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Abstract The present work describes the formulation of the fractional order (FO)
proportional–integral–derivative PIλDμ controllers entailing FO integrator and FO
differentiator, a procedure which allows defining the numerical terms of the FO
controller. These are inferences to be the general form of PIDs, the output of which
is a linear combination of the input, a fractional derivative of the input, and a fractional
integral of the input. They havemore tuning freedomand awider region of parameters
that may stabilize the plant under control surpassing the performance of the integer-
order (IO) counterparts, specifically in servo control applications. A consequential
issue in control engineering is presented by plants and processes that are unstable.
Therefore, in this work unstable as well as time-delayed plants have been considered
which are frequently encountered in the field of control.

Keywords Fractional order controller · Fractional derivative · Fractional integral ·
Servo system control · Unstable and time-delayed plants

1 Introduction

Application of FO models is more apposite for the representation and interpreta-
tion of these real dynamical systems than its IO versions. FO-PIλDμ controller is
therefore naturally suitable for these FO plants. They are being largely employed by
many researchers in order to pull off and accomplish the most robust conduct of the
plants under control [1–3]. Integration and derivatives with non-integer orders come
into sight if the controller or the system is described by differential equations with
generalized orders. The comparative study [4, 5] calls attention to the supremacy of
availing these FO-PIλDμ controllers over traditional PID controllers with settling
time and maximum peak overshoot diminished with content. To a great extent, the
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adjusting and regulating statutes of the numerical terms of the controllers proposed
in the literature are at most applicable to self-regulating asymptotically stable pro-
cesses, whereas integral processes and unstable processes have been disregarded and
are not heeded to. Besides, investigation of stability of the system counteracted with
the FO controller is dispensed with Riemann surface [6]. In this work, the controller
parameters are selected by root locus technique with the non-integer orders graphi-
cally tuned to achieve satisfactory stability margins and sensitivity peaks. Numerical
examples illustrated and explained elaborately to validate the design approach made.
The results fed here entitle to express for a given process, the performance advance-
ment, and upgrade that can be attained by bringing into utilization the FO controllers
in lieu of the IO one.

2 Generalized Non-integer Order PIλDμ Controller

A PID controller is a comprehensive feedback control composition extensively and
broadly exercised on industrial applications for several decades [1]. In the perpetua-
tion of the derivative and integrator orders from integer to fractional numerals yields
a better adaptable adjusting scheme of the PIλDμ controllers and consequently an
elementary approach to achieve control requisites in contrast to its integer equivalent
[2]. The control action affects the system behavior by increasing the pace of the
dynamic reaction by slashing error in steady state. The command signal from the
controller u(t) adapts effortlessly with the rate of change of error signal e(t) by the
combination of the three continuous controller modes as [3],

u(t) = KPe(t) + KI

t∫

0

e(t)dt + KD
d

dt
e(t) (1)

The three adjustable control parameters here are proportional control (KP), inte-
gral control (KI ), and derivative control (KD) gains. The control law is thus sustained
in the form as [4],

CPID(s) = KP + KI

s
+ KDs (2)

In complement to the typically common PID controllers, with the two ancil-
lary variable quantities of PIλDμ (FOPID) controllers, it is essential to study the
additional design statements that can be fulfilled as far as performance with plant
uncertainties and high-frequency noise is concerned. The continuous-time transfer
function representation of the generalized structure of the controller is contemplated
as [5],
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CPIλDμ(s) = KP + KI

sλ
+ KDs

μ (3)

with the non-integer orders λ and μ specified between the range 0 and 2 [1]. These
are barely sensitive to plant uncertainties, generating vigorous performance against
gain changes and noise [6].

3 Fundamental Design Philosophy

The design philosophy conceived in the available literature mostly deals with the
choice of gain cross-frequency (ωcg) and Phase Margin (PM). This has been feasible
due to the structure of the controllers considered. However, FO-PIλDμ controllers,
on the contrary, do not provide such opportunity to the designer. Therefore, the design
philosophy adopted here according to the scheme in Fig. 1 is not the same and is
quite different.

The following section describes a procedure which allows defining the parameters
of a FO-PIλDμ controller. It is obvious from the formation of the PID controller in
Eq. (2) that it has two zeros and one pole at the origin in the s-plane as

CPID(s) = KDs2 + KPs + KI

s
= K(s + z1)(s + z2)

s
(4)

Hence, onemay initiate the designwith placing of these zeros simply in theLHPof
the complex s-plane. Root locus analysis seems to be advantageous in this direction.
Now, FO-PIλDμ controller does not clearly have these zeros. The zeros of this non-
integer order controller does not clearly have these zeros. The zeros of the FO-PIλDμ

controllers have the zeros shifted from this positions which lead to the change in the
properties of stability, stabilitymargins, and gain cross-over frequency. Therefore, the
next step is to probe and investigate the stability margins of the compensated system
with the variation of λ and μ in the ranges between 0 and 2. The designer may have
stability margin specifications well defined beforehand. The graphical solution of
these non-integer orders λ and μ of the controller with the zeros previously located
completes the process of controller design and synthesis. In a design problem, one
of the objectives is to keep the steady-state error to a minimum while at the same
time the transient response must satisfy a certain set of performance specifications.
It is therefore necessary to formulate some corrective system to drive the plant under

Fig. 1 Overview of
fractional order (FO) control
scheme
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control to meet the desired specifications. Given a plant, a set of attributes is defined
to formulate a suitable controller so that the overall system converges to reach them.
The design specifications to be met by the overall system merely include minimum
deviation of the output from the reference input in steady state, % overshoot which
depends on the damping ratio, with settling time and rise time as small as possible
with stability margins in frequency domain within specified desired limits to achieve
the design goals. This is basically a graphical iterative method. It tries to select the
parameters of the controller so that the closed-loop poles are placed suitably in the
stable half of the complex s-plane.

4 Proposed Design Algorithm

With the dynamicmodel of the plant known, themodulating schemeof the FO-PIλDμ

controller can be analyzed by root locus technique. The following steps are pursued
to realize the generalized compensation with two independent fractional orders of
the FO controller for the system as

Step 1: Plotting the Root locus of the system along with an integrator
[
K · G(s)

s

]
for the gain K in the range, 0 < K < ∞.

Step 2: Selection of the two finite zeros at−z1 and−z2 to obtain the PID controller
parameters leading to increase in damping with minimum percentage overshoot and
settling time.

Step 3: The non-integer parameters λ and μ of the FO-PIλDμ controller are
varied and adjusted so that it is competent to reach and fulfill preferable positive
Gain Margin (GM), Phase Margin (PM), and peak sensitivity margin.

Step 4: Now, on fulfilling the desired time and frequency domain criteria, the
required FO-PIλDμ controller is obtained. Otherwise, repeating the entire algorithm
described from step 1 with the new values of −z1 and −z2 until desired stability
margins and sensitivity peak magnitudes are accomplished.

Step 5: Here, the three controller gains of the controller are determined as K =
KD,KP = KD(z1 + z2) and KI = KD(z1z2).

This leads to the determination of the controller gains utilizing where the non-
integer orders of the fractional form are varied to attain the required stabilitymargins.
The parameters of the PID controllers are optimal in terms of frequency domain
objectives adopted with desirable stability margins and sensitivity peak magnitudes
to achieve satisfactory robust stabilization, with fast speed of response along with
the achievement of control inputs within restricted limits. Thus, the numerical terms
of the PID controller will be employed here as a part of the retuning procedure of
the FO-PIλDμ controller illustrated through examples. The rationale behind taking
up this particular method is its simplicity with satisfying more design specifications
resulting in remarkable up-gradation in control quality and execution.
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5 Numerical Examples with Results

Example 1 The following unstable plant with a pair of RHP pole at ±46.67 has
been considered [7] as

G(s) = −3518.85

s2 − 2177.8
(5)

to verify the proposed root locus method of formulating the FO-PIλDμ controller
for this case. The design objectives to be met to determine the controller parameters
are defined to be (a) Damping ratio,ξ ≤ 0.9, (b) Settling Time within 1 s, and (c)
Maximumpercentage PeakOvershoot within 10%. Two zeros of Eq. (4) is selected at
−1 and−14 to reorient the root locus path from the unstable region of the complex s-
plane due to the unstable location of the RHP poles to the left half of the stable region
as shown in Fig. 2a. The non-integer orders of the proposed FO-PIλDμ controller in
the form of Eq. (3) is then varied and adjusted between 0 and 2 [4] to achieve the
desirable positive GM, PM, and maximal magnitude of sensitivity tuned graphically
as exhibited in Fig. 3a, b, and c. The FO-PIλDμ controller thus takes the form as

CPIλDμ(s) = 15 + 15

s1.2
+ s0.98 (6)

The variation of the magnitude and phase of the loop transfer function with the
plant in Eq. (5) and the FO controller in Eq. (6) reveals PM= 90◦ atωcg of 3100 rad/s
in Fig. 2b. in juxtapose to the IO controller which has a PM of only 85◦ at ωcg

of 3000 rad/s with same controller gains. The corresponding step response is also
compared in Fig. 3d. The sensitivity plot with the FO-PIλDμ controller confirmed to
be maintained, |S|max < 2. The time domain interpretation of the transient response
of the unstable plantwith the integer andnon-integer controllers has been summarized
in Table 1.

Fig. 2 a Root locus plot of the compensated plant and b Variation of magnitude and phase with
frequency for the FO controller
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Fig. 3 Variation of a GM (dB). b PM(deg). c Maximum Sensitivity with the fractional orders λ

and μ. d Response of the plant to unit step input

Table 1 Comparative
attributes of the FO controller
with IO controller

Sl. No. Controllers Transient performance specifications
achieved

1. PIλDμ Settling time (ts) (s) % Overshoot

0.5 4.44

2. PID 0.75 12

The closed-loop characteristic equation obtained by implementing the FO-PIλDμ

controller in Eq. (6) is

s3.2 + 3518.8s2.18 + 50605s1.2 + 52783 = 0 (7)

The above equation in (7) can be transformed to the w-plane by w = s1/m [6].
Here,m = 100 indicates the quantity of sheets within the Riemann Surface (Fig. 4a).

w320 + 3518.8w218 + 50605w120 + 52783 = 0 (8)

The stable region in the s-plane, φs > π
2 transforms to the sector in φw > π

2m in
w-plane [8]. Stability is confirmed if the principle sheet poles in w-plane lie within
this segment. The closed-loop poles of the above Eq. (8) in the principle Riemann
Sheet are −1.0828 ± 0.0334i and −1.0005 ± 0.0258i which has arguments |ϕw1|
= 0.0308 and |ϕw2| = 0.0258, both of which are > π

2m [6, 8]. It is clearly noticed
from diagram in Fig. 4b that absence of poles lying within the unstable segment or
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Fig. 4 a Riemann surface of function w = s1/100 with m = 100 Riemann sheets. b Closed-loop
pole locations in complex w-plane

sector − π
m < ϕw < π

m confirms that the arguments have |ϕw| > π
2m which reasserts

stability.

Example 2 AType-0 plant of aDCmotor servo systemwith delay time is considered
as [2]

G(s) = 166.1038

0.75507s + 1
e−0.1s (9)

Considering the undelayed dynamics of the same plant as [2]

G(s) = 166.3714

0.83907s + 1
(10)

the FO-PIλDμ controller is designed to satisfy performance specifications of (a)
Damping ratio,ξ ≤ 0.9, (b) Settling Time within 5 s, and (c) Maximum percentage
PeakOvershootwithin 10% following the same designmethod put forward in Sect. 4.
To satisfy these objectives, a fractional order (FO) controller of the form in Eq. (3)
has been formulated in a similar way as

CPIλDμ(s) = 0.005 + 0.02

s0.8
+ 0.0014s0.5 (11)

The root locus of the compensated plant using the integer equivalent form of PID
controller is as depicted in Fig. 5a.

Utilizing the same values of the controller gains for the generalized form in Eq. (3)
the non-integer orders λ and μ are varied and tuned graphically in between the range
0 and 2 [4] to achieve desirable satisfactory stability margin as in Fig. 5b. Here, to
select the values of the fractional orders it is observed from the plot in Fig. 6 that
sensitivity peak relatively remains constant till λ = 0.9 with the variation of μ in the
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Fig. 5 a Root locus plot of the compensated plant and b Variation of magnitude and phase with
frequency for the FO controller

Fig. 6 Variations of a Phase margin (PM) and b Sensitivity peak magnitude with the fractional
orders λ and μ of the FO controller

range (0.1, 1.2) beyond which it increases. It is also observed here that till this value
λ, the Phase Margin (PM) decreases drastically beyond the range μ = 0.6. With
these values, the system step response has been plotted in Fig. 7a. Now, to ensure
minimum % overshoot with reduced settling time the non-integer orders have been
fixed up at λ = 0.8 and μ = 0.6 to perceive the controller as in Eq. (11).

Fig. 7 a Response of the plant to unit step input and b Control signal
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Table 2 Comparative
attributes of the FO controller
with IO controller

Sl. No. Controllers Transient performance specifications
achieved

1. PIλDμ Settling time (ts) (s) % Overshoot

1.3 0

2. PID 2.65 18.14

Fig. 8 Step response with
and without time delay

The frequency response plots in Fig. 5bmakes it visible that the frequency domain
specification is well satisfied achieving GM = InfdB with PM = 76.9◦ at ωcg =
2.26 rad/s in contrast to the PID controller which could ascertain PM of only 63.2◦ at
ωcg = 1.71 rad/s employing the same controller gains. The bandwidth is 2 rad/s for
PID controller whereas it is spotted at 3 rad/s in the case of the FO PIλDμ controller.
Practically, to have an acceptable robust design, the peak sensitivity value attained in
the mid-frequency region is anticipated to be less than 2 to restrict and fulfill the GM
and PM specifications satisfactorily [9, 10]. The peak magnitude of sensitivity is < 1
in the mid-frequency fragment with a very low gain (<< 1) at lower frequencies and
gain reaching to unity at higher frequencies. The quantitative analysis of the system
step response of the proposed controller compared with its classical counterpart is
tabulated in Table 2. It is noted here from Fig. 7b that the amplitude of the control
signal is diminished in case of the PIλDμ controller with reduced settling time and
% overshoot in collation with the IO-PID controller. The stability analysis can be
confirmed in a similar way as in Example 1.

Now, since, it has been verified that the loop transfer function yields a delay
margin τd = 0.595s calculated mathematically by τ = (π × PM )/(180 × ωcg)

which has led to determination of the delay margin through simulation to be 0.45 s
much greater than the predefined value of 0.1 s in Eq. (9). The nominal step response
and the reaction of the plant with dead-time are displayed through Fig. 8.

6 Concluding Remarks

FO-PIλDμ controller is conveyed here for unstable and time-delayed plants. The
controller parameters are selected by root locus techniquewith the non-integer orders
graphically tuned to achieve satisfactory stability margins and sensitivity peaks. The
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advancement in the behavior of the system shown by availing the FO controller has
been enumerated by numerical examples, stability of which is ratified by Riemann
analysis. An adequate delay margin compensation for time-delayed plants is shown
to accommodate the dead-time keeping hold of stability.
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