
Chapter 12
Changing Biogeochemistry in the South
China Sea
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Yan Bai, and Xianqiang He

Abstract The tropical/subtropical SouthChina Sea (SCS) is the largestmarginal sea
in theworld. Like otherwarmbodies ofwater, its sea surface temperature (SST) is ris-
ing, albeit more slowly (0.012 °C/yr between 1998 and 2016) than that of cold-water
regions at high latitudes. The chlorophyll concentration increased at 0.0012 µg/L/yr
during that period, and the Secchi disk depth (SDD) increased by 0.035 m/yr. The
changes of SST, chlorophyll concentration andSDD, the factors governing changes in
ocean biogeochemistry, in the SCSexhibit high temporal-spatial variability, and these
parameters varied in opposite directions during the periods 1998–2008 and 2008–
2016. The first period witnessed declining SST and SDD and increasing chlorophyll
concentration, referring to enhancing primary productivity. The second period wit-
nessed increasing SST and SDD but falling chlorophyll concentration, referring to
declining primary productivity. These changes and increasing anthropogenic activ-
ities on land may be related to changing biogeochemistry such as decreasing dis-
solvedoxygen concentration in coastal regions. In theSCSbasin, however, particulate
organic carbon and nitrogen seem to be on the rise.
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12.1 Introduction

The South China Sea (SCS), with an area of 3.5 × 106 km2, is the largest marginal
sea in the world (Fig. 12.1). Like the oceans, it is undergoing the consequences of
the global environmental change. Although the SCS encompasses a large area and
an average depth of about 1350 m, it is actually semi-enclosed because the Sunda
Shelf and the Gulf of Thailand in its southern and southwestern regions are rather
shallow, with an average depth of only 50 m. The wide Sunda Shelf connects to the
Indian Ocean via the Strait of Malacca to the southwest, but the major connection
is with the Java Sea to the southeast through the Karimata and Gelasa Straits which
are less than 50 m deep. The northern and northwestern regions of the SCS are also
wide shelves that connect to the East China Sea (ECS) via the shallow Taiwan Strait,
which has an average depth of only 50 m (Fig. 12.1).

The central and northeastern parts of the SCS are as deep as 5500 m but the only
deep linkages to areas beyond the sea are the 400 m-deep Mindoro Strait, which
connects to the Sulu Sea, and the 2200 m-deep Luzon Strait, which opens into the
West Philippine Sea (WPS). Since the ridge that separates the Sulu Sea from the
water beyond it is only approximately 100 m deep, water that is deeper than about
100m in the PacificOcean can only enter the SCS through the Luzon Strait.Monsoon

Fig. 12.1 Map of the South China Sea
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winds dominate the circulation in the SCS and exchanges of seawater with the water
outside it (Chao et al. 1996a, b; Qu 2000; Wu and Chang 2005). Since no deep or
intermediate water forms in the SCS because cooling inwinter is too little tomake the
water very dense, unique subsurface features, such as extreme salinity are brought
in from the WPS. Subsequent vertical mixing and upwelling diminish these features
(Chen and Huang 1996).

The anthropogenic release of CO2 undoubtedly caused the problem of so-called
global environmental change. The oceans are a major sink of excess anthropogenic
CO2, some of which has penetrated to the bottom of the oceans (Chen and Millero
1979; Chen and Pytkowicz 1979; Chen 2003; Chen et al. 2006a, b). Like the global
oceans, the SCS has experienced a fall in pH as a result of the increase in the con-
centration of CO2 in the atmosphere (Chai et al. 2009; Liu et al. 2014; Lui and Chen
2015). Perhaps owing to the upwelling, however, anthropogenic CO2 penetrates to
a depth of only roughly 1500 m in the SCS (Chen et al. 2006a, b) although signals
near the detection limit have also been reported below 1500 m (Huang et al. 2016).
As the saturation horizon of calcite exceeds a depth of 2000 m in the SCS (Chen
and Huang 1995), excess CO2 penetration is expected to enhance its dissolution only
slightly. The saturation horizon of aragonite, however, is only 600 m, which is less
than the depth of excess CO2 penetration but greater than the aragonite saturation
horizon in the Bering Sea (Chen et al. 2020a). As a result, an upward migration of
the saturation horizon affects the aragonite deposits on the SCS shelf, but less than
it affects the deposits in the Bering Sea.

The salinity of the SCS surface water has reportedly been declining during the
last two decades (Fig. 12.2; Nan et al. 2016), consistent with the general trend that
relatively fresh seas, including several marginal seas, are experiencing falling salinity
while more saline regions, such as the North Pacific Subtropical Water have been
increasing in salinity (Durack andWijffels 2010). Interestingly, the freshening of the
upper waters of the SCS is not caused by increasing river discharge, because all three
major rivers that enter the SCS—the Mekong, Pearl and Red Rivers—experienced a
declining outflow between 1993 and 2012 (Nan et al. 2016). Precipitation increased

Fig. 12.2 Time series of salinity in the winter (Dec.–Feb.; blue), the summer (Jun.–Aug.; red), and
mean (black) averaged above 100 m in the SCS. Dotted lines represent the linear trends before/after
1993 that best fit the data (modified from Nan et al. 2016)
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Fig. 12.3 Annual time series and linear trend of flux of Luzon Strait based on ROMS. Data taken
from Nan et al. 2015 (Negative values represent westward flow)

to exceed evaporation during that period but the increase was responsible for only
15% of the seawater freshening (Nan et al. 2016). The major cause of 85% of the
freshening was reportedly a decrease in the intrusion of salty Kuroshio water in
those years (Nan et al. 2013, 2015; Fig. 12.3). Lui et al. (2018), however, reported
an increase in Kuroshio intrusion in the Luzon Strait transport since 2012. Since the
nutrient inventories in the euphotic layer of theWPS are significantly lower than that
in the SCS, the intrusion of theWPS seawater decreases the nutrient inventories of the
euphotic layer, and hence reduces primary production and export production in the
SCS. These complicated processes influence the biogeochemistry of the SCS, but the
impact of such factors as the El Nino-Southern Oscillation (ENSO) and the Pacific
Decadal Oscillation (PDO) is unknown. For example, Fig. 12.4 plots a time series
of anomalies of alkalinity, dissolved inorganic carbon, nitrogen, phosphorus and
silicate concentrations as well as water transport from the SCS to the ECS. Overall,
they tend to rise, and this trend is clearly related to anomalous change in sea surface
height (Fig. 12.4h). These signals correlate with PDO (Fig. 12.4j). Recent changes
in SST, chlorophyll, Secchi disk depth (SDD) and related carbonate chemistry will
be discussed below.

12.2 Changing Sea Surface Temperature

The SST data for the period from 1998 to 2016 were taken from the AVHRR_OI
dataset, which is a product of the Group for High-Resolution Sea Surface Tem-
perature (GHRSST), and can be obtained from the National Center for Environmen-
tal Information (NCEI),NOAA (https://data.nodc.noaa.gov/ghrsst/L4/GLOB/NCEI/
AVHRR_OI/ghrsst/L4/GLOB/NCEI/AVHRR_OI/). Data were averaged monthly
from 1998 to 2016. Details can be found in Chen et al. (2020a).

Figure 12.5a displays a climatological map of the SST, which typically exceeds
26 °C except in the coastal region southeast of China, mainly because the cold Chi-
nese coastal water flows southward from September to May when the NE monsoon

https://data.nodc.noaa.gov/ghrsst/L4/GLOB/NCEI/AVHRR_OI/ghrsst/L4/GLOB/NCEI/AVHRR_OI/
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Fig. 12.4 Twenty-four month moving average time series of anomalies and their regression lines
in the Taiwan Strait for a TA flux, b DIC flux, c N flux, d P flux, e Si flux, f water flux, g satellite
chl. a concentration, h difference in SSH between southern and northern entrances, i wind speed
measured by the satellite and at the weather station in the south-north direction at a height of 10 m,
and j PDO and Niño 3.4 indices. Dashed and solid lines in (i) are regression lines from satellite data
and weather station data, respectively. Dashed and solid lines in (j) are regression lines of PDO and
Niño 3.4, respectively (taken from Huang et al. 2019)

prevails. This cold water brings nutrients from the ECS to the SCS (Chen 2003; Naik
and Chen 2008; Han et al. 2013).

Figure 12.6a plots the temporal variation of the SST. Unlike in high-latitude seas,
where the SST exhibits a large seasonal variation (Chen et al. 2020a, b), in the SCS,
themean SST varies only between about 25 and 30 °C.Also, whereas the temperature
from 1998 to 2016 in the high-latitude seas generally increased (0.055 °C/yr for the
Bering Sea (Chen et al. 2020a); 0.045 °C/yr for the Okhotsk Sea (Chen et al. 2020b)),
that in the SCS exhibited only a statistically insignificant linear increase of 0.12 °C/yr
(p= 0.46). The quadratic polynomial fit of the SST has a lower p value of 0.14 (better
correlation) than the linear fit (Fig. 12.6a). The quadratic fit seems to indicate that
the SST initially fell after the strong El Nino year of 1998 when basin-wide warming
occurred in the SCS (Wu and Chang 2005), and increased in subsequent years. The
mixed layer, however, seems to have become shallower from 1992 to 2000 (Li et al.
2017) consistent with a rise in SST, especially during the strong El Nino years of
1997 and 1998.

Many reports of interannual SST variations in the SCS have been published, but
the results vary with the time span considered. He et al. (2017) reported little change
in the SST between 1998 and 2010. Giuliani et al. (2019) reported an increase of
0.028 ºC/yr from 1960 to 2011, which is close to that obtained by Bai et al. (2018)
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Fig. 12.6 Time series of a SST, b chlorophyll concentration and c SDD in the SCS during 1998–
2016
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(around 0.03 °C or 0.1%/yr from 2003 to 2014) in low-latitude marginal seas around
the Eurasian continent, including the SCS, the Java-Banda Sea, the Bay of Bengal
and the Arabian Sea. Chapter 1 noted that higher-latitude marginal seas exhibited
larger temperature increases.

Geographically, the region off SE China where the average SST is the lowest of
any part of the SCS saw a decrease in the SST, while the warmest regions in the
southern SCS saw an increase in the SST. Figure 12.7a demonstrates that the SST
in the mid- and southern SCS increased at a significant rate of 0.01–0.02 °C per
year over the period 1998–2016. Notably, the SST fell remarkably both off SE China
and in the Taiwan Strait, where the chlorophyll concentration significantly increased
(Fig. 12.7b). The cooling may suggest strengthening of coastal upwelling, which
would have resulted in an increase of surface nutrient supply, favoring the growth of
phytoplankton.

12.3 Changing Chlorophyll Concentration

The chlorophyll concentration data for the period 1998–2016 were obtained from
the Ocean Colour project of the ESA Climate Change Initiative (CCI) (http://www.
esa-oceancolour-cci.org). Details can be found in Chen et al. (2020a).

As expected, because of riverine input of nutrients, entrainment by river plumes,
coastal upwelling, and more effective wind and tidal mixing, the coastal regions
in the SCS had higher chlorophyll concentrations than more open, deeper waters
(Fig. 12.5b; Chen 2008; Chen et al. 2020a, b). In 1998–2016, chlorophyll concen-
trations rose significantly on the northern shelf of the SCS and off the Indochina
Peninsula (Fig. 12.7b). In the Taiwan Strait and in the northern SCS, the chlorophyll
concentration generally increased at the rate of 2.5% per year (Fig. 12.7b). Increased
anthropogenic nutrient inputs might have contributed to the increase in chlorophyll
concentration in these coastal waters. Patches of decreasing chlorophyll concentra-
tion formed sporadically in the central basin of the SCS, in which the chlorophyll
concentration fell at 1–1.5% per year. Overall, the whole SCS exhibited a very small
average annual increase of 0.0012 µg/L (p = 0.11) from 1998 to 2016 (Fig. 12.6b).
The quadratic polynomial fitting indicates that chlorophyll concentration in the SCS
firstly rose and then fell. Figure 12.6b shows an increase from Jan. 1998 to Apr. 2008
and a decrease from Apr. 2008 to Dec. 2016. In contrast, from 1998 to 2016, the
chlorophyll concentration increased steadily in the Bering Sea (0.011 µg/L/yr, Chen
et al. 2020a) and the Okhotsk Sea (0.01 µg/L/yr, Chen et al. 2020b).

He et al. (2017) reported no apparent change in chlorophyll concentration in the
SCS between 1997 and 2010, whereas Palacz et al. (2011) reported an increase of
0.04 µg/L (9%) over that period. The data that were generated by modeling of Li
et al. (2015) indicate an increase between 2000 and 2014 although the lead author of
that paper, Q. P. Li (personal communication, 12/1/2018) identified no clear trend.
They also did not consider lateral transports. Bai et al. (2018), reported a very small
rate of increase of <0.001 µg/L per year between 2003 and 2014, in contrast to

http://www.esa-oceancolour-cci.org
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decreases in other tropical marginal seas, such as the Arabian Sea, the Java-Banda
Sea, the Red Sea, the Persian Gulf and the Bay of Bengal. In fact, a close look at the
interannual variability of chlorophyll concentration in the SCS (Fig. 12.6b) suggests
that the concentration increased between 1998 and 2008 but decreased thereafter.
As mentioned earlier, 1998 was a strong El Nino year in which the SST was high.
The high SST resulted in relatively low-density surface water and a relatively high
density gradient. Therefore vertical mixing was less than in other years, so fewer
nutrients were pumped to the surface layer, resulting in lower primary productivity,
chlorophyll, diatom biomass and biological productivity in general (Lu et al. 2018).
Future changes are, however, difficult to predict as a higher SST would impede the
upward transport of nutrients whereas riverine input is rising. The physiological
responses of many marine organisms, to variables other than nutrient availability,
such as those caused by typhoons, eddies, atmospheric deposition and nitrogen fix-
ation, may also change (Li et al. 2015; Wu and Chang 2005; Wong et al. 2002).
Notably, oxygen inventories have been increasing in the SCS contrary to most other
oceans (Schmidtko et al. 2017;Breitburg et al. 2018). The oxygen inventory increased
perhaps because of the decreasing SST (higher oxygen solubility) and enhanced
productivity, as revealed by the increasing chlorophyll concentration there. Ito et al.
(2017) also reported increasing oxygen concentration between 100 and 700 m.

Interestingly, the collection of particles in sediment traps at 2,000 m and 3,500 m
depths in the basin of the SCS indicates that proportions of the particulate organic
carbon (POC) and particulate organic nitrogen (PON) increased with time but the
POC/PON ratio decreased (Fig. 12.9) probably because of increasing anthropogenic
nutrient outflows with the consequence that the chlorophyll concentration off Hong
Kong has been increasing since 1990 (Fig. 12.8a). The dissolved oxygen concentra-
tion in the bottom layer, however, seems to be falling (Fig. 12.8b), perhaps due to
an increase in the decomposition of phytoplankton from 2008 to 2016 (Fig. 12.8;
Lui et al. 2018). Intuitively, this finding seems to be inconsistent with the fall in
chlorophyll concentration that was observed during the same period. The result is
interesting because in the basin of the SCS, lower the net primary productivity corre-
sponds to higher export efficiency (Li et al. 2018). In the SCS, primary productivity
correlates positively with chlorophyll concentration (Chen 2005) so the decreasing
chlorophyll concentration between 2008 and 2016 reflects a fall in net primary pro-
ductivity. As a result, the export efficiency increased, resulting in higher proportions
of POC and PON in the sediment traps. The increases in the POC and PON percent-
ages are probably not caused by an increase in riverine outflow. A larger amount of
terrestrial organic matter would have corresponded to a higher POC/PON ratio but
this was not observed (Fig. 12.9c). Notably, the increasing POC percentage that was
reported by Lui et al. (2018) covered only a relatively short period from 2008 to
2016. The POC flux (Li et al. 2017) actually seems to have decreased between 1992
and 1999. Multi-decadal data are required to identify any genuine long-term trend.
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Fig. 12.8 Time series of
a chlorophyll concentration
and b dissolved oxygen off
Hong Kong (taken from Lui
et al. 2020)

Fig. 12.9 Percentages of
a POC and b PON in sinking
particles, and the
c POC:PON molar ratio at
various depths at SEATS
between 2008 and 2016. The
POC data between 2008/6/10
and 2009/6/30 were taken
from Wei et al. 2017. Solid
lines and numbers are
regression lines, slopes, and
coefficient of determination.
All regression lines have p <
0.0001, apart from that for
POC:PON ratio at 2000 m
for which p = 0.04 (taken
from Lui et al. 2018)

12.4 Changing Secchi Disk Depth

The SDD is a good index of water transparency, and pertinent data for the period
1998–2016were provided by theGlobcolour project (http://globcolour.info/).Details
can be found inChen et al. (2020a). Figure 12.5c displays the distribution of the SDD.
As expected, the SDD is shallow close to the coast because of the relatively high
phytoplankton biomass there, as indicated by the high chlorophyll concentration
(Fig. 12.5b), and the large amount of suspended sediment due to river transport.

http://globcolour.info/
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Mixing by winds and tides in shallow waters also reduces the SDD, which through-
out almost the entire SCS increased during the period 1998–2016 (0.35 m/yr, p =
0.35, Fig. 12.7c), showing that the SCS water became more transparent. The fitting
revealed that the SDD in the SCS decreased from Jan. 1998 to Nov. 2008 and then
increased from Nov. 2008 to Dec. 2016 (Fig. 12.6c). However, the SDD in coastal
waters substantially decreased (Fig. 12.7c), especially off the coast of SE China and
in the Taiwan Strait, perhaps because of the increase in chlorophyll concentration
(Fig. 12.7b).

He et al. (2017) reported a decrease in the SDD in the SCS of about 0.08 m/yr
from 1998 to 2010. A close look at the temporal change of the SDD from 1998 to
2016 (Fig. 12.6c) indicates that it decreased from 1998 to about 2008, consistent
with the findings of He et al. (2017). The SDD increased after 2008. Bai et al. (2018)
recently found that the SDD in all 12 marginal seas around the Eurasian continent
increased from 2003 to 2014. They reported a rate of increase of 0.05 m/yr, which is
slightly higher than the value obtained herein, which is 0.035 m/yr. The difference
between the rates of increasing may be a result of a difference in the study periods.
Chen et al. (2020a) reported no significant change in the SDD in the Bering Sea,
and Chen et al. (2020b) reported a slight increase in the SDD (0.018 m/yr) in the
Okhotsk Sea.

12.5 Conclusions

From 1998 to 2016, the SST in the SCS increased by 0.012 °C/yr, which is much
less than the rate of warming of high-latitude oceans. This result is consistent with
the generally declining salinity of the surface water of the SCS. The chlorophyll
concentration increased at an overall rate of 0.0012µg/L/yr. The significant increase
in chlorophyll concentration occurred mainly on the northern shelf of the SCS and
off the Indochina Peninsula. The SDD throughout the SCS increased by 0.035 m/yr
in the same period. However, the SST, chlorophyll concentration and SDD in the
SCS changed in opposite directions in the two periods 1998–2008 and 2008–2016.
In the first period, the SST and SDD decreased while the chlorophyll concentration
increased. In the second period, the SST and SDD increased but the chlorophyll
concentration decreased. Since in the SCS basin, a lower net primary productiv-
ity corresponded to higher export productivity, reduced chlorophyll concentration
yielded higher observed percentages of POC and PON that collected in sediment
traps. All such changes might have altered the biogeochemical processes in the SCS.
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