
Chapter 40
Detecting Domain Name System
Tunneling and Exfiltration from Domain
Name System Traffic

Yi-Chung Tseng, Ming-Kung Sun, and Wei-An Chen

Abstract In this study, we present a framework to detect a Domain Name System
(DNS) tunnel and DNS exfiltration network traffic by using both unsupervised and
supervised learning algorithms. In general, considerable time is required to learn the
structure of the data before clustering when using an unsupervised learning algo-
rithm. Therefore, in this study, we leveraged the power of mathematical algorithms
for calculating the optimal number of clusters and reducing the time required for
understanding the data structure. Conversely, we used a supervised learning method
to learn the data leakage behavior for detecting DNS exfiltration traffic. We used
an open-source tool to generate testing data, and the experimental result proved the
robustness of the proposed framework.

40.1 Introduction

The DNS [1] is an Internet service. A domain name is a characteristic structure that is
easier to understand and remember than an Internet Protocol (IP) address. The DNS
acts as a decentralized database thatmaps a domain name to an IP address. In addition
to being used for providing Web services, Web hosts, and other online services,
domain names are often used by attackers to steal personal information. For example,
an attacker can attach personal information encryption to the domain name itself,
such as “ojswczdnmuxg2zd4ge3q.malware.com,” through the Base64 encryption
algorithm. The aforementioned domain name can be split into three blocks. The first
block is “ox-wczdnmuxg2zd4ge3q;” the second block is “.malware;” and the third
block is “.com.”
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The string in the first block represents the personal data encryption function hidden
in the domain name itself by the attacker through an encryption algorithm. The
second and third blocks specify the actual DNS server of the attacker. When an
attacker desires to steal information, such as personal data which can be encrypted
into the subdomain name, consequently, the domain name along with the target data
is transmitted from the client server to an external DNS server through the DNS
recursive technology, thus causing data leakage.

About the recursive DNS technique used for data leakage, a client sends a query to
the local DNS server. If the server does not respond, the local DNS server continues
to query the higher layers of the DNS server until the IPwith the answer is found. The
process is initiated from the root directory. For example, for www.google.com.tw,
the “.tw” query is executed first. Then, “.com” is executed from the top level to the
second level and so on.

Another method of conducting data leakage is by establishing a DNS tunnel.
A hacker can use the tunnel to transmit the target data. This study proposes an
architecture that can detect DNS tunneling and DNS exfiltration network traffic by
leveraging the power of a modern machine learning algorithm. The experimental
results indicate the simplicity, robustness, and scalability of the proposed approach.

The remainder of this paper is organized as follows. Section 2 introduces the
relevant literature related to DNS tunneling and exfiltration. Section 3 presents
an overview and the framework of the approach. Section 4 demonstrates the
experimental results. Section 5 summarizes the conclusions of this study.

40.2 Related Work

40.2.1 DNS Tunnel

Establishment of a DNS Tunnel Anirban et al. [2] mentioned that when a client
tries to establish a DNS tunnel with an external DNS server, the query that contains
the TXT record is sent, which is a type of resource record in DNS. Once the server
receives the request, it returns a response with the TXT records to the client. Thus,
a DNS tunnel is established successfully. A malicious server can take advantage of
this tunnel to establish a tunnel for starting a session or executing an instruction.

Detection of aDNSTunnel Anirban et al. [2] used the k-means clustering algorithm
to find a DNS tunnel. Binsalleeh et al. [3] characterize the malicious payload distri-
bution tunnel in DNS. They proposed solution characterizes these tunnels based on
the DNS query and response messages patterns. Farnham and Atlasis [4] presented
an overview of the history and techniques used for DNS tunneling detection. Com-
pared with the regular A or AAAA DNS queries that have a constant size range,
tunneling traffic tends to have a considerably larger size range. Paxson et al. [5]
use the implementation of Kolmogorov complexity to detect DNS tunnel. Dietrich
et al. [6] used various features to cluster DNS traffic by using k-means clustering

http://www.google.com.tw
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with k = 2. Born [7] proposed a method to detect DNS tunnels by using meaningful
words. Hind [8] proposed a neural network for detecting DNS tunnel but did not
provide any information on the data sources, features used, model selected, or model
performance.

40.2.2 DNS Exfiltration

Situational explanation of DNS Exfiltration Anirban et al. [2] mentioned that
assumed a scenario inwhich a computer is infected by amalicious program thatwants
to steal and transmit information to the attacker server. In the first step, the malware
encrypts the private data. In the second step, the encrypted data is attached to the
attackers’ domain. For example, if aGVs13IGb3Vu is the encrypted data andmalware
attaches this data to.malware.com, the domain name aGVs13IGb3Vu.malware.com
is obtained. In the third step, because the encoded domain is not part of the local
cache, the domain is forwarded to the server of malware.com by using the DNS
recursive technology. Once the attackers’ DNS server receives the query, the attacker
can extract the third-level domain and decode it. In the fourth step, the attacker can
respond to the client, which appears benign. The following sections describe how
DNS exfiltration can be detected using the proposed method.

Signature-based Detection of DNS Exfiltration Jawad et al. [9] mentioned tra-
ditional methods for detecting DNS exfiltration rely on signatures which are not
sufficient. By registering a new domain name, an attacker can easily bypass the
blacklist. Besides, the signature-based approach relies on rules checking and thresh-
olds to trigger an alert and is struggling to discover the malware’s pattern behavior.
On the other hand, maintaining a blacklist is also inefficient.

Rule-based Detection of DNS Exfiltration Fawcett [10] described several encod-
ing techniques for DNS exfiltration. These techniques rely on rule-based detection,
such as detection according to the number of requests and responses, entropy of the
hostname, percentage of numbers in the domain name, and number of non-existed
domain.

Machine Learning-based Detection of DNS Exfiltration Anirban et al. [2] pro-
posed machine learning models, by using logistic regression model to predict DNS
exfiltration; they used eight features to describe the domain string and exfiltration
domains as a negative set and benign domain as a positive set to train the model.

40.2.3 Unsupervised Learning

k-Means Clustering One of the most well-known unsupervised methods is the k-
means clustering algorithm. The user randomly selects k points as the initial centroid,
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where k is the user-specified parameter. Each point is then assigned to the cluster
with the closest centroid. The centroid of each cluster is then updated by calculating
the average of the data points for each cluster. The centroid is repeatedly assigned
and updated until no improvement is obtained by changing the cluster or until the
centroids are the same again.

Silhouette Method Rousseeuw [11] proposed the silhouette method, which is used
for interpreting and verifying consistency within a data cluster. This technique
provides a concise graphical representation of the classification of each object.

40.2.4 Supervised Learning

Extreme Gradient Boosting (XGBoost) XGBoost [12] is an optimized distributed
gradient boosting library that is designed to be highly efficient, flexible, and portable.
This library employsmachine learning algorithms under the gradient boosting frame-
work. XGBoost provides parallel tree boosting, which solves many data science
problems rapidly and accurately.

40.3 Problem Formulation

We assumed a scenario in which an attacker hacks a client computer and installs a
backdoor program.When attackers desire to send a command or steal personal infor-
mation, they can use a DNS tunnel to establish a connection. Once a DNS tunnel
is established, the encrypted private data is sent out through the DNS tunnel. The
attackers can also use recursive DNS technology to send out the exfiltration data.
Hence, we propose a detection method that leverages a machine learning algorithm
to identify DNS tunneling and DNS exfiltration. Unsupervised and supervised learn-
ing are used in the proposed method. The proposed approach is introduced in the
following section.

40.4 Overview of the Approach

The proposed architecture relies on analyzing DNS traffic and can identify DNS
tunneling and DNS exfiltration. The proposed process is explained briefly in the
following text. First, DNS traffic is collected. Second, feature engineering technology
is used to extract features from the DNS query, including TXT and A records. Third,
the silhouette method is used to calculate the optimal number of clusters with the
k-means clustering algorithm by using the aforementioned features for determining
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Fig. 40.1 Overview of the proposed approach for detecting DNS tunneling and DNS exfiltration

whether a DNS tunnel exists. We also trained a model that can identify exfiltration
from a DNS query, as presented in Fig. 40.1.

40.4.1 DNS Query Collection

In the first step, the DNS network traffic is collected. Because there exist many types
of data in DNS traffic, such as A, AAAA, PTR, and TXT, we only collect TXT, A,
and AAAA records from DNS traffic.

40.4.2 Feature Engineering

In the second step, clustering is conducted on the TXT records by using feature
engineering. Anirban et al. [2] used 12 features to describe the behavior of TXT
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Table 40.1 Feature engineering for detecting DNS tunneling

Feature Explanation

Number of digits Calculate how many digits exist in the TXT record

Number of upper Calculate how many upper cases exist in the TXT record

Number of lower Calculate how many lower cases exist in the TXT record

Number of space Calculate how many spaces exist in the TXT record

Number of dash Calculate how many dash exist in the TXT records

Number of under line Calculate how many under lines exist in TXT records

Number of slashes Calculate how many slash exist in TXT records

Number of back-slash Calculate how many back-slash exists in TXT records

Number of equal-sign Calculate how many equal-signs exist in TXT records

Entropy Calculate the Shannon entropy of TXT record

Table 40.2 Feature engineering for DNS exfiltration

Feature Explanation

all_domain_length Calculate the length of the entire domain name

third_domain_length Calculate the length of the 3LD

domain_num_percentage Calculate the proportion of numbers in the domain name

domain_LMS_percentage Calculate the ratio of the longest and most meaningful string in the
domain name to the overall string

top_domain_count Calculate the same 1LD domain name as the total number of
domain names

data. Therefore, in the present study, the 10 features presented in Fig. 40.1 were
used. The meaning of each feature is provided in Table 40.1.

To train amodel that can identifyDNS exfiltration, feature engineering is required.
We used five features to describe the behavior of a DNS query string. The meaning
of each feature is specified in Table 40.2.

40.4.3 Determining the Optimal Number of Clusters that Can
Find a DNS Tunnel

In the third step, an unsupervised algorithm is used to cluster the TXT records.
Because the TXT records of DNS traffic differ with the company environment, the
clustering value should be dynamically adjusted according to the DNS traffic. There-
fore, the proposed work used the silhouette method to proactively find the optimal
number of clusters. After clustering the data, we can observe whether each cluster
has encoded strings. If there are encoded strings in a cluster, it can be concluded that
there is a DNS tunnel in the DNS network.
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40.4.4 Training an XGBoost Model for Identifying DNS
Exfiltration

In the fourth step, we must train a model to identify DNS exfiltration by using a
supervised learning algorithm. The preparation of a supervised model requires a
labeled dataset. Therefore, we used a dataset that has only one field and contained
a large number of leakage domains. This dataset [13] was provided by the Sydney
University. Moreover, we used a credit card generator to generate a large number
of credit card numbers; encrypt the card numbers through md5, base64, and other
encryption algorithms; and then attach the encryption string into a domain. We also
used a domain that was not leaked and was provided by Alexa [14]. The aforemen-
tioned datasets were integrated into a single dataset, including the leaked and benign
domain datasets. Then, five features were used to characterize the behavior of the
leaked and not leaked domains, as presented in Table 40.2. Finally, we used the
XGBoost algorithm, which is a supervised learning model, to learn from the dataset
for identifying DNS exfiltration.

40.5 Experiment

Detecting DNS tunneling by examining TXT records is a difficult problem primarily
due to the high diversity of TXT records in real-world DNS traffic. Hence, we used a
testing dataset obtained from an open source for detecting DNS tunneling.Moreover,
we used the Data Exfiltration Toolkit (DET) [15] to generate a large number of DNS
exfiltration samples for verifying whether our model could identify DNS exfiltration.

40.5.1 DNS Tunnel Detection

Data Collection The testing dataset [16] for DNS tunneling contained 1096 TXT
records, which accounted for approximately 0.054308% of all DNS queries. Some
TXT records were generated by incorporating DNScat [17] tunneling traffic, and the
other records were regular DNS traffic.

k-Means Algorithm and Average Silhouette Method We selected k-means clus-
tering by using the aforementioned features to detect all the TXT queries that are
encoded a string. The optimal number of clusters was calculated using the average
silhouette method, as displayed in Fig. 40.2. In the figure, the x-axis represents the
number of clusters and the y-axis represents the silhouette score. The higher the
y-axis score, the better is the clustering result. In this study, the highest silhouette
value was obtained by dividing the datasets into three clusters.
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Fig. 40.2 Sihouette scores by cluster count

Cluster and TXT records As shown in Table 40.3, we decided that clusters 1 and 2
contained encodedTXT responses and that cluster 0 contained site verification traffic.
Although clusters 1 and 2 provided the same type of encoded TXT record, the length
of the encoded string in cluster 1 was longer than that in cluster 2. Moreover, a small
number of encoded strings were classified into cluster 0. Overall, from the clustering
results, we can quickly identify if a DNS tunnel exists.

40.5.2 DNS Exfiltration Detection

Data Collection In this experiment, we used a credit card generator [18] to generate
a large number of credit card numbers, encrypted the card numbers through md5,
base64, and other encryption algorithms; and then combined the data into a domain.



40 Detecting Domain Name System Tunneling … 569

Ta
bl
e
40
.3

C
lu
st
er

of
T
X
T
re
co
rd
s

C
lu
st
er

T
X
T
re
co
rd
s

0
25
4.
22
9.
16
8.
19
2.
sp
am

.d
ns
bl
.s
or
bs
.n
et

V
E
R
SI
O
N
.B
IN

D
ve
rs
io
n.
bi
nd

25
1.
22
9.
16
8.
19
2.
sp
am

.d
ns
bl
.s
or
bs
.n
et

cf
._
dn
s-
sd
._
ud
p.
0.
95
.1
68
.1
92
.in

-a
dd
r.a
rp
a

dn
sc
at
.6
90
00
1a
18
08
7f
23
0a
aa
18
40
01
0a
ec
ff
57
3

1
dn
sc
at
.4
fc
80
1a
18
03
d6
07
cb
28
3d
f0
07
ea
28
0e
2d
57
8b
e0
e2
5c
47
55
7d
1f
4d
b0
d3
fa
a.
5d
36
c5
42
b7
b8
24
8c
f3
0b
9c
2c
48
8b
16
69
d8
03
38
f4
84
95
41

ad
7d
4f
96
ea
5b
76
.5
f4
e4
34
20
d6
9c
7e
c8
e7
c2
bd
bc
15
06
8b
c9
11
7a
4f
69
19
4f
78
0e
2a
68
b4
77
d8
f.
e6
fd
11
2c
94
37
4b
c3
5c
3e
58
6e
d6
75
dd
e5
cb
b7
c0
58
ad
5b
be
9f
bc

dn
sc
at
.c
68
80
1a
18
0b
d2
c0
a8
26
2b
00
0a
21
33
c3
16
f6
37
66
09
73
74
ef
8f
e8
20
30
2d
52
e.
40
83
f9
05
8d
b6
66
1c
4c
04
5f
3e
1a
9d
62
83
04
30
c7

cf
4b
98
e6
4b
0f
ac
3a
ab
d3
8e
.e
14
22
07
b5
b8
1c
62
54
cd
a8
cc
33
43
16
7e
83
7e
93
8d
67
dc
45
c2
f8
b2
c6
a2
22
2c
6.
9c
6c
e2
47
51
1c
00
20
50
c3
a7
bf
c1
1f
92
05
f1
2c
9e
d7
b4
d9
6d
be
1a

2
dn
sc
at
.0
ad
00
1a
18
07
f5
32
28
91
56
30
00
c1
03
8c
3c
7a
52
5f
6d
97
5b
68
f3
d7
3d
f0
39
25
0.
3d
b2
3e
96
ee
e3
b7
a4
c2
a2
61
d8
89
66
c6
49
1a
73
1b
3f
1f
32
fd
1b
30
39
f6
27
00
88
.f
5c
73
0

dn
sc
at
.1
37
90
3a
18
00
00
00
00
08
18
7a
b6
e7
1e
d6
08
66
c8
64
7e
d9
ed
e5
33
17
c6
ca
4b
ca
9.
9f
87
56
ac
08
ba
26
d9
04
ab
5d
dc
b3
9f
3f
f2
91
d5
c

5e
50
ff
32
87
dd
35
0a
7a
6c
4e
b.
58
ef
f3
d0
c8
b5
89
de
a4
7c
56
3e
1b



570 Y.-C. Tseng et al.

Table 40.4 Credit card number encryption

Credit card number Encryption

4916658665745840 Mzc2MzgwNTA3NTY3NzAx5

30360128837301 30993683d51e835756d02f655af05ac

30368674657247 1e8299e0c7a1690ec3d6928f2a8366a

4916658665745840 275c15e507e168f5f71eb848cd56cfd3180c0a33

4556229341515026 275c15e507e168f5f71eb848ctq6cfd3180ec0a33

Table 40.4 lists the original credit card number and the corresponding base64 encryp-
tion data. Table 40.5 presents the domain namewith the encrypted data.We combined
1,435,514 exfiltration domains as a negative set and 1,000,134 benign domains from
Alexa as a positive set to train the model.

XGBoost Our feature space had five dimensions, as listed in Table 40.2.We selected
the XGBoost algorithm because this algorithm is easy to deploy, effective, and
exhibits superior performance. We used Scikit-learn [19] to deploy XGBoost and
to validate and test our proposed method.

Self-verification For testing the effectiveness of the XGBoost model, we validated
the metric Roc_auc, which is a performance measure, at various threshold settings
(Table 40.6). Roc is the probability curve, and auc represents the degree ormeasure of
separability. The precision score is obtained by calculating the ratio of all “correctly
retrieved results (TP)” to all “actually retrieved (TP + FP).”

Effectiveness of the Model To demonstrate the effectiveness of the proposed
model, we used the DET to generate a leakage domain along with the regular
domain. As displayed in Table 40.7, five malicious domains were predicted using
the developed model. The output value is a probability value. If the probability
is more significant than 0.5, the domain is considered to have exfiltration. For

Table 40.5 Encrypted data attached to the domain name

Encryption Domain name

Mzc2MzgwNTA3NTY3NzAx5 Mzc2MzgwNTA3NTY3NzAx5.malware.com

30993683d51e835756d02f655af05ac 30993683d51e835756d02f655af05ac.malware.com

1e8299e0c7a1690ec3d6928f2a8366a 1e8299e0c7a1690ec3d6928f2a8366a.malwarea.com

275c15e507e168f5f71eb848ctq6cfd3180ec 275c15e507e168f5f71eb848ctq6cfd3180ec0a33.malware.com

Table 40.6 Validation
metrics

Metric Our proposed method

roc_auc 1.0

precision 0.9999992885195514
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Table 40.7 Domain and probability

Domain Probability

59-124-10-43.hinet-ip.hinet.net 0.000015615

59-124-106-74.hinet-ip.hinet.net 0.0000823

130353161663731383536663564646236.google.com 0.63

init.ojswczdnmuxg2zd4ge3q.base64.systw.net 0.56

example, for init.ojswczdnmuxg2zd4ge3q.base64, the probability value correspond-
ing to.systw.net was 0.56. Thus, this case is considered to have exfiltration. Con-
versely, the probability value corresponding to 59-124-106-74.hinet-ip.hinet.net was
0.00008032. Thus, this case does not have exfiltration.

40.6 Conclusion

In this study, we present a framework to detect DNS tunneling and DNS exfiltration
through the DNS network traffic. This framework uses unsupervised learning and the
silhouette method to determine the optimal number of clusters for identifying DNS
tunneling. We also used a supervised learning algorithm to train the XGBoost model
for identifying whether any information leakage occurred in the traffic. Finally, to
verify the effectiveness of our architecture, we used open-source DNS network traffic
that contained tunneling and exfiltration. The proposed framework can accurately
detect tunneling and exfiltration and prove the robustness, simplicity, and scalability
of our method.
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