
Chapter 31
A Haze Removal Method Based
on Additional Depth Information
and Image Fusion

Tian Tian and Bin Zhang

Abstract To address the problem of image degradation in foggy days, we propose a
haze removal method based on additional depth information and image fusion. With
recent advances in depth-sensing technology, it has been realized that sensing devices
can produce depth images in which the depth value are quite accurate. We adopt the
depth estimation dataset of Karlsruhe Institute of Technology and Toyota Techno-
logical Institute (KITTI) which contains images collected from different real-world
environments. The additional information includes the LiDaR scanning points and
original depth images which can be used to estimate the optical depth of each point
in the scene. In this paper, we investigate how to use additional depth information to
remove haze for a single image. Ourmethod focuses on LiDaR depth imaging, image
fusion, and the atmospheric scatteringmodel.We use LiDaR scanning points as input
and then deduce a rough depth imagewith prominent features. The rough depth image
is then combined with original depth image to improve reliability of depth estimation
by image fusion. Using the atmospheric scattering model, we can remove haze for a
single image. Experimental results show that our proposed approach provides better
performance of dehazing under different fog conditions and holding the details of
remote sensing images than current research methods.

31.1 Introduction

Due to low visibility in foggy days, the reflecting and scattering of impurities in the
air seriously reduce contrast and clarity of outdoor images causing the visual effect
getting awful. As a result, haze removing has become pervasive in applications such
as target detection, autonomous driving, and scene recognition.With recent advances
in depth sensing technology, it has been realized that sensing devices can produce
depth images very easily. Unfortunately, depth-sensing devices often miss data when
capturing images which cause the depth value are accurate but incomplete.
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The goal of our work is to use additional depth information captured by LiDaR
and original depth image to estimate depth of scene and then remove haze for a single
image. Though image dehazing has received lots of attention during the recent years,
it has generally been solved bydifferent types ofmethods that recover image by image
enhancement or auxiliary information [1–6]. Newer methods have been proposed to
remove haze from color images, for example, machine learning [7].

Depth image is widely used as a tool to represent 3D information of scene. Nowa-
days,with the continuous improvement of depth-sensing technology, additional depth
information such as scene depth and multiple images are easy to obtain for practical
applications.

According to the different depth sensing devices, collecting scene depth infor-
mation can be divided into two categories: passive ranging sensing and active depth
sensing. [8] Themost commonly usedmethod of passive ranging is Binocular Stereo-
scopicVision [9]. In thismethod, two cameras at a certain distance are used to shoot at
the same time, so as to obtain two images of the same scene from different perspec-
tives. The corresponding pixel points in the two images are found by the stereo
matching algorithm, and the parallax is calculated by the triangle similarity principle
and then converted into the scene depth information. However, this method has some
limitations on the range and accuracy of parallax map, so the reliability of the scene
depth is low. In active depth sensing, the acquisition of depth image is independent
of the acquisition of color image. Depth-sensing devices capture 3D information by
emitting energy. For example, LiDaR ranging technology can calculate the distance
by firing lasers into the space and recording the time interval between the starting
point to the surface of objects in the scene and reflecting point back to the LiDaR. It
has been widely used in outdoor 3D space sensing system because of its wide range
and high accuracy.

31.2 Related Work

The current dehazing algorithms are mainly divided into three categories.
The first category adopts image enhancement to highlight details and improve

contrast so as to improve the visual effect of images. There exist algorithms using
generalizations of histogram equalization [1] and Retinex [2]. Retinex algorithms
have advantages in improving image color constancy and enhancing image details,
but it is extremely easy to produce halos when processing images under a condition
with a strong light and dark contrast.

The second category adopts image restoration based on auxiliary information,
such as using partial differential equation [3], prior information [4] and depth infor-
mation [5]. Using depth information makes it feasible to deduce the medium trans-
mission and the global atmospheric light which is essential to recover the haze-free
images by the atmospheric scattering model [6]. Nonetheless, it has not been used
widely because of limitation of depth-sensing devices.
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The third category is based onmachine learning which focuses on trainingmodels
for atmospheric conditions [7]. It is worth noting that this method is only suitable
for image degradation caused by fog and results in image distortion. In addition, this
approach is costly and time-consuming.

Currently, themost simple but effectivemethod is the dark channel priori proposed
by He et al. [10]. Since this method cannot deal with the sky region and halo
phenomenon verywell, itmay fail when the haze imagingmodel is invalid.Moreover,
it has a large amount of computation. From the perspective of additional informa-
tion of scene, Narasimhan et al. proposed a method for scene depth evaluation by
discussing the influence law of atmospheric scattering on the contrast of different
depths [11]. However, this method only considers the grayscale or color information
which causes that the evaluation of depth is not reliable.

31.3 Method

In this paper, we use the additional information of KITTI dataset [12] which includes
LiDaR scanning points and original depth images to estimate the scene depth. The
process of our method includes LiDaR depth imaging and depth information fusing.
First, use scanning points captured by LiDaR to obtain the rough depth image. We
project the scanning point onto the original color image. The grayscale pixel value
of the projected image can characterize the distance from the camera to surface of
the object in the scene. Then, we can obtain a rough depth image with prominent
features. Second, aiming at such phenomena as uneven LiDaR scanning points and
fuzzy features of objects in original depth images (see Fig. 31.1), we propose to fuse
the rough depth image with the original depth image so as to obtain an exact depth
image. Finally, calculate the medium transmission from the exact depth image and
recover haze-free image using the atmospheric scattering model.

Fig. 31.1 An additional depth image in the scene of KITTI dataset
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31.3.1 Haze Imaging Model

In computer vision, aiming at the problemof lowvisibility in foggy days,Narasimhan
[6] explained the process and key elements of imaging by establishing a physical
model and proposed that the reasons for image quality reduction include two aspects.
On the one hand, it is the energy attenuation caused by the absorption and scattering
of reflected light by atmospheric suspended particles. On the other hand, it is the
blurring caused by the scattering of ambient light. This model can be described as:

E(d, λ) = E0(λ)e−β(λ)d + E∞(λ)
(
1 − e−β(λ)d

)
(31.1)

whereE is the irradiance, d is the distance that the light travels, λ is the wavelength of
light, E0(λ) is the illuminance of the light source (d = 0), β(λ) is the total scattering
coefficient, and E∞(λ) is the maximum radiation of atmospheric light. The first term
on the right side of (31.1) is the attenuation model of incident light, and the second
term is the atmospheric light model.

The atmospheric scattering model is [10]:

I (x) = J (x)t (x) + A(1 − t (x)) (31.2)

where x is the special coordinate of a pixel, I measures the observed intensity, J
measures the scene radiance,Ameasures the global atmospheric light, and tmeasures
the medium transmission describing the portion of the light that is not scattered and
reaches the camera.

It can be inferred from (31.2) that the goal of haze removal is to recover J from I:

J = I − A(1 − t)

t
(31.3)

When the fog is uniform, the transmission t is [10]:

t (x) = e−βd(x) (31.4)

where β is the scattering coefficient of the atmosphere and d measures the scene
depth. When the transmission t(x) is close to zero, the scene radiance J is on the high
side which will cause the image to transition to a white field. Therefore, we shrink
the scene depth to a range of 0–1 when using Eq. (31.3) to recover J.

Therefore, the key of dehazing is to estimate scene depth and then substitute the
medium transmission into the haze imaging model to recover the target image.
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31.3.2 LiDaR Depth Imaging

LiDaR depth imaging is a process in which the scene scanning points projected onto
the coordinate system of color image to obtain the rough depth image. The scanning
points are stored in the form of point cloud in KITTI dataset.

The process of transforming from point cloud to depth image involves four coordi-
nate systems: world coordinate system (Xw, Yw, Zw), laser LiDaR coordinate system
(Xv, Yv, Zv), on-board camera coordinate system (Xc, Yc, Zc), and color image
coordinate system (u, v). The same point has the same depth value in the camera
coordinate system and the world coordinate system:

Zw = Zc (31.5)

According to the sensor configuration status in KITTI acquisition platform, the
installation distance between LiDaR and camera is 0.27 m. The transformation
correlation between the coordinate system of laser LiDaR and the vehicle camera is:

Xv = Zc + 0.27 (31.6)

Thedepthvalueof points inworld coordinate systemcanbededucedbyEqs. (31.5)
and (31.6):

Zw = Xv − 0.27 (31.7)

The depth value (Zw) of each point in scene can characterize the gray value of the
depth image. The mapping correlation between pointM in LiDaR coordinate system
and point N in image coordinate system is [13]:

N = P × R × T × M (31.8)

where P is the corrected projection matrix, R is the corrected rotation matrix, and T
is the translation matrix between LiDaR and camera.

Algorithm 1. LiDaR Depth Imaging

Input: LiDaR scanning points
Output: A rough depth image

(continued)
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(continued)

Algorithm 1. LiDaR Depth Imaging

begin
1: Calculate the depth value of points in the world coordinate system:
Zw = Xv − 0.27
2: Calculate the mapping correlation of points between LiDaR and image:
N= P × R× T × M
3: Use the pixel value limited in [0, 255] to characterize the depth value of points in image

coordinate:
cols = gray;
4: Get a rough depth image.
end

31.3.3 Image Fusion

Even though the rough depth images can obtain relatively prominent object features,
depth values are sparse. We notice that the original depth images have more scene
depth values, while the object features are not prominent. Aiming at the comple-
mentary phenomenon, we propose to fuse the additional depth image and the rough
depth image based on image fusion algorithms so as to obtain an exact depth image
with prominent features.

Considered that pixel-level image fusion algorithms can retain as much detail
information as possible which is conducive to further image analysis and under-
standing, we adopt Haar wavelet transform [14] in pixel-level image fusion. The
steps of image fusion are as follows [15]:

• Wavelet decomposition
Use Haar wavelet transform for original depth image and rough depth image,
respectively, to establish multi-scale two-dimensional wavelet decomposition.

• Build a wavelet-pyramid
Select different coefficients for fusion processing of each decomposition layer to
build wavelet-pyramid.
For the high-frequency part, select the wavelet coefficients with large absolute
value as the coefficient because the wavelet coefficients with large absolute value
correspond to the detail characteristic of the objects with significant changes in
the gray value of depth image.
For the low-frequency part, select the average value of wavelet coefficients as the
coefficient.

• Wavelet reconstruction
Execute wavelet reconstruction for the wavelet pyramid. The reconstructed image
is the fused image which includes more accurate depth value.
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Algorithm 2. Image Fusion

Input: Two images (M1 and M2)
Output: A fused image (Y)

begin
1: Establish multi-scale two-dimensional wavelet decomposition using Haar wavelet transform:
[c0, s0] = wavedec2(M1, 3, ‘Haar’);
[c1, s1] = wavedec2(M2, 3, ‘Haar’);
2: Build a wavelet-pyramid based on different coefficients.
For the high-frequency part, compare the absolute values and then take the larger one as
coefficient:
mm = (abs(MM1)) > (abs(MM2));
Y = (mm.*MM1) + ((~ mm).*MM2);
Coef_Fusion(s1(1,1) + 1:KK(2)) = Y;
For the low-frequency part, take the average value as coefficient:
Coef_Fusion(1:s1(1,1)) = (c0(1:s1(1,1)) + c1(1:s1(1,1)))/2;
3: The image fusion is achieved through wavelet reconstruction:
Y = (mm.*MM1) + ((~ mm).*MM2);
end

31.4 Experimental Results

Our experiments are implemented on a Windows 7 desktop computer with 3.4 GHz
Intel Core i7-6700 CPU, 8 GB (space) RAM, and MATLAB R2013a (64 bit).

In this section, we conduct several experiments to verify the advantages of our
method in dehazing performance on KITTI dataset. Each scene of KITTI consists of
approximately 100 images as an image sequence. We added different concentrations
of fog by photoshop to synthesize hazy image and tested on different images in
respective sequence. In addition, we compared the results with algorithms of He
et al. [10], Zhu et al. [16] (CAP), and Meng et al. [17] (BCCR).

PSNR and SSIM are used as image quality evaluation indexes. The calculation of
PSNR is as follows [18]:

PSNR = 10 × log10

(
(2n − 1)2

MSE

)
(31.9)

where MSE is the mean square error between the original image and the processed
image. The larger the PSNR value, the better the defogging effect.

SSIM is used to evaluate the retention degree of image structure information
which can be calculated as follows [18]:

SSIM (x, y)= (2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ 2
x + σ 2

y + c2)
(31.10)
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Fig. 31.2 Results of LiDaR imaging and image fusion

where μx and μy are mean values of image x and image y, σ 2
x and σ 2

y are variances
of x and y, σ xy is the covariance of x and y, c1 and c2 are both constants. The higher
the SSIM value, the better the defogging effect.

In the process of LiDaR depth imaging, we use (31.7) and (31.8) to obtain the
rough depth image, as shown in Fig. 31.2a. Due to the limited measuring range of
LiDaR, the imaging process cannot be realized in the distant region (120 m away).
We use image fusion to obtain the accurate depth image, as shown in Fig. 31.2b. In
order to appreciate the accurate depth image, we convert the rough depth image and
the accurate image to jet colormap.

We use the accurate depth image to deduce the medium transmission and recover
a haze-free image based on the atmospheric scattering model, as shown in Figs. 31.3,
31.4, and 31.5. Figure 31.3 shows results of different dehazing methods at fog condi-
tion of 80%, and Fig. 31.4 shows results at fog condition of 50%. Figure 31.5 shows
partial results in the same sequence which concludes approximately 100 images at
fog condition of 50%. In Fig. 31.3, 31.4, and 31.5, (a) shows the original RGB-
image with no haze. (b) shows the responding accurate depth image. (c) shows the
hazy image with 80% fog concentration. (d) shows results of our method. (e) shows
results using method of He et al. [10]. (f) shows results using method of Zhu et al.
[15] (CAP). (g) shows results using method of Meng et al. [16] (BCCR). Table 31.1
shows the image quality evaluation index of different algorithms.

According to the dehazing results in Fig. 31.3, 31.4, and 31.5 and the image
quality evaluation index value in Table 31.1, we can see that the average PSNR value
(average of 100 images in the same sequence) of our method is significantly higher
than others. It demonstrated that our method can effectively improve image clarity
and avoid color distortion.
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Fig. 31.3 Comparison of dehazing results for images in different sceneswith 80% fog concentration

Fig. 31.4 Comparison of dehazing results for images in different sceneswith 50% fog concentration

All of the algorithms we mentioned can properly remove the fog, but one main
concern is the color distortion (such as surface of road) caused by He et al. [10], Zhu
et al. [15] (CAP), andMeng et al. [16] (BCCR). By comparison, themethod proposed
in this paper can not only effectively remove fog but also avoid image distortion to
some extent.
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Fig. 31.5 Comparison of dehazing results of an image sequence with 50% fog concentration

Table 31.1 Quantitative evaluation index value of different methods

Metric Images HE CAP BCCR Ours

PSNR No. 006 24.8198 25.2075 20.4942 27.6063

No. 027 24.6488 24.7741 21.7419 24.3777

No. 069 21.6596 22.0607 24.1417 25.4896

No. 112 22.5323 22.2851 21.9657 25.3335

Average 23.4151 23.5751 22.0859 26.2021

SSIM No. 006 0.6827 0.9464 0.9013 0.9504

No. 027 0.7547 0.9348 0.9258 0.9286

No. 069 0.8371 0.8783 0.9256 0.9347

No. 112 0.9259 0.8947 0.9086 0.9268

31.5 Conclusion

In this paper, we propose a haze removal method using depth information provided
by the LiDaR and original depth image to obtain a more accurate depth image so
as to recover haze-free images based on hazing image model. Experimental results
show that our method can not only deal with the close-range and foggy scene but also
have good performance to improve the contrast and color saturation of the image.
Comparedwith other algorithms, ourmethodhas better performance of enhancing the
veins feature and holding the details of remote sensing image. Due to the limitation
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of the LiDaR scanning mechanism, our method needs to be improved for operating
speed and scene images which are long-range or under non-uniform fog conditions.
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