
Chapter 36
Application of Time Series Method
to the Passenger Flow Prediction
in the Intelligent Bus Transportation
System with Big Data

Yinna Ye, Ruoxi Liu, and Feng Xue

Abstract Based on the real data collected from the bus IC card payment devices,
first a time series plot on the daily passenger volume was obtained and then three
kinds of time series models were proposed to do the prediction. The results show
that the ARMA model with quadratic trend is the most suitable to the current data
and performs the most effectively in the prediction.

36.1 Introduction

With the current development of the intelligent urban public transportation system
in China, the investigation on the bus passenger flow has become a key research
subject (see [1] for instance). In order to maintain the competitiveness in the trans-
portation market and provide services with high-level quality to the passengers,
the bus transportation companies need to grasp the change rules of the passenger
demand sustainably [2]. However, the passenger flow in the bus system is influenced
by many factors, including commuting, holiday, weather, temperature, etc. [2]. For
example, the volume would experience a sudden increase during low temperature
and snowy days, which would lead to the inability of bus transport capacity to meet
passenger demand and brings tremendous pressure to the bus transportation manage-
ment. Considering the limited bus resources, some popular routes are often in short
supply, which might result in the problems of passenger flow detention and reduced-
quality service. The bus companiesmight thus lose competitiveness in the transporta-
tion market. Therefore, it is necessary to find an effective solution to the problems
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caused by such burst of passenger flow and adjust the current management policies
in support to the optimal bus resource allocation, line planning and bus scheduling.
The solution is of great importance to improve both the service capability and the
working efficiency in the public transportation system.

The driving motivation of this work is to find a reliable method to solve the prob-
lems above. Undoubtedly, this piece of work is socially significant and important
since the urban transport plan and policy could be well designed or adjusted with
adapting the market demand. The implementation of this work involves a combina-
tion of big data processing, time series modeling and analysis. The primary objec-
tive of the work is to apply the time series models and data analytics to explore
the passenger demand based on the real data and then to predict the daily passenger
volume in a given bus line. The study will mainly focus on the following two aspects:

• Descriptive statistics on the trip characteristics of passengers, including riding date
and time, and on the volume and variation characteristics of transit passenger flow
at different stations in a given bus line.

• Time series parameters estimation and passenger volume prediction are based on
the bus tick sale records.

In this work, SAS (version 9.4) (see [3] for instance) will be used to obtain the
descriptive statistics, to do time series analysis and predictions.

The rest of the paper is organized as follows. Section 36.2 reviews the development
of time series analysis and recent works on the application of the time series to the
public transportation systems. Section 36.3 presents time series related concepts and
methods, as well as our data analysis process. Section 36.4 summarizes and evaluates
the empirical results. And finally the conclusion is discussed in Sect. 36.5 and certain
open questions and some future improvements are proposed in Sect. 36.6.

36.2 Literature Review

Prior to 1920, the time series was limited to drawing lines through a mass of data.
In 1927, Yule [4] first introduced the concept of ‘autoregressive’ that the variables
are time related and time is not a causal factor, and pioneered the autoregressive
(AR) Model of order two when studying the number of sunspots and exploring
the period of the disturbed sequence. The autoregressive model he established is a
special kind of stationary time series. In 1931, Walker [5] expanded and generalized
the AR model to higher orders. While, Slutsky [6] was interested in the randomness
of the time series, regarding them as the perturbations and then the moving average
(MA) model was proposed. In 1938, Wold [7] proved that the discrete stationary
process consists of implicit periodicity and linear regression. The hidden cycle is
a deterministic component, while the linear regression part consists of a moving
average and an autoregressive process, which are non-deterministic components of
random perturbations. Any stationary time series, whose deterministic components
are eliminated, can be reduced to a linear combination of random perturbations. This
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well-known time series decomposition idea is the theoretical basis for the idea of
the autoregressive moving average (ARMA) model. By taking non-stationary into
consideration, the autoregressive integrated moving average (ARIMA) model was
proposed in the landmark work [2]. The book provided a systematic approach to
analyze and forecast the time series and discussed how to identify, estimate and
diagnose the ARIMA model.

The application of time series models in the modern society has rapidly
widespread, as the application was extended to non-stationary process (see for
instance [8]). A large number of empirical results show that most time series estab-
lished based on the socio-economic phenomena are non-stationary and have a trend
(see for instance [9]). According to Xia [9], there are two types of time trend, one is
deterministic and another one is random. Deterministic time trend is the one that can
be characterized by a function of the time. The commonly used trend functions are
linear functions, quadratic parabola functions, exponential functions and logarithmic
functions. By contrast, the time series with stochastic trend cannot be expressed by
the deterministic functions of time. In this case, multiple differences are operated to
the original process and then the ARIMA model is used to fit the data.

In the literature, the existing researches suggest that the time series analysis has
been properly utilized in studying different public transportation systems. For the
subway systems in Shanghai, Zhu [10] constructed an ARIMA model for the daily
passenger flow by comparing the change rate of daily volume with that of ‘7-day’
average volume. For the airport terminal departure passenger traffic, Li et al. [11]
took daily periodicity of the process into consideration and proposed a seasonal
autoregressive integrated moving average (SARIMA)model to predict the passenger
flow in Kunming Changshui International Airport. For the railway passenger flow
forecast, a time series model was established in [12] with the combination of the
long-term trend, the seasonal and the weather factors. To achieve an accurate real-
time taxi passenger hotspot prediction, Jamil and Akbar [13] proposed an automatic
ARIMA model to determine the value of the model order automatically. The algo-
rithm designed by them overcame the common obstacle, subjectivity and complexity.
All these applications make use of the knowledge of passenger flow and provide
instructive insight to the management of the public transportation system, which has
a referential significance for our investigation.

36.3 Methodology

36.3.1 Stationary Time Series Models

The time series analysis aims to reveal the underlying dynamics and structures that
affect observable data, thus establishing a suitable theoretical model for monitoring
and predicting data. For the definition of stationary time series (or simply called ‘time
series’), one can refer for instance to theDefinition 1.3.2 in [14]. In this book, the daily
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passenger flow volumes {Zt } at any unit of time t will be regarded as a discrete-time
stochastic process. Roughly speaking, assuming that {Zt } is a stationary time series
withmean 0 and Zt depends only on its historical records Zt−1, Zt−2, . . . then we can
use the observed historical data to estimate the dynamic properties, create optimal
models and then use these models to do the prediction. In this project, we construct
discretely sampled time series based on the actual daily records of passenger volume
in a given bus line. The detailed description about the database can be found in
Sect. 36.4.1. In the rest of this subsection, some related fundamental concepts will
be introduced. One may refer to [8] for the details.

Autoregressive Model: AR (p). The autoregressive (AR) model is a very common
time series. The general p-order autoregressive model, denoted as AR(p), is given
by:

Zt = ϕ1Zt−1 + ϕ2Zt−2 + · · · + ϕp Zt−p + at , (36.1)

where the parameters ϕ1, ϕ2, . . . , ϕp are called autoregressive coefficients and they
are to be estimated. The random error terms {at } is the white noise, i.e., a sequence
of i.i.d. random variables, at ∼ N

(
0, σ 2

a

)
and {at } is mutually independent with

Zt−1, Zt−2, . . . , Zt−p.

Moving Average Model: MA (q). The general q-order moving average model,
denoted as MA (q), is given by:

Zt = at − θ1at−1 − θ2at−2 − · · · − θqat−q , (36.2)

where θ1, θ2, . . . , θq are called moving average coefficients and they are to be
estimated.

AutoregressiveMoving AverageModel: ARMA (p, q). The autoregressive moving
average (ARMA) combines anARmodel with aMAmodel to produce a new process
that simulates the time series. The general ARMA model, denoted as ARMA (p, q),
is given by

Zt = ϕ1Zt−1 + ϕ2Zt−2 + · · · + ϕp Zt−p

+ at − θ1at−1 − θ2at−2 − · · · − θqat−q . (36.3)

Autoregressive Integrated Moving Average Model: ARIMA(p, d, q). Notice that
the AR,MA, and ARMA models are stationary time series. However, sometimes
the time series are not necessarily stationary. It may have a linear trend component.
For non-stationary time series, it is necessary to transform it into a stationary one
through the backward shift operator. Such a non-stationary time series is called
ARIMA process, denoted as ARIMA (p, d, q), and is given by
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(
1 − ϕ1B − · · · − ϕp B

p
)
(1 − B)d Zt = (

1 − θ1B − · · · − θq B
q
)
at , (36.4)

where B is the backward shift operator (lag) defined as (1 − B)Zt = Zt − Zt−1 and
d is the number (order) of the difference to make the process stationary.

ARMA Model with a Quadratic Function Trend. Indeed, besides considering a
linear trend component in the time series, some other trend forms may also be taken
into account. If the trend of a time series has a shape as a quadratic function, then it
can be fitted by a quadratic function. The ARMA model with a quadratic function
trend is given by

Zt = quadratic function + ARMA process

= at + bt2 + ϕ1Zt−1 + ϕ2Zt−2 + · · · + ϕp Zt−p + at
− θ1at−1 − θ2at−2 − · · · − θqat−q (36.5)

In the rest of this section, the application of time series method to the passenger
flow prediction will be introduced. This can be achieved by the descriptive and
inferential studies on the current data.

36.3.2 Time Series Analysis

According to [8], the main steps of time series analysis and modeling are:

1. Stationarity and white noise test
2. Model identification (i.e., specifying the lag order)
3. Model selection and parameter estimation
4. Diagnostic checking
5. Prediction based on the optimal model.

Stationary Test. The first step of time series analysis is to verify whether the series
is stationary. There are two main methods: one is the graph test, which illustrates the
features shown in the time series plots and autocorrelation diagrams, while the other
one is the unit root test.

Graph Test.

1. Time series plot

According to the property that mean and variance of a stationary time series are
constant, the time series plot should show that the process fluctuates randomly near
a constant value and the ranges of fluctuation are similar. The time series is usually
not stationary if there exists a significant trend or periodicity.

2. Autocorrelation function (ACF) plot
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ACF is used todescribe thedegreeof linear correlationbetweendifferent observations
in time series. It is proven that the stationary time series usually have short-term
correlation. The time series is stationary if the autocorrelation function declines
rapidly to zero and all the values fall into the confidence interval by lag 3. In contrast,
the autocorrelation of a non-stationary series declines slowly.

Unit Root Test. The unit root test is used to check whether a time series needs to be
differenced. The procedure is described in [15]. Among the unit root tests, the most
widely used one is the Dickey–Fuller (DF) test, which is applicable to the AR(1)
model:

Zt = ϕ1Zt−1 + at = (1 − ϕ1B)−1at =
∞∑

k=0

ϕ
j
1at−k, (36.6)

where |ϕ1| < 1. Since the root of the characteristic equation 1 − ϕ1B = 0 is ϕ−1
1 ,

another equivalent statement of the stationary form is that the root must be outside
the unit circle. So it suffices to test whether the root of the characteristic equation is
outside the unit circle, with, respectively, null and alternative hypothesis:

H0 : {Zt }is non - stationary, |ϕ1| = 1, a regular difference is needed

H1 : {Zt }is stationary, |ϕ1| < 1, the series donot need to be deferenced

The DF test is only applicable to the AR(1) model. In order to generalize the DF
test and make it widely applicable to AR(p) processes, an augmented Dickey–Fuller
(ADF) test was proposed in [16] with the same hypothesis and the decision rules and
includes two other new terms: drift and trend.

White Noise Test. In order to verify whether a process is worth further time series
modeling and analysis, it is needed to perform thewhite noise test. From the definition
of the white noise, for any lag k, its autocorrelation coefficient is given by ρk = 0.
It should be noted that this is the ideal situation. While in practice, most of the
autocorrelation coefficients ρ̂k are not equal to zero due to the finiteness of the
sample sequence, but they fluctuate randomly around a value of 0 with a small float.
According to the methods summarized by Wei [17], instead of considering each
autocorrelation individually, the first m autocorrelation coefficients as a whole are
considered and an index to determine whether a sequence is white noise or whether
there exists a correlation betweenobservations is constructed. The null and alternative
hypotheses for the white noise test are, respectively:

H0 : ρ1 = ρ2 = · · · = ρm = 0,∀m ≥ 1, so{Zt }is a white noise sequence
H1 : for∀m ≥ 1, ∃k ≤ m and k �= 0that

ρk �= 0, so{Zt }is not a white noise sequence
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This is an approximate statistical hypothesis test that none of the autocorrelations
of the series up to a given lag are significantly different from 0. If this is true for all
m lags, then there is no information in the series to model and no ARIMA model is
needed.

Methods of Order Specification. To determine the order (p, q) of ARMA models,
SAS provides a list of the order combinations, which is mainly referred to ESACF,
SCAN and MINIC methods.

The extended sample autocorrelation function (ESACF) method. Since the ACFs
and PACFs of ARMA(p, q) model are all trailing, these two functions cannot be
jointly used to determine the order (p, q). Considering this situation, Tsay and Tiao
[18] proposed a general iterative regression method, and used the ESACF to esti-
mate the order of the model. The method is applicable if the time series yt belongs to
ARMA(p, q) process, then by fitting AR(p)model to it, the estimate of the autocor-
relation regression coefficients ϕ̂i , i = 1, 2, . . . , p will be inconsistent. Therefore,
the residual error of regression must be introduced into the model as an explanatory
variable, and when such process goes on until the q times the estimated model is as
follows:

Zt =
p∑

i=1

ϕ
(q)

i Zt−i +
q∑

i=1

α
(q)

i ê(q−i)
t−i + e(q)

t . (36.7)

Now the estimator ϕi
∧(q) will be consistent. Based on this idea, let m = 0, 1, 2, ...,

ϕi
∧( j) is the j th iteration estimated autoregressive coefficient of the AR (m) model,
then ρi

∧(m) is defined as the sample autocorrelation function of the following model:

yt =
(
1 − ϕ1

∧( j)B − ϕ2
∧( j)B2 − · · · − ϕm

∧( j)Bm
)
zt . (36.8)

Regarding the ESACF, there exists the following probabilistic convergence:

ρ̂
(m)
j

p→
{
0, 0 ≤ m − p ≤ j − q;
X �= 0, otherwise

. (36.9)

Because of this property, the distribution of the ESACF for ARMA (1,1) model
can be displayed as in Table 36.1, which is characterized by the fact that all zeroes
form a triangle with the vertex (1,1). Similarly for the general ARMA (p, q), the
vertex of all zeroes is located at (p, q), which is the rule of identifying the order of
the model. In fact, SAS provides two tables, one is for the estimate of ESACF and
the other one is for the significance test.

The smallest canonical correlation coefficient (SCAN) method. Tsay and Tiao
[19] firstly put forward this idea, and Choi [20] gave the concrete method of solving
and judging ARMA(p, q) model. Only the conclusion of this method is given here.
First, the SCAN of each model with different order combination is calculated, and
then the table of SCAN similar to that of ESACF is formed. The only difference is
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Table 36.1 ESACF for ARMA (1, 1) model, where X is a non-zero number

MA 0 1 2 3 …

AR

0 X X X X …

1 X 0 0 0 …

2 X X 0 0 …

3 X X X 0 …

… … … … … …

that the judgment is based on the rectangle with zeroes being vertices so that the
corresponding vertex position is the order of the model. In our project, SAS gives
two tables, one for the estimate of SCAN coefficients and the other for chi-square
test results of the coefficient significance.

The minimum information criterion (MINIC) method. The minimum information
criterion (MINIC) method, proposed by Hannan and Rissanen [21], can tentatively
identify the order of a stationary and invertible ARMA process. The MINIC table is
constructed by computing Bayesian information criterion (BIC) for various autore-
gressive andmoving average orders. Suppose L is the value of the likelihood function
evaluated at the parameter estimates of ARMA(p, q), N is the number of observa-
tions, and k is the number of estimated parameters, the BIC of ARMA(p, q) model
can be calculated as:

BIC(p, q) = k ln(N ) − 2 ln(L) (36.10)

Values of BIC(p, q) that cannot be computed are set to missing. For large autore-
gressive and moving average test orders with relatively few observations, a nearly
perfect fit can result. This condition can be identified by a large BIC(p, q) nega-
tive value. The MINIC table can be in the form in Table 36.2. The model with the
minimum BIC value is chosen as the best fitted one.

Methods of Parameters Estimation. There are various ways to estimate the param-
eters, such as moment estimation, least squares estimation, maximum likelihood

Table 36.2 MINIC table

MA 0 1 2 3 …

AR

0 BIC(0,0) BIC(0,1) BIC(0,2) BIC(0,3) …

1 BIC(1,0) BIC(1,1) BIC(1,2) BIC(1,3) …

2 BIC(2,0) BIC(2,1) BIC(2,2) BIC(2,3) …

3 BIC(3,0) BIC(3,1) BIC(3,2) BIC(3,3) …

… … … … … …
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estimation and so on. In this work, method of maximum likelihood estimation is
adopted, which is recommended by most experts using SAS for prediction.

Maximum likelihood method. According to the maximum likelihood method of
time series analysis discussed by Guidolin and Pedio [22], under the maximum
likelihood criterion, it is considered that the sample comes from the popula-
tion with the highest probability of occurrence of this sample. Therefore, the
maximum likelihood method for the unknown parameter’s estimation is to make
the likelihood function L

(
ϕ1, . . . , ϕp, θ1, . . . , θq

)
reach the maximum, suppose

p
(
z1, z2, . . . , zn, ϕ1, . . . , ϕp, θ1, . . . , θq

)
is the joint density function, L can be

written as:

L
(
ϕ1, . . . , ϕp, θ1, . . . , θq

) = p
(
z1, z2, . . . , zn, ϕ1, . . . , ϕp, θ1, . . . , θq

)
(36.11)

The distribution function of the population must be known to use the maximum
likelihood. However, in the time series analysis, the distribution of population is
often unknown. In order to facilitate calculation and analysis, it is usually assumed
that the sequence follows multivariate normal distribution:

Zt = ϕ1Zt−1 + ϕ2Zt−2 + · · · + ϕp Zt−p + at − θ1at−1

− θ2at−2 − · · · − θqat−q , z̃ = (z1, z2, . . . , zn)
′, (36.12)

β̃ = (
ϕ1, . . . , ϕp, θ1, . . . , θq

)′
, (36.13)

∑

n

= E(z̃′ z̃) = �σ 2
a . (36.14)

The likelihood function of z̃ is

L
(
β̃
)

= pβ̃ = (2π)−n/2

∣∣
∣∣∣

∑

n

∣∣
∣∣∣

−1/2

exp

{

− z̃
′ ∑−1

n z̃

2

}

. (36.15)

The log likelihood function is

l
(
β̃
)

= −n

2
ln(2π) − n

2
ln

(
σ 2
a

) − 1

2
ln|�| − 1

2σ 2
a

[
z̃

′
�−1 z̃

]
. (36.16)

The system of likelihood equations can be obtained by computing the partial
derivatives of the unknown parameters of the logarithmic likelihood function.

Theoretically, solving the likelihood equations yields the maximum likelihood of
the unknownparameter.However, since z̃

′
�−1 z̃ and ln|�| is not an explicit expression

of the parameter, the likelihood equations are actually composed of p + q + 1
transcendental equations, which usually requires a complex iterative algorithm to
find the maximum likelihood of the unknown parameter.
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The maximum likelihood method makes full use of the information provided by
each observation, so its estimation accuracy is high, and it also has good statistical
properties such as consistency and progressive validity.

Diagnostic test. In this test, the goodness of fit and the accuracy of the model are
measured and the correlation test and the normality test on the residual series are
performed. The following two kinds of criterionwill be used tomeasure the goodness
of fit for a model:

Akaike’s information criterion (AIC). Akaike [23] defined AIC as

AIC = −2 ln(L) + 2k, (36.17)

where L is the value of the likelihood function evaluated at the parameter estimates,
N is the number of observations and k is the number of estimated parameters. The
first term of the AIC measures the goodness of fit of the ARMA model to the data,
and the second term is called the penalty function of the criterion because it penalizes
a candidate model by the number of parameters used. Therefore, the model with the
minimum AIC value should be chosen.

Schwarz’s Bayesian information criterion (SBC). Schwarz [24] defined AIC as

SBC = −2 ln(L) + ln(N )k, (36.18)

Similarly, the model with the minimum SBC value should be chosen. The penalty
for each parameter is 2 for AIC and ln(N ) for SBC, so compared to AIC, SBC tends
to select a lower-order model when sample size is moderate or large.

There are other two kinds of criterion to measure the accuracy of a model’s
predictions will be used. One can refer to [25] for the detailed description.

Mean absolute percentage error (MAPE). The MAPE is a common measure of
forecast error in time series analysis. It usually expresses accuracy as a percentage
and is defined by the formula:

MAPE = 100%

n

n∑

i=1

|Zt − Ft |/Zt , (36.19)

where Zt is the actual value and Ft is the forecast value.
Mean square error (MSE). The MSE is measure of the differences between

prediction values and the actual values. It is defined by:

MSE = 1

n

n∑

t=1

(Zt − Ft )
2, (36.20)

where Zt is the actual value and Ft is the forecast value.
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36.4 Empirical Results

36.4.1 Introduction to Database

In this work, the original data was provided by the bus companies in the city of
Jiaozuo in China, including the bus IC card payment records among the six bus lines
in the city, during the period of time January 01, 2018 to March 31, 2018. Table 36.3
shows a part of the originally collected data. The whole dataset consists of 2,874,878
rows (records), each with eight component variables. The meaning of the variables
used in this work is shown in Table 36.4.

36.4.2 Data Preprocessing

The first phase of the data analysis is to process the data in order to construct a time
series. The steps to obtain the descriptive statistics and the time series plot are the
follows.

Step 1: Standardization of the raw data. The variables which are not straightfor-
ward numeric or character, such as ‘SITE_TIME’, need to be standardized
in the format that the SAS can recognize and interpret.

Step 2: Data extraction. The daily passenger volume from the original database is
extracted. For this, the ‘DATA’ and ‘PROC’ procedures are mainly used in
SAS to create the datasets.

Step 3: Construct the time series. After the datasets, including daily passenger
flow volume in each bus line, are constructed, the graphical procedure in
SAS is used to plot the time series for each bus line. In this work, the line
No. 18 is chosen for case study. The time series plot of the daily passenger
volume in the line No. 18 during the period January 01, 2018 to March 31,
2018 is shown in Fig. 36.1.

36.4.3 Model Building

Case 1: ARMAmodeling with the original time series. According to the results of
ADF test shown in Table 36.5, the p-value is less than 0.05 for a lag of 0, indicating
that the null hypothesis can be rejected and the sequence is stationary, so the ARMA
model is suitable to the original data. After calculating the BIC of the models with
different order combinations, SAS shows the optimal order for the order selection by
the ascending order of BIC value. And three candidate models with minimum BIC
values, namely AR(3),ARMA(1, 1)and ARMA(1, 3) are chosen. The results of the
parameter estimation and fitting statistics for each candidate models are summarized
in Tables 36.6 and 36.7, respectively.
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Table 36.4 Descriptions of the variables used in this work

Variable Meaning

LINE_NO Bus line number

BUS_NO Bus number in a certain bus line

IS_UP_DOWN Direction of the bus (1: up direction; 0: down direction)

LABEL_NO Bus station order number in a certain bus line

UP_PASSENGER Number of passengers getting on the bus

SITE_TIME Date and time when the record is collected

Fig. 36.1 Time series plot of daily passenger volume in line No. 18, including total passenger
volume and the ones in two directions

Table 36.5 ADF test results

Augmented Dickey–Fuller unit root tests

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero mean 0 −0.7683 0.5129 −0.50 0.4972

1 −0.3326 0.6052 −0.28 0.5817

Single mean 0 −17.2117 0.0180 −3.28 0.0189 5.46 0.0283

1 −10.8949 0.0984 −2.40 0.1441 2.95 0.3284

Trend 0 −21.7232 0.0361 −3.50 0.0454 6.33 0.0577

1 −14.4621 0.1790 −2.61 0.2773 3.49 0.4875
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Table 36.6 Parameter estimation results of three candidate models (in Case 1)

(p, q) MU ϕ1 ϕ2 ϕ3 θ1 θ2 θ3

(3, 0) 2227.2 0.65563 0.05421 0.27748

(1, 1) 2412.4 0.98886 – – 0.37098 – –

(1, 3) 2154.8 0.98111 0.35491 0.08107 −0.30409

Table 36.7 Fitting statistics
of three candidate models (in
Case 1)

(p, q) AIC SBC MAPE

(3,0) 1445.263 1455.262 13.57413

(1,1) 1446.71 1454.209 13.82645

(1,3) 1445.193 1457.693 13.81004

Although ARMA(1,1) and ARMA(1,3) have the smallest SBC and the smallest
AIC value, respectively, their MAPE values are much higher than that of AR(3).
In comparison, AR(3) model has the smallest MAPE value indicating the highest
prediction precision, and either its AIC or BIC value is slightly higher than the
minimum indicating a relatively good goodness of fit. Therefore, AR(3) is chosen
as the optimal model in this case. After implementing the parameter estimation by
goodness of fit test for AR(3) model in SAS, all the AR coefficients are significant,
so the optimal model is determined as below.

Zt = 0.65563Zt−1 + 0.05421Zt−2 + 0.27748Zt−3 + at (36.21)

As shown in Fig. 36.2, the residual diagnostics in SAS shows ACF value of
the residual sequence is almost 0, and the white noise probability is greater than
0.05, which indicates that there is no dependence between the residuals and the
AR(3) model has extracted all the useful information from the historical time series.
Besides, the histogram and QQ-plot of residuals (Fig. 36.3) show that the residual
sequence follows normal distribution, indicating the model is adequate. The ten-step
ahead prediction of the passenger flow volume by using the model (36.21) and the
comparison between actual and prediction are shown, respectively, in Table 36.8;
Fig. 36.4.

Although the diagnostic results show that AR(3) is adequate for the sequence
fitting, 95% confidence interval of the prediction is very wide. Since the wider the
confidence region is, the lower the prediction accuracy is, the prediction especially
in the long term may not be accurate.

Case 2: ARMA modeling with the first-order differenced time series.
According to the ACF plot shown in Fig. 36.5, even the autocorrelation decreases
exponentially, it does not fall into the confidence interval until lag 5. Considering
that the ACF decays gradually, not rapidly to zero, the time series is regarded as
non-stationary and needs to be differenced, so the ARIMA model is applied to fit
the data. And two models with minimum BIC value are chosen as candidate models,
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Fig. 36.2 Residual correlation diagnostics for AR(3) model

Fig. 36.3 Residual normality diagnostics for AR(3) model
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Table 36.8 Prediction based on AR(3) model

Date Forecast for the
daily passenger
volume

Std error of
forecast

Lower 95%
confidence limit

Upper 95%
confidence limit

20180401 4910.496318 726.7519712 3486.088629 6334.904007

20180402 5093.005425 869.0218861 3389.753826 6796.257023

20180403 4937.714098 937.5256512 3100.197587 6775.230609

20180404 4904.203801 1043.474524 2859.031316 6949.376287

20180405 4924.457867 1137.024275 2695.931238 7152.984497

20180406 4892.829962 1211.618031 2518.102259 7267.557665

20180407 4863.893423 1284.335326 2346.642439 7381.144406

20180408 4848.827417 1353.560756 2195.897083 7501.75775

20180409 4828.60494 1417.048994 2051.239948 7605.969932

20180410 4806.500485 1476.948875 1911.733884 7701.267087

Fig. 36.4 Actual values against prediction based on AR(3)i j model

namely ARIMA(0, 1, 1)and ARIMA(2, 1, 0). The results of the parameter estima-
tion and fitting statistics for each candidate models are summarized in Tables 36.9
and 36.10, respectively.

It can be seen ARIMA(2, 1, 0) has a smaller AIC value indicating a higher good-
ness of fit, and a smaller MAPE value indicating a higher prediction precision, while
its SBC value is slightly higher than ARIMA(0, 1, 1). Therefore, ARIMA(2, 1, 0)
model is chosen as the optimal one for the first-order differenced time series. After
implementing the parameter estimation by goodness of fit test, all the coefficients
are significant. So the optimal model is determined as below.

(1 − B)Zt = −0.33412(1 − B)Zt−1 − 0.28956(1 − B)Zt−3 + at (36.22)
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Fig. 36.5 Trend and ACF plots for the original time series

Table 36.9 Parameter estimation results of two candidate models (in Case 2)

(p, d, q) MU ϕ1 ϕ2 ϕ3 θ1 θ2 θ3

(0, 1, 1) 32.28610 0.37507

(2, 1, 0) 32.81746 −0.33412 −0.28956 – – –

Table 36.10 Fitting statistics
of three candidate models (in
Case 2)

(p, d, q) AIC SBC MAPE

(0, 1, 1) 1429.956 1434.934 13.9703

(2, 1, 0) 1428.162 1435.628 13.64128

By performing the residual diagnostics (similar to Case 1), it is observed that there
is no dependence between the residuals and the ARIMA(2, 1, 0)model has extracted
all the useful information from the time series. Besides, the residual sequence follows
normal distribution, indicating the model is adequate. The ten-step ahead prediction
of the passenger flowvolume by using themodel (36.22) and the comparison between
actual and prediction are shown, respectively, in Table 36.11; Fig. 36.6.

Although the diagnostic results show that ARIMA(1, 2, 0) is adequate for the
sequence fitting, its 95% confidence region of the prediction from the model is still
very wide.
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Table 36.11 Fitting statistics of three candidate models (in Case 2)

Date Forecast for the
daily passenger
volume

Std error of
forecast

Lower 95%
confidence limit

Upper 95%
confidence limit

20180401 5073.267 737.6109 3627.576 6518.958

20180402 5105.553 869.797 3400.783 6810.324

20180403 5137.84 984.39 3208.471 7067.208

20180404 5170.126 1086.969 3039.706 7300.545

20180405 5202.412 1180.668 2888.344 7516.479

20180406 5234.698 1267.46 2750.522 7718.873

20180407 5266.984 1348.678 2623.624 7910.343

20180408 5299.27 1425.275 2505.783 8092.757

20180409 5331.556 1497.96 2395.608 8267.504

20180410 5363.842 1567.279 2292.033 8435.652

Fig. 36.6 Actual values against forecasts based on ARIMA(2, 1, 0) model

Case 3: ARMA modeling with quadratic function trend. According to the
original time series plot in Fig. 36.1, it is observed that the passenger flow time series
may have a quadratic trend. The two trend variables, _LINEAR_ and _SQUARE_ (as
shown in Table 36.12), representing linear and quadratic relationships, respectively,
are pre-generated.

Then, the same steps as in the previous two cases are followed to build a quadratic
ARMA model. And three models with minimum BIC value as candidate models
are chosen, namely Quadratic + AR(3),Quadratic +ARMA(1, 1)and Quadratic +
ARMA(1, 3). The results of the parameter estimation and fitting statistics for each
candidate models are summarized, respectively, in Tables 36.13 and 36.14.

Compared with the other two models, the Quadratic + ARMA(1, 3) model has
the smallest AIC and MAPE indicating the highest goodness of fit and the highest
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Table 36.12 Part of dataset with two trend variables

Date total_passenger_sum _LINEAR_ _SQUARE_

1 180101 1863 1 1

2 180102 3251 2 4

3 180103 2339 3 9

4 180104 3033 4 16

5 180105 3793 5 25

6 180106 3219 6 36

7 180107 2558 7 49

8 180108 2957 8 64

9 180109 2922 9 81

10 180110 1950 10 100

prediction precision. Although Quadratic + ARMA(1,1) has the smallest SBC,
its MAPE is the highest indicating the lowest prediction accuracy. Therefore, the
Quadratic + ARMA(1, 3) is chosen as the optimal model with quadratic trend.

After implementing the parameter estimation by goodness of fit test, it can be
seen that not only the MA and AR coefficients, but also the coefficients of linear
and quadratic trend variables are significant. So the optimal model is determined as
below.

Zt = 113.79672t − 0.92369t2 + 0.76222Zt−1

+ at − 0.26487at−1 − 0.05254at−2 + 0.35486at−3 (36.23)

By performing the residual diagnostics (similar to Case 1), it is observed that there
is no dependence between the residuals and the Quadratic+ARMA(1, 3)model has
extracted all the useful information from the time series. Besides, the histogram
and QQ-plot (obtained by using the same method in Case 1) show that the residual
sequence follows normal distribution, indicating the model is adequate.

Using the model (36.23), the ten-step ahead prediction and the comparison
between actual and prediction are shown, respectively, in Table 36.15; Fig. 36.7.

The 95%confidence regionwidth is significantly narrower, but the prediction does
not describe the rapid growth at the end of the sequence, so probably it is caused by
some external factors such as weather and holiday policies. If further improvements
are needed, the external influences must be included in the model.

36.5 Conclusion

In this work, the prediction on the passenger flow volume in the bus transpiration
system is performed, by using three kinds of time series models: AR, ARIMA and
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Table 36.14 Fitting statistics of three candidate models (in Case 3)

Quadratic + (p, q) AIC SBC MAPE

Quadratic + (3, 0) 1442.351 1457.35 13.73232

Quadratic + (1, 1) 1443.143 1455.642 14.00114

Quadratic + (1, 3) 1439.571 1457.07 13.43795

Table 36.15 Forecasts based on Quadratic + ARMA(1, 3) model

Date Forecast for the
daily passenger
volume

Std error of
forecast

Lower 95%
confidence limit

Upper 95%
confidence limit

20180401 4934.188 693.2455 3575.452 6292.924

20180402 5074.388 774.2533 3556.879 6591.896

20180403 4629.014 806.6707 3047.968 6210.059

20180404 4536.912 908.7964 2755.704 6318.121

20180405 4450.85 963.1695 2563.073 6338.628

20180406 4368.952 993.3936 2421.936 6315.967

20180407 4289.787 1010.538 2309.169 6270.406

20180408 4212.268 1020.367 2212.386 6212.15

20180409 4135.564 1026.034 2124.575 6146.553

20180410 4059.041 1029.312 2041.627 6076.455

Fig. 36.7 Actual values against forecasts based on Quadratic + ARMA(1, 3) model

Table 36.16 Fitting statistics of three optimal models

Model AIC SBC MAPE MSE

AR(3) 1445.263 1455.262 13.57413 504694.3

ARIMA (2,1,0) 1428.162 1435.628 13.64128 531843.6

Quadratic + ARMA (1,3) 1439.571 1457.07 13.43795 443210.1
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quadratic ARMA. At first, the bus IC card payment records were transformed into a
time series, which represents the daily passenger volume in line No. 18. Then, the
time series analysis was used and two optimal models, AR(3) and ARIMA(2, 1, 0),
were found. Both models performed well in terms of goodness of fit but failed to
attain accurate predictions. In order to achieve a higher prediction accuracy, the
ARMA model with the quadratic trend was further explored and combined, and a
Quadratic+ARMA(1, 3)model was established for the time series, which achieves
a better balance between fitting and forecasting. The fitting statistics of those models
are shown in Table 36.7.

Each model has its own advantages and disadvantages. They are discussed as
follows one by one.

• AR(3): The AR(3)model has no obvious advantages and disadvantages, because
its performance is not outstanding either in goodness of fit or prediction accuracy.
Its SBC, MAPE andMSE value are all in the middle level, except its AIC value is
slightly higher than the other two models. The only advantage worth mentioning
is that since differencing the process is not needed, this model is the simplest and
the most straightforward one, and the cost is thus the lowest for the application.

• ARIMA(2, 1, 0): In terms of fitting effect, the ARMA(2, 1, 0) model has the
lowest AIC and SBC values indicating the highest goodness of fit. However, it
owns the highestMAPE andMSE among the three models, indicating the greatest
deviation between the predicted value and the true value. Moreover, its prediction
confidence region widens over time, so it may perform poorly in the long-term
prediction. But since it has the best fitting effect, it can accurately describe the
surge trend at the end of the original time series, so the prediction result will be
reliable when the model is used to predict the most recent value.

• Quadratic + ARMA(1, 3): Compared with the other two models, Quadratic +
ARMA(1, 3) model has the smallest MAPE and MSE value, so it achieves the
highest prediction accuracy. Most importantly, this model has a unique advantage
over the others, and it has a narrower prediction confidence interval of a constant
width over time, so it will performmore effectively with high prediction accuracy.

The initial objective of this project and the main demand from the traffic manage-
ment is to improve the forecast accuracy. Due to this, the accuracy of the predic-
tion is the most important factor for the solution performance evaluation. So it can
be concluded that the Quadratic + ARMA(1, 3) model is the most appropriate,
compared to the other two models. Although ARIMA(2, 1, 0) model fits the current
data the best and its short-term prediction shows relatively higher volatility, it may
be more useful for short-term prediction.

36.6 Open Questions and Potential Improvements

Although the ARMAmodel with quadratic function trend performs best in our case,
its application range is limited, because the time sequence must show a quadratic



36 Application of Time Series Method to the Passenger … 519

trend. In the reality, only the short-term change of passenger flow may show such a
trend. For the long-term daily passenger flow, if the data span is more than one year,
it usually fluctuates within a limited range near a fixed value. So the stationary time
series model may be more suitable for such kind of data. In addition, in view of the
change of daily passenger flow in certain city, a seasonal factor with week cycle may
be considered because of the difference of the commuting time between weekdays
and weekends. In this case, a seasonal ARIMA model may be built to fit the series.

As mentioned in the end of Sect. 36.4, the time series method has limitations.
When the prediction time span is long, only a rough future trend line can be obtained,
but not the specific volatility. In order to accurately describe the future fluctuations,
more external factors, such as weather, temperature, holidays and events, might be
introduced into the model. When the historical data is updated continuously and the
sample size is increasing, the algorithm should be updated and adjusted accordingly.

Acknowledgements The authors would like to acknowledge the support of Xiongdi Shenzhen
Emperor Technology Company for the research fund (RDS10120190006) and the data used in this
work.

References

1. Chen,Y.,Wang,D.: Intelligent Traffic InformationCollection, Analysis andApplication. China
Communication Press (2011)

2. Zhou, C., Zhang, Z., Tang, W.: System and methods of passenger demand prediction on bus
network. Comput. Sci. 45, 527–535 (2018)

3. Delwiche, L.D., Slaughter, S.J.: The little SAS book: A Primer, 5th edn. SAS Institute (2012)
4. Yule, G.U.: On a method of investigating periodicities in disturbed series, with Special Refer-

ence to Wolfer’s sunspot numbers. Philos. Trans. R. Soc. London, Ser. A 226, 267–298
(1927)

5. Walker, G.: On periodicity in series of related terms. Proc. R. Soc. London, Ser. A. 131(818)
(1931)

6. Slutzky, E.: The summation of random causes as the source of cyclic processes. Econometr.
Soc. 5(2), 105–146 (1937)

7. Wold, H., Kendall, M.: A study in the analysis of stationary time series. J. Roy. Stat. Soc.
102(2), 295–298 (1939)

8. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting
and Control, 5th edn. Wiley, London (2015)

9. Xia, K.: Deep Analysis of SAS: Data Processing, Analytical Optimization and Business
Applications. China Machine Press (2015)

10. Zhu, H.: N-day average volume based time-series analysis for passenger flow of metro. In:
2010 International Conference on Multimedia Information Networking and Security (2010)

11. Li, Z., Bi, J., Li, Z.: Passenger flow forecasting research for airport terminal based on SARIMA
time series model. IOP Conf. Ser. Earth Environ. Sci. 100(1), 1–7 (2017)

12. Xu, X., Dou, Y., Zhou, Z., Liao, T., Lu, Y., Tan, Y.: Railway passenger flow forecasting based on
time series analysiswith big data. In: ChineseControl andDecisionConference, pp. 3584–3590
(2018)

13. Jamil, M.S., Akbar, S.: Taxi passenger hotspot prediction using automatic ARIMA model. In:
2017 3rd International Conference on Science in Information Technology (2017)



520 Y. Ye et al.

14. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York
(2006)

15. Harris, R., Sollis, R.: Applied Time Series Modelling and Forecasting. Wiley, London (2003)
16. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a

unit root. J. Am. Stat. Assoc. 74(36), 427–431 (1979)
17. Wei, W.S.W.: Time Series Analysis: Univariate and Multivariate Methods, 2nd edn. Pearson

Addison Wesley (2006)
18. Tsay, R.S., Tiao, G.C.: Consistent estimates of autoregressive parameters and extended sample

autocorrelation function for stationary and nonstationary ARMA models. J. Am. Stat. Assoc.
79(385), 84–96 (1984)

19. Tsay, R.S., Tiao, G.C.: Use of canonical analysis in time series model identification. Oxford
Univ. Press 72(2), 299–315 (1985)

20. Choi, B.: ARMA Model Identification. Springer, New York (1992)
21. Hannan, E.J., Rissanen, J.: Recursive estimation ofmixed autoregressivemoving-average order.

Oxford Univ. Press 69(1), 81–94 (1982)
22. Guidolin,M., Pedio,M.: Essentials of Time Series for Financial Applications. Academic Press,

London (2018). (an imprint of Elsevier)
23. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control

19(6), 716–723 (1974)
24. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
25. Xu, G.: Statistical Forecasting and Decision-making. Shanghai University of Finance &

Economics Press (2016)


	36 Application of Time Series Method to the Passenger Flow Prediction in the Intelligent Bus Transportation System with Big Data
	36.1 Introduction
	36.2 Literature Review
	36.3 Methodology
	36.3.1 Stationary Time Series Models
	36.3.2 Time Series Analysis

	36.4 Empirical Results
	36.4.1 Introduction to Database
	36.4.2 Data Preprocessing
	36.4.3 Model Building

	36.5 Conclusion
	36.6 Open Questions and Potential Improvements
	References




