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Abstract. Research in the realm of accident prediction and analysis is mostly
confined to the study of road accidents caused by motor vehicle collisions where
the event of vehicle fall from high altitude is mostly ignored. An IoT system has
been introduced in this work, which uses a budget smartphone and off-the-shelf
sensors to accurately detect and notify vehicle fall event. The proposed system is
low cost, reliable and can be easily retrofitted to any type of vehicle. It uses the
vehicle speed, absolute linear acceleration and altitude to build an SVM classifier
based model to detect the fall event. The proposed IoT system is found to be
accurate with a MAPE of 1.8%.
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1 Introduction

According to Global Status Report on Road Safety 2018 by World Health Organization
(WHO), the total number of deaths due to road accidents is excessively high with more
than 1.35million people dying each yearworldwide [1]. For all kind of death causes, road
accident is the eighth biggest reason for the death of people and the biggest reason for
the death of children and youth aged below 29 years [1]. According to the golden hour
principle (the relationship between the time taken for the treatment after an accident
and the death rate), timely notification reduces the time for medical treatment after
the accident and significantly decreases the mortality rate [2]. Research in the area of
accident prediction has mainly focused on the use of information and communication
technologies to detect vehicle collisions. Such accident detection systems fail to report
the accident of a vehicle due to a fall from a bridge, fly-over or a hill. A significant
percentage of road accidents has been recorded when the vehicle either goes off the road
or falls-off from an altitude. Such eventsmay occurwhen the vehicle is at an altitude from
the ground, plying on a bridge, fly-over, elevated highway or is traversing a hilly road.
According to the road accident database management system (RADMS) report of the
government of the State of Himachal Pradesh (HP) in India [3], from April 2018 to June
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2018, a total of 9076 accidents were reported in HP, out of which 1850 accidents were
run-off-the-road accidents. In more than 80% of reported ran-off-the-road accidents,
vehicle fell into the gorge. To the best of our knowledge, no research work has been
carried out to detect and report such fall events.

In this work, the authors present an end-to-end IoT system which can detect the fall
of a vehicle from an altitude. The IoT system can generate an instant alert to the nearby
emergencymedical services (EMS), relatives of the victims and police so that immediate
help can be provided. The novelty of the approach lies in (a) its capability of using low-
cost hardware and its ability to be retrofitted to any vehicle, (b) use of statistical models
in accurately predicting the vehicle fall event, and (c) automatic reporting of the accident
to relevant agencies.

2 Related Work

In this section, the latest research related to the detection of a road accident with the help
of inputs from sensors is discussed. Jair Ferreira Júnior et al. [4] have per-formed driver
behavior profiling by using different smartphone sensors and classification algorithms.
The results have been compared to determine the optimummeth-od to characterize driver
aggressiveness profile. Aloul et al. [5] have developed a smartphone-based system that
uses accelerometer data to build a predictive model based on Dynamic Time Warping
(DTW) and Hidden Markov Models (HMM).

Linayage et al. [6] have proposed a Bayesian quickest change detection approach to
optimize the trade-off between average detection delay and false alarm rate. To reduce
the latency in reporting an accident, Dar et al. [7] have proposed a fog computing-based
approach to develop a low-cost, delay-aware system for detection and reporting of an
accident. A smartphone-based early recognition system has been developed by Xu et al.
in [8], which can help to avoid vehicle accident by identifying inattentive driving at early
stage and alerting the driver.

Park et al. [9] have used in-built sensors of the driver’s smartphone to develop an
event-driven solution to prevent distracted driving. Bhatti et al. [10] have used speed,
pressure, gravitational force, location, and sound sensors of a commodity smartphone to
develop a low cost, portable solution that detects an accident and reports it to the nearest
hospital.

In all these works, sensors of the passenger’s smartphone have been used to build
the accident detection system. None of these works has provided analysis and solution
for the scenario where the passenger vehicle falls-off from a certain height. Hence, this
work presents an IoT system, which uses in-built as well as connected sensors to build
an intelligent system that can accurately detect the fall of a vehicle from an elevation.

3 Context-Aware IoT System Architecture

3.1 System Architecture

To address the problem of vehicle fall detection, a novel architecture has been pro-
posed as shown in Fig. 1. Modern smartphones are furnished with a variety of in-built
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sensors that can be used to measure different physical parameters. These devices can
provide a commanding, economical and versatile research platform for data collection
and edge computing. Our proposed IoT system can exploit the five standard sensors
of a SAMSUNG Galaxy S8 smartphone (microphone, GPS, magnetometer, accelerom-
eter, and gyroscope) and seven in-built (pressure, temperature, infrared, humidity, CO,
illuminance, altitude) and one supplementary (CO2) sensor of Sensordrone [11], and
off-the-shelf sensor device.

In this system, the research focus will be with absolute linear acceleration, the alti-
tude from sea level and speed of the vehicle to detect the fall of the vehicle from a

Fig. 1. Context-aware IoT system architecture

Fig. 2. Working flowchart of the system



Modeling Vehicle Fall Detection Event Using Internet of Things 223

certain height. Sensordrone’s barometer communicates the atmospheric pressure to the
smartphone via Bluetooth link. Atmospheric pressure is used to calculate the altitude
of the vehicle with the help of a standard formula. Altitude measurement is fused with
absolute linear acceleration and speed to accurately estimate the fall detection scenario.

This whole processing of sensors’ streamed data is done within the smartphone
itself. In the case of the vehicle fall event, the smartphone immediately sends the fall
details like time, coordinates, device ID, etc. to the IoT server in the cloud for further
processing. The smartphone uses a 4G/LTE connection to send this valuable information
to the IoT server. After analyzing the received data, the IoT server sends the notification
with the location and other relevant data to the nearest EMS, family and other emergency
services such as police, insurance, etc. As shown in Fig. 2, absolute linear acceleration
and speed parameters are obtained from inbuilt sensors of the smartphone while the
information about altitude is derived from the Sensordrone. Features extracted from
these input parameters are used for training and testing of the SVM classifier model.
Occurrence of the fall event is notified to the end users. The process keeps reiterating
until either the system shuts down or a vehicle fall event is detected.

3.2 Hardware Setup

Samsung Galaxy S8 Smartphone. Samsung Galaxy S8 smartphone is equipped with
a 1.9 GHz Exynos 8895 octa-core processor, 4 GB of RAM and 64 GB of storage, which
makes it a suitable platform for edge processing. It houses multiple standard sensors
such as inertial sensors, microphone, GPS, light sensor, proximity sensor, etc. Proposed
system utilizes two standard sensors of the smartphone: LM6D1 six-axis inertial sensor
(with range ± 16 g) for measuring the absolute linear acceleration and BCM4774 GPS
sensor for measuring the location of the fall and speed of the vehicle.

Sensordrone. Sensordrone is a small sensor hub that can be programmed according to
the research needs. It can measure eleven different environmental parameters including
atmospheric pressure, altitude, temperature, humidity, non-contact object temperature,
CO, illuminance, proximity, capacitance, oxidizing and reducing gases. External devices
can also be addedusing the serial port expansion. It can be connected easily to any android
smartphone via Bluetooth 4.0 link. Android/Java library for Sensordrone is available at
[12]. The setup of the experiment has used the barometer LPS331AP (range 26 kPa to
126 kPa) of the Sensordrone to measure the altitude of the vehicle.

RC Car. As it is not feasible to perform the experiment on a full-size, real vehicle and
collect streaming data, we have used a well-configured 1:12 scaled RC car to imitate
a real-life vehicle fall from an altitude. Configuration of RC car is shown in Table 1.
This off-road toy monster truck is made up of high-performance ABS material and has
a strong front bumper structure and very good suspension.
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Table 1. RC Car configuration [13]

Vehicle Parameter Value

Brand Name and Item No. GPTOYS Foxx S911 RC Car

Dimension (L * W * H) 310 mm * 265 mm* 150 mm

Weight 1078 gm

Scale 1:12

Track Width 220 mm

Wheelbase 207 mm

Ground Clearance 40 mm

Max Speed 33 MPH

Transmitter 2.4 GHz 4Ch

Operating Range 80 m

Max Turning Angle 45°

3.3 Software Setup

Android application, SNUSense, has been developed for collecting and processing the
received data from smartphone and Sensordrone. SNUSense has a user-friendly interface
as shown in Fig. 3(a).

SNUSense collects the data and stores it in a CSV file in the memory of the smart-
phone. It continuously processes the streamed data and makes an inference using three
attributes namely speed, absolute linear acceleration, and altitude of the vehicle. After
successfully identifying the vehicle fall event, SNUSense sends the identity of the user
and location of the vehicle to the SNUSense IoT server in the cloud (Google Firebase
[14]). SNUSense has a broad vision and is developed by keeping in mind other kinds of
vehicle accidents such as collision, rollover, fire, etc. As shown in Fig. 3(a), by exploiting
sensors of smartphone and Sensordrone, SNUSense can measure time, date, location,
sound, speed, linear acceleration, yaw, pitch, roll, illuminance, pressure, temperature,
humidity, CO, CO2, proximity, object temperature, and altitude.

We have developed another android application, SNUAlertApp, for receiving the
alert notifications of accident as shown in Fig. 3(b). The notification contains the location
of the accident, name of the driver, and type of the accident. A single tap on notification
area opens the Google Map with location marker so that the user can trace the accident
location easily.
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Fig. 3. (a). Screenshot of SNUSense App, (b). Screenshot of SNUAlertApp Notification

4 Testbed, Data Sensing and Pre-processing

4.1 Experiment Setup and Data Collection

A high-speed 1:12 scaled RC car has been used for the experiment to emulate real-life
scenarios of vehicle fall. As shown in Fig. 4, the smartphone and the Sensordrone have
been tied up with the chassis of the RC car because the optimum value of accelerometer
can be obtained when it is placed near the center of gravity (CG) of the vehicle.

The experiment has been performed at 15 feet elevated running track at Indoor Sports
Complex of the university (shown in Fig. 4). Multiple experiments have been performed
to collect data for characterizing the vehicle fall event. RC car was operated using a
2.4 GHz 4Ch wireless transmitter and dropped on a badminton wooden court by turning
it to the left on the track at a 45-degree angle. The trends of ALA, altitude, and speed of
the vehicle are shown in Figs. 5, 6 and 7 respectively.
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Fig. 4. Experiment Setup

Fig. 5. Linear acceleration after fall from 15 feet elevated track

Fig. 6. Altitude measured after fall from 15 feet elevated track
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Fig. 7. Change in speed after falling from 15 feet elevated track

4.2 Parameters Used for Fall Detection

In this work, three attributes (viz. absolute linear acceleration, change in the speed and
altitude of the vehicle) are used to detect the fall event of the vehicle. If we do not
consider any one of them, the system may generate a false alarm.

Absolute Linear Acceleration (ALA). When a moving vehicle falls from a height, the
orientation of the vehicle does not remain the same as on the road. In such a situation, it
can not stay parallel to the gravitational axes and the acceleration characteristic can be
distributed over two or three axes. The static acceleration value on different axes can also
change with the change in the orientation of the vehicle. Therefore, it is very difficult to
estimate the exact peak of the acceleration of particular axes. To deal with this problem,
ALA (or Signal Magnitude Vector [15]) is calculated from all axes X, Y, and Z. ALA is
independent of the fall orientation of the vehicle and shows the acceleration characteristic
parallel to the gravitation. It is the resultant vector of accelerations of X, Y, and Z-axes.
It is the square root of the sum of squares of accelerations at X-axes (ACCX), Y-axes
(ACCY) and Z-axes (ACCZ) respectively. It is a positive quantity, which is calculated
by the following equation:

ALA =
√

(ACCX )2 + (ACCY )2 + (ACCZ )2 (1)

The measurement unit of ALA is g, where g is equal to 9.80665 m/s2. In this work,
the threshold value for ALA is considered 6 g for fall event detection because it is
known from the literature that if a vehicle impact with a non-movable obstacle with
more than 23 km/h (i.e. 21 feet/s) then its deceleration always crosses 5 g [16]. It can
be demonstrated that when an object falls from a height of more than 10 feet, its final
velocity is always more than or equal to 25 feet/second.

Speed. It is observed that when a vehicle falls from a height, it will eventually stop and
its speed would eventually become zero. The system has used GPS to measure vehicle
speed. Every GPS device receives NMEA (National Marine Electronics Association)
sentences from the satellites, which contains data related to position, velocity and time
of the device [17]. Each device category has its own NMEA sentence. Each standard
NMEA sentence has a two-letter prefix (e.g., GPS receivers uses GP), all proprietary
sentences start with P and are followed by three letters, which identifies the device
manufacturer (e.g. Garmin sentences start with PGRM). GPRMC, The Recommended
Minimum, is the NMEA sentence, which is used for obtaining the velocity bymost of the
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Android devices. Android library has specific functions to fetch speed from the NMEA
sentence. An example of GPRMC NMEA sentence is shown below:

$GPRMC,122844,A,1831.336,N,07734.332,E,018.9,054.4,280919,
003.1,W*6A
Here, velocity is 018.9 knots, which is 35 km/h.

Altitude. When a vehicle falls from a height, altitude is most prominent attribute whose
value decreases immediately. GPS could be used to measure the altitude but it is not suit-
able when location remains the same while the altitude is changing. No dedicated sensor
is available that can measure altitude directly; it can be measured by using atmospheric
pressure p and temperature. In the conducted experiment, altitude is measured using the
pressure p measured by the Sensordrone. Here, we are neglecting the atmospheric tem-
perature because it hardly changes when altitude changes less than 50 feet. Therefore,
the final formula would be:

alti tude = 44330.77 ∗
(
1 −

(
p

p0

)0.190263
)

(2)

Where p0 is the standard reference pressure measured at sea level.

4.3 Ten Millisecond Moving Maximum

Generally, the accelerometer generates signals at a very high frequency, which is more
than 2000 Hz. It is very difficult to process and model the data at such a high speed
because there can be extreme fluctuations in the readings and such processing becomes
resource-intensive. Data pre-processing is required to deal with this situation. Iyoda
et al. [2] have used a 10 ms moving average method to pre-process the data generated
at 2800 Hz frequency. However, the moving average can downgrade the peak value
generated by the accelerometer and cannot identify the fluctuation generated for 1 ms to
2 ms. To take the peak value into account, the system has used 10 ms moving maximum
method in which the maximum value of every 10 ms interval has been recorded that is
shown in Fig. 8 as …, N-2, N-1, N, N + 1….

Fig. 8. Ten millisecond moving maximum
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5 Statistical Modeling of Fall Detection

This work investigates support vector machines (SVM) to model the event of the fall of
a vehicle from an altitude. Proposed model utilizes three inputs viz. vehicle speed, linear
acceleration, and altitude to detect the occurrence of a fall event. There are only two
possible outcomes of the proposed forecast model, (1) fall occurs, and (2) fall does not
occur. Hence, it is deduced as a binary classification problem in which the samples are
represented as points in an n-dimensional space and mapped in a way that the samples of
the two categories are separated by a gap called hyperplane, which is as wide as possible.

SVM fits an optimal separating hyperplane (OSH) between the two occurrences by
utilizing the training samples that are present at the edge of the class distributions - the
support vectors. The hyperplane is oriented in a way that it is placed at maximum dis-
tance from the sets of support vectors. This orientation helps SVM generalize on unseen
cases more accurately in comparison to the classifiers such as the neural networks that
perform by minimizing the training error, such as neural networks [18]. Another advan-
tage with SVM classification is that, in contrast with statistical classifiers such as the
maximum likelihood classifiers that use all training cases to characterize the classes, only
a small number of training samples present at the edge of the class distributions (support
vectors) in the feature space are needed to establish the decision surface [19]. Hence,
SVM classification requires a much smaller training sample size than the conventional
maximum-likelihood classification models. The Naïve Bayes, KNN and random forest
classifiers work faster and are more accurate only with a large number of training sam-
ples, but in our case the training samples are less. So, SVM is best suited as it requires
less training samples and is the most accurate even when the data for training and testing
is less [20, 21].

The hyperplane in SVM is defined as

W.X + B = 0 (3)

Where X is a data-point lying on the hyperplane, W is normal to the hyperplane and
B is the bias.

The linearly separable case defines a separate hyperplane for two classes: W·Xi +
B ≥ + 1 (for Yi = + 1) and W·Xi + B ≤ − 1 (for Yi = − 1). The two equations can
be combined as

yi (W · Xi + B) − 1 ≥ 0 (4)

The training sample points on the two hyperplanes, W·Xi + B = ± 1, that are
parallel to the OSH, are the support vectors. The gap between the planes is 2/|W| and its
maximization is achieved by the constrained optimization problem, under the inequality
constraints of Eq. (4).

min

{
1

2
‖W‖2

}
(5)

To restrict the lower and upper bounds of input, slack variables {ξi } are introduced,
so that the Eq. (4) becomes

y(W.Xi + B) > 1 − ξi (6)
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The solutions for which ξi are large, are penalized by adding the penalty term
C

∑r
i=1 ξi . The optimization problem from Eq. (4), under the inequality constraints

of Eq. (6) thus becomes,

min

[
‖W‖2
2

+ C
∑r

i=1
ξi

]
(7)

The training data X is mapped into a high-dimensional feature space H through a
mapping function φ to allow for non-linear decision surfaces. The input data point X is
represented asφ(X) in the high-dimensional spaceH.As the computation of (φ(X)·φ(Xi))
is expensive, it is lowered in the high-dimensional space by using a kernel function such
that

(φ(X) · φ(Xi )) = k(X, Xi ) (8)

Solving the above equations, the decision function is obtained in the form

f (x) = sgn

(
r∑

i=1

αi yi k(X, Xi ) + B

)
(9)

Here, αi is the Lagrange’s multiplier. The output function f(x) is using the tuning
function, SVR model with a cost of 2, 23 support vectors, radial basis kernel, and an
epsilon value of 0.2 is used to develop our statistical model.

6 Results and Discussion

The results are obtained with the proposed fall-detection model using the database gen-
erated by SNUSense for training and testing. Using SVM tuning, we obtain the optimum
SVM classifier is determined with radial basis kernel, gamma = 0.33, ξ = 0.1 and 25
support vectors. A total of 215 experimental observations of the fall event have been
used for testing and the rest 54 have been used for testing the model. If P is the prob-
ability of occurrence, binary 1 represents the occurrence and binary 0 represents the
non-occurrence of the fall event. The detection of the single fall event by our system is
shown in Fig. 9.

The accuracy of the detection model has been evaluated using mean absolute
percentage error (MAPE) [22]. MAPE is defined as

MAPE = 1

N

N∑
i=0

|yi − f (xi)

yi
| ∗ 100 (10)

Where, N is the number of observations, yi is the actual event that occurred at ith

observation (represented by 0 or 1), xi is the input vector (time), and f is the forecast
model.

The MAPE for our SNU database was found to be 1.80%, i.e. the model is able to
accurately detect 53 out of 54 test occurrences. The detection of the fall event by the IoT
system is depicted in Fig. 10.

Hence, it is concluded that our fall detection system has an accuracy of 98.2% and
is capable of accurately detecting events of vehicle fall.
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Fig. 9. Detection of a single fall event by proposed IoT system

7 Conclusion and Future Work

In this work, a reliable, affordable and precise IoT system has been presented, which
can be retrofitted to any vehicle. It uses a smartphone and connected sensors to sense
absolute linear acceleration, speed, and altitude of the vehicle. These parameters are
used to develop an SVMbased fall detectionmodel, which has been proven to accurately
detect events of vehicle fall events in this work.

As a future work, we propose to develop and evaluate an IoT accident reporting
system which is capable of detecting as well as classifying the types of accident event.

Fig. 10. Results of the event detection system for 54 test observations
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The proposed system will be able to report the occurrence as well as the severity of
the accident to the end users. For this purpose, we plan to use parameters such as the
vehicle speed, acceleration, roll, pitch and altitude to categorize the road accident as
mild, moderate or severe.
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