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Role of Metagenomics in Discovery
of Industrially Important Cellulase
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Abstract

Lignocellulose is considered as one of the most copious biopolymer accessible on
this planet. Lignocellulosic hydrolysis which yields sugar and phenolics is a must
for fermentation processes and pilot scale production of value added products.
Cellulases are the class of enzymes which are mainly produced by fungi and
bacteria and help in cellulose hydrolysis by acting on the f-1,4 linkages of
cellulosic chains. The microbial cellulases have been found to be used in several
industries such as biofuel, food, brewing, textile and laundry. Recently, func-
tional metagenomics have been found to be an important strategy for the discov-
ery of cellulose genes. However, the efficiency of such techniques for enzyme
discovery from environmental metagenomes is not sufficient to meet the increas-
ing industrial demands. Scientific and industrial advancements, role of
metagenomics and future scenario related to the application of several cellulase
pertaining to different industries will be discussed in this chapter.
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Introduction

The genomic examination of a microbial population is called metagenomics which
was termed by Handelsman et al. (1998) with an idea of collective analysis of similar
but not identical genomes. The thought of exploring and investigating the ecological
microbiome has unlocked new prospects with respect to utilization of uncultivated
microbial populations. Metagenomics is a comprehensive approach which has
provided a path breaking process for recovery of unculturable microbes. One of
the most thriving fields in biotechnology is the application of microorganisms for the
production of value added products such as antibiotics, enzymes etc. Also, there is a
huge requirement for large scale production of enzymes in industries for commercial
purpose.

A wider range of biochemical properties and higher growth rate attributed to
microorganisms, allow them to become potential candidates to be employed as
industrial enzymes (Adrio and Demain 2014). One of the most important commer-
cial applications of metagenomics includes innovations related to antibiotics, biore-
mediation, and detection of biocatalysts (Gilbert and Dupont 2011). Majority of the
industrial catalysts are produced in European Union (60%), whereas the rest of the
enzymes production is attributed by USA and oriental nations. However, south east
Asian countries such as India, China, Korea are emerging as enzyme production
hubs with efficient research and development sector in global catalyst market (World
Enzymes 2011).

Cellulase Classification

Cellulose has compact polymeric arrangement which remain enclosed in a highly
complex matrix of hemicellulose and pectin (Demain et al. 2005). Majority of
enzymes have been observed to take part in cellulosic degradation through microbial
genome sequencing. Microbial enzymes are found in huge variety possessing
diversified properties, yields, structure and functions, thus differing catalytic
properties. Diversified forms of enzyme may be produced as a result of horizontal
gene transfer from microbes residing in similar conditions and ecological niche
(Jorgensen 2007).

Cellulose degrading enzymes widely known as cellulases are capable of
hydrolyzing the cellulosic biomass by attacking the $-1, 4 glycosidic bonds of the
polymers (Juturu and Wu 2014). The degradation of cellulosic biomass requires
three distinct factors related to extracellular cellulase enzyme system (Acharya and
Chaudhury 2012). The components in the enzyme system include -1, 4 glucosidase,
Exo-1, 4-f-glucanase and Endo-1, 4-#-glucanase. The endo-1, 4-f-glucanase also
known as carboxymethyl cellulase catalyzes the breakdown of cellulose chain
polymers into shorter ones, whereas exo-1, 4-f-glucanase widely known as
cellobiohydrolase acts on the non-reducing end of the polymeric chain and -1,
4 glucosidase disrupts the glucosidic bond of cellodextrins and cellobiose to release
free glucose molecules. Endoglucanase attacks at the random sites of the cellulose
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polymeric chain, hence producing varying lengths of oligosaccharides (Sharada
et al. 2014). Exoglucanase however, attacks on mostly reducing ends of cellulose
polymeric chain producing glucose and cellobiose as key products.

Results reported by Schallmey and coworkers suggest identification of
polyhydroxyalkanoate synthase encoding genes (Schallmey et al. 2011). The
sequence analysis of the cloned samples revealed homology to the sequences
(~61-67%), however significant difference in functions from the PHA (phaC and
phaA) encoding genes. Similar study by Cheema et al. (2012) revealed nine novel
PHA synthase genes in a fosmid metagenomic library from oil contaminated soil.

One of the fosmid clones from the metagenomic library showed 76% sequence
similarity with Alcaligenes sp. synthase. Enzymes like cellulases, xylanases,
proteases, amylases and many more have been unclocked from genetically untapped
resources via metagenomics.

The present review highlights the latest development in the field of metagenomics
related to industrial biotechnology with respect to cellulase.

Role of Metagenomics in Harnessing Cellulases

Cellulose is considered to be one of the most obtained biopolymer on earth. The
breakdown of cellulose is catalyzed by cellulose enzyme, hence finding its utiliza-
tion in industries related to detergent, paper recycling, and juice extraction. Cellulase
stands as one of the largest enzymes w.r.t economic turnover. Based on the oxygen
availability to the microorganisms, cellulase enzyme can be classified into
complexed and non-complexed forms (Lynd et al. 2002). The complexed forms of
these enzymes mainly consist of cellulosome which is mostly found in anaerobic
cellulose degraders. The cellulosomes are firmly attached to the cell wall and its
flexible nature allows it to bind cellulose (Schwarz 2001). However, in
non-complexed cellulase system, the enzyme subunits are flexible and can be
collected from the supernatant of the aerobic microbial culture (Rapp and Beerman
1991). Presently, non-complexed cellulase enzyme systems are widely utilized for
most of the industrial applications (Acharya and Chaudhary 2012). One of the most
important industrial producers of cellulase is Hypocrea jecorina which hydrolyzes
plant biomass to sugars (Kubicek et al. 2009). Such microbes can thrive the
unfavorable conditions and produce stable enzyme which potentially help in
catalyzing bioconversion reactions (Knapp 1985). Reports from Kanafusa-Shinkai
et al. (2013) suggest that the cellulase enzyme system of Caldicelluloseruptor bescil
are 2 X active than Hypocrea jecorina.

The technique metagenomics has been employed to discover new cellulose from
different environments such as soil samples from cold zones, compost and rumen by
preparing metagenomic library clones (Yeh et al. 2013; Lee et al. 2006; Gong et al.
2013; Table 2). These enzymes have achieved special mention in industrial sector as
they have potential capacity to convert biomass to renewable energy. Approximately
27.755 potential genes having significant match to catalytic domain were obtained
by Hess et al. (2011). The study suggested presence of cellulolytic genes in large
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numbers which can be utilized to prepare genome drafts of uncultivated microor-
ganism involved in biomass hydrolysis. In a study by Alvarez et al. (2013), identified
and characterized novel cellulase (CelEl), which showed maximum catalytic
properties at pH 7.0 and 50 °C and significant activity in alkaline conditions. The
ruminal metagenomic library revealed 61 clones expressing cellulase activities were
isolated (Duan et al. 2009). The amino acid sequences matched via SMART
bioinformatics tool revealed 14 cellulase genes with signal peptide and glycosyl
hydrolase family 5 catalytic domain. However, for genes DM1-1 and M8-2 signal
peptides were not available (Duan et al. 2009).

In another study by Voget et al. (2006), the biochemical characterization of
cellulase (Cel5 A, endoglucanase) from soil sample. The study reported presence
of novel cellulase Cel5SA extracted from soil samples through biochemcial identifi-
cation. The obtained sequence of 363 amino acid had functional similarity of 77%
with cellulase activity of Cellvibrio mixtus. The CelSA (1092 bp ORF) when cloned
in E. coli and the related protein (42.1 kDa) was purified employing chromatography
which was found to be active against cellulose contents with —1,4 linkages. The
enzyme showed optimum activity at pH 6.5 in an activity range of pH 5.5-9.0. The
unusual properties of the enzyme cellulase allow it to be potential candidate in
industrial sector for bioprocess and its added values. In a recent study by Wong
et al. (2017), metagenomic analysis of gut microbiome of Castor canadensis and
Alces americanus revealed presence of cellulose degrading microbes having phylo-
genetic origins derived from Firmicutes, Bcateroidetes, and Proteobacteria.
Sequences belonging to class Clostridia and Bacteroidia contributed the highest
hits (23-52%) for the carbohydrate active enzymes across both the metagenomes.

Study by Ransom-Jones et al. (2017) investigated the lignocellulose-degrading
microbial diversity from landfill site. Metagenomic analysis suggested the domi-
nance of Firmicutes, Bacteroidetes, Fibrobacteres and Spirochaetes. Functional
analysis revealed presence of ~3385-4223 CAZymes for Firmicutes and
Bacteroidetes respectively. Six distinct CAZyme families were obtained via func-
tional annotation for Spirochaetes. Recent analytical investigation made by Wilhelm
et al. (2019) reported the microbial community in forest soil through quantitative
stable isotope probing and metagenomic genome assembling analysis across North
America. The active cellulolytic populations observed were Deltaproteobacteria,
Gammaproteobacteria, Planctomyces, and Ascomycota. Cellulose degrading
microbes observed in the functional annotation were Caulobacter, Janthinobacter,
and Salinibacterium.

Study by Kanokratana et al. (2015) revealed various types of glycosyl hydrolase
from sugarcane bagasse collection site through fosmid metagnomic library prepara-
tion. Bioinformatic analysis of the xylan positive fosmids suggested presence of
endo- f—1,4-xylanase of GH11 family. Additionally, two genes (cel9 and xynl11)
were observed to be expressed in E. coli. The enzymes expressed were found to be
active at thermophilic temperatures (75-80 °C) and acidic pH.

Reports from recent study by Wang et al. (2016) suggested involvement of
Actinobacteria in lignocellulosic decomposition from compost. Metagenomic anal-
ysis reported dominance of Actinobacteria, however, presence of Proteobacteria,
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Table 1 Recent metagenomic reports related to novel cellulase function

S.no. | Study type Findings References
1 Metagenomics High forage microbial group showed improved Wang et al.
and higher cellulase activity than that of high (2018)

concentrate group. High forage group included
the presence of microbial family
Succinivibrionaceae

2 Metagenomics Metagenomic analysis revealed difference in De Vries
microbial population in conventional and reduced | et al. (2015)
tillage treated soil samples. Predominance of
Proteobacteria and Actinobacteria were observed
for cellulasic activities

3 Metagenomics Microbial consortia obtained from wheat straw, Jiménez
and switchgrass, and corn stover suggested et al. (2016).
metasecretomics predominance of glycosyl-hydrolases for
CAZyme functional analysis
4 Synthetic Characterization of ligno-cellulosic degrading Thornbury
metagenomics enzymes were accomplished utilizing porcupine | et al. (2019)

microbiome. Sequences with similarity to -
glucosidase, f-xylosidase, endo-1,4-f-xylanase

were found
5 Metagenomics Most active protein CelA10 was observed to be Pottkdmper
active at ionic liquid concentration of 30% et al. (2009)

Bacteroidetes, Firmicutes were also observed. Actinomycetes were observed to have
high CAZyme gene disribution (46.1%) which retained enzymes like #-glucosidase,
cellobiohydrolase, and ligninase genes (Table 1).

Application of Microbial Cellulases

Cellulosic breakdown occurs in both oxic and anoxic conditions. Various anaerobic
microbes as cellulosic degraders have been reported in several studies (Freier et al.
1988; Hamilton-Brehm et al. 2010; Kato et al. 2004; Table 2). The non-complexed
cellulose enzyme system subunits are reported from aerobic microbial degraders
such as, fungi and bacteria with special mention to fungal cellulases (Resch et al.
2013; Table 2).

Agriculture

Several fungal genus such as Trichoderma, Penicillium, Chaetomium have been
observed to act significant in agriculture by increasing crop production, fecilitating
plant growth and allowing enhanced seed germination (Phitsuwan et al. 2012).
Additionally, it has been reported that few fungal enzymes are potential candidate
for attacking the pathogenic strains. Enzymes such as B-1, 3-p-glucanase and
N-acetyl glucosaminidase have been reported to degrade the spore germination of
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Table 2 List of aerobic and anaerobic microorganisms related to lignocellulosic biodegradation

Substrate
S. no. | Microorganism specification used References
1 Fibrobacter spp., Clostridium cluster III and Municipal McDonald et al.
Clostridium cluster IV waste (2012)
Clostridium straminisolvens CSK1 Compost Kato et al. (2005)
3 Clostridium clariflavum Biocompost | Sizova et al.
(2011)
4 Butyrivibrio fibrisolvens, Fibrobacter Straw Zhang et al.
succinogenes, Ruminococcus flavefaciens (2017)
5 Mucilaginibacter 1.294, Pedobacter 048 and Soil Lépez-Mondéjar
Luteibacter L.214 et al. (2016)
6 Clostridium stercorarium Plant cell Zverlov and
wall Schwarz (2008)

B. cinerea (Howell 2003). Several microorganisms die due to scanty nutrient
available to them due to the presence of Trichoderma sp. (Waghunge et al. 2016).
Hence, nutrient competition to Trichoderma sp. is the most common phenomenon
responsible for pathogen death. This fungal candidate also helps to promote induced
resistance in host plant body by initiating certain chemical production. They promote
plant development by initiating an endophytic mode. Fungal cellulases also help in
restoring soil quality by degrading the lignocellulosic biomass inside the soil.

Food Processing

Cellulase has managed a strong position in food and feed industry. It is an integral
component of maceration unit utilized for extraction and processing of juice and
pulp for juice and puree productions (Rai et al. 2007). Cellulase helps in preventing
pigment oxidation by generating stable protein bound pigments (Table 3). Report
from Kuhad et al. (2011) suggest that cellulase with some more enzymes has been
utilized to enhance the taste of citrus fruits.

Study by Cinar (2005) indicated the combination of cellulase with other cell wall
degrading enzymes such as pectinase and hemicellulase are employed to improve
nutritional level of forages. Another study by Kung et al. (1997) suggested an
improved and enhanced digestion of animal fodder and feed in combination with
cellulase.

Brewery Industry

Preparation and production of ethanol is enhanced with the help of utilization of
cellulase to hydrolyze polymeric substances to simple sugars. Beer quality is depen-
dent on the enzyme activity during malting and subsequent fermentation phases.
Seed reserve hydrolysis by B-glucanase and other enzymes (A and B amylase and
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Table 3 Cellulase application in industrial sector

Industry Application Reference
Detergent Modify cellulosic microfibrils and help in enhancing the | Karmakar and Ray
color brightness and remove dirt (2011)
Waste Utilization of cellulosic waste from forests and farming | Milala et al. (2005)
management | fields
Paper and Combination of endoglucanase I and II alongwith Dienes et al. (2004)
pulp hemicellulase provides improves beatability of the paper
pulp

Animal feed | Cellulases with fodder supplement improve the pork Singh et al. (2007)
meat quality and weight gain in chicken and piglets

Others Improvement in olive oil production, carotenoid De Faveri et al.
synthesis (2008), Cinar (2005)

carboxypeptidase) influence better seed germination which in turn influences
malting (Bhat 2000). Though in practice, brewers employ low quality substrate
which has poor activity of endo-f-glucanase due to climatic variations. This allows
formation of non starch polysaccharide (up to 10% p-glucan), hence gel like
formation during brewing process resulting in low level wort filtration and poor
alcohol yield.

Textile Industry

Enzyme cellulase has been widely accepted in textile industry for its capability to
enhance softness and fabric quality. It has been been employed for biopolishing of
cotton fabrics and biostoning of denims to provide the new generation stonewash
appearances. The enzyme employed, hydrolyzes the fibre lumps from the fabric
surface and removes the dye attached to such protrusions, hence imparting the faded
look and development of color gradient to the denim (Arja 2007). This process is
called biostoning. Cellulase is widely known for its use in wet processing in textile
industry to enhance the appearance of cotton clothings. Cellulase has also been
utilized in preparation of detergents to improve the softness, and color appearnaces
of fabrics.

Conclusion

Metagenomics imparts a scope to explore the undiscovered microbial biodiversity
from a microbiome and utilize the untapped potential of the microbes to generate
value added products and processes. Recently, the industrial sector has also gained
economically by major innovations such as unlocking of novel enzyme functions
made via microbial metagenomics. Recent reports analyzing the sequences via
cloning of metagenomic inserts has resulted in isolation and identification of
untapped microbial communities for value added products such as significant
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fermentation processes and enzyme production. In spite of novel investigations and
reports from several studies, a lot remains to be understood about the cellulase
enzyme alongwith the microbial mechanisms involved. Metagenomic studies have
till date helped in identification of novel cellulolytic biocatalysts amongst other
enzyme varieties. However, a vast reserve of enzymes is yet to be characterized.
Furthermore, approaches like metatranscriptomic and stable isotope probing should
be employed for innovations of enzyme systems. Significant bioprocesses should be
developed so that the cellulosic wastes can be efficiently treated and used as cost-
effective carbon source.
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