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Abstract. In unimodal biometric systems, there are several limitations
like, non-universality, noisy data and other security risks. To overcome
these, multimodal biometric systems are increasingly adopted. Multi-
modal biometric systems fuse information from multiple biometric traits.
Rank level fusion is one of the approaches of information fusion for mul-
timodal biometrics. In this paper, rank level fusion is considered as an
optimization problem. Its aim is to minimize the distances between an
aggregated rank list and each input rank list from individual biometric
trait. A solution of this optimization problem has been proposed using
cross-entropy (CE) Monte Carlo method. The proposed CE method uses
two distance measures - namely, Spearman footrule and Kendall’s tau
distances. Superiority of the proposed CE method based on above two
distance measures over several existing rank level and score level fusion
schemes is achieved on two different datasets.
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1 Introduction

Biometric recognition systems are increasingly being used to recognize an indi-
vidual in her office, government departments, banks and even for getting neces-
sary commodities. In biometric based identification system, the biometric traits
of an individual (i.e., a probe) are matched with those of every enrolled user
(i.e., subject) in the system. On the contrary, in a verification system, the bio-
metric traits of an individual are compared with the stored biometric traits of
her. Traditionally, biometric system has been unimodal, where a single biometric
trait is used to establish one’s identity. But the unimodal biometric system faces
several challenges as follows: non-universality, noisy data, inter-class similarities,
intra-class variation, interoperability issues and susceptibility to circumvention.
In order to overcome these challenges, multimodal biometric system has been
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adopted. Apart from fulfilling the gaps of a unimodal biometric system, multi-
modal biometric system is more secure and more accurate which has been proved
over the period of time.

Multimodal biometrics combine information from multiple biometric traits
(fingerprint and face [1], different finger surfaces [2], face and palm-print [3], etc.)
or multiple representations of same biometric trait (various feature descriptors of
palm-print biometrics [1]). This fusion of information can occur at sensor level,
feature level, score level, rank level and decision level. Scope of the current paper
is limited to rank level fusion. Rank level fusion [1–6] method is useful when
there is less information (similarity or dissimilarity scores between the probe
and the enrolled subjects) available to perform the fusion. Scores from different
modalities can also be fused using a score level fusion [7–10] method. But these
scores need to be normalized [10] in order to perform the score level fusion. On
the contrary, these scores can be sorted to produce a rank list. Multi-level fusion
schemes [11] can be found in literature.

A rank level fusion method combines several rank lists as obtained from
multiple biometric modalities. A rank list, in this context, is a list of ranks of
each subject as compared with a probe (based on a similarity or a dissimilarity
score). Several rank level fusion methods have been proposed in the literature.
Borda count, weighted borda count, highest rank and logistic regression are basic
rank level fusion strategies [12] available in literature. For example, a rank level
fusion method based on logistic regression and Borda count for combining kinetic
gait and face biometrics has been proposed in [4]. In [3], the fusion of face and
palm-print has been performed at rank level using highest rank, Borda count
and logistic regression.

Apart from the above methods, several non-linear rank level fusion methods
also exist. In [2], few such non-linear weighted rank methods have been used
for rank level fusion for finger surface biometrics. These are, hyperbolic tangent,
hyperbolic arc sinus, hyperbolic arc tangent, division exponential, and logarithm.
In [1], fusion of three rank lists (as obtained from three different features descrip-
tors of palm-print) has been carried out using two nonlinear methods, namely
exponential and weighted exponential methods. In [5], rank lists as generated
through multiple rank level fusion methods have been consolidated either seri-
ally or parallelly. Serial combination is obtained by a combining functions as
f2(f1(x)), where f1(x) and f2(x) are two different rank level fusion methods.
Similarly, parallel combination has been performed by combining all the rank
lists as generated using various rank level fusion methods using a hyperbolic tan-
gent rank level fusion method. Fusion of multimodal biometrics involving face,
iris and ear is done at rank level [6]. A Markov chain is used for this task. In this
method, a Markov chain has been established on the enrolled subjects. Tran-
sitions in this Markov chain represent an order relation among these enrolled
subjects. A rank list is obtained using stationary distribution of this Markov
chain.

In a completely different approach, the present paper perceives the rank level
fusion of multimodal biometrics as an optimization problem. In this context, the
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goal is to minimize the distances between an aggregated rank list and the input
rank lists. Two widely used distance measures in the domain of rank aggregation
problems - (i) Spearman footrule [13] and (ii) Kendall’s tau [13] distances - are
considered in the proposed method. In this work, cross-entropy Monte Carlo
algorithm [14] based approach has been proposed to solve the above optimization
problem in the context of multi-modal biometrics. The proposed approach has
been experimentally studied on two different datasets: (i) NIST BSSR1 [15] and
(ii) OU-ISIR BSS4 [16,17]. Experimental results justify the suitability of the
proposed approach of rank level in the context of multimodal biometrics.

The rest of this paper is organized as follows: A detailed formulation of
rank level fusion of multimodal biometrics as an optimization problem is pre-
sented in Sect. 2. Section 3 describes the proposed rank level fusion method using
cross-entropy Monte Carlo method. Section 4 reports the results of applying the
proposed rank level fusion method as well as several state-of-the-art fusion meth-
ods on two multimodal biometric datasets. Finally, Sect. 5 draws the concluding
remarks.

2 Formulation of Rank Level Fusion as an Optimization
Problem

Let P1, P2, ... , PN be various biometric traits to identify a person. Let the
matching score Qj

i be associated with each such biometric trait Pi for a jth

person (subject) for an input probe. A rank list Li of those subjects can be
generated from an ordering of these matching scores. Considering a high value
of Qj

i as good (for a similarity score), the following is true about the rank list
Li: Qj

i > Qk
i implies Lj

i < Lk
i . Here, Lj

i indicates the rank of the jth subject in
the list Li.

Fig. 1. Fusion of multimodal biometrics at rank level



Cross-Entropy Monte Carlo 67

Therefore, N rank lists are created as L1, L2, ..., LN for biometric traits
P1, P2, ... , PN , respectively. A combination of these N rank lists generates an
aggregated rank list δ∗ as shown in Fig. 1.

δ∗ = aggregate(L1, L2, ...LN ) (1)

The objective, here, is to generate the aggregated rank list δ∗ having min-
imum distances from the input rank lists L1, L2, ..., LN . Hence, the objective
function to generate an aggregated rank list can be defined as:

minimize Φ(δ) =
N∑

i=1

wi × d(δ, Li) (2)

δ denotes an aggregated rank list.
Li is the ith input rank list (as obtained from biometric modality Pi).
N denotes number of modalities.
wi denotes the associated weight for rank list Li. For the reported experiments
in this paper, each input rank list has been assigned same weight.
d denotes a distance metric between two lists.

The goal is to obtain an aggregated rank list δ∗, which minimizes the objec-
tive function Φ(δ), among the set of all candidate rank lists.

Spearman footrule [13] and Kendall’s tau [13] distances are applied here to
calculate the distance between two rank lists.

In order to estimate the distance between two rank lists, Spearman footrule
distance [13] considers summation of the absolute differences between ranks of
each subject in two lists as:

d(δ, Li) = S(δ, Li) =
∑

tεLi∪δ

|rδ(t) − rLi(t)| (3)

Here, rδ(t) represents the rank of subject t in the list δ. rLi(t) represents the
rank of subject t in the input rank list Li.

As per Kendall’s tau distance [13], the distance between the aggregated rank
list δ and the input rank list Li is estimated by counting the number of disagree-
ments in the rank ordering by considering every pair of subjects between these
two lists.

d(δ, Li) = K(δ, Li) =
∑

t,uεLi∪δ

Kp
tu (4)

where,Kp
tu =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if rδ(t) < rδ(u), rLi(t) < rLi(u)
or rδ(t) > rδ(u), rLi(t) > rLi(u),

1 if rδ(t) > rδ(u), rLi(t) < rLi(u)
or rδ(t) < rδ(u), rLi(t) > rLi(u),

p if rδ(t) = rδ(u) or rLi(t) = rLi(u)

(5)

Here, p is penalty and its value is set to 0.5.
If subject t is not present in one of the two lists (either δ or Li), the rank of

the subject (rδ(t) or rLi(t)) in the list is considered as one more then the size of
the list.
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3 Cross-Entropy Monte Carlo Algorithm

In this paper, the cross-entropy Monte Carlo algorithm has been presented to
solve the above optimization problem (Eq. 2). The cross-entropy (CE) Monte
Carlo algorithm [14] is an iterative method to solve combinatorial problems.
The cross-entropy Monte Carlo method is presented in this section.

A rank list δ can be represented as a matrix X of size n × k having values
xjrε{0,1}. n is number of subjects in the list and k represents total number of
rank positions. In this matrix X, each row represents a subject (person) and
column represents each rank. So, this matrix will have its entries as 0’s and
1’s, while satisfying the following constraint on each row and each column. The
summation of xjr values in each row and in each column has to be 1. The places
in the matrix X, where 1 is present for each subject, will define the rank of the
subject. The matrix X defines a rank list of size k uniquely using the placement
of 1’s in each row. For example, a set of subjects A, B, C and D having ranks 3,
1, 2 and 4, respectively, can be represented using a 4 × 4 matrix X as:

X =

⎡

⎢⎢⎣

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥⎥⎦

The solution space χ can be defined for the proposed optimization problem
as a collection of all such feasible matrices. Here, the aim is to find the rank list
(i.e., the matrix X) with minimum objective function value over the solution
space. This will generate the aggregated rank list.

X follows the probability mass function (pmf) Pvt(X) which is reflected in
a parameter matrix vn×k = pjr.

Pvt(X) ∝
n∏

j=1

k∏

r=1

(pjr)xjr

× I(Σk
r=1xjr ≤ 1, 1 ≤ j ≤ n;Σn

j=1xjr = 1, 1 ≤ r ≤ k) (6)

Here, the element at the jrth position of the X matrix is denoted by xjr. Each
element in the parameter matrix v is denoted as pjr which indicates the proba-
bility of jth subject having rth rank.

The steps of the CE algorithm [14] is given below. These steps are repeated
until the algorithm converges.

1. Initialization: Let t denote the current iteration number, which is initialized
to 0. A parameter matrix v0 of size n × k is initialized to have same value
for every element of the matrix. In this matrix, row corresponds each subject
(person) and column corresponds individual ranks. Initially, the probability
of jth subject having rth rank p0jr (i.e., jrth element in v0 matrix) is assigned
a value 1/n. Here, total number of subjects (persons) in the list is n and k
represents the total number of rank positions. So, initially every subject has
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an equal opportunity for being in the candidate list. The objective function
Φ(δ) in Eq. 2 is evaluated for such a candidate list.

2. Sampling: NS samples (candidate lists) are generated from the probabil-
ity mass function (pmf) Pvt(X) (Eq. 6) at each iteration t. For each of the
NS candidate lists δi’s, its objective function value Φ(δ) is estimated using
Eq. 2. An ascending order sorting of these candidate lists helps to obtain the
ρ-quantile yt = Φ[ρN ]. The value of ρ is assumed as 0.1 for the reported
experiments.

3. Updation: The probability values pt+1
jr are updated as:

pt+1
jr = (1 − w)pt

jr + w

∑NS

i=1 I(Φ(δi) ≤ yt)x(i)
jr∑NS

i=1 I(Φ(δi) ≤ yt)
, (7)

where, the jrth position of the ith sample (denoted by matrix Xi) is x
(i)
jr . For

the experiments, NS is set to 1000, k is set to 5, w is a weight parameter.
The value of w is set to 0.25.

4. Convergence: This algorithm stops if changes in the optimal list are less
than a threshold for a specified number of iterations. The number of iteration
is set to 5 for the reported experiments.

4 Experimental Results

Performance of the proposed cross-entropy Monte Carlo method (independently
using Spearman footrule and Kendall’s tau distances) is experimentally com-
pared against several existing fusion methods (both at rank level and score level).
These existing state-of-the-art methods have been mentioned in Sect. 4.1. More-
over, this experimental comparison has been carried out for two different tasks
of multimodal biometrics. Hence, two different datasets have been used in these
experiments. These datasets along with the corresponding performance measures
of all these comparing methods have been reported in Sects. 4.2 and 4.3.

4.1 State-of-the-Art Methods for Performance Comparison

Performance of the proposed rank level technique has been compared against the
existing state-of-the-art linear and non-linear rank level fusion methods. Borda
count, weighted Borda count and highest rank methods belong to linear rank
level fusion methods [12]. Similarly, non-linear rank level fusion methods are
exponential [1], weighted exponential [1], division exponential [2] and logarithm
[2] methods. The proposed method has also been compared against few state-of-
the-art score level fusion methods, sum-rule [9], product-rule [18], max-rule [18]
and min-rule [18].

Some of these existing methods (weighted Borda count, exponential, weighted
exponential, division exponential and logarithm) require weights to be assigned
for various biometric modalities. The performances of these methods depend on
these selected weights. An elitist genetic algorithm has been used to search for
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the set of weights for various modalities. Recognition accuracy (as defined as
the percentage of probe for which correct matching subject has been found) is
considered as a fitness criteria for this genetic algorithm.

Moreover, the set of selected weights depends on the dataset on which the
weights are being trained. Hence, k-fold cross validation (using k = 5) is used
to eliminate this dependency. The dataset is splitted into k parts. k − 1 parts
have been considered as training set to learn the set of weights using the elitist
genetic algorithm and remaining one partition is used as test set to report the
recognition accuracy. This is repeated k-times to get different set of weights and
corresponding accuracies on the test sets. Finally, average accuracy from k such
test sets has been presented in the result.

4.2 Fusion of Multimodal Biometrics Involving Face and Fingerprint

In this paper, the first dataset namely (BSSR1) is from the data repository of
NIST [15]. This dataset has been widely used to study fusion of multimodal
biometrics [1,7,8,19]. In this dataset, four biometric modalities have been con-
sidered. Two of these modalities are for face biometrics (using two different
matchers, termed as G and C in the dataset). Fingerprints of the right index
finger and left index finger are the other two modalities. These above four bio-
metric modalities were acquired for each of the 517 persons (subjects) during
enrollment phase. The dataset contains similarity scores of each of these subjects
as a probe with all 517 subjects as per two different face matchers (termed as G
and C) and fingerprint matchers for right and left index fingers. These similar-

Table 1. Cumulative recognition accuracies in % for NIST BSSR1 dataset using various
comparative methods

Method Rank 1 Rank 2 Rank 3

Unimodal Face Matcher G 83.37 86.28 88.40

Face Matcher C 88.78 90.52 91.50

Left fingerprint Matcher 85.70 87.04 87.81

Right fingerprint Matcher 92.07 93.23 93.62

Existing rank level fusion Borda count 92.07 93.04 94.00

Weighted borda count 92.50 94.20 95.36

Highest rank 79.70 99.81 98.26

Nonlinear methods Exponential 89.16 90.13 91.30

Weighted exponential 87.81 89.16 90.71

Division exponential 99.23 99.42 99.42

Logarithm 98.45 99.03 99.23

Existing score level fusion Sum 79.50 80.85 81.24

Max rule 79.88 94.00 98.45

Min rule 94.78 95.40 95.60

Product 97.87 98.30 98.70

Proposed CE methods CES 99.26 99.42 99.42

CEK 98.26 98.84 99.23
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ity scores from various biometric modalities are fused using existing score level
fusion methods (as mentioned in Sect. 4.1).

Moreover, rank lists are generated based on the given similarity scores. This
provides four rank lists for each probe. These rank lists are combined using
the proposed rank level fusion method (Sect. 3) and other existing methods as
discussed above (Sect. 4.1). Table 1 presents the recognition accuracies of various
comparing methods (in %) for the probe subjects within top 1, top 2 and top
3 ranks (cumulative). It also presents the recognition accuracies for each of the
unimodal biometrics in this dataset.

From Table 1, the results clearly show that the proposed cross-entropy Monte
Carlo algorithm based on Spearman footrule (CES) and Kendall’s tau (CEK)
distances performs better than most of the comparing methods. The reason
for this superiority of the proposed method is that the method considers min-
imization of the distances between aggregated and input rank lists. Only the
performance of the division exponential method is equal to the proposed CE
method with Spearman footrule distance. It is also noticed that the proposed
method is performing better than each unimodal matcher justifying the need for
multi-biometric system.

4.3 Fusion of Multimodal Biometrics for Various Gait Features
Representations

Additionally, the second dataset (BSS4) is form the Institute of Scientific and
Industrial Research (ISIR), Osaka University (OU) [16,17]. This dataset has
also been used for fusion of multimodal biometrics in [20,21]. In this dataset,
input image sequence from gait has been processed using five different feature
extraction methods: (i) Gait energy image (GEI), (ii) Frequency-domain feature
(FDF), (iii) Gait entropy image (GEnI), (iv) Chrono-gait image (CGI), (v) Gait
flow image (GFI). The dataset is composed of dissimilarity scores of each of these
3249 subjects as probe with all 3249 subjects for above mentioned features. These
dissimilarity scores from above gait features are fused using existing score level
fusion methods. Details of these gait feature extraction methods can be found
[17,20].

Moreover, rank lists are generated based on the given dissimilarity scores.
This provides five rank lists for each probe. These rank lists are combined using
the proposed rank level fusion method (Sect. 3) and other existing rank level
fusion methods as discussed in Sect. 4.1. Table 2 presents the recognition accu-
racies of various methods (in %) for the probe subjects within top 1, top 2 and
top 3 ranks (cumulative). The table also presents the recognition accuracies for
each of the unimodal biometrics in the dataset.

From Table 2, the results clearly show that the proposed cross-entropy Monte-
Carlo algorithm based on Spearman footrule (CES) and Kendall’s tau (CEK)
distances has superior performance over other methods except score level fusion
with sum and rank level fusion with division exponential method. The justifi-
cation made for the previous dataset BSSR1 is also applicable here. It is also
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Table 2. Cumulative recognition accuracies in % for OU-ISIR BSS4 dataset using
various comparative methods

Method Rank 1 Rank 2 Rank 3

Unimodal CEnI 80.95 85.50 87.50

CGI 83.35 87.44 89.04

FDF 85.90 89.87 91.23

GEI 85.72 89.54 91.20

GFI 74.92 79.93 82.12

Existing rank level fusion Borda count 83.63 87.47 88.77

Weighted borda count 84.58 88.34 89.47

Highest rank 77.41 88.15 91.54

Nonlinear methods Exponential 83.56 87.47 88.83

Weighted exponential 81.60 85.29 87.32

Division exponential 86.40 89.94 91.51

Logarithm 85.47 89.20 90.90

Existing score level fusion Sum 86.61 89.72 91.23

Max rule 85.38 88.27 89.60

Min rule 77.41 88.15 91.60

Product 77.41 88.21 91.60

Proposed CE methods CES 86.21 90.21 91.51

CEK 86.30 89.87 91.63

noticed that the proposed method is performing better than each unimodal
matcher justifying the need for multi-biometric system.

5 Conclusion

Rank level fusion has been studied, in this paper, for multimodal biometrics. The
manifold contributions of this paper are highlighted here: The rank level fusion
in multimodal biometrics is formulated as an optimization problem. In order
to solve this optimization problem, cross-entropy Monte Carlo method (using
two distant measures, namely Kandall tau and Spearman footrule distances)
is proposed. The proposed method is tested for two different multi-biometric
datasets: BSSR1 and BSS4. The proposed method using both of the distance
metrics provides better performance in identifying the subjects than most of the
existing methods of fusion at rank level (e.g., Borda count, weighted Borda count,
highest rank, exponential, weighted exponential, division exponential, logarithm)
and score-level (product-rule, sum-rule, max-rule and min-rule) for multimodal
biometric systems. Experiments also justify the usefulness of multimodal bio-
metric system over unimodal biometric system. Similarly, the proposed model
can be applied for any other multimodal biometrics. Moreover, initial success for
the reported experiments is encouraging enough to try out other meta-heuristic
search and optimization strategies (like genetic algorithm, particle swarm opti-
mization etc.) in the context of rank level fusion of multimodal biometrics.
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