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Microorganisms
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3.1 Introduction

Electrochemically active microorganisms capable of transferring electrons to/from
electrodes play essential roles in bioelectrochemical systems, such as microbial fuel
cells and microbial electrosynthesis (MES). Electrochemical and molecular biolog-
ical studies have demonstrated the detailed mechanisms of extracellular electron
transfer (EET) between microorganisms and electrodes. Extensive studies in the last
two decades revealed that various microorganisms can transfer electrons to/from
electrodes. Detailed mechanisms of electron transfer from microorganisms to elec-
trodes have been intensively studied on two model microorganisms, Geobacter
sulfurreducens and Shewanella oneidensis. These microorganisms are also capable
of receiving electrons from electrodes, and the mechanisms of electron uptake have
been also studied.

3.2 Extracellular Electron Transfer from Microorganisms
to Electrodes

In the bioelectrochemical systems, such as microbial fuel cells, electrons are trans-
ferred from electrochemically active microorganisms to the electrodes (Fig. 3.1a).
Electrons from cytoplasm are transferred across the cell membranes composed of
lipid bilayers via proteins possessing redox-active cofactors, such as c-type cyto-
chromes and iron-sulfur proteins and electrically conductive nanowires (Fig. 3.2).
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Electron acceptors outside the cells are reduced by primary three different mecha-
nisms, direct contact, electron conductive nanowires, and electron shuttles. The
electron transfer mechanisms from the cell surface to the electrode mentioned here
are not independently in typical cases but cooperatively, e.g., direct contact and
nanowires for G. sulfurreducens and direct contact, nanowires, and electron shuttles
for S. oneidensis (Fig. 3.3).

3.2.1 Direct Contact

In order to transfer electrons from inside the cell to an electrode outside the cell, the
electrons must be passed through cell membranes which have insulator property.
Electron carrier proteins, c-type cytochrome and/or iron-sulfur protein, localized
near the cell membrane play essential roles for electron transfer from the cells to the
outside in both well-studied microorganisms, G. sulfurreducens and S. oneidensis
(Fig. 3.3). NADH produced in the process of respiration produces quinol by
transferring electrons to quinone by NADH dehydrogenase. The electrons of
NADH are transferred from inner membrane proteins to the redox-active proteins
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in periplasm, which subsequently transfer electrons to also redox-active outer
membrane proteins.

In G. sulfurreducens, primary c-type cytochromes play essential roles in EET by
direct contact (Fig. 3.3a). Inner membrane cytochromes, ImcH and CbcL, play
important roles in transferring electrons to periplasm. EET via ImcH and CbcL is
proposed to be in a redox potential-dependent manner. CbcL and ImcH are required
for electron transfer to low (<�0.1 V [vs. SHE]) and high redox potential
(>+0.24 V [vs. SHE]) electrodes, respectively (Levar et al. 2014; Zacharoff et al.
2016).

In the periplasm, triheme c-type cytochromes (most abundant and well-studied
PpcA and its homologues PpcB, PpcC, PpcD, and PpcE) are thought to transfer
electrons to other redox-active proteins in the outer membrane (Fig. 3.3a) (Lloyd
et al. 2003). Among the well-studied outer membrane cytochromes, OmcB is an
essential outer membrane cytochrome in the EET from the cells to ferric iron oxide,
whereas the deletion of omcB gene showed no significant impact on current produc-
tion (Leang et al. 2003). Electron conduits composed of ExtABCD (ExtA, a peri-
plasmic c-type cytochrome; ExtB, an outer membrane integral protein with
transmembrane domains; ExtC and ExtD, outer membrane lipoprotein c-type cyto-
chromes) are proposed to be involved in electron transfer from periplasm to outer-
surface or outer-surface redox-active proteins (Otero et al. 2018). Another essential
protein for EET is an octaheme outer membrane cytochrome, OmcZ. OmcZ has a
wide redox range (�420 to �60 mV [versus standard hydrogen electrode] for
OmcZ) and specifically localized on the surface of the electrode (Inoue et al. 2010;
Inoue et al. 2011). It has been also suggested that the wide redox range and multiple
hemes contribute to the electron-storage capacity of the biofilms (Malvankar et al.
2012).
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In S. oneidensis, also c-type cytochromes play important roles in EET (Fig. 3.3b).
Electrons from intracellular quinol are transferred to c-type cytochrome CymA in the
intracellular membrane (Myers and Myers 2000). In the periplasm, Fcc3
(flavocytochrome c3) and STC (small tetraheme cytochrome c) are thought to
transfer electrons to the outer membrane complex composed of MtrA, MtrB, and
MtrC, in the outer membrane (Ross et al. 2007; Fonseca et al. 2012; McMillan et al.
2013). MtrF, a homologue of MtrC and OmcA, is also responsible for electron
transfer to the extracellular electron acceptor (Coursolle and Gralnick 2010). These
proteins, except for MtrB (integral outer membrane β-barrel protein), are also muti-
heme cytochromes. omcA gene-disrupted strain had less power generation capability
in microbial fuel cells, and mtrA, mtrB, and mtrC gene-disrupted strains and omcA
and mtrC double mutants almost lost power generation capabilities (Coursolle et al.
2010).

EET via direct contact by S. loihica (Newton et al. 2009), Aeromonas hydrophilia
(Pham et al. 2003), Rhodoferax ferrireducens (Chaudhuri and Lovley 2003), and
Desulfobulbus propionicus (Holmes et al. 2004) has been reported other than
G. sulfurreducens and S. oneidensis.

3.2.2 Electrically Conductive Nanowire

G. sulfurreducens and S. oneidensis are known to produce electrically conductive
nanowires. Microscopic and electrochemical analyses of pili produced by
G. sulfurreducens using atomic force microscope equipped with a conductive tip
revealed that the nanowire was electrically conductive (Reguera et al. 2005). Purified
nanowire had temperature-dependent electrical conductivity similar to metals
(Malvankar et al. 2011). G. sulfurreducens produces two kinds of electrically
conductive nanowires composed of PilA and OmcS.

Deletion mutant of a proposed pilin domain protein, pilA, could not reduce
insoluble Fe(III) oxide (Reguera et al. 2005), and, also, the pilA disruption showed
severe inhibition of current production (Reguera et al. 2006). A recent biochemical
study demonstrated that PilA was stabilized by electrostatic interaction with Spc
(short pilin chaperone) encoded by the gene immediately downstream of pilA (Liu
et al. 2019). Localization analysis by electron microscopy and immunogold labeling
suggests that OmcS is localized along the nanowires (Leang et al. 2010). A recent
study using cryoelectron microscopy of purified nanowire extracted from
G. sulfurreducens cells revealed that the nanowires were composed of a c-type
cytochrome OmcS (Filman et al. 2019; Wang et al. 2019). According to the three-
dimensional structure, the nanowire had 46.7–47.5 Å filament repeat, and each
subunit contained six hemes corresponding to the heme numbers of OmcS molecule.

S. oneidensis is also thought to produce electrically conductive nanowires (Gorby
et al. 2006). The nanowires produced by the OmcA-disrupted mutant and the MtrC-
disrupted mutant do not exhibit electrical conductivity, and these c-type cyto-
chromes contribute to the electrical conductivity of the nanowire. A recent study
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by electron cryotomography revealed that the nanowires were dynamic chains of
interconnected outer membrane vesicles (Subramanian et al. 2018). Synechocystis
and Pelotomaculum thermopropionicum also produced electrically conductive
nanowires other than iron-reducing bacteria (Gorby et al. 2006).

3.2.3 Electron Shuttle

Electron shuttle is a soluble electron mediator, also called as mediator. The electron
shuttles are reduced by receiving electrons from microorganisms and are oxidized by
transferring electrons to an extracellular electron acceptor located far from the cells
(Watanabe et al. 2009). Oxidized electron shuttles receive electrons again from the
microorganism and reduce the electron acceptors. This process is repeated to transfer
electrons between the microorganism and the electrode. There are known examples
where natural substances, such as humic acid and sulfur, are used for iron reduction
(Thygesen et al. 2009; Straub and Schink 2004). Some microorganisms can produce
electron shuttles, such as flavin (S. oneidensis [Marsili et al. 2008] and other
Shewanella species [Canstein et al. 2008]), riboflavin (Geothrix fermentans
[Mehta-Kolte and Bond 2012]), phenazine (Pseudomonas chlororaphis [Hernandez
et al. 2004], P. aeruginosa [Rabaey et al. 2005], Pseudomonas sp. [Pham et al.
2008]), quinone (S. putrefaciens [Newman and Kolter 2000], Lactococcus lactis
[Freguia et al. 2009]), and melanin (S. algae [Turick et al. 2002]), by themselves.
The advantage of electron transfer by the electronic shuttles is that they can transfer
electrons to the electrode even if the electrode is physically distant.

3.3 Extracellular Electron Transfer from Electrodes
to Microorganisms

In the microbial electrosynthesis (MES), also called electro-fermentation, electrons
are transferred from cathodes to electrochemically active microorganisms
(Fig. 3.1b). G. metallireducens and G. sulfurreducens were firstly reported to
convert nitrate to nitrite and fumarate to succinate, respectively, by directly
accepting electrons from cathodes (Gregory et al. 2004). The “microbial electron
uptake” has been observed in various microorganisms, such as Sporomusa ovata
(Nevin et al. 2010), Sporomusa sphaeroides, Sporomusa silvacetica, Clostridium
ljungdahlii, C. aceticum,Moorella thermoacetica (also known as C. thermoacetica)
(Nevin et al. 2011), G. lovleyi (Strycharz et al. 2008), Anaeromyxobacter
dehalogenans (Strycharz et al. 2010), Rhodopseudomonas palustris (Bose et al.
2014), Prosthecochloris aestaurii (Ha et al. 2017), Acidithiobacillus ferrooxidans
(Nakasono et al. 1997), and Methanobacterium palustre (Cheng et al. 2009),
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whereas very little is known about the molecular mechanisms of accepting electrons
from electrodes in these microorganisms.

The mechanisms of the electron uptake from electrodes in G. sulfurreducens
(Gregory et al. 2004; Dumas et al. 2008) and S. oneidensis (Ross et al. 2011) have
been studied as well as EET from microorganisms to electrodes. In a
G. sulfurreducens cell, PccH (GSU3274), a monoheme c-type cytochrome proposed
to be localized at periplasm, plays an important role in electron uptake process
(Strycharz et al. 2011). Deletion mutant of pccH did not accept electrons from
electrodes, whereas the deletion of c-type cytochromes required for EET, such as
OmcZ, OmcS, OmcB, and OmcE, did not show significant impact on electron
uptake. Biochemical analysis demonstrated that PccH has unusually low redox
potential (�24 mV versus standard hydrogen electrode) (Dantas et al. 2013). In
G. sulfurreducens, the predicted electron pathway from electrodes to the cells is
different from EET from cells to the electrodes. In contrast, in S. oneidensis,
electrons from electrodes were proposed to be transferred via Mtr/CymA pathway
by which electrons from cells are transferred to the electrodes (Ross et al. 2011;
Okamoto et al. 2014) (Fig. 3.4). In S. oneidensis, MtrDEF was suggested to
complement the function of MtrCAB significant partially, and riboflavin could be
used as an electron shuttle as well as EET from microorganisms to the electrodes.
There are only limited knowledge about the molecular mechanisms of microbial
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electrosynthesis, and, thus, it requires further investigations for practical applications
for producing various compounds.
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