
Chapter 2
Gut Microbiota and Health

Chunjiang Zhang, Amanpreet Kaur Virk, Israr Khan, and Haoran Qin

2.1 Gut Microbiota

2.1.1 Introduction

Microbiota is a sophisticated community of microorganisms comprising of bacteria,
viruses, protozoa, and fungi, dwelling in various zones of human body, for example,
mouth, respiratory framework, skin, gastroenteric tube, and vagina [1]. More than
70% of microbiota resides within the gastrointestinal (GI) tract in a mutually
beneficial association with its host, spreading continuously from gastric lumen to
colon/rectum, where it arrives at its most severe concentration.

The human gastrointestinal tract (GIT) constitutes the largest interfaces
(250–400 m2) among the host, ecological elements, and antigens within the human
body. Approximately, 60 tons of food runs through the human GIT in an average
lifespan, along with an abundance of environmental microorganisms that pose a
major threat to the integrity of gut [2]. Assortment of bacteria, eukarya, and archaea
occupying the GIT is named as “gut microbiota” and has co-developed with the host
to establish a complex, and mutually beneficial connection [3, 4]. The mammalian
GIT has higher and varied amount of microbes, best-known as intestinal microbiota.
Archaea, bacteria, protozoa, fungi, and viruses live together and associate with the
host, especially immune and epithelial cells [5]. The quantity of microorganisms
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living in GIT has been evaluated to surpass 1014 that include approximately 10 times
more bacterial cells than the quantity of human cells and more than 100 times the
quantity of genomic material (microbiome) as the human genome [3, 6]. Neverthe-
less, an amended estimate has recommended that the proportion of bacterial: human
cells is probably close to 1:1 [1]. Because of the immense quantity of bacterial cells
in the body, the host and microorganisms occupying it are often mentioned as a
“superorganism” [6, 7].

Microbiota provides numerous advantages for the host, by means of physiolog-
ical roles, for example, reinforcing the integrity of gut or forming the epithelium of
intestine [8], extracting energy [9], guarding from pathogens [10], and controlling
immunity of host [11]. Because of a modified microbial composition, known as
dysbiosis, there is possibility for the disruption of above-mentioned mechanisms.
With the development of progressively advanced methods to characterize sophisti-
cated biological systems, a function of the microbiota in an enormous number of
intestinal and extra-intestinal diseases has become consistently evident [12, 13]. This
chapter summarizes our present comprehension of the human GI microbiota com-
position and development, and its effect on host health and gut integrity.

2.1.2 Structure and Composition of the Human GI
Microbiota

An adult gut microbiota contains 10 to 100 trillion microbes, which is 10 times the
quantity of total somatic and germ cells of humans [14]. Gut microbiome contain
100- to 150-times more genes than human genome [15]. The gut microbiota has
co-developed with humans and has demonstrated significant consequences for
different host reactions. The modified composition of gut microbiota has been
connected to metabolic diseases, like obesity, diabetes, or non-alcoholic fatty liver
diseases. Such studies have shown the significance of gut in modulating metabolic
disorders and host metabolism.

Intestinal microbiota comprises autochthonous individuals occupying the gut
mucosa, as well as transitory microbiota that is component of the food consumed.
Gut microbiota has been assessed to include more than 100 distinct species in every
organism. Around 1500 unique species were described as component of the human
gut microbiota. Intestinal microbiota is established by a total of 1013–1014 microbial
cells and is generally expected to represent ten times more cells than eukaryotic cells
of humans. Large intestine is the site of the body with highest abundance of
microbes, with 1011–1012 cells/g of intestinal matter [16]. Bacteria rule the gut
microbiota, which is mainly portrayed by Firmicutes and Bacteroidetes,
Actinobacteria, Fusobacteria, Proteobacteria, Synergistetes, and Verrucomicrobia
[17]. Fungi and archaea account for up to 1% of the human gut microbiota species
[18]. Among the major typical genera of the above-mentioned phyla, Bacteroides
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sp., Prevotella sp., Blautia sp., Clostridium sp., Ruminococcus sp.,
Faecalibacterium sp., and Bifidobacterium sp., (in breast-fed infants) are important
because of their high abundance [15, 19].

It has been recently suggested that all of the inter-individual variation of intestinal
microbiota could be categorized into enterotypes, characterized as a system of
co-abundant microbial communities controlled by the salient existence of one of
these three genera: Bacteroides, Ruminococcus, and Prevotella [20]. Some authors
found enterotypes to be a very simplified theory, thus, decreasing the complexity of
intestinal microbiota into three groups [21]. For example, only two of these
enterotypes [22] have been identified by some authors, as two perpetual clusters of
microbiota configurations isolated by a gradient of bacterial species with varied
abundances [23]. Classifying the intestinal microbiota into enterotypes or other
classes, having strong connections with dietary patterns, could be very useful in
customizing the cure of diseases continuing with microbial dysbiosis [24]. This will
necessitate the advancement of mathematical models capable of consolidate the
entire complexity, and subsequently more experimental data will be required [25].

Evolution of next-generation DNA sequencing technologies over the last 10 years
has permitted a profound comprehension of microbial composition of species living
in the gut, upper airways of the respiratory tract, vagina, skin, or mouth. Research
was conducted to study about the improvement of diversity of gut microbiota
because of the advent of culture-independent methodologies, for example,
low-cost and high-throughput sequencing strategies. Focusing on 16S ribosomal
RNA (rRNA) gene of bacteria is a well-known methodology [26, 27] as this gene
occurs in all archaea and bacteria and comprises nine highly variable (V1–V9)
regions, thus permitting the easy recognition of species. Previous strategies focused
on sequencing the whole 16S rRNA gene. By utilizing this strategy, the strong
insensitivity and bias of culturing techniques were featured in an early investigation,
as 76% of the sequences of rRNA acquired from an adult male fecal sample
belonged to new and uncharacterized species [28]. Lately, the focal point of 16S
rRNA sequencing has moved towards more prominent depth investigation of shorter
subregions of gene [27]; even so, the usage of shorter read lengths will lead to errors
[26]. More accurate estimation of microbiota composition and diversity might be
given by entire genome shotgun metagenomics because of the sensitivity, and high
resolution of these methods [26]. The most detailed perspective of human-related
microbial selection to date has been provided by combined knowledge from the
human microbiome project and MetaHit [29, 30]. Accumulated information from
these investigations grouped 2172 species, isolated from humans, into twelve sep-
arate phyla, out of which 93.5% species belonged to Proteobacteria, Firmicutes,
Actinobacteria, and Bacteroidetes. Three of the twelve distinguished phyla enclosed
just a single species isolated from humans, along with an intestinal species,
Akkermansia muciniphila, the sole recognized representative of Verrucomicrobia
phyla. 386 species known in humans are anaerobic and are located mostly in
mucosal habitats, for example, GIT and oral cavity [29].
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2.1.3 Metabolic Roles of Microbiota

Mammals have a restricted inherent ability to process polysaccharides, but they can
assimilate simple sugars in the small intestine. The primary substratum for the
growth and maintenance of intestinal flora is all the indigestible elements, which
represents the main energy source in colon [31, 32]. Since the microbiota’s genetic
and species diversity gives various host-related enzymatic, metabolic, and biochem-
ical pathways, the outcome is energy extraction, digestible substrates for the host,
and an energy and nutrients supply for the expansion of particular inhabitant species
of bacteria [33]. Thus, the microbiota is known as an important metabolic organ [34].

Intestinal bacteria, primarily Firmicutes, Bacteroidetes, and Actinobacteria,
obtain energy from the transformation and fermentation of indigestible food sub-
strates, especially from carbohydrate fermentation. Indigestible polysaccharides
break down into monosaccharides, and later into bacterial fermentation products,
particularly gases (CO2 and H2) and short-chain fatty acids (SCFAs) [35, 36]. For
adults, the average supply of substrates is around 5–20 g of carbohydrates and
20–60 g of proteins. The fermentation process achieves high levels with an abundant
generation of SCFAs in the ascending colon and cecum, where the pH is relatively
acidic (in the range of 5 and 6) and the growth of bacteria is rapid. The supply of
substrates reduces in the distal colon (having neutral pH), where the activity of
bacterial community reduces dramatically and putrefactive procedures become
quantitatively more crucial. Therefore, the generation of SCFAs (butyrate, propio-
nate, acetate in the proportion 15:25:60) portrayed metabolic endpoint, which
employ a strong trophic and energetic activity in the intestinal lumen
[37]. Bacteroidetes generates acetate and propionate by degrading the undigested
polysaccharides, and Firmicutes creates butyrate [38]. Acetate is ingested and
afterward transferred to the peripheral level, and there it serves as a substratum for
cholesterol synthesis, while propionate takes an active part in gluconeogenesis.
Butyrate, as a primary energy source for colonocytes, enhances the sensitivity to
insulin in mice and has a potential anti-obesogenic activity and also an anti-
inflammatory effect [39]. Butyrate and different SCFAs have a major role in
controlling intestinal cell proliferation and growth of obesity [40]. Butyrate encour-
ages the constancy of cellular heritage, preferring the transformation of cells from
neoplastic to non-neoplastic phenotype. Production of SCFAs is also induced by the
anaerobic metabolism of protein substrates and/or peptides that may produce harm-
ful components such as ammonia, thiols, amines, indoles, and phenols. SCFAs are
responsible for performing various biological activities, such as modulation of
glycemia [41], action on glucose homeostasis [42], inhibitory control of excessive
production of cholesterol [36], regulation of satiety through peptides [43], increasing
intake of energy without increasing the peptide YY or glucagon-like peptide 1 con-
centration in humans and rodents [44, 45], management of bowel kinetic activity,
transport of fluid, muco-protective action [46], anti-carcinogenic action [47], and
anti-inflammatory action [48] (Fig. 2.1).
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Microbiota can influence its own composition as well. The production of SCFAs
differs depending on the fermentable carbohydrates existing in the bowel lumen
[50, 51] that can alter the microbiota composition itself. Furthermore, starch resistant
to digestion has been reported to directly enhance levels of butyrate in humans [52],
and arabinoxylan, formed by the prebiotic arabinoxylan oligosaccharides, enhances
levels of propionate in transversal colon [53]. Also, the microbiota conducts another
significant metabolic functions, for instance, at the intestinal level it is necessary for
synthesis of certain enzymatic co-factors and vitamins (folic acid, pantothenic acid,
vitamin B1, B2, B6, B12, PP, H, K) and for the assimilation of iron, calcium, and
magnesium [38]. It is additionally accountable for bile acids deconjugation in the
liver catalyzed by an enzyme bile salt hydrolase that exists in numerous species of
bacteria. Hydrolysis hinders the reuptake of these molecules by enterocytes while
promoting their elimination and blocking their enterohepatic recirculation [54]. The
interference of intestinal bacteria in hepatic transformation of cholesterol into bile
acids, with significant implications in fat assimilation, has therefore been proven
(Table 2.1).

Metabolic Functions
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Secretion Energy Production
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- Vitamin Production
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Fig 2.1 Functions of intestinal microbiota [49]
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Table 2.1 Phyla and their genera in gut: putative relationships with metabolic and gut functions

Phyla Genera Functions in Gut

Firmicutes Anaerostipes
Bacillus
Coprococcus
Clostridium
Eubacterium
Enterococcus
Faecalibacterium
Lactococcus
Lactobacillus
Mycoplasma
Megasphaera
Peptostreptococcus
Pseudobutyrivibrio
Phascolarctobacterium
Ruminococcus
Roseburia
Streptococcus
Staphylococcus
Veillonella

These constitute the bulk of human gut microbiome
and have been demonstrated to be associated with
extraction of energy, and possibly related to dia-
betes and obesity development [16, 55–57].

Bacteroidetes Bacteroides
Corynebacterium
Prevotella

It has implications for the gut development, which
includes the interactions with immune system
[58, 59]. Gut Bacteroidetes produces mainly buty-
rate, which is an end-product of colonic fermenta-
tion, and have anti-neoplastic properties and play a
function in maintaining a healthy gut [60], with
implications in the obesity development [57].

Actinobacteria Eggerthella [61]
Olsenella [62]

They are present in the human colon and feces, and
are responsible for causing liver and anal abscesses,
ulcerative colitis, and systemic bacteremia [61, 63].

Cyanobacteria Spirulina Spirulina (Arthrospira platensis) has
hypolipidemic, hypoglycemic, and anti-
hypertensive properties [64].

Proteobacteria Citrobacter
Klebsiella
Escherichia
Shigella
Helicobacter
Salmonella
Sutterella

Proteobacteria is most unstable in host life among
the four major represented gut microbiota phyla
and its irregularity is proposed as a possible diag-
nostic reference for gut-associated ailments [65].

Spirochaetes Brachyspira The most popular species is swine dysentery,
Brachyspira hyodysenteriae, which induces broad
and extreme mucohemorrhagic colitis in rising
pigs [66].

Verrucomicrobia Akkermansia A. muciniphila is a common inhabitant of human
intestinal tract, containing up to 1% of total intes-
tinal bacteria. It develops ideally at 37 �C and is
able of fermenting glucose, N-acetyl galactos-
amine, and N-acetyl glucosamine [67].

Fusobacteria Fusobacterium
(Five species in GIT)

Fusobacteria have an impact on CRC development
by interaction with innate immune system or host
factors [68].
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2.1.4 Development of the Human GI Microbiota

The human GIT begins from the mouth, spreading through the anatomical regions—
the esophagus, stomach, small intestine, colon, rectum, and terminating at the anus
[69]. The structural and functional growth of GIT is a pivotal component of human
growth, since the gut must harbor the heterogeneity of dietary inputs and external
antigens which are incorporated along with food into human body across various
phases of life [70]. Human GIT maturation begins in utero and proceeds after birth
with certain roles, for example, epithelial barrier systems, intestinal immune system,
and accessory structures [70]. The primitive gut is formed about 22 days after
conception from the dorsal portion of yolk sac, directing towards the emergence of
foregut, midgut, and hindgut, around 25 days after conception [71]. The midgut
increases quickly in length so far that it cannot fit within the developing abdominal
cavity and herniates into the vitelline sac before experiencing complex turns and
coming back to the abdominal cavity after gestation period of around 10 to
12 weeks [71].

It is assumed that the production of microbiota starts from birth, despite the fact
that this dogma is confronted by a confined various investigations in which micro-
organisms have been found in womb tissues, such as placenta [72, 73]. GIT is
quickly colonized after birth, with life events, for example, sickness, changes in diet,
and antibiotic treatment causing disordered microbiota shifts [73, 74]. Mode of
delivery seems to affect the microbiota composition, with microbiota of infants
delivered vaginally possessing higher number of Lactobacilli during the initial
days, as a result of elevated Lactobacilli load in the flora of vagina [75, 76]. The
microbiota of infants born by C-section is insufficient and deferred in the coloniza-
tion of Bacteroides genus, but are colonized by facultative anaerobes like Clostrid-
ium species [77–79]. The microbiota is commonly low in diversity in the initial
stages of development, and is governed by two fundamental phyla, Actinobacteria
and Proteobacteria [73, 80]. Microbial abundance increases during the first year of
development, and the composition of microbiota changes to adult-like microbial
profile with time-related patterns specific to each newborn child [81]. At around
2.5 years old, the newborn child microbiota’s composition, diversity, and functional
capabilities are close to those of adult microbiota [73, 74]. Despite the fact that the
composition of gut microbiota is generally steady in adulthood, it remains exposed
to perturbation by life events [82]. The microbial community shifts in people aged
over 65 years, with an elevated prevalence of Bacteroidetes and Clostridium cluster
IV, in comparison to young individuals with more prevalent cluster XIVa
[83]. Another report discovered the similarity of microbiota of young generation
and an elderly population (70 years), and a significant decline of microbiota diversity
from a cohort of centenarians [84]. A notable relationship among diversity and living
arrangements has been identified in the older population, like group dwelling or
long-term residential care [85]. Microbiota’s ability to perform metabolic processes,
such as SCFA synthesis, and amylolysis, is typically decreased in elders, while there
is an increase in proteolytic activity [86]. With increasing evidence of the role of
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SCFAs as metabolic and immune mediators, the decline in SCFAs was believed to
support the inflammation-ageing process in aged people’s intestine [87].

Advances in metagenomic technologies have revealed the composition of human
gut microbiota from early infancy [81] to old age [88]. The human intestine after
birth is quickly occupied by a variety of factors and microbes considered to impact
colonization which involves gestational age, delivery mode, sanitation, diet, and
antibiotic treatment [89, 90]. Facultative anaerobes are the first colonizers, which
builds a new environment promoting the colonization of anaerobes such as
Bacteroides, Bifidobacterium, and Clostridium sp. Low diversity and relative abun-
dance of Proteobacteria and Actinobacteria define the intestinal microbiota of
neonates, which becomes more complicated with the growth and abundance of
Firmicutes and Bacteroidetes as time period after birth increases [91–93]. At the
end of first year of development, infants have an individually defined microbial
profile, converging towards the distinctive microbiota of an adult, so that by the age
of 25, the microbiota completely matches the composition and diversity of an adult
[74, 81, 94]. The initial three years of life serves as the most important phase for
dietary interventions to promote child growth and development. At this time, the
intestinal microbiota, a crucial tool for health and neuro-development [95] is devel-
oped and its modification during this phase can significantly influence health and
development of host. Development of gut microbiota is influenced by various factors
such as delivery mode, genetics, diet, health status, gestational age, etc. (Fig. 2.2).

Pregnancy

Diet

Lifestyle

Healthy status

Lifestyle

ElderlyAdultInfancyBirth

Geographical location

Family environment

Breastfeeding vs FormulaAntibiotic

Diet

Lifestyle

Living environment

Medication

Genetics

Complementary food

Duration of lactation

Vaginal vs C-section

Term vs Preterm

Window of Opportunity for Microbial Modulation Short and Long Term Health Effects

Maternal Microbiota

Fig 2.2 Factors that affect the development of infant, adult, and elderly gut microbiota [96]
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2.1.5 Biogeography of the Human Microbiota in GIT

The microbiota composition in GIT represents the physiological properties of a
particular part and is formed on both a longitudinal and transverse axis [97]. Chem-
ical, metabolic, and immunological gradients along the intestine affect the
microbiota density and composition. There are usually elevated concentrations of
acids, oxygen and anti-microbials in the small intestine, and a limited transition time
[98]. These characteristics restrict the development of bacteria to such an extent that
only quickly growing, facultative anaerobes having the capacity to bind to mucus/
epithelia are thought to be enduring [98]. Lactobacillaceae dominates the microbial
community of small intestine of mice [99]. Colonic environment supports a dense
and abundant bacterial community, predominantly anaerobes having the capacity to
use complex carbohydrates that are indigestible in the small intestine. The colon has
been reported to be dominated by Lachnospiraceae, Prevotellaceae, and
Rikenellaceae [98, 99]. Contrary to the different composition of microbiota within
different GI organs, the microbiota of various colorectal mucosal areas in the same
organism is conserved structurally in terms of diversity and composition
[100, 101]. This property is evident even at the time of localized inflammation
[101]. However, fecal/luminal and mucosal composition is significantly different
[100, 101]. For instance, Bacteroidetes concentration is reported to be high in fecal/
luminal samples than in the mucosal [19, 100]. Conversely, Firmicutes, primarily
Clostridium cluster XIVa, are augmented in the mucus layer relative to the lumen
[19]. Many experiments in mice colonized with pathogen-free microbiota demon-
strated a distinct microbial niche formed by the large intestine’s outer mucus, and the
bacterial species existing in the mucus exhibit differential proliferation and resource
utilization relative to the same species in intestinal lumen [102].

Inter-individual differences in the arrangement of species and subspecies are
suggested to overcome the variations in the organization of community in an
individual [100, 103, 104]. The concept of a core microbiota has been projected,
suggesting to be a group of the similar abundant species found in all individuals. In
the set of microbial genes present between organisms, however, greater compara-
bility can be seen than the taxonomic profile, indicating that the “core microbiota”
might be best characterized at a functional rather than organismal level [103]. Indi-
vidual microbiota arrangements have been recently classified into “community
types” that are related with background and can be predictive of one another
[105]. Multi-dimensional study of thirty-three samples from various nationalities
uncovered the existence of three enterotypes recognizable by differences in the level
of one of three genera: Bacteroides (enterotype 1), Prevotella (enterotype 2), and
Ruminococcus (enterotype 3) [106]. Nevertheless, there is conflicting data
encompassing the presence and development of these enterotypes [21].
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2.1.6 Factors Influencing the GI Microbiota

The microbial community’s complexity and richness progress via a number of stages
of development spanning from neonatal phase before the apparent stabilization after
weaning. In combination with individuality, there are essential inter-linked factors
that assume a significant part in forming the microbial composition of human
GI. Those factors involve age [107, 108], diet [109, 110], genetics of host [109–
111], infections, antibiotic usage [108–110], physiology of colonization site [69],
birth mode [109, 110, 112], feeding type [109, 112], and the birth environment of
infants [112].

Technical variation also influences the form of developing microbial composi-
tion. For instance, culture-dependent microbe identification procedures are subject to
biases that emerge from: (1) sensitivity to oxygen; (2) intractability of some species
of bacteria to culturing media; and, (3) competitiveness among fast-growing and
slow-growing bacteria. It restricts the existing culture-dependent techniques to be
effective for the isolation of only 70% of intestinal microbes in a sample relative to
culture-independent methodologies [113].

2.1.6.1 Age

The infant’s microbiota is seeded during childbirth and is at first undifferentiated
over the different body habitats. The predominance of aerobic bacteria at time of
birth is changed during perinatal and postnatal development. During initial weeks of
life, the microbiota diversifies to form a diverse microbial population dominated by
anaerobes. This early stage of colonization corresponds with the stimulation of
hypothalamic pituitary adrenal (HPA) axis that affects the enteric nervous system
thus innervating the GIT 123]. Enteroendocrine cells of gut release a number of
metabolically linked peptides, all of which are associated with food consumption,
lipid accumulation, energy equilibrium and may be regulated by microbial metab-
olites, for example, SCFAs. Some investigations have shown that young people have
a greater concentration of Bifidobacteria and Clostridia than adults; however, the gut
microbiota is more stable during adult life. During old age, a final set of age-related
changes in gut microbiota’s composition and function occurs [114]. Aging is related
with modified physiological functions, involving function of immune system, which
influence the makeup of the gut microbiota. Age-related differences detailed in
composition of gut microbiota include rise in the total amount of facultative anaer-
obes, changes in the proportion of Bacteroidetes to Firmicutes, and a pronounced
reduction of Bifidobacteria in humans > 60 years old, during which the immune
system begins to weaken. Metabolic shifts that correlate with the development and
maturation of gut microbiota can be seen in the excretion profiles of bacterial
products of amino acid metabolism and in energy-linked metabolites [115].
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2.1.6.2 Diet

Current research indicates that diet affects the gut microbiota enormously
[98]. Meta-transcriptomic research has shown the ideal microbiota to be driven by
the ability of microbial individuals to metabolize simple sugars, indicating
microbiota’s adjustment to the abundance of nutrients in the small intestine
[116]. Formation of colonic microbiota depends upon the accessibility of
microbiota-accessible carbohydrates (MACs) present in dietary fiber. “Animal-
based” or “plant-based” diets result in widespread modifications of human gut
microbiota [117]. A crossover study showed the impact of fiber, indicating that
otherwise balanced diets high in resistant starch or in non-starch polysaccharide fiber
(wheat bran) lead to a powerful and reproducible augmentation of various species of
bacteria in the human gut [118].

The role of food-consumed bacteria in gut microbiome had previously been
underestimated, potentially as a result of methodological restrictions [119]. Various
investigations have indicated that high-calorie diet brings obesity and type-2 diabe-
tes (T2D) both in humans and mice [120–124]. Many evidences propose that the
connection among diet and obesity is related to gut microbiota [125–131]. Changes
in diet bring significant and rapid changes in gut microbiome composition, as
indicated by various interventional studies [22, 132]. High-fat diet (60% fat) reduces
the quantity of bacterial species in the gut microbiome of mice, and the composition
of gut microbiome between mice on a high-fat (unpurified) diet and on a regular
unpurified diet is totally different. Another study in obese mice having T2D revealed
that the abundance of A. muciniphila was reduced and prebiotic feeding of
A. muciniphila normalized its abundance, improved metabolic profiles, decreased
fat mass, inflammation, and insulin resistance elicited by a high-fat diet [133]. It has
been demonstrated that a fiber-rich diet is favorable to health, as it balances the gut
microbiome [134]. Studies of 16S rRNA sequencing in humans have categorized the
gut microbiota of humans into various enterotypes recognized by the kinds of
bacteria present [106]. Enterotypes have been connected with long-term diets,
especially those with protein and animal fat. Wu et al. [22] indicated that Bacteroides
were related with protein and animal fat, while Prevotella was related to carbohy-
drates. The authors also examined controlled feeding in ten subjects and discovered
that microbiome composition altered within 24 h of starting a low-fat and high-fiber
diet or high-fat and low-fiber, and remained stable throughout the 10-d study
[22]. The outcomes suggested the strong connection of diet with partitioning of
enterotypes. In another study, a plant-based diet rich in legumes, grains, fruits, and
vegetables, or an animal-based diet consisting of eggs, meat, and cheese was
consumed ad libitum by six male and four female volunteers (aged 21 to 33 years
with BMI (in kg/m2) ranging from 19 to 32) for five consecutive days. The subject’s
fecal samples were cultured or directly analyzed by 16S rRNA gene sequencing
[132]. It was indicated that microbiota changes in the high-fat animal-based diet, and
was hypothetically connected to modified fecal bile acid profiles and microorgan-
isms development able of activating inflammatory bowel disease (IBD) [132]. The
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outcomes demonstrated that a high-fat diet can change the bacteria in the gut and
contribute to dysbiosis and eventually disease.

2.1.6.3 Host Genetics

The quantity of different bacteria present in the gut microbiota is affected by the
host’s genetic constitution in manners that influence host metabolism and can
eventually affect health [135]. It has been found that family members have more
comparable microbiota communities than unrelated individuals, and the gut
microbiota is more comparable in mono-zygotic than in di-zygotic twins [135]. At
present, there are no genome-wide investigations characterizing the specific genes
and pathways to determine the gut microbiome composition [136], although some
genes of the immune system are related with IBD [137, 138].

The microbiota can also be formed by the immune system of host. This impact is
generally constrained to compartmentalization of bacteria in order to prevent oppor-
tunistic colonization of host tissue, while species-specific impacts are less likely
because of the high levels of functional redundancy in the microbiota [16, 139–
142]. Both anti-microbials collected from the host and administered have a central
role in forming the gut microbiota. Paneth cells in GIT produce anti-microbials, for
example, angiogenin 4, α-defensins, cathelicidins, collectins, histatins, lipopolysac-
charide (LPS)-binding protein, lysozymes, secretory phospholipase A2, and lectins
[143]. Such proteins are confined in the mucus layer and are almost absent from the
lumen, most likely because of poor mucus dispersion or luminal degradation
[144, 145]. Attenuated expression of mucosal α-defensin was observed in ileal
Crohn’s disease (CD) patients, featuring the significance of these proteins
[146, 147]. Secretory IgA (SIgA), another part of the immune system, co-localizes
with gut bacteria in the outer mucus layer and helps with constraining the exposure
of epithelial cell surface to bacteria [143, 148]. SIgA is suggested to intercede the
shaping of bacterial biofilm by means of binding to SIgA receptors on bacteria
[149]. In IgA-deficient individuals, the expression of SIgA receptors by bacteria is
reduced [150]. Microbiotic dysbiosis, specifically an over-representation of seg-
mented filamentous bacteria (SFB), arises in mice with IgA deficiency, an impact
that might be especially harmful to the host because of the capacity of SFB to firmly
bind the epithelium and trigger the immune system [151].

2.1.6.4 Infections

Even though the gut microbiota influences bacterial and viral infections, the opposite
is likewise obvious [152–157]. One research explored the impact of an enteropatho-
genic infection caused by Citrobacter rodentium on mice microbiota and discovered
that some gut bacterial groups are altered because of C. rodentium infection,
including a decrease in the relative abundance of Lactobacillus [158]. A human
investigation of Clostridium difficile patients and asymptomatic carriers with the
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utilization of 16S rRNA gene pyrosequencing revealed that both had decreased
microbial richness and diversity relative to healthy individuals [159]. C. difficile
infection is characteristic of severe gut microbiota dysbiosis [160, 161]. Transplanta-
tion of gut microbiome from healthy donors to infected patients have increased the
microbial richness and diversity, and it is, at present, applied clinically [162–
165]. By utilizing a mouse model of hepatitis B virus infection, Chou et al. [152]
demonstrated that the clearance of hepatitis B virus infection demands the formation
of gut microbiota. It is apparent that the change in gut microbiota of host influences
both pathogenesis and clearance of bacterial and viral infections.

2.1.6.5 Antibiotic Usage

Increasing evidence proposes that numerous non-antibiotic drugs including the
medications used to treat T2D affect the gut microbiota [166–169]. The gut
microbiota also influences drug efficacy [170, 171]. Antibiotics are ordinarily
endorsed drugs that profoundly affect the normal microbiota of gut and their impact
is fast, and relentless at times. Broad-spectrum antibiotics decrease the diversity of
bacteria while increasing the concentration of certain bacteria that can be utilized by
pathogens and reducing the number of beneficial bacteria [172]. The utilization of
wide range antibiotics in infants and young children, for example, clindamycin, has
been revealed to have the longest-enduring consequences on gut microbiota com-
position [173–175]. Early exposure to antibiotic in neonates can prompt microbial
dysbiosis, which might be a predisposing factor for IBD [176]. There is also an
association between diet and antibiotic administration. Research in mice and humans
has discovered that the utilization of antibiotics early in life can promote obesity later
in life, mediated by the modification of gut microbiota [177–179]. However, those
studies do have limitations. Most of the mice studies on obesity are instigated by a
high-fat diet with or without antibiotic treatment utilized by only male mice since
they gain more weight than female mice, although no obvious sex bias is observed in
human obesity. One study demonstrated that antibiotics modified the gut microbiota
of host without altering the host metabolism [180, 181]. Many studies showed that
antibiotics lower body weight and improve sensitivity to insulin [182, 183]. Berber-
ine, the primary component of a Chinese herbal extract used for the treatment of
bacterial diarrhea, has an anti-diabetic impact by balancing the gut microbiota and
reducing glucose and insulin resistance [184, 185].

2.1.6.6 Physical and Biochemical Barriers

Intestinal mucus provides the gut microbiota a source of carbohydrates
[186, 187]. The layers of intestinal mucus are made-up around the large, highly
glycosylated gel-forming mucin MUC2 (Muc2 in mice), which is secreted by goblet
cells [188]. The glycan structures in mucins are different and dependent on four core
mucin-type O-glycans including N-acetyl galactosamine, N-acetyl glucosamine, and

2 Gut Microbiota and Health 43



galactose. O-glycans represent up to 80% of the total molecular mass of Muc2/
MUC2 [189]. Mucus is present throughout GIT and is thickest in the colon where it
is important to mediate the relationship between host and microbiota [190]. Normal-
ization of layers of host’s intestinal mucus needs long-term microbial colonization
[191]. Colonic mucus is separated into two layers comprising of a dense and
impermeable internal layer and a loose external coating that is penetrable by bacteria
[190]. While the internal layer is almost sterile, the mucin proteins in the external
layer, embellished with a rich and diverse collection of O-glycans, provide an energy
source and preferential binding sites for commensal bacteria [189, 192, 193]. The
type of mucin O-glycosylation depends on the expressed glycosyl transferases and
their location in the Golgi apparatus [187], modifications of which influence the
composition of microbiota. For example, the presence or absence of H and ABO
antigens in GI mucosa, as dictated by the genotype FUT2 (a gene that expresses an
α1,2-fucosyl transferase), influences the abundance of numerous bacterial species
[194]. Mucus and mucin glycosylation are consequently a key in defining the
microbiota and for allowing the selection of most ideal microbial species to mediate
host health [195–197]. A loss of MACs from mice diet can lead to narrow mucus in
the distal colon, increased expression of the inflammatory marker, REGIIIβ, and
increased microbe proximity to epithelium [198]. Colonic mucus barrier erosion
under dietary fiber deficiency is related with shifting of gut microbiota towards the
usage of secreted mucins as a nutrient source [199]. In contrast, administration of
A. muciniphila (a mucin degrader) to mice avoids the development of high-fat diet-
induced obesity and strengthens metabolic endotoxemia-induced inflammation by
restoring the gut barrier [133, 200]. The protective function of A. muciniphila could
be recapitulated by utilizing its purified membrane protein or the pasteurized bacte-
rium [201]. It has been recently shown that supplementation of A. muciniphila
reduces fat mass and alleviates body weight gain in chow diet-fed mice by mitigating
metabolic inflammation [202]. The capability of A. muciniphila was therefore
suggested as an alternative therapy to target human obesity and related disorders.

The ability of gut bacteria to use dietary or mucin glycans is directed by the
collection of polysaccharide lyases (PLs) and glycoside hydrolases (GHs) encoded
by their genomes [187]. Many species serve as generalists capable of degrading
many polysaccharides, while others are specialists in targeting specific glycans
[203]. Bacteroidetes encode a lot more glycan-cleaving enzymes than members of
Firmicutes [204]. The genome of Bacteroides thetaiotaomicron contains 260 GHs,
relative to 97 hydrolases encoded by humans [205]. The most represented family in
the gut microbiota is GH13 family, which includes enzymes associated with the
starch breakdown [204]. The biochemical and structural characterization of exten-
sive degrading assembly of prominent gut species like B. thetaiotaomicron or
Bacteroides ovatus uncovered that the identification and breakdown of complex
carbohydrates by the human gut microbiota is considerably more complex than
previously recommended [206–211]. Firmicutes members also show some unique
and complex highlights, such as the recent discovery of amylosomes in the resistant
starch using Ruminococcus bromii bacterium [212].
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Mutations and lateral gene transfer can lead to diversification of microbial
population [213, 214]. New bacterial functions encourage niche variation, making
it a positive feedback loop where more diversification can occur [215, 216]. Addi-
tionally, interaction between gut microbes permits colonization by a diverse set of
microorganisms, shaping the gut microbiota community. One mechanism proposed
to intervene this impact is microbial cross-feeding. Several products of carbohydrate
fermentation, including succinate, lactate, and 1,2-propanediol, do not generally
aggregate to higher levels in the healthy adult human’s colon, because they can act
as substrates for other bacteria, including propionate and butyrate producers
[217]. For instance, acetate produced by R. bromii (fermentation of resistant starch)
[218] or lactate produced by lactic acid bacteria (Lactobacilli and Bifidobacteria)
provides substrate for other microbiota members such as Eubacterium hallii and
Anaerostipes caccae which convert it into butyrate [219, 220]. B. ovatus has recently
been shown to conduct extra-cellular insulin digestion at its own expense, but to the
benefit of other species that provide reciprocal advantages [221]. Such association is
especially obvious in the outer mucus layer where mucin-degrading bacteria give
mono- or oligo-saccharides to bacteria lacking specialized mucolytic ability
[102]. For instance, the limit of cleaving sialic acid off mucins is confined to
bacterial groups encoding GH33 sialidases. Numerous bacteria, including patho-
gens, for example, Salmonella typhimurium or C. difficile, lack a sialidase but harbor
a “nan cluster” dedicated to the metabolism of sialic acid, and hence depend on other
members of gut microbiota to supply them with this carbon source [222]. Intramo-
lecular trans-sialidase, new class of sialidases is recently recognized in strains of
Ruminococcus gnavus that can help the gut commensal bacteria to adapt to the niche
of mucosa [186, 223, 224]. This action may give such bacteria a competitive
nutritional advantage over other species in the gut mucosal environment, particularly
in IBD which are rich in short, sialylated mucin glycans [186, 225]. Accessibility of
sulfated compounds in the colon, either organic (host mucins and dietary amino
acids) or inorganic (sulfites and sulfates), may impact specific bacterial groups like
sulfate-reducing bacteria, which are gut microbiota occupants involved in the etiol-
ogy of intestinal disorders, for example, IBS, IBD, or colorectal cancer [226].

As extensively reviewed, the bile acids distribution in small and large intestine
can influence the dynamics of bacterial community within the gut [227, 228]. Essen-
tial bile acids, like taurocholate, can give homing signals to gut bacteria and
encourage spore germination, as well as alleviate microbiota recovery after antibi-
otics or toxin-induced dysbiosis [113]. In addition, decreased concentration of bile
acid in gut can play a significant part in permitting pro-inflammatory microbial taxa
to expand [229].

2.1.6.7 Mode of Birth

Birth mode determines the microbial population to which babies are exposed at time
of birth. For example, vaginal birth exposes infants to the microbes that are presently
colonizing the birth canal of mother. Infants born via vaginal delivery have a
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comparative microbiota to that of their own mother as compared to other mothers
[77, 230]. On the other hand, no substantial difference has been found between the
microbiota of mothers and children delivered by C-section [77, 230]. Environmental
factors (air, delivery and surgical equipment, other infants and health care workers)
seem to affect the infant’s microbiome delivered by C-section [69, 231]. Recent
results for C-section-delivered infants showed that a time of labor before surgery was
related to infants with a microbiota that looked like that of vaginally delivered
infants, while infants born without any duration of labor had a microbiota that
resembled that of the skin of mother [232]. C-section is recommended to be a reason
for microbial disruption at early stages of life and this disturbance in microbial
colonization influences host-microbial interaction that can prompt long-term meta-
bolic results in the host [233–235]. Furthermore, C-section infants have higher
chances of developing atopic diseases in the initial two years after birth, when
compared to vaginally born infants based on data collected from 2500 full-term
healthy newborns in LISA-Study [236].

The birth mode effect on acquiring Lactobacillus in infant’s GIT is a good
example of birth mode impact on the gut microbiota. In the maternal vagina,
Lactobacillus is exceptionally common with an IndVal index of 0.922 [232]. Infants
delivered through the mother’s birth canal contain Lactobacillus as part of their
microbiome profile, but those delivered by C-section do not [234]. One more study
detected less Lactobacillus genus in the infant’s microbiome profile delivered by
C-section (n ¼ 17, detection rate ¼ 6%) versus vaginal (n ¼ 134, detection
rate ¼ 37%) [237]. This variation in Lactobacilli detection rates, however,
disappeared by the age of three [237].

The level of bacteria within an individual’s microbiota in the genera of
Bacteroides and Clostridium (Bacteroides fragilis and Clostridium difficile) is also
connected with birth mode [77, 230, 231, 238–241]. In the Netherlands study of
KOALA Birth Cohort (n ¼ 1032), diverse bacterial species from stool samples
obtained at one month of age were identified by real-time quantitative PCR assays
[238]. Infants delivered by unassisted vaginal mode (n ¼ 826) had reduced quantity
of C. difficile and relatively high quantity of B. fragilis in comparison to C-section
infants [238]. On the other hand, the inverse relationship was indicated by stool
samples of infants delivered by C-section (n ¼ 108) [238]. Identification of C. dif-
ficile on the hands and in the stools from healthy hospital personnel could be
connected to ecological factors rather than with the mother [238, 242]. C. difficile
was regarded a microorganism that only exists in hospitals [243] and was absent in
women’s vaginal swabs before delivery [244, 245]. This could clarify the C. difficile
levels in the infants born in hospital and by C-section [238]. A study of 24 infants has
further indicated the low abundance of Bacteroidetes ( p ¼ 0.002) in C-section-
delivered infants (n ¼ 9) in comparison to vaginally delivered infants [77]. Remark-
ably, this decrease in Bacteroidetes abundance continued for the first two years
following birth [77]. The above studies are consistent with earlier studies that
illustrate deferred formation of Bacteroides in first six months [231] and one year
of life [246] of C-section infants.
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Not all investigations have discovered a relationship between birth mode, the
development and inheritance of GI microbiota. For instance, an investigation of
21 infants discovered that birth mode did not influence population of microbes in
premature babies during the initial three months after birth [247, 248]. Studies have
shown that infants delivered via C-section appear to have: less quantity of anaerobes;
less diverse microbiota [77, 231, 249]; slower colonization of microbial population
[239]; and, they develop atopic diseases [249] and metabolic disorders [235] more
often than infants delivered by unassisted vaginal mode.

2.1.6.8 Type of Feeding

Methods of feeding may also influence the concentration of certain bacterial groups
in infant’s gut microbiota. The primary food, added into GIT postpartum is milk and
its composition is known to have a direct influence on the development of early GI
microbiota [250, 251]. This effect can occur by providing: fundamental nutrients for
proliferation of bacteria [250]; immuno-modulatory molecules [252]; and, microbes
able to colonizing the infant [253]. The form of feeding contributes towards the early
post-natal growth of GI flora which is confirmed by a reported closeness between
microbial composition in colostrum and the meconium of infants that were breast-
fed from the first hour after birth [254]. Shared bacterial DNA has been found in
human breast milk and infant’s fecal samples [255]. This association is increasingly
articulated between infants, their mother’s milk, and areolar skin as compared to a
random mother ( p < 0.001) [256]. Such outcomes, together, are associated with the
vertical movement of microbial species to the infant’s gut, mediated by breast
milk [256].

Methodologies focused on culture have detected more assorted microbiomes in
formula-fed infants as opposed to breast-fed infants [246]. This finding has been
confirmed by culture-independent studies [257, 258]. For instance, Lee et al. [257]
described the impact of feeding type on the microbiota of 20 vaginally born Korean
infants. Fecal samples from 10 predominantly breast-fed and 10 formula-fed babies
were collected at age of four weeks. Relatively limited quantities of formula
supplementation (once every 24 h in the first week after birth) to breast-fed infants
changed the microbial profile to motif close to that found for formula-fed infants
exclusively [259]. Some formula-fed infants were fed a diet containing 70 to 100%
of formula milk, and they were also exposed to breast milk [257]. In this analysis,
five bacterial species were found to be present in the fecal samples of all infants (both
formula- and breast-fed groups contained Bifidobacterium longum, Streptococcus
lactarius, Streptococcus salivarius, Lactobacillus gasseri, and Streptococcus
pseudopneumoniae). Lee et al. [257] argued that the existence of these bacterial
species in these babies’ intestines must be independent of the feeding type, and
therefore these species represent specific commensal bacteria found in 4 week-old
Korean infants. The higher abundance of B. longum, L. gasseri, and
S. pseudopneumoniae, and lesser abundance of S. lactarius, and S. salivarius were
observed in breast-fed babies as compared to formula-fed babies. These outcomes
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are consistent with the predictions that disclosure to varied feeding types, breast or
formula milk changes the relative abundance of certain commensal bacteria.

On the whole, formula-fed infants have more stable and diverse GI microbial
populations with high levels of facultative and strict anaerobes as compared to
breast-fed infants [257, 260–262]. Fecal samples of breast-fed infants are less
complex, have high quantity of aerobic bacteria, and have shown more changes in
the microbial composition in the first year following birth [257, 261, 262]. Studies
recommend that once the introduction of solid foods into the diet begins, the
distinctions in microbial population among breast and formula-fed infants are lost
and microbial communities migrate towards an intricate adult microbiome [69, 250].

2.1.6.9 Birth Environment of the Infants

Disclosure of multiple extra-uterine disorders at time of early development of gut
adds to the colonization and development of infant’s GI microbiota. It is known that
infants delivered by C-section are more vulnerable to ecological factors [263, 264]. It
is especially valid for premature infants having high possibility of developing a flora
that reflects NICU (Neonatal Intensive Care Unit), owing to the immatureness of
their GIs and extended vulnerability to the environment [251].

The path of microbial transmission from surroundings to neonates is difficult to
confirm yet investigations have demonstrated that microbes from the surroundings
can be separated from fecal samples of neonates [265, 266]. However, cross-
transference among patients and spread of a multi-drug resistant (MDR) strain,
Acinetobacter baumannii additionally prompted an outburst in a Tunis NICU.
31 infants (26–41 weeks gestational age) got pneumonia induced by MDR
A. baumannii and 10 deaths occurred because of infection after the transfer of
MDR A. baumannii from an infant to another hospital’s epidemic-associated surgi-
cal ward [266]. Such outcomes are agreeable with reviews that infants belonging to
different geographical regions/hospitals harbor diverse microbial communities
[261, 265]. Despite the fact, the PiPS experiment, a double-blind randomized
placebo-controlled trial of probiotic treatment with Bifidobacterium breve was
conducted to prevent sepsis and necrotizing enterocolitis in 1310 premature babies
(born in the range of 23–30 weeks period of gestation) from 24 hospitals. The
probiotic strain of B. breve was reported to be recognized in the feces of 37% of
infants in the placebo arm, in comparison to 85% of the intervention arm, showing
that ecological-associated parameters lead to cross-colonization of B. breve in
infants [267]. Interestingly, this PiPS trial indicated no distinction in the microbial
diversity of babies microbiome in two arms of the study [268].

The environment of hospital, handling, feeding, and treatment mechanisms can
improve microbial transference to infants [265]. Nonetheless, information of trans-
mission mechanisms, dominating microbial communities in the environment of
hospitals and the strains of bacteria with high probability of effectively colonizing
the infant’s GI remain subtle and are worth investigating in further studies.
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2.1.6.10 Other Factors

Various ecological parameters have been involved in forming the microbiota that
involves surgery, geographic location, depression, smoking, and living arrange-
ments (rural/urban) [73, 269–271].

2.2 Gut Microbiota Balance and Health

Bacteria are colonized in the human GIT from the time of human birth. The species
and quantity of the flora are dynamically changing with conditions such as life, diet,
and environment until a stable adult microbiota is established. Total number of
bacteria in the intestinal tract of normal people is as many as 1014 [272]. This
bacterial community is mainly composed of obligate anaerobic bacteria, aerobic
bacteria, and facultative anaerobic bacteria. Among them, anaerobic bacteria are
more prevalent than aerobic bacteria, and 60% of anaerobic bacteria are thick-walled
bacteria, more than 20% Bacteroides [273]. The intestinal flora of healthy people can
be roughly divided into three categories: (1) Intestinal dominant bacteria, mainly
obligate anaerobic bacteria that are symbiotic with the host, including
Bifidobacterium, Bacteroides, Lactobacillus, Clostridium genus, with nutrition,
immune regulation and metabolism; (2) pathogenic bacteria coexisting with the
host, mainly facultative anaerobic bacteria, when the intestinal flora is disordered,
can cause disease; (3) Pathogens, such as Proteus and Pseudomonas, due to the
small number of bacteria and long-term colonization opportunities, once the body’s
immunity is low, the number is beyond the normal range, causing disease. Due to the
bactericidal action of gastric acid and intestinal peristalsis, the number of bacteria in
the stomach is very small, the small intestine acts as a transition zone, the jejunum is
dominated by a small amount of aerobic bacteria, and the number of ileal bacteria is
large, mainly gram-negative anaerobic bacteria in the colon. The number and type
are obviously increased, the concentration can reach 1012 cfu/mL, mainly composed
of anaerobic bacteria such as Bifidobacterium, Lactobacillus, Bacteroides, and
Clostridia [274]. The terminal colon is very different and is regulated by pathophys-
iological conditions. In healthy individuals, the host maintains a steady state sym-
biotic relationship with the microbe, the host provides a nutritious and stable
environment, and the microbes participate in the protective barrier of the intestinal
mucosa. The gut microbiota provides a broad, anaerobic or hypoxic, constant
temperature environment, which helps the host to improve the decomposition
efficiency of nutrients, increase the absorption of beneficial substances, synthesize
nutrients and essential vitamins needed by the body, and maintain the nervous
system. Stability promote the immune system. In an unbalanced state, dysbacteriosis
affects host growth, development, health and disease, and can also affect drug
treatment [275].
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2.2.1 Gut Microbiota and Gut Barrier

A layer of polarized columnar epithelial cells and epithelial area, including lamina
propria, enteric nervous system, connective tissue, and muscular layer, are present in
intestinal mucosa. There are four types of intestinal barriers: mechanical barriers,
immune barriers, chemical barriers, and biological barriers. First is the mechanical
barrier which is tightly connected. The intestinal mucosa is not only an anatomical
physical structure, but more importantly it is an intestinal barrier. The energy
through the intestinal epithelial cells is primarily through an extra-cellular pathway,
with specific membrane channels and pumps, as well as a para-cellular pathway that
is regulated by tight junctions. Under the microscope, they look like discrete contacts
of a series of adjacent cells. Eventually a complex tight junction is formed that
maintains the normal structure of the intestinal mucosal cells. Next to the immune
barrier, this barrier helps the intestinal cells to secrete IgA normally. The third barrier
is a chemical barrier in which microorganisms and antigens in the gut are degraded
in a non-specific manner through the gastric acid environment, pancreatic fluid, and
biliary secretions. Digestive enzymes are mainly proteases, lipases, amylases, and
nucleases that kill microorganisms by destroying the cell walls of bacteria [276]. A
large amount of digestive juice produced by the intestine can adulterate the toxin and
clean out the intestinal lumen, making it hard for potential pathogenic bacteria to
bind to the intestinal epithelium, thereby shortening the presence of potentially toxic
or pathogenic substances in the intestinal lumen. It can stimulate the secretion of
gastric acid protease. Finally, the biological barrier, the intestinal flora is located in
the outermost layer of the mucus, is an important part of the metabolism, prolifer-
ation, and maintenance of the intestinal barrier of the epithelial barrier [4]. However,
the interaction between microorganisms and intestinal epithelial cells is twofold.
Some are considered pathogens, while others are considered symbiotic. The symbi-
otic flora limits the colonization of pathogens by competing for nutrients and niches,
changing pH, releasing antibacterial substances that allow exchanges between spe-
cies, and optimizing the number of beneficial microorganisms. Of course, the gut
flora also provides other important functions for the host. The results indicate that the
native bacteria can regulate gene expression involved in a variety of crucial intestinal
functions that includes absorption of nutrients, mucosal barrier enhancement, angio-
genesis, xenogeneic metabolism, and postnatal intestinal maturation [277]. The
intestinal barrier plays a significant role in maintenance of human health. The
destruction of intestinal barrier can cause dysfunction of the body and lead to a
variety of disorders.

2.2.2 Gut Microbiota in Metabolism

The mixed oxygen in the food is consumed by aerobic and facultative bacteria in the
upper part of the intestine, and the closure of the intestinal wall makes the large
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intestine meet the anaerobic environment required by the obligate or facultative
anaerobic bacteria fermentation. In the large intestine, crude fibers and non-starch
polysaccharides (NSP), which cannot be decomposed and used by the host, become
the raw materials for its fermentation and eventually produce volatile fatty acids,
thus providing energy for the host. At the same time, volatile fatty acids can also
promote the growth of intestinal epithelial cells, accelerate the repair of intestinal
damaged mucosa, and even regulate the gene expression of epithelial cells, inhibit
the occurrence of enteritis and colon cancer, thereby promoting the health of the
host. In addition to producing beneficial substances, intestinal microbial fermenta-
tion in the body also produces metabolites that inhibit host growth. Intestinal
microorganisms degrade tyrosine and tryptophan into highly toxic phenol and
aromatic compounds in the intestinal tract and expel them from the urine, but
these phenol compounds are not found in the urine of sterile mice. Ammonia is
another toxic waste produced by microbial urease fermentation of amino acids in the
intestinal tract. However, urea hydrolysis in sterile animals cannot take place, and
the concentration of ammonia in the colon of normal animals is several times the
concentration required for cell damage, which inhibits the growth of the host.
Therefore, the main mechanism of using antibiotics to promote growth may be to
reduce the inhibiting effect of toxic and harmful substances produced by intestinal
microbial fermentation on the growth of animals [278].

2.2.2.1 Lipid Metabolism

Fiaf is an endocrine signal expressed in intestinal epithelium, liver, and adipose
tissue that activates the Tie2 receptor and initiates intracellular signal transduction to
inhibit lipoprotein lipase (LPL) activity and reduce triglyceride deposition in adipose
cells. Backhed et al. found that the total body fat content, weight of epididymal fat
pad, and LPL activity of aseptic fed Fiaf+/+ mice and conventionally fed Fiaf�/�
and Fiaf+/+ mice were higher than those of aseptic fed Fiaf+/+ mice. The inhibition
of intestinal microorganisms on the expression of Fiaf and the deletion of the
mutation of Fiaf gene will lead to the decrease of the expression of Fiaf in intestinal
epithelial cells, weakening the inhibition of Fiaf on IPL activity and promoting the
storage of triglycerides in fat cells. The fat precipitation effect caused by Fiaf gene
deletion is consistent with the effect of microbial inhibition of Fiaf. Srebp-1 and
ChREBP are transcription factors mediating the lipid response of liver cells to
insulin and glucose. Acetyl CoA carboxylase (Acc) and fatty acid synthase (Fas)
genes are the target sequences of srebp-1 and ChREBP, which can promote the
synthesis and storage of fat. Studies have proved that ChREBP mRNA in liver of
conventionally fed mice was significantly increased ( p < 0.01), and srebp-1 mRNA
was also significantly increased ( p < 0.05).
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2.2.2.2 Protein Metabolism

The proteins ingested by the host are mainly broken down into amino acids that can
be absorbed and utilized by protease and peptidase. Studies have shown that
although only a few bacteria contain protease, almost all bacteria have peptidase.
As a result, intestinal microbes are able to independently break down the proteins
taken by the host to meet their own needs. The proteins degraded and utilized by
intestinal microorganisms cannot be utilized by the host. Amino acids that are
broken down by gut microbes but not used can be used by the host to help digest
proteins. Intestinal microbes can not only break down proteins but also use ammonia
in the intestine to synthesize bacterial proteins. Microorganisms in the rumen of
cattle are able to synthesize bacterial proteins from ammonia and provide proteins to
the host. In the case of protein deficiency, ammonia formed by the degradation of
amino acids by intestinal microorganisms can enter the host and recycle to synthe-
size amino acids, which makes up for the deficiency of protein and is beneficial to the
growth of the host.

2.2.2.3 SCFAs Production

At least four different pathways allow the SCFAs to signal to the host. First, SCFAs,
particularly butyrate, serve as an energy substrate for colonocytes [67, 68], and in
retaliation to decreased availability of energy, germ-free mice slow down the
transportation through small intestine to permit more time for nutrient absorption
[69]. Second, propionate act as a substrate for gluconeogenesis and can stimulate
intestinal gluconeogenesis, by signaling through the central nervous system (CNS)
to defend the host from diet-induced obesity and glucose intolerance [64]. Third,
acetate and butyrate, can act as inhibitors of histone deacetylase [70, 71]. Fourth,
SCFAs signal through G-protein-coupled receptors like GPR41 and GPR43, and
thus affecting various crucial processes including inflammation [72] and
enteroendocrine regulation [73]. SCFAs generation is, however, just one feature of
microbial metabolism in the gut [279].

2.2.2.4 Bile Acid Conversion

Bile acids are generated in the liver, stored in the gall bladder, and secreted into the
duodenum after consumption. Bile acids have long been known as single emulsifiers
for absorption of lipids, and have also been found to be effective signaling molecules
regulating other metabolic pathways. Intestinal flora is a significant controller of bile
acid metabolism. Intestinal flora can not only regulate the synthesis of bile acid but
also promote it to produce secondary metabolites. Therefore, the diversity of bile
acids in germ-free mice is much less than that in colonized mice [280].
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Bile acids can bind to cell receptors like farnesoid X receptors (NR1H4) and G-
protein-coupled receptor (GPCRs, TRG5), and are involved in regulating lipid
metabolism and maintaining homeostasis of the body’s internal environment. Acti-
vation of FXR has a crucial role in modulating bile acid equilibrium in the body.
Studies have shown that the activation of the ileum FXR receptor can promote the
increase of the expression level of the growth factor (FGF)19 gene in fibroblasts and
the homologous FGF15 gene in mice, thereby inhibiting the synthesis of bile acid. In
addition, the activation of FXR receptor also promotes the expression of small
heterodimer (SHP) genes, the transcription level of ileum bile acid-binding protein
(IBABP) gene, and the expression level of organic solute transporter-ost beta gene,
thereby regulating the absorption and transport of bile acid in the terminal ileum.
Activation of TRG5 receptor induces glp-1 secretion by intestinal L cells, which
improves liver and pancreas role and enhances glucose tolerance in mice suffering
from obesity. Studies have shown that TGR5, which activates brown fat tissue and
muscle, enhances expenditure of energy and prevents diet-induced obesity. The
intestinal flora, therefore, can be used to regulate the metabolism of bile acid pool
of FXR and TGR5 receptors to adjust and control signal, and regulate the body fat
metabolism and sugar metabolism, and finally play a decisive role for diabetes and
obesity. In addition, the study of Baghdasaryan et al. on the mouse model of bile duct
sclerosis showed that inhibiting the absorption of intestinal bile acid can effectively
improve the cholestatic liver and bile duct injury in mice. Molecular concatenates
(anti-apoptotic protein Bcl2, long non-coding rna-hi9, and nuclear receptor Shp) can
maintain normal liver function by regulating the balance of bile acids in the body.
Therefore, maintaining bile acid homeostasis is an important prerequisite for
improving body health [281].

2.2.3 Gut Microbiota and Host Immunity

Firmicutes and Bacteroides are the most important intestinal bacteria in animals.
Firmicutes are mainly gram-positive bacteria, such as Clostridium, Streptococcus,
and Lactobacillus. Bacteroidetes are mainly gram-negative bacteria, including
Bacteroidetes multiformis and ovalis. An important role of intestinal bacteria is to
improve the host’s digestion and utilization efficiency of nutrients. However, in the
process of co-evolution with the host, animal intestinal microbes have evolved more
functions. For example, intestinal microbes can regulate intestinal development,
angiogenesis, and lymphocyte development as signal molecules. In addition, intes-
tinal bacteria also has an extremely crucial role in protecting the host from patho-
gens. By competing with bacterial pathogens for dietary nutrients, intestinal bacteria
limit the rapid colonization of pathogens in the intestinal tract. Gut microbes can also
stimulate host immune responses. However, the association between microbes in the
intestinal tract and the host is not always mutually beneficial. For example, Entero-
coccus faecalis, one of the most important flora in the human intestinal tract, can
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invade mucosal tissues and increase the incidence of bacteremia and infectious
endocarditis in humans.

Intestinal microorganisms are rebooting and regulating factors of host innate
immunity and adaptive immunity. When the body is exposed to pathogenic factors,
the body will activate related receptors, for example, Toll-like receptors (TLRs) and
nod-1ike receptors (NLRs), to activate inflammatory response and kill pathogenic
factors. Therefore, it is important to comprehend the association of gut microbes and
immune system [282].

2.2.4 Gut Microbiota and Innate

Intestinal microbes are known as “superorganisms” that encode genes for breaking
down dietary fiber, amino acids, and drugs. Intestinal microbes can promote the
formation of immune function and influence the composition of T-cell subsets. Wu
et al. established a sterile chicken model, indicating that intestinal microorganisms
can promote the development of spleen and improve immunity. Gut microbes can
adjust the immune function of the immune system, for example, Bifidobacterium
stimulating immune cells to secrete IL-6, IL-1, that promote differentiation of mature
B-lymphocytes and T-lymphocyte proliferation, enhance the killing ability of NK
cells. In addition to this, some strains of Bifidobacterium having anti-inflammatory
activity increase the secretion of intestinal IgA, and induction of mature dendritic
cells [283].

Modulation of immune system is not only affected by microbial flora, but also the
reaction in the microbial flora of immune system played a key function in shaping
gut microbes group. SIg-A the secretion of intestinal lamina propria of gram-
negative bacteria have special affinity, can pack by bacteria, inhibit bacteria and
intestinal epithelial cells, specific binding to prevent bacteria in intestinal epithelial
cell adhesion, shifting to avoid bacteria through intestinal epithelium [284].

2.2.5 Diet-Mediated Production of Beneficial or Detrimental
Metabolites by the Gut Microbiome

Microbial metabolites are produced by microorganism–microorganism and host–
microorganism interactions.

2.2.5.1 Polyamines

Putrescine, spermine, and spermidine are polycationic molecules present in all living
cells and are essential to many biological functions that includes gene transcription
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and translation, growth of cell, and death. The intestinal tract comprises a large
amount of polyamines, derived from diet and de novo by host and microbial cells.
Polyamines are accountable for increasing the integrity of intestinal epithelial cells
(IECs) barrier [285]. Polyamines, as demonstrated by the in vitro studies, can
promote the generation of inter-cellular junction proteins, which are essential for
controlling para-cellular permeability and reinforcing epithelial barrier function.

2.2.5.2 SCFAs

Bacterial fermentation in the colon produces SCFAs (acetic acid, butyric acid, and
propionic acid) as their main metabolic end products by using undigested complex
carbohydrates as substrates. SCFA concentrations in the gut [31] are dependent upon
microbiota composition, intestinal transit time, microbiota-host metabolic flux of
SCFAs, and fiber content of host diet [286]. These microbiota-generated metabolites
are crucial sources of energy for gut microbiota and IECs. Apart from acting as
substrates for energy production, SCFAs have various regulatory functions, and their
impact on physiology and immunity of host is still apparent.

2.2.5.3 Formyl Peptides

Formyl peptide receptors (FPRs) can recognize conserved N-formyl peptide motifs
that are present in bacteria, and their closely associated motifs present in mitochon-
dria. Non-formylated endogenous ligands are also detected by FPRs, which includes
serum amyloid A, protein annexin, cathelicidin anti-microbial peptide. Instigation of
FPRs results in enlisting the leukocytes and generation of pro-inflammatory cyto-
kines, super oxides, and enzymes to fight infections. FPRs are stated by innate
immune cells, endothelial cells, epithelial cells, neural cells, and muscle cells, and
many studies suggested the instigation of FPRs on non-phagocytic cells to be
necessary to achieve tissue homeostasis after infection or injury [287].

2.3 Gut Microbiota Dysbiosis and Disease

Stability of the intestinal micro-ecology is an indispensable part of human health.
The imbalance of intestinal micro-ecology may induce a series of diseases, such as
T2D, autoimmune diseases, senile dementia, obesity, IBD, depression, IBS,
Alzheimer’s disease, cancer, etc. According to “China’s adult diabetes prevalence
and control status,” the prevalence of diabetes in adults aged 18 and over in China
has reached 11.6%. Diabetes has become one of the most important and difficult
public health problems in China.

From the birth of the baby, the bacteria settle into the intestines. Under the
influence of dietary intake and environmental conditions, the ratio of various
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intestinal microbes tends to be stable. Therefore, each individual’s gut microbiota is
unique in the genus and species level, but has a strong universality at the door level,
such as Bacteroides and thick-walled bacteria. The microbiota colonizes for a long
time and forms a gut micro-ecology with its living environment. These intestinal
flora participate in the regulation of human health through various ways such as
absorption of energy, alteration of intestinal permeability, production of SCFAs,
choline metabolism, bile acid metabolism, and brain–gut axis. Therefore, the intes-
tinal flora is closely related to the metabolism and immunity of the human body. In
addition, the normal intestinal flora prevents the invasion of foreign pathogenic
microorganisms by establishing mechanical, biological, and immune barriers, and
maintains the stability and micro-ecological equilibrium of intestinal environment.
Probiotics colonize the intestinal mucosa to create a biological barrier, reducing the
infection and colonization of pathogenic microorganisms. Certain probiotics pro-
duce anti-bacterial substances that suppress the growth and reproduction of noxious
bacteria [288].

When the internal or external environment causes imbalance of intestinal micro-
ecology, it will lead to disease. In Gordon’s study, the intestinal flora of obese mice
was transplanted into sterile mice, which showed a significant increase in body
weight [289]. Taiwanese scholars have found that WEGL can alleviate metabolic
disorders caused by intestinal flora imbalance and obesity [290]. AIEC bacteria in
the gut of CD patients can adhere to and invade IECs. AIEC releases macrophages
and releases IFN-γ and TNF-α, which enhances its own value and aggravates
inflammation [291]. A study by the Tokyo University of Science and the University
of Tokyo pointed out that laminarin in seaweed can prevent the occurrence of IBD
by increasing the number of Lactobacilli in the intestine [292].

Investigations have shown that gut microbiota diversity is the key to gut health.
Some treatments can reduce the diversity of intestinal microbes, so the patient
relapses after stopping the drug. Microbiota may also promote the resistance of
pathogenic species to drugs, or lead to the expansion of disease-causing populations
and enhance virulence [293]. Research on the gut microbiota has become the key to
treating these diseases.

2.3.1 Gut Microbiota and Metabolic Disorders

The human’s gut microbiome as a part of the digestive system, can participate in the
body’s digestion of nutrients, and can affect the body’s own metabolic activities
[294]. Among them, Bacteroides bacteria can degrade a large group of plant poly-
saccharides (such as cellulose, hemicellulose, pectin, resistant starch, etc.) that
cannot be digested in the human body, thus providing additional energy to the
host. For the extra energy provided by bacteria (mainly in the form of carbohy-
drates), the body combines it into fat storage in adipose tissue, making the effect
Bacteroides on the body’s sugar metabolism a major cause of obesity
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[295]. Similarly, Phylum Firmicutes bacteria that degrade non-degradable polysac-
charides in the body’s digestive tract are also likely to be a major contributor to
obesity.

In 2004, a study by Backhed et al. [296] found that gut microbes may affect the
body’s energy storage, suggesting that obesity may be associated with it. Studies
have shown that gut microbes use the body’s undigested polysaccharide metabolism
to produce small molecular compounds that can be used by the body to increase their
energy, and in mouse models, gut microbes can increase the host’s metabolic rate,
increase its ineffective circulation, and store excess energy in fat form. Intestinal
microorganisms increase the density of capillaries under the intestinal microflu,
which contributes to the absorption of nutrients; the intestinal microbe inhibits the
expression of the intestinal epithelial to Fiaf and may promote the synthesis of fat in
the liver.

Imbalances in the gut microbiome can lead to metabolic disorders, such as insulin
resistance due to steady state imbalances [297], which cause abnormalities in the
sugar metabolism of the TMA/FMO3/TMAO pathway regulation. The use of sugar-
reducing lipid-adjusting side intervention after 3 months can significantly reduce
blood sugar lipid levels in patients with combined hyperlipidemia in obese T2D,
improve insulin resistance, and be equal to metformin, while regulating the patient’s
intestinal flora, increasing the beneficial bacteria represented by Blautia and
Faecalibacterium. Changes in the structure of the flora were significantly related
to an improvement in blood sugar lipid levels [298].

A new study has seen [299] a change in the composition of the fecal microbiome
in postmenopausal obese women with low-calorie diet interventions, preserving the
core microbiome and changing the structure of some functional microbiomes. At the
same time, the concentration of fecal bile acid decreased significantly, which was
related to the metabolic pathways of amino acids, radon, and lipids in plasma.
Intestinal flora can also produce SCFAs by fermenting soluble dietary fiber
[300, 301], and SCFAs can reduce serum triglyceride and cholesterol levels by
inhibiting the activity of liver lip-creation enzymes, promoting the production of
cholesterol oxidase that accelerates the degradation of cholesterol, improves liver
utilization, and increases bile acid synthesis [29], lower serum cholesterol. Intestinal
flora regulates fat cytokines, component binding proteins, and other genes and
enzymes to regulate blood lipids [30–32]. There have been a large number of
experiments and clinical studies which showed that the disorder of intestinal flora
structure is related to metabolic syndrome.

2.3.2 Gut Microbiota and Hepatic Disorders (e.g. NAFLD
and ALD)

Recent reports have indicated that gut microbiota is closely associated with alcoholic
liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). ALD is a series
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of liver lesions due to long-term heavy drinking. According to pathological features,
it is divided into mild alcoholic liver disease, alcoholic hepatitis, alcoholic fatty liver,
alcoholic liver fibrosis, and alcoholic cirrhosis. One of its pathogenesis is the damage
of the intestinal barrier. The damage of intestinal barrier results in intestinal micro-
ecological disorders, enhanced permeability of intestinal mucosa, displacement of a
large number of bacteria and endotoxin (LPS) in the intestinal tract, and excessive
production of inflammatory factors, thereby accelerating the occurrence and devel-
opment of the disease [302]. Inokuchi et al. found that alcohol favors the develop-
ment of gram-negative bacteria such as Proteobacteria in intestine, thereby reducing
the number of anaerobic bacteria such as Bifidobacteria. Since the Proteobacteria are
considered to be important bacteria that initiate the innate immune system, an
increase in the number of Proteobacteria can result in activation of immune system,
which will promote the development of chronic inflammation of the liver
[303]. Bull-Otterson et al. found that alcohol intake can cause damage to the local
immune defense system of the GI tract, promote the growth of intestinal bacterial
overgrowth (SIBO), and significantly reduce the number of thick-walled bacteria
and Bacteroides in the intestine. Gram-positive (Actinomycetes) and gram-negative
(Proteobacteria and Prevotella) increased in number, and LPS in the intestine was
released in large quantities, causing liver damage [303]. NAFLD has become a
reason of chronic liver disease (CLD), and its occurrence is the result of a combi-
nation of genetics, environment, and lifestyle. A growing number of reports have
indicated that the imbalance of intestinal microecology is involved in the evolution
and progression of NAFLD, mainly through the function of enteric axis, and
elevated levels of bacterial lipopolysaccharide (LPS) in the systemic or portal or
circulation in various CLDs [303]. The study found that there was a rise in the
amount of SIBO and inflammatory factor, tumor necrosis factor alpha in NASH
patients [303]. In summary, the relationship between microbial populations and
NAFLD and ALD can be represented by the following figure:

Regulating the intestinal flora becomes a new direction for the treatment of ALD
and NAFLD. Use of probiotics and prebiotics can regulate the intestinal flora to
prevent or treat NAFLD. Kirpich et al. found that ALD patients were supplemented
with Bifidobacterium and germ lactic acid bacteria to maintain the integrity of the
intestinal barrier, rebuild the balance of intestinal microbes, and prevent intestinal
microbial translocation and harmful inflammatory reactions [304].
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2.3.3 Gut Microbiota and Autoimmune Diseases:
Inflammatory Bowel Diseases

The dysregulation of gut flora may lead to a variety of autoimmune diseases,
including IBD. Autoimmune refers to the phenomenon that the body’s immune
system produces antibodies and sensitized lymphocytes against its own tissue
components, causing an immune response. When autoimmunity causes dysfunction
of its own tissues and organs and clinical symptoms appear, it is called autoimmune
disease (AID). At present, there are more than 30 kinds of autoimmune diseases,
most of which are primary and a few are secondary. The cause of primary autoim-
mune disease is unknown, closely related to genetic factors, and is divided into
organ-specific and non-organ-specific. Target antigens and lesions of organ-specific
AIDs are often restricted to a specific organ. Target antigens and lesions of non-
organ-specific AIDs are often systemic or systemic, and secondary refers to other
diseases or treatments. The dysregulation of intestinal microecology may lead to a
variety of autoimmune-related diseases. Intestinal microorganisms can directly
affect the body’s innate immune system through TLRs and other related immune
receptors, and have a significant function in the pathogenesis of a variety of auto-
immune and inflammatory diseases [305]. Recent studies have shown that a variety
of auto-immune diseases, for example IBD, metabolic syndrome, multiple sclerosis,
rheumatoid arthritis, etc., are associated with abnormal changes in intestinal
microecology [305]. Many studies have shown that small molecules secreted by
intestinal bacteria can enter the cell through transporters or endocytosis on the
surface of intestinal mucosal cells, and activate a series of signal pathways related
to cell survival. It was found that patients with IBD have different degrees of
intestinal microbial abnormalities, the most common is the reduction of thick-walled
bacteria and the increase of Proteobacteria. Some people have suggested through
clinical analysis that patients with active IBD have lower abundance of Clostridium
sphaeroides, Clostridium sp., Bifidobacteria, in the active period and remission
period of ulcerative colitis. The abundance of E. coli and Lactobacilli did not differ
between the active phase of IBD and the remission period [305]. By altering the
population or community of microorganisms, reshaping the structure and function of
intestinal microbes, and then regulating immunity, it is expected to provide new
possibilities for the treatment of autoimmune diseases.

2.3.4 Gut Microbiota and Cardiovascular Disease

Community structure modifications in the gut microbiota are closely associated with
cardiovascular disease (CVD). CVD is considered to be one of the major causes of
death in contemporary human diseases, with the most common diseases including
hypertension, coronary atherosclerosis, and heart failure. Trimethylamine N-oxide
(TMAO), a metabolic derivative formed by the intestinal flora, can increase
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atherosclerosis and promote the risk of cardiovascular diseases such as chronic heart
failure [306]. Yang et al. found that the abundance of intestinal flora in the hyper-
tension group decreased significantly from both clinical observation and animal
experiments. The main reason was the decrease in the number of probiotics such
as Bifidobacteria. Some scholars believe that the intestinal flora metabolites may
regulate blood pressure through the buffer system of SCFAs receptor-olfactory
receptor 78 and G-protein coupled receptor orphan [306]. In recent years, gene
sequencing has found that the intestinal flora of patients with coronary heart disease
is disordered, and the content of E. coli, Helicobacter pylori, and Streptococcus is
increased, and Bifidobacteria, Lactobacillus content is reduced [306]. The metabo-
lite TMAO of the intestinal flora is also associated with atherosclerosis. Experiments
have shown that plasma levels of TMAO are positively correlated to mouse athero-
sclerotic plaque load [306]. Patients with heart failure are often accompanied by
gastrointestinal congestion, prone to loss of appetite, abdominal distension and other
symptoms, decreased gastrointestinal motility leads to accumulation of gastrointes-
tinal contents, a large number of bacteria can easily destroy intestinal homeostasis,
causing dysbacteriosis. Further research found that the pathogenic bacteria such as
Salmonella and Shigella in the intestinal flora of the patients increased significantly
[306]. A study has shown that the severity of heart failure is also related to TMAO.
Therefore, changing the intestinal ecology through probiotics will be a new entry
point for the prevention and cure of cardiovascular diseases.

2.3.5 Intestinal Microflora and Nervous System Diseases

2.3.5.1 Microbiota–Gut–Brain Axis

At present, many mental diseases (autism, Parkinson’s disease, and Alzheimer’s
disease) are highly related to intestinal flora, and our joys and sorrows may also be
regulated by flora. Many of our desires and preferences may also be affected by
intestinal flora, including appetite food preferences, and even sexual orientation.
These connections involve an important chain of relationships: the bacteria–
intestine–brain axis. Although our brain and intestines are located in two separate
parts of our body, there is a very strong relationship between them. In fact, there may
be three channels in the bacteria–intestine–brain axis. One is the nerve channel, the
second is the blood channel, and the third is the immune channel. Some intestinal
substances may pass through the intestinal barrier, through the blood, pass over the
brain–blood barrier, thus affecting the brain. Some of the cells involved in the
intestinal immune response may repeat the same immune response in the brain.
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2.3.5.2 Intestinal Microbiology Group Is Closely Related
to Neurological Diseases

One study found that many patients with Parkinson’s disease suffer from severe
constipation for a long time before they are diagnosed. Bacteria in the human gut
decompose undigested proteins into toxic substances such as ammonia, mercaptan,
indole, hydrogen sulfide, and histamine. These toxic substances can be excreted
from the body through the stool. However, the intestinal function of the elderly is
declining, especially in elderly patients with constipation. It is very difficult for
elderly patients to rule out these toxic substances. Over time, toxic substances will
accumulate in large quantities. When toxic substances accumulate to a certain extent,
they will slowly enter the brain with blood circulation. Damage to the CNS can lead
to Alzheimer’s disease. For Parkinson’s disease, higher the enterobacteriaceae in the
intestinal tract of patients, more serious the symptoms will often be, and the
pathogenic protein in the brain, α-synaptic nucleoprotein, is also closely related to
the pathological changes of the enteric nervous system. [307].

The researchers first bred two groups of mice that produced too much α-synaptic
nucleoprotein, which is thought to be one of the “culprits” of Parkinson’s disease.
The only difference between the two groups was that one group had a complete
intestinal microflora and the other group was sterile. The results showed that aseptic
mice not only did not show the symptoms of Parkinson’s disease but also performed
much better in running, pole climbing, and other motor performance tests. The
researchers then fed some aseptic mice with SCFAs formed by the decomposition
of food fiber by intestinal flora and transplants intestinal flora obtained from the feces
of patients with Parkinson’s disease. As a result, all of the mice developed symptoms
of Parkinson’s disease and it is concluded that intestinal microbiome is an important
promoter of this disease. Changes in the composition of intestinal flora or intestinal
bacteria themselves may contribute to or even lead to deterioration of motor func-
tion, which is the main symptom of Parkinson’s disease.

In this framework, antibiotics, probiotics, diet, fecal bacteria transplants, and
meditation, which may regulate flora, may be ideal tools and the best way to treat
neurological or mental illness.

2.3.6 Intestinal Microflora and Cancer

2.3.6.1 Importance of Microorganisms in Human Cancer

Cancer is the number one killer of human health, but the complex relationship
between the mechanism of cancer and environmental microorganisms has been
difficult to prove. Since the partial success of William Coley’s attempt to treat
sarcomas with local injection of bacteria (Coley’s toxin) in the late nineteenth
century, the relationship between cancer and pathogens such as bacteria, viruses,
and fungi has attracted worldwide attention [308]. Especially after the first discovery
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of microbial membrane on the surface of cancer cell mucosa by Christine et al., the
study of the interaction between human microorganisms, especially intestinal micro-
organisms and cancer has become a hot topic.

2.3.6.2 Progress of Intestinal Microbiome in Cancer Research

Intestinal microflora is not only related to the formation of the immune system, but
also to the interaction between the immune system. Under normal homeostasis
conditions, intestinal symbiotic bacteria are recognized by TLRs and has a crucial
role in maintaining the homeostasis of intestinal epithelial cells. In the experiment of
chemical induction of intestinal epithelial cell injury in mice, Rakoff-Nahoum found
that mice lacked a key connector molecule in the microbial ligand or linker protein
pathway produced by pathogenic microorganisms and intestinal symbiotic bacteria
which will aggravate the damage to the cells [309]. It can be seen that the health of
the body and disease state is the outcome of interaction between pathogenic bacteria
and intestinal flora. Upadhyay et al. demonstrated that the intestinal microbe group
interacts with the immune response and forms the related lipid metabolism by
affecting obesity. Russell et al. found that if Candida albicans mutates in intestinal
flora, the specific chemicals produced will affect the immune response and make the
immune system oversensitive and produce allergic diseases.

For example, related studies have shown that Clostridium nucleatum is a common
bacteria living in human large intestine, and it is also considered to be a key leader in
colon cancer. In addition, intestinal Clostridium and Bacteroides are also one of the
pathogenic bacteria of colon cancer. The researchers have found that a group of
probiotic bacteria in the intestinal tract can stimulate intestinal cells to activate the
Nrf2 signaling pathway, which has a protective effect on small intestinal cells
[310]. This finding is of great significance for the use of bacteria to treat intestinal
diseases and to reduce the intestinal damage caused by cancer radiotherapy.

2.3.6.3 Achievements of Intestinal Microbiome in Cancer Prevention
and Control

French scientist Sophie Viaud used a cyclophosphamide anticancer drug to change
the composition of the intestinal microbial population, driving gram-positive bacte-
ria into the secondary lymphatic system, triggering a special helper T cell attack on
the tumor. In order to achieve the therapeutic effect of killing tumor, Chen et al.
found that the intestinal microflora of individuals is dominated by bacteria that use
different fibers, such as Plumeria and Bacteroides to ferment the fiber in food into
SCFAs. Butyric acid, as the preferred energy source of colon cells, can promote
intestinal barrier function and reduce inflammation. Therefore, feeding fiber can
optimize the structure and function of intestinal flora, which is very important for the
early prevention and control of the disease.
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Researchers at Xin Zhou University and Tokyo Pharmaceutical University in
Japan have used transgenic technology to develop a Bifidobacterium whose life
activities can cut off the nutritional supply of cancer cells, thereby inhibiting the
growth of tumor tissue, a technology that can be used to treat cancer.
Bifidobacterium is a common bacteria in human intestinal tract, which is easy to
survive in anoxic environment, and the interior of breast and chest cancer tissue
belongs to anoxic state.

2.3.6.4 Research Prospect of Intestinal Microbiome

Intestinal flora plays a significant part in regulating anxiety, emotional disorders and
other neurological diseases, and chronic diseases such as IBD, type I diabetes,
obesity, cardiovascular disease, and cancer [311]. It is worth noting that, intestinal
microbiome can maintain homeostasis in the human body, and may also produce
potential carcinogenic toxins and metabolites through bacteria to have a negative
impact on cancer prevention. Therefore, in the future, anti-tumor therapy can be
carried out through the combination of intestinal microbiome and its metabolites
with immunotherapy, or it can also be combined with the traditional method of
directly targeting malignant cells for anti-tumor therapy. Based on the immune
response induced by intestinal microorganism group and the mechanism of cancer
induction, high efficient anticancer strains were screened to develop new and
efficient anticancer agents.

2.3.7 Renal Diseases

Although intestinal flora lives in the gut, its role is not limited to the digestive
system. The effect of intestinal flora on human body is systemic through its influence
on human metabolism and immune function. The kidney is the main organ of
excretion of metabolites in the body and also the important site of deposition of
immune complex. Therefore, intestinal flora has a crucial role in the development
and treatment of renal diseases. For example, Vaziri et al. found that the quantity of
Firmicutes and Bacteroidetes in the intestinal tract of chronic renal failure rats was
lower, especially that of Lactobacillus and Prevotellaceae. Wong et al. found that in
patients having end-stage renal dirty disease, the abundance of bacteria producing
ammonia, indole, cresol, and other harmful metabolites increased, while the abun-
dance of bacteria producing SCFAs (including Lactobacillus and Prevotellaceae)
decreased. IS, PCS, and PAG can be detected in the early stages of renal dysfunction.
Meanwhile, kidney stone disease is closely related to changes in intestinal flora. The
main pathological change of kidney stone disease is crystal formation in the kidney,
and its incidence rate is increasing day by day. Stern et al. used 16sRNA test to find
that intestinal Bacteroides in patients with kidney stones had a higher abundance,
while Prevotellawas lower. Eubacterium and E. coliwere negatively correlated with
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urinary oxalic acid and citric acid content at 24 h, respectively. Calcium oxalate
stone is a common type of KSD. Gnanandarajah et al. suggested that the lack of
bacterial colonization in the intestine was a risk factor for calcium oxalate urolith-
iasis. Sadaf et al. found that oxalate Bacillus and Lactobacillus prevent stone
deposition and formation in the kidney by producing enzymes conducive to oxalate
degradation. Xiaoying et al. found that Enterobacteriaceae was significantly ele-
vated in kidney stone disease. Recently, it was found that the fecal microbial
diversity of patients with recurrent idiopathic calcium calculi was low, and the
expression of oxalate degradation related bacteria gene was significantly reduced,
which was negatively correlated with oxalate excretion. At the same time, it is also
believed that kidney stone disease is not caused by the lack of oxalate formate
bacteria or one kind of bacteria, but is related to the extensive changes of intestinal
flora. IgAN is deposited in the glomeruli by a polyimmune complex containing IgA,
causing kidney damage. DeAngelis et al. discovered that the composition of intes-
tinal flora in IgAN patients changed, mainly manifested by the increase of Strepto-
coccus, Enterobacter and the decrease of Bifidobacteria [312].

Ley et al. sequenced 16S ribosomal RNA genes in fat and lean mice and found
that the number of Bacteroides in fat mice was relatively high. For obese and
non-obese people, human trials also showed the same changes in bacteria as animal
studies. T2D patients are also often associated with differences compared with the
normal population. Larsen et al. compared the degree of abnormality in the types and
quantities of intestinal flora of T2D group and non-T2D group, and it was found that
E. coli, Salmonella, and Vibrio cholerae belong to proteobacteria are present in the
intestines of T2D patients, and the proportion of bacterial flora change related to
blood glucose concentration. Qin et al. found that T2D patients were accompanied
by moderate-intensity bowel. The proportion of trace bacteria was unbalance, which
was reflected by the benefit of producing butyric acid of Hoffmann-La Roche Inc. A
large number of bacteria were lost, while the number of harmful bacteria such as
Clostridiumwas increased. The diabetic patients were supplemented with probiotics,
prebiotics, and other microecological preparations to make intestinal flora; after
being regulated and reaching steady state, its blood glucose level will also improve.
Intestinal flora structural changes (e.g. reduction of Bacteroidetes/Firmicutes ratio,
butyric acid production, salt bacteria, etc.) is closely related to T2D and may pass
through those involved in SCFAs, LPS, fence-induced fat factors and bile acids
in vivo synthesis, induces the body to produce a variety of mechanisms (such as
chronic inflammatory response, generation Endotoxemia, etc.), which then leads to
the destruction of islet beta cells [313]. T2D reduces the body’s sensitivity to insulin,
and ultimate leads to death. Therefore, intestinal flora and T2D were actively studied
to make full use of intestinal flora for better control of T2D patients’ blood sugar.
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