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Large-Scale Instance Selection Using a
Heterogeneous Value Difference Matrix

Chatchai Kasemtaweechok, Nitiporn Sukkerd, and Chatchavin Hathorn

Abstract Data classification of a large-scale dataset is a commonproblemnowadays
because the classifier model takes an overwhelming amount of time to completely
learn all the data. The instance selection algorithm is a well-known technique that
addresses this issue by reducing the size of the training set. Instance selectionmethods
decrease the difficulty of data classification and improve the quality of the training
data. This paper proposed a novel instance selection method using a heterogeneous
value difference matrix (HVDM) distance function. The proposed method selected a
set of median HVDMvalues in each partition as a reduced training set. We compared
the proposedmethodwith the condensed nearest neighbor (CNN) and instance-based
learning (IB3) methods. Five large-scale datasets from the UCI data repository were
tested with three classifier models (decision tree, neural net, and support vector
machine). The accuracy and kappa of the proposed method were better than those
of the other two methods, and the proposed method had a moderate reduction rate.
However, the accuracy and kappa of the proposed method were nearly equal to those
of the original training set.

34.1 Introduction

The extent of Internet commerce provides many extremely large datasets fromwhich
information can be extracted using data mining techniques. In addition, many oper-
ations in everyday life, such as mobile transactions by a large number of clients, can
lead to the generation of large amounts of data in a database system. Even if these
data are useful for data classification, the large amount of data makes the classifier
model inappropriate for these problems. Because of the complexity of the learning
process, it can take excessive time to create a classifier model. Moreover, the large
size of the dataset results in the learning process requiring a large amount of memory
space.
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Data reduction is recognized as an effective method to improve the learning pro-
cess for large training datasets. The instance selection algorithm is one of the most
common data reduction techniques to address this difficulty. Instance selection is
the main technique that decreases the complexity of data classification and improves
the quality of the training data because it removes missing, redundant, and noise
data from a training set. Accordingly, the classifier model focuses on collecting only
the instances that have affected the classification score [1]. The selected instances
enable the classifiermodel to predict unseenwith nearly equal accuracy to the original
training set.

In this paper, a new approach is presented to select a subset of the training data
to keep as representative of the training set using a heterogeneous value difference
matrix (HVDM) called HVDM-IS. The training set is separated into disjoint parti-
tions based on the number of instances in the dataset. In each partition, a class repre-
sentative is selected which minimizes the sum of HVDM values to other instances.
After the selection process is complete, the subset of training data presents the whole
quality of the data in the original training set. The proposed method was evaluated
on five large-scale datasets, and the performance was compared with two other algo-
rithms. The performance of the full training set was used as the baseline value. The
reduction rate shows the reduction capacity of all concerned algorithms. Accuracy
and kappa were measured from three classified models: decision tree, neural net, and
support vector machine.

The rest of this paper is as follows. Section34.2 reviews briefly previous instance
selectionmethods. The proposedmethod is described in Sect. 34.3. The experimental
materials and methods are explained in Sect. 34.4. The results of this experiment are
shown in Sect. 34.5. Lastly, Sect. 34.6 presents the conclusion.

34.2 Instance Selection

Instance selection methods can help classifier models by reducing the size of a
training set. The reduction scheme of the previous instance selection methods can
be categorized into three schemes: condensation, edition, and hybrid [2].

Condensation selection focuses on collecting instances near the decision bound-
aries. Condensed nearest neighbor (CNN) focuses on removing the instances that are
correctly classified by their nearest neighbors [3]. The group of remaining instances
is collected as a consistent subset. The condensation methods collect a small amount
of training data, but it is sensitive to noise.

Edition selection removes the border instances and outlier instances. Edited near-
est neighbor (ENN) removes instances that are misclassified in the original training
set [4]. ENN removes instances that are noisy or disagree with neighbors with high
accuracy. However, the reduction rate of the edition scheme is low.

Hybrid selection includes the strengths of the above twomethodswith internal and
noise removal processes. Hybrid selection removes noise better than condensation
selection and selects a subset of training data that is smaller than for edition selection.
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Instance-based learning (IB3) [5] collects the subset of instances which provide a
good classification record. IB3 removes the instanceswhich have a poor classification
record later. The iterative case filtering (ICF) algorithm removes the instances which
have the number of nearest neighbors in the same class greater than the number of
nearest enemies (the nearest neighbors of a different class) [6]. The distances to the
nearest neighbors and enemies are also used in the concept of a local set. The local
set of an instance x is the set of nearest instances in the same class where the distance
to x is shorter than the distance between x and its nearest enemy. The idea of a local
set is used as the selecting criterion in some methods [7, 8]. Moreover, the hit miss
networks (HMN) method selects instances using the graph that has a directed edge
from each instance to the nearest neighbors of each different class [9]. The hit degree
of a node is the number of edges directed to the same class node. The miss degree is
the number of edges directed to a different class node. The HMN method removes
instances if the miss degree value is greater or equal to the hit degree value. The
classification accuracy of the hybrid selection is comparatively higher than those of
the condensation and edition selections.

In recent years, a novel instance selection algorithm has been used that selects rep-
resentative instances in each partition based on the nearest enemy information near
the decision boundary [10]. Furthermore, a density-based algorithm for instance
selection analyzes the density of instances in each class and keeps only the dens-
est instances of a given neighborhood within each class [11]. Some researchers
presented a new method to select a representative instance of each of the densest
spatial partitions [12]. In addition, a novel instance selection method uses metric
learning for transforming the input space which addresses the decision boundaries
between classes. The inter-class and intra-class separation criteria are used to select
the instances near to the decision boundaries [13]. The above-mentioned methods
achieved high classification accuracy and reduction rates when they were tested with
datasets having less than 20,000 instances. Because of the small size of the tested
datasets, these instance selections did not allow any scalability analysis.

34.3 Proposed Method

This section presents the idea of the heterogeneous value difference matrix instance
selection (HVDM-IS) algorithm. Figure34.1 shows the process flow of HVDM-IS,
which has two main processes: the suitable partition size calculation (SPSC) process
and the median of HVDM value selection (HVDMS) process. The first process
calculates a suitable partition size and forwards it onto the next process. The second
process uses the number of partitions for splitting the training data. Lastly, it selects
the median HVDM value as the class representative in each partition.
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Fig. 34.1 Process flow of the HVDM-IS algorithm

34.3.1 Suitable Partition Size Calculation

The first process uses the Taro Yamane formula to calculate the number of selected
instances n. The formula of Taro Yamane is shown in (34.1). Consequently, the
HVDM-IS calculates the number of instances in each partition and divides the train-
ing data into n disjoint partitions. Because of its simplicity, the SPSC process is able
to calculate the suitable partition size rapidly [14].

n = N

1 + N (e2)
(34.1)

where n is the number of selected instances, N is the population (number of the
overall training data) size, and e is the level of precision.

34.3.2 HVDM Selection

This section describes two related subjects: the heterogeneous value differencematrix
(HVDM) and the HVDM selection process. First, the definition and formula of the
HVDM distance value are explained. Lastly, the concept and pseudocode of the
HVDM selection process are described.

HVDM was introduced by Wilson and Martinez [15] to compute the distance
between two input vectors, and it was designed to overcome the weakness of the
Euclidean distance function and the value difference matrix (VDM) distance func-
tion. The formula based on Euclidean distance works well when the attributes are
linear (continuous or discrete). However, the Euclidean distance function is not suit-
able for nominal attributes because the values in nominal attributes are not necessarily
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in any linear order. The values of some nominal attributes normally were converted
from category name to a numeric value such as low (0), medium (1), and high (2) so
they are not suitable for computing the numerical difference between the two values.

The VDM distance function focuses on providing an appropriate distance func-
tion for nominal attributes [16]. The conditional probability of each attribute value
given a class is used to evaluate the distance between two input vectors. Each value
of a nominal attribute usually appears many times among training instances. The
probability calculation uses the number of occurrences of a value in each nominal
attribute so the VDM is suitable for nominal attributes. However, the VDM is inap-
propriate for continuous attributes because of their large value range. Accordingly,
the values of a continuous attribute can all potentially be unique.

The HVDM function returns the distance between two input instances x and y. It
is defined as follows [15]:

HVDM(x, y) =
√
√
√
√

m
∑

a=1

d2
a (xa, ya) (34.2)

where m is the number of attributes. The function da(xa, ya) returns the distance
between x and y for attribute a and is defined as follows:

d2
a (xa, ya) =

⎧

⎨

⎩

1, if x or y is unknown;
normali zed_vdma(xa, ya), if a is nominal;
normali zed_di f fa(xa, ya), if a is linear

(34.3)

The da(xa, ya) function combines two distance functions for nominal and linear
distance calculation. TheHVDMfunction uses normali zed_di f f when the attribute
is linear (discrete or continuous value). The function normali zed_di f f is shown in
(34.4):

normali zed_di f fa(xa, ya) = |xa − ya|
4σa

(34.4)

where σa is the standard deviation of the numeric values of attribute a.
The function normali zed_vdm is used for nominal distance calculation. The

function normali zed_vdm uses the square of the difference that is similar to the
Euclidean distance function. The function normali zed_vdm is shown in (34.5):

normali zed_di f fa(xa, ya) =
√
√
√
√

C
∑

i=1

∣
∣
∣
∣

Na,x,i

Na,x
− Na,y,i

Na,y

∣
∣
∣
∣

2

(34.5)

where C is the number of classes, Na,x is the number of instances in the training set
that have value x for attribute a, Na,x,i is the number of instances in the training set
that have value x for attribute a, output class i , Na,y is the number of instances in the
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training set that have value y for attribute a, and Na,y,i is the number of instances in
the training set that have value y for attribute a and output class i .

After the training data have been divided into disjoint partitions, the HVDMS
process focuses only on the selection of class representative in each partition. The
method for finding the class representative is the HVDM distance value computation
from a candidate to other data points in the same partition. A selected instance is a
class representative that minimizes the sum of HVDM values to other instances in
each partition. The pseudocode of HVDMS is shown as Algorithm1.

There are three input parameters to the HVDMS process. First, T S is the list
of instances in the current partition. Second, NS is the number of subsets in the
current partition. Finally, R is the number of iterations, starting from 1 to R. In
each partition, the selection process splits the training data into NS subsets. The
CreateIni tialCandidates function randomly selects a candidate in each subset.
The CalculateSumHV DM function calculates the sum of the distance from the
candidate to other points. After the set of selected candidates CS has been cre-
ated, the Select RoundWinner function selects a candidate that has the smallest
sum of HVDM distance as RW for each round-winner. In the next iteration, the
GetNearestCandidatestoRW function creates CS as a new set of candidates
which is the nearest neighbors to the round-winner. The CalculateSumHV DM
and Select RoundWinner functions are called for finding RW , the new round-
winner. The HVDMS process continuously repeats the above steps until the number
of specified iterations is achieved. The result of the HVDMS process is Sbest which
is the instance minimizing the sum of HVDM distances to other instances.

Algorithm 1 Pseudocode of HVDM selection.
1: function HVDM selection(T S, NS, R)
2: CS ← CreateInitialCandidates(T S, NS)

3: Distcs ← CalculateSumHVDM(CS, T S)

4: RW, Distrw ← SelectRoundWinner(CS, Distcs)
5: Sbest ← RW
6: Distbest ← Distrw
7: for N = 1 to R do
8: CS ← GetNearestCandidatestoRW(RW, T S, NS)

9: Distcs ← CalculateSumHVDM(CS, T S)

10: RW, Distrw ← SelectRoundWinner(CS, Distcs)
11: if Distrw ≤ Distbest then
12: Sbest ← RW
13: Distbest ← Distrw
14: end if
15: end for
16: return Sbest
17: end function
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34.4 Experimental Materials and Methods

In this section, we describe the details of our experimental evaluation. Section34.4.1
shows the list of benchmarking methods and datasets used in the experiment. The
definitions of various performance measures and classification algorithms used in
the evaluation of the HVDM-IS method are explained in Sect. 34.4.2.

34.4.1 Benchmarking Methods and Datasets

We evaluated the performance of HVDM-IS with three compared algorithms. The
parameter settings of the compared methods are shown in Table34.1.

The five datasets from the UCI data repository are shown in Table34.2 [17]. In
each test, 80% of the original dataset was used for training data, and the rest was
used for test data. The compared algorithms were run over the training data to create
a reduced training set.

Table 34.1 Parameter settings of compare methods

Compared methods Parameters

Condensed nearest neighbor (CNN) Mixed Euclidean distance

Instance base 3 (IB3) Parameter k = 3, Upper interval = 0.9, Lower
interval = 0.7, Mixed Euclidean distance

Hit miss networks (HMN-EI) Epsilon = 0.1, Euclidean distance

HVDM-IS Number of iterations = 5, Number of subsets =
10

Table 34.2 Description of dataset

Dataset Number of samples Number of attributes
(Real/Integer/Nominal)

Number of classes

Fars 100,968 29 (5/0/24) 8

Census 299,284 41 (1/12/28) 3

KDD cup 494,020 41 (26/0/15) 23

Covertype 581,012 54 (0/54/0) 7

Poker 1,025,010 10 (0/10/0) 10
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34.4.2 Performance Measures

The performance ofHVDM-ISwas comparedwith the othermethods using three per-
formancemeasures: reduction rate, accuracy, and Cohen’s kappa. First, the reduction
rate represents the reduction of storage capacity obtained by the method. A higher
reduction rate shows that the algorithm can reduce the training data better. Sec-
ond, accuracy shows the percentage of correctly classified instances. Accuracy is
the most common performance indicator of classification methods. Finally, Cohen’s
kappa evaluates the ratio of correctly classified instances that can be attributed to
a classifier itself by recompensing for random correctly classified instances. This
measure is in the range from −1 to 1. A larger kappa value shows that the rating of
compliance between the predicted label and the actual label is higher. The formula
of Cohen’s kappa is shown in (34.6) [18]:

Kappa = N
∑r

i=1 xii − ∑r
i=1(xi+ × x+i )

N 2 − ∑r
i=1(xi+ × x+i )

(34.6)

where r is the number of rows or columns in the confusion matrix, xii is entry (i, i)
of the confusion matrix, xi+ and x+i are the marginal totals of row i and column i ,
respectively, and N is the total number of examples in the confusion matrix.

Weused three classification algorithms to evaluate the performance of theHVDM-
IS and the compared methods: decision tree (J48), neural net (NET), and support
vector machine (SVM). First, J48 is a Java program of the C4.5 algorithm in the
Weka data mining tool [19]. C4.5 is a widely used decision tree algorithm proposed
by Quinlan [20]. C4.5 builds decision trees from a training set using information
entropy. Second, the NET algorithm is a multilayer perceptron (MLP) that is a feed-
forward artificial neural network model trained by back propagation algorithms [21,
22]. Lastly, we used the LIBSVM algorithm that is a popular open-source library for
support vector machines [23, 24]. LIBSVM supports multiclass learning and proba-
bility estimation by Platt calibration for transforming the outputs of a classification
model into confidence values of predicted classes [25].

34.5 Results

In this section, we show the details of our results. Section34.5.1 shows the reduction
rate of HVDM-IS and the benchmarking methods used in the study. The classifica-
tion accuracy and Cohen’s kappa are reported for the evaluation of the HVDM-IS
method in Sect. 34.5.2. Finally, a trade-off between the reduction rate and classifica-
tion performance is discussed in Sect. 34.5.3.
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34.5.1 Reduction Rate

The reduction rate shows the reduction capability of the instance selection method.
It is an important performance indicator in the data reduction. From Table34.3, the
IB3 method had the highest reduction rate (89.15%) because it includes two sample
removal processes: one for noise and the other for poor classification score instances
for 1NN performance. Otherwise, the reduction rate of the HVDM-IS was nearly
80% of the training data size. The reduction rate of HVDM-IS was higher than that
of the CNN method. The selection process of HVDM-IS focuses on the quality of
the training data, so the size of the selected instances from HVDM-IS is quite large.

34.5.2 Classification Accuracy

Table34.4 shows the classification accuracy by J48 and the standard error of HVDM-
IS, the full training model, CNN, and the IB3 method. The CNN method had the
best average accuracy rate. However, the size of the reduced training sets of CNN
was large compared with that of the other methods. The HVDM-IS method provided
the best accuracy rate on two datasets. The accuracy rate of the HMN-EI method
was approximately 2.5%, higher than that of the HVDM-IS method. However, the
average accuracy rate of HVDM-IS was approximately 5% lower than that of the
full training model.

In Table34.5, the average classification accuracy byNETofHVDM-ISwas higher
than those of the CNN and IB3 methods by about 5%. The HVDM-IS and CNN
methods provided the best accuracy on two datasets. The average accuracy of the
HMN-EI method was nearly equal to that of the HVDM-IS method. However, the
average accuracy of HVDM-IS was nearly equal to that of the full training model.

The classification accuracy achieved by LIBSVM of HVDM-IS was much higher
than by the CNN, IB3, and HMN-EI methods, as shown in Table34.6. The classifi-

Table 34.3 Reduction rate of HVDM-IS, CNN, IB3, and HMN-EI methods

Dataset HVDM-IS CNN IB3 HMN-EI

Fars (%) 77.13 54.65 74.99 47.27

Census (%) 87.07 47.73 97.66 79.03

KDD cup (%) 97.80 99.68 99.85 90.18

Covertype (%) 67.65 88.84 93.38 46.20

Poker (%) 67.49 48.52 78.89 13.25

Average (%) 79.43 67.88 89.15 55.19

Standard error 0.0584 0.1007 0.0496 0.1339
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Table 34.4 Classification accuracy by J48 on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars (%) 79.88 78.87 79.39 78.79 79.73

Census (%) 95.65 94.64 94.56 86.64 94.20

KDD cup (%) 99.96 99.11 99.29 99.50 99.95

Covertype (%) 96.80 90.80 79.77 77.68 91.82

Poker (%) 76.31 61.40 73.24 62.69 72.02

Average (%) 89.72 84.96 85.25 81.06 87.54

Standard error 0.0483 0.0678 0.0496 0.0602 0.0509

Table 34.5 Classification accuracy by NET on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars (%) 46.80 47.11 42.03 34.54 46.89

Census (%) 95.12 93.20 94.78 86.83 92.56

KDD cup (%) 99.89 99.55 99.60 99.63 99.87

Covertype (%) 81.67 79.34 62.84 74.30 79.00

Poker (%) 52.92 54.03 54.54 51.47 53.24

Average (%) 75.28 74.65 70.76 69.35 74.31

Standard error 0.1084 0.1042 0.1131 0.1179 0.1050

Table 34.6 Classification accuracy by LIBSVM on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars (%) 45.05 45.12 41.37 40.27 44.90

Census (%) 94.84 94.24 94.53 89.14 93.04

KDD cup (%) 99.36 99.09 44.91 37.60 99.42

Covertype (%) 82.69 86.10 86.96 86.49 84.02

Poker (%) 50.12 50.12 42.10 50.30 50.12

Average (%) 74.41 74.93 61.97 60.76 73.99

Standard error 0.1131 0.1137 0.1182 0.1125 0.1477

cation accuracy for LIBSVM of HVDM-IS was higher than that of the full training
model. The average accuracy of the HVDM-IS method was nearly equal to that of
the HMN-EI method as shown in Fig. 34.2.

34.5.3 Cohen’s Kappa

Table34.7 shows the values for Cohen’s kappa and the standard error for J48, the full
training model, the HVDM-IS model, and the other methods. The results indicated
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Fig. 34.2 Average classification accuracy of HVDM-IS and the compared methods

Table 34.7 Cohen’s kappa by J48 on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars 0.7260 0.7120 0.7190 0.7110 0.7230

Census 0.4960 0.4080 0.4660 0.3350 0.5250

KDD cup 0.9990 0.9850 0.9880 0.9920 0.9990

Covertype 0.9350 0.8520 0.6770 0.6470 0.8680

Poker 0.5720 0.3050 0.5190 0.3690 0.4760

Average 0.7456 0.6524 0.6738 0.6108 0.7182

Standard error 0.0982 0.1293 0.0916 0.1207 0.0993

that CNNmethod had the best kappa value for three out of five datasets. The Cohen’s
kappa of HVDM-IS was higher than that of the IB3 method. However, the Cohen’s
kappa of HVDM-IS was lower than that of full training model.

In Table34.8, NET of the HVDM-IS method yielded the best Cohen’s kappa that
was higher than those of the CNN and IB3 methods by about 5%. Furthermore, the
Cohen’s kappa of the HVDM-IS method was higher than that of full training model
too. For LIBSVM, Cohen’s kappa of the HVDM-IS method was much higher than
those of the CNN and IB3 methods as shown in Table34.9. The average Cohen’s
kappa of the HVDM-IS method was nearly equal to that of the HMN-EI method.
Finally, Fig. 34.3 shows the average Cohen’s kappa values of the HVDM-IS method
for the three classifier models were higher than those of the CNN and IB3 methods.
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Table 34.8 Cohen’s kappa by NET on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars 0.2270 0.2500 0.2120 0.1530 0.2500

Census 0.3930 0.3880 0.4290 0.3000 0.4420

KDD cup 0.9980 0.9920 0.9930 0.9940 0.9980

Covertype 0.6290 0.6650 0.4320 0.5830 0.6540

Poker 0.1120 0.1180 0.1280 0.1030 0.0790

Average 0.4718 0.4826 0.4288 0.4266 0.4846

Standard error 0.1577 0.1563 0.1509 0.1646 0.1603

Table 34.9 Cohen’s kappa by LIBSVM on five datasets

Dataset Full training HVDM-IS CNN IB3 HMN-EI

Fars 0.2170 0.2330 0.2080 0.1980 0.2140

Census 0.2360 0.0780 0.1390 0.2000 0.3520

KDD cup 0.9890 0.9850 0.2990 0.2190 0.9900

Covertype 0.7160 0.7740 0.7870 0.7810 0.7390

Poker 0.0000 0.0000 0.0000 0.0000 0.0000

Average 0.4316 0.4140 0.2866 0.2796 0.4350

Standard error 0.1820 0.1966 0.1343 0.1316 0.1571

Fig. 34.3 Average Cohen’s kappa of HVDM-IS and the compared methods
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Fig. 34.4 Graphical comparison of accuracy (x-axis), Cohen’s kappa (y-axis), and reduction rate
(size of bubble) of HVDM-IS and the compared methods

34.5.4 Trade-Off Between Accuracy and Reduction Rate

The average classification accuracy of the HVDM-IS method was higher than the
CNN (72.66%) and IB3 (70.39%) methods. Figure34.4 presents a bubble chart pro-
viding a graphical comparison of the accuracy, Cohen’s kappa, and reduction rates of
the HVDM-IS and the compared methods. The HVDM-IS method had the second-
highest reduction rate (79.43%). Even though the IB3 method had the highest reduc-
tion rate (89.15%), the classification accuracy of the IB3 method was the lowest.
Moreover, the accuracy rate of HVDM-IS (78.18%) was nearly equal to that of
the HMN-EI method (78.62%) but the HMN-EI method had a low reduction rate
(55.19%).

The HMN-EI method had the highest average Cohen’s kappa value (0.55) while
the HVDM-IS method had an average Cohen’s kappa value (0.52) which was higher
than those of the CNN (0.47) and IB3 (0.44) methods. Although the HVDM-IS
method had the second-highest reduction rate, it could handle the trade-off between
accuracy, Cohen’s kappa, and the reduction rate reasonably well, as shown in
Fig. 34.4.

34.6 Conclusion

A new method was proposed to select a subset of the training data to keep as a
representative training set using the heterogeneous value difference matrix (HVDM)
method, called HVDM-IS. The classifier model creation takes an overwhelming
amount of time when a large-scale training dataset is being processed. The data
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were split into independent partitions. In each partition, a class representative was
selected which minimized the sum of HVDM values to other instances. The selected
instances were used for the training classification model. The accuracy and kappa
were measured from three classified models: decision tree (J48), neural net (NET),
and support vector machine (LIBSVM).

The results of this experiment showed that the HVDM-IS method provided clas-
sification accuracy and Cohen’s kappa values that were higher than those of the CNN
and IB3 methods for the NET and LIBSVM classifier models. For the J48 classifier
model, the accuracy and Cohen’s kappa value of the HVDM-IS method were a little
lower than those of the CNN method, while the number of selected instances from
the CNN method was larger. Furthermore, the classification accuracy and Cohen’s
kappa of the HVDM-IS method were nearly equal to those of the full training model
and the HMN-EI method. However, the HMN-EI method had a quite low reduction
rate.

The results of this experiment showed that the HVDM distance can help the
instance selection method to calculate the appropriate distance value because the
distance function combination in HVDM is applicable to the characteristics of nom-
inal and linear distance calculation.

In futurework, theHVDM-ISmethod could be applied in a parallel and distributed
processing system, which should improve the processing speed of the method. Fur-
thermore, we would aim to reduce the large real-world datasets with HVDM-IS and
show its scalability for the big data problem.
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