point estimate of pooled proportion (0.59) and confidence
interval (0.48, 0.69) are reported in the forest plot of Fig. 6.3 in the last row with
diamond representing the limits of the 95% confidence interval.

To test the significance of the population proportion, test H0 : θ = 0, (that is,
π = 0) against Ha : θ �= 0 the observed value of the test statistic Z is

z0 = θ̂IV het

SE(θ̂IV het )
= 0.5884

0.054527
= 10.79.

The two-sided P-value is P(|Z| > 10.79) = 0.
Since the P-value is 0, the effect size (proportion of acute schizophrenia) is highly

significant (different from 0).

IVhet Meta-analysis of Proportion with MetaXL
The forest plot under the IVhetmodel (indicatedby“IVhet” in the code) is constructed
using MetaXL code

=MAInputTable(“Schizophrenia Proportion IVhet”,”Prev”,”IVhet”,B9:D14),

where “B9:D14” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘= MAInputTable’. This is followed by an open parenthesis inside which
the first quote contains the text that appears as the ‘title of the output of the forest
plot’ e.g. “Schizophrenia Proportion IVhet” in the above code (user may choose any
appropriate title here). Then in the second quote enter the type of effect measure, e.g.
“Prev” in the above code tells that the outcome variable is prevalence and the effect
size measure is proportion. Within the third quote enter the statistical model, e.g.
“IVhet” in the above code stands for the inverse variance heterogeneity (abbreviated
by IVhet) model. Each quotation is followed by a comma, and after the last comma
enter the data area in Excel Worksheet, e.g. B9:D14 in the above code tells that the
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Schizophrenia Proportion IVhet

Prevalence
14.0 6.0 8.0

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95%CI) % Weight

   0.50  (  0.47,  0.53)     26.6
   0.51  (  0.46,  0.57)      5.6

   0.59  (  0.48,  0.69)    100.0

   0.60  (  0.28,  0.89)      0.2

   0.62  (  0.60,  0.64)     61.8

   0.69  (  0.64,  0.74)      5.7
   0.75  (  0.36,  1.00)      0.1

Fig. 6.3 Forest plot of prevalence of schizophrenia (proportion) under IVhet model

data on the independent studies are taken from the specified cells. The code ends
with a closing parenthesis.

The forest plot of the meta-analysis of proportion under the IVhet model using
the above MetaXL code is found to be (Fig. 6.3).

6.7 Subgroup Analysis

To check if the prevalence of acute schizophrenia differs due to the level of income
of the country of study, subgroup analysis of prevalence of acute schizophrenia
is required separately for high income and low/medium income countries. In the
example, there are three studies (Babigian 1980; Fichter et al. 1996; Keith et al.
1991) from the high income group and another three (Bondestam et al. 1990; Shen
et al. 1981; Zharikov 1968) in the low/medium income group. The subgroup analysis
conducted by using MetaXL is presented by the forest plot in Fig. 6.4.

Interpretation
For the high income group the estimate of the common effect size (proportion) is
0.63 with 95% confidence interval (0.61, 0.64). This is much higher compared to
the estimate of the common effect size in the low/medium income group 0.50 with
95% confidence interval (0.48, 0.53). So, there is much higher prevalence of acute
schizophrenia among the people of high income group countries.

Thepooled commoneffect size estimate for all studies is 0.59with 95%confidence
interval (0.57, 0.60). This interval provides compromise figures between the two
income groups.

The effect size (proportion) is significant for every subgroup and combined/pooled
levels.

For the High income group Q = 6.29 with P = 0.04 and I 2 = 68% showing high
level of heterogeneity among all the studies.

But for the Low income group there is no heterogeneity among the studies as Q
= 0.48 with P = 0.79 and I 2 = 0%. However, for all the studies, Low and High
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Schizophrenia Proportion FE by Income

Prevalence

10.80.60.4

Study or Subgroup 

Zharikov 1968 

Low/middle Income subgroup 

Shen et al 1981 

High Income 

Q=6.29, p=0.04, I2=68%

Low/middle Income 

Q=0.48, p=0.79, I2=0%

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

High Income subgroup 

Keith et al 1991 
Fichter et al 1996 

Prev (95% CI) % Weight

   0.50  (  0.47,  0.53)     26.6

   0.50  (  0.48,  0.53)     32.4

   0.51  (  0.46,  0.57)      5.6

   0.59  (  0.57,  0.60)    100.0

   0.60  (  0.28,  0.89)      0.2

   0.62  (  0.60,  0.64)     61.8

   0.63  (  0.61,  0.64)     67.6

   0.69  (  0.64,  0.74)      5.7
   0.75  (  0.36,  1.00)      0.1

Fig. 6.4 Subgroup analysis of prevalence of acute schizophrenia (proportion) by income group

income combined, Q = 80.18 with P = 0.00 and I 2 = 94% indicating very high
level of heterogeneity among all the studies.

6.7.1 Discussions and Comparison of Results

The point estimates and 95% confidence intervals of the pooled effect size in
Fig. 6.5a–c provide the basis to compare the meta-analysis of acute schizophrenia
proportion under the FE, REs and IVhet models.

Interpretations
The point estimate of the population (prevalence) proportion (0.59) is the same under
the FE, REs and IVhet model in spite of very high level of heterogeneity among the
studies and quite different redistribution of weights under the REs model. Even
though the heterogeneity is highly significant in the meta-analysis, the redistributed
weights in both FE and IVhet models are the same. However, the 95% confidence
interval under FE model (0.57, 0.60) is shorter than that under the RE (0.51, 0.66)
and IVhet model (0.48, 0.69).

The 95% confidence interval under the REs model (0.51, 0.66) with width 0.15
is wider than that of the FE model (0.57, 0.60) with width 0.03, but shorter than that
of the IVhet model (0.48, 0.69) with width 0.21.
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Schizophrenia Proportion FE

Prevalence
10.80.60.4

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95% CI) % Weight

   0.50  (  0.47,  0.53)     26.6
   0.51  (  0.46,  0.57)      5.6

   0.59  (  0.57,  0.60)    100.0

   0.60  (  0.28,  0.89)      0.2

   0.62  (  0.60,  0.64)     61.8

   0.69  (  0.64,  0.74)      5.7
   0.75  (  0.36,  1.00)      0.1

Schizophrenia Proportion RE

Prevalence
10.80.60.4

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95% CI) % Weight

   0.50  (  0.47,  0.53)     23.7
   0.51  (  0.46,  0.57)     21.5

   0.59  (  0.51,  0.66)    100.0

   0.60  (  0.28,  0.89)      5.2

   0.62  (  0.60,  0.64)     24.0

   0.69  (  0.64,  0.74)     21.6
   0.75  (  0.36,  1.00)      4.0

Schizophrenia Proportion IVhet

Prevalence
10.80.60.4

Study 

Zharikov 1968 
Shen et al 1981 

Overall 
Q=80.18, p=0.00, I2=94%

Bondestam et al 1990 

Babigian 1980 

Keith et al 1991 
Fichter et al 1996 

Prev (95% CI) % Weight

   0.50  (  0.47,  0.53)     26.6
   0.51  (  0.46,  0.57)      5.6

   0.59  (  0.48,  0.69)    100.0

   0.60  (  0.28,  0.89)      0.2

   0.62  (  0.60,  0.64)     61.8

   0.69  (  0.64,  0.74)      5.7
   0.75  (  0.36,  1.00)      0.1

a)

b)

c)

Fig. 6.5 a) Forest plot of Schizophrenia proportion under FE model. b) Forest plot of acute
Schizophrenia proportion under REs model. c) Forest plot of acute Schizophrenia proportion under
IVhet model



136 6 Meta-analysis on One Proportion

As always, the point estimates and confidence intervals of all individual studies
remain the same in the forest plot regardless of the statistical model of analysis.
Only changes are in the pooled estimate and confidence interval due to the different
redistributed study weights.

6.8 Publication Bias

The study of publication bias for proportion is very similar to that in Sect. 5.9 of the
previous chapter. It is not necessary to re-produce them again here. Readers interested
to produce funnel plot or Doi plot and their interpretation are referred that Section.

Appendix 6—Stat Codes for One Proportion Meta-analysis

A6.1 Prevalence of acute schizophrenia data

Study name N Cases p

Bondestam et al. (1990) 10 6 0.6

Shen et al. (1981) 300 154 0.512

Zharikov (1968) 1429 715 0.5

Babigian (1980) 3319 2058 0.62

Fichter et al. (1996) 7 5 0.75

Keith et al. (1991) 305 210 0.69

A6.2 Stata codes

*ssc install metaprop_one
Fixed effect Meta-analysis
metaprop_one Cases N, ftt fixed lcols(Studyname)
or
metaprop_one Cases N, ftt fixed second(random) lcols(Studyname)
Random effects Meta-analysis
metaprop_one Cases N, ftt random lcols(Studyname)
or
metaprop_one Cases N, ftt random second(fixed) lcols(Studyname)
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Chapter 7
Meta-Analysis of Difference of Two
Proportions

If the difference of prevalence rates of any specific disease for two different popula-
tions/groups is of interest then difference of two proportions is the appropriate effect
size measure. The difference between two proportions is often called the risk differ-
ence (RD). The meta-analysis of difference between two proportions is covered in
this chapter.

7.1 Introduction to Risk Difference

Consider population proportion of treatment population/group to be π1 and that of
the control population/group be π2. Let the corresponding sample proportions be p1
and p2 based on two independent random samples of sizes n1 and n2 respectively.
Here the statistics p1 and p2 are estimators of the unknown population proportions
π1 and π2 respectively.

Following three different effect size measures (parameters) can be define based
on the two population proportions:

(a) Risk difference (RD): θ1 = π1 − π2.

(b) Odds ratio (OR): θ2 = π1/(1−π1)

π2/(1−π2)
.

(c) Relative risk or risk ratio (RR): θ3 = π1
π2

.

Based on the two sample proportions, the above effect size measures (parameters)
are estimated by the following statistics:

θ̂ = θ̂1 = p1 − p2, estimated or sample risk difference (RD),

θ̂2 = p1/(1−p1)
p2/(1−p2)

, sample odds ratio (OR) or θ̂∗
2 = ln

(
p1/(1−p1)
p2/(1−p2)

)
, sample ln OR,

and
θ̂3 = p1

p2
, sample risk ratio (RR) or θ̂∗

3 = ln
(

p1
p2

)
, sample ln RR respectively.
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The last two effect size measures (b & c) have been already discussed in Chaps. 4
and 5. In this chapter we concentrate on the meta-analysis of the first effect size,
θ = θ1, the risk difference (RD).

7.2 Estimation of Effect Size

Based on the two sample proportions, the estimator of the population risk difference,
θ = π1 − π2 becomes θ̂ = p1 − p2.

The variance of the above estimator of the population risk difference is

Var(θ̂) = p1(1−p1)
n1

+ p2(1−p2)
n2

.

The standard error of the effect size estimator of the population risk difference is
the square root of its variance,

SE(θ̂) =
√
Var(θ̂) =

√
p1(1−p1)

n1
+ p2(1−p2)

n2
.

Then the (1 − α) × 100% confidence interval for the population risk difference
θ = π1 − π2 is given by the following lower and upper limits:

LL = θ̂ − zα/2 × SE(θ̂)

UL = θ̂ + zα/2 × SE(θ̂),

where zα/2 is α
2 th cut-off value of the standard normal distribution.

Example 7.1 For a comparative experiment involving two groups of human subjects
the sample size for the treatment group is n1 = 80 and that of the control/placebo
group is n2 = 70. The observed proportions for the two groups are p1 = 0.60 and
p2 = 0.80 respectively. [Adopted from Hartung, Knapp and Sinha, 2008, p. 18].

Find the (i) point estimate of the population effect size (risk difference, θ ) and (ii)
standard error of its estimator.

Solution:

(i) From the given data, the estimated sample proportions are p1 = 0.60 and p2 =
0.80 with n1 = 80 and n2 = 70. Then the point estimate of the population effect
size, θ (risk difference) is

θ̂ = p1 − p2 = 0.60 − 0.80 = −0.20.

The standard error of the effect size estimator is the square root of the variance
of the estimator,
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Var(θ̂) = p1(1 − p1)

n1
+ p2(1 − p2)

n2
= 0.6 × 0.4

80
+ 0.8 × 0.2

70
= 0.5285, that is,

SE(θ̂)] =
√
Var(θ̂) = √

0.5285 = 0.0727.

7.2.1 Confidence Interval

Example 7.2 Consider the data in Example 7.1.
Find the 95% confidence interval for the population risk difference, θ.

Solution:
The 95% confidence interval for the population risk difference θ is found by

calculating the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂ − zα/2 × SE(θ̂ )] = −0.20 − 1.96 × 0.0727 = −0.34 and

UL = θ̂ + zα/2 × SE(θ̂ ) = −0.20 + 1.96 × 0.0727 = −0.06.

So the 95% confidence interval for the population risk difference θ is (−0.34, −
0.06). Note that the 95% confidence interval does not include 0 (null effect/RD).

7.3 Significance Test on Effect Size, RD

To test the null hypothesis that the population risk difference is 0, we test H0 : θ = 0
against Ha : θ �= 0 using the test statistic Z = θ̂

SE(θ̂ )
, where Z follows the standard

normal distribution.

Example 7.3 Consider the data in Example 7.1. Using the data, test the hypothesis
that the risk difference is 0.

To test the null hypothesis
H0 : θ = 0 (risk difference 0) against Ha : θ �= 0 calculate the observed value of

the test statistic Z as

z0 = θ̂ − 0

SE(θ̂)
= −0.2 − 0

0.0727
= −2.75.

The P-value is P(|Z | > 2.75) = 2 × P(Z > 2.75) = 0.006, so we reject the
null hypothesis at the 5% level of significance. Since the P-value is too small, there
is strong sample evidence to reject the null hypothesis. Thus the risk difference is
significantly different from 0.

Conclusion: There is significantly higher risk in the control group compared to
the treatment group.
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7.4 Fixed Effect (FE) Model

Fixed effect model is used for meta-analysis when the between studies variation is
insignificant, that is, the effect size of interest is homogeneous across all studies. For
details on the fixed effect and other types of statistical models used for meta-analyses
readers may refer to M. Borenstein et al. (2010), Chapter 11 of M. H. Borenstein
et al. (2009), Doi et al. (2015a, b, c) for fixed effect and other statistical meta-analytic
models.

The estimate of the unknown common effect size, risk difference, θ under the
fixed effect model is given by

θ̂FE =

k∑
i=1

wi θ̂i

k∑
i=1

wi

,

where wi is the weight and θ̂i is the point estimate of the population effect size (RD)
of the ith study for i = 1,2, …, k. The standard error of the estimator of the common

effect size is SE(θ̂FE ) =
√

1
k∑

i=1
wi

.

7.4.1 The Confidence Interval

The (1 − α) × 100% confidence interval for the common effect size θ (RD) under
the FE model is given by the following lower limit (LL) and upper limit (UL):

LL = θ̂FE − zα/2 × SE(θ̂FE )

UL = θ̂FE + zα/2 × SE(θ̂FE ),

where zα/2 is the α
2 th cut-off point of standard normal distribution. For a 95%

confidence interval, the z-score becomes zα/2 = z0.05/2 = 1.96.

7.4.2 Test of Significance

To test the significance of the common effect size θ of all studies, under the FE
model, test the null hypothesis H0 : θ = 0 against Ha : θ �= 0 using the test statistic

Z = θ̂FE

SE(θ̂FE )
,
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where Z follows the standard normal distribution.
For a two-tailed test, reject H0 at the α level of significance if the calcu-

lated/observed value of the Z statistic satisfies |z0| ≥ zα/2, where zα/2 is the α
2

level upper cut-off point of the standard normal distribution; otherwise don’t reject
the null hypothesis. Alternatively, reject H0 at theα level of significance if the P-value
is less than or equal to α; otherwise don’t reject the null hypothesis.

7.4.3 Illustration of FE Model for Risk Difference (RD)

Example 7.4 The data in Table 7.1 represent information on seven placebo-
controlled randomized trials of the effect of aspirin in preventing death after
myocardial infarction (heart attack).

Find the (i) point estimate of the common effect size (risk difference), (ii) standard
error of the estimator and (iii) 95% confidence interval for the effect size, RD.

Solution:
For the calculation of the point estimate and confidence interval under the fixed

effect model calculations of the summary statistics in Table 7.2 are required.
In Table 7.2, RD is the sample risk difference (RD), Var is the variance of the RD,

and W is the study weight. The last row of the table shows the sum of W, sum of W
× RD, sum of W × RD2 and sum of W2.

(i) The estimate of the unknown common effect size, risk difference, θ under the
fixed effect model is given by

θ̂FE =

k∑
i=1

wi θ̂i

k∑
i=1

wi

= −769.624

57295
= −0.01343 = −0.013,

Table 7.1 Count data on death for the aspirin and placebo groups after myocardial infarction

Aspirin Placebo

Study Patients Deaths Alive Patients Death Alive

MRC-1 615 49 566 624 67 557

CDP 758 44 714 771 64 707

MRC-2 832 102 730 850 126 724

GASP 317 32 285 309 38 271

PARIS 810 85 725 406 52 354

AMIS 2267 246 2021 2257 219 2038

ISIS-2 8587 1570 7017 8600 1720 6880
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Table 7.2 Calculation of summary statistics for the FE, REs and IVhet Models

Study p1 p2 RD Var W WRD WRD2 W2

MRC-1 0.0797 0.1074 −0.0277 0.0003 3665.4 −101.519 2.8118 13434800

CDP 0.058 0.083 −0.025 0.0002 5852.7 −146.092 3.6467 34253977

MRC-2 0.1226 0.1482 −0.0256 0.0003 3599.3 −92.2837 2.3661 12955174

GASP 0.1009 0.123 −0.022 0.0006 1574 −34.6759 0.7639 2477359.3

PARIS 0.1049 0.1281 −0.0231 0.0004 2557.4 −59.1801 1.3695 6540400

AMIS 0.1085 0.097 0.0115 8E-05 12271 140.8969 1.6178 150580185

ISIS-2 0.1828 0.2 −0.0172 4E-05 27775 −476.769 8.184 771444238

57295 −769.624 20.76 991686133

(ii) The standard error of the estimator of the common effect size is

SE(θ̂FE ) =
√√√√√

1
k∑

i=1
wi

= √
0.0000174536 = 0.00418.

(iii) The 95% confidence interval for the common effect size θ under the FE model
is given by the following lower limit (LL) and upper limit (UL):

LL = θ̂FE − zα/2 × SE(θ̂FE ) = −0.01343 − 1.96 × 0.00418 = −0.021621 = −0.02

UL = θ̂FE + zα/2 × SE(θ̂FE ) = −0.01343 + 1.96 × 0.00418 = −0.005244 = −0.01.

The 95% confidence interval for the common risk difference is (−0.02, −0.01).
Since this interval does not contain 0, the effect size is significant at the 5% level of
significance.

Example 7.5 Consider the count data on myocardial infarction from seven studies
in Example 7.4. Using the data, test the hypothesis that the common risk difference
is 0 under the fixed effect model.

Solution:
To test the null hypothesis
H0 : θ = 0 (risk difference 0) against Ha : θ �= 0 calculate the observed value of

the test statistic Z,

z0 = θ̂FE

SE(θ̂FE )
= −0.01343

0.00417775
= −3.2153 = −3.22.

The P-value is P(|Z | > 3.22) = 2 × P(Z > 3.22) = 0., so we reject the null
hypothesis at the 5% level of significance. Since the P-value is too small, there is
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strong sample evidence to reject the null hypothesis. Thus the common risk difference
is different from 0.

Measuring Heterogeneity between the studies (RD)
The heterogeneity of effect size RD between the studies are measured by Cochran’s
Q statistic and I 2 statistic.

To test the heterogeneity between study effect sizes, we test the null hypothesis,
H0 = θ1 = θ2 = . . . = θk against the alternative hypothesis Ha : not all θi ’s are
equal for i = 1, 2, . . . , k using the Q statistic,

Q =
7∑

i=1

wi θ̂
2
i −

(
7∑

i=1
wi θ̂i

)2

7∑
i=1

wi

.

TheQ statistic follows a chi-squared distributionwith (k− 1)= 7− 1= 6 degrees
of freedom.

For the above data set from k = 7 studies, using the sums from the bottom row of
Table 7.2, we get

Q =
7∑

i=1

wi θ̂
2
i −

(
7∑

i=1
wi θ̂i

)2

7∑
i=1

wi

= 20.7597 − (−769.624)2

57295
= 10.4216 ≈ 10.42.

Then the P-value of testing equality of population RD becomes

p = P
(
χ2
6 > 10.42

)
> 0.10

(exactly 10% if observed value of chi-squired statistic is 10.6446).
Using chi-squired distribution table, it is found that the P-value is larger than 0.10.
Since the P-value is larger than 10%, there is no significant heterogeneity between

the study risk differences.
The value of the I 2 statistic is found to be

I 2 = Q − d f

Q
× 100% =

(
10.42 − 6

10.42

)
× 100% =

(
4.42

10.42

)
× 100%

= 0.424271 × 100% = 42%.

Hence there is an indication of some minor heterogeneity, but no real significant
heterogeneity between the study risk differences.
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7.4.4 FE Model Meta-Analysis of RD Using MetaXL

The forest plot under the FE model (indicated by “IV” in the code) is constructed
using MetaXL code

=MAInputTable(“Myocardial RD FE”,”NumRD”,”IV”,B20:H26),

where “B20:H26” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Myocardial RD FE” in the above code (user may choose any appropriate title
here). Then in the second quote enter the type of effect measure, e.g. “NumRD” in the
above code tells that the outcome variable is numerical and the effect size measure
is risk difference (RD). Within the third quote enter the statistical model, e.g. “IV”
in the above code stands for the fixed effect (inverse variance is abbreviated by IV)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B20:H26 in the above code tells that the data
on the independent studies are taken from the specified cells. The code ends with a
closing parenthesis (Fig. 7.1).

The forest plot of the meta-analysis of risk difference using the above MetaXL
code is in Fig. 7.1.

Interpretation:

Under the FE model the point estimate of the population RD is −0.01 and 95% confidence
interval is (−0.02, −0.01). Since the 95% confidence interval does not include 0 (no risk
difference) the RD is significant at the 5% level of significance.

Conclusion: The use of aspirin significantly reduce the risk of death after heart attack.

Myocardial RD FE

RD
0-0.05

Study 
MRC-1 

MRC-2 
CDP 

PARIS 
GASP 

ISIS-2 

Overall 
Q=10.42, p=0.11, I2=42%

AMIS 

RD (95% CI) %Weight
  -0.03  ( -0.06,  0.00)      6.4

  -0.03  ( -0.06,  0.01)      6.3
  -0.02  ( -0.05,  0.00)     10.2

  -0.02  ( -0.06,  0.02)      4.5
  -0.02  ( -0.07,  0.03)      2.7

  -0.02  ( -0.03, -0.01)     48.5

  -0.01  ( -0.02, -0.01)    100.0

   0.01  ( -0.01,  0.03)     21.4

Fig. 7.1 Forest plot of risk difference of aspirin and placebo groups for the myocardial infarction
patients under the fixed effect model
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Since the value of the Q statistic is 10.42 with P-value 0.11, and I 2 = 42% there is very
small or no real significant heterogeneity among the risk differences of the studies.

7.5 Random Effects (REs) Model

Under the random effects (REs) model the variance of sample risk difference θ̂i of
the ith study about the population risk difference θ is the sum of the within-study
and between-study variances, that is, v∗

i = vi + τ̂ 2. Therefore, the modified weight
assigned to the ith study, under the REs model, becomes

w∗
i = 1

vi + τ̂ 2
.

Then the estimator of the population common risk difference (θ ) under the random
effects (REs) model is given by

θ̂RE =

k∑
i=1

w∗
i θ̂i

k∑
i=1

w∗
i

, with the standard error of the estimator SE(θ̂RE ) =
√√√√√

1
k∑

i=1
w∗

i

.

7.5.1 Estimation of τ 2

The between studies variance is estimated as a scaled excess variation as follows

τ̂ 2 = Q − d f

C
,

where

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

,C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

and d f = (k − 1) in which k is the number of studies.
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Table 7.3 Calculations of modified weight and sum of product of modified weight and RD

Study p1 p2 RD Var τ2 Var* W* W*RD

MRC-1 0.0797 0.1074 −0.0277 0.0003 0.0001 0.000384 2605.4 −72.16046

CDP 0.058 0.083 −0.025 0.0002 0.0001 0.000282 3547.8 −88.55972

MRC-2 0.1226 0.1482 −0.0256 0.0003 0.0001 0.000389 2571.8 −65.93929

GASP 0.1009 0.123 −0.022 0.0006 0.0001 0.000746 1339.9 −29.51872

PARIS 0.1049 0.1281 −0.0231 0.0004 0.0001 0.000502 1992 −46.09496

AMIS 0.1085 0.097 0.0115 8E-05 0.0001 0.000192 5195 59.649148

ISIS-2 0.1828 0.2 −0.0172 4E-05 0.0001 0.000147 6802.5 −116.769

24054 −359.393

7.5.2 Illustration of Random Effects Model for Risk
Difference

Example 7.5 Consider the myocardial data in Example 7.4.

Estimate the between-study variance from the data.

Solution:
Using previous calculations in Table 7.3, we find

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

= 20.75971 − (−769.624)2

57295
= 10.4216 ≈ 10.42.

Now

C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

= 57295 − 991686133

57295
= 39986.25

and hence

τ̂ 2 = Q − d f

C
= 10.4216 − 6

39986.25
= 0.000111.

Example 7.6 Under the REsmodel, find the (i) point estimate (ii) standard error, (iii)
9% confidence interval and (iv) test the significance of the population risk difference.
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Solution:
For the calculation of the common risk difference and standard error under the

random effects model we need the column sums of W* (modified weight as the
reciprocal of the sum of Var and τ2), and sum of W*RD (modified weight times the
RD) as in Table 7.3.

(i) From the summary statistics in the above table, the estimated common risk
difference, under the random effects model becomes

θ̂RE =

k∑
i=1

w∗
i θi

k∑
i=1

w∗
i

= −359.393

24054
= −0.0149 ≈ −0.01.

(ii) The standard error of the estimator is

SE(θ̂RE ) =
√√√√√

1
k∑

i=1
w∗

i

=
√

1

24054
= 0.006448.

(iii) The 95% confidence interval for the common risk difference, θ , under the
random effects model, is given by the lower and upper limits:

LL = θ̂RE − 1.96 × SE(θ̂RE ) = −0.0149 − 1.96 × 0.006448 = −0.02758 ≈ −0.03 and

UL = θ̂ RE + 1.96 × SE(θ̂RE ) = −0.0149 + 1.96 × 0.006448 = −0.0023 ≈ −0.00.

The 95% confidence interval for the common risk difference is (−0.03, −
0.00). This confidence interval does not include 0 (just missed it as the UL =
−0.0023)

(iv) To test the significance of the population common risk difference, that is,
H0 : θ = 0 against Ha : θ �= 0, the observed value of the test statistic Z is

z0 = θ̂RE

SE(θ̂RE )
= −0.0149

0.006448 = −2.31725 ≈ −2.32 with P-value = P (|Z| > 2.32)
= 2 × 0.0102 = 0. 0204.

Since the P-value is small, and hence the test is significant. Therefore, reject the
null hypothesis at the 5% level of significance, and conclude that the population risk
difference is significantly different from 0.

7.5.3 Forest Plot of RD Under REs Model Using MetaXL

The forest plot under the random effects model (indicated by “RE” in the code) is
constructed using MetaXL code
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=MAInputTable(“Myocardial RD RE”,”NumRD”,”RE”,B20:H26),

where “B20:H26” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Myocardial RD RE” in the above code (user may choose any appropriate title
here). Then in the second quote enter the type of effect measure, e.g. “NUmRD”
in the above code tells that the outcome variable is numerical and the effect size
measure is risk difference (RD). Within the third quote enter the statistical model,
e.g. “RE” in the above code stands for the random effects (abbreviated by RE)model.
Each quotation is followed by a comma, and after the last comma enter the data
area in Excel Worksheet, e.g. B20:H26 in the above code tells that the data on the
independent studies are taken from the specified cells. The code ends with a closing
parenthesis.

The forest plot of meta-analysis of risk difference, under the REs model, using
the above MetaXL code is found in Fig. 7.2.

Interpretation:

Under the REs model the point estimate of the population RD is −0.01 and 95%
confidence interval is (−0.03, 0.00). Since the 95% confidence interval does include
0 (no risk difference) the RD is not significant at the 5% level of significance.

Since the value of the Q statistic is 10.42 with P-value 0.11, and I 2 = 42% there
is very small or no real significant heterogeneity among the risk differences of the
studies.
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RD (95% CI) % Weight

  -0.01  ( -0.03,  0.00)    100.0

  -0.03  ( -0.06,  0.00)     10.8

  -0.03  ( -0.06,  0.01)     10.7
  -0.02  ( -0.05,  0.00)     14.7

  -0.02  ( -0.06,  0.02)      8.3
  -0.02  ( -0.07,  0.03)      5.6

  -0.02  ( -0.03, -0.01)     28.3
   0.01  ( -0.01,  0.03)     21.6

Fig. 7.2 Forest plot of risk difference of aspirin and placebo groups for the myocardial infarction
patients under the random effects model
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7.6 Inverse Variance Heterogeneity (IVhet) Model

Under the inverse variance heterogeneity (IVhet) model, the pooled estimate of the
common risk difference (θ ) is given by

θ̂IV het =

k∑
i=1

wi θ̂i

k∑
i=1

wi

.

Then the variance of the estimator under the IVhet model is given by

Var(θ̂IV het ) =
k∑

i=1

⎡
⎣
(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤
⎦.

For the computation of the confidence interval of the common risk difference,
based on the IVhet model use the following standard error

SE(θ̂IV het ) =
√
Var(θ̂IV het ).

Then, the (1 − α) × 100% confidence interval for the common risk difference
θ under the IVhet model is given by the lower limit (LL) and upper limit (UL) as
follows:

LL = θ̂IV het − zα/2 × SE(θ̂IV het ) and

UL = θ̂IV het + zα/2 × SE(θ̂IV het ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

To test the significance of the population risk difference, test H0 : θ = 0 against

Ha : θ �= 0 using the test statistic Z = θ̂IV het

SE(θ̂IV het )
which follows a standard normal

distribution under the null hypothesis.

7.6.1 Illustration of IVhet Model for Risk Difference

Example 7.7 Consider the count data on myocardial infarction from seven studies
in Example 7.4.

Under the IVhet model, find the (i) point estimate, (ii) standard error, (iii) 95%
confidence interval of the common risk difference, and (iv) test the hypothesis that
the common risk difference is 0.
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Table 7.4 Calculations of study weights and variance of IVhet model

Study p1 p2 RD Var τ̂2 w Var* W* W × RD

MRC-1 0.08 0.107 −0.0277 0.0003 0.0001 3665.351 0.0004 1.571E-06 −101.519

CDP 0.058 0.083 −0.025 0.0002 0.0001 5852.69 0.0003 2.941E-06 −146.092

MRC-2 0.123 0.148 −0.0256 0.0003 0.0001 3599.33 0.0004 1.535E-06 −92.2837

GASP 0.101 0.123 −0.022 0.0006 0.0001 1573.963 0.0007 5.632E-07 −34.6759

PARIS 0.105 0.128 −0.0231 0.0004 0.0001 2557.421 0.0005 1E-06 −59.1801

AMIS 0.109 0.097 0.0115 8E-05 0.0001 12271.11 0.0002 8.83E-06 140.8969

ISIS-2 0.183 0.2 −0.0172 4E-05 0.0001 27774.89 0.0001 3.455E-05 −476.769

57294.75 0.0026 5.099E-05 −769.624

Solution:
First, we need to find the modified weights and variance of the estimator under

the IVhet model as in Table 7.4.
In Table 7.4, W is the study weight based on observed variance (Var), Var* is the

study level sum of observed variance (Var) and between study variance (τ̂2) and sum
of W* is the variance of the estimator under the IVhet model.

For illustration, consider the first study (MRC-1):
W= 1/Var= 1/0.0003= 3665.351, the weight based on observed variance (Var),
Var* = Var + τ̂2 = 0.0003 + 0.0001 = 0.0004, the combined variance of the

study, andW*=
[

w∑
w

]2×Var∗ = [
3665.351
57294.75

]2×0.0004 = 0.00000157, themodified

variance of the study under the IVhet model.
To find the estimated value of the population risk difference (θ ) under the IVhet

model the sums of columns of W and W × RD, that is,
∑

wi = 57294.75 and∑
wi × θ̂i = −769.624, of Table 7.4 are required.

(i) The IVhet model estimate of the common effect size, RD is given by

θ̂IV het =

k∑
i=1

wi θ̂i

k∑
i=1

wi

=

7∑
i=1

W × RD

7∑
i=1

W

= −769.624

57294.75
= −0.01343 ≈ 0 − 0.01.

(ii) The variance of the estimator under the IVhet model is given by the sum of the
second last column (W*) of the above table, that is,

Var(θ̂IV het ) =
k∑

i=1

⎡
⎢⎣
⎛
⎝ 1

vi

/ k∑
i=1

1

vi

⎞
⎠
2

(vi + τ̂2)

⎤
⎥⎦ =

7∑
i=1

⎡
⎢⎣
⎛
⎝W

/ 7∑
i=1

W

⎞
⎠
2

W∗
⎤
⎥⎦ = 0.00005099.

Hence the standard error becomes

SE(θ̂IV het ) =
√
Var(θ̂IV het ) = √

0.00005099 = 0.00714.
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Myocardial RD IVhet

RD
0-0.05

Study 
MRC-1 

MRC-2 
CDP 

PARIS 
GASP 

ISIS-2 

Overall 
Q=10.42, p=0.11, I2=42%

AMIS 

    RD (95% CI)          % Weight
  -0.03  ( -0.06,  0.00)      6.4

  -0.03  ( -0.06,  0.01)      6.3
  -0.02  ( -0.05,  0.00)     10.2

  -0.02  ( -0.06,  0.02)      4.5
  -0.02  ( -0.07,  0.03)      2.7

  -0.02  ( -0.03, -0.01)     48.5

  -0.01  ( -0.03,  0.00)    100.0

   0.01  ( -0.01,  0.03)     21.4

Fig. 7.3 Forest plot of risk difference of aspirin and placebo groups for the myocardial infarction
patients under the IVhet model

(iii) Then, the 95% confidence interval for the common risk difference under the
IVhet model is given by the lower and upper limits:

LL = θ̂IV het − 1.96 × SE(θ̂IV het ) = −0.01343 − 1.96 × 0.00714 = −0.02743 ≈ −0.03 and

UL = θ̂IV het + 1.96 × SE(θ̂IV het ) = −0.01343 − 1.96 × 0.00714 = 0.000563 ≈ 0.00.

The above point estimate (−0.01) of pooled risk difference and confidence
interval (−0.03, 0.00) are reported in the forest plot (See Fig. 7.3) in the last
row with the horizontal ends of the diamond representing the limits of the
confidence interval.

(iv) To test the significance of the population common risk difference, test H0 :
θ = 0 against Ha : θ �= 0 the observed value of the test statistic, Z is

z0 = θ̂IV het

SE(θ̂IV het )
= −0.01343

0.00714
= −1.88121 ≈ −1.88.

The two-sided P-value is P(|Z| > 1.88) = 2 × 0.0301 = 0.0602.
Since the P-value is greater than 5%, the risk difference is not significant at the
5% level of significance.

7.6.2 Forest Plot of RD Under IVhet Model Using MetaXL

The forest plot under the IVhet model (indicated by “IVhet” in the code) is produced
using MetaXL code

=MAInputTable(“Myocardial RD IVhet”,”NumRD”,”IVhet”,B20:H26),
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where “B20:H26” refers to the data area in Excel Worksheet.

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Myocardial RD IVhet” in the above code (user may choose any appropriate title
here). Then in the second quote enter the type of effect measure, e.g. “NumRD” in the
above code tells that the outcome variable is numerical and the effect size measure is
risk difference (RD). Within the third quote enter the statistical model, e.g. “IVhet” in
the above code stands for the inverse variance heterogeneity (abbreviated by IVhet)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B20:H26 in the above code tells that the data
on the independent studies are taken from the specified cells. The code ends with a
closing parenthesis.

The forest plot of the meta-analysis of risk difference, under the IVhet model,
using the above MetaXL code is found in Fig. 7.3.

Interpretation:

Under the REs model the point estimate of the population RD is −0.01 and 95% confidence
interval is (−0.03, 0.00). Since the 95%confidence interval does include 0 (no risk difference)
the RD is not significant at the 5% level of significance.

Since the value of the Q statistic is 0.42 with P-value 0.11, and I 2 = 42% there is very small
or no real significant heterogeneity among the risk differences of the studies.

Because the heterogeneity is not significant, the meta-analysis under the IVhet model is very
similar to that under the FE model.

7.7 Subgroup Analysis

In the myocardial infarction data there is not enough information to make realistic
subgroups of the studies to conduct subgroup analysis. But the procedure to conduct
subgroup analysis is very similar to that explained in previous chapters.

7.8 Discussions and Comparison of Results

The meta-analyses of preventing death by using aspirin after myocardial infarction
under three different statistical models are presented in this chapter.

Regardless of the model used for meta-analysis, the value of the Q statistic is
10.42 with P-value 0.11, and I 2 = 42%. Therefore, the heterogeneity among the
risk differences of the studies is not significant. So, the results of meta-analyses is
unlikely to be very different. It is noteworthy to observe that the results of the meta-
analysis under the REs model is very similar to that under the IVhet model for this
dataset.
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The point estimate of the population RD is −0.01 for under all three statistical
models. The 95% confidence interval is (−0.02,−0.01) under the FEmodel, (−0.03,
0.00) under the REs model, and (−0.03, 0.00) under the IVhet model.

The risk difference is significant under the FE model, but not significant under
the REs and IVhet models. This is because of including the between study variance
in the meta-analysis under the REs and IVhet models.

The redistribution of study weights under the FE and IVhet models are the same.
But that under the REs model is very different from the other two models.

7.9 Publication Bias

The study of publication bias for the RD is very similar to that in Sect. 5.9 of the
previous chapter. It is not necessary to re-produce them again here. Readers interested
to produce funnel plot or Doi plot and their interpretation are referred that Section.

Appendix 7—Stata Codes for Difference of Two Proportions
(Risk Difference) Meta-Analysis

A7.1 Myocardial infarction (heat attack) data

Study AsprPatients AsprDeath AsprAlive PlaceboPatients PlaceboDeath PlaceboAlive

MRC-1 615 49 566 624 67 557

CDP 758 44 714 771 64 707

MRC-2 832 102 730 850 126 724

GASP 317 32 285 309 38 271

PARIS 810 85 725 406 52 354

AMIS 2267 246 2021 2257 219 2038

ISIS-2 8587 1570 7017 8600 1720 6880

A7.2 Stata codes for risk difference of heart attack data

Fixed effect model
admetan AsprDeath AsprAlive PlaceboDeath PlaceboAlive, rd fixed label(namevar
= Study) counts

Random effects model
admetan AsprDeath AsprAlive PlaceboDeath PlaceboAlive, rd random
label(namevar = Study) counts

IVhet model
admetan AsprDeath AsprAlive PlaceboDeath PlaceboAlive, rd ivhet label(namevar
= Study) counts



Part III
Meta-Analysis for Continuous Outcomes



Chapter 8
Meta-Analysis of Standardized Mean
Difference

Meta-analysis of effect sizes for continuous outcome variables are covered in the
upcoming three chapters. If the outcome variable is continuous and interest is to
compare the effects of two interventions (e.g. treatment and control), standardized
mean difference may be the appropriate effects size measure.

Meta-analysis of standardized mean difference (SMD) under different statistical
models, subgroup analysis and publication bias are covered in this chapter.

8.1 Introduction

The effect size measure broadly depends on the type of outcome variables involved.
There are two major categories of effect measures in meta-analyses based on two
kind of outcome variables. There are those based on binary or categorical outcome
variables such as the proportion, relative risks or odds ratios. The other category
is those effect measures for continuous outcome variables such as the standardised
mean difference (SMD), weighted mean difference (WMD), and Pearson’s product
moment correlation coefficients.

Often interventions or treatments are applied on the experimental units (e.g.
patients), called the treatment group, and a placebo is given to another group of
patients to measure the size of effect of the intervention through the associated
outcome variables. The patients selected to both groups should be randomly chosen
to avoid any selection bias. The main objective is to find out if the intervention (e.g.
a new drug) is working better than the placebo (control group) or not. So the mean
effect measure is assessed for both the treatment and control groups separately for
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comparison. The difference of the mean effects in treatment group and control group
is called the raw mean difference, and often used as the effect size measure.

Why Standardise Raw Mean Difference?
The raw mean difference has the same unit of measurement as the outcome variable.
However, in some studies outcome variables are measured in difference scales (e.g.,
cm and inch, or kg and lb). So, direct comparison of means in two different units,
using the raw mean difference, is not meaningful. Instead, the raw mean difference
is divided by the standard deviation (pooled or not) to find the standardised mean
difference (SMD). Any value of SMD is unit free as it is a measure of how many
standard deviations the mean of the treatment group is away from the mean of the
control group. As such the SMD always produces a unit free number that is unrelated
to the unit of measurement of the outcome variable. For this reason, when different
study records the same outcome variable in different units of measurement, meta-
analysis must use SMD as an appropriate measure of effect size.

In this chapter meta-analytic methods of effect size measure for continuous
(numerical) outcome variables, namely the standardised mean difference (SMD)
is covered. But first as a precursor to SMD we introduce the raw effect size, the
unstandardised/unscaled mean difference, as a measure of effect size. The standard-
ised mean difference is a standardised/scaled version of the raw mean difference
(divided by the standard deviation).

Raw Effect Size
The difference between twomeans may be used to define an effect size. This is called
the raw effect size as the raw difference of means is not standardised.

The difference of two means as a measure of effect size may arise in two different
contexts (study design), namely from (a) two independent groups and (b) two depen-
dent/matched (paired) groups. The mean difference would differ if the design of
the study is independent or matched. Similarly, the variance of the estimator of the
population mean difference will depend on the study design.

(a) Raw Mean Difference for Independent Study Design

Consider a population of patients of the treatment group with mean value of the
outcome variable (say Y ) to be μ1 (or μT ) and that of the patients who received the
control/placebo is µ2 (or μP ). Then the population mean difference is δ = μ1 − μ2.

This is the raw population effect size expressed as the difference of two independent
means. Let the population variance of the patients in the treatment group be σ 2

1 and
that of the placebo group beσ 2

2 . Assume that the outcomevariable of both populations
(treatment and placebo) follow the normal distribution.

Based on a random sample of size n1 from the treatment group, let the sample
mean be μ̂1 = Ȳ1 and sample variance be σ̂ 2

1 = S2
1 . Similarly, for another random

sample of size n2 from the placebo group, let the sample mean be μ̂2 = Ȳ2 and
sample variance be σ̂ 2

2 = S2
2 .

For the purpose of inference, confidence interval and test of significance on δ =
μ1 − μ2, we need to find the point estimate of δ and the standard error (SE) of the
estimator of δ.
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Table 8.1 Summary data for memory enhancement

Intervention Count (N) Mean Standard deviation

Ginkgo 28 58.4 3.8

Placebo 24 56.8 4.3

The point estimate of the population mean difference is defined as δ̂ = Ȳ1 −
Ȳ2. However, the SE of the estimator of δ depends on whether the two population
variances are equal or not.

(i) SE when σ 2
1 = σ 2

2 (equal variances) assumed

If the twopopulation variances are equal, the variance of δ̂ isVEq(δ̂) = V
(
Ȳ1 − Ȳ2

) =
n1+n2
n1n2

× S2
P , where S2

P = (n1−1)S2
1+(n2−1)S2

2
n1+n2−2 is the pooled sample variance. Then the

standard error of δ̂ is SEEq(δ̂) =
√

VEq(δ̂).

(ii) SE when σ 2
1 �= σ 2

2 (unequal variances) assumed

For the case of unequal population variances, the variance of δ̂ is VN Eq(δ̂) =
V

(
Ȳ1 − Ȳ2

) = S2
1

n1
+ S2

2
n2

. Then the standard error of δ̂ is SEN Eq(δ̂) =
√

VN Eq(δ̂).

Example 8.1 A researcher wanted to see whether ginkgo biloba enhances memory.
In an experiment to find out, subjects were assigned randomly to take ginkgo biloba
supplements or a placebo. The memory of both groups of subjects are recoded after
the experiment. The summary statistics of the data are noted in Table 8.1.

Let μ1 = mean memory score of ginkgo group and μ2 = mean memory score of
placebo group. Then the population raw mean difference, effect size, is defined as
δ = μ1 − μ2.

Find the (a) point estimate of the population effect size, difference of themeans, δ,
and (b) the standard error of the estimator of δ assuming the two population variances
are (i) equal and (ii) unequal.

Solution:

(a) The point estimate of δ = μ1 − μ2 is δ̂ = μ̂1 − μ̂2 = 58.4 − 56.8 = 1.6.
(b) To estimate the standard error of the estimator of δ, we have the following two

options:

(i) The SE when σ 2
1 = σ 2

2 (equal variances) assumed
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First find the pooled sample variance,

S2
P = (n1−1)S2

1+(n2−1)S2
2

n1+n2−2 = (28−1)×3.82+(24−1)×4.32

28+24−2 = 16.303.
Then the variance of the estimator of δ is

VEq(δ̂) = V
(
Ȳ1 − Ȳ2

) = n1+n2
n1n2

× S2
P = 28+24

28×24 × 16.303 = 1.261542, and hence the
standard error becomes

SEEq(δ̂) =
√

VEq(δ̂) = √
1.261542 = 1.1232.

(ii) The SE when σ 2
1 �= σ 2

2 (unequal variances) assumed

When the population variances are not equal, the variance of δ̂ is

VNEq(δ̂) = S2
1

n1
+ S2

2
n2

= 3.82

28 + 4.32

24 = 1.286131.

Then the standard error of δ̂ is SEN Eq(δ̂) =
√

VN Eq(δ̂)) = √
1.286131 = 1.1341.

(b) Raw Mean Difference for Matched Pairs Study Design

Consider a population of pairs of patients or experimental units. The pairs can be pre
andpost scores of the samegroupof patients. It could also be patients at the same stage
of disease or siblings. The idea is to make the experimental units identical or very
similar so that they behave like the same subject. This kind of matched pairs ensures
that the difference in responses of the paired units are only due to the intervention (or
treatment). Themain advantage of this design is that thematched pairs ensure internal
control to reduce errors. The numerical data from matched groups are dependent
within the pairs, and hence different from that from the independent groups.

Let the paired values of a variable of interest for a matched paired design experi-
ment be denoted by Y1 and Y2 or (Y1, Y2). Let the difference of the pair of values of
the variable be denoted by D = Y1−Y2. Then D itself is a variable which is assumed
to follow a normal distribution with meanμD and variance σ 2

D.Here the mean differ-
ence, μD is actually the population mean of differences (D) of the matched paired
values of the variable. Similarly, σ 2

D is the variance of the differences, D. Both μD

and σ 2
D are unknown population parameters, and we need to estimate them from the

sample data.
Consider a random sample of size n from a population of matched pairs (e.g. pre

and post, or before and after) so that the data on the variable appear as n different
pairs (Y11, Y21), (Y12, Y22), . . . , (Y1n, Y2n). Then the differences of the n pairs of
sample values of the variables can be expressed as D1 = Y11 − Y21, D2 = Y12 −
Y22, . . . , Dn = Y1n − Y2n . From the sample data, the estimator of the population
mean μD and variance σ 2

D are defined as

μ̂D = D̄ =
∑

Di

n , the sample mean of the differences and σ̂ 2
D̄

= V ar(D̄) = S2
D

n ,

the variance of D̄, where S2
D =

∑
(Di −D̄)

2

n−1 is the sample variance of the differences.

So, the standard error (SE) of D̄ becomes SED̄ =
√

V ar(D̄).



8.1 Introduction 163

The statistic D̄ follows a normal distribution. For the confidence interval on the
raw population effect size, μD and significance test on it, we use the point estimate
D̄ and the standard error SED̄ .

Example 8.2 A new drug is proposed to lower total cholesterol and a study is
designed to evaluate the efficacy of the drug in lowering cholesterol. Fifteen patients
agreed to participate in the study and each is asked to take the new drug for
6 weeks. However, before starting the treatment, each patient’s total cholesterol
level is measured. The initial measurement is a pre-treatment or baseline value. After
taking the drug for 6 weeks, each patient’s total cholesterol level is measured again
(post-treatment value). The differences are computed by subtracting the cholesterols
measured at 6 weeks from the baseline values, so positive differences indicate reduc-
tions and negative differences indicate increases. The summary statistics of the data
are shown below:

n = 15,
15∑

1

Di = 254, and
15∑

1

(
Di − D̄

)2 = 2808.9333.

Find the estimated effect size (mean of differences, μD) and the standard error of
the estimator, SED̄.

Solution:

The estimated value of population mean of differences, μD is the sample mean of

differences, that is, μ̂D = D̄ =
n∑

1
Di

n = 254
15 = 16.9333.

The sample variance of D is S2
D =

n∑

1
(Di −D̄)

2

n−1 = 2808.9333
15−1 = 200.6381. So the

variance of the sample mean of differences (D̄) is

σ̂ 2
D̄ = Var(D̄) = S2

D

n
= 200.6381

15
= 13.3759.

Then the standard error is given by SED̄ =
√

Var(D̄) = √
13.3759 = 3.6573.

8.2 Estimation of Effect Size, SMD

In many meta-analyses when the effect size is measured by the difference between
two means some of the popular measures of estimating the unknown population
effect size are Cohen’s d, Hedges’ g and Glass’ �. All of them are standardized
mean difference with the same raw mean difference in the numerator but different
denominators. The Cohen’s d uses a biased estimator andHedges’ g uses an unbiased



164 8 Meta-Analysis of Standardized Mean Difference

estimator of the population standard deviation in the denominator. But Glass’� uses
the sample standard deviation of the control group as denominator.

The SMD
If the underlying outcome variable of interest is continuous (e.g. systolic blood
pressure) the mean of the variable is used to define effect size. Let the mean of the
outcome variable in the population of patients who received the treatment be μ1

(or μT ) and that of the patients who received the placebo is µ2 (or μP ). Again, let
the variances of the effect size of the two populations be σ 2

1 and σ 2
2 respectively.

Then, assume that the two variances are equal, that is, σ 2
1 = σ 2

2 = σ 2, that is, the
difference is not significant (cases of unequal variances should be dealt separately
in the next chapter). Then the population raw effect size in study i is measured by
δi = μi1−μi2 (difference of the twopopulationmeans), themean difference. Attempt
is made to estimate the unknown population effect, δ from the sample data obtained
from different independent studies. As an example, an estimate of the effect size of
study i is δ̂i = μ̂i1−μ̂i2(difference of the two samplemeans), where the ‘hat’ symbol
indicates an estimated value from the observed sample data. Thus, δ̂i (calculated from
available data) is an estimate of δi (unknown parameter) and μ̂i1 is an estimate of
μi1 respectively.

The raw mean difference δ can be standardized by dividing the raw mean differ-
ence with the standard deviation to get the population effect size, for instance,
θ = μ1−μ2

σ
. Then, the unknown population effect size of study i can be defined as the

standardised mean difference (SMD), θi = μi1−μi2

σ
and estimated by θ̂i = μ̂i1−μ̂i2

σ̂
.

This type of effect size expresses the mean difference between two groups in the
standard deviation unit.

Let X11, X12, . . . , X1n1 be a random sample of size n1 for the treatment group,
and X21, X22, . . . , X2n2 be another random sample of size n2 for the placebo/control
group. Assume that the two samples are independent. The mean of the first sample,
X̄1 is an estimate of the population mean μ1 and that of the second sample, X̄2 is
an estimate of μ2. Similarly, the sample variances S2

1 and S2
2 are the estimates of

the population variances σ 2
1 and σ 2

2 respectively. Some of the commonly used effect
size measures, namely standardized mean difference, based on the sample means and
standard deviations are discussed below.

(a) Cohen’s d Cohen (1969, 1987) is an estimate of the population effect size, θ ,
based on the standardized mean difference and is given by

d = X̄1 − X̄2

s
,

where s =
√

n1S2
1+n2S2

2
n1+n2

is a biased estimator of the common population standard
deviation σ. Note that this estimate of σ was defined under the assumption that the
two population variances were assumed unequal.
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Typically, this is reported asCohen’sd, or simply referred to as“d”. The calculated
values for effect size, as defined above, are generally low and usually share the range –
3.0 to 3.0. Themeaning of effect size varies by context, but the standard interpretation
of d offered by Cohen is:

0.8 = large (8/10 of a standard deviation unit)
0.5 = moderate (1/2 of a standard deviation)
0.2 = small (1/5 of a standard deviation)

(b) Hedges’ g Larry V Hedges (1981, 1982) is another estimate of the population
effect size, θ , based on standardized mean difference and is given by

g = X̄1 − X̄2

s∗ ,

where s∗ =
√

(n1−1)S2
1+(n2−1)S2

2
n1+n2−2 , an unbiased estimator of the common population

standard deviation σ. Note that this pooled estimate of σ was defined under the
assumption that two population variances were equal.

If the sample sizes are large, there is no significant difference between the above
two effect measures d and g.

(c) Glass’ � Glass et al. (1981) is another estimate of the population effect size θ ,
based on standardized mean difference and is given by

� = X̄1 − X̄2

s2
,

where s2 is the sample standard deviation of the control population.
Although eachof the above three effect size estimates has the samenumerator, they

differ due to the differences in the denominator, different estimators of the population
standard deviationσ . Actually, they are scaled differently by using different estimates
of σ.

Variances of effect size estimators
The population variance of the above three estimators of the mean difference based
effect size are approximated as follows:

σ 2(d) = Var(d) =
[

n1+n2
n1n2

+ θ2

2(n1+n2−2)

]
×

[
n1+n2

n1+n2−2

]
, where θ represents

population counterpart of Cohen’s d,

σ 2(g) = Var(g) =
[

n1+n2
n1n2

+ θ2

2(n1+n2−2)

]
, where θ represents population

counterpart of Hedges’ g, and

σ 2(�) = Var(�) =
[

n1+n2
n1n2

+ θ2

2(n2−1)

]
, where θ represents population counter-

part of Glass’ �.
The corresponding sample/estimated variances of the estimators are given by

replacing the unknown parameter θ with its estimate from the sample. Thus

Var(d) =
[

n1+n2
n1n2

+ d2

2(n1+n2−2)

]
×

[
n1+n2

n1+n2−2

]
, sample variance of Cohen’s d,
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Var(g) =
[

n1+n2
n1n2

+ g2

2(n1+n2−2)

]
, sample variance of Hedges’ g and

Var(�) =
[

n1+n2
n1n2

+ �2

2(n2−1)

]
, sample variance of Glass’ �.

Both the point estimate of the effect size, θ and the variance of its estimator fromall
individual studies are required to perform statistical inference. For the meta-analysis
these estimated values from different independent studies are synthesised/pooled to
produce a combined estimate for the unknown common effect size θ .

The Standard Error of θ̂

The standard error of the estimator of effect size is calculated from the sample
variance of the sample effect sizes. For the Cohen’s d statistic, the sample variance
is given by

Var(d) =
[

n1+n2
n1n2

+ d2

2(n1+n2−2)

]
×

[
n1+n2

n1+n2−2

]
, and hence SE(θ̂ ) = √

Var(d)where

θ̂ = d.
For the Hedges’ g statistic, the sample variance is given by

Var(g) =
[

n1+n2
n1n2

+ g2

2(n1+n2−2)

]
, and hence the standard error becomes SE(θ̂) =

√
Var(g), where θ̂ = g.
For the Glass’ � statistic, the sample variance is given by

Var(�) =
[

n1+n2
n1n2

+ �2

2(n2−2)

]
, so the standard error is SE(θ̂ ) = √

Var(�), where

θ̂ = �.
The above formulae for the standard error are used to find both the confidence

interval for θ and the observed value of the test statistic, Z.

Remark The standardised mean difference (SMD) follows a standard normal
performing distribution so no transformation is required to define the confidence
interval or performing test of hypothesis when the effect size is measured by SMD.

Confidence Interval for θ

In meta-analysis, one of the main interest is to find confidence interval for the popu-
lation effect size of individual studies as well as for the common effect size by
combining summary statistics from selected independent studies.

The generic form of a (1−α)×100% (95% if α= 0.05 or 5%) confidence interval
for the common effect size θ is

θ̂ ± zα/2 × SE(θ̂), and that for the ith study θi is θ̂i ± zα/2 × SE(θ̂i ) for i = 1,2,
…,k, where θ̂ is the point estimate of θ , common effect size of all studies, zα/2 is the
critical value (cut-off point) of the standard normal distribution leaving α/2 area to
the upper (or lower tail) of the distribution, and SE(θ̂ ) is the standard error of θ̂ .

If α = 0.05, then from the Normal Table, zα/2 = z0.05/2 = 1.96 and the 95%
confidence interval for θ is given by θ̂±1.96×SE(θ̂ ). The formula for the confidence
interval can be simplified by expressing the lower limit (LL) and upper limit (UL)
as follows:

LL = θ̂ − zα/2 × SE(θ̂) and

UL = θ̂ + zα/2 × SE(θ̂).
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Example 8.3 Consider the data set in Table 8.2 on the quantitative ability of stusents
from seven different studies on the sex difference of cognitive abilities (quantitative,
verbal, visual-spatial and field articulation) from (Larry V. Hedges 1985), p.17. The
data in the following table provide information on the sample size (N), estimated
effect size (g) by Hedges and unbiased effect size (g*), both estimating the common
effect size θ , difference of mean cognitive ability of the two genders.

Find the standard error, and construct the 95% confidence interval for the popu-
lation effect size for Study 1. (Similar results are calculated for other studies, if
needed).

Solution:

Standard error for Study 1
As an example, consider Study 1 with N = 76, and Hedges’ effect estimate g =
0.72.
Assuming equal sample sizes, we write N = n1 + n2 = 38 + 38= 76, and the
standard error of g is given by the square root of

Var(g) =
[

n1+n2
n1n2

+ g2

2(n1+n2−2)

]
=

[
38+38
38×38 + 0.722

2(38+38−2)

]
= 0.056134, that is,

SE(g) = √
0.056134 = 0.236927.

Confidence interval for Study 1
A 95% confidence interval for the population effect size θ of Study 1 is computed
by working out the lower limit (LL) and upper limit (UL) of the interval as follows:

LL = θ̂ − zα/2 × SE(θ̂) = 0.72 − 1.96 × 0.236927 = 0.72 − 0.464 = 0.256 and

UL = θ̂ + zα/2 × SE(θ̂) = 0.72 + 1.96 × 0.236927 = 0.72 + 0.464 = 1.184.

So the 95%confidence interval for Study 1 is (0.256, 1.184). This interval does not
include 0 (that is, population effect size 0), the value of θ under the null hypothesis,
suggesting significance of the effect size.

Conclusion: The cognitive ability differs between the two genders.

8.3 Tests on Effect Size

Test of significance for θ

To test the significance of the common effect size of all studies (or any individual
study effect size), we need to test the hypotheses
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Table 8.2 Summary data on gender differences in cognitive (quantitative) ability of students

Study Sample size (N) Standardised mean difference (g) Unbiased standardised mean
difference (g*)

Study 1 76 0.72 0.71

Study 2 6167 0.06 0.06

Study 3 355 0.59 0.59

Study 4 1050 0.43 0.43

Study 5 136 0.27 0.27

Study 6 2925 0.89 0.89

Study 7 45222 0.35 0.35

H0 : θ = 0 against Ha : θ �= 0
(or H0 : θi = 0 against Ha : θi �= 0 for an individual study i).
The test is based on the standardised normal statistic,
Z = θ̂−0

SE(θ̂ )
,
(
or Z = θ̂i −0

SE(θ̂i )
for any individual study i

)
,

where Z follows a standard normal distribution.
For a two-tailed test, reject H0 at the α level of significance (in favour of the

alternative hypothesis) if the observed or calculated value of Z statistic satisfies
|z0| ≥ zα/2; otherwise don’t reject the null hypothesis.

Example 8.4 Using the data in Table 8.2 and the statistics from Example 8.3 test the
significance of the population effect size for Study 1. (Similar tests can be performed
for other studies, if needed).

Solution:

Test of significance for Study 1
To test the null hypothesis, H0 : θ = 0 against the two sided alternative H0 : θ �= 0
calculate the observed value of the Z statistic,

zo = θ̂

SE(θ̂ )
= g

SE(g)
= 0.72

0.236927
= 3.039.

The associated (two-sided) P-value is P(|Z | ≥ 3.039) = P(−3.039 < Z) +
P(Z > 3.039) = 2 × 0.0012 = 0.0024.

Since the P-value is too small (much smaller than even 1%) there is very strong
sample evidence against the null hypothesis. So the effect size of this study reveals
that the population effect size is significant (that is, significantly different from 0).

Remark The same conclusion is reached if the calculations are based on the value
of g* (= 0.71) instead of g for the same study.
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8.4 Fixed Effect (FE) Model

Fixed effect model is appropriate for meta-analysis when the between studies vari-
ation is insignificant, that is, the effect size of interest is homogeneous across all
studies. For details on the fixed effect and other types of statistical models used for
meta-analyses readersmay refer to Borenstein et al. (2010), Chapter 11 of Borenstein
et al. (2009), Doi et al. (2015a, b, c) for fixed effect and other statistical meta-analytic
models.

Let us consider k independent primary studies for a meta-analysis of standardised
mean difference. Assume that there is an unknown common effect size, θ (SMD) for
all the independent studies. Let θi be the unknown true (population) study specific
effect size of interest which includes systematic bias specific to the study (if no
systematic bias then θi = θ ) and σ 2

i be the unknown population variance of the ith
study for i = 1, 2, …, k. The sample estimate of the population effect size for the ith
primary study based on a random sample of size ni is denoted by θ̂i and the sample
variance by vi . Then the weight of the ith study is estimated by wi = 1

vi
.

In meta-analysis, results from all the k independent studies are combined by
pooling the summary statistics to a single point estimate and find a confidence interval
for the common effect size θ . Under the fixed effect model, the common effect size
estimator (SMD) is given by

θ̂FE =
k∑

i=1

wi θ̂i

/
k∑

i=1

wi

which is theweightedmeanof the estimated effect sizes of all the independent studies.

The variance of the estimator of the common effect size is Var(θ̂FE ) = 1

/
k∑

i=1
wi ,

and hence the standard error of the estimator of the common effect size is SE(θ̂FE ) =√

1

/
k∑

i=1
wi .

The confidence interval
The (1 − α) × 100% confidence interval for the effect size θ, based on the sample
estimates of θ and SE of its estimator, is given by the lower limit (LL) and upper
limit (UL) as follows:

LL = θ̂FE − zα/2 × SE(θ̂FE ) and

UL = θ̂FE + zα/2 × SE(θ̂FE ).
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Table 8.3 Effect size estimate from six studies of the effect of Open education on Attitude toward
School

Study nE
i = nC

i = ni θ̂i

Study 1 22 0.563

Study 2 10 0.308

Study 3 10 0.081

Study 4 10 0.598

Study 5 39 – 0.178

Study 6 50 – 0.24

Here zα/2 is the α
2 th cut-off point of standard normal distribution and SE(θ̂FE ) =√

V ar(θ̂FE ).

To compute the confidence interval and perform test on the population effect size
θ , we need to compute the point estimate and standard error of the estimator for all
studies.

Example 8.5 Consider the data on the sample size and estimated effect size from
Larry V. Hedges (1985), p. 121 as in Table 8.3. The study is on the effects of Open
Education on Attitude toward School for the experimental and control groups.

Find the standard error of the estimator of the population effect size for each of
the six studies.

Solution:

From Table 8.3, for the first study (Study 1), we have nE
i = nC

i = ni = 22 and
estimated effect size θ̂1 = 0.563 (for i = 1).

So, the variance of the effect size estimator is

Var
(
θ̂i

)
= nE +nC

nE nC + θ̂2
i

2×(nE +nC)
. Then the standard error of the effect size estimator

is given by

SE(θ̂1) =
√

nE + nC

nE nC
+ θ̂2

i

2 × (
nE + nC

) =
√
22 + 22

22 × 22
+ 0.5632

2 × (22 + 22)

= √
0.094511 = 0.307426.

Performing the same steps for the other studies we get the following table with
the standard errors as in Table 8.4 (at the last column).

Example 8.6 For the data in Table 8.3, find the 95% confidence interval for
population effect size of the six studies.

Solution:

The 95% confidence interval for the effect size θ of the first study (Study 1) is
obtained by computing the lower limit (LL) and upper limit (UL) as follows:
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Table 8.4 Computations of estimated standard deviation of effect estimator

Study nE
i = nC

i = ni θ̂i SE
(
θ̂i

)

Study 1 22 0.563 0.307426

Study 2 10 0.308 0.449857

Study 3 10 0.081 0.447397

Study 4 10 0.598 0.457100

Study 5 39 – 0.178 0.226903

Study 6 50 – 0.234 0.200683

LL = θ̂1 − zα/2 × SE(θ̂1) = 0.563 − 1.96 × 0.3074 = 0.563 − 0.6025 = −0.0395 and

UL = θ̂1 + zα/2 × SE(θ̂1) = 0.563 + 1.96 × 0.3074 = 0.563 + 0.6025 = 1.1655.

Similar confidence intervals are computed for the other studies and reported in
Table 8.5.

Example 8.7 For the data in Table 8.3 find the point estimate and 95% confidence
interval for the common effect size θ under the fixed effect model.

Solution:

The estimate of the combined effect size θ under the fixed effect model is based on
the sum of the last two columns of Table 8.6.

The point estimate of θ under the FE model is

θ̂FE =

k∑

i=1
wi θ̂i

k∑

i=1
wi

= 1.478124

69.55727
= 0.02125 ∼= 0.021 and

Table 8.5 The 95% confidence intervals for the population effect size

Study nE
i = nC

i = ni θ̂i SE
(
θ̂i

)
LL of 95% CI UL of 95% CI

Study 1 22 0.563 0.307426 – 0.0395 1.1655

Study 2 10 0.308 0.449857 – 0.5737 1.1897

Study 3 10 0.081 0.447397 – 0.7959 0.9578

Study 4 10 0.598 0.457100 – 0.2979 1.4939

Study 5 39 – 0.178 0.226903 – 0.6227 0.2667

Study 6 50 – 0.234 0.200683 – 0.6273 0.1593
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Table 8.6 Computations for combined effect size estimate under FE model

Study nE
i = nC

i = ni θ̂i Var
(
θ̂i

)
wi = 1

Var
(
θ̂i

) wi θ̂i

Study 1 22 0.563 0.094511 10.58078 5.956978

Study 2 10 0.308 0.202372 4.941405 1.521953

Study 3 10 0.081 0.200164 4.995903 0.404668

Study 4 10 0.598 0.20894 4.786061 2.862064

Study 5 39 – 0.178 0.051485 19.42307 – 3.45731

Study 6 50 – 0.234 0.040274 24.83005 – 5.81023

Sum 69.55727 1.478124

Var(θ̂FE ) = 1
k∑

i=1
wi

= 1
69.55727 = 0.014377. Therefore, the standard error of the

estimator is SE(θ̂FE ) =
√

1
k∑

i=1
wi

= √
0.014377 = 0.119903.

Now the 95% confidence interval for the common effect size θ is computed by
obtaining the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂FE − zα/2 × SE(θ̂FE ) = 0.02125 − 1.96 × 0.1199 = 0.021 − 0.235

= −0.214 = −0.21 and

UL = θ̂FE + zα/2 × SE(θ̂FE ) = 0.02125 + 1.96 × 0.1199 = 0.021 + 0.235

= 0.256 = 0.26

Thus the 95% confidence interval of the common effect size under the fixed effect
model is given by (–0.21, 0.26).

The above point estimate (–0.02) and the confidence interval (–0.21, 0.26) for the
common effect size are displayed in the forest plot of meta-analysis at the very last
row represented by a diamond. See Fig. 8.1.

Significance Test
To test the significance of the mean effect size of any individual study θi test the null
hypothesis,

H0 : θi = 0 (null) against Ha : θi �= 0 for i = 1,2, … k, using the test statistic

Zi = θ̂i − 0

SE(θ̂i )
,

where the statistic Zi follows the standard normal distribution.
Similarly, to test the significance of the common mean effect size θ of all studies

under the FE model, test the null hypothesis
H0 : θ = 0 against Ha : θ �= 0 using the test statistic
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Open Education FE

ES
10

Study 

Study 6 
Study 5 

Overall 
Q=7.51, p=0.19, I2=33%

Study 3 
Study 2 
Study 1 

Study 4 

ES (95% CI) % Weight

  -0.23  ( -0.63,  0.16)     35.7
  -0.18  ( -0.62,  0.27)     27.9

   0.02  ( -0.21,  0.26)    100.0

   0.08  ( -0.80,  0.96)      7.2
   0.31  ( -0.57,  1.19)      7.1
   0.56  ( -0.04,  1.17)     15.2

   0.60  ( -0.30,  1.49)      6.9

Fig. 8.1 Forest plot of meta-analysis on effects of Open Education onAttitude toward School under
FE model

Z = θ̂FE

SE(θ̂FE )
,

where the statistic Z follows the standard normal distribution.
For a two-tailed test, reject H0 at the α level of significance if the calcu-

lated/observed value of the Z statistic (say z0) satisfies |z0| ≥ zα/2, where zα/2

is the α/2 level upper cut-off point of the standard normal distribution; otherwise
don’t reject the null hypothesis. Alternatively, reject H0 at the α level of significance
if the P-value is less than or equal to α; otherwise don’t reject the null hypothesis.

Example 8.8 Using the data in Table 8.3 test the significance of the (a) mean effect
size of the first study, and (b) common mean effect size of all studies under the FE
model.

Solution:

(a) From previous calculations, for the first study (Study 1), we have estimated

effect size θ̂1 = 0.563 (for i = 1) and the standard error SE
(
θ̂1

)
= 0.307426.

To test the significance of the population effect size of the first study, test H0 :
θ1 = 0 against Ha : θ1 �= 0 using the observed value of the test statistic Z1 (say z10)

z10 =
[

θ̂1

SE(θ̂1)

]

= 0.563

0.307426
= 1.831335 = 1.83.

The P-value is P(|Z | > 1.83) = 2×0.0336 = 0.0672. Since the P-value is larger
than 5%, we don’t reject the null hypothesis at the 5% level of significance.

(b) Similarly, from previous calculations, the estimate of the common effect size
under the FE model is θ̂F E = 0.02125 and the standard error is SE(θ̂FE ) =
0.119903.
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To test the significance of the common effect size, under the FE model, test
H0 : θ = 0 against Ha : θ �= 0 using the observed value of the test statistic Z is

z0 =
[

θ̂FE − 0

SE(θ̂FE )]

]

= 0.02125

0.119903
= 0.177227 = 1.77.

The P-value is P(|Z | > 0.177) = 2 × P(Z > 0.177) = 2 × 0.4286 = 0.8572.
Since the P-value is too large, there is no sample evidence to reject the null hypothesis.

Measuring Heterogeneity
In many meta-analyses heterogeneity is a real problem and needs to be identified
and handled properly for the validity of the results. Heterogeneity means that the
variation in the study effect sizes exceeds that is expected due to random error. In
practice, the observed variation is often not just random error but includes both true
heterogeneity and study biases. Here we cover two the popular methods to identify
and measure the extent of heterogeneity among independent studies.

Cochran’s Q Statistic (Cochran 1973)
The Cochran’s Q statistic is defined as the weighted sum of squares (WSS) of the
estimated effect sizes

Q =
k∑

i=1

wi

(
θ̂i − θ̂

)2
,

where θ̂ is the pooled estimate of the common effect size. The Q statistic can also
be written as the sum of standardised differences as

Q =
k∑

i=1

(
θ̂i −θ̂

si

)2
, where si = √

vi is the within-study sample standard deviation

of the ith study.
For computations, the following representation of Q is convenient

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

.

The above Q statistic follows a chi-squared distribution with d f = (k −1),where
k is the number of studies included in the meta-analysis. Since the expected (mean)
value of a chi-squared variable is its degrees of freedom, the expected value of Q is
(k-1), that is, E(Q) = E(W SS) = (k − 1) = d f.
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Since Q is the observed WSS (from the sample data) and df is the expected WSS,
the difference between the two,(Q − d f ), is the excess variation that represents the
extent of heterogeneity in the study effect.

Test of Heterogeneity
To test the null hypothesis of the equality of effect sizes (i.e. equality excluding
random error) across all studies, we test

H0 : θ1 = θ2 = . . . = θk = θ against Ha : not all θi ’s are equal (at least one
of them is different), using the following test statistic

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

.

Reject the null hypothesis at the α level of significance if the observed value of
the Q statistic is larger than or equal to χ2

k−1,1−α , the level α critical value of the chi-
squared distribution with (k-1) df, such that P

(
χ2

k−1 ≥ χ2
k−1,1−α

) = α; otherwise
don’t reject it. Thus higher values of the Q statistic would lead to the rejection of
the null hypothesis. Alternatively, find the P-value as p = P

(
χ2

k−1,0 ≥ χ2
k−1

)
, where

χ2
k−1,0 is the observed value of the chi-squared statistic, and reject H0 at the α level

of significance if the P-value is less than or equal to α; otherwise don’t reject the null
hypothesis.

The significant P-value leads to the conclusion that there is true difference among
the effect sizes. However the non-significant P-value may not mean that the effect
sizes are not different as this could happen due to low power of the test. The test
should not be used as a sole measure of magnitude of the true differences.

The I2 Statistic (Higgins et al. 2003)
The value of the Q-statistic increases as the number of studies included in the meta-
analysis becomes larger. To dealt with this problem, the I2 statistic is defined as a
ratio of excess variation to the total variation expressed in percentages as follows:

I 2 =
(

Q − d f

Q

)
× 100%,

and is viewed as the proportion of between studies variation and total variation (within
plus between studies variation).
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Table 8.7 Computations for the Q and I2 statistics

Study n d Var w wd wdˆ2

Study 1 22 0.563 0.094511 10.58078 0.124609 3.353779

Study 2 10 0.308 0.202372 4.941395 0.009604 0.468761

Study 3 10 0.081 0.200164 4.995903 0.016641 0.032778

Study 4 10 0.598 0.20894 4.786063 0.150544 1.711515

Study 5 39 – 0.178 0.051485 19.42313 0.150544 0.615403

Study 6 50 – 0.234 0.040274 24.82992 0.197136 1.359587

Sum 141 1.138 0.797746 69.55719 0.649078 7.541822

Example 8.9 Using the data in Table 8.3, calculate the value of theQ and I2 statistics.

Solution:

To answer the question, we need to calculate the weights (w) for each of the six
studies and the sum of the products of w and d (wd) and sum of the product of w and
dˆ2 (wdˆ2) as shown in Table 8.7.

Now, the Q statistic is calculated as

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

= 7.541828 − 1.478142

69.55719
= 7.51041 = 7.51.

To test the heterogeneity of effect sizes the P-value is found from the chi-squared
Table (with df = 5) as p = P

(
χ2
5 ≥ 7.536

)
> 0.10.

Note if the value of Q was 9.236 then the P-value would be exactly 0.10, since
P

(
χ2
5 ≥ 9.236

) = 0.10. Since the P-value is not small, we can’t reject the null
hypothesis (of equal effect sizes).

The I2 statistic is found to be

I 2 =
(

Q − d f

Q

)
× 100% =

(
7.51041 − (6 − 1)

7.51041

)
× 100% = 0.334257 × 100% = 33%,

where d f = (k − 1) = (6 − 1) = 5. Note that I 2 represents the percentage of
variation across studies that is due to real heterogeneity rather than chance.

Remark The above value of Q statistic, its exact P-value and I 2 statistic are
presented in the forest plot produced by MetaXL on the left panel of Fig. 8.1.

Forest plot for SMD under FE model using MetaXL
The forest plot under the FE model (indicated by “IV” in the code) is constructed
using MetaXL code
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=MAInputTable(“Open Education FE”,”ContSE”,”IV”,B23:D28)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which
the first quote contains the text that appears as the ‘title of the output of the forest
plot’ e.g. “Open Education FE” in the above code (user may choose any appropriate
title here, but FE is chosen to indicate fixed effect model). Then in the second quote
enter the type of effect measure, e.g. “ContSE” in the above code which tells that
the outcome variable is continuous and standard error (SE) is used. Within the third
quote enter the statistical model, e.g. “IV” in the above code stands for the fixed effect
(abbreviated by FE) model. Each quotation is followed by a comma, and after the
last comma enter the data area in Excel Worksheet, e.g. B23:D28 in the above code
tells that the data on the independent studies are taken from the specified cells of the
Excel Worksheet. The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 8.1.

Interpretation
From the abovemeta-analysis as presented by the forest plot in Fig. 8.1, the estimated
common effect size is 0.02, and the 95% confidence interval is (–0.21, 0.20). The
effect size is not statistically significant at the 5% level (as 0 is included in the
confidence interval).

The value of Q statistic (7.51) with P-value = 0.19 and I 2 = 33% show no
significant heterogeneity among the studies.

8.5 Random Effects (RE) Model

For the REs model, there are two sources of errors or variation. The first source of
errors is the error in estimating the true common effect size of a specific population
(due to random variation within studies). The second source of error is from the
variation of the true effect sizes of individual studies that are used to estimate the
common true effect size (due to the between studies variation).

The variance of θi about θ is τ 2, which is known as the between study variance,
and is estimated by the sample variance of θ̂i about θ and is denoted by τ̂ 2. Thus,
under the REs model the variance of the effect size estimator of the ith study is
the sum of the within-study and between-study variances, that is, v∗

i = vi + τ̂ 2.
Therefore, the weight assigned to each study is modified as follows:

w∗
i = 1

vi + τ̂ 2
.
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Note that to make the sum of the weights equal to one, the following modified

weight is used w∗∗
i =

1
vi +τ̂2

k∑

i=1

1
vi +τ̂2

= w∗
i

k∑

i=1
w∗

i

.

The common effect size under the REs model is estimated by

θ̂RE =
k∑

i=1
w∗

i θ̂i

/
k∑

i=1
w∗

i . The standard error of the estimator of the common

effect size under the REs model is

SE(θ̂RE ) =
√√√
√1

/
k∑

i=1

w∗
i .

The (1−α)×100% confidence interval for the effect size θ under the REs model
is given by the lower limit (LL) and upper limit (UL) as follows:

L L = θ̂RE − zα/2 × SE(θ̂RE ) and

U L = θ̂RE + zα/2 × SE(θ̂RE ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

Note that the estimator of the common effect size under the REs model is the
simple weighted mean of the individual effect sizes, but the weights depend on both
the within-study and between-study variances. The weights (w∗

i ’s) are also based on
the inflated inverse variance such that they add up to 1.

Estimation of τ 2

The between studies variance is estimated as a scaled excess variation as follows
τ̂ 2 = Q−d f

C ,

where

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

, C =
k∑

i=1

wi −

k∑

i=1
w2

i

k∑

i=1
wi

and d f = (k − 1) in which k is the number of studies.

Example 8.10 Consider the data on effect of Open education on theAttitude towards
School as in Table 8.3.

Find the (i) estimated value of τ 2 (ii) point estimate of the population effect size
and standard error of estimator and (ii) 95% confidence interval of the population
effect size under the REs model.

Solution:

To answer this question first we need to compute the summary statistics as in
Table 8.8.
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Here the combined variance (Var*) is the sum of Var and Tauˆ2, and modified
weight (w*) is the weight under the REs model calculated as the reciprocal of Var*.

As an illustration, for Study 1, the modified variance for the REs model is found
to be v∗

1 = v1 + τ̂ 2 = 0.0945+0.0477 = 0.14222 and the modified weight becomes
w∗

1 = 1
/

V ar∗
1 = 1

0.14222 = 7.0315.
Similarly for the second study (Study 2), the modified variance is v∗

2 = v2+ τ̂ 2 =
0.2024 + 0.0477 = 0.2501.

Hence the modified weight becomes

w∗ = 1

V ar∗
1

= 1

0.2501
= 3.9987.

(i) Using the summary statistics from Table 8.8, we calculate the estimated value
of the between studies variance

τ̂ 2 = Q − d f

C
,

through computing its components as follows:

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

= 1.47814 − (7.5418)2

69.55719
= 7.5104 ≈ 7.51,

C =
k∑

i=1

wi −

k∑

i=1
w2

i

k∑

i=1
wi

= 69.55719 − 1178.0185

69.55719
= 52.62122

and d f = k − 1 = 6 − 1 = 5.
So the estimated value of the between studies variance becomes

τ̂ 2 = Q − d f

C
= 7.5104 − 5

52.62122
= 0.047707 ≈ 0.05.

(ii) The point estimate of the common effect size under the REs model is given by

θ̂RE =
k∑

i=1

w∗
i θ̂i

/
k∑

i=1

w∗
i =

6∑

i=1

w∗d

/
6∑

i=1

w∗ = 3.39399

40.4085
= 0.083967 ≈ 0.08.

The standard error of the estimator of the common effect size is
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SE(θ̂RE ) =
√√√√1

/
k∑

i=1

w∗
i =

√√√√1

/
k∑

i=1

w∗ =
√

1

40.4085
= 0.157313.

(iii) The 95% confidence interval for the population effect size θ under the REs
model is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂RE − 1.96 × SE(θ̂RE ) = 0.083967 − 1.96 × 0.157313 = −0.2244 ≈ −0.22 and

U L = θ̂RE + 1.96 × SE(θ̂RE ) = 0.083967 + 1.96 × 0.157313 = 0.3923 ≈ 0.39.

Comment The above point estimate (0.08) and the confidence interval (–0.22, 0.39)
are presented at the bottom row of the forest plot and represented by a diamond as
in Fig. 8.2.

Forest plot for SMD under RE model using MetaXL
The forest plot under the RE model (indicated by “RE” in the code) is constructed
using MetaXL code

=MAInputTable(“Open Education RE”,”ContSE”,”RE”,B23:D28)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘=MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Open Education RE” in the above code (user may choose any appropriate title
here, but RE is chosen to indicate random effects model). Then in the second quote
enter the type of effect measure, e.g. “ContSE” in the above code which tells that
the outcome variable is continuous and standard error (SE) is used. Within the third
quote enter the statistical model, e.g. “RE” in the above code stands for the random

Open Education RE

ES
10

Study 

Study 6 
Study 5 

Study 3 

Overall 
Q=7.51, p=0.19, I2=33%

Study 2 
Study 1 

Study 4 

ES (95% CI) % Weight

  -0.23  ( -0.63,  0.16)     28.1
  -0.18  ( -0.62,  0.27)     24.9

   0.08  ( -0.80,  0.96)     10.0

   0.08  ( -0.22,  0.39)    100.0

   0.31  ( -0.57,  1.19)      9.9
   0.56  ( -0.04,  1.17)     17.4

   0.60  ( -0.30,  1.49)      9.6

Fig. 8.2 Forest plot of meta-analysis on effects of Open Education onAttitude toward School under
REs model
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effects (abbreviated by RE) model. Each quotation is followed by a comma, and after
the last comma enter the data area in Excel Worksheet, e.g. B23:D28 in the above
code tells that the data on the independent studies are taken from the specified cells
of the Excel Worksheet. The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 8.2.

Interpretation
From the above meta-analysis as presented by the forest plot, the estimated common
effect size is 0.08, and the 95% confidence interval is (–0.22, 0.39). The effect size
is not statistically significant (as 0 is included in the confidence interval).

Conclusion: The Open education has not significantly changed Attitude towards
School.

8.6 Inverse Variance Heterogeneity (IVhet) Model

Under the inverse variance heterogeneity (IVhet) model estimate of the common
effect size θ (= SMD) is given by

θ̂I V het =

k∑

i=1
wi θ̂i

k∑

i=1
wi

.

Then the variance of the estimator under the IVhet model is given by

V ar(θ̂I V het ) =
k∑

i=1

⎡

⎣
(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤

⎦.

For the computation of the confidence interval of the common effect size based
on the IVhet model use the following standard error

SE(θ̂IV het ) =
√

V ar(θ̂IV het ).

Then, the (1−α)×100% confidence interval for the common effect size θ under
the IVhet model is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂IV het − zα/2 × SE(θ̂I V het )

UL = θ̂IV het + zα/2 × SE(θ̂IV het ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.
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Table 8.9 Calculations of combined variance and modified weights for IVhet model

Study d Var w Tauˆ2 Var* W* Wd

Study 1 0.563 0.0945 10.581 0.047707 0.14222 0.00329 5.957

Study 2 0.308 0.2024 4.9414 0.047707 0.25008 0.00126 1.5219

Study 3 0.081 0.2002 4.9959 0.047707 0.24787 0.00128 0.4047

Study 4 0.598 0.2089 4.7861 0.047707 0.25665 0.00122 2.8621

Study 5 – 0.178 0.0515 19.423 0.047707 0.09919 0.00773 – 3.4573

Study 6 – 0.234 0.0403 24.83 0.047707 0.08798 0.01121 – 5.8102

69.557 0.02599 1.4781

Illustration of IVhet Model for SMD

Example 8.11 Consider the data on the effect of Open education on the Attitude
towards School as in Table 8.3.

Find the (i) point estimate of the population effect size and standard error of estimator,
and (ii) 95% confidence interval of the population effect size under the IVhet model.

Solution:

To answer this question we need to compute the values in Table 8.9.
Here Var* is the combined variance

(
Var∗

i = vi + τ̂ 2
)

and
W* is the modified weight under the IVhet model calculated as

W ∗
i =

[(
1
vi

/
k∑

i=1

1
vi

)2

(vi + τ̂ 2)

]

=
(

wi

/
k∑

1
wi

)
× Var∗

i for the ith study.

For example, for Study 1,

Var∗
1 = 0.0945 + 0.047707 = 0.14222, and W ∗

1 =
(
10.581/

69.557

)
×

0.14222 = 0.00329

(i) The point estimate of the common population effect size under the IVhet model
is

θ̂IV het =

6∑

i=1
wi θ̂i

6∑

i=1
wi

=

6∑

i=1
wd

6∑

i=1
w

= 1.4781

69.557
= 0.021251 ≈ 0.02,

and standard error of estimator is

SE(θ̂∗
IV het ) =

√√√
√

6∑

i=1

W ∗
i =√

0.02599 = 0.16122.



184 8 Meta-Analysis of Standardized Mean Difference

(ii) The 95% confidence interval of the population effect size under the IVhet model
is given by the lower limit (LL) and upper limit (UL) as follows:

L L = θ̂IV het − 1.96 × SE(θ̂IV het ) = 0.083967 − 1.96 × 0.16122 = −0.294744 ≈ −0.29

U L = θ̂IV het + zα/2 × SE(θ̂IV het ) = 0.083967 + 1.96 × 0.16122 = 0.33725 ≈ 0.34.

Comment The above point estimate (0.02) and 95% confidence interval (–0.29,
0.34) are presented at the bottom row of the forest plot and represented by a diamond
as in Fig. 8.3.

Forest plot for SMD under IVhet model using MetaXL
The forest plot under the IVhetmodel (indicatedby“IVhet” in the code) is constructed
using MetaXL code

=MAInputTable(“Open Education IVhet”,”ContSE”,”IVhet”,B23:D28)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Open Education IVhet” in the above code (usermay choose any appropriate title
here, but IVhet is chosen to indicate inverse variance heterogeneity model). Then
in the second quote enter the type of effect measure, e.g. “ContSE” in the above
code which tells that the outcome variable is continuous and standard error (SE)
is used. Within the third quote enter the statistical model, e.g. “IVhet” in the above
code stands for the inverse variance heterogeneity (abbreviated by IVhet) model.
Each quotation is followed by a comma, and after the last comma enter the data
area in Excel Worksheet, e.g. B23:D28 in the above code tells that the data on the
independent studies are taken from the specified cells of the Excel Worksheet. The
code ends with a closing parenthesis.

Open Education IVhet

ES
10

Study 

Study 6 
Study 5 

Overall 
Q=7.51, p=0.19, I2=33%

Study 3 
Study 2 
Study 1 

Study 4 

ES (95% CI) % Weight

  -0.23  ( -0.63,  0.16)     35.7
  -0.18  ( -0.62,  0.27)     27.9

   0.02  ( -0.29,  0.34)    100.0

   0.08  ( -0.80,  0.96)      7.2
   0.31  ( -0.57,  1.19)      7.1
   0.56  ( -0.04,  1.17)     15.2

   0.60  ( -0.30,  1.49)      6.9

Fig. 8.3 Forest plot of meta-analysis on effects of Open Education onAttitude toward School under
IVhet model
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The forest plot of the meta-analysis using the above MetaXL code is found to be

Interpretation
From the above forest plot, the estimated common effect size is 0.02, and the 95%
confidence interval is (–0.29, 0.34). The effect size is not statistically significant (as
0 is included in the confidence interval).

8.7 Meta-Analyses of d, g and � Under the FE, RE
and IVhet Models

Example 8.12 Consider the summary data on operative time for the Laparoscopic-
assisted Rectal Resection (LARR) versus Open Rectal Resection (ORR) for
Carcinoma from nine independent studies from Memon et al. 2018 (Table 8.10).

The meta-analyses of the data in Table 8.10 using SMD effect size measures of
(a) Cohen’s d, (b) Hedges’ g and (c) Glass’ � under (i) fixed effect (FE), (ii) random
effects (REs), and (iii) inverse variance heterogeneity (IVhet) model are provided
below.

(i) Meta-analysis of operative time for LARR and ORR procedures using SMD
effect sizes under the fixed effect model

Using the MetaXL Code = MAInputTable(“Operative Time Cohen
FE”,“Cohen”,“RE”,B5:H13) the following forest plot is produced for Cohen’s
d under the fixed effect model (for other methods change the word ‘Cohen’ by
‘Hedges’ or ‘Glass’) (Fig. 8.4).

Comments The common effect size estimate (0.84) and confidence interval (0.77,
0.92) are the same for both Cohen’s d and Hedges’ g. Because of the large sample

Table 8.10 Summary data on sample size, mean and standard deviation of LARR and ORR groups

LARR ORR

Study n Mean Stdev n Mean Stdev

Bonjer et al. (2015) 699 241 33.6 345 191.5 26.2

Fleshman et al. (2015) 240 266.2 101.9 222 220.6 92.4

Stevenson et al. (2015) 238 210 66.7 235 190 59.2

Jeong et al. (2014) 170 244.9 75.4 170 197 62.9

Ng et al. (2014) 40 211.6 53 40 153 41.1

Liang et al. (2011) 169 138.08 23.79 174 118.53 21.99

Lujan et al. (2009) 101 193.7 45.1 103 172.9 59.4

Ng et al. (2008) 51 213.5 46.2 48 163.7 43.4

Zhou et al. (2004) 82 120 18 89 106 25
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(a)

(b)

Operative Time Cohen FE

d
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.89, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 
d (95% CI) % Weight

   0.32  (  0.14,  0.50)     16.7

   0.39  (  0.12,  0.67)      7.2

   0.47  (  0.28,  0.65)     16.1

   0.64  (  0.33,  0.95)      5.8

   0.69  (  0.47,  0.91)     11.5

   0.84  (  0.77,  0.92)    100.0

   0.85  (  0.63,  1.08)     11.3

   1.11  (  0.69,  1.53)      3.1

   1.24  (  0.76,  1.71)      2.4

   1.58  (  1.43,  1.72)     25.9

(c)

Operative Time Hedges FE

g
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.59, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 
g (95% CI) % Weight

   0.32  (  0.14,  0.50)     16.7

   0.39  (  0.12,  0.67)      7.2

   0.47  (  0.28,  0.65)     16.1

   0.64  (  0.33,  0.94)      5.8

   0.69  (  0.47,  0.91)     11.5

   0.84  (  0.77,  0.92)    100.0

   0.85  (  0.63,  1.07)     11.3

   1.10  (  0.68,  1.53)      3.1

   1.22  (  0.74,  1.70)      2.4

   1.58  (  1.43,  1.72)     26.0

Operative Time Glass FE

delta
210

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=179.40, p=0.00, I2=96%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 
delta (95% CI) % Weight

   0.34  (  0.16,  0.52)     19.3

   0.35  (  0.07,  0.63)      8.3

   0.49  (  0.31,  0.68)     18.2

   0.56  (  0.25,  0.87)      6.7

   0.76  (  0.53,  0.99)     12.5

   0.82  (  0.74,  0.90)    100.0

   0.89  (  0.66,  1.12)     12.0

   1.15  (  0.69,  1.60)      3.1

   1.43  (  0.89,  1.97)      2.2

   1.89  (  1.70,  2.08)     17.7

Fig. 8.4 Forest plots under FE model for different SMD measures (a) Forest plot of Cohen’s d
under FE model, (b) Forest plot of Hedges’ g under FE model, (c) Forest plot of Glass’ � under
FE model

sizes there is almost nodifferences between these twoSMDsand confidence intervals.
However, the results of Glass’ method (estimate 0.82, CI: 0.74, 0.90) are different
from the other two methods. Regardless of the method, the effect size is significant
as the 95% confidence interval does not include 0 in any of the forest plots. So, there
is much longer mean operative time for the LARR procedure compared to the ORR
procedure.



8.7 Meta-Analyses of D, G and � Under the FE, RE and IVhet Models 187

(ii) Meta-analysis of operative time for LARR and ORR procedures using SMD
effect sizes under the random effects model

Using the MetaXL Code = MAInputTable(“Operative Time Cohen
RE”,”Cohen”,”RE”,B5:H13) the following forest plot is produced for Cohen’s
d under the random effects model (for other methods change the word ‘Cohen’ by
‘Hedges’ or ‘Glass’) (Fig. 8.5).

(b)

(c)

Operative Time Cohen RE

d
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.89, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

   0.32  (  0.14,  0.50)     11.6

   0.39  (  0.12,  0.67)     11.2

   0.47  (  0.28,  0.65)     11.6

   0.64  (  0.33,  0.95)     11.0

   0.69  (  0.47,  0.91)     11.5

   0.80  (  0.45,  1.15)    100.0

   0.85  (  0.63,  1.08)     11.4

   1.11  (  0.69,  1.53)     10.2

   1.24  (  0.76,  1.71)      9.8

   1.58  (  1.43,  1.72)     11.8

Operative Time Hedges RE

g
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.59, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

   0.32  (  0.14,  0.50)     11.6

   0.39  (  0.12,  0.67)     11.2

   0.47  (  0.28,  0.65)     11.6

   0.64  (  0.33,  0.94)     11.0

   0.69  (  0.47,  0.91)     11.5

   0.80  (  0.45,  1.15)    100.0

   0.85  (  0.63,  1.07)     11.4

   1.10  (  0.68,  1.53)     10.2

   1.22  (  0.74,  1.70)      9.8

   1.58  (  1.43,  1.72)     11.8

Operative Time Glass RE

delta
210

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=179.40, p=0.00, I2=96%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

d (95% CI) % Weight

g (95% CI) % Weight

delta (95% CI) % Weight

   0.34  (  0.16,  0.52)     11.6

   0.35  (  0.07,  0.63)     11.2

   0.49  (  0.31,  0.68)     11.6

   0.56  (  0.25,  0.87)     11.1

   0.76  (  0.53,  0.99)     11.5

   0.86  (  0.47,  1.25)    100.0

   0.89  (  0.66,  1.12)     11.4

   1.15  (  0.69,  1.60)     10.3

   1.43  (  0.89,  1.97)      9.7

   1.89  (  1.70,  2.08)     11.6

(a)

Fig. 8.5 Forest plots under REs model for different SMD measures (a) Forest plot of Cohen’s d
under REs model, (b) Forest plot of Hedges’ g under REs model, (c) Forest plot of Glass’ � under
REs model
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Comments Under the REs model the common effect size estimate (0.80) and confi-
dence interval (0.45, 1.15) are the same for both Cohen’s d and Hedges’ g. Because
of the large sample sizes there is almost no differences between the two SMDs and
confidence intervals. However, the results of Glass’ method (estimate 0.86, and CI:
0.47, 1.25) are different from the other two methods. Regardless of the method, the
effect size is significant as the 95%confidence interval does not include 0 in any of the
forest plots. So, there is much longer mean operative time for the LARR procedure
compared to the ORR procedure.

(iii) Meta-analysis of operative time for LARR and ORR procedures using SMD
effect sizes under the IVhet model

Using the MetaXL Code = MAInputTable(“Operative Time Cohen
IVhet”,”Cohen”,”IVhet”,B5:H13) the following forest plot is produced for Cohen’s
d under the IVhet model (for other methods change the word ‘Cohen’ by ‘Hedges’
or ‘Glass’) (Fig. 8.6).

Comments Under the IVhet model the common effect size estimate (0.84) and
confidence interval (0.44, 1.25) are the same for both Cohen’s d and Hedges’ g.
Because of the large sample sizes there is almost no differences between the two
SMDs and confidence intervals. However, the results of Glass’ method (estimate
0.82, and CI: 0.38, 1.26) are different from the other two methods. Regardless of the
method, the effect size is significant as the 95% confidence interval does not include
0 in any of the forest plots. So, there is much longer mean operative time for the
LARR procedure compared to the ORR procedure.

Remarks Although the point estimate of the common effect size (0.84) is the same
for both the fixed effect and IVhet models (for both Cohen’s d and Hedges’ g) the
95%confidence intervals confidence intervals (FE: 0.77, 0.92) and (IVhet: 0.44, 1.25)
are very different. Due to the inflated variability under the IVhet model, reflecting
heterogeneity as the Q statistic is significant with P-value = 0, the margin of error
in the IVhet model reflects the true state of the nature rather than the fixed effect
model. This is similar to the confidence interval of (0.45, 1.15) for the Cohen’s d and
Hedges’ g under the REs model.

For the results of Glass’ method, the point estimate (0.82) is the same under both
the FE and IVhet models but the 95% confidence intervals are very different (FE
CI: 0.74, 0.90) and (IVhet CI: 0.38, 1.26). Once again the wider confidence interval
under the IVhet model reflects the heterogeneity among the effect size of the studies.
The same fact is observed in the confidence interval (RE CI: 0.47, 1.25) under the
REs model. The point estimate (0.86) under the REmodel is also slightly higher than
that under the FE/IVhet model (0.82) for the Glass’ method.
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(a) Forest 

(b)

(c)

Operative Time Cohen IVhet

d
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.89, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

   0.32  (  0.14,  0.50)     16.7

   0.39  (  0.12,  0.67)      7.2

   0.47  (  0.28,  0.65)     16.1

   0.64  (  0.33,  0.95)      5.8

   0.69  (  0.47,  0.91)     11.5

   0.84  (  0.44,  1.25)    100.0

   0.85  (  0.63,  1.08)     11.3

   1.11  (  0.69,  1.53)      3.1

   1.24  (  0.76,  1.71)      2.4

   1.58  (  1.43,  1.72)     25.9

Operative Time Hedges IVhet

g
1

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=163.59, p=0.00, I2=95%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

   0.32  (  0.14,  0.50)     16.7

   0.39  (  0.12,  0.67)      7.2

   0.47  (  0.28,  0.65)     16.1

   0.64  (  0.33,  0.94)      5.8

   0.69  (  0.47,  0.91)     11.5

   0.84  (  0.43,  1.25)    100.0

   0.85  (  0.63,  1.07)     11.3

   1.10  (  0.68,  1.53)      3.1

   1.22  (  0.74,  1.70)      2.4

   1.58  (  1.43,  1.72)     26.0

Operative Time Glass IVhet

delta
210

Study 

Stevenson et al 2015 

Lujan et al 2009 

Fleshman et al 2015 

Zhou et al 2004 

Jeong et al 2014 

Overall 
Q=179.40, p=0.00, I2=96%

Liang et al 2011 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

d (95% CI) % Weight

g (95% CI) % Weight

delta (95% CI) % Weight

   0.34  (  0.16,  0.52)     19.3

   0.35  (  0.07,  0.63)      8.3

   0.49  (  0.31,  0.68)     18.2

   0.56  (  0.25,  0.87)      6.7

   0.76  (  0.53,  0.99)     12.5

   0.82  (  0.38,  1.26)    100.0

   0.89  (  0.66,  1.12)     12.0

   1.15  (  0.69,  1.60)      3.1

   1.43  (  0.89,  1.97)      2.2

   1.89  (  1.70,  2.08)     17.7

Fig. 8.6 Forest plots under IVhet model for different SMD measures (a) Forest plot of Cohen’s d
under IVhet model, (b) Forest plot of Hedges’ g under IVhet model, (c) Forest plot of Glass’ �

under IVhet model

8.8 Publication Bias

Publication bias is usually detected by using funnel plot or Doi plot. A funnel plot
is a scatter plot of standard error of the studies against effect size (or transformed
effect size).
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Operative Time Cohen FE

d
1

St
an

da
rd

 e
rr

or

0.26
0.24
0.22
0.2

0.18
0.16
0.14
0.12
0.1

0.08

Fig. 8.7 Funnel plot indicating heterogeneity among effect sizes (Cohen’s d of Operative Time)

The publication bias of Operative Time data in Example 8.12 (Table 8.10) is
studied in this section. The following two plots use Cohen’s d as the effect size.

The funnel plot in Fig. 8.7 is roughly symmetrical indicating very low (or no)
heterogeneity in the data.

A Doi plot is a scatter plot of absolute z-score of the value of effect size versus
the effect size (or transformed effect size). The individual dots on the graph are
then connected with a continuous curve. Details are found in A. S. Doi (2018) and
Furuya-Kanamori et al. (2018).

For the given data, the Doi plot in Fig. 8.8 indicates no asymmetry indicating that
there is no heterogeneity in the data.

Similar conclusion of no heterogeneity in the data is reached from both the funnel
plot and Doi plot if the effect size measure is Hedges’ g as follows (Figs. 8.9 and
8.10).

Remark The study of publication bias is not based on any statistical models.
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Fig. 8.8 Doi plot indicating no publication bias (Cohen’s d of Operative Time)
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Fig. 8.9 Funnel plot indicating no publication bias (Hedges’ g of Operative Time)
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Fig. 8.10 Doi plot indicating no publication bias (Hedges’ g of Operative Time)

Appendix 8—Stata Codes for Meta-Analysis of SMD

A8.1 Open Education dataset

Study d se

Study 1 0.563 0.307426

Study 2 0.308 0.449858

Study 3 0.081 0.447397

Study 4 0.598 0.4571

Study 5 −0.178 0.226903

Study 6 −0.234 0.200684

A8.2 Stat codes for SMD meta-analysis under different statistical models

. ssc install admetan
Codes for SMD meta-analysis under FE, RRs and Ivhet models
. admetan d se, iv
. admetan d se, re
. admetan d se, ivhet
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A8.3 Operative Time dataset

study n_larr mean_larr sd_larr n_orr mean_orr sd_orr

Bonjer et al. (2015) 699 241 33.6 345 191.5 26.2

Fleshman et al. (2015) 240 266.2 101.9 222 220.6 92.4

Stevenson et al. (2015) 238 210 66.7 235 190 59.2

Jeong et al. (2014) 170 244.9 75.4 170 197 62.9

Ng et al. (2014) 40 211.6 53 40 153 41.1

Liang et al. (2011) 169 138.08 23.79 174 118.53 21.99

Lujan et al. (2009) 101 193.7 45.1 103 172.9 59.4

Ng et al. (2008) 51 213.5 46.2 48 163.7 43.4

Zhou et al. (2004) 82 120 18 89 106 25

A8.4 Stata codes for SMD meta-analysis of Operation Time dataset

. ssc install admetan
Codes for SMD meta-analysis of FE model for different effect sizes
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, cohen
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, hedges
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, glass
Codes for SMD meta-analysis of REs model for different effect sizes
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, cohen re
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, hedges re
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, glass re
Codes for SMD meta-analysis of IVhet model for different effect sizes
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, cohen ivhet
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, hedges ivhet
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, glass ivhet
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Chapter 9
Meta-Analysis of Weighted Mean
Difference

Mean difference can be used as an effect size measure if the outcome variable has the
same unit of measurement for both the treatment/intervention and placebo/control
groups. The raw mean difference can be scaled by the inverse variance weight to
define weighted mean difference (WMD). Unlike the SMD, the WMD retains the
same unit of measurement as the outcome variable.

Meta-analysis of weighted mean difference (WMD) is covered in this chapter.
It provides meta-analysis of WMD under different statistical models along with
subgroup analysis with illustrative examples.

9.1 Weighted Mean Difference

For two arms experiments/studies the difference of the two means of an outcome
variable is a good starting point to measure the effect size. The raw mean difference
is simply the difference of the means of the two arms. It is not essential to standardize
the raw mean difference as an effect size measure unless the outcome variable is
measured in different units. In many cases the raw mean difference is used as an
effect size measure, but it is weighted by the inverse variance. The process produces
theweightedmeandifference (WMD)as ameasure of effect size.ThisWMDmeasure
retains the same unit of measurement as the outcome variable and is used in many
meta-analyses.

9.2 Estimation of Effect Size

Consider an experiment or study with patients randomly divided into two arms, the
treatment group with mean of the outcome variable (say Y) to be μ1 (or μT ) and
control/placebo group having mean µ2 (or μP ). Based on a random sample of size
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n1 from the treatment group, let the sample mean be μ̂1 = Ȳ1 and sample variance
be σ̂ 2

1 = S21 . Similarly, of another random sample of size n2 for the placebo group,
let the sample mean be μ̂2 = Ȳ2 and sample variance be σ̂ 2

2 = S22 . The sample means
and variances are used as estimates of the respective population mean and variance.
Assume that both samples are independent the populations are normally distributed.

Then the population raw mean difference δ = μ1 −μ2 is estimated by the sample
mean difference δ̂ = Ȳ1− Ȳ2.As discussed in the previous chapter, the standard error
(SE) of the estimator of δ depends on whether the two population standard deviations
are equal or not. If the equality of population standard deviations are unknown, we
will assume that they are not equal and use appropriate formula to calculate the
variance and SE.

For any individual study, let us define population weighted mean difference
(WMD) as θ = ωδ, where ω = 1

/
σ 2, in which σ 2 is the population variance

of δ, is the inverse variance weight of the population mean difference δ. The popu-
lation WMD, θ is an unknown parameter. An estimator of θ is given by its sample
counterpart θ̂ = wδ̂, where w = 1

/
v is the sample weight, in which v = σ̂ 2 is

the sample variance, and δ̂ = Ȳ1 − Ȳ2 is the estimate of unknown population mean
difference, δ.

In a meta-analysis with i = 1, 2, …, k independent studies, the sample WMD of
the ith study is defined as θ̂i = wi δ̂i with standard error SEi = √

vi .

So the estimate of the common effect size of all studies is given by θ̂ =
k∑

1
wi δ̂i

/
k∑

1
wi and the standard error of the estimator of θ becomes SE(θ̂) =

√

1

/
k∑

1
wi .

Then the (1−α)× 100% confidence interval for population WMD, θ is given by
the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂ − z α
2

× SE(θ̂) and

LL = θ̂ + z α
2

× SE(θ̂),

where z α
2
is the critical value of standard normal distribution leaving α

2 area on the

upper (or lower) tail of the normal curve.

Example 9.1 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
eleven independent studies from Memon et al. 2018.
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Table 9.1 Summary statistics of blood loss of eleven studies on sample size, mean and standard
deviation of LARR and ORR groups

LARR ORR

Study n Mean Stdev n Mean Stdev

Bonjer et al. (2015) 699 200 222 345 400 370

Fleshman et al. (2015) 240 256.1 305.8 222 318.4 331.7

Stevenson et al. (2015) 238 100 111 235 150 181.5

Jeong et al. (2014) 170 200 148 170 217.5 185

Ng et al. (2014) 40 141.8 500 40 361.1 623

Liu et al. (2011) 98 310 96 88 380 85

Lujan et al. (2009) 101 127.8 113.3 103 234.2 174.3

Ng et al. (2009) 76 280 500 77 337 423

Ng et al. (2008) 51 321.7 750 48 555.6 1188

Braga et al. (2007) 83 213 258 85 396 258

Zhou et al. (2004) 82 20 19 89 92 25

For the above data find the (i) raw mean difference (mean LARR–mean ORR)
and standard error of the estimator of population mean difference, (ii) calculate 95%
confidence interval for the population mean difference of each of the studies, and
(iii) the weight for the first (Bonjer et al. 2015) study.

Solution:
The calculated values of the mean difference (MD), variance of mean difference
(Var), standard error of mean difference (SE), weight as inverse variance (W), lower
limit (LL) and upper limit (UL) of 95% confidence interval, and sum of W and sum
of product of W and MD are shown in Table 9.2.

Explanations of calculations in Table 9.2
To answer the questions in Example 9.1, consider the calculations for the first study
(Bonjier et al. 2015):

(i) The raw mean difference is δ̂i = MD = difference of mean of LARR and ORR
groups = 200–400 = −200.

The variance of the mean difference (assuming population variances are unequal)
is

Var = S2L
nL

+ S2O
nO

= 2222

699
+ 3702

345
= 467.318.

Then the standard error becomes
SE = √

467.318 = 21.6175.
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Table 9.2 Calculated values of the summary statistics for the mean difference of blood loss

Study MD Var SE LL UL W WxMD

Bonjer et al. (2015) −200 467.32 21.618 −242.4 −157.63 0.0021 −0.428

Fleshman et al. (2015) −62.3 885.25 29.753 −120.6 −3.9839 0.0011 −0.0704

Stevenson et al. (2015) −50 191.95 13.855 −77.15 −22.845 0.0052 −0.2605

Jeong et al. (2014) −17.5 330.17 18.171 −53.11 18.114 0.003 −0.053

Ng et al. (2014) −219 15953 126.31 −466.9 28.26 6E-05 −0.0137

Liu et al. (2011) −70 176.14 13.272 −96.01 −43.987 0.0057 −0.3974

Lujan et al. (2009) −106 422.05 20.544 −146.7 −66.134 0.0024 −0.2521

Ng et al. (2009) −57 5613.2 74.921 −203.8 89.846 0.0002 −0.0102

Ng et al. (2008) −234 40432 201.08 −628 160.21 2E-05 −0.0058

Braga et al. (2007) −183 1585.1 39.813 −261 −104.97 0.0006 −0.1155

Zhou et al. (2004) −72 11.425 3.3801 −78.62 −65.375 0.0875 −6.302

0.10798 −7.9085

(ii) The lower limit of the 95% confidence interval is

LL = −200 − 1.96 × 21.6175 = −242.37 and upper limit is
UL = −200 + 1.96 × 21.6175 = −157.63.

(iii) The weight (for the first study) is W = 1
Var = 1

467.32 = 0.00214 and WxMD
= 0.00214 × (−200) = −0.428.

9.3 Tests on Effect Size

To test the significance of the unknown common effect size, θ , test the null hypothesis
H0 : θ = 0 against HA : θ �= 0 using the test statistic
Z = θ̂

SE(θ̂ )
which follows a standard normal distribution.

For a two-tailed test, reject H0 at the α level of significance (in favour of the
alternative hypothesis) if the observed (or calculated) value of Z statistic satisfies
|z0| ≥ zα/2; otherwise don’t reject the null hypothesis (of a two-sided test).

Example 9.2 Consider the blood loss data from eleven independent studies in
Table 9.1

Test the significance of the common effect size, θ.

Solution:
To test the significance of the unknown common effect size θ , test the null hypothesis

H0 : θ = 0 against HA : θ �= 0 use the test statistic Z as

z0 = θ̂

SE(θ̂)
= −73.2411

3.043199
= −24.0671.[see Example 9.3 for details]
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The P-value is P(|Z | > 24.07) = 2 × P(Z > 24.07) = 0.
Since the P-value is 0 the test is highly significant. Thus there is strong sample

evidence that the mean difference is significantly different from 0. In other words,
the mean blood loss in LARR group is significantly different from that of the ORR
group.

9.4 Fixed Effect (FE) Model

The fixed effect (FE) model is used if there is no significant heterogeneity of effect
size among the independent studies. In this section, the FE model is presented in a
general framework for the meta-analysis of RR with example. An introduction to the
FE model is found in (Borenstein et al. 2010).

In meta-analysis, results from all the k independent studies are combined by
pooling the summary statistics of primary studies to a single point estimate and
confidence interval for the common population effect size θ . Under the fixed effect
model, the common effect size estimator, WMD (=θ ) is given by

θ̂FE =
k∑

i=1
wi δ̂i

/
k∑

i=1
wi and the variance of the estimator of the common effect

size is Var(θ̂FE ) = 1

/
k∑

i=1
wi . Hence the standard error of the estimator of the

common effect size is SE(θ̂FE ) =
√

1

/
k∑

i=1
wi .

The confidence interval
The (1 − α) × 100% confidence interval for the common population WMD θ based
on the sample estimates is given by the lower limit (LL) and upper limit (UL) as
follows:

LL = θ̂FE − zα/2 × SE(θ̂FE ) and

UL = θ̂FE + zα/2 × SE(θ̂FE ).

Here zα/2 is the α
2 th cut-off point of standard normal distribution and SE(θ̂FE ) =√

Var(θ̂FE ).
To compute the confidence interval and perform test on the population effect size

θ , under the FE model, we need to compute the point estimate and standard error of
the estimator for all studies.

Example 9.3 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
Table 9.1.
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Using the summary statistics at the bottom of Table 9.2 calculate the (i) point esti-
mate of the populationWMD, (ii) standard error of estimator and (iii) 95%confidence
interval for the population WMD of blood loss under the fixed effect model.

Solution:
To answer the above questions, we use the summary statistics in the last row of

Table 9.2 as follows:

(i) The estimate of the population WMD is obtained as the sample WMD as

θ̂FE =
11∑

1
wi δ̂i

11∑

1
wi

=
11∑

1
WMD

11∑

1
W

= −7.9085
0.10798 = −73.2411 ≈ −73.24.

(ii) The standard error is SE(θ̂FE ) =
√

1
11∑

1
wi

=
√

1
11∑

1
W

=
√

1
0.10798 = 3.043199.

(iii) The 95% confidence interval for the common population WMD, θ is given by

LL = θ̂FE − 1.96 × SE(θ̂FE ) = −73.2411 − 1.96 × 3.043199 = −79.2058 ≈
−79.21 and

UL = θ̂FE + 1.96 × SE(θ̂FE ) = −73.2411 + 1.96 × 3.043199 = −67.2764 ≈
−67.28.

Comment The above point estimate (−73.24) and confidence limits (−79.21, −
67.28) are displayed in the bottom row of forest plot and represented by the diamond
as in Fig. 9.1.

Measuring Heterogeneity
Here we consider two popular methods to identify and measure the extent of
heterogeneity among the effect sizes of independent studies.

Blood Loss WMD FE

WMD
0-500

Study 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Overall 
Q=59.17, p=0.00, I2=83%

Zhou et al 2004 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)    0.0

-219.30  (-466.86, 28.26)     0.1

-200.00  (-242.37,-157.63)  2.0

-183.00  (-261.03,-104.97)   0.6

-106.40  (-146.67,-66.13)     2.2

 -73.24  (-79.21,-67.28)   100.0

 -72.00   (-78.62,-65.38)     81.1

 -70.00   (-96.01,-43.99)       5.3

 -62.30   (-120.62, -3.98)     1.0

 -57.00   (-203.84, 89.84)     0.2

 -50.00   (-77.15,-22.85)       4.8
 -17.50   (-53.11, 18.11)       2.8

Fig. 9.1 Forest plot of meta-analysis on blood loss for the LARR and ORR groups under FEmodel
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Cochran’s Q Statistic (Cochran, 1973)
The Cochran’s Q is defined as

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑

i=1
wi

,

where wi is the weight and θ̂i is the effect size estimate of the ith study.
The above Q statistic follows a chi-squared distribution with d f = (k−1),where

k is the number of studies included in the meta-analysis. Since the expected value
of a chi-squared variable is its degrees of freedom, the expected value of Q is (k-1),
that is, E(Q) = (k − 1) = d f.

Test of Heterogeneity
To test the null hypothesis of the equality of effect sizes (i.e. equality excluding
random error) across all studies, test

H0 : θ1 = θ2 = . . . = θk = θ against Ha : not all θi ’s are equal (at least one
of them is different), using the Cochran’s Q statistic as defined above.

Reject the null hypothesis at the α level of significance if the observed value of
the Q statistic is larger than or equal to χ2

k−1,1−α , the level α critical value of the chi-
squared distribution with (k-1) df, such that P

(
χ2
k−1 ≥ χ2

k−1,1−α

) = α; otherwise
don’t reject it.

The small P-value leads to the conclusion that there is true difference among the
effect sizes. However the non-significant P-value may not mean that the effect sizes
are not different as this could happen due to low power of the test. The test should
not be used to measure the magnitude of the true dispersion.

The I2 Statistic (Higgins et al. 2003)
The I2 statistic is a ratio of excess variation to the total variation expressed in
percentages as follows:

I 2 =
(
Q − d f

Q

)
× 100%,

and is viewed as the proportion of between studies variation and total variation (within
plus between studies variation).

Comment
The values of Q and I 2 statistics are calculated from the sample summary data and
they are not dependent on any statistical models.

Example 9.4 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
Table 9.1.
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Find the value of (i) Q statistic and (ii) I 2 statistic for the blood loss data.

Solution:
The followingTable 9.3 provides summary calculations for findingQand I 2 statistics.

From the summary statistics in Table 9.3.

(i) The Q statistic is calculated as

Q =
k∑

i=1

wi δ̂
2
i −

(
k∑

i=1
wi δ̂i

)2

k∑

i=1
wi

=
k∑

i=1

WMD2 −

(
k∑

i=1
WMD

)2

k∑

i=1
W

= 638.3923 − (−7.9085)2

0.10798
= 59.17.

To test the heterogeneity of effect sizes the P-value is found from the chi-squared
Table (with df = (11 − 1) = 10) as

P
(
χ2
10 ≥ 59.17

) = 0.Note there is no area left under the chi-squired density curve
to the right of 59.17. Since the P-value is close to 0, we reject the null hypothesis (of
equal effect sizes).

The I2 statistic is found to be

I 2 =
(
Q − d f

Q

)
× 100% =

(
59.17 − (11 − 1)

59.17

)
× 100%

= 0.83098 × 100% = 83%,

where d f = (k − 1) = (11 − 1) = 10.

Table 9.3 Calculated values of the summary statistics for the mean difference of blood loss data

Study MD Var W WxMD Wˆ2 WxDMˆ2

Bonjer et al. (2015) −200 467.318 0.00214 −0.428 4.6E-06 85.5948

Fleshman et al. (2015) −62.3 885.2478 0.00113 −0.0704 1.3E-06 4.38441

Stevenson et al. (2015) −50 191.9487 0.00521 −0.2605 2.7E-05 13.0243

Jeong et al. (2014) −17.5 330.1706 0.00303 −0.053 9.2E-06 0.92755

Ng et al. (2014) −219 15953.23 6.3E-05 −0.0137 3.9E-09 3.01459

Liu et al. (2011) −70 176.1431 0.00568 −0.3974 3.2E-05 27.8183

Lujan et al. (2009) −106 422.0541 0.00237 −0.2521 5.6E-06 26.8235

Ng et al. (2009) −57 5613.227 0.00018 −0.0102 3.2E-08 0.57881

Ng et al. (2008) −234 40432.41 2.5E-05 −0.0058 6.1E-10 1.3531

Braga et al. (2007) −183 1585.082 0.00063 −0.1155 4E-07 21.1276

Zhou et al. (2004) −72 11.42491 0.08753 −6.302 0.00766 453.745

0.10798 −7.9085 0.00774 638.392



9.4 Fixed Effect (FE) Model 203

The above value of Q = 59.17, its P-value = 0, and I 2 = 83% are presented in
the forest plot produced by MetaXL on the left panel of Fig. 9.1.

Forest plot for WMD under FE model using MetaXL
The forest plot under the FE model (indicated by “IV” in the code) is constructed
using MetaXL code

=MAInputTable(“Blood Loss WMD FE”,”WMD”,”IV”,B6:H16)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Blood Loss WMD FE” in the above code (user may choose any appropriate
title here, but FE is chosen to indicate fixed effect model). Then in the second quote
enter the type of effect measure, e.g. “WMD” in the above code which tells that the
weighted mean difference is the effect size. Within the third quote enter the statistical
model, e.g. “IV” in the above code stands for the fixed effect (abbreviated by FE)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B6:H16 in the above code tells that the data on
the independent studies are taken from the specified cells of the Excel Worksheet.
The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 9.1.

Interpretation
From the above forest plot ofWMDunder the FEmodel, the estimated common effect
size is−73.24, and the 95% confidence interval is (−79.21,−67.28). The effect size
is highly statistically significant (as 0 is not included in the 95% confidence interval).

Here Cochran’s Q = 59.17 with P-value = 0 indicates highly significant hetero-
geneity among themean difference of blood loss between the LARRandORRgroups
of independent studies. The I 2 = 83% also reflects that there is high heterogeneity
among the studies.

Remark
The sign of the mean difference (MD = δ̂) and subsequent estimates of the common
effect size are all negative because of the way the mean difference is defined here,
mean of LARR group minus mean of ORR group. If the order of difference is
reversed, that is, if the mean of ORR group is subtracted from that of LARR group
then the sign of the MD and other estimates will interchange (negative to positive
and vice versa). The results of the meta-analysis on the reversed ordered MD = δ̂ is
shown in Fig. 9.2.

Comment The interpretation of the forest plot in Fig. 9.2, significantly different
WMD and significant heterogeneity, is the same as that in Fig. 9.1. All the estimates,
confidence limits, value of Q statistic and P-value here are the same in magnitude
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Blood Loss WMD Reversed FE

WMD
5000

Study 

Jeong et al 2014 
Stevenson et al 2015 

Ng et al 2009 

Fleshman et al 2015 

Liu et al 2011 

Zhou et al 2004 

Overall 
Q=59.17, p=0.00, I2=83%

Lujan et al 2009 

Braga et al 2007 

Bonjer et al 2015 

Ng et al 2014 

Ng et al 2008 

    WMD (95% CI)          % Weight

  17.50  (-18.11, 53.11)      2.8
  50.00  ( 22.85, 77.15)      4.8

  57.00  (-89.84,203.84)     0.2

  62.30  (  3.98,120.62)      1.0

  70.00  ( 43.99, 96.01)      5.3

  72.00  ( 65.38, 78.62)    81.1

  73.24  ( 67.28, 79.21)  100.0

 106.40  ( 66.13,146.67)    2.2

 183.00  (104.97,261.03)   0.6

 200.00  (157.63,242.37)   2.0

 219.30  (-28.26,466.86)    0.1

 233.90  (-160.21,628.01)  0.0

Fig. 9.2 Forest plot of meta-analysis on blood loss for the LARR and ORR groups in reversed
order (mean ORR–mean LARR) under FE model

as the previous forest plot but the minus sign is replaced by the plus sign. Thus
the order of the raw mean difference does not impact on the final conclusion of the
meta-analysis.

9.5 Random Effects (REs) Model

Random effects (REs) model is used when the effect size across the independent
studies is significantly heterogeneous. This model was introduced by DerSimonian
and Laird, 1986. In spite of its frequent use, some valid criticisms of this model
and its poor performance compared with inverse variance heterogeneity (IVhet) and
quality effect (QF) models are provided in Doi et al. (2015c, b, c).

Under the random effects model, the population variance of the effect size is the
sum of the variance of θ̂i about θ (σ 2), the within-study variance, and between-
study variances, τ 2. So, for the ith study, the unknown modified variance becomes
σ ∗2
i = σ 2

i + τ 2 is estimated by its sample counterpart v∗
i = vi + τ̂ 2, where vi is the

estimate of σ 2
i and τ̂ 2 is the estimate of τ 2. Therefore, the weight assigned to the ith

study is defined as
w∗

i = 1
vi+τ̂ 2 for i = 1, 2, …, k.
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The common effect size under the REs model is estimated by

θ̂RE =
k∑

i=1

w∗
i δ̂i

/
k∑

i=1

w∗
i .

The standard error of the estimator of the common effect size is given by

SE(θ̂RE ) =
√√
√√1

/
k∑

i=1

w∗
i .

The (1−α)×100% confidence interval for the effect size θ under the REs model
is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂RE − zα/2 × SE(θ̂RE ) and

UL = θ̂RE + zα/2 × SE(θ̂RE ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

Estimation of τ 2

The between studies variance is estimated as a scaled excess variation as follows

τ̂ 2 = Q − d f

C
,

where

Q =
k∑

i=1

wi δ̂
2
i −

(
k∑

i=1
wi δ̂i

)2

k∑

i=1
wi

, C =
k∑

i=1

wi −

k∑

i=1
w2

i

k∑

i=1
wi

and d f = (k − 1) in which k is the number of studies.

Example 9.5 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
Table 9.1.

Find the estimated value of between studies variance, τ̂ 2, for the blood loss data.

Solution:
Using the summary statistics in Table 9.3 of the previous example we calculate

the values of Q and C statistics which are required to find the value of τ̂ 2. Here
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Q =
k∑

i=1

wi δ̂
2
i −

(
k∑

i=1
wi δ̂i

)2

k∑

i=1
wi

= 638.3923 − (−7.9085)2

0.10798
= 59.17,

C =
11∑

i=1
wi−

11∑

i=1
w2

i

11∑

i=1
wi

= 0.10798− 0.007742
0.10798 = 0.0363 and d f = k−1 = 11−1 = 10.

Then, the estimate of the between studies variance becomes
τ̂ 2 = Q−d f

C = 59.17−10
0.0363 = 1355.029.

Illustration of REs Model for WMD

Example 9.6 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
Table 9.1.

Find the (i) point estimate of the combined population WMD, (ii) standard error of
the estimator, and (iii) 95% confidence interval of the population effect size, WMD
under the random effects model.

In Table 9.4 the combined variance (Var*) is the sum of Var and Tauˆ2, and
modified weight (W*) is the weight under the REs model calculated as the reciprocal
of Var*.

As an illustration, for Study 1 (Bonjer et al. 2015), the modified variance for the
REs model is found to be

v∗
1 = v1 + τ̂ 2 = 467.318+ 1355.03 = 1822.3 and the modified weight becomes

w∗
1 = 1

/
Var∗

1 = 1
1822.3 = 0.00055.

Now using the summary statistics from Table 9.4 we get

Table 9.4 Calculated values of the summary statistics for the REs model

Study MD Var Tauˆ2 Var* W* W*xMD

Bonjer et al. (2015) −200 467.318 1355.03 1822.3 0.00055 −0.10975

Fleshman et al. (2015) −62.3 885.2478 1355.03 2240.3 0.00045 −0.02781

Stevenson et al. (2015) −50 191.9487 1355.03 1547 0.00065 −0.03232

Jeong et al. (2014) −17.5 330.1706 1355.03 1685.2 0.00059 −0.01038

Ng et al. (2014) −219 15953.23 1355.03 17308 5.8E-05 −0.01267

Liu et al. (2011) −70 176.1431 1355.03 1531.2 0.00065 −0.04572

Lujan et al. (2009) −106 422.0541 1355.03 1777.1 0.00056 −0.05987

Ng et al. (2009) −57 5613.227 1355.03 6968.3 0.00014 −0.00818

Ng et al. (2008) −234 40432.41 1355.03 41787 2.4E-05 −0.0056

Braga et al. (2007) −183 1585.082 1355.03 2940.1 0.00034 −0.06224

Zhou et al. (2004) −72 11.42491 1355.03 1366.5 0.00073 −0.05269

0.00475 −0.42723
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(i) the point estimate of the common effect size, WMD under the REs model to be

θ̂RE =
11∑

i=1

w∗
i δ̂i

/
11∑

i=1

w∗
i =

11∑

i=1

W ∗MD

/
11∑

i=1

W ∗ = −0.42723

0.00475
= −89.98.

(ii) The standard error of the estimator of the common effect size is

SE(θ̂RE ) =
√√√√1

/
11∑

i=1

w∗
i =

√√√√1

/
11∑

i=1

W ∗ =
√

1

0.00475
= 14.513.

(iii) The 95% confidence interval for the population effect size θ under the REs
model is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂RE − 1.96 × SE(θ̂RE ) = −89.98 − 1.96 × 14.513 = −118.43

UL = θ̂RE + 1.96 × SE(θ̂RE ) = −89.98 + 1.96 × 14.513 = −61.54.

Comment The above point estimate (−89.98) and the 95% confidence interval
(−0118.43,−61.54) are presented at the bottom rowof the forest plot and represented
by a diamond as shown in Fig. 9.3.

Forest plot for WMD under REs model using MetaXL
The forest plot under the RE model (indicated by “RE” in the code) is constructed
using MetaXL code

Blood Loss WMD RE

WMD
0006- 004- 002-

Study 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Overall 
Q=59.17, p=0.00, I2=83%

Zhou et al 2004 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)      0.5

-219.30  (-466.86, 28.26)      1.2

-200.00  (-242.37,-157.63)  11.6

-183.00  (-261.03,-104.97)     7.2

-106.40  (-146.67,-66.13)    11.9

 -89.98  (-118.43,-61.54)     100.0

 -72.00  (-78.62,-65.38)        15.4

 -70.00  (-96.01,-43.99)       13.8

 -62.30  (-120.62, -3.98)         9.4

 -57.00  (-203.84, 89.84)        3.0

 -50.00  (-77.15,-22.85)       13.6
 -17.50  (-53.11, 18.11)       12.5

Fig. 9.3 Forest plot of meta-analysis on blood loss for the LARR and ORR groups under REs
model
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=MAInputTable(“Blood Loss WMD RE”,”WMD”,”RE”,B6:H16)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ =MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Blood LossWMDRE” in the above code (user may choose any appropriate title
here, but RE is chosen to indicate random effects model). Then in the second quote
enter the type of effect measure, e.g. “WMD” in the above code which tells that the
weighted mean difference is the effect size. Within the third quote enter the statistical
model, e.g. “RE” in the above code stands for the random effects (abbreviated by
REs) model. Each quotation is followed by a comma, and after the last comma enter
the data area in Excel Worksheet, e.g. B6:D16 in the above code tells that the data
on the independent studies are taken from the specified cells of the Excel Worksheet.
The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 9.3.

Interpretation
From the above forest plot ofWMDof blood loss under the REsmodel, the estimated
commoneffect size is−89.98, and the 95%confidence interval is (−118.43,−61.54).
The effect size is highly statistically significant (as 0 is not included in the confidence
interval).

Here Cochran’s Q = 59.17 with P-value = 0 indicates highly significant hetero-
geneity among themean difference of blood loss between the LARRandORRgroups
of independent studies. The I 2 = 83% also reflects that there is high heterogeneity
among the studies.

9.6 Inverse Variance Heterogeneity (IVhet) Model

The IVhet model is used when there is significant heterogeneity in the effect size
across all the independent studies. Details on this model is found in (Doi et al.,
2015a).

The estimator of the common effect size WMD (=θ ) under the inverse variance
heterogeneity (IVhet) model is given by

θ̂IV het =

k∑

i=1
wi δ̂i

k∑

i=1
wi

.

Then the variance of the estimator under the IVhet model is given by
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Var(θ̂IV het ) =
k∑

i=1

⎡

⎣

(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤

⎦

=
k∑

i=1

⎡

⎣
(

wi

/
k∑

i=1

wi

)2

× v∗
i

⎤

⎦.

For the computation of the confidence interval of the common effect size based
on the IVhet model use the following estimated standard error

SE(θ̂IV het ) =
√
Var(θ̂I V het ).

Then, the (1−α)×100% confidence interval for the common effect size θ under
the IVhet model is given by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂IV het − zα/2 × SE(θ̂IV het )

UL = θ̂IV het + zα/2 × SE(θ̂IV het ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

Illustration of IVhet Model for WMD

Example 9.7 Consider the summary data on blood loss for theLaparoscopic-assisted
Rectal Resection (LARR) versus Open Rectal Resection (ORR) for Carcinoma from
Table 9.1.

Find the (i) point estimate of the populationWMD, (ii) standard error of the estimator,
and (iii) 95%confidence interval of the population effect size,WMDunder the inverse
variance heterogeneity model.

Solution:
To answer the questions we need to compute the values in Table 9.5.
In Table 9.5, Var* is the combined variance

(
Var∗

i = vi + τ̂ 2
)
and W* is the modified weight under the IVhet model calculated

as W ∗
i =

[(
1
vi

/
k∑

i=1

1
vi

)2

(vi + τ̂ 2)

]

=
(

wi

/
k∑

1
wi

)2

× Var∗
i for the ith study.

For example, for the first study (Bonjer et al. 2015).
Var∗

1 = 467.318 + 1355.03 = 1822.3, and

W ∗
1 =

(
0.00214/

0.10798

)2 × 1822.3 = 0.71569.

Now using the summary statistics in Table 9.5, we answer the questions in
Example 9.7.
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Table 9.5 Calculated values of the summary statistics for the IVhet model

Study MD Var Tauˆ2 Var* W W* WxMD

Bonjer et al. (2015) −200 467.318 1355.03 1822.3 0.00214 0.71569 −0.428

Fleshman et al. (2015) −62.3 885.2478 1355.03 2240.3 0.00113 0.24518 −0.0704

Stevenson et al. (2015) −50 191.9487 1355.03 1547 0.00521 3.6011 −0.2605

Jeong et al. (2014) −17.5 330.1706 1355.03 1685.2 0.00303 1.32585 −0.053

Ng et al. (2014) −219 15953.23 1355.03 17308 6.3E-05 0.00583 −0.0137

Liu et al. (2011) −70 176.1431 1355.03 1531.2 0.00568 4.23267 −0.3974

Lujan et al. (2009) −106 422.0541 1355.03 1777.1 0.00237 0.85564 −0.2521

Ng et al. (2009) −57 5613.227 1355.03 6968.3 0.00018 0.01897 −0.0102

Ng et al. (2008) −234 40432.41 1355.03 41787 2.5E-05 0.00219 −0.0058

Braga et al. (2007) −183 1585.082 1355.03 2940.1 0.00063 0.10036 −0.1155

Zhou et al. (2004) −72 11.42491 1355.03 1366.5 0.08753 897.864 −6.302

0.10798 908.968 −7.9085

(i) The point estimate of population WMD under the IVhet model is

θ̂∗
IV het =

11∑

i=1
wi δ̂i

11∑

i=1
wi

=

11∑

i=1
W × MD

11∑

i=1
W

= −7.9085

0.10798
= −73.24.

(ii) The standard error of the estimator is

SE(θ̂∗
IV het ) =

√√√√
11∑

i=1

W ∗
i =√

908.96775 = 30.1491.

(iii) The 95% confidence interval of the effect size under the IVhet model is given
by the lower limit (LL) and upper limit (UL) as follows:

LL = θ̂IV het − 1.96 × SE(θ̂IV het ) = −73.24 − 1.96 × 30.1491 = −132.33 and

UL = θ̂IV het + zα/2 × SE(θ̂IV het ) = −73.24 + 1.96 × 30.1491 = −14.15.

Comment The above point estimate (−73.24) and the 95% confidence interval
(−132.33,−14.15) are presented at the bottom row of the forest plot and represented
by a diamond as found in Fig. 9.4.

Forest plot for WMD under IVhet model using MetaXL
The forest plot under the IVhetmodel (indicatedby“IVhet” in the code) is constructed
using MetaXL code
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Blood Loss WMD IVhet

WMD
0006- 004- 002-

Study 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Overall 
Q=59.17, p=0.00, I2=83%

Zhou et al 2004 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)   0.0

-219.30  (-466.86, 28.26)    0.1

-200.00  (-242.37,-157.63)  2.0

-183.00  (-261.03,-104.97)  0.6

-106.40  (-146.67,-66.13)    2.2

 -73.24  (-132.33,-14.15) 100.0

 -72.00  (-78.62,-65.38)     81.1

 -70.00  (-96.01,-43.99)       5.3

 -62.30  (-120.62, -3.98)      1.0

 -57.00  (-203.84, 89.84)     0.2

 -50.00  (-77.15,-22.85)       4.8
 -17.50  (-53.11, 18.11)       2.8

Fig. 9.4 Forest plot of meta-analysis on blood loss for the LARR and ORR groups under IVhet
model

=MAInputTable(“Blood Loss WMD IVhet”,”WMD”,”IVhet”,B6:H16)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ =MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Blood Loss WMD IVhet” in the above code (user may choose any appropriate
title here, but IVhet is chosen to indicate inverse variance heterogeneity model).
Then in the second quote enter the type of effect measure, e.g. “WMD” in the above
code which tells that the weighted mean difference is the effect size. Within the third
quote enter the statistical model, e.g. “IVhet” in the above code stands for the inverse
variance heterogeneity (abbreviated by IVhet) model. Each quotation is followed
by a comma, and after the last comma enter the data area in Excel Worksheet, e.g.
B6:D16 in the above code tells that the data on the independent studies are taken from
the specified cells of the Excel Worksheet. The code ends with a closing parenthesis.

Interpretation
From the above forest plot, the estimated common effect size is −73.24, and the
95% confidence interval is (−132.33, −14.15). The effect size is highly statistically
significant (as 0 is not included in the confidence interval).

Here Cochrane’s Q = 59.17 with P-value = 0 indicates highly significant hetero-
geneity among themean difference of blood loss between the LARRandORRgroups
of independent studies. The I 2 = 83% also reflects that there is high heterogeneity
among the studies.
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9.7 Subgroup Analysis

Consider the Blood loss data in Example 9.5. To illustrate subgroup analysis for
the data, let’s divide the studies into two groups: studied published before 2010
(Old Studies) and after 2010 (Recent Studies) to see if there is any difference in the
effect size between the two subgroups. Using MetaXL we produce the forest plot of
subgroup analysis as in Figs. 9.5, 9.6 and 9.7 representing the meta-analyses of the
subgorups under FE, REs and IVhet models.

Interpretation (FE)
From the forest plot (FE) in Fig. 9.5, under the FE model, the estimated common
effect size of Recent Studies is −70.91, and the 95% confidence interval is (−85.83,
−55.98), and that for the Old Studies are−73.68 and (−80.19,−67.18) respectively.
The effect size is highly statistically significant (as 0 is not included in the confidence
interval) for both subgroups as well as the pooled results of all studies (−73,24, CI:
−79.21, 67.28).

For the Recent Studies Cochran’s Q = 48.05 with P-value = 0 indicating highly
significant heterogeneity among themean difference of blood loss between theLARR

Blood Loss WMD Subgroup FE by Study Period

WMD
0-500

Study or Subgroup 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Old Studies subgroup 

Recent Studies 

Q=48.05, p=0.00, I2=90%

Old Studies 

Q=11.01, p=0.03, I2=64%

Overall 
Q=59.17, p=0.00, I2=83%

Zhou et al 2004 

Recent Studies subgroup 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)   0.0

-219.30  (-466.86, 28.26)    0.1

-200.00  (-242.37,-157.63)  2.0

-183.00  (-261.03,-104.97)  0.6

-106.40  (-146.67,-66.13)    2.2

 -73.68  (-80.19,-67.18)      84.0

 -73.24  (-79.21,-67.28)    100.0

 -72.00  (-78.62,-65.38)      81.1

 -70.91  (-85.83,-55.98)     16.0

 -70.00  (-96.01,-43.99)       5.3

 -62.30  (-120.62, -3.98)      1.0

 -57.00  (-203.84, 89.84)     0.2

 -50.00  (-77.15,-22.85)       4.8
 -17.50  (-53.11, 18.11)       2.8

Fig. 9.5 Subgroup analysis by Older and Recent Studies of blood loss after LARR and ORR
procedures under the FE model
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Blood Loss WMD Subgroup RE by Study Period

WMD
0006- 004- 002-

Study or Subgroup 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Old Studies subgroup 

Recent Studies 

Q=48.05, p=0.00, I2=90%

Old Studies 

Q=11.01, p=0.03, I2=64%

Overall 
Q=59.17, p=0.00, I2=83%

Recent Studies subgroup 

Zhou et al 2004 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)     0.5

-219.30  (-466.86, 28.26)      1.2

-200.00  (-242.37,-157.63)  11.6

-183.00  (-261.03,-104.97)    7.2

-106.40  (-146.67,-66.13)    11.9

-103.37  (-146.48,-60.26)    38.0

 -89.98  (-118.43,-61.54)    100.0

 -84.43  (-136.90,-31.96)     62.0

 -72.00  (-78.62,-65.38)       15.4

 -70.00  (-96.01,-43.99)       13.8

 -62.30  (-120.62, -3.98)        9.4

 -57.00  (-203.84, 89.84)       3.0

 -50.00  (-77.15,-22.85)       13.6
 -17.50  (-53.11, 18.11)       12.5

Fig. 9.6 Subgroup analysis by Older and Recent Studies of blood loss after LARR and ORR
procedures under the REs model

and ORR groups of independent studies. The I 2 = 90% also reflects that there is
high heterogeneity among the studies in this subgroup.

For theOdStudiesCochran’sQ= 11.01with P-value= 0.03 indicating significant
heterogeneity among the mean difference of blood loss between the LARR and
ORR groups of independent studies. The I 2 = 64% also reflects that there is high
heterogeneity among the studies in this subgroup. But there is more heterogeneity
among the Recent Studies than the Old Studies.

Interpretation (REs)
From the forest plot of WMD on blood loss under the REs model, the estimated
common effect size of Recent Studies is −84.43, and the 95% confidence interval is
(−136.90,−31.96), and that for the Old Studies are−103.37 and (−146.48,−60.26)
respectively. The effect size is highly statistically significant (as 0 is not included in
the confidence interval) for both subgroups.
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Blood Loss WMD Subgroup IVhet by Study Period

WMD
0006- 004- 002-

Study or Subgroup 

Ng et al 2008 

Ng et al 2014 

Bonjer et al 2015 

Braga et al 2007 

Lujan et al 2009 

Old Studies subgroup 

Recent Studies 

Q=48.05, p=0.00, I2=90%

Old Studies 

Q=11.01, p=0.03, I2=64%

Overall 
Q=59.17, p=0.00, I2=83%

Zhou et al 2004 

Recent Studies subgroup 

Liu et al 2011 

Fleshman et al 2015 

Ng et al 2009 

Stevenson et al 2015 
Jeong et al 2014 

    WMD (95% CI)          % Weight

-233.90  (-628.01,160.21)   0.0

-219.30  (-466.86, 28.26)    0.1

-200.00  (-242.37,-157.63)  2.0

-183.00  (-261.03,-104.97)  0.6

-106.40  (-146.67,-66.13)    2.2

 -73.68  (-137.47, -9.90)    84.0

 -73.24  (-132.33,-14.15)  100.0

 -72.00  (-78.62,-65.38)     81.1

 -70.91  (-129.39,-12.42)   16.0

 -70.00  (-96.01,-43.99)       5.3

 -62.30  (-120.62, -3.98)      1.0

 -57.00  (-203.84, 89.84)     0.2

 -50.00  (-77.15,-22.85)       4.8
 -17.50  (-53.11, 18.11)       2.8

Fig. 9.7 Subgroup analysis by Older and Recent Studies of blood loss after LARR and ORR
procedures under the IVhet model

The comments on the heterogeneity (Q statistic and P-value) remain the same as
that for Fig. 9.5 as these are not dependent on any model.

Interpretation (IVhet)
From the forest plot of WMD on blood loss under the IVhet model, the estimated
common effect size of Recent Studies is −70.91, and the 95% confidence interval is
(−129.39, −12.42), and that for the Old Studies are −73.68 and (−137.47, −9.90)
respectively. The effect size is highly statistically significant (as 0 is not included in
the confidence interval) for both subgroups.

9.8 Publication Bias

The study of publication bias for WMD is very similar to that of SMD in Sect. 9.8.8
of the previous chapter. It is not necessary to re-produce thsem again here. Readers
interested to produce funnel plot or Doi plot and their interpretation are referred to
that Section.
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9.9 Conclusions

The weighted mean difference (WMD) method of meta-analysis is covered in this
chapter. It is applicable for continuous (numerical) outcome variables for two arms
studies. In addition to introducing the WMD method of meta-analysis with step by
step illustrations to apply the method on real-life data sets, forest plots are produced
under different statistical models by using the MetaXL codes.

The comparison of results for different statistical models show variation in the
point estimates and confidence intervals. The heterogeneity among the studies are
also studied using Q and I 2 statistics. Subgroup analysis is also provided for the
Recent Studies and Old Studies.

Appendix 9—Stata Codes for Meta-Analysis of WMD

A9.1 Blood loss dataset

Study n_larr mean_larr sd_larr n_orr mean_orr sd_orr study_period

Bonjer et al. (2015) 699 200 222 345 400 370 recent

Fleshman et al. (2015) 240 256.1 305.8 222 318.4 331.7 recent

Stevenson et al. (2015) 238 100 111 235 150 181.5 recent

Jeong et al. (2014) 170 200 148 170 217.5 185 recent

Ng et al. (2014) 40 141.8 500 40 361.1 623 recent

Liu et al. (2011) 98 310 96 88 380 85 recent

Lujan et al. (2009) 101 127.8 113.3 103 234.2 174.3 old

Ng et al. (2009) 76 280 500 77 337 423 old

Ng et al. (2008) 51 321.7 750 48 555.6 1188 old

Braga et al. (2007) 83 213 258 85 396 258 old

Zhou et al. (2004) 82 20 19 89 92 25 old

A9.2 Stata Codes for the Blood loss dataset

. ssc install admetan
Codes for WMD meta-analysis of blood loss
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd re
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd ivhet

A9.3 Codes for WMD Subgroup analysis of blood loss by study period

. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd by(study_period)
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd re

by(study_period)
. admetan n_larr mean_larr sd_larr n_orr mean_orr sd_orr, wmd ivhet

by(study_period)
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Chapter 10
Meta-Analysis of Correlation Coefficient

If the linear association/relationship between two continuous/quantitative outcome
variables is of interest then the correlation coefficient is the appropriate effect size
measure.

Meta-analysis of correlation coefficient is covered in this chapter. It providesmeta-
analyses of correlation coefficient under different statistical models with illustrative
examples.

10.1 Introduction

Correlation ariseswhen the linear association or relationship between two continuous
(numerical) outcome variables is of interest. The strength (size) and direction (sign)
of linear relationship or association between two numerical variables aremeasured by
the Pearson’s correlation coefficient. A common and popular example of correlation
would be the linear association between age and systolic blood pressure of adults,
or between height and weight of infants. Studies that are interested in the linear
association between two continuous variables use correlation coefficient as the effect
size measure. The population correlation coefficient is denoted by ρ and its estimate,
the sample correlation coefficient, is denoted by r.

By definition the correlation coefficient is a pure number (unit free) and takes value
between−1 and 1. If the value of the correlation coefficient is 1 (or –1) there is perfect
positive (or negative) linear relationship between the two variables. Closer the value
(magnitude) of correlation coefficient to 1 (or −1) stronger the linear relationship
between the two numerical variables. There is no linear relationship between the two
variables if the value of correlation coefficient is 0 (or very close to 0). Note that this
only implies to linear relationship (emphasis on linear) but there may be strong non-
linear relationship between the two variables when the correlation coefficient is 0.

Rule of Thumb for interpreting the strength (magnitude) of a correlation
coefficient;
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Size of correlation Interpretation

0.90 to 1.00 (−0.90 to −1.00) Very high positive (negative) correlation

0.70 to 0.90 (−0.70 to −0.90) High positive (negative) correlation

0.50 to 0.70 (−0.50 to −0.70) Moderate positive (negative) correlation

0.30 to 0.50 (−0.30 to −0.50) Low positive (negative) correlation

0.00 to 0.30 (0.00 to −0.30) negligible correlation

Please see (Hinkle 2003) for further details.

10.2 Estimation of Effect Size

Let ρ be the population correlation coefficient between two continuous/numerical
variables. This can be used as the population effect size to measure linear association
between two numerical variables. However, often another transformed population

effect size measure, ζ = 1
2

[
ln 1+ρ

1−ρ

]
is used. Note here “ln” is the natural logarithm

function. The transformation is known as Fisher’s variance stabilization. Both ρ and
can be used as effect size measure, but the latter is more commonly used because of
some advantages.

Let r be the sample correlation coefficient between two sets of sample values of
any continuous/(numerical) outcome variable based on two samples of size n each.
Then the statistic r is an estimator of the population correlation coefficient, ρ, that
is, ρ̂ = r.

The estimator of the modified/transformed population effect size, ζ is given by
ζ̂ = 1

2

[
ln 1+r

1−r

]
which is a function of sample correlation coefficient r only.

The exact variance of r and ζ̂ are complicated, but a very good approximation of
these are given by Var(r) = (1−ρ2)2

n−1 which depends on unknown parameter ρ, and

Var(ζ̂ ) = 1
n−3 which does not depend on r (or ρ).

The variance of r depends on the value of unknown parameter ρ and also it is
not a constant (changes with the change in the value of ρ). However, the variance of
the estimator of the modified/transformed population effect size, ζ̂ = 1

2

[
ln 1+r

1−r

]
is

Var(ζ̂ ) = 1
n−3 which does not depend on r, and is a constant (with respect to r).

The standard error of r is SE(r) =
√

(1−r2)2

n−1 = (1−r2)√
n−1

, and that of ζ̂ is SE(ζ̂ ) =√
1

n−3 = 1√
n−3

.

Note that ζ̂ = 1
2

[
ln 1+r

1−r

] = arctanh(r), where “ln” is the natural logarithm func-
tion and “arctanh” is the inverse hyperbolic tangent function, and the inverse/back

transformation to r is r = e2ζ̂ −1
e2ζ̂ +1

= tanh(r), where “tanh” is the hyperbolic tangent
function.

The above transformation of r to ζ̂ is known as the Fisher’s Z transformation (cf.
(Fisher 1915)) which is an approximate variance-stabilizing transformation for r
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when the twoquestitative variable, sayX andY, followabivariate normal distribution.
Thismeans that the varianceof ζ̂ is approximately constant for all values of the sample
correlation coefficient r.

For statistical inferences, note that both Z1 = r
√
n−1

(1−r2) and Z2 = ζ̂
√
n − 3 are

distributed as standard normal variables (with mean 0 and standard deviation 1), and
can be used to find confidence interval and perform statistical tests.

Remark For inference on the population correlation coefficient, ρ we could use
either

(i) original sample correlation coefficient, r as the effect size estimate for ρ with

SE(r) =
√

(1−r2)2

n−1 = (1−r2)√
n−1

, or

(ii) transformed effect size, ζ̂ = 1
2

[
ln 1+r

1−r

] = arctanh(r) with SE(ζ̂ ) =
√

1
n−3 =

1√
n−3

.

Most of the statistical packages, including MetaXL, use the second method (ζ̂ ,
Fisher’s Z transformation of r) for meta-analysis. This is because the variance (and
hence the standard deviation) of the estimator of ζ does not change even if the value
of r changes from one study to another. In the forthcoming sections we will use the
second option, that is, use ζ̂ as the effect size estimate of ρ so that our results are
comparable to those produced by popular statistical packages. As a consequence
of this choice the lower and upper limits of the confidence interval will initially be
computed based on ζ̂ in the transformed (acrcanh) scale and then the limits will be
converted into the original scale of r by using the inverse/back (tanh) transformation.

Remarks Readers who are uncomfortable with mathematical explanations may not
worry about the above discussions on the transformation of r as the actual meta-
analysis will be conducted by MetaXL (or another statistical package) that will
automatically use the transformation and produce the final forest plot in r scale.

The confidence interval
A (1 − α) × 100% confidence interval for the population effect size ρ, based on
the sample correlation coefficient, is given by the lower limit (LL*) and upper limit
(UL*) as follows:

LL∗ = ζ̂ − zα/2 × SE(ζ̂ ) andUL∗ = ζ̂ + zα/2 × SE(ζ̂ ) in the transformed arctanh
scale.

Here zα/2 is the α
2 cut-off point of standard normal distribution and SE(ζ̂ ) =√

Var(ζ̂ ).

Hence the (1 − α) × 100% confidence interval for ρ becomes
LL = e2×LL∗ −1

e2×LL∗ +1
= tanh(LL∗) and LU = e2×LU∗ −1

e2×LU∗+1
= tanh(LU ∗) in the original r

scale.

Example 10.1 The following summary statistics on correlation coefficient of 8
independent studies are taken from the MedCalc website.
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Table 10.1 Summary data on correlation coefficient of 8 studies

Study n r

Moore (2006) 133 0.56

Davis (2008) 149 0.43

Thomas (1999) 131 0.53

Miller (2012) 120 0.51

Williams (2012) 111 0.66

Young (2013) 152 0.46

Baker (2009) 60 0.33

Adams (2006) 122 0.38

For the data in Table 10.1, find the (i) point estimate of ζ and (ii) 95% confidence
interval for the population correlation coefficient, ρ for each of the 8 studies.

Solution:
The Table 10.2 provides all relevant calculations and results to answer the above

questions.
In Table 10.2, Z = ζ̂ = 1

2

[
ln 1+r

1−r

] = arctanh(r), Var is the variance of ζ̂ defined

as 1
/

(n − 3), SE is the standard error of ζ̂ defined as SE =
√
1
/

(n − 3), LL* and

UL* are the lower and upper limits of 95% confidence interval in the ζ̂ scale, and LL
and UL are the limits of 95% confidence interval in the r scale using tanh(ζ̂ ) back
transformation.

Explanation of computations for the first study (Moore 2006)
Note for the first study n = 133 and r = 0.56.

(i) From Fisher’s transformation, the point estimate of ζ is

Table 10.2 Calculations for the point estimate and confidence interval of correlation coefficient
for individual studies

Study n r Z Var SE LL* UL* LL UL

Moore (2006) 133 0.56 0.6328 0.00769 0.08771 0.46093 0.80474 0.4308 0.6667

Davis (2008) 149 0.43 0.4599 0.00685 0.08276 0.29769 0.62211 0.2892 0.5526

Thomas (1999) 131 0.53 0.5901 0.00781 0.08839 0.4169 0.76339 0.3943 0.6431

Miller (2012) 120 0.51 0.5627 0.00855 0.09245 0.38153 0.74393 0.364 0.6315

Williams (2012) 111 0.66 0.7928 0.00926 0.09623 0.60421 0.98141 0.54 0.7537

Young (2013) 152 0.46 0.4973 0.00671 0.08192 0.33674 0.65788 0.3246 0.577

Baker (2009) 60 0.33 0.3428 0.01754 0.13245 0.08322 0.60244 0.083 0.5388

Adams (2006) 122 0.38 0.4001 0.0084 0.09167 0.22039 0.57973 0.2169 0.5225
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ζ̂ = 1
2

[
ln 1+r

1−r

]
= 0.5 × ln

[
1 + 0.56

1 − 0.56

]
= 0.5 × ln(3.54545) = 0.5 × 1.26567 = 0.6328.

Alternatively, directly using the arctanh function, ζ̂ = arc tanh(r) =
arctan h(0.56) = 0.6328.

So the point estimate of ζ̂ is ζ = 0.6328.

(ii) The 95% confidence interval for ρ

First we compute the limits of the 95% confidence interval for ζ and then convert
the two limits to find the confidence interval for ρ.

The variance of ζ̂ is Var = 1
/

(n − 3) = 1
/

(133 − 3) = 1
/
130 = 0.00769 and

hence the standard error is SE(ζ̂ ) =
√
Var(ζ̂ ) = √

0.00769 = 0.08771.
Then the lower and upper limits of the 95% confidence interval for ζ are given by

LL∗ = ζ̂ − 1.96 × SE(ζ̂ ) = 0.6328 − 1.96 × 0.08771 = 0.46093 ≈ 0.46 and

UL∗ = ζ̂ + 1.96 × SE(ζ̂ ) = 0.6328 + 1.96 × 0.08771 = 0.80474 ≈ 0.80.

Now the lower and upper limits of the 95% confidence interval for ρ become

LL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.46093 − 1

e2×0.46093 + 1
= 2.51396 − 1

2.51396 + 1
= 1.51396

3.51396
= 0.43084 ≈ 0.43 and

LL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.80474 − 1

e2×0.80474 + 1
= 5.00021 − 1

5.00021 + 1
= 4.00021

6.00021
= 0.66668 ≈ 0.67.

Comment The above 95% confidence interval (0.34, 0.67) for ρ along with the
value of r (0.56) is reported in the top row (for the first study) of the forest plot in
Fig. 10.1.

Similar calculations are done for all other studies to find the 95% confidence
interval for the population correlation coefficient ρ for individual studies.

Correlation FE

Correlation
2.0 4.0 6.0

Study 

Baker 2009 
Adams 2006 

Davis 2008 

Young 2013 

Overall 
Q=14.15, p=0.05, I2=51%

Miller 2012 
Thomas 1999 

Moore 2006 

Williams 2012 

    Corr (95% CI)          % Weight

   0.33  (  0.08,  0.54)      6.0
   0.38  (  0.22,  0.52)     12.5

   0.43  (  0.29,  0.55)     15.3

   0.46  (  0.32,  0.58)     15.6

   0.49  (  0.45,  0.54)    100.0

   0.51  (  0.36,  0.63)     12.3
   0.53  (  0.39,  0.64)     13.4

   0.56  (  0.43,  0.67)     13.6

   0.66  (  0.54,  0.75)     11.3

Fig. 10.1 Forest plot of meta-analysis on correlation coefficient under FE model
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10.3 Tests on Effect Size, ρ

To test the significance of the population correlation coefficient, test the null
hypothesis

H0 : ρ = 0 against Ha : ρ �= 0 using the test statistic

Z = ζ̂

SE(ζ̂ )
= ζ̂√

n − 3
,

where ζ̂ = 1
2

[
ln 1+r

1−r

]
, and follows the standard normal distribution.

For a two-tailed test, reject H0 at the α level of significance if the calculated
value of the Z statistic, (say zo) satisfies |zo| ≥ zα/2, otherwise don’t reject the null
hypothesis.

Example 10.2 Consider the data on correlation coefficient in Table 10.1 of Example
10.1

For the first study (Moore 2006) test the significance of the population correlation
coefficient at the 5% level of significance.

Solution:
From the first study (Moore 2006), n = 133 and r = 0.56.

The appropriate test statistic is Z = ζ̂

SE(ζ̂ )
.

Here ζ̂ = 1
2

[
ln 1+r

1−r

] = 0.5× ln
[
1+0.56
1−0.56

] = 0.5× ln(3.54545) = 0.5×1.26567 =
0.6328. and the standard error of ζ̂ is SE

(
ζ̂
)

=
√
Var(ζ̂ ) =

√
1

n−3 =
√

1
133−3 =√

1
130 = √

0.00769 = 0.08771.
So the calculated value of the test statistic, Z is

z0 = ζ̂

SE(ζ̂ )
= 0.6328

0.08771
= 7.215408 ≈ 7.22.

The two-sided P-value is P(|Z | > 7.22) = 2 × P(Z > 7.22) = 2 × 0 = 0.
Since the P-value is less than 5%, we reject the null hypothesis at the 5% level of
significance. The test is significant and hence there is strong sample evidence against
the null hypothesis that the population correlation coefficient is 0.

10.4 Fixed Effect (FE) Model

In this section, the meta-analysis of correlation coefficient is presented under the
fixed effect model. Let the common effect size of population correlation coefficient
be denoted by ρ. Then by Fisher transformation define the modified common effect
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size to be θ = 1
2 × ln

[
1+ρ

1−ρ

]
= arctanh(ρ). The point estimate of θ is given by its

sample counterpart, θ̂ = 1
2 × ln

[
1+r
1−r

] = arctanh(r),where r is the sample correlation

coefficient. The standard error becomes, SE(θ̂) =
√
Var(θ̂) =

√
1

n−3 .

For the ith study, define the point estimate of themodified population effect size,θi
to be θ̂i = 1

2 × ln
[
1+ri
1−ri

]
= arctanh(ri ), and the standard error SE(θ̂i ) =

√
1

ni−3 for i

= 1, 2, … , k, where k is the number of studies in the meta-analysis.
Under the fixed effect model, the modified common effect size estimator is given

by

θ̂FE =
k∑

i=1

wi θ̂i

/
k∑

i=1

wi ,

where wi = 1
vi
is the weight, in which vi = Var(θ̂i ) = 1

ni−3 ,

and the variance of the estimator of the modified common effect size is

Var(θ̂FE ) = 1

/
k∑

i=1
wi . Hence the standard error of the estimator of the modified

common effect size is SE(θ̂FE ) =
√
1

/
k∑

i=1
wi .

The confidence interval
The confidence interval for the modified common effect size θ based on the sample
estimates is given by the lower limit (LL) and upper limit (UL) as follows:

LL∗ = θ̂FE − zα/2 × SE(θ̂FE ) and

UL∗ = θ̂FE + zα/2 × SE(θ̂FE ).

Here zα/2 is the α
2 th cut-off point of standard normal distribution and SE(θ̂FE ) =√

Var(θ̂FE ).
Then the 95% confidence interval for population effect size ρ under the FEmodel,

we transform the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1
and

UL = e2×LL∗ − 1

e2×LL∗ + 1
.

Also, the point estimate of ρ under the FE model is found by transforming that
of θ as ρ̂FE = tanh(θ̂FE ).
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To compute the confidence interval and perform test on the modified common
effect size θ for individual studies,weneed to compute the point estimate and standard
error of the estimator of θ for all studies.

Example 10.3 Consider the summary data on correlation coefficient from
Table 10.1.

Using the sums of W and WZ at the bottom of Table 10.3 calculate the (i) point
estimate of θ , (ii) standard error of estimator, and (iii) 95% confidence interval for
the population effect size ρ under the fixed effect model.

Solution:

(i) The point estimate of the effect size θ under the FE model is

θ̂FE =
8∑
1

wi θ̂i

8∑
1

wi

=
∑

WZ∑
W = 517.663

954 = 0.542623 ≈ 0.54.

(ii) The standard error is SE(θ̂FE ) =
√

1
8∑
1

wi

=
√

1∑
W =

√
1

954 = 0.03238.

(iii) The 95% confidence interval for the modified common population effect size
θ is given by

LL* = θ̂FE − 1.96 × SE(θ̂FE ) = 0.542623 − 1.96 × 0.03238 = 0.47917 and
UL* = θ̂FE + 1.96 × SE(θ̂FE ) = 0.542623 + 1.96 × 0.03238 = 0.60608.

Remark To find the 95% confidence interval for common effect size ρ we transform
the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.47917 − 1

e2×0.47917 + 1
= 2.60736 − 1

2.60736 + 1
= 1.60736

3.60736
= 0.44558 ≈ 0.44

Table 10.3 Summary statistics for the point estimate and confidence interval of correlation
coefficient funder fixed effect model

Study n r Z Var W WZ

Moore (2006) 133 0.56 0.6328 0.00769 130 82.2683

Davis (2008) 149 0.43 0.4599 0.00685 146 67.1449

Thomas (1999) 131 0.53 0.5901 0.00781 128 75.5386

Miller (2012) 120 0.51 0.5627 0.00855 117 65.8394

Williams (2012) 111 0.66 0.7928 0.00926 108 85.6239

Young (2013) 152 0.46 0.4973 0.00671 149 74.0994

Baker (2009) 60 0.33 0.3428 0.01754 57 19.5412

Adams (2006) 122 0.38 0.4001 0.0084 119 47.6071

954 517.663

Note W is the weight calculated as the inverse/reciprocal of variance (Var), and WZ is the product
of weight (W) and modified sample effect size (Z)
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UL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.60608 − 1

e2×0.60608 + 1
= 3.36074 − 1

3.36074 + 1
= 2.36074

4.36074
= 0.54236 ≈ 0.54.

Also, the point estimate of ρ under the FE model is found by transforming that
of θ as ρ̂FE = tanh(θ̂FE ) = tanh(0.542623) = 0.494971 ≈ 0.49.

Comment The above point estimate of ρ (0.49) and confidence limits (0.44, 0.54)
under the FE model are displayed in the bottom row of forest plot in Fig. 10.1 and
represented by the diamond.

Forest plot for correlation under FE model using MetaXL
The forest plot under the FE model (indicated by “IV” in the code) is constructed
using MetaXL code

=MAInputTable(“Correlation FE”,”numcorr”,”IV”,B7:D14)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Correlation FE” in the above code (user may choose any appropriate title here,
but FE is chosen to indicate fixed effect model). Then in the second quote enter the
type of effect measure, e.g. “numcorr” in the above code which tells that the variable
is numeric and correlation is the effect size. Within the third quote enter the statistical
model, e.g. “IV” in the above code stands for the fixed effect (abbreviated by FE)
model. Each quotation is followed by a comma, and after the last comma enter the
data area in Excel Worksheet, e.g. B7:D14 in the above code tells that the data on
the independent studies are taken from the specified cells of the Excel Worksheet.
The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 10.1.

Interpretation
From the meta-analysis of correlation coefficient under the FE model, the estimated
common effect size is 0.49, and the 95% confidence interval is (0.45, 0.54). The
effect size is highly statistically significant (as 0 is not included in the confidence
interval).

Here Cochrane’s Q = 14.15 with P-value slightly less than 0.05 indicates signifi-
cant heterogeneity among the correlation coefficients among independent studies at
the 5% level. The I 2 = 51%also reflects that there is heterogeneity among the studies.

Measuring Heterogeneity
Heterogeneity is a real concern as it is common in many meta-analyses and makes
the analyses much more difficult. It is essential for every meta-analysis to investigate
the presence of heterogeneity among the studies so that an appropriate statistical
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model could be used to analyse the data properly. Here we cover some of the popular
methods to identify and measure the extent of heterogeneity among the effect sizes
of independent studies.

Cochran’s Q Statistic (Cochran 1973)
The Cochrane’s Q is defined as

Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

,

where wi is the weight and θ̂i is the effect size estimate of the ith study.
The above Q statistic follows a chi-squared distribution with d f = (k−1),where

k is the number of studies included in the meta-analysis. Since the expected value
of a chi-squared variable is its degrees of freedom, the expected value of Q is (k-1),
that is, E(Q) = (k − 1) = d f.

Test of Heterogeneity
To test the null hypothesis of the equality of effect sizes (i.e. equality excluding
random error)

H0 : θ1 = θ2 = . . . = θk = θ against Ha : not all θi ’s are equal (at least one
of them is different), use the Cochrane’s Q statistic as defined above.

Any small P-value leads to the conclusion that there is true difference among the
effect sizes. However the non-significant P-value may not mean that the effect sizes
are not different as this could happen due to low power of the test. The test alone
should not be used to measure the magnitude of the true dispersion.

The I2 Statistic (Higgins et al. 2003)
The value of the Q-statistic increases as the number of studies included in the meta-
analysis becomes larger. To dealt with this problem, another statistic that quantifies
heterogeneity is the I2 statistic. It is a ratio of excess variation to the total variation
expressed in percentages. This statistic is defined as

I 2 =
(
Q − d f

Q

)
× 100%,

and is viewed as the proportion of between studies variation and total variation (within
plus between studies variation).

Example 10.4 Consider the summary data on correlation coefficient in Table 8.1.

Find the value of (i) Q statistic and (ii) I 2 statistic for the correlation coefficient
data.

Solution:
To answer the above questions,we need to find the summary statistics inTable 10.4

below.
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Table 10.4 Calculations for the finding the Q statistic and I 2 statistic of correlation data

Study n r Z Var W WZ W2 WZ2

Moore (2006) 133 0.56 0.6328 0.0077 130 82.2683 16900 52.062

Davis (2008) 149 0.43 0.4599 0.0068 146 67.1449 21316 30.88

Thomas (1999) 131 0.53 0.5901 0.0078 128 75.5386 16384 44.579

Miller (2012) 120 0.51 0.5627 0.0085 117 65.8394 13689 37.05

Williams (2012) 111 0.66 0.7928 0.0093 108 85.6239 11664 67.884

Young (2013) 152 0.46 0.4973 0.0067 149 74.0994 22201 36.85

Baker (2009) 60 0.33 0.3428 0.0175 57 19.5412 3249 6.6993

Adams (2006) 122 0.38 0.4001 0.0084 119 47.6071 14161 19.046

954 517.663 119564 295.05

Note the squared weight is denoted by W2 and product of weight (W) and squared modified effect
size (Z2) is denoted by WZ2

(i) The Q statistic is calculated as

Q =
8∑

i=1

wi θ̂
2
i −

(
8∑

i=1
wi θ̂i

)2

8∑
i=1

wi

=
8∑

i=1

WZ2 −

(
8∑

i=1
WZ

)2

8∑
i=1

W

= 295.05 − (517.663)2

954
= 14.15.

To test the heterogeneity of effect sizes the P-value is found from the chi-squared
Table (with df = (8 − 1) = 7) as P

(
χ2
7 ≥ 14.15

)
is slightly less than 5% (between

0.025 and 0.05). Note that the area under the chi-squired density curve to the right of
14.067 is exactly 5%. Since the P-value is smaller than 5%, we may reject the null
hypothesis (of equal effect size for all studies) at the 5% level of significance.

The I2 statistic is found to be

I 2 =
(
Q − d f

Q

)
× 100% =

(
14.15 − (8 − 1)

14.15

)
× 100% =

(
7.15

14.15

)
× 100%

= 0.5054 × 100% = 51%,

where d f = (k − 1) = (8 − 1) = 7.
The above value of Q statistic, its P-value and I 2 statistic are presented on the left

panel of the forest plot produced by MetaXL.

Comment The values of Q and I 2 statistics are calculated from the sample summary
data, and they are not dependent on any statistical models.
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10.5 Random Effects (REs) Model

The REs model is used when the effect size measure across all the studies is hetero-
geneous. There are two sources of variation under the random effects model—the
within study variance σ 2 and between-study variances, τ 2. The unknown combined
variance σ ∗2 = σ 2 + τ 2 is estimated by v∗ = v + τ̂ 2, where v is the estimate of σ 2

and τ̂ 2 is the estimate of τ 2. Therefore, the weight assigned to the ith study under
the REs model is defined as w∗

i = 1
vi+τ̂ 2 for i = 1, 2, …, k.

The common effect size under the REs model is estimated by

θ̂RE =
k∑

i=1

w∗
i θ̂i

/
k∑

i=1

w∗
i .

The standard error of the estimator of the common effect size is

SE(θ̂RE ) =
√√√√1

/
k∑

i=1

w∗
i .

The (1−α)×100% confidence interval for the effect size θ under the REs model
is given by the lower limit (LL) and upper limit (UL) as follows:

LL∗ = θ̂RE − zα/2 × SE(θ̂RE ) and

UL∗ = θ̂RE + zα/2 × SE(θ̂RE ),

where zα/2 is the α
2 th cut-off point of standard normal distribution.

Then the 95% confidence interval for population effect size ρ under the REs
model, we transform the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1

UL = e2×LL∗ − 1

e2×LL∗ + 1
.

Also, the point estimate of ρ under the REs model is found by transforming that
of θ as ρ̂RE = tanh(θ̂RE ).

Estimation of τ 2

The between studies variance is estimated as a scaled excess variation as follows

τ̂ 2 = Q − d f

C
,

where
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Q =
k∑

i=1

wi θ̂
2
i −

(
k∑

i=1
wi θ̂i

)2

k∑
i=1

wi

,

C =
k∑

i=1

wi −

k∑
i=1

w2
i

k∑
i=1

wi

and d f = (k − 1) in which k is the number of studies.

Example 10.5 Consider the summary data on correlation coefficient from
Table 10.1.

Find the estimated value of between studies variance, τ̂ 2, for the correlation data.

Solution:
The last row of Table 10.4 provides summary calculations for finding Q and C

statistics which are required to find the value of τ̂ 2.
From the previous example (or using sums from the bottom row of Table 10.4),

Q =
8∑

i=1
WZ2 −

(
8∑

i=1
WZ

)2

8∑
i=1

W
= 14.15 (details are in the previous example).

Again, using the summary statistics from Table 10.4,

C =
8∑

i=1
wi −

8∑
i=1

w2
i

8∑
i=1

wi

=
8∑

i=1
W −

8∑
i=1

W 2

8∑
i=1

W
= 954 − 119564

954 = 828.6709 and

d f = k − 1 = 8 − 1 = 7.
Then, τ̂ 2 = Q−d f

C = 14.15−7
828.6709 = 0.008633.

Illustration of REs Model for correlation coefficient

Example 10.6 Consider the summary data on correlation coefficient of Table 10.1.

Find the (i) point estimate of ζ , (ii) standard error of the estimator, and (iii) 95%
confidence interval of the population effect size ζ under the random effects model.

Solution:
In Table 10.5, the estimated between-study variance is presented by Tauˆ2, the

estimate of the combined variance is given by Var*, the modified weight is W* as
the reciprocal of Var*, andW*Z represents the product of modified weight (W*) and
transformed sample effect size (Z).

As an example, for Study 1 (Moore 2006), the combined variance for the REs
model is found to be

v∗
1 = v1 + τ̂ 2 = 0.0077 + 0.0086 = 0.01633
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Table 10.5 Calculated values of the summary statistics for correlation coefficient under the REs
model

Study n r Z Var Tauˆ2 Var* W* W*Z

Moore (2006) 133 0.56 0.6328 0.0077 0.0086 0.01633 61.255 38.764

Davis (2008) 149 0.43 0.4599 0.0068 0.0086 0.01548 64.59 29.705

Thomas (1999) 131 0.53 0.5901 0.0078 0.0086 0.01645 60.807 35.885

Miller (2012) 120 0.51 0.5627 0.0085 0.0086 0.01718 58.207 32.755

Williams (2012) 111 0.66 0.7928 0.0093 0.0086 0.01789 55.89 44.31

Young (2013) 152 0.46 0.4973 0.0067 0.0086 0.01534 65.17 32.41

Baker (2009) 60 0.33 0.3428 0.0175 0.0086 0.02618 38.202 13.097

Adams (2006) 122 0.38 0.4001 0.0084 0.0086 0.01704 58.698 23.483

462.82 250.41

and the modified weight becomes

W ∗
1 = 1

Var∗
1

= 1

0.01633
= 61.255.

Now using the summary statistics from Table 10.5 we get

(i) the point estimate of the common effect size ζ under the REs model is

θ̂RE =
8∑

i=1

w∗
i θ̂i

/ 8∑
i=1

w∗
i =

8∑
i=1

W ∗ Z

/ 8∑
i=1

W∗ = 250.41

462.82
= 0.5411 ≈ 0.54.

(ii) The standard error of the estimator of the common effect size ζ is

SE(θ̂RE ) =
√√√√1

/
8∑

i=1

w∗
i =

√√√√1

/
8∑

i=1

W∗ =
√

1

462.82
= 0.0465.

(iii) The 95% confidence interval for the transformed effect size θ (that is, for ζ )
under the REs model is given by the lower limit (LL) and upper limit (UL) as
follows:

LL∗ = θ̂RE − 1.96 × SE(θ̂RE ) = 0.5411 − 1.96 × 0.0465 = 0.449943 ≈ 0.45 and

UL∗ = θ̂RE + 1.96 × SE(θ̂RE ) = 0.5411 + 1.96 × 0.0465 = 0.632157 ≈ 0.63.

Remark To find the 95% confidence interval for population effect size ρ under the
REs model, we transform the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.449943 − 1

e2×0.449943 + 1
= 2.45932 − 1

2.45932 + 1
= 1.45932

3.45932

= 0.42185 ≈ 0.42 and
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UL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.632157 − 1

e2×0.632157 + 1
= 3.54066 − 1

3.54066 + 1
= 2.54066

4.54066
= 0.55954 ≈ 0.56.

Also, the point estimate of ρ under the REs model is found by transforming that
of θ as ρ̂RE = tanh(θ̂RE ) = tanh(0.5411) = 0.49382 ≈ 0.49.

Comment The above point estimate (0.49) of ρ and the confidence limits (0.42,
0.56) are presented at the bottom row of the forest plot and represented by a diamond
as in Fig. 10.2.

Forest plot for correlation under REs model using MetaXL
The forest plot under the REs model (indicated by “RE” in the code) is constructed
using MetaXL code

=MAInputTable(“Correlation RE”,”Numcorr”,”RE”,B7:D14)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which
the first quote contains the text that appears as the ‘title of the output of the forest
plot’ e.g. “Correlation RE” in the above code (user may choose any appropriate
title here, but RE is chosen to indicate random effects model). Then in the second
quote enter the type of effect measure, e.g. “Numcorr” in the above code which tells
that the variable is numeric and correlation is the effect size. Within the third quote
enter the statistical model, e.g. “RE” in the above code stands for the random effects
(abbreviated by RE) model. Each quotation is followed by a comma, and after the
last comma enter the data area in Excel Worksheet, e.g. B7:D14 in the above code
tells that the data on the independent studies are taken from the specified cells of the
Excel Worksheet. The code ends with a closing parenthesis.

Correlation RE

Correlation
2.0 4.0 6.0

Study 

Baker 2009 
Adams 2006 

Davis 2008 

Young 2013 

Overall 
Q=14.15, p=0.05, I2=51%

Miller 2012 
Thomas 1999 

Moore 2006 

Williams 2012 

    Corr (95% CI)          % Weight

   0.33  (  0.08,  0.54)      8.3
   0.38  (  0.22,  0.52)     12.7

   0.43  (  0.29,  0.55)     14.0

   0.46  (  0.32,  0.58)     14.1

   0.49  (  0.42,  0.56)    100.0

   0.51  (  0.36,  0.63)     12.6
   0.53  (  0.39,  0.64)     13.1

   0.56  (  0.43,  0.67)     13.2

   0.66  (  0.54,  0.75)     12.1

Fig. 10.2 The forest plot of correlation under the REs model
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The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 10.2.

Interpretation
From the above forest plot of correlation coefficient under the REs model, the esti-
mated population effect size (common correlation coefficient) is 0.49, and the 95%
confidence interval is (0.42, 0.56). The effect size is highly statistically significant
(as 0 is not included in the confidence interval). The confidence interval under the
REs model is wider than that under the FE model.

The value of the Q statistic (14.15), its P-value (0.05) and I 2 statistic (= 51%)
indicate presence of some heterogeneity.

10.6 Inverse Variance Heterogeneity (IVhet) Model

Like the REs model, the IVhet model is appropriate when there is heterogeneity of
effect size between the independent studies. But this model does not require some
of the unrealistic assumptions of the REs model (cf. (Doi et al. 2015).

The estimator of the transformed common effect size θ (that is, ζ ) under the
inverse variance heterogeneity (IVhet) model is given by

θ̂∗
IV het =

k∑
i=1

wi θ̂i

k∑
i=1

wi

.

Then the variance of the estimator of θ under the IVhet model is given by

Var(θ̂∗
IV het ) =

k∑
i=1

⎡
⎣
(
1

vi

/
k∑

i=1

1

vi

)2

(vi + τ̂ 2)

⎤
⎦ =

k∑
i=1

⎡
⎣
(

wi

/
k∑

i=1

wi

)2

× v∗
i

⎤
⎦.

For the computation of the confidence interval of the common effect size based
on the IVhet model use the following standard error

SE(θ̂∗
IV het ) =

√
Var(θ̂∗

IV het ).

Then, the (1− α) × 100% confidence interval for the common effect size θ∗ = ξ

under the IVhet model is given by the lower limit (LL) and upper limit (UL) as
follows:

LL∗ = θ̂∗
IV het − zα/2 × SE(θ̂∗

IV het ) and

UL∗ = θ̂∗
IV het + zα/2 × SE(θ̂∗

IV het ),
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where zα/2 is the α
2 th cut-off point of standard normal distribution.

Then the 95% confidence interval for population effect size ρ under the IVhet
model, we transform the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1
and UL = e2×LL∗ − 1

e2×LL∗ + 1
.

Also, the point estimate of ρ under the IVhet model is found by the following
back transformation, ρ̂IV het = tanh(θ̂∗

IV het ).

Illustration of IVhet Model for correlation coefficient

Example 10.7 Consider the summary data on correlation coefficient in Table 10.1.

Find the (i) point estimate of population effect size ζ , (ii) standard error of the
estimator, and (iii) 95% confidence interval of the transformed population effect size
ζ under the inverse variance heterogeneity model.

Solution:
To answer the above questions we need to compute the statistics in Table 10.6.
In the above table Var* is the combined variance (Var* = Var + Tauˆ2)

and W* is the modified weight under the IVhet model calculated as W ∗
i =[(

1
vi

/
8∑

i=1

1
vi

)2

(vi + τ̂ 2)

]
=
(
Wi

/
8∑
1
Wi

)2

× Var∗
i for the ith study.

For example, for the first study (Moore 2006) Var∗
1 = 0.0077 + 0.0086 =

0.01633, and W ∗
1 =

(
W1

/
8∑
1
Wi

)2

× Var∗
1 =

(
130/

954

)2 × 0.01633 = 0.0003.

Now, using the summary statistics in the last row of Table 10.6 we answer the
questions in Example 10.7 as follows.

(i) The point estimate of ζ under the IVhet model is

Table 10.6 Calculated values of the summary statistics for the IVhet model

Study n r Z Var Tauˆ2 Var* W W* WZ

Moore (2006) 133 0.56 0.6328 0.0077 0.0086 0.01633 130 0.0003 82.268

Davis (2008) 149 0.43 0.4599 0.0068 0.0086 0.01548 146 0.0004 67.145

Thomas (1999) 131 0.53 0.5901 0.0078 0.0086 0.01645 128 0.0003 75.539

Miller (2012) 120 0.51 0.5627 0.0085 0.0086 0.01718 117 0.0003 65.839

Williams (2012) 111 0.66 0.7928 0.0093 0.0086 0.01789 108 0.0002 85.624

Young (2013) 152 0.46 0.4973 0.0067 0.0086 0.01534 149 0.0004 74.099

Baker (2009) 60 0.33 0.3428 0.0175 0.0086 0.02618 57 9E-05 19.541

Adams (2006) 122 0.38 0.4001 0.0084 0.0086 0.01704 119 0.0003 47.607

954 0.0022 517.66
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θ̂∗
IV het =

8∑
i=1

wi θ̂i

8∑
i=1

wi

=

8∑
i=1

WZ

8∑
i=1

W

= 517.66

954
= 0.5426 ≈ 0.54.

(ii) The standard error of the estimator is

SE(θ̂∗
IV het ) =

√√√√ 8∑
i=1

W ∗
i =√

0.0022 = 0.046716.

(iii) The 95% confidence interval of the transformed effect size ζ under the IVhet
model is given by the lower limit (LL) and upper limit (UL) as follows:

LL∗ = θ̂∗
IV het − 1.96 × SE(θ̂∗

IV het ) = 0.5426 − 1.96 × 0.046716

= 0.451061 and

UL∗ = θ̂∗
IV het + zα/2 × SE(θ̂∗

IV het ) = 0.5426 + 1.96 × 0.046716 = 0.63419.

To find the 95% confidence interval for population effect size ρ under the REs
model, we transform the above limits using tanh transformation as follows:

LL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.451061 − 1

e2×0.451061 + 1
= 2.46483 − 1

2.46483 + 1
= 1.46483

3.46483

= 0.422771 ≈ 0.42 and

UL = e2×LL∗ − 1

e2×LL∗ + 1
= e2×0.63419 − 1

e2×0.63419 + 1
= 3.55506 − 1

3.55506 + 1
= 2.55506

4.55506
= 0.56093 ≈ 0.56.

Then, the point estimate of ρ under the IVhet model is found by the following
transformation, ρ̂IV het = tanh(θ̂∗

IV het ) = tanh(0.5426) = 0.495 ≈ 0.49.

Comment The above point estimate (0.49) of ρ and the 95% confidence interval
(0.42, 0.56) are presented at the bottom row of the forest plot and represented by the
diamond in Fig. 10.3.

Forest plot for correlation under IVhet model using MetaXL
The forest plot under the IVhetmodel (indicatedby“IVhet” in the code) is constructed
using MetaXL code

=MAInputTable(“Correlation IVhet”,”Numcorr”,”IVhet”,B7:D14)

Remark: Explanations of MetaXL Code
For this type of meta-analyses in MetaXL the ‘opening’ code starts with MA Input
Table ‘ = MAInputTable’. This is followed by an open parenthesis inside which the
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Correlation IVhet

Correlation
2.0 4.0 6.0

Study 

Baker 2009 
Adams 2006 

Davis 2008 

Young 2013 

Overall 
Q=14.15, p=0.05, I2=51%

Miller 2012 
Thomas 1999 

Moore 2006 

Williams 2012 

    Corr (95% CI)          % Weight

   0.33  (  0.08,  0.54)      6.0
   0.38  (  0.22,  0.52)     12.5

   0.43  (  0.29,  0.55)     15.3

   0.46  (  0.32,  0.58)     15.6

   0.49  (  0.42,  0.56)    100.0

   0.51  (  0.36,  0.63)     12.3
   0.53  (  0.39,  0.64)     13.4

   0.56  (  0.43,  0.67)     13.6

   0.66  (  0.54,  0.75)     11.3

Fig. 10.3 The forest plot of correlation under the IVhet model

first quote contains the text that appears as the ‘title of the output of the forest plot’
e.g. “Correlation IVhet” in the above code (user may choose any appropriate title
here, but IVhet is chosen to indicate inverse variance heterogeneity model). Then in
the second quote enter the type of effect measure, e.g. “Numcorr” in the above code
tells that the variable is numeric and correlation is the effect size. Within the third
quote enter the statistical model, e.g. “IVhet” in the above code stands for the inverse
variance heterogeneity (abbreviated by IVhet) model. Each quotation is followed
by a comma, and after the last comma enter the data area in Excel Worksheet, e.g.
B7:D14 in the above code tells that the data on the independent studies are taken from
the specified cells of the Excel Worksheet. The code ends with a closing parenthesis.

The forest plot of the meta-analysis using the above MetaXL code is found in
Fig. 10.3.

Interpretation
From the above forest plot of correlation coefficient under the IVhet model, in
Fig. 10.3, the estimated population effect size (common correlation coefficient)
is 0.49, and the 95% confidence interval is (0.42, 0.56). The effect size is highly
statistically significant (as 0 is not included in the confidence interval).

10.7 Discussions and Comparison of Results

The meta-analyses of the correlation coefficient data in Example 10.3 have been
provided in the previous section. The same data has been meta-analysed under the
fixed effect, random effects and inverse variance heterogeneity models.
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From the calculated value of Cochran’s Q = 14.15 with its P-value less than
0.05 we find significant heterogeneity in the correlation coefficients among the inde-
pendent studies. The I 2 = 51% also reflects that there is heterogeneity among the
studies.

Comparison of results
The point estimate of the common population correlation coefficient (0.49) is the
same for all three statistical models.

Under the FE model, the 95% confidence interval for the common population
correlation coefficient, ρ is (0.45, 0.54) which is highly statistically significant (as 0
is not included in the confidence interval).

The 95% confidence interval under both the REs and IVhet models is (0.42, 0.56)
which is also highly significant. So, the confidence interval under the REs and IVhet
models is wider than that under the FE model.

Even though the point estimate and 95% confidence interval for the common
population correlation coefficient is the same for both REs and IVhet models the
re-distributed weights of individual studies are very different.

10.8 Subgroup Analysis

The subgroup analysis for correlation coefficient is very similar to that of WMD in
Sect. 9.7. It is not necessary to re-produce them again here. Readers interested to
subgroup analysis and their interpretations are referred that Section.

10.9 Publication Bias

The study of publication bias for correlation coefficient is very similar to that of SMD
in Sect. 8.8. It is not necessary to re-produce them again here. Readers interested to
produce funnel plot or Doi plot and their interpretations are referred that Section.

Appendix 10—Stata Codes for Correlation Coefficient
Meta-Analysis

A10.1 Correlation data

Study name n r Z seZ

Moore (2006) 133 0.56 0.6328 0.0877

Davis (2008) 149 0.43 0.4599 0.0828

(continued)
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(continued)

Study name n r Z seZ

Thomas (1999) 131 0.53 0.5901 0.0884

Miller (2012) 120 0.51 0.5627 0.0925

Williams (2012) 111 0.66 0.7928 0.0962

Young (2013) 152 0.46 0.4973 0.0819

Baker (2009) 60 0.33 0.3428 0.1325

Adams (20067) 122 0.38 0.4001 0.0917

A10.2 Stata codes for meta-analysis

A10.2.1 metan function [outputs in terms of Z = atanh(r)]

* Fixed effects meta-analysis
metan Z seZ, fixed lcols(Study) astext(85) xlabels(0(0.25)1) name(forestfixd,

replace)
* Random effects meta-analysis
metan Z seZ, random lcols(Study) astext(85) xlabels(0(0.25)1) name(forestrand,

replace)
* Combined fixed and random effects forest plots on the same graph
graph combine forestfixd forestrand, ysize(3) xsize(6) name(ROcombined,

replace)

A10.2.2 admetan function [outputs in terms of Z = atanh(r)]

* Fixed effects model
admetan Z seZ, model(fixed) study(Study) or
admetan Z seZ,model(fixed) study(Study) forestplot(effect(“Pooled Effect Size”)

xlabel(−1 −0.6 −0.3 0 0.3 0.6 1))
* Random effects model
admetan Z seZ, model(random) study(Study) or
admetan Z seZ, model(random) study(Study) forestplot(effect(“Pooled Effect

Size”) xlabel(−1 −0.6 −0.3 0 0.3 0.6 1))
* IVhet model
admetan Z seZ, model(ivhet) study(Study) or
admetan Z seZ,model(ivhet) study(Study) forestplot(effect(“Pooled Effect Size”)

xlabel(−1 −0.6 −0.3 0 0.3 0.6 1))
A10.2.2 admetan function [outputs in terms of r = tanh(Z)]
** First run any of the above admetan command to generate six new columns

(_ES, _seES, _LCI, _UCI, _WT, _rsample) in the dataset
* Fixed effect model
clear all
set more off
admetan Z seZ, model(fixed) study(Study)
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** _ES is the effect size of each individual studies in z scale, so first transform
back Z values to r values

generate es = tanh(_ES)
generate lb = tanh(_LCI)
generate ub = tanh(_UCI)
** Create forest plot of r values manually
* At first prepare data for -forestplot-
generate _USE = 1
//Generate study labels for -forestplot-
generate _LABELS = Study
label var _LABELS “Study”
label var n “Sample size”
//Add effect size to data set
local new = _N + 1
set obs ‘new’
replace _LABELS = ”{bf:Overall}” if _n == _N
replace r = tanh(r(eff)) if _LABELS == ”{bf:Overall}”
replace lb = tanh(r(eff) - (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
replace ub = tanh(r(eff) + (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
replace _USE = 5 if _LABELS == ”{bf:Overall}”
//Forest plot (with weight) under fixed effect model
forestplot r lb ub, nonull effect(“Correlation”) rcol(n) leftjustify
* Random effects model
clear all
set more off
admetan Z seZ, model(random) study(Study)
** _ES is the effect size of each individual studies in z scale, so first transform

back Z values to r values
generate es = tanh(_ES)
generate lb = tanh(_LCI)
generate ub = tanh(_UCI)
** Create forest plot of r values manually
* At first prepare data for -forestplot-
generate _USE = 1
//Generate study labels for -forestplot-
generate _LABELS = Study
label var _LABELS “Study”
label var n “Sample size”
//Add effect size to data set
local new = _N + 1
set obs ‘new’
replace _LABELS = ”{bf:Overall}” if _n == _N
replace r = tanh(r(eff)) if _LABELS == ”{bf:Overall}”
replace lb = tanh(r(eff) - (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
replace ub = tanh(r(eff) + (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
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replace _USE = 5 if _LABELS == ”{bf:Overall}”
//Forest plot (with weight) under random effects model
forestplot r lb ub, nonull effect(“Correlation”) rcol(n) leftjustify
* IVhet model
clear all
set more off
admetan Z seZ, model(ivhet) study(Study)
** _ES is the effect size of each individual studies in z scale, so first transform

back Z values to r values
generate es = tanh(_ES)
generate lb = tanh(_LCI)
generate ub = tanh(_UCI)
** Create forest plot of r values manually
* At first prepare data for -forestplot-
generate _USE = 1
//Generate study labels for -forestplot-
generate _LABELS = Study
label var _LABELS “Study”
label var n “Sample size”
//Add effect size to data set
local new = _N + 1
set obs ‘new’
replace _LABELS = ”{bf:Overall}” if _n == _N
replace r = tanh(r(eff)) if _LABELS == ”{bf:Overall}”
replace lb = tanh(r(eff) - (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
replace ub = tanh(r(eff) + (1.96 * r(se_eff))) if _LABELS == ”{bf:Overall}”
replace _USE = 5 if _LABELS == ”{bf:Overall}”
//Forest plot (with weight) under IVhet model
forestplot r lb ub, nonull effect(“Correlation”) rcol(n) leftjustify

References

Cochran WG (1973) Experiments for nonlinear functions (R.A. Fisher Memorial Lecture). J Am
Stat Assoc 68(344):771−781. https://doi.org/10.1080/01621459.1973.10481423

Doi SA, Barendregt JJ, Khan S, Thalib L, Williams GM (2015) Advances in the meta-analysis of
heterogeneous clinical trials I: the inverse variance heterogeneity model. Contemp Clin Trials
45(Pt A):130–138. https://doi.org/10.1016/j.cct.2015.05.009

Fisher RA (1915) Frequency distribution of the values of the correlation coefficient in samples from
an indefinitely large population. Biometrika 10(4):507–521. https://doi.org/10.2307/2331838

Higgins JP, Thompson SG,Deeks JJ, AltmanDG (2003)Measuring inconsistency inmeta-analyses.
BMJ 327(7414):557–560

Hinkle DE (2003) Applied statistics for the behavioral sciences, 5th edn. Houghton Mifflin, Boston

https://doi.org/10.1080/01621459.1973.10481423
https://doi.org/10.1016/j.cct.2015.05.009
https://doi.org/10.2307/2331838


Part IV
Special Topics in Meta-Analysis



Chapter 11
Meta-Regression

Chang Xu and Suhail A. R. Doi

11.1 Basic Theory

11.1.1 The Classical Meta-Regression Method

Suppose θ̂ j is the effect estimated in the jth study, then under the fixed-effect model,

θ̂ j ∼ N (μ, σ 2
j )

The fixed-effect model assumes all the studies are from the same population so
there is no heterogeneity between these studies (Thompson and Higgins 2002). Now
let’s consider the random-effect model:

θ̂ j ∼ N (θ j , σ
2
j ); θ j ∼ N (μ, τ 2)

The heterogeneity term τ 2 is generated under the assumption that the difference
between the overall population parameter (μ) and the study population characteristics
modified effect (e.g. difference in mean age) is distributed normally with a common
variance (Thompson and Sharp 1999). The regression model is then

θ̂ j = μ + β1 · x1 + β2 · x2 + . . . + βi · xi + b j + ε j
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Here x represents the study-level characteristics and ε j represents the random
error with the variance of σ 2

j and b the non-random error with the variance of τ 2,
both of which share the expectation (mean) of zero. Because all the characteristics
(independent variables) are mean or median based on the study-level, each study
is independent from another, and these variables are independent from each other.
To take account of the variance of error information into the meta-regression, the
weighted least square method can be used to get the parameter estimations.

Aproblemwithfixed-effectmeta-regression is thatmost studies are heterogeneous
and thus there is overdispersion of the data compared to themodel that random-effect
meta-regression tries to address (Harbord and Higgins 2008). However, it should be
pointed out that with increasing heterogeneity of studies, the random-effect weights
becomemore equal and the regression therefore becomesmore andmore unweighted
and this tends to lead to continued overdispersion with this model as well (Doi et al.
2015). As expected, when variables are added (or dropped) within the regression
model, the total weighted variance (Q) will change, while the within study variance
(σ 2

j ) is known to us and keeps the same. This will result in the change of the between
study variance (τ 2) so that when it reduces, this means that the variable can explain
part of the heterogeneity and when it increases, this means adding the variable will
make the fitting of the model poorer and the variable should not be added and of
course is not the source of heterogeneity. The proportion of heterogeneity explained
by the added variables is then

R2 = [(τ 2
0 − τ 2

model)
/

τ 2
0 , 0]

The equation implies that when the heterogeneity is reduced then the τ 2
model ≤ τ 2

0 ,
and when heterogeneity increased that τ 2

model > τ 2
0 , with the proportion tending

towards zero (Thompson and Higgins 2009). Here the proportion is actually the
same as the R square of the generic regression and is then indexed as R squared.

R2 = τ 2
0 − τ 2

model

τ 2
0

= 1 − SSres
SStotal

= SSmodel

SStotal

Here τ 2
0 is the heterogeneity when we did not add any variables into the regression

and obviously, the result of this model is the pooled effect estimate of the population
parameter μ(the constant term).

θ̂ j = μ + b j + ε j
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11.1.2 The Robust Error Meta-Regression Method

The classical meta-regression model is based on the random-effect meta-analytic
modelwhile thismodel has the limitationwenoted previously.An alternative solution
is to use the generic regression with the robust (Huber-Eicker-White-sandwich) error
variances to account for the underestimated variance in such analyses under the
regression model (Hedges et al. 2010). These standard errors are usually bigger than
the ordinary least squares (OLS) standard errors when effect sizes further from the
mean are more variable. Weights applied to this model are fixed-effect weights and
overdispersion is avoided through use of robust standard errors.

11.2 Application in MetaXL/STATA

11.2.1 The Meta-Regression Dataset

The IHDChol example uses 28 randomized trials of serum cholesterol reduction
(by various interventions), and the risk of ischaemic heart disease (IHD) events
observed. Both fatal IHD and non-fatal myocardial infarction were included as IHD
events, and the analysis is based on the 28 trials reported by Law et al. (Law et al.
1994). In these trials, cholesterol had been reduced by a variety of means, namely
dietary intervention, drugs, and, in one case, surgery. The meta-regression looks at if
increased benefit in terms of IHD risk reduction is associated with greater reduction
in serum cholesterol, in order to lend support to the efficacy of cholesterol reduction
and to predict the expected IHD risk reduction consequent upon a specified decrease
in serum cholesterol (Table 11.1).

11.2.2 The Robust Error Meta-Regression in STATA

Wemayfirst use the inverse-varianceweightswith the following command to conduct
a generic meta-analysis. The reason we use the inverse-variance weights is that with
the robust standard errors itmimics the IVhetmodel (Doi et al. 2015) ofmeta-analysis
which is a robust error fixed-effect model and results can then be compared against
the latter. The pooled OR under the IVhet model is 0.83 (95%CI: 0.72, 0.95) and the
relative heterogeneity (I2) is 45.7% and the between-study variance (τ 2) is 0.0188.
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Table 11.1 Comparisons on the IDH events of various interventions

Study name N1 Cases1 Non-cases1 N2 Cases2 Non-cases2 Chol_reduc

T1 5331 173 5158 5296 210 5086 0.55

T2 244 54 190 253 85 168 0.68

T3 350 54 296 367 75 292 0.85

T4 2222 676 1546 2789 936 1853 0.55

T5 145 42 103 284 69 215 0.59

T6 279 73 206 276 101 175 0.84

T7 1906 157 1749 1900 193 1707 0.65

T8 71 6 65 72 11 61 0.85

T9 1149 36 1113 1129 42 1087 0.49

T10 88 2 86 30 2 28 0.68

T11 2051 56 1995 2030 84 1946 0.69

T12 94 1 93 94 5 89 1.35

T13 4541 131 4410 4516 121 4395 0.7

T14 424 52 372 422 65 357 0.87

T15 199 45 154 194 52 142 0.95

T16 229 61 168 229 81 148 1.13

T17 221 37 184 237 24 213 0.31

T18 28 8 20 52 11 41 0.61

T19 130 47 83 134 50 84 0.57

T20 421 82 339 417 125 292 1.43

T21 6582 62 6520 1663 20 1643 1.08

T22 94 2 92 52 0 52 1.48

T23 23 1 22 29 0 29 0.56

T24 60 3 57 30 5 25 1.06

T25 1018 132 886 1015 144 871 0.26

T26 311 35 276 317 24 293 0.76

T27 79 3 76 78 4 74 0.54

T28 76 7 69 79 19 60 0.68
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From the results, we can see that there ismoderate heterogeneity (I2 = 45.7%, tau2

= 0.0294) between studies. The total variance based on Mantel-Haenszel estimates
is 49.69.

Using a robust error meta-regression without covariates, we can reproduce these
results as follows:

Wemay further investigate whether the amount of cholesterol reduction is associ-
ated with the lnORs across studies by the robust error meta-regression analysis with
inverse-variance weights and where _ES and _seES are the effect size and standard
error of the effect size respectively.
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The meta-regression analysis suggests there is significant association between
amount of cholesterol reduction and lnORs (p < 0.001) and each unit reduction in
cholesterol will lead to a 38% reduction of the odds (OR = 0.62, 95%CI: 0.52,
0.74). The proportion of between-study variance explained by cholesterol reduction
was 23.8% (R2 = mss

mss+rss , see below). Here mss indicate the model sum of square
(SSmodel ) while rss is the residual sum of squares (SSres). The ereturn list command
allows us to see the total variance when the chol_reduc variable was added into the
model. The e(r2_a) gives the adjusted R2 (20.9%).

We may observe that the total variance also reduced (Fmodel = 30.23). And we
can use the total variance to calculate the I2 statistic

I 2model = Fmodel − (d f _r)

Fmodel
= 30.23 − 26

30.23
= 13.99%

To depict this relationship we can create a twoway plot as follows:
twoway (scatter _ES chol_reduc [w = 1/(_seES2)], msymbol(oh)) (lfit _ES

chol_reduc [w = 1/(_seES2)], yline(–0.193) ytitle(“Effect size (interval scale)”))
Figure 11.1 presents the regression plot between amount of cholesterol reduction

and lnORs. The figure may help us to explain the reason for the reduction on total
variance. The dash line is the pooled lnOR by IVhet method [ln(0.825) = –0.193]
without adding the chol_reduc variable and the solid line is the linear prediction for
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Fig. 11.1 The regression plot between amount of cholesterol reduction and lnORs

cholesterol reduction and lnORs.Aswe known, the total variance is the sumweighted

distance for the observed value to the predicted value (Q = ∑
w j ·

(
θ − θ̂

)2
).

Obviously, the sum weighted distance for the observed value to the dash line is
different to the linear prediction and the latter shows better fitting.

As we add the chol_reduc variable into the regression model, the risk of IHD is
comparable when the cholesterol reduction is zero (OR = 1.13, 95%CI: 0.98, 1.30).

The meta-regression may also be done using the classic random-effect meta-
regression method using themetareg command. We then obtain the following results
where _seES is the standard error for the effect size (_ES) in each study from the
admetan command described earlier:
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The point estimates are similar but in this instance the confidence intervals are
slightly different given the Knapp-Hartung modification (Knapp and Hartung 2003).

11.2.3 Meta-Regression in MetaXL

The MetaXL add-in program in Excel also provide solutions for meta-analysis and
it allows us to generate data for meta-regression. The MARegresData function in
MetaXL allows the creation of a regression dataset that can be directly pasted in Stata
and used to run meta-regression analyses under this framework. The dataset appears
in a table under the Meta-Regression data tab that will show in the MAInputTable
output pop-up window when a MARegresData function is linked to the MAInput-
Table function. The MARegresData function creates all the necessary variables and
weights required for the analysis.

The regression dataset table consists of nine fixed columns that describe each
study’s characteristics, and any number of user-defined columns that describe each
study’s moderator variables. The fixed columns are defined in the table below
(Table 11.2).

Please note that the regression is performed on the transformed variables: the
transformed effect size called “t_es” as well as a weight under the model of interest
called “weight”. (The un-transformed variables u_es and its CI are there only for the
convenience of the user, useful when back-transformed outputs are cumbersome to
obtain, such as with the double arcsine transformation for prevalence). The variable
t_es is the outcome variable and this is regressed against the user-defined moderator
variables in the dataset.

We open the IHDCholMetaRegres example module and use the MAInputTable
and theMARegresData function preparing the meta-regression data byMetaXL.We
then see the meta-regression data is presented in the table (Fig. 11.2).

Table 11.2 Definition of variables for meta-regression in cholesterol reduction example

Variable name Contents

ID Study name

t_es Transformed effect size

se_t_es Standard error of the transformed effect size

var_t_es Variance of the transformed effect size

u_es Un-transformed effect size (i.e. natural scale)

lci_u_es Lower CI of the un-transformed effect size

uci_u_es Higher CI of the un-transformed effect size

inv_var Inverse of the variance of the transformed effect size

weight Weight of the study in the meta-analysis (normalized
weights that sum to 1)
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Fig. 11.2 The output sheet for meta-regression data prepared for meta-regression

Right-click on the “Meta-regression data” table in the results window and click
copy. Then we paste the data into Stata software and run the robust meta-regression.

11.3 Meta-Regression for Categorical Variables

In the above example we illustrated meta-regression for continues variable, there
comes to the question that when the variable is discontinuous how to conduct the
meta-regression? Let’s use the same dataset to simulate a categorical variable by
categorizing the cholesterol reduction into three levels (<0.5, 0.5 ~ 0.99, 1 ~ 1.5) and
assign 0, 1, 2 to these three dummy variables.
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recode chol_reduc (min/0.499 = 0) (0.5/0.999999 = 1) (1/max = 2),
gen(chol_grp)

Now we get the dataset as show in the following figure (Fig. 11.3).
Again, we run the meta-regression analysis with indicator variable for group to

allow a categorical robust meta-regression.

Fig. 11.3 Simulated categorical variable for meta-regression
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We may observe that when using the categorical variable, the proportion of
between-study variance explained is much less than the continues one (18.6% versus
23.8%). The constant takes the value of the zero category (reference group).

11.4 Multivariable Meta-Regression

Both classical meta-regression method and the robust error meta-regression method
allow us to achieve multivariable meta-regression just like the multivariable regres-
sion in individual-level data (Thompson and Higgins 2009). Sometimes multivari-
able meta-regression is necessary because single covariate generally is only able to
explain part of the between-study heterogeneity. In our above example, we know
that cholesterol reduction can explain 23.8% of the between-study heterogeneity but
not 100%. This means there is still a lot of between-study heterogeneity due to other
covariates, which may be the mean age, the region, the mean body mass index and
so forth. To address this, we may just add these variables into the meta-regression
model. For example, suppose we have another covariate of age in the above example,
we may then put both cholesterol and age into the model.

It is notable that more covariates mean we need more studies (one study is a
data point) to ensure the statistical power of meta-regression. Then, when we put
covariates into the meta-regression model, we should first ensure a sufficient number
of studies and note that for every covariate added we need at least 10 additional
studies. Therefore, two covariates need at least 20 studies to be present.When the total
number of studies is less than 10, it is not appropriate to employ a meta-regression
analysis and the subgroup analysis may be employed as an alternative solution to
detect the source of heterogeneity. Similarly, when the total number of studies is less
than 20, we may only use 1 covariate to fit the meta-regression.
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Some characteristics cannot be treated as a covariate for meta-regression, for
example, the sample size. This is because sample size in each study is highly corre-
lated with the standard errors of effect estimates. When entered into the meta-
regression model, it will break the assumption of orthogonality and make the
regression model invalid (Dobson and Barnett 2008).

It might be noted that subgroup analysis is a special case of meta-regression of
categorical variables. The difference is that subgroup analysis can only deal with one
variable each time and does not have a relative comparison to the reference group
within the analysis. The advantage of subgroup analysis to meta-regression is that it
does not have the restriction regarding the minimum number of studies. It is notable
that for subgroup analysis the interaction test of the potential difference of the effects
among sub groups is generally underpowered when there are 3 or more sub groups.

11.5 Summary

In this chapter, we give a detailed introduction to the meta-regression method,
including the basic theories, the step-by-step application for meta-regression in Stata
and MetaXL as well as the multivariable meta-regression. We suggest that readers
read this chapter with Chap. 13 which introduces dose-response meta-analysis, as
this may help readers acquire a deeper understanding of both meta-regression and
dose-response meta-analysis.
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Chapter 12
Publication Bias

Luis Furuya-Kanamori and Suhail A.R. Doi

12.1 Introduction

As we have seen in Chap. 1, systematic reviews and meta-analyses of randomised
controlled trials generate the highest level of evidence. However, pooled estimates
generated from systematic reviews and meta-analyses can be biased due to method-
ological weakness of the individual trials such as inadequate randomisation, lack of
allocation concealment, or incomplete outcome data. Furthermore, meta-analytical
pooled estimates can be severely affected if not all existing evidence is included in
the analysis. We call this publication bias and is the subject of this Chapter.

For various reasons not all research studies, including randomised controlled
trials, are published and hence results or summary statistics on the research question
of interest are not always publicly accessible for meta-analysis. One major reason
for publication bias is that results that are not statistically significant (p-value > 0.05)
are less likely to be published in scientific journals (Koren et al. 1989). Rosenthal
described this as the “file drawer problem” where journals are filled with the 5% of
studies showing a false-positive result while the remaining non-significant results
are being filed in the researcher’s drawer (Rosenthal 1979). Another common reason
for results not being published are unfavourable findings of trials that contradict
funding agency interests. Other reasons that may also lead to publication bias include
language bias (i.e. including only studies published in English), time-lag bias (i.e.
results of negative trials take longer to get published than positive trials), and outcome
reporting bias (i.e. selective reporting of pre-specified outcomes in a trial) (Thornton
and Lee 2000).
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12.2 Detection Methods

When conducting a meta-analysis, the presence of publication bias can be examined
either through direct or indirect evidence. Direct evidence is available from trial
registries (e.g. ClinicalTrials.gov) generally for interventional and cohort studies
which are required to register the research protocol before the study can be conducted.
Researchers can then search these registries for studies that have been conducted,
yet have not been published or the results not been made available.

Several graphical and statistical methods have been developed to gather indirect
evidence of publication bias. Large trials are expected to be of better quality, more
precise, and usually get published even if the results are not statistically significant;
while smaller trials, are less precise and require a larger effect size (either positive
or negative) to be statistically significant in order to be considered for publication.
Therefore, most of these indirect methods operate under the assumption that if there
is no publication bias, there should not be an association between the treatment effect
and the study size (measured through its precision) of the studies included in a meta-
analysis. If there is an association between treatment effect size and study size, it is
likely that publication bias is present due to the lack of inclusion of small negative
trials in the meta-analysis. However, an association between treatment effect and
study size can be due to reasons other than publication bias, such as true heterogeneity
between studies included in the meta-analysis and chance (Sterne et al. 2011).

12.2.1 Graphical Methods

Two datasets (provided in the Appendices A12.1 and A12.2) were used for the exam-
ples in this Chapter. The Fibrinolysis dataset contains data from a meta-analysis of
randomised controlled trials that examined the effect of fibrinolytic therapy on reduc-
tion of mortality after a myocardial infarction (Yusuf et al. 1985). The Magnesium
dataset contains information from randomised controlled trials that assessed the effect
of intravenous magnesium sulphate on mortality in patients with acute myocardial
infarction (Nüesch and Jüni 2008). In both cases, the effect measure was the natural
log of the relative risk (Ln RR).

Funnel Plot
Funnel plots are the most commonly used graphical methods to detect publication
bias. Funnel plots are scatter plots of the effect size (or Ln transformed effect size for
RRandOR) against ameasure of precision (usually the standard error). In the absence
of publication bias, it is expected that these plots will resemble an inverted funnel
where smaller studies will scatter widely at the bottom of the plot (due to random
variation), with the spread narrowing with increasing size of the study and thus its
precision. The funnel plots are not recommended to be used when the number of
studies in a meta-analysis is small (less than 10) (The Cochrane Collaboration 2011)
as well as in proportion meta-analysis (Hunter et al. 2014).
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Fig. 12.1 Funnel plots with ES = Ln RR depicting the fibrinolysis (left) and magnesium (right)
meta-analyses

The funnel plot is not dependent on the meta-analytical model because it uses
the fixed effect pooled estimate as the centre of the funnel, regardless of model of
meta-analysis in use. In this example, the meta-analysis used the IVhet model but
the funnel plots (Fig. 12.1) were generated using the fixed effect model in MetaXL.
Funnel plots can also be generated in Stata (the codes are provided in the Appendix
A12.3).

From the funnel plots in Fig. 12.1 it likely that there is no publication bias in the
fibrinolysis meta-analysis (left panel) as the plot is symmetrical. A symmetrical plot
indicates that there is no association between effect size and study size.

The funnel plot for the magnesium meta-analysis (right panel) is asymmetrical.
The majority of the studies included in this meta-analysis indicate that magnesium
reduces the risk of mortality after myocardial infarction. A medium sized study and
two large ones are on the right side of the vertical line indicating a null or harmful
effect of magnesium, while there are no negative small studies. This finding is highly
suggestive of publication bias.

Contour-Enhanced Funnel Plot
The contour-enhanced funnel plot is a variation of the standard funnel plot, where
levels of statistical significance (e.g., < 0.01, < 0.05, < 0.1) are added to funnel
plots (Peters et al. 2008). The addition of areas with different levels of statistical
significance assist with the interpretation of the funnel plot, particularly if studies
are missing from areas of statistical non-significance, which suggests publication
bias. Contour-enhanced funnel plots (Fig. 12.2) were generated in Stata (codes are
provided in the Appendix A12.4).

The contour-enhanced funnel plot in the left panel shows studies of different
sizes on both sides of the statistical non-significance area (white area) suggesting
that publication bias is not present. The plot on the right panel does not contain small
and medium sized studies on the right side of statistical non-significance area, and
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Fig. 12.2 Contour-enhanced funnel plot where effect estimate = Ln RR depicting the fibrinolysis
(left) and magnesium (right) meta-analyses

is thus indicative that the results of the meta-analysis may be affected by publication
bias.

Doi Plot
Another graphical method that is increasingly being used to assess publication bias
is the Doi plot (Furuya-Kanamori et al. 2018; Barendregt 2016). Like the funnel plot,
the Doi plot is a graph of effect size versus a measure of precision; however, in this
plot themeasure of precision is the absolute Z-score. The individual dots on the graph
are then connected and the tip of the Doi plot is formed by the most precise study, the
one with the Z-score closer to zero. Smaller and less precise studies will produce an
effect size that scatters increasingly widely, and the absolute Z-score will gradually
increase for both smaller and larger effect sizes on either side of the effect size of
the most precise study. If studies are homogeneously spread on both sides of the
most precise study this indicates that they are not affected by publication bias. The
plot will resemble a symmetrical mountain with similar number of studies and equal
spread on each side. Like the funnel plot, the Doi plot is used to alert researchers of
possible publication bias affecting the pooled estimate; however, the Doi plots have
some significant advantages—they are more sensitive than the funnel plots, can be
used for proportion meta-analysis, and the number of studies in a meta-analysis does
not impact its visual interpretation (Furuya-Kanamori et al. 2018).

Similar to the funnel plot, the Doi plot does not depend on any meta-analytical
models, hence it can be generated from MetaXL regardless of the model selected.
The Doi plots in Fig. 12.3 were produced from meta-analyses using the IVhet model
inMetaXL. For the appropriate way to render the Doi plots, please follow the instruc-
tions provided by Suhail ARDoi in International Journal of Evidence-Based Health-
care (Doi 2018). A Stata package has been developed to produce Doi plots, the
instructions for its installation and Stata codes are provided in the Appendix A12.5.
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Fig. 12.3 Doi plots where ES = Ln RR depicting the fibrinolysis (left) and magnesium (right)
meta-analyses

The interpretation is much like that of the funnel plot, a symmetrical Doi plot
like in Fig. 12.3 (left panel) is suggestive of no publication bias. The Doi plot of the
magnesiummeta-analysis depicted in the right panel is clearly asymmetric suggestive
of presence of publication bias towards publications favouring the use ofmagnesium.

12.2.2 Quantifying Asymmetry

We have described commonly used graphical methods to visually assess publication
bias through the asymmetry of the plots. There are several quantitative methods to
formally examine the (a)symmetry of the plots. There are two main approaches for
such quantitative methods, one that relies on statistical tests (i.e. p-value) and one
that creates an effect measure to quantify asymmetry depicted by either the funnel
or Doi plots.

Statistical Tests
In 1994, Begg and Mazumdar (1994) proposed a rank correlation test to assess the
association of treatment effect size and study size in funnel plots. However, it was
noticed that the test has moderate to little power to detect funnel plot asymmetry
when the number of studies in the meta-analysis was less than 25.

The most commonly used test to detect funnel plot asymmetry is the Egger’s
regression. This test was developed by Egger et al. (1997) and consists of a simple
linear regression of normalised effect size (effect size divided by its standard error)
against precision (reciprocal of the standard error). If the funnel plot is symmetrical
(suggestive of no publication bias), the intercept of the regression model should not
be significantly different from zero.
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In 2006, Harbord et al. (2006) proposed a modified version of the Egger’s regres-
sion. The components of the simple linear regression were replaced with a Z score
over the square root of its variance. Like the Egger’s test, the funnel plot was consid-
ered symmetrical if the intercept of the modified regression model was not signifi-
cantly different from zero. A simulation study revealed that the modified Harbord’s
regression has a lower false-positive rate than the Egger’s regression when there is
little or no between study heterogeneity.

Another popular alternative to the Egger’s regression was proposed by Peters
et al. (2006). The Peters’ tests is a simple weighted linear regression model of the
LnOR against the inverse of the total sample size. The interpretation of the Peters’
regression test is similar to the Egger’s and Harbord’s regression.

Given that these tests examine the asymmetry of the funnel plot, they are
constrained by the limitations of the funnel plot such as the minimum number of
studies in a meta-analysis (at least 10 studies) and are not recommended for propor-
tion meta-analysis. Furthermore, it has been demonstrated that these tests have little
to moderate power to detect asymmetry and their power is dependent on the number
of studies included in a meta-analysis (Furuya-Kanamori et al. 2020).

Effect Measure Based Index
To overcome the drawbacks with the statistical tests to detect publication bias, in
2016 an effect measure of asymmetry (i.e. LFK index) was proposed. Rather than
a test of association, this index compares the two halves of the Doi plot to detect
asymmetry (Furuya-Kanamori et al. 2018; Barendregt 2016). The Doi plot is divided
into two areas using a vertical line from the study with the absolute Z-score closest to
zero. The LFK index quantifies the difference between these two areas (weighted by
the number of studies in each half). If the areas are similar, the Doi plot is considered
symmetrical and thus unlikely to be affected by publication bias. The Doi plot and
the LFK index are increasingly being used by the research community(Negoi et al.
2018; Kaesmacher et al. 2018; Lee et al. 2019; Murphy et al. 2018). Simulation
studies have shown that the LFK index has better operating characteristics than the
Egger’s regression and is not dependent on the number of studies in themeta-analysis
(Furuya-Kanamori et al. 2018).

Examples
The p-values of Begg’s, Egger’s, Harbord’s, and Peters’ tests and the LFK index
were estimated for the fibrinolysis and magnesium meta-analyses and are presented
in Table 12.1. The p-values of Begg’s, Egger’s, Harbord’s, and Peters’ tests were
estimated using Stata (codes provided in Appendix 12.6). The LFK index are auto-
matically calculated when the Doi plots are generated in MetaXL as well as in Stata
(Appendix A12.5).

A p-value of 0.1 is used in these tests is used as the threshold to define asymmetry.
An LFK index value between −1 and 1 indicates symmetry, values between −2 to
−1 and 1 to 2 indicate minor asymmetry, and values less than −2 and more than 2
indicate major asymmetry of the Doi plot.
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Table 12.1 Results of the different statistical methods using the Fibrinolysis and Magnesium
datasets

Fibrinolysis Magnesium

Begg’s test 0.63 0.51

Egger’s regression 0.77 <0.001

Harbord’s regression – <0.001

Peters’ regression – 0.001

LFK index −0.67 −10.09

The Begg’s test and the Egger’s regression p-values of 0.63 and 0.77 indicate that
the funnel plot for the fibrinolysis is symmetrical. The LFK index of−0.67 indicates
that the Doi plot is symmetrical. Therefore, there is no evidence to suggest that the
fibrinolysis meta-analysis is affected by publication bias. The p-values of Harbord’s
and Peter’s regression could not be estimated because Stata requires the raw data
(i.e. event_treat noevent_treat event_ctrl noevent_ctrl) for each individual study.

In the magnesium meta-analysis, the Egger’s, Harbord’s, and Peters’ regression
indicate that the funnel plots are asymmetrical, while the Begg’s test failed to detect
asymmetry. The LFK index of −10.09 is a clear indication of major asymmetry of
the Doi plot.

Appendix

A12.1. Fibrinolysis meta-analysis dataset

Study es se

Fletcher −1.66 1.12

Schreiber −1.40 1.08

Lasierra −1.35 1.14

Second Frankfurt −0.96 0.37

Third European −0.87 0.28

Dewar −0.73 0.71

Austrian −0.57 0.22

Second European −0.45 0.18

Australian −0.26 0.20

Witchitz −0.25 0.68

GISSI −0.21 0.06

Olson −0.19 0.69

UK Collaborative −0.13 0.22

Frank −0.04 0.60

(continued)
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(continued)

Study es se

Italian 0.01 0.35

Valcre 0.06 0.50

N. German Collab 0.19 0.21

Heikenheimo 0.22 0.34

First European 0.37 0.38

NHLBISMIT 0.91 0.70

Klein 1.01 1.12

A12.2. Magnesium meta-analysis dataset

Study_name total_treat event_treat noevent_treat total_ctrl event_ctrl noevent_ctrl

Abraham (1987) 48 1 47 46 1 45

Bhargava (1995) 40 3 37 38 3 35

Ceremuzynski (1989) 25 1 24 23 3 20

Feldstedt (1991) 150 10 140 148 8 140

Gyamlani (2000) 50 2 48 50 10 40

ISIS-4 (1995) 29011 2216 26795 29039 2103 26936

Shechter (1990) 50 1 49 53 9 44

Morton (1984) 40 1 39 36 2 34

Nakashima (2004) 89 1 88 91 3 88

Raghu (1999) 169 6 163 181 18 163

Rasmussen (1986) 56 4 52 74 14 60

Santoro (2000) 75 0 75 75 1 74

MAGIC (2000) 3113 475 2638 3100 472 2628

Shechter (1991) 21 2 19 25 4 21

Shechter (1995) 96 4 92 98 17 81

Singh (1990) 81 6 75 81 11 70

Smith (1986) 92 2 90 93 7 86

Thogersen (1995) 130 4 126 122 8 114

Woods (1992) 1150 90 1060 1150 118 1032

A12.3. Stata codes for the funnel plots

. *For the fibrinolysis meta-analysis

. ssc install metafunnel

. metafunnel es se

. *For the magnesium meta-analysis

. ssc install metafunnel

. ssc install admetan
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. admetan event_treat noevent_treat event_ctrl noevent_ctrl

. metafunnel _ES _SE

A12.4. Stata codes for the contour-enhanced funnel plots

. *For the fibrinolysis meta-analysis

. ssc install confunnel

. confunnel es se

. *For the magnesium meta-analysis

. ssc install confunnel

. ssc install admetan

. admetan event_treat noevent_treat event_ctrl noevent_ctrl

. confunnel _ES _SE

A12.5. Stata codes for the Doi plots
The LFK package for Stata is available from the Boston College Statistical

Software Components.

. *For the fibrinolysis meta-analysis

. ssc install lfk

. lfk es se

. *For the magnesium meta-analysis

. lfk admetan event_treat noevent_treat event_ctrl noevent_ctrl

A12.6. Stata codes for the Begg’s, Egger’s, Harbord’s, and Peters’ tests

. *For the fibrinolysis meta-analysis

. ssc install metabias

. metabias es se, begg

. metabias es se, egger

. metabias es se, harbord

. metabias es se, peters

. *For the magnesium meta-analysis

. ssc install metabias

. metabias event_treat noevent_treat event_ctrl noevent_ctrl, begg

. metabias event_treat noevent_treat event_ctrl noevent_ctrl, egger

. metabias event_treat noevent_treat event_ctrl noevent_ctrl, harbord

. metabias event_treat noevent_treat event_ctrl noevent_ctrl, peters
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Chapter 13
Dose-Response Meta-Analysis

Chang Xu and Suhail A. R. Doi

This chapter deals witth the Dose-Response meta analysis.

13.1 Basic Theory

We define dose-response meta-analysis (DRMA) as a type of meta-analytic method
that combines dose-specific effects of various doses of exposure on outcome from
conceptually similar research in order to establish the potential dose-response rela-
tionship between them. There are three key questions to be considered for a dose-
response meta-analysis: (1) how to conceptualize the unknown dose-response rela-
tionship? (2) how to pool the dose-response relationship from multiple studies? (3)
how to deal with the correlations among dose-specific effects (effect estimates) when
there are multiple estimates per study?

13.1.1 Dose-Response Relationship

To answer the first question, we need to understand the concept of dose-response
relationship. A dose-response relationship describes the changes on the associa-
tion between exposure and outcome at different levels of exposure (Steenland and
Deddens 2004). If a higher dose of exposure leads to a higher or lower effect size,
then we may assume that there is a dose-response relationship. The dose-response
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Table 13.1 Categorical data for dose-response relationship

ID Exposure level Events Total number Effect sizes Confidence interval

1 ≤L1 ro n0 Reference Reference

1 L1-L2 r1 n1 RR1 lnRR1 ± Za/2*SE1

1 L2-L3 r2 n2 RR2 lnRR2 ± Za/2*SE2

1 ≥L4 r3 n3 RR3 lnRR3 ± Za/2*SE3

RR indicates relative risk, including risk ratio, odds ratio, and hazard ratio; Za/2 is the z-score at
alpha/2 level, and SE is the standard error

relationship can be presented in a categorical form and a continuous form. The cate-
gorical dose-response relationship means that the exposure variable was categorized
into several intervals with each interval as a category and there are real differences in
effect (not by chance) as the categorical dose increases (Table 13.1). The continuous
dose-response relationship means that the exposure variable was treated as contin-
uous and that the relationship between exposure and effect size can be smoothed as
a simple linear, piecewise linear, or nonlinear curve.

The problem usually faced is that the majority of studies present their data in a
categorical form rather than a dose-response curve. This will make it easier for the
reader (physicians and patients) to follow, while it is difficult then to meta-analyze
because the categories in each study are mostly different. In very few cases where
the categories are the same in included studies we can combine the effect estimates
category by category. For the more usual case, a practical and valid approach is to
smooth the categories by assigning a dose (e.g. the middle, the median, or the mean
value) for each category to represent the interval and these doses allow us to create a
dose-response curve using the effect estimates from each study and the curves in each
study can then be pooled using the regression coefficients. The method for assigning
a dose for each category is generally based on nonparametric assumption as there
are usually only two point values, say, lower boundary and upper boundary, which
is insufficient to establish a parametric model (Bekkering et al. 2008; Takahashi and
Tango 2010). The most commonly used method is to use the middle value of the
interval. Sometimes, authors may also provide the median or the mean value for
each category. We put more weight on the establishment of the dose-response curve
then on defining a dose from the interval.

13.1.2 Synthesis of the Dose-Response Relationship

In the dose-response data, there is correlations when the effect estimates are relative
effects (RR, OR, HR) or absolute difference (RD, MD, SMD) for the non-reference
categories. One valid solution to take account of the correlation is the generalized
least squares (GLS) estimation (Dobson and Barnett 2008). Since there is usually a
reference category that is common to all effect estimates per study, there is covariance
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between effects within study and the condition for applying GLS estimation is that
the covariance is known to us.

The estimator for the variance of effect estimates is given in relevant chapters.
Here we give the estimator for the variance of the reference group. In Table 13.1,
we’ve indexed ri and ni as the number of events and totals in each category. For
cohort studies or randomized controlled trials, the reference variance is calculated
as:

var(θ0) = 1

r0
− 1

n0
.

For case-control studies

var(θ0) = 1

r0
+ 1

n0 − r0

It may be noted that if the relative risks have been adjusted for confounding vari-
ables then ideally we require the variance of these adjusted risks. We can obtain the
variance of adjusted risks of the non-reference groups while there is no information
necessary to estimate the variance of adjusted risk of the reference. Therefore, for
observational studies, the estimation of the covariance between effect estimates is
somewhat biased.

With the estimates of the regression coefficients and variances we can pool them
by either a two-stage regression or a one-stage regression model. The two-stage
approach was first introduced by Greenland et al. (1992) and further developed by
Orsini et al. (2006, 2012) and is known as generalized least squares for trend (GLST ).
This method uses theGLS estimation to get the regression coefficients and variances
within each study in the first stage and then combines the estimates by a fixed-effect
or random-effect meta-analytic model in the second stage. As the process consists of
two stages, we call it a “two-stage” approach. GLST forces the regression through
the origin as it is based on the mathematical expectation that the intercept is zero
(Liu et al. 2009).

An alternative approach to pool the dose-response relationship is the inverse vari-
ance weighted least squares (WLS) regression with cluster robust error variances
(REMR model) based on the one-stage framework (Xu and Doi 2018). This method
has a particular advantage in addressing the correlations between regression coef-
ficients because it treats each study as a cluster and fits these studies into a cluster
robust log-linear model without generating regression coefficients study-by-study.
While for the correlations between effect estimates within each study (before the
regression is done), a cluster robust error variance is employed to address this. This
is a special case of the generalized linear mixed model where only one stage is
required and covariance need not be imputed from the data. In addition, by applying
the maximum within-study weights to the reference, we need not force the intercept
through zero thus minimizing potential bias.
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13.2 Application in Stata

13.2.1 Binary Outcome

Let’s use alcohol consumption and risk of lung cancer as the first example to illus-
trate the application of dose-response meta-analysis using the Stata software. The
relationship between alcohol consumption and lung cancer has been investigated
in several epidemiological studies. We collected the data from a published meta-
analysis, which is a commonly used example. The data-set covers 4 cohort studies
with the dose range for alcohol from 0 to 45.6 g/day and the reference dose of each
study being zero. Table 13.2 gives the layout of the data for analysis.

In this table, the first column “id” indexes the four studies, RR, LCI andUCI index
the relative risks, lower boundary of the confidence interval, and upper boundary of
the confidence interval respectively. The consumption of alcohol was measured in
g/day and is the “dose”. The events of lung cancer in each category were labeled as
“cases” and the “person-years” indicates the total follow-up years for the subjects.
These twovariables (person-years and cases) are required for covariance computation

Table 13.2 Alcohol consumption (dose in g/day) and risk of lung cancer

Id Author rr lci uci dose Cases Person_years Studytype

1 at 1.00 1.00 1.00 0.00 45.00 5931.51 2

1 at 0.82 0.56 1.22 1.85 61.00 12143.00 2

1 at 0.87 0.60 1.27 9.09 79.00 14671.50 2

1 at 0.81 0.54 1.20 22.86 60.00 12854.30 2

1 at 0.83 0.55 1.26 45.60 53.00 10925.80 2

2 hp 1.00 1.00 1.00 0.00 51.00 96659.20 2

2 hp 0.80 0.53 1.21 2.10 41.00 99390.70 2

2 hp 0.97 0.67 1.40 9.50 67.00 111752.00 2

2 hp 0.51 0.29 0.87 18.80 18.00 53704.70 2

2 hp 1.26 0.86 1.84 40.30 67.00 47657.00 2

3 nt 1.00 1.00 1.00 0.00 111.00 1356.69 2

3 nt 1.11 0.78 1.57 2.20 136.00 1782.74 2

3 nt 1.20 0.86 1.66 9.30 200.00 2456.36 2

3 nt 1.10 0.79 1.54 22.50 193.00 2069.80 2

3 nt 1.69 1.18 2.44 41.30 188.00 1266.80 2

4 ny 1.00 1.00 1.00 0.00 47.00 20756.50 2

4 ny 0.73 0.52 1.02 0.97 135.00 90930.20 2

4 ny 0.95 0.66 1.36 11.40 86.00 42534.00 2

4 ny 0.85 0.57 1.26 22.80 53.00 25430.00 2

4 ny 1.16 0.80 1.70 45.60 71.00 19493.40 2
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in this study type which uses incidence rate (ir). Parallel to incidence rate for cohort
studies, there could also be cumulative incidence (ci) reported where person-years is
replaced with number of non-cases. For case-control (cc) studies, the person-years is
replaced with number of controls. The variable studytypemust take value 1 for case–
control, 2 for cohort with incidence-rate, and 3 for cohort with cumulative incidence.
These details are important as they are used to calculate the correlations between
lnRRs or lnORs when the GLS estimation based method (GLST) is employed.

GLST approach
Before we start the dose-response meta-analysis in Stata, the following two
commands should be installed in advance: glst and xblc. To install type into the
command window in Stata:

. ssc install glst

. net install st0215_1
The reference of each study is the same in this data-set and all equal zero so there

is good homogeneity among them and no further process is needed to make them
more homogeneous. The following commands allow us to transform RR from the
natural to the log scale and for each study, the reference effects are relative to 1 (zero
when log transformed).

. gen logrr = log(rr)

. gen loglci = log(lci)

. gen loguci = log(uci)

. gen se = (loguci-loglci)/(2*invnormal(0.975))
A restricted cubic spline can be created with 3 knots across the reported dose

distribution, which generates two splines (n-1) named doses1 and doses2 and these
will then be employed for potential non-linear dose-specific modelling.

. mkspline doses = dose, cubic nk(3) disp
The glst commend then can be used to run the spline regression within each

study and pool the regression coefficients across studies. It provides fixed-effect and
random-effect models.

. glst logrr doses*, cov(person_years cases) se(se) pfirst(id studytype) r
Wecan use the xblc commend to convert the coefficients toRRs for the pre-defined

doses and plot the summarized dose-response curve.GLST requires a reference dose
as the regression has no constant. The dose-response relationship is plotted as follows:

. quietly levelsof dose, local(levels)

. xblc doses*, covname (dose) at(‘r(levels)’) ref (0) eform line
The pfirst option requires variable id which is a numeric indicator variable that

takes the same value across correlated log relative risks within a study. The pfirst
option also requires the variable studytype,which as mentioned above takes the value
1 for case–control, 2 for cohort with incidence-rate, and 3 for cohort with cumulative
incidence. Within each group of log relative risks, the first observation is assumed
to be the reference and data must be ordered by dose within study. The pfirst option
specifies the pooling method with multiple summarized studies. The fixed effect (f )
or random effects model (r) can be assigned with the pfirst option. To understand
the meaning of pfirst, we may use the following command (without “pfirst”) to fit
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Table 13.3 The regression coefficients of each study by fitting a restricted cubic spline function

Study ID Beta 1 Standard error Beta 2 Standard error

1 −0.00819 0.017 0.00717 0.018

2 −0.02091 0.020 0.03158 0.023

3 −0.00037 0.016 0.01137 0.017

4 0.01011 0.014 −0.00313 0.016

regression to the first study and we can find that when do not use the “pfirst” option it
works when only one study is present while it fails to work when two or more studies
are present. Therefore, the pfirst option is used to specify the pooling of multiple
summarized studies while removing this option would allow glst to fit a regression
for effect estimates against the dose in one study (requires study type to be indicated
as ir, ci or cc).

. glst logrr doses* if id ==1, cov(person_years cases) se(se) ir
The regression coefficients of each study are listed in Table 13.3. These regression

coefficients can then be pooled by the multivariate meta-analytic method.

REMR approach
This is our preferred approach and the code for the REMR approach is similar to that
for theGLST approach. One difference however is that before fitting the pooled dose-
response relationship, we need to first compute weights and also assign a maximum
weight to the reference dose.

. gen wt = 1/(seˆ2)

. bysort id: egen maxwt = max(wt)

. replace wt = maxwt if wt ==.
Again, we create a restricted cubic spline across the reported dose distribution.
. mkspline doses = dose, cubic nk(3) disp
Then the regress commend allows us to establish an inverse-variance weighted

robust error regression across studies.
. regress logrr doses* [aweight = wt], vce(cluster id)
A Wald-type test for non-linearity can be obtained by testing the regression

coefficient of the second spline equal to zero.
. test doses2
A Wald-type test for the hypothesis of no exposure-disease association can be

obtained by testing simultaneously both regression coefficients equal to zero.
test doses1 doses2
Wecan use the xblc commend to convert the coefficients toRRs for the pre-defined

doses and plot the summarized dose-response curve. Unlike GLST that requires
a reference dose as the regression has no constant, REMR does not require this
reference dose as there is a constant term.

. quietly levelsof dose, local(levels)
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Table 13.4 Pooled regression parameters and standard errors by different models

Alcohol and lung cancer Estimating models

REMR GLST-fixed GLST-random

β1(se) −0.00561 (0.008) −0.00065 (0.008) −0.00232 (0.040)

β2(se) 0.01223 (0.009) 0.00702 (0.009) 0.00878 (0.009)

P for non-linearity 0.861 0.438 0.335

. xblc doses*, covname (dose) at(‘r(levels)’) eform line

Explanation of the results
The entire code for the two methods can be found in Xu and Doi (2018). Table 13.4
presents the pooled estimates of regression parameters and standard errors by the two
models. With the GLST random-effect we get regression estimates of β1(−0.002),
β2(0.009); with the GLST fixed-effect we get regression estimates of β1(−0.001),
β2(0.007); and with the REMR model, we get regression estimates of β1(−0.006)
and β2(0.01).

Let’s look at Fig. 13.1 of the dose-specific relationship between alcohol
consumption and risk of lung cancer based on the REMR model. There is a more-
or-less linear trend between alcohol consumption and risk of lung cancer (P for
non-linear test = 0.261). The two dashed lines present the confidence interval and
the solid line is the linear prediction of the dose-specific effects. The hollow circle
is the weighted effect estimates from each study and a larger circle indicates larger
weight. The confidence interval line covers horizontal line at 1 (RR) and indicates no
significant association by current studies. The dose-specific effects are listed below:

Dose RR (95% CI)

0.00 0.95 (0.86−1.04)

0.97 0.94 (0.85−1.04)

1.85 0.94 (0.85−1.04)

2.10 0.94 (0.84−1.04)

2.20 0.94 (0.84−1.04)

9.09 0.91 (0.77−1.09)

9.30 0.91 (0.76−1.09)

9.50 0.91 (0.76−1.09)

11.40 0.92 (0.75−1.11)

18.80 0.95 (0.77−1.18)

22.50 0.98 (0.79−1.23)

22.80 0.98 (0.79−1.23)

22.86 0.99 (0.79−1.23)

40.30 1.14 (0.86−1.52)

41.30 1.15 (0.86−1.54)

(continued)
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Fig. 13.1 Dose-response curve between alcohol consumption and risk of lung cancer (by theREMR
approach)

(continued)

Dose RR (95% CI)

45.60 1.20 (0.87−1.64)

13.2.2 Continuous Outcome

In meta-analysis of continuous outcomes, the effect estimates include means, mean
difference, standardized mean difference etc. Let’s use the data of a meta-analysis
used by Crippa as an example to show the dose-response meta-analysis of contin-
uous outcomes (Crippa and Orsini 2016). Aripiprazole is an antipsychotic drug for
schizoaffective disorder, and the improvement in the condition of patients ismeasured
by a score on the Positive andNegative Symptoms Scale (PANSS). Five clinical trials
have investigated the potential dose-response effect of aripiprazole on the improve-
ment of the PANSS score (Table 13.5). Themean score of PANSS, standard deviation
of the mean and number of patients refers to the category and are listed in Table 13.5.
The data can be downloaded using the following command.

.use http://www.stats4life.se/data/aripanss, clear
We may first construct a dose-response relationship for aripiprazole and the

mean score. This process is the same as the dose-response meta-analysis for binary
outcomes that just uses the lnRRs instead of the mean score. Then we can construct

http://www.stats4life.se/data/aripanss
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a one-stage dose-response meta-analysis for the mean score against the doses using
the REMR approach. It is important to note that when we use absolute mean (not
mean difference) as an outcome measurement, the GLST method is not applicable
as it requires the effects and variance at the reference to be at zero (or 1).

gen sterr = sd/sqrt(n)
gen wt = 1/(sterr ˆ2)
bysort id: egen maxwt = max(wt)
replace wt = maxwt if wt ==.
mkspline doses = dose, cubic nk(3) disp
regress mean doses* [aweight = wt], vce(cluster id)
test doses1 = doses2
quietly levelsof dose, local(levels)
xblc doses*, covname (dose) at(‘r(levels)’) line
We get the following pooled regression estimates with β1 as 1.017204 and β2

as −0.7326656. The non-linear test (P = 0.0011) suggests an obvious non-linear
relationship between the different doses of aripiprazole and the mean scores.

Table 13.5 Aripiprazole for the improvement on the PANSS score of shizoaffective patients

ID Author and Year Dose Mean score sd (Standard deviation) n (number. of patients)

1 Cutler (2006) 0 5.30 18.31 85

1 2 8.23 18.32 92

1 5 10.60 18.31 89

1 10 11.30 18.32 94

2 McEvoy (2007) 0 2.33 26.10 107

2 10 15.04 27.60 103

2 15 11.73 26.20 103

2 20 14.44 25.90 97

3 Kane (2002) 0 2.90 24.28 102

3 15 15.50 26.49 99

3 30 11.40 22.90 100

4 Potkin (2003) 0 5.00 21 103

4 20 14.50 20.16 98

4 30 13.90 20.88 96

5 Study 94202 0 1.40 25.73 57

5 2 11.00 25.00 51

5 10 11.50 25.20 51

5 30 15.80 28.51 54
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       _cons     4.664162   .8159043     5.72   0.005     2.398849    6.929475
      doses2    -.7326656   .1557566    -4.70   0.009    -1.165115   -.3002159
      doses1     1.017204   .1580657     6.44   0.003     .5783437    1.456065

        mean        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
               Robust

                                     (Std. Err. adjusted for 5 clusters in id)

                                                Root MSE          =     1.8333
                                                R-squared         =     0.8500
                                                Prob > F          =     0.0011
                                                F(2, 4)           =      58.21
Linear regression                               Number of obs     =         18

The dose-response trend for different doses of aripiprazole andmean scores can be
established (Fig. 13.2). The pooled baseline mean score of PANSS is 4.66 (95%CI:
2.39−6.93, and as the dose of aripiprazole increases, the mean score increases and
at the dose of 15 mg/day the effects reached the best (Mean = 14.20, 95%CI:
13.39−15.01).

Physiciansmay further want to know the absolute improvement on themean score
for aripiprazole therapy to the pre-drug score. For this purpose, we need to use the
mean difference as effect estimate instead of the mean score. Let’s generate the mean
difference (indexed as d) for non-reference groups to the reference group (dose =
0) in each study and the next step is to calculate the variance and the covariance
matrix of d. In the reference group, the variance of d is regarded as missing. For the
non-reference groups, the variances are calculated as:
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Fig. 13.2 Dose-response curve between aripiprazole therapy and the mean score of PANSS (by
REMR approach)
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Var(di j) =
√
sd2

i j

ni j
+ sd2

0 j

n0 j

Here the subscript 0 indexes the reference group. The following commends allow
us to generate d as well as the variance for each d. Please note that these commends
are based on the fact that the “sterr” variable has been generated earlier as “gen sterr
= sd/sqrt(n)”.

. drop wt maxwt doses1 doses2

. bysort id:gen cat = _n-1

. bysort id: gen d = mean - mean[1]

. bysort id: gen var = sterr[_n]ˆ2

. bysort id: gen sumvar = var[_n] + var[1]

. replace sumvar = . if cat ==0

. bysort id: gen s_pooled = sqrt(sumvar)

. drop var sumvar
As a result, we get the effect estimators and the variance of the non-reference

categories and can then establish the dose-response relationship between them. If we
want to use standard mean difference as effect estimators, we can calculate standard
mean difference and its variance based on Hedge’s g (Hedges 1981) and Cohen’s d
(Cohen 1988) twomethods. Let’s continue to use theREMR approach to establish the
absolute improvement of the score for aripiprazole therapy. Again, we first generate
the weights.

. gen wt = 1/(s_pooled ˆ2)

. bysort id: egen maxwt = max(wt)

. replace wt = maxwt if wt ==.
Again, we create a restricted cubic spline across the reported dose distribution.
. mkspline doses = dose, cubic nk(3) disp
Finally, we get the pooled regression estimates and the dose-specific mean

difference from the following command.
. regress d doses* [aweight = wt], vce(cluster id)
. quietly levelsof dose, local(levels)
. xblc doses*, covname (dose) at(‘r(levels)’) line
From the results, we know that as the dose for aripiprazole increased to 15mg/day,

the improvements reached the maximum effect with the mean difference of 10.55
(95%CI: 8.28−12.82). This means the best dose for aripiprazole therapy is about
15 mg/day and on average an improvement of 10.55 points on the score will be
achieved under this dose. The dose-response curve is presented in Fig. 13.3.
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Fig. 13.3 Dose-response curve between aripiprazole therapy and the improvement (mean differ-
ence) on the mean score compared to no therapy (by REMR approach)

13.3 Additional Issues and Guidance

13.3.1 Heterogeneous Reference Doses

From the above examples we may notice that all the reference dose are zero. This
is obviously important that it ensures all the studies have the same control. While in
some situations the reference doses are different across studies which would bring
large amount of heterogeneity and uncertainty for the pooled evidence. An extreme
example is that in some studies the reference dose is larger than the non-reference
dose in other studies. This is the same situation that in intervention meta-analysis,
if we treat the intervention as different treatments, the controls are different and the
interventions is also different. It is not suitable to conduct a dose-response meta-
analysis when the reference doses are substantially heterogeneous. Let’s consider
another situation that several studies with the reference doses are of great difference,
while the rest of them are relatively homogeneous, we may exclude those studies
with substantial heterogeneous on the reference dose and use the rest of the studies
to conduct the dose-response meta-analysis. Even when the differences among the
reference doses are not substantial a further procedure is necessary to make them
more harmonious. This procedure is the concept of centering, a method that subtracts
the reference dose from all other doses thus in effect moving from dose to “dose
increment”.

.sort id dose

.bysort id: gen dosec = dose – dose[1]
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This centering procedure creates a common reference dose of zero but also makes
the results more difficult to explain in terms of its clinical value. We may use a
two-stage centering procedure to deal with this problem. The first stage is the same
while in the second stage, we add the median value of the reference doses (original
value) to the centered reference. For example, suppose the range of reference doses
is between 1 and 3 and the median value of the reference doses across studies is 2,
then this value is added to the centered reference. We then use the centered doses
instead of the original dose to establish the dose-response relationship.

.sort id dose

.bysort id: gen dosec = dose – dose[1] + 2
The above issue is based on the assumption that all the studies the reference dose

is located in the lowest category or the highest category of the exposure spectrum.
Think about the situation where some studies have the reference doses located in the
lowest category while some others have it located in the middle category. Although
the doses at the lowest category may be the same across studies, but some studies
did not set the lowest category as reference. This is another case of heterogeneity
on reference doses. For such a situation, a transformation of the reference is needed
and there is an Excel macro add-in program (RREst_trend) that may facilitate the
transformation and this can be downloaded from http://www.pnlee.co.uk/software.
htm. Readers can get the manual for the program from the web page.

13.3.2 Missing Data

Missing data represents a tough challenge in meta-analysis. Some missing informa-
tion can be obtained by contacting authors while most of which cannot be obtained.
For dose-responsemeta-analysismissing datamainly includesmissing on the “dose”,
missing on confidence interval of effect estimates, and missing on the group size
information. In the original study, the “dose” is always presented as interval rather
than a point value, for such types of missing the most commonly used method is to
use the mean value, median value, or middle value of the interval. Some studies may
stratify exposure dose as a qualitative interval (e.g. low, moderate, high), but even
more crude than this is to map the qualitative interval to another study with a similar
population. When the confidence interval is missing that the weight of each effect
estimate cannot be obtained, due to the nature of dose-response meta-analysis, we
may use sample size in each category to generate the frequency weight. But this may
lead to the biased variance estimation. The missing on group size information means
that the GLST approach is not possible as it needs this information to estimate the
within study variance-covariance matrix while missing on group size has no problem
in the REMR approach, Therefore, when such information is missing, the optimal
method is to use the REMR approach to conduct the dose-response meta-analysis.

http://www.pnlee.co.uk/software.htm
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Table 13.6 Summarized characters for GLST and REMR

Characters for compare GLST REMR

Framework Two-stage and One-stage One-stage

Regression Generalized least squares Cluster robust variance

Weighting scheme (Effect
models)

Fixed-effect and Random-effect Inverse variance heterogeneity
(IVhet)

Information required Effect estimates, variance,
doses, group sizes, study type

Effect estimates, variance, doses

Dose-specific effects 2 categories for one-stage and 3
categories for two-stage

2 categories

Binary outcomes Yes Yes

Continuous outcomes Yes Yes

Absolute effect estimators
(Mean, prevalence)

No. Relevant risk or absolute
difference is needed

Yes

Software Stata, R, SAS Stata, Mlwin

IPD dose-response
meta-analysis

Yes Yes

13.3.3 GLST Versus REMR

The summarized characteristics of the GLST approach and the REMR approach are
presented in Table 13.6. The main features (which may not really be advantages) of
theGLSTapproach include: (1) it supports both one-stage and two-stage frameworks;
(2) it supports both fixed-effect and random effects models; and (3) there is software
available to implement it. The main advantages of REMR approach include: (1) the
information required ismuch less thanGLST while it can achieve a similar estimation
on the dose-response relationship; (2) it support the dose-response meta-analysis of
absolute effect estimators such as mean, prevalence; (3) it drops the use of the classic
and fixed effect and random effects models of meta-analysis in favour of the IVhet
model (Doi et al. 2015) that avoids the problem of overdispersion.

13.4 Practical Guidance for DRMA

What types of exposure are to be considered?
In DRMA, both a continuous variable and a discontinuous variable are potential
exposures that may be considered. The nature of these two types of exposures deter-
mineswhich regression function are appropriate to be fitted. For exposure of a contin-
uous variable, the simple linear, piecewise linear, and non-linear regression functions
are reasonable since all the data points are continuous. The non-linear function is
the optimal choice when there is no evidence of linear relationship. Piecewise linear
is seldom utilized when exposure is continuous since the non-linear function fits
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better than the piecewise linear. However, for U-shaped or J-shaped dose-response
relationship, a piecewise linear may be used to predict the “average trend” (effects
refer to each unit increase) in each segment of the curve instead of the simple linear
(Xu et al. 2019a).

For a discontinuous exposure variable, due to the disjoint and nonconvex proper-
ties of such types of data, it would be problematic to fit it with a non-linear function.
The dose-specific effects cannot be defined for non-integer doses, because these
non-integer data points are inexistent (e.g. 1.5 of a birth). We may still establish a
non-linear curve for a discontinuous variable with an outcome as if the discontinuous
variable is continuous, but then this should be defined as “quasi-nonlinearity” and
this should be mentioned and correctly explained in the context of such a DRMA. A
more reasonable approach however is to fit the discontinuous variable by linear or
piecewise linear model against the outcome. By doing so, we can explain the rela-
tionship as the changes of the effects for each unit increase (e.g. each birth increase)
or decrease of the exposure (in each of the segments).

What types of study designs are to be synthesized?
Epidemiological theory categorizes studies into descriptive and analytic. Analytic
studies could be observational or experimental and the observational cross-sectional
study is generally used to describe the correlations between two (or more) vari-
ables (Doi and Williams 2013). The latter does not address whether A causes B
or B causes A. Unlike the cross-sectional study, the other analytic studies aim to
investigate the potential causal relationship between independent variables and the
dependent variables. When conducting DRMA, it is recommended to pool cross-
sectional studies separately in order to avoid reverse causality. However, this does
notmean that pooling cohort or case-control studies is immune from reverse causality
due to various forms of biases (e.g. confounders).

What types of non-linear approximating function to be fitted?
The commonly used non-linear functions include the restricted cubic splines
(78.25%), the fractional polynomial (16.18%), and the conventional polynomial (<
5%) (Xu et al. 2019b). There is currently no consensus for which one of these is more
appropriate or less biased for non-linear trend approximation in DRMA but it has
been suggested that summarized curves generated from conventional polynomials
may be misleading. Cubic splines (when compared to fractional polynomials) more
adequately encompass sudden and important changes in relative risks and this is
consistent with the frequency with which they are used in the literature (Durrleman
and Simon 1989). A restricted cubic spline is defined as smoothly joined piecewise
polynomial (divided by knots)with atmost third-order polynomials fittedwithin each
piece, and the left and (or) right tail of the curve are restricted to linearity. Inserting
n knots (empirically 3−7 knots between the minimum and maximum values) would
generate n-1 regression covariates with the first representing the linear spline and the
second to n-1 representing the piecewise cubic splines.

When fitting these non-linear trends, testing should be done and commonly a
Wald test (Gould 1996) is used. The use of the Wald test to test for the presence of
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an exposure-outcome association in the case of the restricted cubic spline function
is to simultaneously test that the coefficients representing the cubic splines (2 to n-1)
are zero. To test for non-linearity we test that each of the cubic spline coefficient
(except the first) is zero. For example, inserting 3 knots would generate 2 cubic
splines. We could test the null hypothesis that the coefficients of both cubic splines
are simultaneously equal to zero and if rejected this is evidence for an association.
We could also test the null hypothesis that the second spline coefficient is zero and
if rejected then this is evidence for non-linearity.

What kind of synthesis approaches are to be employed?
There are three approaches that have been used to synthesize the dose-response
evidence, including the traditional meta-regression (TMR), the generalized least
squares for trend (GLST ), and robust-error meta-regression (REMR). The TMR
methods establishes the dose-response relationship by the mean dose of exposure
of each study against the outcome, which does not take into account the within
study correlation of effects such that the estimation is relatively crude, which is not
recommended.

For the GLST model, the generalized least squares estimation, covariance infor-
mation is imputed from the data and the regression coefficients are pooled by a
“one-stage” or “two-stage” regression approach. The REMR model is a “one-stage”
approach that treats each included study as a cluster, then the clustered robust vari-
ance is used to deal with the unknown correlations of effects within each cluster and
the regression coefficient is estimated byweighted least squares estimation across the
whole population. The GLST approach forces the curve to pass through the origin
while the regression intercept is allowed in the REMR approach as the maximum
weight is assigned to the reference which minimize the regression intercept devia-
tions from the origin. Empirical evidence (and our simulation) suggests these two
methods can reach similar trend estimation and the advantage of the REMR method
is it does not require imputation of covariance information from the data.
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