
Chapter 35
Bio-inspired Algorithms for Modeling
and Control of Underwater Flexible
Single-Link Manipulator

I. Z. Mat Darus and Ali A. M. Al-Khafaji

Abstract This research focuses on bio-inspired modeling and control system of an
underwater flexible manipulator system (UFM). The dynamic behavior of the UFM
was first modeled using system identification (SI) methods utilizing bio-inspired
algorithms. The input–output data used for identification were acquired directly
from a laboratory-sized UFM experimental rig developed earlier by the previous
researcher. The models were developed using cuckoo search algorithm (CSA) and
flower pollination algorithm (FPA) using parametric ARX model structured. For the
controllers of theUFM, proportional-integral-derivative (PID) controllerswere tuned
using conventional heuristic and intelligent FPA methods. These algorithms were
utilized to obtain the optimal values of controller parameters for trajectory tracking
control of rigid-body motion of the UFM system. The PID controller is tuned offline
based on the best identified SI model. The performance of these control schemes was
analyzed via real-time PC-based control and observed in terms of trajectory tracking
and error. The overall result of UFM described in this research revealed the supe-
riority of the PID controllers tuned using bio-inspired flower pollination algorithm
(FPA). It was found that the percentage of improvement achieved experimentally
by the PID controller tuned by FPA indicates superiority compared to PID tuned
heuristically with 45.6% improvement on overshoot and 66% improvement of MSE
for negative pulse and 100% improvement on overshoot for positive pulse.

35.1 Introduction

Modern underwater applications make use of solid manipulators built from high
stiffness material. This is because solid manipulators have certain advantages such
as strong and heavy metal compositions that lead to stable performance. However,
major drawbacks of solid manipulators lie in their need for high energy consumption
and limitations in their speed of operation. Moreover, it is desirable in manufacturing
of engineering systems to keep the weight as low as possible. There is a growing
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trend inmany applications to reduce the weight of mechanical structures to the barest
minimum, especially in aircraft engineering and spacecraft. The utilization of weaker
structures and/or lighter materials significantly reduces production cost. However,
light materials can also lead to more flexibility which may limit the structure perfor-
mance [1]. In recent years, the researchers focused on utilization of lightweight
manipulators to build power-efficient robot manipulators in order to improve the
industrial productivity [2]. Therefore, the use of lightweightmanipulators is emerging
in the field of space and various general-purpose industrial applications. The manip-
ulators with rigid links are currently utilized in underwater applications because the
heavy and strong metal leads to stable performance [3, 4]. However, major disadvan-
tages of rigid link manipulators lie in their need for high energy consumption and
limitation in speed of operation.

There is a motivation to use underwater manipulators with flexible link owing
to the advantages offered by manipulator systems with flexible link compared with
manipulator systems with rigid link such as fast response, lightweight, low inertia,
cheap construction, less powerful actuators, longer reach, higher payload carrying
capacity, and safer operation [5, 6]. Although several studies have been conducted on
modeling and control schemes of land and space manipulator systems with flexible
links, only very few literature discussed on underwater flexible manipulators [7–9].

Therefore, there is an open area of research to study and develop dynamic
modeling and control strategies for underwater flexible manipulators. Thus, the
main aim of this paper is to present a suitable computational comprehensive model
governing the underwater flexible manipulator system (UFM) using system identifi-
cation (SI) technique. The manipulator addressed in this study is restricted to move
in horizontal plane. Also, there is a big challenge in controlling the UFMowing to the
additional effects caused by underwater environment, namely disturbances by ocean
currents, time variance and high nonlinearity [9]. Consequently, it is necessary to
develop appropriate control approaches for this type of systems.

35.2 Underwater Manipulator Test Rig

An underwater manipulator test rig used in this research, as shown in Figs. 35.1 and
35.2, was designed and constructed in Faculty ofMechanical Engineering, Universiti
Teknologi Malaysia, Johor in order to perform the underwater flexible manipulator
experiments [9].

Several experimental testings have been conducted to check the similitude of the
underwater and landmanipulators [9]. The angular displacementwasmeasured using
encoder while the end-point vibration was measured by an accelerometer where the
signals were transmitted to a data acquisition card for analog-to-digital conversion of
the signal. Experimental work was conducted in order to acquire data to identify the
model of the hub-angle of the UFM and demonstrate the practicality of the proposed
control schemes. The dynamic model of the hub-angle of the UFM was developed
using SI methods utilizing input–output data acquired experimentally. The modeling
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Fig. 35.1. UFM
experimental rig [9]

Fig. 35.2 Experimental
setup [9]

was conducted within MATLAB programming environment using CSA and FPA.
After validating the developed models of the hub-angle of the UFM, the best model
among the models thus developed has been utilized for the development of control
approaches for hub-angle of the UFM.

Later, PID control strategieswere developed using heuristic and bio-inspired algo-
rithm tuning methods. The control algorithms were computing the amount of motor
voltage required for trajectory tracking of the UFM. The bio-inspired PID control
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scheme tuned offline by using FPA and conventional tuning method using heuristic
tuning. The performance of the intelligent PID control schemes was compared with
a conventional PID control scheme. Both PID control schemes are implemented for
trajectory tracking control of UFM via the developed experimental rig. The objec-
tive of the comparative study is to observe the differences in their performance
simultaneously and to exploit the benefits of using the proposed strategies.

35.3 System Identification

System identification (SI) is one of the most fundamental requirements for several
scientific and engineering applications. The aim of SI is to build exact or approximate
model of a dynamic system based on measured data without knowledge of the actual
system physics. After a system model is obtained, it can be utilized to predict the
physical system behavior under different operating conditions or to control it [4].

Parametric modeling of UFM utilizing metaheuristic algorithm through cuckoo
search algorithm (CSA) and flower pollination algorithm (FPA) is presented in this
paper. The aim of the work is to represent the UFM behavior utilizing the applied
voltage as input and hub-angle as output based on CSA and FPA. Model validations
were also investigated using mean-squared error, one-step ahead prediction, and
model residual analysis. The performances of theCSAandFPAwere compared based
on the validationmean-squared error,modelingmean-squared error, correlation tests,
and stability. The aim of the identification process in this research is to allow for the
design and implementation of controllers based on the identified model for trajectory
tracking of UFM.

35.3.1 Cuckoo Search

CSA is a search algorithm developed by Yang and Deb [10]. The algorithm was
inspired by the breeding behavior of cuckoos. Cuckoo birds lay their eggs in other
birds’ nests and rely on those birds for hosting the eggs. If some of the host birds
discover that an egg is not their own, it might throw out the alien egg or move to a
new location elsewhere. A cuckoo might emulate the shape, color, and size of the
host eggs to protect their egg from being discovered. To increase the hatching prob-
ability of cuckoo birds own eggs, some of them might throw out other native eggs
from the host nest. On the other hand, a hatched cuckoo chick will also throw other
eggs out of the nest to improve its feeding share [10]. It can be noted from the litera-
ture that the efficiency of CSA has been demonstrated by solving several engineering
problems. In control system problems area, the utilization of metaheuristic optimiza-
tion approaches is widely and clearly appreciated. To date, CSA has been utilized
in various control system problems successfully. These literatures show that CSA
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has been utilized efficiently in tuning PID-based controller parameters in different
control scheme.

The user-defined parameters required for optimization process using CSA are:
number of generations, G, population size, N, problem dimension, D, flight step
size, α, discovery rate of alien eggs, Pa, and boundary constraints, LHC. In this
study, D refers to the number of unknown parameters in ARX model structure. The
flight step size, α = 0.01, and the fraction of eggs to be discarded, Pa = 0.25,
were used, as suggested by Yang and Deb [10]. It is worth noting that other CSA’s
optimization parameters such as G, N, and LHC are difficult to choose in order to
obtain promising results since there is no prior knowledge regarding the rules in
selecting these parameters. Thus, these parameters were obtained by a trial-and-
error method. The population needs to be initialized before the optimization starts
and their fitness values need to be calculated. Therefore, (N) nests of dimension
(D) are initialized randomly within the specified lower and upper range. Each nest
in the initial population then updates the parameters of ARX model structure and
its fitness value is calculated based on the error between the predicted and actual
outputs. Among the nests in the initial population, the one with the minimum cost
was considered as the best nest. Figure 35.3 shows the diagrammatic representation
of initial population generation. The optimization process will run iteratively until
the end of generations [9].

Fig. 35.3 Diagrammatic representation of the initial population generation [9]
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35.3.2 Flower Pollination Algorithm

Flower pollination algorithm (FPA) is a biology-based algorithm inspired by the flow
pollination process of flowering plants. Pollination can take two major forms: biotic
and abiotic. Biotic (cross-pollination), means pollination can occur from pollen of
a flower of a different plant, while abiotic (self-pollination) is the pollination of
one flower from pollen of the same flower or different flowers of the same plant.
Biotic is considered as global pollination process with pollen carrying pollinators
performing Levy flights. Abiotic is considered as local pollination. Local pollination
and global pollination are controlled by a switch probability p ∈ [0, 1]. That means,
the probability will specify each of solutions to search the local area or global area
[10].

The user-defined parameters required for optimization process using FPA are:
number of generations,G, population size,N, problem dimension,D, flight step size,
α, probability switch, P, and boundary constraints, LHC. In this study,D refers to the
number of the unknown parameters in ARX model. The flight step size, α = 0.01,
and the probability switch, P = 0.8, were used as suggested by Yang and Deb [10].
It is worth noting that it is difficult to choose other FPA’s optimization parameters
such as G, N, and LHC in order to obtain promising results since there is no prior
knowledge regarding the rules in selecting these parameters. Thus, these parameters
were obtained by a trial-and-error method.

The population needs to be initialized before the optimization starts and their
fitness values need to be calculated. Therefore, (N) pollens of dimension (D) are
initialized randomly in the given upper and lower bounds [10]. Each pollen in the
initial population then updated the parameters of ARXmodel structure and its fitness
value based on the error between predicted and actual outputs. The best pollen in
the initial population is corresponding to the pollen with minimum cost. Figure 35.4
shows the diagrammatic representation of the initial population generation. The opti-
mization process will run iteratively until the end of generations. The pollen with
lower fitness value is selected as the best pollen for the next generation [9]. Detail
description of CSA and FPA identification process is described by Al-Khafaji in [9].

35.4 Tuning of PID Controller Using FPA

To achieve an appropriate control action, the overall effect of PID controller gains,
KP,K I, andKD should be in such away optimum.Hence, the aim of this investigation
is to tune the PID controller parameters offline utilizing two metaheuristic algorithm
namely, CSA and FPA. Simulation study was conducted in order to highlight the
performance of newmetaheuristic optimization techniques to optimally tune the PID
controller in the proposed control scheme. MATLAB/Simulink was used to tune the
PID controller gains KP, K I, and KD in offline mode. The schematic diagram of the
closed-loop system utilizing PID controller with the identified hub-angle model is
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Fig. 35.4 Diagrammatic representation of generation the initial population [9]

Fig. 35.5. Schematic diagram of PID controller tuning by bio-inspired methods [9]

shown in Fig. 35.5. Bang-bang signal was used as input reference with magnitude
of ±0.3 rad for 21 s. The hub-angle model was excited with a disturbance signal at
amplitude of 0.2608m/s. The performance of both tuningmethods has been observed
in termsof overshoots,Mpi andMpd, and steady-state errors,Essi andEssd.Then, the
tuned parameters achieved from the simulation were tested experimentally using the
UFM test rig [10]. Detail description of bio-inspired PID-FPA controller is described
by Al-Khafaji in [10].

35.5 Results and Discussion

35.5.1 System Identification Using CSA and FPA

In this study, CSAwas used to determine the ARXmodel structure parameters which
represent the hub-angle of the UFM. Same control parameters were optimized for
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different arbitrarily selected model order to choose the best model order. The initial
CSA optimization parameters used in modeling processes is as follows: number of
generation, G = 600, population size, N = 20, problem dimension, D, depending on
the model order, flight step size, α = 0.001, fraction of eggs to be discarded, Pa =
0.25, and boundary constraints, LHC= (3, 2). TheARXparameters are optimized via
CSA by minimizing the fitness function, mean square error (MSE). The numerical
results of the work carried out to select the best model order are summarized as
shown in Table 35.1. The performances of CSA and FPA were compared based
on the validation mean-squared error, modeling mean-squared error, stability, and
correlation tests.

It can be noted from Table 35.1 that the best result was accomplished with third
model order. Using third model order, the optimum values of b1, b2, b3, a1, a2, and a3
are 0.0005882, 0.0003957, 1.537 × 10−5, −2.206, 1.484, and 0.2782, respectively.
The optimal ARX parameters have been searched randomly utilizing CSA optimiza-
tion technique in such a way that a global minimum of MSE is reached. The results
of the hub-angle and error in both modeling and validation phases using CSA-MSE
optimization method are shown in Figs. 35.6 and 35.7, respectively. It can be noted
from Figs. 35.6 and 35.7 that a satisfactory response was attained and the output of
CSA-based model could follow the actual output very well with modeling MSE of
1.24101 × 10−4 and validation MSE of 1.82360 × 10−4.

Table 35.1 Performance of CSA and FPA with different numbers of model order

TUNING USING CSA TUNING USING PFA

Model
order

MSE of
validation
phase

MSE of
modeling
phase

Cor.
tests

Stability MSE of
validation
phase

MSE of
modeling
phase

Cor.
tests

Stability

2 1.827×
10−4

1.242×
10−4

Biased Stable 1.827×
10−4

1.247×
10−4

Biased Stable

3 1.824×
10−4

1.241×
10−4

Biased Stable 1.841×
10−4

1.253×
10−4

Biased Stable

4 2.162×
10−4

1.461×
10−4

Biased Stable 1.851×
10−4

1.293×
10−4

Biased Stable

5 1.842×
10−4

1.255×
10−4

Biased Stable 2.017×
10−4

1.368×
10−4

Biased Stable

6 5.691×
10−4

4.257×
10−4

Biased Stable 3.701×
10−4

1.307×
10−4

Biased Stable

7 4.745×
10−4

3.915×
10−4

Biased Stable 4.646×
10−4

4.981×
10−4

Biased Stable

8 0.0035 0.0033 Biased Unstable 5.180×
10−4

4.080×
10−4

Biased Unstable

9 0.0053 0.0052 Biased Unstable 5.336×
10−4

5.579×
10−4

Biased Unstable

10 0.0077 0.0071 Biased Unstable 0.0033 0.0036 Biased Unstable
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Fig. 35.6 Actual and estimated hub-angles using CSA-algorithm

Fig. 35.7 Error between actual and estimated hub-angles using CSA-algorithm

Same control parameters of FPA were optimized for different arbitrarily selected
model order to choose the best model order. Optimization of ARX model structure
parameters utilizing FPAwas achieved by initially initialized FPA control parameters
as closed as possible to CSA control parameters. The population size and generation
number are set to 20 and 600, respectively, while the flight step size, α and the
probability switch, P are set 0.001 and 0.8, respectively. It is worth to know that the
selection of flight step size and the probability switch is based on the guidelines from
the previous literatures [10]. The numerical results of the work carried out to select
the best model order are shown in Table 35.1.

It can be noted from Table 35.1 that the best result by FPAwas accomplished with
second order. After ARX optimization procedure was finished, the optimum values
of ARX parameters are found as b1 = 0.0003741, b2 = 0.0007799, a1 = −1.925, and
a2 = 0.9251. The optimal ARX parameters have been searched randomly utilizing
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FPA in such a way that a global minimum of MSE is reached. The results of hub-
angle and error in bothmodeling and validation phases using FPA-MSE optimization
method are shown in Figs. 35.8 and 35.9, respectively, where the division between
the modeling data and validation data is indicated as a vertical red line located at
point 400. It can be noted from Figs. 35.8 and 35.9 that the predicted response
using FPA method could follow the actual output very well with MSE of 1.24723 ×
10−4 during training and MSE of 1.82754 × 10−4 for validation data. The pole-
zero diagram was used to confirm the model was stable; all the poles of the transfer
function were inside the unit circle. The correlation functions were carried out for
20 samples. It was found that the model is biased because the results are not within
the 95% confidence bands. Parametric modeling of the hub-angle of the UFM has
been performed utilizing two optimization algorithms, namely FPA and CSA. The
overall comparative performance of optimization methods in terms of validation
MSE, modeling MSE, stability, and correlation tests are summarized in Table 35.2.

Fig. 35.8 Actual and estimated hub-angles using FPA algorithm

Fig. 35.9 Error between actual and estimated hub-angles using FPA algorithm
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Table 35.2 Summary of the best performance achieved in parametric modeling

Methods Validation MSE Modeling MSE Correlation test Stability

CSA 1.82360×10−4 1.24101×10−4 Biased Stable

FPA 1.82754×10−4 1.24723×10−4 Biased Stable

Table 35.3 Numerical results of hub-angle responses using CSA, FPA, and heuristic methods

PID-FPA PID-heuristic % of improvement

Positive pulse Mpi 0 0.6 100

Essi 0 0 0

Negative pulse Mpd 12.06 22.16 45.6

Essd 0.0002 0.0006 66

Controllers’ parameters KP 6 3 –

K I 4.4613 3 –

KD 0.5 0.8 –

It can be noted fromTable 35.3 that CSAparametric identification technique provides
the best estimation of UFM model, as compared to FPA. The UFM model obtained
using CSA will be utilized in subsequent studies for the development of control
approaches for hub-angle of the UFM.

The results of all modeling methods were validated using MSE of unseen data,
correlation tests, and stability. The performances of CSA, FPAmodels were assessed
based on the validation MSE, modeling MSE, correlation tests, and stability. It can
be seen that the CSA has achieved slightly better MSE value in both modeling
and validation phases and has approximated the system response very well. The
best model of the UFM thus developed is utilized for the development of control
approaches for hub-angle of the UFM.

35.5.2 PID Tuning Using FPA

PID controller parameters tuning utilizing FPAwere achieved by initially initializing
FPA control parameters as closed as possible to CSA control parameters. The popu-
lation sizeN and generation numberGwere set to 10 and 150, respectively, while the
flight step size α and the probability switch P were set to 0.01 and 0.8, respectively.
It is worthy to note that the selection of flight step size and the probability switch
is based on the guidelines from previous literatures. Figure 35.10 shows the typical
convergence of objective function for 150 generation. It is noted from Fig. 35.10
that FPA converges in about 77 generations. After controller tuning procedure was
finished, the optimal values of PID parameterswere found to beKP = 6,KI = 4.4613,
and KD = 0.5. Figure 35.11 shows the convergence profile of PID parameters. The
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Fig. 35.10 FPA convergence

Fig. 35.11 FPA-PID parameter convergence

result of the closed-loop bang-bang response using FPA-MSE tuning method for
hub-angle is shown in Fig. 35.12. It can be concluded from Fig. 35.12 that a satis-
factory response was attained and the proposed controller is capable of tracking the
desired hub-angle.

Hub-angle control of the UFM has been established utilizing PID control struc-
ture. The PID controller parameters were tuned offline via heuristic and bio-inspired
algorithm based on the best identified model using system identification method.
The best two sets of tuned controllers’ parameters achieved from simulation were
validated experimentally in real time using the UFM test rig where the manipulator
is subjected to external disturbance. The performance of PID controller tuned by
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Fig. 35.12 Simulation
bang-bang response using
PID controller tuned by FPA

FPA indicates superiority compared to PID tuned heuristically with 45.6% improve-
ment on overshoot and 66% improvement of MSE for negative pulse and 100%
improvement on overshoot for positive pulse.
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