
Man-in-the-browser Attack: A Case
Study on Malicious Browser Extensions

Sampsa Rauti(B)

University of Turku, 20014 Turku, Finland
sjprau@utu.fi

Abstract. Man-in-the-browser (MitB) attacks, often implemented as
malicious browser extensions, have the ability to alter the structure and
contents of web pages, and stealthily change the data given by the user
before it is sent to the server. This is done without the user or the online
service (the server) noticing anything suspicious. In this study, we present
a case study on the man-in-the-browser attack. Our proof-of-concept
implementation demonstrates how easily this attack can be implemented
as a malicious browser extension. The implementation is a UI-level, cross-
browser implementation using JavaScript. We also successfully test the
extension in a real online bank. By demonstrating a practical man-in-
the-browser attack, our research highlights the need to better monitor
and control malicious browser extensions.

1 Introduction

In a man-in-the-browser (MitB) attack, a malicious program can change the
structure and contents of web pages, modify data in HTTP messages, or steal
sensitive data the user enters in the browser without the user or online service
observing anything out of the ordinary [15]. There are several real-world exam-
ples of man-in-the-browser malware, such as SpyEye, Zeus, Torpig, URLZone
and Silentbanker [4,5].

The attack was originally presented by Augusto Paes de Barros in a talk
about new backdoor trends in 2005. The name man-in-the-browser attack was
later invented by Philipp Gühring, who also described the attack in more detail
and discussed possible countermeasures against it [9]. Today, almost 15 years
later, pieces of malware with man-in-the-browser functionality are still a signifi-
cant threat for many online services. Online banking and web services of financial
institutions, for example, are among the most popular targets for man-in-the-
browser attacks [6].

This study presents a case study on the man-in-the-browser attack. We
demonstrate how easy it is to build a malicious browser extension with man-in-
the-browser functionality that stealthily changes the data the user has inputted
in the browser. While our implementation is a Chrome extension, it could eas-
ily be utilized in Opera or Firefox as well, as the code is written in JavaScript
and operates on the UI level. We also successfully test this extension in a real
c© Springer Nature Singapore Pte Ltd. 2020
S. M. Thampi et al. (Eds.): SSCC 2019, CCIS 1208, pp. 60–71, 2020.
https://doi.org/10.1007/978-981-15-4825-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4825-3_5&domain=pdf
https://doi.org/10.1007/978-981-15-4825-3_5


Man-in-the-browser Attack 61

online bank. This study shows that even a simple, easy-to-implement malware
can successfully perform a man-in-the-browser attack, bypassing all traditional
authentication mechanisms and other security solutions like TLS encryption. By
demonstrating a practical man-in-the-browser attack, our research shows that
MitB is still a serious threat for web applications and outlines the need to better
monitor and control the malicious browser extensions.

The rest of the paper is organized as follows. Section 2 explains how a typi-
cal man-in-the-browser attack proceeds. Section 3 describes our proof-of-concept
implementation for the attack. Section 4 describes the experiment we performed
in a real online bank with our malicious extension. Section 5 discusses the impli-
cations and countermeasures of man-in-the-browser attacks. Finally, Sect. 6 con-
cludes the paper.

2 The Attack

Because spying on and altering messages in the network is difficult due to encryp-
tion, many attackers are instead looking for an easier opportunity to perform
man-in-the-middle attack at the endpoint of communication – the user’s infected
machine. Man-in-the-browser is a security threat that can be described as a
deceitful proxy inside the browser. The goal of the malicious program is either
to steal or alter the data exchanged by the user and the web service [20]. This
can mean (1) fraudulently altering the contents of web pages before they are
rendered (2) modifying the data in incoming or outgoing messages (3) gener-
ating additional malicious HTTP requests, or (4) capturing sensitive data and
sending it to command and control server [9,22]. A MitB malware can contain
some or many of these functionalities. The malicious program usually operates
totally silently, without giving the user or the web service any visible clues about
its existence.

In this paper, we will take a closer look at a type of man-in-the-browser
attack that uses DOM (Document Object Model) modification to quietly alter
the data inputted by the user before the data gets transmitted to the server.
Such an attack usually proceeds as follows:

1. The user’s computer gets infected by malware. Oftentimes, the malware
resides in the browser and is implemented as a malicious browser extension.

2. The malware has a list of matching URLs and once the user visits a URL on
the list, the man-in-the-browser functionality activates.

3. The malicious program waits until the user logs in and makes a transaction
– for instance, the user transfers money from his or her bank account.

4. Before the data is sent to the server, the malware tampers with the request
and modifies the data – for example by using the browser’s DOM interface
to change the bank account number of the receiver.

5. After the values submitted by the user have been modified, the man-in-the-
browser malware lets the browser proceed with transmitting the data to the
server.



62 S. Rauti

6. The browser then delivers the deceptive HTTP request to the server. The
server, however, has no way of telling this falsified request from a real one. It
therefore accepts the request, believing this is the real intent of the user.

7. The user is then usually asked to verify the transaction. For instance, an
online banking website shows the details of a bank transfer to the user once
more so that they can be confirmed.

8. The MitB malware changes any details (e.g. the bank account number) on
the displayed page so that they correspond to the original transaction that
the user intended to make. The user thinks everything is fine and confirms
the transaction.

The user and the online service involved in the exchange have been deceived.
Later the user will probably notice that the transaction was altered (e.g. when
receiving a reminder letter for the invoice). At this point, the money has probably
already been irrevocably lost.

3 Implementation

We studied how a man-in-the-browser attack could be implemented as an exten-
sion for the Chrome web browser. Like in the example description of a man-
in-the-browser attack in the previous section, we decided to make a malicious
browser extension that manipulates the data the user has filled in on a web site
before it is sent to the server. Later on, we perform an experiment with our
extension by changing the recipient account number when making a transaction
in an online bank.

For better security, changing HTTP messages has been made tricky in
Chrome by restricting this functionality in the WebRequest API. We circum-
vent this problem by using an easier method of manipulating the data with the
DOM API before it is sent to the server. This way, we do not even need to use
any browser specific APIs, the extension will just consist of a few lines of very
basic JavaScript.

When using DOM to replace the data given by the user with our own fraud-
ulent data, we have to find a way to do this stealthily so that the user does
not notice anything. Simply changing the value of a text field so that the user
can easily spot the change does not work, for example. There are many possible
approaches to modify the DOM and manipulate data, but in our implementation
we used the following one:

1. Find the text field containing the value we want to change.
2. Make a fake copy of this original text field.
3. Make the original field invisible (with CSS).
4. Replace the value of the invisible original text field with a deceptive value.
5. Insert to fake field in the place of the original one.



Man-in-the-browser Attack 63

FI4615943910072074

1002309947

Company Ltd

100.00

Submit

Receiver name:

Receiver account:

Reference number

Amount:

XX33278892100032055

The fake field for the user

The original text field, now
invisible and controlled by

the attacker

Fig. 1. A man-in-the-browser attack against the online bank application by substitut-
ing the receiver account field with a fake one. The user types a value in the fake field,
which is never going to be submitted. Instead, the value in the original, invisible text
field, controlled by the attacker, is transmitted to the server.

Now, the user will think that the fake field is the real one, and he or she will use
this field to input the value in the application. However, what is really going to
be sent to the server is the data in the original text field that is invisible and
unreachable to the user. Figure 1 illustrates this situation. Of course, the same
trick could be used with other text fields as well. For instance, the attacker could
easily increase the amount of money that is being transferred.

The whole malicious modification functionality in the extension can be writ-
ten in about 5 lines of basic JavaScript which uses the DOM API. We will not
share the code here, because it is a piece of malware, but anyone with a moderate
knowledge of JavaScript could write the extension in just a few minutes. The
code is available upon request for research purposes.

There is one more minor thing to take care of: we want the malicious exten-
sion to also deceive the user when the verification page is displayed. On the
verification page, the extension just searches the element that displays the data
which has been sent to the server (e.g. payment information with an account
number) and replaces its contents with the original value the user has inputted.
This requires just a few lines of code: capture the data written by the user in
the fake text field, store it and display it on the verification page instead of the
fallacious data that has really been sent to the server. With this, our extension
is pretty much finished.

The extension should normally only be installed through Chrome Web Store,
but one can also test unpacked extensions by enabling Chrome’s developer mode.
To load the extension in Chrome, we just have to have two separate files in a
folder: a manifest (manifest.json) and a content script (content.js) containing
the malicious functionality that was described previously. The contents of the
manifest file are shown in Fig. 2.



64 S. Rauti

The main thing to note about the manifest file is the fact that it defines the
website or the websites on which the extension activates (matches). The content
script, content.js, is injected into the web page once the DOM of the page is
complete [7]. Naturally, the name and description of the extension displayed to
the user on the extension page of the browser would be changed if we really were
building a real malware. Malware extensions are usually Trojans: they trick the
user by performing some useful functionality, but at the same time, malicious
activities are stealthily performed in the background.

Fig. 2. The extension’s manifest file.

4 Experiment

We used Chrome’s developer mode and installed our extension. The extension
was tested on a machine with Windows 10 and Chrome version 76.0.3809.132
installed. Figure 3 shows the extension on Chrome’s extension page.

We proceeded to test our extension on a real online bank service. We will
leave out the name of the bank from this study, suffice it to say it was a rela-
tively large European bank. The experiment was a success, as our extension was
able to divert the payment to a different bank account than given in the bank
application.

Regarding the experiment, the following observations are especially notewor-
thy:

1. Two-factor authentication is useless. The bank uses two-factor authentication
in the login process. This is useless against man-in-the-browser attacks that
bypass the authentication phase and modify the transaction “on the fly” as
the user makes the payment. Therefore, our extension did not experience any
challenges in the login phase.



Man-in-the-browser Attack 65

Fig. 3. Chrome’s extension page.

2. Out-of-band verification is useless to some extent. The bank uses out-of-band
(OOB) verification to confirm the transaction. OOB verification verifies the
transaction using a second channel other than just the web browser [5,24].
This can be done with a mobile application (where the user gives a PIN
code) or using a separate little device supplied by the bank. If the user uses
the separate device, he or she gives the device a code on the bank’s web page,
and then gives the bank web page a code calculated by the device. However,
the device never displays the receiver’s account number to the user, and in
this sense, the verification is not really complete and does not really protect
against our MitB attack.

The other way of verification, the mobile application, is better, because the
receiver account number is displayed to the user for verification. Of course,
this can potentially stop a MitB attack and our extension, if the user notices
the difference in account number is different from what he or she originally
inputted in the browser. One problem in mobile verification is the fact that
nowadays, many users can use their mobile phones for online banking. In
this case, OOB verification may be rendered useless if the phone is infected,
because there is no real second channel anymore in the verification process
[3,10]. In addition, our most prominent concern with OOB verification is



66 S. Rauti

related to user errors and simple psychology. After a while, the verification
process most likely becomes an automatic routine for the user. Is the user
really going to carefully check the receiver account number every time? We
believe a high percentage of the users will probably not do this. Instead, the
users simply automatically give the mobile app the PIN code to verify the
transaction as a part of a routine.

3. TLS encryption is useless. TLS encryption is a good measure for protecting
against man-in-the-middle attacks in general. However, when the modification
attack happens inside the browser, the data can easily be modified before it is
encrypted. Therefore our extension and MitB attacks in general bypass TLS
encryption. Too many banks and other critical online services today still state
in their security instructions that the user will be safe when he or she sees
the lock indicating a secure connection in the address bar. This can lull users
into a false sense of security.

4. Many anti-virus programs are currently useless. Sadly, anti-virus vendors have
not really been interested in what happens inside web browsers, which leads
to low detection rates for malicious browser extensions [2]. Anti-virus pro-
grams consider browsers safe, and therefore they often also consider browser
extensions harmless without any stricter scrutiny. As web applications become
more popular, replacing many desktop applications, and the browser becomes
a new platform for running many application and extensions, malicious activ-
ity inside the browser should be more closely monitored. The computer we
performed our experiment on also had an anti-virus program installed. Unsur-
prisingly, the program did not react to our man-in-the-browser attack in any
way.

5. The bank did not question the transaction. Finally, the transaction we tested
was a success and the online bank did not notice anything suspicious was
going on. It is not completely fair to criticize the bank about this, because
we transferred a relatively small amount inside the same country (from a
Finnish account to a Finnish account). Still, we want to make this observation
here to remind that banks should check all transfers on the server side and
require extra verification (for example by calling the customer and asking for
verification) for payments that differ from the normal pattern of transactions.
Also, banks could include some client side security measures in their web
applications to mitigate MitB attacks, as we will see in the next section.

5 Discussion and Countermeasures

The proof-of-concept implementation for a malicious MitB extension presented
in this study shows that in 2020, about 15 years after their appearance, man-in-
the-browser attacks are still a significant threat and can effectively work against
the modern online banking web systems which are supposed to be at the top of
their game in terms of securing transactions. As already noted by Blom a couple
of years earlier [1], it still seems that many banks do not consider man-in-the-
browser attacks a serious threat.



Man-in-the-browser Attack 67

As noted before, a malicious extension is regrettably easy to implement.
Writing a few lines of rudimentary JavaScript and using the DOM interface is
not difficult. However, to create an extension that changes data entered in a
form, not even this is actually required. This is because the code of extension
could be shared to less technically oriented attackers, who would then only need
to fill in two details in the code: (1) the ID of the text field which we want
to fabricate (or IDs for several text fields, if required), and (2) the ID of the
corresponding element on the verification page so that it can be edited as well.
Actually, the latter ID is not strictly necessary, because the extension could just
scan the verification page and replace the value regardless where it is. Even more
dangerously, why not make the extension the look for IBAN account numbers
(or any other well-formatted data) in the text fields and replace all such fields?
Then the extension would be completely automatic and probably work against
several banks even without prior knowledge about the exact user interfaces of the
banking web apps. At any rate, it should be clear that even when not automatized
to this extent, our extension is really easy to parametrize. Anyone can search
for IDs of HTML elements (e.g. using Chrome’s inspect functionality) and then
make the necessary replacements in the JavaScript code.

Google has continuously striven to make the process of reviewing extensions
more rigorous [16], and in 2018, installation from web sites other than Chrome
Web Store was disabled. However, many malicious authors have still succeeded in
slipping their extensions into Chrome Web Store. With over 60 % market share,
Chrome is still a very attractive choice for malware developers. Many malware
authors also first publish a completely harmless extension and then integrate
malicious functionality to the extension later. The adversary can also use mal-
ware that circumvent Chrome’s installation restrictions and programmatically
install the extension to Chrome without the user’s knowledge and permission.
For example, the notorious “Catch-All” extension for Chrome that stole all data
user typed in the browser used a malicious installer program that started Chrome
from command line with parameters that allowed the installation of the extension
and circumventing many security features related to extensions [12]. Finally, the
adversary could employ social engineering to get the user to install the harmful
extension in developer mode.

Although Chrome’s extension policy has become stricter in recent years,
many other browsers, other browsers such as Firefox and Opera have looser
policies when it comes to extension installation and permissions. It is also impor-
tant to note that the JavaScript code we wrote does not use any browser specific
features, and it could be directly used for Firefox and Opera extensions as well.

It is quite apparent additional countermeasures are needed against malware
with man-in-the-browser functionality modifying the user’s transactions. Scien-
tific literature has proposed numerous different countermeasures over the years,
but we will discuss just a few solutions in the context of our practical experiment
here:

– Stricter permission control for browser extensions. Chrome has a system in
place that makes the users confirm the permissions an extension can have.



68 S. Rauti

However, many users are probably going to accept these permissions with-
out really reviewing them or understanding what they mean. Firefox and
Opera, on the other hand, do not have this fine-grained extension permission
management. Therefore, new ideas and frameworks for permission and access
control management and monitoring [8,13,23] are needed. For example, Liu
et al. propose assigning different sensitivity levels for HTML elements [11]. It
could be a good idea to restrict the ability of extensions to modify text fields,
for example. At the very least, certain patterns such as an extension modi-
fying an invisible text field (like in our example implementation) are highly
suspicious. Also, it would not be that difficult to compile a list of the most
critical web sites (such as online banks) where extensions would be completely
turned off.

– Out-of-band verification. We already saw that out-of-the-band verification has
its downsides. The process can become a boring routine for the user or both
web banking and verification can be done on the same infected mobile phone.
However, out-of-band verification is still a good security mechanism when
used correctly. An uninfected second channel has to be used for verification
and the transaction details have to be shown to the user. The user has to
understand why verification is important and check the transaction carefully.
Aside from a mobile device which may not be completely secure, for instance
a separate USB gadget with a display can be used for verification [14,18].

– Monitoring web page integrity. One way to protect against DOM-based man-
in-the-browser attacks is to verify the integrity of the web pages [17]. The
challenge here, of course, is that there are many legitimate extensions such
as advertisement blockers that need to modify pages. On some web sites with
critical functionality and sensitive information, however, this countermea-
sure could provide great benefits. Cryptography can be used to protect the
integrity of web content [21]. As a mechanism to mitigate man-in-the-browser
attacks, critical applications could add functionality guarding the integrity of
the web page. An even more secure solution would be to integrate this check
in the browser. This way, performing tricks such as adding extra text fields
would become more difficult.

– Hardening the browser. Hardening refers to securing software by limiting the
attack surface and implementing other mechanisms preventing cyber attacks.
For example, a clean web browser can be loaded from an external tamper-
proof device [19]. The hardened browser would use TLS to encrypt com-
munication with the server and browser extensions would not be allowed.
Therefore, setting up a man-in-the-browser attack would become difficult for
the adversary. However, the usability of this solution is not as good as that
of a normal browser, as the user has to attach the device and use a separate
browser for critical transactions.

To summarize, thwarting man-in-the-browser attacks is a co-operative effort
involving many parties. First, web browser vendors need to make sure permis-
sions of extensions are controlled and users are informed about possible impli-
cations of granting these permissions. Installing malicious extensions should not



Man-in-the-browser Attack 69

be too easy. Intuitive mechanisms for turning off extensions on certain web sites
should be provided. Second, providers of critical services such as banks should
always provide appropriate out-of-band verification and emphasize the impor-
tance of carefully checking the transactions. Client-side mechanism such as DOM
integrity checking can be used on client side. Third, anti-virus vendors should
do even better job in analyzing what happens inside the browser (e.g. by analyz-
ing activities of extensions and monitoring what kind of resources they access).
Fourth, organizations need to pay attention to their policies on browser exten-
sions. It would be a good idea to regularly review the installed extensions. Last
but not least, it is important for the users to understand how powerful browser
extensions are and select the extensions they use carefully. Many attacks could
be proactively prevented by educating users.

Finally, although we have been mainly discussing online banks in our exam-
ples, it is worth noting that man-in-the-browser attacks are a threat to a wide
variety of different web services. One can easily imagine replacing the content
sent by the user in social media or webmail services with messages decided by
the adversary. Tampering with online voting, input data for medical appliances,
or industrial processes could potentially have even more serious consequences.

6 Conclusion

We have presented a case study on man-in-the-browser attacks and demonstrated
how a practical attack can be carried out by building a malicious browser exten-
sion. It is concerning how simple the malicious code is and how effortlessly the
attack can be deployed against users even 15 years after man-in-the-browser
attacks were first discovered. While no security solution completely prevents
man-in-the-browser attacks (and still preserves good usability), combining sev-
eral countermeasures and enforcing these security approaches more effectively
in modern web browsers and web applications should significantly alleviate the
problem in the future. This goal can be reached with co-operative efforts of web
developers, users, antivirus program vendors and browser manufacturers.

References

1. Blom, A., de Koning Gans, G., Poll, E., de Ruiter, J., Verdult, R.: Designed to
fail: a USB-connected reader for online banking. In: Jøsang, A., Carlsson, B. (eds.)
NordSec 2012. LNCS, vol. 7617, pp. 1–16. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34210-3 1

2. DeKoven, L.F., Savage, S., Voelker, G.M., Leontiadis, N.: Malicious browser exten-
sions at scale: bridging the observability gap between web site and browser. In: 10th
USENIX Workshop on Cyber Security Experimentation and Test (CSET 2017).
USENIX Association, Vancouver, BC (2017), https://www.usenix.org/conference/
cset17/workshop-program/presentation/dekoven

3. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: On the (in)security of
mobile two-factor authentication. In: Christin, N., Safavi-Naini, R. (eds.) Financial
Cryptography and Data Security, pp. 365–383. Springer, Berlin Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45472-5 24

https://doi.org/10.1007/978-3-642-34210-3_1
https://doi.org/10.1007/978-3-642-34210-3_1
https://www.usenix.org/conference/cset17/workshop-program/presentation/dekoven
https://www.usenix.org/conference/cset17/workshop-program/presentation/dekoven
https://doi.org/10.1007/978-3-662-45472-5_24


70 S. Rauti

4. Dougan, T., Curran, K.: Man in the browser attacks. Int. J. Ambient Comput.
Intell. (IJACI) 4(1), 29–39 (2012)

5. Entrust: Defeating Man-in-the-Browser Malware - How to prevent the latest mal-
ware attacks against consumer and corporate banking. White paper (2014)

6. Gezer, A., Warner, G., Wilson, C., Shrestha, P.: A flow-based approach for trickbot
banking trojan detection. Comput. Secur. 84, 179–192 (2019)

7. Google: Content scripts (2019). https://developer.chrome.com/extensions/
content scripts

8. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser
extensions. In: 2011 IEEE Symposium on Security and Privacy, pp. 115–130. IEEE
(2011)

9. Gühring, P.: Concepts against man-in-the-browser attacks. Technical report (2006)
10. Konoth, R.K., van der Veen, V., Bos, H.: How anywhere computing just killed

your phone-based two-factor authentication. In: Grossklags, J., Preneel, B. (eds.)
FC 2016. LNCS, vol. 9603, pp. 405–421. Springer, Heidelberg (2017). https://doi.
org/10.1007/978-3-662-54970-4 24

11. Liu, L., Zhang, X., Yan, G., Chen, S., et al.: Chrome extensions: threat analysis
and countermeasures. In: NDSS (2012)

12. Marinho, R.: “Catch-All” Google Chrome Malicious Extension Steals All
Posted Data (2017). https://morphuslabs.com/catch-all-google-chrome-malicious-
extension-steals-all-posted-data-f2472e272101

13. Marouf, S., Shehab, M.: Towards improving browser extension permission man-
agement and user awareness. In: 8th International Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom), pp.
695–702. IEEE (2012)

14. Migdal, D., Johansen, C., Jøsang, A.: DEMO: OffPAD - offline personal authenti-
cating device with applications in hospitals and e-banking. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security CCS
2016, pp. 1847–1849. ACM, New York, NY, USA (2016)

15. OWASP: Man-in-the-browser attack (2019). https://www.owasp.org/index.php/
Man-in-the-browser attack

16. Protalinski, E.: Google updates Chrome Web Store review process and sets new
extension code requirements (2018). https://venturebeat.com/2018/06/12/google-
disables-inline-installation-for-chrome-extensions/

17. Rauti, S., Leppänen, V.: Man-in-the-browser attacks in modern web browsers. In:
Emerging Trends in ICT Security, pp. 469–480. Elsevier (2014)

18. Rautila, M., Suomalainen, J.: Secure inspection of web transactions. Int. J. Internet
Technol. Secur. Trans. 4(4), 253–271 (2012)

19. Ronchi, C., Zakhidov, S.: Hardened client platforms for secure internet banking.
In: Pohlmann, N., Reimer, H., Schneider, W. (eds.) ISSE 2008 Securing Electronic
Business Processes. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
8348-9283-6 39

20. St̊ahlberg, M.: The trojan money spinner. In: Virus Bulletin Conference, vol. 4
(2007)

21. Toreini, E., Shahandashti, S.F., Mehrnezhad, M., Hao, F.: Domtegrity: ensuring
web page integrity against malicious browser extensions. Int. J. Inf. Secur. 1–14
(2019)

22. Utakrit, N.: Review of browser extensions, a man-in-the-browser phishing tech-
niques targeting bank customers (2009)

https://developer.chrome.com/extensions/content_scripts
https://developer.chrome.com/extensions/content_scripts
https://doi.org/10.1007/978-3-662-54970-4_24
https://doi.org/10.1007/978-3-662-54970-4_24
https://morphuslabs.com/catch-all-google-chrome-malicious-extension-steals-all-posted-data-f2472e272101
https://morphuslabs.com/catch-all-google-chrome-malicious-extension-steals-all-posted-data-f2472e272101
https://www.owasp.org/index.php/Man-in-the-browser_attack
https://www.owasp.org/index.php/Man-in-the-browser_attack
https://venturebeat.com/2018/06/12/google-disables-inline-installation-for-chrome-extensions/
https://venturebeat.com/2018/06/12/google-disables-inline-installation-for-chrome-extensions/
https://doi.org/10.1007/978-3-8348-9283-6_39
https://doi.org/10.1007/978-3-8348-9283-6_39


Man-in-the-browser Attack 71

23. Wang, L., Xiang, J., Jing, J., Zhang, L.: Towards fine-grained access control on
browser extensions. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012.
LNCS, vol. 7232, pp. 158–169. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29101-2 11

24. Zhang, P., He, Y., Chow, K.: Fraud track on secure electronic check system. Int.
J. Digit. Crime Forensics 10(2), 137–144 (2018)

https://doi.org/10.1007/978-3-642-29101-2_11
https://doi.org/10.1007/978-3-642-29101-2_11

	Man-in-the-browser Attack: A Case Study on Malicious Browser Extensions
	1 Introduction
	2 The Attack
	3 Implementation
	4 Experiment
	5 Discussion and Countermeasures
	6 Conclusion
	References




