
Malware Detection in Android
Applications Using Integrated Static

Features

A. S. Ajeena Beegom(B) and Gayatri Ashok

Department of Computer Science and Engineering,
College of Engineering Trivandrum, Thiruvananathapuram, Kerala, India

ajeena@cet.ac.in, gayu.lalitha@gmail.com

Abstract. Android operating systems based mobile phones are com-
mon in nowadays due to its ease of use and openness. Hundreds of
Android based mobile applications are uploaded in the internet every
day, which can be benign or malicious. The increase in the growth of
malicious Android applications is alarming. Hence advanced solutions
for the detection of malware is needed. In this paper, a novel malware
detection framework is proposed that uses integrated static features and
Support Vector Machine (SVM) classifier. The static features considered
include permissions, API calls and opcodes. Out of these features, most
significant ones are selected using Pearson correlation coefficient and N-
grams. Each of these features are then integrated and fed to a classifier.
The experimental evaluation of the proposed method and comparison
with existing methods shows that the proposed framework is better.

Keywords: Android · Malware detection · Classification · Static
features

1 Introduction

Android based devices have become famous in this digital era spanning over
millions of users. This makes it the major target of attack through malicious
application programs known as malware. The malware available in the market
are Botnets, Rootkits, SMS Trojans, Spyware, Installer, Ransomware, Trojans,
etc.

Botnet is a collection of devices known as bots that are connected through
internet. Attacks such as distributed denial of service (DDoS) is performed by
Botnets. Rootkit is a group of computer software structured to enforce access
to a computer system that is restricted otherwise. SMS Trojans send SMS mes-
sages stealthily to premium numbers and without the user consent. Spyware is
a software which is capable of gathering information regarding a person with-
out their consent and communicate those information to another entity without
the consumer knowing it. Ransomware is a malicious software that demands an
amount as ransom for access to user data or it threatens to either publish his
c© Springer Nature Singapore Pte Ltd. 2020
S. M. Thampi et al. (Eds.): SSCC 2019, CCIS 1208, pp. 1–10, 2020.
https://doi.org/10.1007/978-981-15-4825-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4825-3_1&domain=pdf
https://doi.org/10.1007/978-981-15-4825-3_1


2 A. S. Ajeena Beegom and G. Ashok

data or block his data if ransom is not paid. Trojans are capable of modifying
or deleting data from the device without the user consent infecting personal
computers when the device is connected via USB port.

Figure 1 shows the top 10 malware sent out by the MS-ISAC Security Oper-
ations Center (SOC) (https://www.cisecurity.org/ms-isac/) showing their per-
centage shares in January 2018. Each of them belong to any one of the malwares
described above. This has motivated us to investigate more on the topic of mal-
ware detection techniques for Android applications. In this work, permissions,
API calls and source code are analyzed and Android applications are classified
as benign or malicious using machine learning techniques.

Fig. 1. Malware Seen in January 2018 (https://www.cisecurity.org/ms-isac/)

2 Related Works

Among the static-based approaches for malware detection using permissions, the
technique used by Ju [1] and Pehlivan et al. [2] are simple, but corresponds to
a bulk feature set that is difficult to process. Wang et al. [3] use three different
ranking techniques for identifying the risk-induced permissions from feature set
to reduce processing time. Li et al. [4] propose a three-step procedure to iden-
tify significant permissions. The steps include permission ranking with negative
rate, support based permission ranking and permission mining with association
rules. A classifier is then used to classify the application as malicious or benign.
Aung et al. [5] suggest a three steps procedure consisting of feature selection,
K-means clustering model generation and classification. Kang et al. [6] uses cre-
ators information along with permissions, API sequences and system commands
for malware detection and classification. SVM based classification is used by Li
et al. [7] that uses risky permissions and vulnerable API calls. Machine learning
based approaches and multiple classifiers are employed by Milosevic et al. [8] for
static analysis.

https://www.cisecurity.org/ms-isac/
https://www.cisecurity.org/ms-isac/


Malware Detection Using Static Features 3

DroidAPIMiner [9] considers the critical API’s capable of distinguishing
between malicious and benign applications. Another API based analysis tool
is DroidAnalyzer [10] for applications where it decompresses the apk files and
parses through the assembly codes to come up with keywords and risky API’s
related to abnormal behavior by assigning suspicion level to each application.
Since it uses MD5 hash values in the database, overhead of maintaining a bulky
database is avoided, but it is unable to detect code obfuscation. Atici et al. [11]
proposed a static feature based technique using control flow graphs. This method
is efficient for malware using obfuscation techniques, but it is weak against zero-
day attacks. Zhu et al. [12] have proposed a complex method based on deep
learning and static analysis that use APIs and the source code of Android appli-
cations. Obfuscation-resilient malware detection is proposed in [13].

3 Proposed Approach

The proposed system works in four different phases, namely disassembling, fea-
ture extraction, feature selection and classification. Three static features are
combined to give the maximum accuracy using appropriate selection techniques.
The proposed system architecture is shown in Fig. 2.

Fig. 2. Proposed framework using integrated static features

3.1 Disassembling

Android Applications contain many prominent files and folders, namely, META-
INF, lib/, res/, Android Manifest.xml, classes.dex and resources.arsc. Among



4 A. S. Ajeena Beegom and G. Ashok

these, the manifest.xml and classes.dex has the permissions and API calls used
by the application respectively. To classify an application as malicious or benign,
the Android application package (the apk file) needs to be disassembled. This is
done using tools such as apktol, dex2jar, jdgui etc. Features such as permissions
and API calls are extracted from these which is used for building the feature set.

3.2 Feature Extraction

Permissions: Permissions are the basic access rights given to an Android appli-
cation that helps to control or enforce security against the misuse of sensitive
information of users. These permissions can be extracted from the Android mani-
fest file from the Android package. Among the permissions considered, significant
permissions can be extracted using various techniques. Python libraries are used
to extract permissions from the manifest file and to eliminate duplicates.

API Calls: These are a set of procedures and protocols for building an Android
application. This information is extracted from the source code and considered as
one of the key features. Many malware detection systems are control flow graph
(CFG) based or signature-based which uses APIs as features. CFGs are used to
understand the flow of control between the calls in order to study behavioral
patterns and to detect any suspicious activity. The signature-based approach
can also be implemented which searches for API’s within the bytecode against
a list of critical API’s, suspicious keywords or a combination of both.

Androguard is an open source tool that can be used to manipulate the apk
files to extract various information. Analyze APK option from Androguard is
used to extract the calls from the external classes.

Dalvik Bytecode: An Android application package or an apk file is a zip file which
is a set of many other files, namely the manifest file, dex or Dalvik executables
and resource files. The bytecode interpreted by the Dalvik Virtual Machine is
called DEX code (Dalvik EXecutable code). The DEX code can be obtained by
converting Java bytecode using the dex tool. Human-readable Dalvik bytecode
are contained within methods.

3.3 Feature Selection

Pearson Correlation Coefficient: A row vector is constructed for each applica-
tion corresponding to the permissions and API calls that the application uses.
Therefore, a matrix is created for the considered applications appending them
with their corresponding class variables as a final column. The class variable
signifies to which class the application falls to. A value of 1 is given for a benign
class and 0 is given for a malicious class. The pre-processing begins by perform-
ing ranking over this constructed matrix using Pearson correlation coefficient
[1]. The permission or API variable obtained after disassembling is denoted by
X, which is the column vectors of the constructed matrix and the class variable
is denoted by C. Column vectors can have a value of 1 which specifies that the



Malware Detection Using Static Features 5

corresponding permission is used or 0 specifies that it is not used. The equation
(1) can be used to compute the relevance of these variables, using covariance
and variance over given data.

R(X,C) =
cov(X,C)

√
var(X)var(C)

(1)

where cov represents the covariance between two sets of data and var represents
the variance over a set of data. Since our case deals with binary classes and
Boolean variables, equation (1) is changed to equation (2).

R(X,C) =
∑N

n=1(Xn − X) ∗ (Cn − C)
√∑N

n=1(Xn − X)2
∑N

n=1(Cn − C)2
(2)

Table 1. The 10 most risky permissions and API calls obtained

Rank Score Permission Score API Calls

1 0.422 READ EXTERNAL STORAGE 0.432 abortBroadcast()

2 0.385 RECIEVE SMS 0.426 chmod()

3 0.380 BIND GET INSTALL PACKAGE 0.401 startService()

4 0.204 BLUETOOTH 0.394 writeTextMessage()

5 0.179 GET PACKAGE SIZE 0.382 getrunningTask()

6 0.166 WAKE LOCK 0.343 sendTextMessage()

7 0.164 CSD MESSAGE 0.302 setupWindow()

8 0.162 PACKAGE USAGE STATS 0.278 setInputstream()

9 0.160 INSTALL SHORTCUT 0.256 startActivity()

10 0.159 EXPAND STATUS BAR 0.224 setVisibility()

The average of all sample values of X is denoted by X, Xn denotes the
total number of samples considered and n can have a value ranging from 1 to N .
R(X,C) has a value in the range [−1,1], and if it holds a value 0 then it indicates
that X and C are independent, whereas a value of 1 indicates that there is a
strong positive correlation between X and C and a value of −1 indicates a
strong negative correlation between the variables. In this work we assumed that
R(X,C) = 1 means that the permission request of X makes applications highly
risky whereas R(X,C) = −1 means that the permission request of X makes
applications less risky. This ranking method is used to consider only the top
k features for classification avoiding unnecessary processing. Table 1 shows the



6 A. S. Ajeena Beegom and G. Ashok

scores (R(X,C) value) of the top ten ranked permissions and API calls obtained
on our evaluation. Pearson correlation coefficient is used for feature selection
over the extracted permission and API vectors.

N-gram: N-gram is a continuous sequence of N items which is extracted from a
text sample or a piece of speech. The output of the N-gram opcode extraction
is a vector of unique N-gram opcodes from all the classes of the application
containing the frequency of each unique N-gram opcode. The opcode sequence
generation is shown in Fig. 3.

Fig. 3. N-gram opcode generation

An Android application package or apk file is a zip file which is a set of many
other files, namely, the manifest file, dex or Dalvik Executable and resource files.
Disassembling of dex files is done by a process called baksmaling. Set of smali
files is extracted from the dex files and each class is represented using a smali file
and all the methods are contained within the class. Using N-gram as the feature
selection technique a N-gram vector is generated.

3.4 Classification

As shown in Fig. 2, the combined vector of permissions and API calls is inte-
grated with the N-gram vector to give the integrated vector which is then fed to
the classifier. The classifier then classifies the test data samples into benign or
malicious. Support Vector Machines (SVM), Random Forest or Decision Trees
can be used for classification purpose. Depending on the dataset, a cross fold
validation is applied for obtaining the training and the test data sets and a
corresponding classifier that yields the best results can be selected.

4 Experimental Setup and Evaluation

The analysis is conducted on 500 malicious and 500 benign apk samples collected
from Virus share and Google Play Store respectively. The environment is set up
on a laptop that runs on Ubuntu 16.04 and the analysis was conducted using



Malware Detection Using Static Features 7

Python 3.6. Permissions are extracted using the aapt dump command provided
by Python which writes these into text files which is further used for classifica-
tion. Ranking of permissions are done using Pearson Correlation Coefficient and
the top 220 permissions from the extracted 450 are considered for classification.
To identify the best classifier, the top 220 permissions identified by the ranking
method using Pearson Correlation Coefficient are fed to SVM classifier, KNN
classifier and Random Forest classifier by varying the number of top permis-
sions. Figure 4 shows the variation in accuracy levels by each of these classifiers
according to the change in the number of top-ranked permissions as features. As
seen in this figure, the SVM based classifier gives better results than the other
two classifiers for any number of permissions as features.

Fig. 4. Classification accuracy versus number of permissions

Androguard is used to extract API calls from the apk files and permissions
are extracted using Python tools. Baksmaling is executed in order to obtain
the N-gram sequences from the sample data. Individually these features are
again fed to SVM classifier and Random Forest classifier and the results are
analyzed. Table 2 shows the classification results of individual as well as the
integrated approach using both SVM and Random Forest classifiers which yield
the maximum accuracy using cross validation. The total number of permissions
taken for study include 220 with the number of API calls as 460 and the N-grams
as 400. The proposed framework achieves a precision of 0.91 and a recall of 0.90
with SVM classifier.



8 A. S. Ajeena Beegom and G. Ashok

Table 2. Classification results

Classification accuracy

Features SVM Random forest

Using API calls alone 90% 83%

Using permissions alone 93% 84%

Using Dalvik bytecodes Alone 90% 84%

Integrated static approach 96% 84%

As the SVM based classifier gives better results than Random Forest based
classifier, the proposed integrated static approach is again analyzed experimen-
tally. The true positive rate (TPR) is a quality measure that is used in machine
learning to measure the proportion of actual positives that are correctly identi-
fied. The variation of TPR on malware detection with the percentage of features
taken for classification using SVM classifier is shown in Fig. 5.

Fig. 5. TPR versus percentage of features

Table 3 shows the comparison of the proposed SVM based integrated static
approach with existing systems. SigPID [14] is an Android malware detection
system that applies a ranking technique over permissions and does a multi-level
pruning process to extract only the significant ones that attains an accuracy
of 91%. There are other systems that use sensitive APIs as features [15] which
secures an accuracy percentage of 92%. The comparison is also done for existing
SVM based systems that uses incremental SVM for classification [16] that has
an accuracy of 90.5% whereas the proposed system has an accuracy of 96%.

These studies shows that the proposed framework of integrated static features
using SVM classifier for the detection of Android applications as malicious or
benign is better than the existing algorithms.



Malware Detection Using Static Features 9

Table 3. Comparison with existing systems

System Accuracy

Sigpid [4] 91.97%

Detection based on sensitive APIs [15] 92%

Detection based on multi-modal features [17] 94%

Detection based on incremental SVM [16] 90.5%

Proposed integrated system using SVM classifier 96%

5 Conclusion and Future Work

Different malware families and their attacks on the current scenario are dis-
cussed. To overcome these attacks, an integrated static approach for Android
malware detection is proposed. The approach uses various static features in a
way to yield the maximum accuracy. From the experimental evaluation and anal-
ysis, it is evident that the support vector machine is the best classifier to work
with the sample data chosen. The integrated approach attains the maximum
accuracy in comparison to the individual static-based methods yielding an accu-
racy of 96% for the test data. To continue with the work, more dynamic features
can be added to enhance the classification efficiency.

References

1. Ju, X.: Android malware detection through permission and package. In: Proceed-
ings of International Conference on Wavelet Analysis and Pattern Recognition, vol.
1, p. 1. IEEE (2014)

2. Pehlivan, U., Baltaci, N., Acartürk, C., Baykal, N.: The analysis of feature selec-
tion methods and classification algorithms in permission based android malware
detection. In: Proceedings of IEEE Symposium on Computational Intelligence in
Cyber Security (CICS), pp. 1–8 (2014)

3. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-
induced risk in android applications for malicious application detection. IEEE
Trans. Inf. Forensics Secur. 9(11), 1869–1882 (2014)

4. Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., Ye, H.: Significant permission identifi-
cation for machine learning based android malware detection. IEEE Trans. Industr.
Inf. 14(7), 3216–3225 (2018)

5. Aung, Z., Zaw, W.: Permission based android malware detection. Int. J. Sci. Tech-
nol. Res. 2(3), 228–234 (2013)

6. Kang, H., Jang, J., Mohaisen, A., Kim, H.K.: Detecting and classifying android
malware using static analysis along with creator information. Int. J. Distrib. Sens.
Netw. 11(6), 479174 (2015)

7. Li, W., Ge, J., Dai, G.: Detecting malware for android platform: an SVM-based
approach. In: Proceedings of 2nd IEEE International Conference on Cyber Security
and Cloud Computing, pp. 464–469 (2015)

8. Milosevic, N., Dehghantanha, A., Choo, K.R.: Machine learning aided android
malware classification. Comput. Electr. Eng. 61, 266–274 (2017)



10 A. S. Ajeena Beegom and G. Ashok

9. Aafer, Y., Du, W., Yin, H.: DroidAPIMiner: mining API-Level features for robust
malware detection in android. In: Zia, T., Zomaya, A., Varadharajan, V., Mao, M.
(eds.) SecureComm 2013. LNICST, vol. 127, pp. 86–103. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-04283-1 6

10. Seo, S.H., Gupta, A., Sallam, A.M., Bertino, E., Yim, K.: Detecting mobile malware
threats to homeland security through static analysis. J. Netw. Comput. Appl. 38,
43–53 (2014)

11. Atici, M.A., Sagiroglu, S., Dogru, I.A.: Android malware analysis approach based
on control flow graphs and machine learning algorithms. In: Proceedings of 4th
International Symposium on Digital Forensics and security (ISDFS), pp. 26–31.
IEEE (2016)

12. Zhu, R., Li, C., Niu, D., Zhang, H., Ki-nawi, H.: Android Malware Detection Using
Large-scale Network Representation Learning, p. 1. Cornell University (2018)

13. Suarez-Tangil, G., Dash, D.K., Ahmadi, M., Kinder, J., Giacinto, G., Cavallaro,
L.: DroidSieve: fast and accurate classification of obfuscated android malware. In:
Proceedings of Seventh ACM on Conference on Data and Application Security and
Privacy, pp. 309–320 (2017)

14. Sun, L., Li, Z., Yan, Q., Srisa-an, W., Pan, Y.: SigPID: significant permission
identification for android malware detection. In: Proceedings of 11th International
Conference on Malicious and Unwanted Software (MALWARE), pp. 1–8. IEEE
(2016)

15. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive,
and scalable android malware detection through online learning. IEEE Trans.
Emerg. Top. Comput. Intell. 1(3), 157–1575 (2017)

16. Li, Y., Ma, Y., Chen, M., Dai, Z.: A detecting method for malicious mobile appli-
cation based on incremental SVM. In: Proceedings of 3rd IEEE International Con-
ference on Computer and Communications (ICCC), pp. 1246–1250. IEEE (2017)

17. Ban, T., Takahashi, T., Guo, S., Inoue, D., Nakao, K.: Integration of multi-modal
features for android malware detection using linear SVM. In: Proceedings of 11th
Asia Joint Conference on Information Security (AsiaJCIS), pp. 141–146. IEEE
(2016)

https://doi.org/10.1007/978-3-319-04283-1_6

	Malware Detection in Android Applications Using Integrated Static Features
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 Disassembling
	3.2 Feature Extraction
	3.3 Feature Selection
	3.4 Classification

	4 Experimental Setup and Evaluation
	5 Conclusion and Future Work
	References




