
Chapter 41
Activity Recognition Based on Latent
Knowledge Mining in Smart Home

Yu Tong, Rong Chen, and Bo Yu

Abstract Activity recognition in smart home is one pattern recognition problem.
Many activity recognition algorithms have appeared so far to recognize activities in
smart home. Past researches have proved that dynamic and deep knowledge mining
algorithms will help improve the accuracy. But because of the uncertainty of sensors
and the complexity of the user activities, existing activity recognition methods still
have a lot of room for improvement. Considering there is some latent knowledge
existed in sensors or user activities, this paper proposes to recognize activities by
exploring latent knowledge. Firstly, this paper improves activity recognition by
extracting latent knowledge between sensors and activities, thereby proposed one
feature preprocessing method. Then, it proves one newmulti-resident activity recog-
nition method based on latent knowledge in multi-resident activities. Simulations
conclude that extracting latent knowledge can greatly enhance activity recognition.

41.1 Introduction

Non-invasive activity recognition (NAR) is an ambient intelligence technologywhich
can recognize activities based on non-invasive sensors without affecting the living
conditions of residents. NAR has an important application in the field of smart home
that can understand individual behavior, group behavior, and the interaction between
people and the environment.Over the past decade,most of the previousNARmethods
are based on pattern recognition methods and have evolved from static algorithms to
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dynamic algorithms, from simple feature representation to multi-level deep knowl-
edge mining algorithms [1], such as support vector machine [2], Naive Bayes [3],
hidden Markov models [4], latent-dynamic conditional random fields [5] and deep
learning [6]. Past research has proved dynamic activity recognition algorithms and
deep knowledge mining algorithms will help improve the accuracy of NAR [5, 7].
Based on these considerations, this paper will enhance NAR based on dynamic
activity recognition algorithms by mining latent knowledge that exists in sensors
and activities.

On one hand, with low-cost sensors and wireless sensor networks development,
various passive sensors have recently been used to recognize activities [8, 9] in
non-invasive smart home. For example, motion sensors which are installed in the
floor can capture human motion and the RFID tags which are attached to the object
can capture human-to-environment interaction. However, observed feature dimen-
sion increases with the increase of sensors and causes the higher computational
complexity. The more features are used, the higher computational complexity it
will cause, while modeling fewer features is often insufficient to ensure recognition
accuracy. Besides, activity observation feature which composed of sensor observa-
tion is often abundant and sometime redundant. Thus, the feature selection directly
contributes to the performance of the recognition model. Principal component anal-
ysis (PCA) [10] is tested for feature generation, but the algorithms need to choose
appropriate principal component number and number selection is an impact on the
result. Fortunately, there is a lot of latent knowledge in sensor networks, such as
multiple sensors that are often related to only one activity. It will help NAR if we
can mine the latent knowledge between sensors and activities.

On the other hand, the activities in activity recognition are not only the activities
of a single person, but also the activities of multiple residents. Multi-resident activity
recognition (MRAR) is more difficult due to user activity interfering with each other.
In a smart home with non-obtrusive sensors, MRAR often uses data association [4,
11] which associates sensor data to the person who triggered the sensor or changed
the value. To improve the MRAR accuracy, dynamic Bayesian networks such as
CHMM and FCRF often used to model interacting process [12, 13]. However, data
associations are often unknown and hard to obtain in ubiquitous sensor environ-
ment. Beside, for multiple residents in smart home with non-obtrusive sensors, who
triggered the sensor is often ambiguous and there are not strong underlying data
associations to use. If the data association is incorrect, the MRAR will be corre-
spondingly inaccurate. So, it would be interesting to find a method for MRAR that
does not rely on data association. Fortunately, there is some latent knowledge which
is often invariant in multi-resident environment. For instance, there are some global
features and trends, playing chess collaboratively, only one person can use computer
at the same time since there is only one computer. The latent knowledge is often
easy to represent in multi-resident environment. If we can mine the latent knowledge
well, multi-resident activity recognition will be improved.

The paper is organized like this, in Sect. 41.2, it will introduce one activity recog-
nition method by extracting latent knowledge between sensors and activities. Then,
Sect. 41.3 will prove one new multi-resident activity recognition method based on
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latent knowledge in multi-resident activities. Section 41.4 is validation. Finally, the
article concludes with some conclusions.

41.2 Latent Knowledge Between Sensors and Activities

Motivated by the relationship between sensors and activities, this section will
combine the multiple features that related only one activity as one feature and use
CRF to recognize activities in smart homes. To describe our method, we start from
analyzing the relationship between sensor data and activities.

The activity observation feature vector at time t is often denoted as xt =(
x1t , x

2
t , . . . , x

N
t

)
, where N is the dimension of observation feature. By considering

one sensor as one observation feature, the dimension of observation feature vector
will equal to the total sensor number. However, it is common that some sensors
are related to only one activity and some sensor states are related to more than one
activity. Figure 41.1 is the relationship between sensors and activities. In the figure,
the sensors that related only one activity are denoted as “●,” the sensors that related
two activities are denoted as “�,” and the sensors that relatedmore than two activities
are denoted as “▲.” When the state of sensor data that relates only one activity and
does not relate other activities changed, it is easy to deduce that the related activity
rather than other activities is being carried out. In addition, it is also common that
several sensors related only one activity and does not relate other activities (“●”
that in dashed circle). When one or several states of those sensors changed, we can
deduce the related activity is being carried out.

If we regard the relationship between sensors and activities as latent knowledge
and the sensors observation that related only one activity and do not relate other
activities as one combined observation feature, we can deduce the observation feature
vector

(
x1t , x

2
t , . . . , x

N
t

)
to

(
x1t , x

2
t , . . . , x

L
t

)
,whereN and L is the observation feature

Fig. 41.1 Relationship
between sensors and
activities
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dimension before and after feature combining. The feature combining method is
shown in Algorithm 1.

Algorithm 1. Feature combining method

Input: Observation feature x0:
{
xt = (

x1t , x
2
t , . . . , x

N
t

)
, t = 1, . . . ,T0

}
,

activity labels y0:
{yt , t = 1, . . . ,T0}
Output: Combined feature X0:
{
xt = (

x1t , x
2
t , . . . , x

L
t

)
, t = 1, . . . ,T0

}

1. Find the number of activities Na = max{y0} and the number of sensors Ns = N;
2. Find the sensors that related to activity i and put them in sensor set Si= {si}, i = 1, …, Na;
3. For every si in Si, put it to set Ci if si does not appear in other set Sj , j �= i, i, j = 1, …, Na;
4. Combined the sensors in Ci as one combined feature;
5. For every observation feature xt in x0, update the features that corresponded sensors in Ci

with the combined feature, i = 1, …, Na;
6. Denote the updated x0 as X0;
7. Return X0.

41.3 Latent Knowledge in Multi-resident Activities

MRAR is to infer multi-resident activities form observations. Multi-resident activity
sequence is often denoted as {y1, y2, …, yT} and observation is often denoted as{x1,
x2, …, xT}. For t = 1, 2, …, T, yt represents multi-resident activities at time t, and xt
represents sensor observation vectors at time t. Both yt and xt are multi-dimensional
variables, where the dimension of yt is the number of residents, and the dimension
of xt is the number of observation feature. MRAR with machine learning method
often needs some empirical data to train a recognition model, where empirical data
are often used as training samples {(x1, y1), (x2, y2),…, (xT0, yT0)}.To better illustrate
the problem, this paper will give a multi-resident scenario below.

Scenario: Two residents (ID = 1 and ID = 2) randomly perform three daily
activities in one smart home. The three activities are labeled 1, 2, 3, and 0 if the user
does not perform any activity. Assume that A = {(x1, y1), (x2, y2), …, (x7, y7)} is the
collect empirical data when the two residents perform activities, where y1 = (0, 0),
y2 = (1, 0), y3 = (1, 0), y4 = (3, 0), y5 = (1, 1), y6 = (1, 1), and y7 = (3, 3). In this
case,yt = (y1t , y

2
t ) is two-dimension, where yit , i = 1, 2 represent the activity ID

that the ith resident performed at time t.
For the four activity labels (1, 2, 3, and 0) for two residents, theoretically we can

get 4 × 4 = 16 different vectors {(0,0), (0,1), …, (3,3)}. However, due to resident
preferences, some exclusive and independent activities occurred, some states we
cannot observe in fact. So, only seven label vectors are obtained.
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To represent prior knowledge, some terms will be introduced below.
A single label y often has multiple possible values, which we often denote as

state and all the possible value sets as state set. MRAR can be seen as a multi-
label state labeling problem. For m residents, there are many possible values for
(y1t , y

2
t , . . . , y

m
t ), since different residents may perform different activities.

Here, we use the State Event (y1t , y
2
t , . . . , y

m
t ) to represent the activities of

multiple users at the same time, use State Event Set A to represent various values of
State Events, and use State Event Matrix M to represent the values of State Events
at time 1 to T. Then, State Event Set denotes as

A = {(y11 , y21 , . . . , ym1 ), (y12 , y22 , . . . , ym2 ), . . . , (y1K , y2K , . . . , ymK ) }

where K is the State Events number.
State Event Matrix is given by

M =

⎡

⎢⎢⎢
⎣

y11 y21 . . . ym1
y12 y22 . . . ym2
...

...
. . .

...

y1T y2T · · · ymT

⎤

⎥⎥⎥
⎦

which includes T State Events.
For above multi-resident scenario, State Event Set can be denoted as

A1 = {(0, 0), (1, 0), (3, 0), (1, 1), (3, 3)}

The State Event Matrix can be denoted as

M1 =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0
1 0
1 0
3 0
1 1
1 1
3 3

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

Note that two State Events in M may be the same, but any two State Events in A
are different, and all State Events in M could be found in A. From M1 we can see
that the State Event 2 and 3 are the same, State Event 5 and 6 are the same, and all
State Event can be found in A1.

Represented (y1t , y
2
t , . . . , y

m
t ) with one uniquely combined label C, it can get

combined label states set B = {0, 1, . . . , K − 1}. The map between State Event
(y1k , y

2
k , . . . , y

m
k ) and combined label state Ck ∈ B is defined as
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(y1k , y
2
k , . . . , y

m
k )−→ f Ck

For the State Event Set A1 = {(0, 0), (1, 0), (3, 0), (1, 1), (3, 3)}, there a
recombined label states set B1 = {0, 1, 2, 3, 4}. The mapping is defined as

(0,0)

(1,0)

(3,0)

(1,1)

(3,3)

(0)

(1)

(2)

(3)

(4)

f

Similarly, there are mapping between M1 and B1 as follows

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0
1 0
1 0
3 0
1 1
1 1
3 3

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

f→

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0
1
1
2
3
3
4

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

The states of single activity yit , i ∈ {0, 1, . . . , K −1} can be obtained by inverse
mapping. In the two-resident scenario, for C = 1, it can get y1 = 1, y2 = 0 by inverse
mapping, and for C = 3, it can get y1 = 1, y2 = 1 by inverse mapping.

The algorithm of extracting latent knowledge in multi-resident activities is given
in Figs. 41.2 and 41.3. The former is themodel building flowchart, with whichwe can
get State Event Set A, mapping f , combined label states set B, and combined label
recognition model. The latter is activity recognizing flowchart from which it can
see that new testing multi-resident activities are recognized with two steps: firstly,
recognize the states of combined label C, then inverse map C to State Event by f −1.
Finally, figure out multi-resident activities based on the State Event.

It can be seen that the extracting latent knowledge algorithm did not use data
association when recognizing multi-resident activities. But, if there is a need (i.e.,
tracking the resident), it can also find out data association. For C = 1, if figure out
y1 = 1, y2 = 0, we say the data is get by the first resident, since y2 = 0 represents
the second resident does not carry out any activity and considered not trigger any
sensors.

The algorithm can also handle some uncertain multi-resident activity patterns.
For the two residents activity label (A1, A2), where A1 is the activity that the first
resident performed and A2 is the activity that the second resident performed. If A1
or A2 is equal ‘0,’ it means the resident is performing one unknown activity and can
be any one activity. For two residents with N total activities, there are
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Fig. 41.2 Model building flowchart

Fig. 41.3 Activity
recognizing flowchart
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(0, A2) = (1, A2) ∨ (2, A2), . . . ,∨(N , A2)

(A1, 0) = (A1, 1) ∨ (A1, 2), . . . ,∨(A1, N )

(0, 0) = (0, A2) ∨ (A1, 0)

The unknown state is actually a union of all possible activities, thus the algorithm
can handle some uncertainties and can improve activity recognition.

41.4 Validation

41.4.1 Validation 1

To validate our feature combining method, two experiments will be given. For every
experiment, we will introduce the datasets, their activities, and sensor features, and
then carry out our experiments. To measure the percentage of correctly classified
testing samples, we define the recognition accuracy of the class as

Accuracy =
∑N

n=1[inf erred(n) = true(n)]

N
(1)

where N is total testing samples.
In addition, to verify the recognition of a single class, we also give the recognition

accuracy of individual activities as

inferredc(n) = truec(n)

Nc
(2)

where Nc is the total samples that contained in class c.

Experiment 1
The first experiment is based on the “ADL adlnormal” dataset that is collected in
WSU Apartment Test bed [14]. There are five daily activities in the dataset. The
apartment is installed with various non-invasive sensors.

The raw sensor number, cleaned sensor number, and the finally sensor number
after sensor combining are shown in Table 41.1. As it was shown, the sensor number
decreases obviously after sensor cleaning whereas the finally sensor number after

Table 41.1 Sensor number
changes after cleaning and
combining

Feature Sensor number

All feature 39

Clean feature 23

Finally feature 19
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Table 41.2 Involved sensor number changes before and after sensor combining for five individual
activities

A1 A2 A3 A4 A5

Before 13 14 16 15 17

After 9 14 16 15 17

sensor combining does not decrease much. The involved sensor numbers before and
after sensor combining for the five activities can be seen in Table 41.2.

After the sensors cleaning and combining, we take every sensor as a feature and
recognize activities in this dataset using CRF with threefold cross-validations. To
validate our sensors combining solution, we compared the results with the result
before sensor cleaning and sensor combining. Table 41.3 is the recognition accuracy
and the total time that used for both training and testing with raw sensor and finally
sensor. From the table, we can see that the recognition accuracy is increased after
sensor cleaning and sensor combining whereas the time used is reduced.

The recognition accuracies for five individual activities with the raw sensor and
with the sensor after cleaning and combining are shown in Fig. 41.4. We can see that
the recognition accuracies of all the activities are increased after sensor cleaning and
sensor combining for that our method not only can reduce parameter in count, but
also can avoid the error caused by redundant information.

Experiment 2 The second experiment focuses on routine morning activities
collected in kitchen outfittedwith 60RFID tags [8]. In the kitchen, 11 routinemorning

Table 41.3 Recognition
accuracy and the total time
changes

Accuracy Time

Raw sensor 0.8308 77.1716

Senor after combining 0.8460 58.1504

Fig. 41.4 Recognition
accuracies for five individual
activities
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activities are performed by user in different ways and use the RFID tags to collect
sensor data. The objects that attached tags include bowl, coffee container, cupboard,
dishwasher, door, drawer, egg carton, hand soap, kettle, cooking spoon, stove control,
telephone, and so on.

Before combining the sensors, we first clean the uninvolved sensors, since some
sensors may not involve in all the activities. The raw sensor number, cleaned sensor
number, and the finally sensor number after combining are shown in Table 41.4.
From the table, we can see that all of the 60 sensors are involved in the activities and
the total sensor number decreases obviously after combining.

Also, we give the involved sensor number before and after combining for 11
individual activities in Table 41.5, where Ai, i = 1, …, 11, presents the ith activity.
The table shows that the sensors in activities 4, 5, 6, 8, 10 are combined, and thus
the involved sensor numbers are decreased.

After sensors combining, we take every sensor as a feature. To validate the algo-
rithm of extracting latent knowledge between sensors and activities, we recognize
activities based on CRF with leave-one-out cross-validation. Also, we compare
the results with PCA method that extracting 35 principal components as features.
Table 41.6 is the recognition accuracy and the total time that used for both training and
testing with different method. From the table, we can see that the recognition accu-
racy is increased after sensor combining whereas the time used is reduced. Although
based on the feature with same dimension, PCA gets worse result than the algorithm

Table 41.4 Sensor number
changes after cleaning and
combining

Sensor type Sensor number

Raw sensor number 60

Sensor number after cleaning 60

Sensor number after combining 35

Table 41.5 Involved sensor
number before and after
combining for 11 individual
activities

Activity Before After

A1 13 13

A2 10 10

A3 1 1

A4 17 7

A5 6 4

A6 15 9

A7 6 6

A8 13 10

A9 14 14

A10 5 1

A11 1 1
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Table 41.6 Recognition
accuracy and the total time
changes

Accuracy Time (s)

Raw feature 0.9355 1245.75

Combined feature with 35 feature 0.9388 1043.30

PCA with 35 feature 0.9228 1234.03

Fig. 41.5 Recognition
accuracies for 11 individual
activities

0%

20%

40%

60%

80%

100%

120%

Ac
t1

Ac
t2

Ac
t3

Ac
t4

Ac
t5

Ac
t6

Ac
t7

Ac
t8

Ac
t9

Ac
t1

0
Ac

t1
1

Ac
cu
ra
ry

Without feature
combining method

With feature
combining method

that extracting latent knowledge between sensors and activities with much time that
used for both training and testing.

The recognition accuracies for 11 individual activities are shown in Fig. 41.5. We
can see that the recognition accuracies of activity 4, 8, 10 are increased after sensor
combining. This is because our method not only can reduce parameter in count, but
also can avoid the error caused by redundant information.

41.4.2 Validation 2

Wewill validate our algorithmexploiting latent knowledgeofmulti-resident activities
based on multi-resident activities dataset [4] collected in the CASAS project. In the
dataset, there are two residents and 15 activities.

The multi-resident activity State Event and their frequency F are shown in
Table 41.7.

As Table 41.7 shows that some State Events occur frequently, while some appear
rarely, does not happen actually. For two residents with 16 (activity 0 represent
the resident performed unknown activity), there are 16 × 16 = 256 State Events
theoretically, but in this case, there are only 27 State Events, since some State Event
do not occur at all actually. To validate our algorithm, one experiment will be given.
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Table 41.7 Occurrence counts of different State Events

(A1, A2) F (A1, A2) F (A1, A2) F

(0, 0) 3 (0, 15) 748 (10, 11) 284

(0, 2) 1568 (1, 0) 1175 (10, 15) 2

(0, 3) 668 (4, 0) 864 (12, 0) 1179

(0, 4) 1 (6, 0) 1505 (12, 13) 272

(0, 5) 545 (6, 7) 350 (13, 0) 4

(0, 7) 1529 (9, 0) 866 (13, 13) 865

(0, 8) 432 (9, 8) 280 (14, 0) 387

(0, 11) 891 (10, 0) 660 (14, 15) 845

(0, 13) 1309 (10, 1) 1 (15, 0) 1

Experiment 3 This experiment is carried out with three fold cross-validations. In
the training stage, firstly, it will build mapping f and inverse mapping f −1, and map
State Event Matrix of training data as combined label state sequence. Then, dynamic
activity recognition algorithm, such as HMM, CRF, and latent-dynamic conditional
random fields (LDCRF) [4], is trained with observation sequences and combined
label states sequence.

In the testing stage, we estimate combined label state firstly with the trainedmodel
and observation sequences in the test dataset. The average accuracy of combined label
state for HMM with latent knowledge (LK-HMM) and CRF with latent knowledge
(LK-CRF), and LDCRF with latent knowledge (LK-LDCRF) are 65.46, 67.61, and
63.87% correspondingly.

It is important to note that the above is not the ultimate accuracy of MRAR. To
get multi-resident activity of test dataset, we need to map combined label states to
State Event Matrix with f −1. Figure 41.6 is the average MRAR accuracies of five
models. From it, we can see that LK-HMM gets 75.77%, LK-CRF gets 75.38%, and
LK-LDCRF gets 72.69%which all get higher averageMRAR accuracies than single
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Fig. 41.6 Average recognition accuracies of fivemodels in recognizing activities formulti-residents
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HMM and iterative CRF which did not give data association when MRAR. Thus,
mining latent knowledge can help MRAR.

There are some reasons for LK-HMM, LK-CRF, and LK-LDCRF to outperform
single HMM and iterative CRF. Firstly, when single HMM model is implemented
for both residents, it cannot well represent transitions between activities and multi-
resident at the same time. Secondly, although iterative CRF does not need to give
data associations, it still needs to learn data associations for MRAR. When data
association is learned badly, MRAR accuracy will be low. In addition, LK-HMM,
LK-CRF, and LK-LDCRF can mine knowledge in the multi-resident environment
and can capture global features and trends of multi-resident activities.

In the LK-LDCRF case, it gets lower accuracy than LK-CRF which gets higher
accuracy than CRF in single-user activity recognition [4]. This is because there are
many combined label states with different internal structure, fixed hidden state for
LK-LDCRF is difficult to adapt to all combined label states. Thus, the number of
hidden states is difficult to determine, and it is not easy to determine. If we chose
not suitable hidden states number, LK-LDCRF will get lower accuracy. In future,
we will study the chosen suitable hidden states number for LDCRF in multi-resident
environment and compare the result to our method.

41.5 Conclusions

This paper recognizes activities with some latent knowledge that exists in training
samples. Firstly, this paper gives one new pretreatment method for activity recogni-
tion by extracting latent knowledge between sensors and activities, and then it proves
one newmulti-resident activity recognition algorithm by extracting latent knowledge
in multi-resident activities. From the simulation, we conclude that extracting latent
knowledge can greatly enhance activity recognition.
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