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Abstract

Sugarcane is cultivated on about 26 M ha across tropics and subtropics worldwide
as a source of many industrial products, especially sugar and also bioenergy
purposes (biofuel as ethanol and electricity). As the crop is grown in a wide range
of climates, soils, and countries, different cropping systems are adopted across
producing areas, resulting in large genotype � environment � management
interactions, consequently large variations in yield levels are found. Climate
and its variability and change play an important role in plant processes. In this
chapter, a climate characterization of the main producing countries is presented
along with the influence of main weather variables on sugarcane growth, devel-
opment, and yields. The key variables of climate change are also explored. The
effect of weather conditions on key sugarcane yield-building processes are well
captured by process-based models. Two are embedded in the well-known and
readily available agricultural systems modeling platforms; DSSAT/CANEGRO
and APSIM-Sugar. These two models and a third (WaterSense) are described
briefly with highlights of recent improvements and weaknesses. Finally, this
chapter lists a series of application papers found so far in literature that included,
at least to some extent, the intrinsic effect of climate and its variability mostly
based on long-term weather data series. Special focus is then given to irrigation
and nitrogen management, yield analysis (gaps, benchmarking, and forecasting),
climate change issues, drought adaptation, and breeding studies. Even though
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sugarcane models have some weaknesses, they are considered as powerful tools
for understanding and proposing management and adaptive actions to mitigate or
increase yields in risky climates, in the present or future.
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8.1 Introduction

Sugarcane (Saccharum spp.) is grown in the tropics and subtropics around the world
as a source of food (mainly as sugar, and also as molasses), bioenergy (biofuel as
ethanol and electricity), and others (for instance, alcoholic beverages and chemicals).
Sugarcane products (especially sugar) are important components of the economy of
many countries worldwide, many of which are developing countries. Sugarcane is
produced by nearly 100 countries and occupies roughly 26 M ha of land (Table 8.1;

Table 8.1 Sugarcane production, area, and yield of the 20 largest producing countries worldwide
in 2017 (FAO 2019)

Country Production (M t)a % Total Area (M ha)b % Total Yield (t/ha)

Brazil (BRA) 758.5 41.19 10.18 39.2 74.5

India (IND) 306.1 16.62 4.39 16.9 69.7

China (CHN) 104.8 5.69 1.38 5.3 76.1

Thailand (THA) 102.9 5.59 1.37 5.3 75.2

Pakistan (PAK) 73.4 3.99 1.22 4.7 60.3

Mexico (MEX) 57.0 3.09 0.77 3.0 73.8

Australia (AUS) 36.6 1.99 0.45 1.7 80.6

Colombia (COL) 34.6 1.88 0.40 1.5 87.2

Guatemala (GTM) 33.8 1.83 0.28 1.1 121.0

United States (USA) 30.2 1.64 0.37 1.4 82.4

Philippines (PHL) 29.3 1.59 0.44 1.7 66.9

Indonesia (IDN) 21.2 1.15 0.43 1.7 49.3

Argentina (ARG) 19.2 1.04 0.38 1.5 50.6

Viet Nam (VNM) 18.4 1.00 0.28 1.1 65.3

South Africa (ZAF) 17.4 0.94 0.26 1.0 65.7

Cuba (CUB) 16.1 0.87 0.39 1.5 41.5

Egypt (EGY) 15.3 0.83 0.14 0.5 112.7

Myanmar (MMR) 10.4 0.56 0.16 0.6 63.5

Peru (PER) 9.4 0.51 0.08 0.3 121.2

Ecuador (ECU) 9.0 0.49 0.11 0.4 81.6

Others 138.2 7.50 2.51 9.7 55.1

Overall 1841.5 100.00 25.98 100.00 70.9
aM t, mega tonnes (metric tons � 106)
bM ha, mega hectare (ha � 106)

218 H. B. Dias and G. Inman-Bamber



FAO 2019). The largest producer is Brazil, followed by India, China, and Thailand,
which together produce more than two-thirds (~ 69%) of the entire world’s sugar-
cane (Table 8.1).

A spatial view of sugarcane production by each country can be found in Fig. 8.1.
The crop is grown between roughly 35� north and south of the equator, where a wide
range of climates is found. A comparison between producing regions in terms of
climate in some countries is presented in Sect. 8.2. In addition to the variability faced
year by year, climate is changing arguably due to anthropic greenhouse gases
emissions, and further changes are predicted by climate scientists of the Intergovern-
mental Panel on Climate Change (IPCC 2014). Increments in global temperatures and
weather extremes such as heat and cold waves, drought, and flooding are likely to be
more severe and more often, which will affect agriculture, livestock, location and
production from forestry, and many others sectors of society and environment (IPCC
2014). Hence, it is important to develop an overall understanding of sugarcane
production systems worldwide to assess its vulnerability to climate change and
adaptation strategies. The sugarcane industry has a considerable potential to offset
greenhouse gases emissions (Börjesson 2009) considering its capability to produce
renewable energy (bioelectricity and ethanol). Thus it is likely that the cultivated area
with this crop will increase in regions where land is available for expansion, like under
degraded pastures in Brazil (Goldemberg et al. 2014; Alkimim and Clarke 2018).

A wide variety of production systems have evolved across the world in response
to local climates and soils as well as the availability of resources and genetic
material. Traditional and evolving arrangements between growers and millers and
scales of production also influence the way the crop is grown and delivered for
processing. The range of genotypes (varieties), planting dates and crop ages, row
spacings, irrigation methods, harvest methods, residue management, crop nutrition
(especially nitrogen), and pest, weed and disease control methods is large. Thus,
there are large genotype � environment � management (G � E � M) interactions
that affect crop growth, development, yield, and quality. Differences in yield levels
between producing countries can be found in Table 8.1. A basic understanding of

Fig. 8.1 Schematic representation of production quantities of sugarcane by country in 2017. Red
circles represent the 20 largest producing countries
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sugarcane yield-building processes responsive to climatic factors, including elevated
CO2 and high temperature, is described in Sect. 8.3.

Mechanistic or process-based crop models are useful tools that integrate crop/
genotype, weather/climate, and soil and management practices and can be used to
help with the understanding of G� E�M interactions, thus serving as powerful tools
for several sectors, such as consulting, farmers, agro-industry, government, and policy
makers (Boote et al. 1996; Lisson et al. 2005; Singels 2014; Wallach 2006). In
Sect. 8.4 we briefly describe crop models dedicated to sugarcane and summarize the
history of the two most important ones, with details of their most recent improvements.
Applications of sugarcane models for sustainability of the cropping systems regarding
irrigation, nitrogen fertilization, yield gap analysis, yield forecasting, impacts of
climate change, drought adaptation and breeding are also shown and discussed in
Sect. 8.5.

This chapter therefore aims to present the main sugarcane models and their role in
understanding and mitigating the impacts of climate variability and change on
sugarcane systems toward sustainable crop production.

8.2 Climate of Sugarcane Growing Regions Around the World

Climate is the average condition of weather variables at a given spatial scale (for
instance farm, site, region, or country) in a given time scale (for example, month and
year), thus, has a static pattern. The climate is influenced by basically two types of
factors: fixed and changeable. Latitude, altitude, distance of water bodies and main
oceans, and air and snow currents can be categorized as fixed factors. On the other
hand, changeable factors drive the variability within the same area and are influenced
by global, regional and local circulation of atmosphere. An important phenomenon
that affects climate variability worldwide, and thus crop yields, is the El Niño–
Southern Oscillation (ENSO), and also others like the Indian Ocean Dipole (IOD),
the North Atlantic Oscillation (NAO) and Tropical Atlantic Variability (TAV)
(Heino et al. 2018; Anderson et al. 2019).

Regarding climate variables for sugarcane growing regions, the monthly maxi-
mum air temperatures across sites range from 19 �C (January at Nanning, CHN) to
45 �C (June at Faisalabad, PAK), whereas minimum temperatures range from 6 �C
(July at Tucumán, ARG) to 31 �C (July at Faisalabad, PAK). Annual solar radiation
ranges from around 5000 MJ/m2/year (at Nanning, CHN) to more than 7000 MJ/m2/
year (at sites in EGY, PER, AUS, IDN, and GTM). Radiation and temperature are
the main drivers of sugarcane biomass accumulation under non-limiting (potential)
conditions (Muchow et al. 1997b; Inman-Bamber 2014; Sage et al. 2014). Rainfall,
evaporation from the soil and plant transpiration (evapotranspiration), air humidity,
and wind speed also affect yields and demand for irrigation (Thornthwaite 1948;
Allen et al. 1998; Inman-Bamber and McGlinchey 2003).

Rainfall varies through the year in all sugarcane countries and some monsoonal
countries have extremes with excessive rain in some months and very little in others
(Fig. 8.2). Sugarcane is grown in desert areas, such as in EGY, PER, and MMR,
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where average annual rainfall is less than 200 mm, and also in regions where rain is
more than 1500 mm, such as in GTM, PHL, and IND. Annual potential evapotrans-
piration ranges from 719 mm (at Florida, COL, highest place in terms of altitude) to
more than 1600 mm (at Mandalay, MMR). An integrative index called annual water
deficit, represented by the difference between rainfall and potential evapotranspira-
tion, can also be employed to compare the climate across sugarcane growing regions.
This index varies between�36 mm (at Florida, COL) to less than�1311 mm at sites
in MMR, EGY, and PAK. On the other hand, there are areas with excess of water,
especially in the monsoon months, such as those in the tropics where annual rainfall
surpasses potential evapotranspiration by more than 500 mm (GTM and IND).

Even in the same country, many types of climate and degrees of variability are
found, therefore, the better the understanding of the climate where the crop is grown,
the lower the risk of failure for new decisions and business plans. Climate zones
(CZ) may be distinguished within a production region based on homogeneity in
weather variables that have the greatest influence on crop growth and yield (van
Wart et al. 2013). CZs already exist for the South African sugar industry
(Bezuidenhout and Singels 2007a) and are used as a basis for providing forecasts
of sugarcane yield using a model-based system (presented in Sect. 8.5.4).

A recent spatial analysis framework called “technology extrapolation domain” or
TED (Edreira et al. 2018) couples soil with climatic factors and aims to facilitate the
assessment of cropping system performance across producing regions, including
continents, which in turn could facilitate the sharing of better management practices
toward improved yields. A simulation study with wheat in Argentina and Australia
was done to show the potential of the TED approach. The study revealed that an
annual rainfed double-crop (as adopted in Argentina) of wheat-mungbean would be
a superior alternative to the crop-fallow system that currently predominates in the
analog TED in Australia. While the use of CZs or TED approaches in the sugarcane
industry could be highly beneficial, the only country to adopt this approach to date is
South Africa. These types of approaches would also be useful for understanding and
adapting the current sugarcane production systems worldwide to changing climates.

8.3 Climate Influence on Sugarcane Performance

The performance of a particular crop, ultimately yields, can be categorized in terms
of the following levels (Rabbinge 1993; van Ittersum and Rabbinge 1997; Evans and
Fischer 1999; Lobell et al. 2009; van Ittersum et al. 2013; Fischer 2015):

• Potential yield (Yp): yield of a given cultivar grown in an environment to which it
is adapted that is not significantly affected by water, nutrients, lodging, and biotic
factors; being determined by solar radiation, air temperature, photoperiod, CO2

concentration, and other air constituents (determining factors).
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• Water-limited yield (Yw): similar to Yp, but influenced by water stress (limiting
factor) as determined by rainfall amount and distribution along the crop cycle,
evapotranspiration, soil water holding capacity, and topography.

• Water- and nutrient-limited yield: Yw plus nutrient deficiency (ies) and other
limiting factors.

• Attainable, exploitable, or economic yield: yield attained by farmers or a particu-
lar agro-industry with average natural resources when economically optimal
practices and levels of inputs have been adopted while facing all the vagaries of
weather in rainfed, supplementary- and full-irrigated cropping systems.

• Actual or average yield (Ya): yield actually obtained by farmers or a particular
agro-industry, considering the determining, limiting, and also reducing factors
associated with pests, diseases, weeds, and mechanical (harvester) damage.

Apart from its role in determining, limiting, and reducing factors that affect
sugarcane yield, climate also indirectly limits industry performance by affecting
field operations, and the transport, processing, and marketing of sugar (Muchow
et al. 1997b), and other products such as ethanol. While climate is important for these
processes, only yield determining and limiting processes are considered in this
chapter.

Before moving into climate interactions with the crop, a brief elucidation of
sugarcane plant is needed. Sugarcane species (Saccharum spp.) are generally
large, perennial, tropical, or subtropical grasses that evolved in environments with
high radiation incidence, high air temperatures, and large quantities of water (Moore
et al. 2014). Commercial sugarcane genotypes are complex interspecific hybrids
primarily between Saccharum officinarum L. (also known as noble canes) and other
species (Moore et al. 2014). According to (Bonnett 2014), sugarcane phenology can
be divided into the following stages: (1) germination from true seed or sprouting of
buds (from culm pieces or ratoons), (2) leaf development, (3) tillering, (4) stalk
elongation, (5) development of harvestable stalks, (6) maturation (sucrose accumu-
lation), and (7) flowering.

For commercial purposes, mainly for sugar production, the ideal climate for
sugarcane according to (Mangelsdorf 1950) is “a long, warm growing season and
a fairly dry, cool, but frost-free, ripening and harvest season, free from hurricanes
and typhoons”. As previously shown, however, sugarcane is grown in a wide range
of environments and many of these would never experience such ideal conditions
over a given crop. Furthermore, inter- and intra-seasonal meteorological conditions
during crop growth and development influence the yield-building and yield-limiting
processes of sugarcane, culminating in different levels of yields (Muchow et al.
1997b; Inman-Bamber 2014).

As sugarcane is planted with culm pieces in most industries worldwide, the
following description is based on this type of planting strategy. After planting or
harvesting, sprouting strongly depends on temperature and on soil water to some
extent (Yang and Chen 1980; Donaldson 2009; Smit 2010). Compared to other C4

plants, such as maize, sorghum, and napier grass, sugarcane grows slowly during the
early part of its growth period, characterized by rates of leaf and tiller production
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(Allison et al. 2007). Leaf and tiller production are both dependent on temperature,
soil water (Inman-Bamber 2004), and management (Bell and Garside 2005; Singels
and Smit 2009), all of which affect light interception by the canopy. The character-
istic initial slow growth of sugarcane is responsible for “wasting” radiation in the
first few months (Inman-Bamber 2014). Generally, the warmer the climate, the faster
is the canopy development and the greater is the proportion of incident radiation
captured by the crop (Inman-Bamber 1994; Donaldson 2009; Dias et al. 2019).

As the sugarcane canopy develops, the ratio of leaf to ground area (leaf area index
or LAI) increases as does solar radiation interception and biomass production. Solar
radiation (approximately 300–3000 nm) is an important component of the energy
and water balances affecting crop growth and development, but photosynthetically
active radiation (PAR, 400–700 nm) is the component of radiation that is important
for the carbon balance and, hence, biomass accumulation. Canopy closure occurs
when 70% of PAR is intercepted by leaves, which depends on climate and variety, as
well crop management (Inman-Bamber 1994, 2014; Singels and Smit 2009). Leaf
and stalk initiation, elongation, and senescence are to a large extent influenced by
temperature and water stress (Inman-Bamber and Jager 1988; Inman-Bamber 1995,
2004; Robertson et al. 1996, 1998; Sinclair et al. 2004; Inman-Bamber and Smith
2005; Grof et al. 2010). However, Robertson et al. (1999a, b) found that water
deficits imposed during the tillering phase (LAI < 2), while having large impacts on
leaf area, tillering, and biomass accumulation, had little impact on final yield. Many
other factors in the G� E�M interaction during the long growth cycle of sugarcane
influence its biomass yield at harvest.

Biomass accumulation can be expressed in terms of radiation use efficiency
(RUE). RUE can be defined as the mass of aboveground biomass accumulated by
a crop per MJ of solar radiation or of PAR intercepted or absorbed by the green leaf
canopy (Monteith 1972; Sinclair and Muchow 1999; Bonhomme 2000). Sugarcane
is one of the most efficient crops in terms of RUE (Sinclair and Muchow 1999),
associated with high C4 rates of photosynthesis (Sage et al. 2014), a long growing
season (Inman-Bamber 2014), and low metabolic cost of plant organs (de Vries et al.
1989). RUE ranging between 1.38 g MJ�1 and 2.09 g MJ�1 are found in literature
(Robertson et al. 1996; Muchow et al. 1997a; da Silva 2009; Singels and Smit 2009;
De Silva and De Costa 2012; Ferreira Junior et al. 2015), which appears to be
strongly controlled by temperature during sugarcane growth (Donaldson 2009).
However, a recent study suggest that this trait is quite conservative between elite
varieties across production countries (Dias et al. 2019).

An important constraint in sugarcane yield, mainly in high input conditions, is
known as reduced growth phenomenon or RGP (Park et al. 2005; van Heerden et al.
2010). RGP was recognized in an indirect way in the past by authors such as Rostron
(1974), Lonsdale and Gosnell (1976), Thompson (1978), Inman-Bamber and
Thompson (1989), and Muchow et al. (1994). Factors such as lodging, reduced
nitrogen leaf content, stalk loss, negative feedback of sucrose accumulation on
photosynthesis, and increasing maintenance respiration during development and
maturation (sucrose) have been associated with RGP, but none of these causes
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have been clearly defined. Those factors for which meteorological conditions play an
important role are discussed next.

Lodging disrupts the canopy, damages stalks, and reduces yield through reducing
RUE in high-yielding areas where roots may be poorly supported in wet soil and a
wet canopy raises the crop’s center of gravity and in windy conditions (> 200 km
d�1) (Singh et al. 2002; van Heerden et al. 2010). Field experiments in Australia
(Singh et al. 2002) and South Africa (van Heerden et al. 2010) showed that lodging
reduces cane yields by 7.3–15% and sucrose yields by 8.8–35%, depending on the
variety and weather conditions.

The larger the biomass, the higher the maintenance respiration, which is also
increased with temperature up to a certain point (de Vries et al. 1989; Liu and Bull
2001; Jones and Singels 2019). It is likely therefore that global warming will
exacerbate the maintenance respiration rates of sugarcane. In high-yielding areas
where temperatures are consistently high, this process could be important for
biomass accumulation during the late stages of the growth cycle, thus contributing
to RGP (van Heerden et al. 2010). Maintenance respiration also depends of the type
of tissue (de Vries et al. 1989; Jones and Singels 2019) being maintained. A finding
in the van Heerden et al. (2010) study, based on data from well-watered and well-
managed crops in South Africa (Donaldson et al. 2008), was that crops which started
in summer (December) gave lower yields than those starting in winter (July). In
summer crops, the slowdown commenced in the next spring due to low
temperatures, but then persisted after temperatures rose again. Maintenance respira-
tion of high biomass yields in summer was thought to be a limiting factor for
sugarcane yield of summer crops.

Flowering, an undesired stage for commercial purposes (Moore and Berding
2014), is highly dependent on climate. After an initial juvenile stage of 2–3 months,
a decline of photoperiod (or day-length) from 12.5 to 12.0 h per day can lead to
flower induction in an unstressed crop and, in most cases, the emergence of the
inflorescence (Bonnett 2014; Moore and Berding 2014). As the photoperiod is
entirely latitude-dependent, the window for flower induction is easily found through
astronomical equations. Temperature also plays an important role in sugarcane
flowering which is favored by values higher than 18.3 �C (Coleman 1963) and
lower than 32 �C (Berding and Moore 2001), but other factors such as water and
nutrient status, genotype, and crop age also have their influence (Gosnell 1973;
Moore and Berding 2014). Thus, flower induction and emergence are highly depen-
dent on climate and its variability.

8.3.1 Climate Change-Related Environmental Variables

The global concentration of atmospheric CO2 is currently around 411 ppm (NOOA
2019), about 147% higher than pre-Industrial Revolution levels in the nineteenth
century (~ 280 ppm). Elevation of CO2 and other greenhouse gases with current and
future emission scenarios will lead to changes in climate patterns worldwide (IPCC
2014). Therefore, it is crucial to understand how sugarcane plants and cropping
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systems will be influenced by changing climates in order to predict impacts and to
design adaptive and mitigation actions.

The effect of CO2 on agricultural crops has been extensively studied, but for
sugarcane there are only a few studies that assess the impact of this gas on crop
performance. Photosynthesis and biomass yields increased and transpiration
decreased when CO2 was increased to 720 ppm for 70–350 days in pot studies
under near-optimum conditions (Vu et al. 2006; de Souza et al. 2008; Vu and Allen
2009a, b). The reported increments in photosynthesis might be influenced by
reduced transpiration and better water relations and also by short-term measurements
using small segments of leaves, not representing the whole-canopy (Stokes et al.
2016). Stokes et al. (2016) found no difference in photosynthesis or biomass yield at
elevated CO2 when plants were watered on demand, suggesting that the reported
increments in biomass were due to water-related processes. Even under water stress,
elevated CO2 does not directly enhance C4 species photosynthesis (Ghannoum et al.
2003). Sorghum and maize (C4 crops) grown in free-air CO2 enrichment field
experiments (FACE) showed higher shoot biomass and yields only when water
stress was imposed (Kimball 2016). It is known that crop responses to CO2 in
FACE experiments are lower than open-top chambers or glasshouses (Ainsworth
et al. 2008). Although FACE experiments with sugarcane have not been reported so
far, Stokes et al. (2016) presented model simulations to show how open canopy
(FACE) conditions would dampen the response to CO2 measured on single leaves or
plants. Summing up, the CO2 responses in sugarcane might be predominantly
restricted to reductions in water use rather than an augmented photosynthesis rate,
which is quite well represented with model simulations (Stokes et al. 2016; Jones
and Singels 2019). It does not necessarily minimize the need for new experiments,
particularly under field conditions, which will confirm or bring new evidence to this
important matter.

Climate change is likely to increase the frequency and intensity of weather
extreme events, such as droughts, floods, and heat and cold waves (IPCC 2014).
Drought is a common concern and some countries have already started programs to
improve varietal resistance to drought (Basnayake et al. 2012). Heat stress physiol-
ogy is a topic that has received little attention in sugarcane research (Inman-Bamber
et al. 2011; Lakshmanan and Robinson 2014). According to Lakshmanan and
Robinson (2014), heat stress is an abiotic stress that refers to a condition in which
plants experience irreversible physical or metabolic injury following exposure to a
threshold temperature for a period of time that varies from species to species. Despite
being adapted to warm climates, air temperatures beyond 40 �C affect sugarcane
germination and shoot emergence, leaf phenology, and increase plant respiration
(Bonnett et al. 2006; Lakshmanan and Robinson 2014; Jones and Singels 2019), thus
affecting yields.
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8.4 Process-Based Models Dedicated to Sugarcane

According to Wallach (2006) “crop models are mathematical models which describe
the growth and development of a crop interacting with soil” that “consist of a set of
dynamic equations that are integrated to get predictions of responses versus inputs”.
The dynamic nature of crop models is essential for simulating G � E � M
interactions when climate variability and change are involved. Thereby, crop models
can be used for many application studies (Boote et al. 1996; Wallach 2006),
including some for the sugarcane industry (Lisson et al. 2005; Singels 2014).

This section presents the current crop models dedicated to sugarcane and
summarizes the history and recent improvements for three of them after Singels
(2014), highlighting their strengths and weaknesses. Simple statistical or empirical
models (i.e. Thompson 1976; Kingston 2002; Cardozo et al. 2015) and those based
on data mining techniques (i.e. Everingham et al. 2016; de Oliveira et al. 2017;
Peloia et al. 2019) are not addressed here despite their usefulness in the conditions
where they were developed and tested (see Chap. 4).

Process-based crop models found in literature that are dedicated to, or adapted
for, sugarcane are listed in Table 8.2. Further details about some of them can be

Table 8.2 List of process-based sugarcane models

Model Main references

Developed specifically for sugarcane crop

CANEGRO Inman-Bamber (1991), Singels and Bezuidenhout (2002), Singels et al.
(2008), Jones and Singels (2019)

CANESIM Bezuidenhout and Singels (2007a, b)

AUSCANE Jones et al. (1989)

APSIM-Sugar Keating et al. (1999), Thorburn et al. (2005), Inman-Bamber et al. (2016)

QCANE Liu and Kingston (1994), Liu and Bull (2001)

WaterSense Inman-Bamber et al. (2005, 2007), Armour et al. (2013), Stokes et al.
(2016)

Singels & Inman-
Bamber

Singels and Inman-Bamber (2011)

MOSICAS Martiné (2003)

CASUPRO Villegas et al. (2005)

SimCana Machado (1981)

SAMUCA Marin and Jones (2014)

Included in, or adapted from, other crop model platforms

AquaCrop Steduto et al. (2009), Bello (2013)

CropSyst Stöckle et al. (2003), Tatsch et al. (2009), Scarpare et al. (2018)

SWAP-WOFOST Qureshi et al. (2002), van Dam et al. (2008), Scarpare (2011), Boogaard
et al. (2014)

ALMANAC Kiniry et al. (1992), Meki et al. (2015), Baez-Gonzalez et al. (2018)

BioCro Miguez et al. (2009), Jaiswal et al. (2017)

PS123 Driessen and Konijn (1992), van den Berg et al. (2000)

Agro-IBIS Kucharik and Brye (2003), Cuadra et al. (2012)

STICS Brisson et al. (1998), Valade et al. (2014)
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found in Singels (2014) and the papers listed in Table 8.2. The majority of these
sugarcane models are not available publicly and this limits model evaluation,
intercomparison, identification of shortcomings for improvements and application.

Sugarcane models usually employ the concepts of yield levels as in Sect. 8.3 and
are able to predict Yp and Yw at least, and some of them simulate the interaction
with nitrogen and residues (such as APSIM-Sugar and QCANE). The time step of
calculations is usually 1 day, but some sub-models operate hourly. Phenology or
developmental stages are commonly driven by thermal time (or growing degree-
days), using one or more cardinal temperatures. Light interception by the canopy is
mostly simulated using Beer’s Law (Monsi and Saeki et al. 1953, cited by Saeki
1963), where the exponent is the product of LAI and a light extinction coefficient.
The amount of solar radiation or PAR intercepted is then converted via RUE to
generate crop biomass. Some sophisticated photosynthesis and respiration
sub-models are employed such as in BioCro, or a more simplified
RUE-transpiration use efficiency (TUE) approach such as in APSIM-Sugar. The
biomass produced, limited or not by environmental stresses, is then partitioned to
several plant components or just to stalks or sucrose, via allometric fractions or a
simple harvest index. A common limitation in many of the sugarcane models,
including those with continuous improvements, is the lack of traits or parameters
for varieties that are currently grown commercially. Efforts to improve a model’s
ability and applicability to simulate variety differences are rare in sugarcane
modeling with a few exceptions (Cheeroo-Nayamuth et al. 2000; Singels and
Bezuidenhout 2002; Suguitani 2006; Singels et al. 2010a; Singels and Inman-
Bamber 2011; Sexton et al. 2014; Thorburn et al. 2014; Leal 2016; Hoffman et al.
2018; Dias et al. 2020).

The two models widely used and currently available, APSIM-Sugar and
CANEGRO, are explored in Sects. 8.4.1 and 8.4.2, with a focus on recent
improvements after the comprehensive review by Singels (2014). WaterSense is
another important sugarcane model that was not explored in Singels’ review, thus we
review this model concerning its concepts and performance in Sect. 8.4.3. Lastly,
strengths and weaknesses of the models are briefly explored in Sect. 8.4.4 and gaps
for advancing the knowledge on sugarcane modeling are highlighted as well.

8.4.1 CANEGRO

The development of the CANEGRO model started in the 1980s after questions
posed by South African sugar industry to their local sugarcane scientists. One of the
key questions was in regard to the optimum crop age at harvest because of a problem
with an important sugarcane pest (Eldana borer) particularly for crops older than
12 months (Inman-Bamber and Thompson 1989). South African Sugarcane
Research Institute (SASRI, former SASEX) is the institution involved with past
and present CANEGRO activities. CANEGRO modeling group is also involved
with other initiatives such as the International Consortium for Sugarcane Modelling
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(ICSM, https://sasri.sasa.org.za/agronomy/icsm/index.php) and The Agricultural
Model Intercomparison and Improvement Project (AgMIP, http://www.agmip.org/).

A timeline of main events of CANEGRO development, reviews, and
improvements is presented in Fig. 8.3, in which many of these events were described
and detailed by Inman-Bamber (2000), O’Leary (2000), Lisson et al. (2005), Singels
et al. (2008) and Singels (2014). Currently, the model is readily available in the
Decision Support System for Agrotechnology Transfer (DSSAT, latest version
4.7.5, Hoogenboom et al. 2019) software.

Jones and Singels (2019) recently proposed improvements to CANEGRO regard-
ing deficiencies found in the model, and in key plant processes influenced by
changing climate variables (temperature and CO2). Thermal time calculations, a
main driver of canopy development and growth in the model, is now limited by high
as well as low temperature. A simpler, more dynamic tiller sub-model that accounts
for water and temperature stresses, bud population, and the shading effect of the
developing canopy was implemented. Maintenance respiration for total biomass was
replaced by respiration required for living tissue and the cycling of stored sucrose in
the stalk. The CERES water stress approach (Jones and Kiniry 1986) was replaced
with the simpler AquaCrop model (Steduto et al. 2009), which according to the
authors, enables a more gradual and realistic transition from well-watered to water-
stressed states. CO2 effects are simulated by modifying the stomatal resistance term
in the calculation of canopy resistance (Allen et al. 1985), which together with
canopy radiation interception and sugarcane reference evaporation is used to calcu-
late potential transpiration, following Singels et al. (2008) and Boote et al. (2010).
The direct effect of CO2 on sugarcane photosynthesis is accommodated in a new
algorithm but will have no influence on photosynthesis with current or higher CO2

levels unless new evidence from physiological studies shows otherwise (topic
discussed in Sect. 8.3).

Fig. 8.3 Timeline of main events of the CANEGRO model currently embodied in the DSSAT
cropping system
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Although CANEGRO was built to benefit the South African sugar industry rather
than other growing regions worldwide (Inman-Bamber 2000), many versions of the
model have been successfully adapted for other varieties/cropping systems world-
wide, including Brazil (Marin et al. 2011, 2015; Dias and Sentelhas 2017), Mauritius
(Cheeroo-Nayamuth et al. 2003), and India (Bhengra et al. 2016). Recent
improvements by Jones and Singels (2019) could well replace the various versions
around the world given that the modifications have been introduced to make the
model more representative of a wide range of varieties and cropping systems. This
would help to concentrate testing and improvement on just one version for the
model.

8.4.2 APSIM-Sugar

The Agricultural Production Systems SIMulator (APSIM) is a modular modeling
framework that allows for farming system simulations according to a “plugged
in/out” approach of desired modules, such as crop, soil and management practices
(McCown et al. 1996; Keating et al. 2003; Holzworth et al. 2014). APSIM was first
designed and developed in the early 1990s by a group called the Agricultural
Production Systems Research Unit (APSRU) formed by a collaboration between
regional Australian government agencies (Queensland State) and the Common-
wealth Scientific and Industrial Research Organisation (CSIRO). A module for
sugarcane was built by Keating et al. (1999) as one of APSIM’s many crop modules
to overcome the weakness of key biological aspects of a previous widely distributed
cane model in Australia called AUSCANE (O’Leary 2000). Currently, APSIM is an
initiative headed by Australian and New Zealand organizations, in which the CSIRO
is an important leader. Version control is a key aspect of their approach, so there is
only one version of the “Sugar” module available for any one release of the APSIM
platform.

A timeline of main events of APSIM-Sugar development, reviews, and
improvements is presented in Fig. 8.4. Unlike CANEGRO, APSIM-Sugar’s first
version was evaluated across a diverse range of varieties and environments from
Australia, South Africa, Swaziland, and USA (Hawaii) with considerable success
(Keating et al. 1999; O’Leary 2000). The nitrogen and carbon cycles were important
to the Australia sugar industry due to off-site impacts on the Great Barrier Reef and
the impact of residues on water conservation, soil health, and mechanization. The
nitrogen and residue modules were reviewed and improved in the early 2000s
(Thorburn et al. 2005). Greenhouse gases emissions in sugarcane fields were also
a target for model improvement in 2000s (Thorburn et al. 2010).

The sugarcane crop module itself has received little attention in terms of
improvements since its development. The user is allowed a large degree of control
through various parameter files and the model has been quite successfully adapted
for other varieties/cropping systems worldwide, including Brazil (Marin et al. 2015;
de Oliveira et al. 2016; Costa 2017; Dias and Sentelhas 2017), Mauritius (Cheeroo-
Nayamuth et al. 2000) and USA for bioenergy grasses species (Ojeda et al. 2017). A
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preliminary assessment raised the question of whether APSIM-Sugar was able to
predict yield differences between varieties after the inclusion of their specific
phenology traits (Thorburn et al. 2014). The study suggested that vital phenology
data for varieties may be deficient or the APSIM-Sugar model (and real sugarcane
crops) are not overly sensitive to these traits when it comes to yield comparisons.
Some of the model’s shortcomings were recently raised and reasonably addressed by
Inman-Bamber et al. (2012, 2016) and Dias et al. (2019), and are briefly
described next.

Inman-Bamber et al. (2012) performed a theoretical study assessing traits for
water-limited environments and found that transpiration efficiency and rooting depth
were the ones with potentially important commercial impacts. Nevertheless,
APSIM-Sugar lacked the capability for determining the trade-offs and interactions
between traits. The shortcomings were later addressed by Inman-Bamber et al.
(2016) resulting in the enhanced capability of APSIM-Sugar to simulate water-
related physiological processes aiming to support crop improvement in breeding
programs and to better distinguish between varieties in the model. The following
four features were included and tested against the original dataset used for the
model’s development as well additional data from other field experiments: (1) the
response of transpiration efficiency to water stress, (2) the midday flattening of
hourly transpiration when plants are stressed, (3) conductance limits to hourly
transpiration, which can apply even without stress, and (4) the separation of soil
hydraulic conductivity (k) and root length density (l ) rather than the use of a
combined kl for determining root water supply. The new features allowed APSIM-
Sugar to account well for observed yields and thus to accommodate genetic
differences in stomatal conductance, responses to vapor pressure deficit, and
differences in shoot:root ratio. The response of transpiration efficiency to CO2 was
also incorporated, in line with the CO2 responses found in the literature for C4 crops.
No field data is yet available to validate the CO2 response, however.

Fig. 8.4 Timeline of main events of the APSIM-Sugar model

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 231



Dias et al. (2019) tested APSIM-Sugar in a new, hot environment where sugar-
cane is expected to expand in Brazil. Outstanding yields under high input conditions
(water and nutrients) were achieved by six Brazilian varieties grown in six planting
dates and harvested at about 8, 11.5 and 15 months. High yields were explained by
high but not excessive temperatures allowing the canopy to close after 73 days on
average. Fresh cane yield accumulated on average at about 23 t/ha per month up to
8 months and then at about 10 t/ha per month thereafter. A new modeling feature was
proposed to deal with the observed growth slowdown when the crop was about
8 months old and stalk dry mass yields were about 40 t/ha. This slowdown was
attributed to a reduced growth phenomenon (RGP) discussed above (Sect 8.3).
While a number of factors are thought to contribute to the RGP (Sect. 8.3) the new
version of APSIM allows for RUE to be modified by leaf stage as a catchall for all
RGP factors. Canopy parameters and slowdown factors linked to leaf stage were
validated with independent experiments as well as with the original dataset used for
developing the model. APSIM-Sugar now allows for reliable simulations in
environments where high yields are expected. Despite the advances with these
empirical slowdown coefficients, a mechanistic way to deal with RGP is still needed.

8.4.3 WaterSense

WaterSense was developed as a web-based irrigation scheduling system from
concepts embodied in APSIM-Sugar and CANEGRO. The CANEGRO model was
considered to be more reliable for representing the energy balance and APSIM the
carbon balance (Inman-Bamber et al. 2005, 2006, 2007). WaterSense is no longer
available as web service but the concepts are worth discussing here because of the
benefits that were, and still can be obtained from combining concepts used in the two
most widely applied modeling platforms for sugarcane. The concepts in WaterSense
can also be easily adapted for use in other crops. Armour et al. (2013) showed how
well drainage was simulated for both banana and sugarcane using WaterSense.
Stokes et al. (2016) showed how WaterSense could be used to scale up from leaf
to canopy in regard to CO2 effects on stomatal resistance. Everingham et al. (2015)
used this capability to for assessing climate change impacts on sugarcane in
Australia.

In WaterSense, the development of the canopy, radiation interception, biomass
accumulation and root water extraction are all based on concepts embodied in
APSIM-Sugar. Potential transpiration is derived from reference evapotranspiration
from FAO56 Penman-Monteith equation (Allen et al. 1998) and a crop factor
(Kc) approach, similar to the recent version of the CANEGRO model. Evaporation
from the soil surface is obtained from the amount of radiation reaching the soil
surface and the water content of the top layer of soil (Armour et al. 2013).

The development of WaterSense in conjunction with farmers is an example of
how research tools can be appropriated for end-users, provided the “technological
frames” of developers and users overlap sufficiently after a “mutual” or “participa-
tory action” learning process (Inman-Bamber et al. 2006; Webb et al. 2006; Jakku
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and Thorburn 2010). The outcome of the successful merging of technological frames
for irrigation management during the development of WaterSense are now embodied
in an active web service for sugarcane farmers in Australia provided by consultants
(Wang et al. 2018a).

8.4.4 Model’s Weaknesses

Historically, sugarcane models were developed on existing knowledge of crop
physiology. It soon became evident that the knowledge available to account for
available observations of crop growth, development, and yield was incomplete, and
this led to an iterative process between field research and model building. For
example, Lisson et al. (2005) acknowledged that crop aging processes, sucrose
accumulation, water stress physiology, and the physiology of water retention in
stalks, were important gaps for sugarcane at that time. Inman-Bamber et al. (2012)
identified weaknesses in modeling the interaction between various drought resis-
tance mechanisms. Some of these gaps have been filled at least to some extent; for
example, Inman-Bamber et al. (2016) on drought resistance mechanisms and Dias
et al. (2019) on aging. Knowledge gaps in water stress physiology have received
more attention than other gaps in physiological knowledge because of the large
influence of the water balance on crop production (Inman-Bamber and Jager 1988;
Robertson et al. 1999a; Inman-Bamber and Smith 2005; Smit and Singels 2006;
Singels et al. 2010b; Basnayake et al. 2012, 2015; Jackson et al. 2016; Marchiori
et al. 2017; Zhao et al. 2017a). Generally, sugarcane models have been predicting
Yw (rainfed conditions) quite well worldwide (see validations of Keating et al. 1999;
Cheeroo-Nayamuth et al. 2000; Liu and Bull 2001, Inman-Bamber et al. 2001, 2016;
Singels et al. 2008, 2010a; Sexton et al. 2014; Marin et al. 2015; Dias and Sentelhas
2017; Jones and Singels 2019).

O’Leary (2000) tested and reviewed three sugarcane models (APSIM-Sugar,
CANEGRO and QCANE) regarding sucrose dynamics. This author proposed a
(conceptual) process-based model that takes into account the dynamics between
sucrose and reducing sugars and factors such as water, nitrogen, and temperatures
stresses. Singels and Bezuidenhout (2002) improved the dry matter partitioning of
CANEGRO regarding water stress and temperature, and suggested an interesting
option to accommodate effects of nitrogen, variety differences, and ripener as well.
Singels and Inman-Bamber (2011) proposed a process-based model that helped to
understand genetic differences in sucrose accumulation and responses to water and
temperature, by accounting for the differences in plant development and partitioning
to structural components such as leaf and stalk fiber. Aging processes and lodging
have received some attention in the literature (Park et al. 2005) and in improvements
to some models such as CANEGRO (van Heerden et al. 2015) and APSIM-Sugar
(Dias et al. 2019). Water retention in stalks remains as a weakness in current models
and is an important issue because of its impact on costs of cane harvesting and
transportation (Lisson et al. 2005).
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Other important topics on sugarcane physiology for advancing our understanding
and improving existing models are root dynamics and its role in crop yield-building
processes, nutrients, flowering, and heat stress effects. Theoretical studies by Inman-
Bamber et al. (2012) and Singels et al. (2016) with APSIM-Sugar and CANEGRO,
respectively, indicated that roots are an important component for drought adaptation
and that knowledge is limiting for modeling and understating adaptation to water
stress. Studies by Chopart et al. (2008, 2010), Laclau and Laclau (2009) and Otto
et al. (2011) provided valuable information for improved simulation of root profiles,
penetration rate, and specific root length. This knowledge has not yet been used in
models as far as we know.

While some models include a comprehensive nitrogen balance, the high nitrogen
use efficiency found in Brazilian cropping systems (Robinson et al. 2011; Otto et al.
2016), particularly for plant cane (Franco et al. 2011), has not been well clarified.
This is a topic that deserves attention because it could bring important insights for
nitrogen management worldwide.

Sugarcane models do not currently simulate flowering even though flowering in
favorable environments causes large losses in yield and quality worldwide. Simula-
tion of this process would help in many applications such as determining yield
potential, harvest management, varietal planning, and decision-making for chemical
control.

Lastly, but not least, heat stress is expected to be an important crop constraint in
tropical areas under changing climates where temperatures and heat waves are
predicted to increase considerably. Temperature response functions in wheat and
maize process-based models have been recently revised and improved for predicting
yields in changing climates (Wang et al. 2017, 2018b). Jones and Singels (2019)
made improvements in CANEGRO regarding temperature effects, but in other
models this topic has received little attention.

The future of sugarcane models will also depend on advances and cooperation
with genetics research, which has indeed already started for annual crops (Singels
2014). Simulations could indicate the desirability of traits (or QTL or genes) in target
environments and thus help for ideotyping and breeding by design (Singels 2014;
Hoffman et al. 2018).

Targeted experimentation and perhaps revisitation of existing experimental data
to gain insight into sugarcane processes that still are poorly understood, such as crop
slowdown with age, lodging, and roots-related and heat stress, will be needed.

8.5 Toward Sustainable Sugarcane Production: Usefulness
of Process-Based Models Applications

Applications of sugarcane process-based models started in the beginning of 1990s
with the development of CANEGRO (Fig. 8.3), ramping up considerably after
CANEGRO’s inclusion in the DSSAT platform in 1997 and 2008 (Figs. 8.5 and
8.6). During the end of 1900s and beginning of 2000s, APSIM-Sugar applications
increased substantially with a peak of papers published in 2001 (Figs. 8.5 and 8.6).
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The second boom of the use of sugarcane models happened around 2007 and since
then, modeling publications increased year by year, reaching other peaks in 2016
and 2018 (Fig. 8.5). Table 8.3 lists many of the referenced studies that employed
sugarcane models we have found so far, categorized by the type of application. The

Fig. 8.5 Sugarcane process-based model application papers published over years

Fig. 8.6 Papers published per and over years categorized according to the main models
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Table 8.3 List of various types of applications of the sugarcane models and example references
that describe these applications in detail, organized by continent on which the studies were
conducted. Participations, as a percentage of total number of papers, of each continent are shown
in brackets

Continent Application References

Americas Breeding support &
variety comparison

Suguitani (2006), Leal (2016)

(22%) Climate variability &
change

da Silva (2012), Bello (2013), Singels et al. (2014), dos
Vianna and Sentelhas (2014), de Carvalho et al. (2015),
Marin et al. (2015), Jaiswal et al. (2017), Baez-Gonzalez
et al. (2018), Sentelhas and Pereira (2019)

Crop/Farm
management

Galdos et al. (2009a, b) Brandani et al. (2015), de
Oliveira et al. (2016)

Fertilizer management Costa et al. (2014), Marin et al. (2014), de Oliveira et al.
(2016), de Barros et al. (2018)

Water management &
efficiency

dos Vianna and Sentelhas (2016), Costa (2017), Dias and
Sentelhas (2018a)

Yield benchmarking &
gap

van den Berg et al. (2000), Marin et al. (2016), Dias and
Sentelhas (2018b

Yield forecasting Pagani et al. (2017)

Asia Breeding support &
variety comparison

Bhengra et al. (2016)

(7%) Climate variability &
change

Jintrawet and Prammaneem (2005), Ahmad et al. (2016),
Mishra et al. (2017), Ruan et al. (2018), Gunarathna et al.
(2019)

Water management &
efficiency

Qureshi et al. (2002)

Yield benchmarking &
gap

Zu et al. (2018)

Yield forecasting Promburom et al. (2001), Piewthongngam et al. (2009),

Africa Breeding support &
variety comparison

Cheeroo-Nayamuth et al. (2003, 2011), Hoffman et al.
(2018)

(32%) Climate variability &
change

Inman-Bamber (1994), Martiné et al. (1999), Cheeroo-
Nayamuth and Nayamuth (2001), Walker and Schulze
(2010), Knox et al. (2010), Black et al. (2012), Singels
et al. (2018), Jones et al. (2014, 2015), Singels et al.
(2014), Hoffman et al. (2017), Jones and Singels (2019)

Crop/Farm
management

Bezuidenhout et al. (2002), McGlinchey and Dell (2010),
Paraskevopoulos et al. (2016)

Drought adaptation Singels et al. (2016)

Fertilizer management Thorburn et al. (2001b), Van Antwerpen et al. (2002),
van der Laan et al. (2011)

Water management &
efficiency

Inman-Bamber et al. (1993), McGlinchey et al. (1995),
Donaldson and Bezuidenhout (2000), Olivier and Singels
(2001), Singels and Smith (2006), Kunz et al. (2014),
Paraskevopoulos and Singels (2014), Singels et al.
(2019)

Yield benchmarking &
gap

Inman-Bamber (1995), Cheeroo-Nayamuth et al. (2000,
2011), Singels (2007), van den Berg and Singels (2013),
Jones and Singels (2015), Christina et al. (2019)

(continued)
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majority of model applications found employed APSIM-Sugar (45%) mostly in
Australia, and CANEGRO plus CANESIM (a simpler version of CANEGRO)
(37%) mostly in South Africa (Fig. 8.5). Use and applications of APSIM-Sugar
and CANEGRO have increased in Americas in this decade, especially in Brazil
(Table 8.3).

Water management and efficiency, nitrogen management, yield benchmarking,
gap, and forecasting, and most recently climate change impact studies predominate
in sugarcane model applications (Table 8.3 and Fig. 8.7). A common aspect in
applications of models is the intrinsic effect of climate and its variability on
production. Long-term climate series were employed in the majority of these studies.
The following subsections provide some examples of model applications aimed at
informing sustainable planning and decision-making processes in the sugarcane
sector (Fig. 8.7).

Table 8.3 (continued)

Continent Application References

Yield forecasting Lumsden et al. (1998), McGlinchey (1999), de Lange
and Singels (2003), Bezuidenhout and Singels
(2007a, b), Martiné (2007), Morel et al. (2014a, b)

Oceania Breeding support &
variety comparison

Sexton et al. (2014)

(40%) Climate variability &
change

Lisson et al. (2000), Park et al. (2007), Park (2008),
Webster et al. (2009), Biggs et al. (2013), Singels et al.
(2014), Everingham et al. (2015)

Crop/Farm
management

McDonald and Lisson (2001)

Drought adaptation Inman-Bamber et al. (2012, 2016)

Environmental
pollution

Thorburn et al. (2001a, 2010, 2011), Webster et al.
(2009), Armour et al. (2013), Biggs et al. (2013)

Fertilizer management (Keating et al. (1997), Thorburn et al. (1999, 2001b,
2003, 2004, 2017, 2018), Stewart et al. (2006), Park et al.
(2010), Skocaj et al. (2013), Meier and Thorburn (2016),
Zhao et al. (2017b), Kandulu et al. (2018)

Land management Mallawaarachchi and Quiggin (2001)

Pest management Liu and Allsop (1996)

Water management &
efficiency

Robertson et al. (1997, 1999b), Muchow and Keating
(1998), Inman-Bamber et al. (1999, 2001, 2004, 2005,
2006), Attard et al. (2003), Everingham et al. (2002,
2008), Stoeckl and Inman-Bamber (2003), Lisson et al.
(2003), Webb et al. (2006), Inman-Bamber and Attard
(2008), An-Vo et al. (2019)

Yield benchmarking &
gap

Muchow et al. (1997b), Liu and Bull (2001)

Yield forecasting Everingham et al. (2002, 2005, 2007, 2009, 2016)
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8.5.1 Irrigation Management

Irrigation and its associated topics (for example, water allocation and water use
efficiency assessment) are some of the most common areas of sugarcane model
applications (Table 8.3). Examples are:

• Helping farmers with irrigation planning and management with web-based tools
(McGlinchey et al. 1995; Inman-Bamber et al. 2005, 2007; Singels and Smith
2006; Inman-Bamber and Attard 2008), by coupling with seasonal climate
forecasts (Everingham et al. 2002, 2008; An-Vo et al. 2019), or for new
environments where little is known (Muchow and Keating 1998; Lisson et al.
2000; Inman-Bamber et al. 2006);

• Optimizing yields and making the best use of limited irrigation water (Inman-
Bamber et al. 1999, 2007; Singels et al. 1999, 2019);

• Estimating drying-off days before harvest to optimize sucrose yields (Robertson
et al. 1999b; Donaldson and Bezuidenhout 2000; Dias and Sentelhas 2018a);

• Dimensioning dam building for water storage (Lisson et al. 2003);
• Assessing risks of crop lodging considering irrigation strategies across varieties,

environments, and growing months (Inman-Bamber et al. 2004; Paraskevopoulos
et al. 2016).

Consultants are now using models to provide some of these irrigation applications
as well as other services for sugarcane production (https://www.sqrsoftware.com/;
http://agritechsolutions.com.au/).

Fig. 8.7 Papers published per year and over years categorized according to the main types of
application
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8.5.2 Nitrogen Management and Its Implications to Environment

Nitrogen management is a particular topic that has been evaluated using sugarcane
models (Table 8.3), mostly with APSIM-Sugar. Mechanization in sugarcane fields
has increased in many areas worldwide, especially at harvesting, requiring
adjustments in the cropping systems due to the residues left in the soil. Impacts of
the green cane trash blanket on cane yield, soil components, and nitrogen fertilizer
requirements have been assessed in Australia (Thorburn et al. 1999, 2001b, 2004;
Meier and Thorburn 2016), South Africa (Thorburn et al. 2001b; Van Antwerpen
et al. 2002) and Brazil (Costa et al. 2014; Marin et al. 2014; de Oliveira et al. 2016;
de Barros et al. 2018) by using APSIM-Sugar.

Crop rotation with legumes to provide nitrogen through biological fixation is a
practice that is recommended in many sugarcane cropping systems worldwide. Park
et al. (2010) employed APSIM-Sugar to assess the impact of soybean rotation on
nitrogen requirements in six sites (four of them in the Burdekin region) across
Australia. Long-term simulations showed that nitrogen fertilizer could be reduced
around 60–100%, 40–100%, 20–60%, 5–30% and < 10% for plant crops and the
subsequent four ratoons, respectively, when compared to bare fallow systems. Their
findings suggest a potential economic and environmental win–win outcome from
refining and adopting sugarcane–legume rotation cropping systems in Australia and
perhaps other countries.

Thorburn et al. (2017) simulated nitrogen management practices such as fertilizer
rate, timing, and splitting, fallow management and tillage intensity with APSIM-
Sugar across several sites in Australia and concluded that optimizing the application
rate and fallow management should be prioritized for improving the nutrient effi-
ciency. Thorburn et al. (2018) recently showed that rather than trying to improve
nitrogen recommendations by changing concepts around target yields, the direct
prediction of optimum nitrogen rates through the application APSIM-Sugar would
be more beneficial for Australian environments, since the model captures soil and
crop physiological processes, and their interactions with climate and management.

Environment implications of nitrogen fertilization can be also assessed through
sugarcane models. Reducing impacts into the World Heritage listed Great Barrier
Reef Marine Park from sugarcane farming is a particular concern in Australia.
Sugarcane models (mainly APSIM-Sugar) have been applied to estimate nitrogen
losses through runoff and leaching at several sites in the Australia Northeast region
(Thorburn et al. 2003, 2011, 2017; Stewart et al. 2006; Armour et al. 2013; Biggs
et al. 2013) and at Pongola, South Africa (van der Laan et al. 2011). Kandulu et al.
(2018) integrated the APSIM-Sugar model with other techniques (probability theory,
Monte Carlo simulation, and financial risk analysis) in a framework that allowed an
assessment of economic and environmental trade-offs for nitrogen management
strategies considering variable climatic and economic conditions. The framework
was applied to a high rainfall production area close to the Great Barrier Reef in
Australia. On average, net economic returns and nitrogen fertilizer rates were
lowered when environmental costs were taken into account (Kandulu et al. 2018).
This framework is interesting because it incorporates farmer risk behavior and
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environmental impacts, which in turn enhances the sustainability of a particular
cropping system.

8.5.3 Yield Gap and Benchmarking

There are at least four approaches to estimate Yp and Yw and then to perform yield
gap and benchmarking analysis; however, crop simulation models are recommended
as a preference for such analyses, once they take into account the biological,
biochemical, and biophysical aspects related to crop yield (van Ittersum et al. 2013).

Inman-Bamber (1995) first used CANEGRO to assess Yp and Yw (stalk and
sucrose fresh mass yields) for 32 sites in South Africa considering two types of soils
(a shallow loamy-sand and a deep structured one). These estimates were validated
with variety trials, where variety NCo376 was common at 17 sites. Differences
between Yp and Yw varied greatly depending on rainfall. In South Africa, irrigation
is essential where Yw is less than 75% Yp. Years later van den Berg and Singels
(2013) compared Yw estimates of CANESIM with Ya from small- and large-scale
farmers using a CZ approach. Considering the period from 1988 to 2010, on average,
Ya of large-scale farmers reached 77% of Yw, while for small-scale growers Ya
stayed below 50% Yw. Factors such as damaging effects of a new pest (sugarcane
thrips), inadequate nutrition and inadequate replanting, apparently linked to unfa-
vorable socioeconomic conditions, were hypothesized to be the causes of the
suboptimal production, revealing important points to be tackled by South African
sugar industry.

Muchow et al. (1997b) demonstrated the remarkable variation in commercial
sugar yields (Ya) across 14 sites along the Australian east coast and compared these
to Yp using long-term APSIM-Sugar simulations. Maximum yields at four of these
sites in some growing seasons were equivalent to Yp in less than 5% of the area
harvested. District mean yields were 53–69% of Yp showing considerable room for
improvement in the Australian sugar industry.

CANEGRO was used to develop norms for yield decline over successive ratoons
in Swaziland (McGlinchey and Dell 2010). Yields tended to decline by about 1% for
each successive ratoon in good soils but as much as 2.8% in poor soils. Ya/Yp for
plant crops ranged from 0.81 to 0.90 depending on soil type.

Similar studies were performed using CANEGRO, APSIM-Sugar and other crop
models in Mauritius (Cheeroo-Nayamuth et al. 2000, 2011), Brazil (Marin et al.
2016; Dias and Sentelhas 2018b), China (Zu et al. 2018) and Réunion (Christina
et al. 2019). In Brazil, despite water being the factor that contributes most to cane
yield gaps (Dias and Sentelhas 2018b), the gap attributed to general deficiencies in
crop management, ranged from as low as 6 t/ha to as much as 79 t/ha depending on
the region (Marin et al. 2016; Dias and Sentelhas 2018b).

Such analyses can help to quantify, identify the causes of, and mitigate yield gaps,
in order to increase efficiency and consequently the production and sustainability of
sugarcane industries worldwide. For instance, by increasing the national yield of
Brazil on average by 10 t/ha (8.9 mi ha of crop area), an increment of 89 mi t would
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approach the total production of China (105 mi t) and Thailand (103 mi t)
(Table 8.1). Such a vertical increase in production could meet future demands for
sugarcane products (Marin et al. 2016) and relieve land use (Dias and Sentelhas
2018b) for other activities such as growing other crops or forest restoration in Brazil.

8.5.4 Yield Forecasting

Sugarcane and sugar yield forecasts are, or can be, useful for many agents involved
in the sugarcane industries. Everingham et al. (2002), Higgins et al. (2007) and
Bocca et al. (2015) provided examples of how forecasts can benefit planning and
decision-making processes in the sugarcane industry. Sugarcane models can be used
to generate the forecasts and two systems that are currently operating based on two
models are briefly described below.

The CANESIM model is employed in an operational way in the South African
sugar industry since 2000 and provides monthly yield forecasts for 48 CZs covering
14 mill supply areas. Further details can be found in Everingham et al. (2002) and
Bezuidenhout and Singels (2007a, b). Basically, the system uses daily data from
several automatic weather stations and completes the time-series with likely future
weather conditions, to forecast yields for the pending harvest season, through model
simulations at district, mill, and industry scales. Ten analog daily weather sequences
are selected from past climate records, which best represent future weather
conditions expected from ENSO indices provided by the South African Weather
Service. Yields are represented as a percentage of those for the previous season.
Forecasts are released monthly from November, 4 months before the start of the
milling season (April to December), to September. Harvesting schedules and milling
decisions are based on CANESIM forecasts, which are also used by South African
Sugar Association as a support for planning and decision-making regarding sugar
marketing.

TempoCampo is a recent yield forecasting system that is being developed for the
Brazilian sugarcane industry and intended to extend the forecasts to other agro-
industries (Marin 2017). The systems firstly used CANEGRO, but now is using the
recently built SAMUCA model (Marin and Jones 2014), which relies on modeling
approaches similar to those of CANEGRO and APSIM-Sugar. The system operates
in a similar way to the South African one for supporting some mills in Southern
Brazil.

Apart from the two systems presented previously, sugarcane models have been
employed in studies worldwide together with other techniques, such as remote
sensing (Morel et al. 2014a, b), statistics (Martiné 2007; Pagani et al. 2017) and
data mining (Everingham et al. 2009, 2016). These all deserve attention for further
development of integrated and operational yield forecasting systems for sugarcane
industries worldwide.

Irrigation management, yield benchmarking, and yield forecasting are services
based on the CANEGROmodel that are offered by a commercial software developer
(https://www.sqrsoftware.com/) providing many options for managing large and
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small sugarcane production systems in Africa, the Americas, and Australia (pers.
com. Mark McGlinchey 2019).

8.5.5 Climate Change

Climate change is a huge concern of many societies globally, and this phenomenon
will certainly influence sugarcane industries. Process-based crop models such as
those previously discussed are preferred because they tend to include the effects of
CO2 increases that accompany warming, whereas statistical models typically do not
(Lobell and Asseng 2017). Therefore, despite many approaches being used to assess
climate change effects on the sugarcane crop/industry (Linnenluecke et al. 2018),
only those with process-based sugarcane models are considered here. Studies
involving this topic have increased substantially in the past few years (Tables 8.3
and 8.4).

The majority of climate change studies using crop models for sugarcane world-
wide can be classified as impact studies (Table 8.4; Linnenluecke et al. 2018). The
methodology varies considerably in regard to timeframe, future climate scenarios,
type of global circulation models, downscaling, and other methods (Table 8.4;
Linnenluecke et al. 2018), which makes comparisons difficult. Overall, the impact
of climate change is predicted to be positive for sugarcane yields; however, it is also
variable (Table 8.4). A recent assessment by Linnenluecke et al. (2019) has shown
that sugarcane production in Australia of 1964–1995 compared to 1996–2012 has
already been negatively affected by changes in climate variables, which reinforces
the need for attention from policymakers and future research.

Sensitivity analyses, considering ranges for the main weather variables under
changing climates (CO2, air temperature, and rainfall), were performed for several
sites worldwide mainly by using CANEGRO (Jones et al. 2014; Marin et al. 2015;
Jones and Singels 2019). The simulations showed that sugarcane yields would, in
general, be enhanced by changes in CO2 and air temperature within the expected
ranges predicted by IPCC (2014). Decreases in yields were predicted when rainfall
was decreased within the expected ranges. Jones and Singels (2019) refined
CANEGRO with regard to some plant processes, including CO2 interactions and
high temperature effects (see Sect. 8.4.1), and confirmed previous findings, except
that the increments in yields were lower due to the inclusion of a more rational
representation of the effect of temperature on sugarcane physiological processes.

Climate change adaptation studies using sugarcane models are scarce
(Linnenluecke et al. 2018), but some can be found in literature. Cheeroo-Nayamuth
and Nayamuth (2001) explored climate change adaptation strategies for sugar yields
in Mauritius by using APSIM-Sugar, which included irrigation, cultivar and changes
in harvest date. They concluded that irrigation was the best adaptive option
depending on water availability, water storage, and cost. Park et al. (2007) used
APSIM-Sugar to assess the adaptive strategy of changing planting dates in the most
important growing regions in Australia. The simulations suggested that yield
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potential will increase marginally by the year 2030 if planting the date occurs earlier
than is presently practiced in the south of the industry and later in the north.

8.5.6 Drought Adaptation and Breeding

Water deficit, caused by lack of or irregular distribution of rainfall throughout the
sugarcane cycle, is one of the main causes of yield losses in sugarcane regions
around the world (Inman-Bamber and Smith 2005; Basnayake et al. 2012; Dias and
Sentelhas 2018b). Even for irrigated cropping systems, there is an increasing
concern about the amount and efficiency of water use, owing to the rising costs of
applying water, limited availability of water for irrigation, and environmental issues
(Jackson et al. 2016) (see Sect. 8.5.2).

There is an increasing interest in breeding for crops grown in water-limited
environments (Inman-Bamber et al. 2012). Inman-Bamber et al. (2012) employed
APSIM-Sugar for a theoretical assessment aiming to find traits that could reduce the
loss of sugarcane yield under rainfed conditions. Simulations showed that reduced
root conductance or stomatal conductance would increase biomass yield in only
about 5% in the driest climates on well-structured soils. Transpiration efficiency, a
genotype-dependent trait (Saliendra and Meinzer 1992; Jackson et al. 2016), was
also tested and an improvement in this trait arising from increased intrinsic water use
efficiency would usually improve biomass under water deficit. Leaf and culm
senescence were generally unsuccessful in conferring adaptation to water deficit.

In South Africa crop modelers are working together with breeders for sugarcane
yield improvement. Ngobese et al. (2018) assessed traits for several varieties
described in CANEGRO, to explore G � E interactions across environments and
crop classes to assist in breeding efforts, according to the authors. Hoffman et al.
(2018) predicted stalk dry mass yields reasonably well by estimating the
RUE-related trait parameter in CANEGRO using leaf level photosynthesis and
stomatal conductance measurements for several varieties, thus, showing that it is
possible to apply crop models for helping sugarcane breeding.

8.6 Final Considerations

Sugarcane production is highly dependent on climate and its variability, and there-
fore also to climate change. Modeling groups and process-based models have been
helping industries across the sugarcane producing regions worldwide, of which we
can highlight irrigation management and yield forecasting as the most common
applications. Possible climate change impacts are now quite well elucidated for
some environments through model simulations, but studies focusing on adaptation
strategies that minimize or even take further advantage of these impacts are neces-
sary. Usefulness of sugarcane models in breeding started being demonstrated for
South African and Australian programs. Nevertheless, there is room for
improvements that were also discussed, many of which were previously
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acknowledged in the past. Continuous physiology experimentation and modeling
efforts are needed to fill the knowledge gaps in these sugarcane research areas.
Collaboration between research groups worldwide might speed up this process.
Despite their weaknesses, sugarcane models are a powerful tool to understand and
propose management and adaptive actions to mitigate losses or increase yields under
current and future climates.
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