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Abstract

This chapter describes the application of statistical concepts with illustration
about statistical models, probability, normal distribution, and analysis of variance
(ANOVA). Statistical analysis is an important action process in research that
deals with data. It follows well-defined, systematic, and mathematical procedures
and rules. Data is information obtained to answer questions related to how much,
how many, how long, how fast and how related. Statistics main objective is the
analysis of data from generated experiment, but how should this data be collected
to address our research questions and what should be our experimental design?
Thus, in order to address question of interest clearly and efficiently, we need to
organize experiment accurately so that we can have right type and amount of data.
This is only possible using experimental design which has been elaborated in this
chapter. The designs discussed here are completely randomized design (CRD),
randomized complete block design (RCBD), Latin square design, nested and split
plot design, strip-plot/split-block design, and split-split plot design. Similarly,
factorial experiments have been discussed in detail with description about the
interaction. The concept about fractional factorial design, multivariate analysis of
variance (MANOVA), and analysis of covariance (ANCOVA) has been
presented. Principal component analysis which is the method of multivariate
statistics and used to check variation and patterns in a data set was also presented.
It is easy way to visualize and explore data. The relationship between one or more
variables to generate model which could be used for the prediction analysis has
been discussed using concept of regression. Finally, association between two or
more variables was presented using correlation. At the end different analytical
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tools/software were listed which can be used to do different kind of statistical
analysis.

Keywords

Statistics · Probability · Normal distribution · Analysis of variance · Experimental
designs · Factorial experiments · Regression · Correlation

3.1 Basic Statistics

Statistics is the science (pure and applied) dealing with creating, developing, and
applying techniques to evaluate uncertainty of inductive inferences. It helps to
answer the question about different hypothesis. It can model the role of chance in
our experiments in a quantitative way and gives estimates with errors. Propagation of
error in input values could also be determined by the statistics. History of statistics
goes back to the experience of gambling (seventeenth century) which leads to the
concept of probability. Afterwards concepts of normal curve/normal curve of error
were introduced. Charles Darwin (1809–1882) work was largely biostatistical in
nature. Karle Pearson (1857–1936) founded the journal Biometrika and school of
statistics. Pearson was mainly concerned with large data, and his student W. S.
Gosset (Pseudonym, Student) (1876–1937) presented Student’s t-test which is a
basic tool of statistician and experimenters throughout the globe. Genichi Taguchi
(1924–2012) promoted the use of experimental designs.

Observations in the form of numbers are very important to perform different kind
of statistical analysis. In case of crop production, observation can be phenology, leaf
area, crop biomass, and yield. These numbers then constitute data, and its common
characteristics include variability or variation. Variables may be quantitative or
qualitative. Observations on quantitative variables may be further classified as
discrete or continuous. Furthermore, probability of occurrence of value such as
blondeness may be measured by probability function or probability density function
(PDF). Chance and random variable terms are generally used for the variables
possessing PDF. Population is all possible values of a variable, while part of
population is called a sample. The concept of randomness is used to have true
representative data sample from the population. Collected data could be
characterized using tables, charts (pie chart, bars, etc.), and pictures (histogram).
Afterwards data are presented in frequency tables, and measure of central tendency is
used to locate center. This can help to find measure of spreading of the observation.
Mean or average (μ) is the most common method to use the measure of central
tendency. In case of dice, μ can be calculated by using following equation

μ ¼ 1þ 2þ 3þ 4þ 5þ 6
6

¼ 3
1
2

ð3:1Þ

If a sample is taken from the population having four observation, then Y (sample
mean) for the four observation (3, 5,7,9) is
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Y ¼ 3þ 5þ 7þ 9
4

¼ 6 ð3:2Þ

This can be further symbolized by

Y ¼ Y1 þ Y2 þ Y3 þ Y4

4
ð3:3Þ

where Y1 ¼ value of first observation, Y2 ¼ value of second observation, Y3¼ value
of third observation, and Y4¼ value of fourth observation. For the nth observations,
Yi is used to represent the ith observation and ̄Y is given by

Y ¼ Y1 þ Y2 þ Y3 þ Y4 þ . . .þ Yi þ . . . :þ Yn

n
ð3:4Þ

This equation can be further shortened to

Y ¼
Pn

i¼1Yi

n
ð3:5Þ

Difference between observations (Yi) and sample mean (YÞ is called sample
deviation (Yi� YÞ, and its sum is equal to zero

P
Yi � Y
� � ¼ 0.

For the different number of observations, it’s better to use weights that depend on
the number of observations in each mean called weighted mean. A weighted mean is
defined as follows:

Yw ¼
P

wiYiP
wi

ð3:6Þ

Another term supplement to the mean is median and it is value for which 50% of
the observations lie on each side. However, if values are even, then median is
average of the two middle values, e.g., 3, 6, 8, and 11 median is 7 (6 + 8)/2. If
data is nonsymmetrical in that case, mean and median could be different, and data
might be skewed in one direction; thus arithmetic mean may not be a good criteria to
measure central value. Mode (most frequent value) is another measure to calculate
central tendency. Central tendency provides summary about the data but does not
provide information about variation. Standard deviation or variance or square root
(Yi � μ)2 is used to measure variation or dispersion from the mean. It can be
represented by two symbols: (i) σ2 (sigma square for the population) and (ii) S2

(sample). Population variance is defined as sum of squared deviations divided with
total number, and it can be elaborated by the following equation if we intent to
sample this population with replacement:

σ2 ¼ Y1 � μð Þ2 þ Y2 � μð Þ2 þ Y3 � μð Þ2 þ . . .þ YN � μð Þ2
N

ð3:7Þ
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¼
P

i Y i � μð Þ2
N

ð3:8Þ

However, when sampling is without replacement, then divisor is N�1, and it
could be represented by the equation as follows:

S2 ¼ Y1 � μð Þ2 þ Y2 � μð Þ2 þ Y3 � μð Þ2 þ . . .þ YN � μð Þ2
N � 1

ð3:9Þ

¼
P

i Y i � μð Þ2
N � 1

ð3:10Þ

The sample variance/mean square can be computed by using following formulas:

s2 ¼ Y1 � Y
� �2 þ Y2 � Y

� �2 þ Y3 � Y
� �2 þ . . .þ YN � Y

� �2
n� 1

ð3:11Þ

s2 ¼
P

i Y i � Y
� �2
n� 1

ð3:12Þ

n� 1ð Þs2 ¼
X

i
Y i � Y
� �2 ð3:13Þ

s2 ¼ SS (sum of squares). For example, for the numbers 3, 5, 7, and 9, the SS is

3� 6ð Þ2 þ 5� 6ð Þ2 þ 7� 6ð Þ2 þ 9� 6ð Þ2 ¼ �3ð Þ2 þ �1ð Þ2 þ 1ð Þ2 þ 3ð Þ2
¼ 9þ 1þ 1þ 9 ¼ 20

The variance for this data set will be 20/3 ¼ 6.66, and the square root of the
sample variance is called the standard deviation (s). For the above example, it can be
calculated by the following method:

s ¼
ffiffiffiffiffi
20
3

r
¼ 2:58

Thus Eq. (3.12) can be represented as follows:

SS ¼
X

i
Y i � Y
� �2 ð3:14Þ

This Eq. (3.14) could be further modified to a computing formula as follow:

X
i
Y i � Y
� �2 ¼X

i

Yi
2 � P

i
Yið Þ2=n ð3:15Þ
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The term
P

i
Yið Þ2=n is called the correction factor (CF) or correction term or

adjustment for the mean. The Eq. (3.15) could be easily validated by using following
data set in the Table 3.1.

Thus, SS ¼Pi Y i � Y
� �2 ¼ 20 and by the

P
i
Y i

2 � P
i
Yið Þ2=n ¼ 164� 24ð Þ2

4 ¼
20 (Table 3.1). Another term which is generally used is called degree of freedom
(df) (number of values in the calculation that are free to vary), and it is equal to n�1.
The absolute mean deviation or average deviation is calculated as:

Average deviation or Absolute mean deviation ¼
P

i Y i � Y
�� ��
n

ð3:16Þ

The absolute mean deviation or average deviation for the values 3, 5, 7, and 9 is
2 as vertical bars tell us consider all deviations as positive. The variance of the
population σ2Y

� �
of Y can be calculated by the following equation:

σ2Y ¼ σ2

n
ð3:17Þ

However, σY for the population can be computed by the following expression:

σY ¼
ffiffiffiffiffi
σ2

n

r
ð3:18Þ

σY ¼ σffiffiffi
n

p ð3:19Þ

Standard deviation of sample mean is called standard error (SE). Variance for the
sample (s2YÞ can be calculated by the following equations:

s2Y ¼ s2

n
ð3:20Þ

SEY ¼
ffiffiffiffi
s2

n

r
ð3:21Þ

Table 3.1 Data set for the
validation of sum of squares
equation

Yi Yi
2 Yi � Y Yi � Y

�� �� Yi � Y
� �2

3 9 3–6 ¼ �3 3 9

5 25 5–6 ¼ �1 1 1

7 49 7–6 ¼ 1 1 1

9 81 9–6 ¼ 3 3 9

∑i: 24 164 0 8 20

Y 6
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SEY ¼ sffiffiffi
n

p ð3:22Þ

SE can be calculated by using following equation for the numbers 3, 5, 7, and 9 as
used above to calculate standard deviation.

SE ¼
ffiffiffiffi
s2

n

r
¼

ffiffiffiffiffiffiffiffiffi
6:66
4

r
¼

ffiffiffiffiffiffiffiffiffi
1:66

p
¼ 1:29

Variation can also be measured using coefficient of variability (CV) or relative
standard deviation (RSD) which is widely used as a well-known indicator as
described in Table 3.2. It is a measure of relative variability. It is the ratio of standard
deviation (σ) to the mean (μ) and can be calculated by the following expression:

coefficient of variation CVð Þ ¼ σ
μ

ð3:23Þ

Y ¼
P

Yi

5
¼ 7680

5
¼ 1536kg ha�1

s2 ¼
P

Yi
2 � P

Yið Þ2=5
4

¼ 12, 045, 400� 7680ð Þ2=5
4

¼ 62, 230

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62, 230

p
¼ 249:45kg ha�1

s2Y ¼ s2

5
¼ 62, 230

5
¼ 12, 446

SEY ¼
ffiffiffiffi
s2

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62, 230

5
¼ 12, 446

r
¼ 111:56kg ha�1

CV ¼ 249:45
1536

� 100 ¼ 16%

Table 3.2 Example of the data set for the calculation of above concepts

Number of observations ¼ i Yield (kg ha�1) ¼ Yi Y¼ Mean Yi � Y

1 1500 1536 �36

2 1850 1536 314

3 1300 1536 �236

4 1730 1536 194

5 1300 1536 �236

Total 7680 508 �508
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3.2 Statistical Models

A model is an abstract representation of a system in a quantitative way. It is a way of
describing a real system in mathematical functions or diagrams. It can also be used to
represent the simplification in different process trying to represent biological
systems. A model can summarize factors affecting different process in a system.
Mathematical models use different notation and expressions from mathematics to
describe process, while statistical model is a mathematical model that allows
variability in the process. This variability might be due to the number of reasons
such as sampling, biological, and inaccuracies in measurements or due to the
influential variables being omitted from the model. Thus, statistical models have
potential to measure uncertainty associated with it. Statistical models come in the
category of empirical models where principle of correlation was used to build a
simple equation to describe relationship with different explanatory variables. Fur-
thermore, if the explanatory variables are in numbers (quantitative), they were
referred as variates, while if they are qualitative, then they were considered as factors
and distinct groups as factor levels. For example, qualitative trait height can be
classified as short, medium, or tall. Linear models are most importantly used
statistical model.

3.3 The Linear Additive Model

Natural phenomenon in science such as earth rotation could be explained by the
models. Linear additive model (LAM) is a commonly used model to describe the
observation which has mean and error. Assumption for the application of this model
includes that population of Y should be selected at random as well as errors are at
random. This model could be used to make inferences about population means and
variance. The simple LAM could be represented by the following equation:

Yi ¼ μþ εi

where μ ¼ mean and εi¼ sampling error.
The sampling error for the population having mean zero could be calculated by

the following procedure in which sample from the population is drawn in a random
manner. The steps include

Y ¼
P

iY i

n
¼
P

i μþ εið Þ
n

¼ μþ
P

iεi
n

For random sampling the equation will be ¼
P

i
εið Þ

n , and it is expected to be
smaller as sample size increases and positive and negative epsilon will cancel.
Generally variance of mean of large samples are usually small. Epsilon could be
calculated by using Yi � Y

� �
.
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3.4 Probability

Probability is a numerical description of how likely an event is to occur or how likely
it is that a proposition is true. Probability is a number between 0 and 1, where
0 indicates impossibility and 1 indicates certainty. The best example for understand-
ing probability is flipping a coin: There are two possible outcomes—heads (H ) or
tails (T ). What’s the probability of the coin landing on heads? We can find out using
the equation

probability of head PH ¼ 1
2

or

Probability of an event ¼ number of ways it can happen
total number of outcomes

Similarly, in case of dice rolling, there are six different outcomes (1, 2, 3, 4, 5, and
6), and probability of getting a one will be:

P1 ¼ 1
6

The probability of getting 1 or 6 can be calculated by following way:

P1 or 6 ¼ 2
6
¼ 1

3

The probability of rolling an even number (2, 4, and 6) will be:

P2,4 or 6 ¼ 3
6
¼ 1

2

For many experiments there are only two possible outcomes, for example, a
tossed coin falls heads or tails or student fail or pass or plant could be tall or short.
Such outcomes are referred as binomial, and sample space will consist of two points
only. Thus, sample space is made up of sample points (represented with E and, if
event does not occur, represented with �E or Ē or Ɇ) as shown in the following
Fig. 3.1. Probability associated with each value of the random variable is called as

Fig. 3.1 Illustration of
sample space and sample
point
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binomial probability function or binomial distribution. Formula that can gives the
probability associated with each chance event e.g. for a fair coin if we consider Y¼ 0
for tail and Y ¼ 1 for head will be:

PY¼Yi ¼ 1
2
Yi ¼ 0 and 1

For tossing a fair dice, probability distribution would be:

PY¼Yi ¼ 1
6
Yi ¼ 1, 2, 3, 4, 5 and 6

Ten thousand random digit tables are a very large sample for a population, and
probability distribution for this table would be

PY¼Yi ¼ 1
10

Yi ¼ 0, 1, 2, 3, 4, 5 . . . 9

If we consider only odd and even numbers, then we can relate ten thousand
random digit tables with PY¼Yi ¼ 1

2 Yi ¼ 0 and 1, PY¼Yi ¼ 1
6Yi ¼ 1, 2, 3, 4, 5 and

6 and PY¼Yi ¼ 1
10Yi ¼ 0, 1, 2, 3, 4, 5. . .9, but it would not be binomial now, it will be

multinomial. Probabilities of binomial distribution in single statement can be
elaborated by generating single equation. Consider an experiment that contains
n independent trials. Let PE ¼ P1 ¼ p then P̄E ¼ P0 ¼ 1 � p as we know that
p ¼ number of successes

total number of events SuccessesþFailuresð Þ and probability of an event (Ei) lies between

0 and 1 0 � PEi � 1ð Þ and sum of the probabilities of events in a mutually exclusive

set is 1
P
i
PEi ¼ 1

 !
: Five tosses of coins could result in (0, 0, 1, 1, 0), that is, two

tails followed by two heads and final tail. Since trial is independent, thus probability
of this outcome can be found by multiplying probabilities in each stage, i.e., (1�p)
(1�p)pp(1�p) ¼ p2(1 � p)3. If p ¼ 0.5 then (0.5)5 ¼ 0.03125 or 3 % . The random
variable Y associates a unique value with each sample point, e.g., for sample vector
(0, 0, 1, 1, 0), we have Y ¼ 2, and there are possibilities of 10 sequences with Y ¼ 2.
Thus Y ¼ 2 is 10p2(1 � p)3. The equatin which can be used to calculate this value
directly will be:

n

Y

� �
¼ n!

Y ! n� Yð Þ!
where n! ¼ n factorial ¼ n(n�1)(n�2). . .0.1. Thus, for Y ¼ 2, i.e., two 1 s in n ¼ 5
trials, the equation would be:
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5

2

� �
¼ 5:4:3:2:1

2:1:3:2:1
¼ 10

One formula which can be used to count sample points with the same Y and one
that assigns probability to each sample point in the binomial probability distribution
can be represented as:

P Y ¼ Yijnð Þ ¼ n

Yi

� �
pYi 1� pð Þn�Yi (In this equation the probability that the

random variable Y takes the particular value Yi in a random experiment with n trials).
For the coin above illustration, this equation will be:

P Y ¼ 2j5ð Þ ¼ 5

2

� �
1
2

� 	2 1
2

� 	3
The mean and variance of a random variable with a binomial distribution could be

calculated by using following equations:

Mean : μ ¼ np

Variance : σ2 ¼ np 1� pð Þ

3.5 Normal Distribution

Normal distribution is the most important widely used probability distribution as it
fits with many natural processes such as heights, blood pressure, IQ score, and
measurement error. It is also called as bell curve or Gaussian distribution. It is a
standard reference for probability-related problems. The normal distribution has two
parameters, i.e., mean (μ) and standard deviation (σ) (Fig. 3.2). The characteristics of
normal distributions are as follows: (i) X lies between �1 and 1 (�1 � X �1);

(ii) symmetric; (iii) normal density function rule, f x; μ, σ2ð Þ ¼ 1ffiffiffiffiffiffiffi
2πσ2

p e� x�μð Þ2=2σ2 ;
(iv) 2/3 of the most cases lies with one σ of μ, i.e., P(μ�σ � X � μ + σ) ¼ 0.6826;
and (iv) 95% of cases lies two σ of μ, i.e., P(μ�2σ � X � μ + 2σ) ¼ 0.9544.

3.6 Comparison of Means

Statistical concepts are used everywhere in daily life, e.g., while purchasing honey
bottle from market, it may be labelled as 500 g, but to confirm this claim, we need to
take random sample from the population. We could report the probability of
obtaining a sample at least this uncommon if true mean is 500 g. This can be the
problem of hypothesis testing. In such cases testing is done by using Student’s t-test
or F-Test. If means are more than two, the analysis of variance (ANOVA) F-test is to
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be used. Thus, sample size should be considered while selecting a test. Hypothesis
test and confidence interval (CI) are interlinked. The formula to apply Student’s t-test
is

t ¼ Y � μ
SY

t ¼ Y � μffiffi
s

n

q
t ¼ Y � μ

sffiffi
n

p

For the data having two means, t-test equation will be:

t ¼ Y1 � Y2

SY1
� SY2

where Y ¼ sample mean , s is the sample standard deviation, and n is the
sample size.

Consider a null hypothesis Ho : μ ¼ μo and alternative hypothesis H1 : μ 6¼ μo, if
t exceeds critical value t0.025, then Ho is rejected, but if null hypothesis is true and
still, it has been rejected and is called type I error. However, if H1 is true and we
accept Ho anyway, this type of error is called type II error.

Fig. 3.2 Normal distribution curve
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3.7 Analysis of Variance (ANOVA)

It is an undeniable fact that agronomic research resulted to the improved quality of
life and sustainability of the planet earth. The principles and procedures of analysis
of variance (ANOVA) have been considered as fundamental tools in all agronomic
research. ANOVA is an established statistical procedure that can be used to test the
hypothesis by partitioning the sources of variation (SOV), variance components
estimation, explanation and reduction of residual variation, and determination of the
significance of effects. ANOVA history of application in agronomic field research
and plant breeding trials goes back to the early twentieth century in which the main
goal of research work was to have a better understanding of the effects of treatments,
e.g., fertilizer, cultivars, planting dates, soil amendments, and their interactions.
Earlier, trials main focus was on yield and thus to have better scientific understand-
ing of the effects of treatments and guidance to the farmers; ANOVA was used
widely. ANOVA helped in the early twentieth century to have good credibility of
field agronomic trials. Furthermore, significant differences between treatment and
check plots could be evaluated by ANOVA; however, there were issues between
years as random effects of years could not be replicated (Loughin 2006). Fisher was
a pioneer in the introduction of ANOVA, and he applied this concept in the 1920s on
long-term wheat yield experiments (>half century) in response to the soil
amendments (Fisher 1921). Fisher used ANOVA to disentangle large variability in
average yield from other changes and evaluate significant difference between
treatments. The basis of ANOVA was described as the variance (mean σ of variate
from its mean thus square of its standard deviation) produced by all the causes at
once in an operation is the sum of the values produced by each cause individually.
Thus, with ANOVA we can partition the total variation into separate and indepen-
dent SOV. To implement ANOVA accurately, it is important that treatment plots
(experimental units) must be replicated and randomized. The basic assumptions to
apply ANOVA are (i) Treatments and environment effects are additive and
(ii) Experimental errors are random, independently and normally distributed about
zero mean and with a common variance. Fisher in his experimental design work
documented that the systematic arrangement of treatments resulted in the biased
estimates of treatment averages, overestimation, and underestimation of error varia-
tion and correlated errors. Thus, replication is needed to estimate experimental error
and randomization to have correct probability or level of significance. Generally,
ANOVA divides total variation into two independent sources: (i) variation among
treatments and (ii) variation within treatments (experimental error/residual error/error
mean square/error variance). After considering that data is normally and independently
distributed, F-ratio F ¼ variation between sample means=variation within the samples

� �
is used to test

the null hypothesis that treatment means are equal or not. One-way ANOVA
example could be best way to understand this ratio. Firstly, ANOVA was used for
the fixed effect models (Model I, specific treatments or level of treatments of interest)
but later used also for the random effect models (Model II). Afterwards it has been
proposed that ANOVA should also be used for the mixed effect models (both fixed
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and random treatment factors) (Gbur et al. 2012; West and Galecki 2012). The
importance of mixed effect models was shown in some of experiments where use of
fixed model instead of mixed models resulted to the misleading results (Acutis et al.
2012; Bolker et al. 2009; Moore and Dixon 2015; Yang 2010). Fisher’s ANOVA is
the most frequently used method to determine if differences among means are
significant or not. His preference was to declare significance when P � 0.05
(P value) by considering F table also. The components of ANOVA include sources
of variations (SOV), degrees of freedom, sum of squares, mean squares, F values,
and P values (Tables 3.3, 3.4 and 3.5). The ANOVA importance and applications in
different earlier work have been presented in Table 3.6. Meantime as Fisher was
working on his ANOVA framework, Neyman and Pearson presented the concept of
type of errors (type I (true null hypothesis rejection) and type II errors (failing to
reject false null hypothesis)) (McIntosh 2015).

3.7.1 Calculation of the F-Test

F-ratio calculation for one-way ANOVA is possible by using following equations
and is reported in the representative Table 3.7.

Table 3.3 One-way analysis of variance with equal replication

SOV df Sum of squares (SS) Mean squares (MS) F

Treatments t�1 r
P
i

Xi:� X::
� �2 ¼P

i

Xi
2

r � X2 ::
rt

SStreatments
dftreatments

MStreatments
MSerror

Error t(r�1) P
i, j

Xij � X:
� �2 SSerror

dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � X2 ::
rt

Table 3.4 Analysis of variance in randomized complete block

SOV df Sum of squares (SS)
Mean
squares (MS) F

Blocks r�1
t
P
j

X:j � X::
� �2 ¼

P
j

X2
:j

t � C

SSblocks
dfblocks

Treatments t�1 r
P
i

Xi:� X::
� �2 ¼P

i

Xi
2

r � C
SStreatments
dftreatments

MStreatments
MSerror

Error (r�1)
(t�1)

P
i, j

Xij � X:J � Xi:þ X::
� �2

¼SStotal � SSblocks � SStreatments

SSerror
dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � C
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Table 3.5 Analysis of variance for Latin square

SOV df Sum of squares (SS)

Mean
squares
(MS) F

Rows r�1
r
P
i

Xi:� X::
� �2 ¼

P
i

X2
i :

r � C

SSblocks
dfblocks

Columns r�1
r
P
j

X j:� X::
� �2 ¼

P
j

X2
j :

r � C

Treatments r�1 r
P
t

Xt � X::
� �2 ¼P

t

Xt
2

r � C
SStreatments
dftreatments

MStreatments
MSerror

Error (r�1)
(r�2)

P
i, j

Xij � Xi:� X: j � X X::
� �2

¼SStotal � SSblocks � SStreatments

SSerror
dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � C

Table 3.6 ANOVA importance and applications in different earlier work

S.
no Applications References

1. Statistical guidelines for authors Nature Publishing Group
(2005) and (2013a, b)

2. Raising of data analysis standards McNutt (2014)

3. Improvement in the accuracy of the statistical analyses Acutis et al. (2012)

4. ANOVA is a commonly used technique, but selection of
factors as fixed or random can be complex

Bennington and Thayne
(1994)

5. Mixed model analysis Yang (2010)

6. Inclusion/exclusion of fixed by random effects in mixed
model

Blouin et al. (2011)

7. Analysis of combined experiments McIntosh (1983)

8. Combined experiment analysis Moore and Dixon (2015)

9. Choice of models Lencina et al. (2005)

10. Mixed models controversy Nelder (2008)

11. Accurate selection of analysis Nelder and Lane (1995)

12. Mixed models controversy Voss (1999)

13. Two-way factorial ANOVA with mixed effects and
interactions

Wang and DeVogel (2019)

14. ANOVA to show relationship between sources of
variation (SOV) and terms in the general linear model
(GLM)

Gomez and Gomez (1984)

15. Explanation of statistical ideas Mead (2017)

16. Tests of significance Snedecor (1942)

17. Application of statistics principles and procedures Steel and Torrie (1980)

18. SAS application in experimental design and analysis Lawson (2010)
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σ2 ¼
P

xi � xð Þ2
n� 1

where σ2 ¼ vraince, xi ¼ observation, x ¼ sample population mean, and n ¼
obsevtaion number.

Sum of squares (SS) in ANOVA is sum of the squared deviations of observation
from the mean. Total sum of squares (SST) can be calculated by using following
equation:

SST ¼
X

xij � x
� �2

where xij ¼ ith observation in the jth group. The formulae can be rewritten as:

SST ¼
X

xij � x
� �2 ¼X x2ij

� 	
�
P

xij
� �

n

2

The total SS between group (SSB) and within group (SSw) can be calculated by
using following equations:

SSB ¼
X

x j � x
� �2 ¼X

j

n j x j
2

� � ¼ P
xij

� �2
n

SSW ¼
X
j

X
i

xij � x j

� �2
Total SS in the model can be calculated by following equation which can be

further used to get SSw:

SST ¼ SSB þ SSW

SSW ¼ SSTT þ SSB

The mean square (MS) (mean of entire sample population or average squared
deviation of observation from grand mean) is calculated next which is sum of
squares (SST) by the total number of degrees of freedom (df) or n–1. The mean
square between groups (MSB) can be calculated by using following equation:

MSB ¼ SSB
dfB

Finally, R ratio is calculated by using following equation:

F ¼ MSB
MSW
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3.8 Experimental Design and Its Principles

New knowledge can be easily obtained by careful planning, analysis, and interpre-
tation of data. Designing of an efficient experiment needs consultation with statisti-
cian as they can help to have appropriate design which can enable researchers to
have unbiased estimates of treatment means and experimental error. An experiment
is planned inquiry to obtain new facts or to confirm earlier findings. Experiments are
generally designed to answer the questions or test the hypothesis. Before designing
an experiment, it is important that objectives of the experiment should be clear. The
unit of material or place where one application of treatment is applied is called
experimental unit or experimental plot. Variation is the characteristics of all experi-
mental material and experimental error is used to measure the variation among
experimental unit. Variation could be due to number of reasons. It can be due to
inherent variability or lack of uniformity in the physical conduction of experiment.
Replication is another important component of experimental design. The main
functions of replication are to (i) estimate experimental error, (ii) improve precision
of the experiment by minimizing standard deviation of treatments, (iii) control error
variance, and (iv) increase the scope of inference of the experiment. Error in the
experiments could be controlled by the selection of appropriate experimental design,
use of parallel observations, and choice of size and shape of the experimental units.
Furthermore, unbiased estimate of experimental error is possible by the application
of randomization.

3.8.1 Completely Randomized Design (CRD)

Completely randomized design is used when experimental units are homogeneous
and less to be gained by putting them into blocks due to similarity of response. For
example, variety trial in greenhouse will be subjected to CRD because of uniformity
of soil. Similarly, laboratory experiments where it’s easy to control variability and
experimental units are homogenous; CRD is used. The advantages of CRD are as
follows: number of replicates can vary from treatment to treatment, and loss of
information due to missing data is small. The precision of experiment is high due to
maximum degree of freedom (df) for estimating experimental error. In this design
treatments are assigned at random so that each experimental unit receives same
chance of getting treatment. The randomization procedure and layout for the pot
experiment having four treatments (A, B, C, and D) replicated four times have
following steps:

1. Determination of total number of plots or experimental unit (n): Determine the
total number of plots or experimental unit by multiplying treatments (t) with the
number of replications (R); n¼ Rt¼ 4� 4¼ 16. However, if replications are not
the same, then “n” can be calculated by getting sum of the replications of each
treatment.

2. Assigning of plot number
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3. Assigning of treatments into plots using random number method and further its
ranking as shown in the Table 3.8. Afterwards group number assigned based on
random number ranking (Table 3.9) and treatments was placed in the experimen-
tal units as shown in the layout (Fig. 3.3).

Table 3.8 Random ranking of experimental unit

Random number Experimental unit Ranking Treatments

0.07 1 4 A

0.842 2 15 B

0.502 3 10 C

0.174 4 5 D

0.426 5 8 A

0.699 6 14 B

0.926 7 16 C

0.039 8 2 D

0.244 9 6 A

0.663 10 13 B

0.045 11 3 C

0.305 12 7 D

0.503 13 11 A

0.429 14 9 B

0.583 15 12 C

0.025 16 1 D

Table 3.9 Group numbers
based on random numbers
ranking

Treatments Group number Ranks in the group

A 1 4 8 6 11

B 2 15 14 13 9

C 3 10 16 3 12

D 4 5 2 7 1

Fig. 3.3 A layout of
completely randomized
design with four treatments
(A, B, C, and D) replicated
four times

78 M. Ahmed



In order to have ANOVA for the treatments mentioned in Table 3.10, we need to
obtain Xi. and

P
j
X2ij as mentioned in Table 3.10 (points 1 and 2). Afterwards each

treatment total is squared and divided by r¼ 5 to get Xi:ð Þ2=r named as treatments sum
of square. Correction factor (CF) is calculated afterwards by dividing total sum of
squares of all observations with total numbers (rt). The equation to calculate CF is:

CF ¼ X2::
rt

¼

P
i, j
Xij

 !2

rt
¼ 670:6ð Þ2

5ð Þ 6ð Þ ¼ 14, 990:15

SS totalð Þ ¼
X

i,j
X2ij� CF ¼ 16, 093:56� 14, 990:15 ¼ 1103:41

SS treatmentð Þ between or among groupsð Þ ¼ X21:þ � � � þ X2t:
r

� CF

¼ 148:1ð Þ2 þ 132:8ð Þ2 þ � � � þ 100:9ð Þ2
5

¼ 7, 788, 008:00
5

� 14, 990:15

¼ 15, 576:02� 14, 990:15

¼ 585:87

The sum of squares (SS) among individuals is called within group SS, residual
SS, error SS, or discrepancy SS, and it can be obtained by following equation:

SSerror ¼SSTotal � SSTreatment

¼1103:41� 585:87

¼517:54

The error SS (SSerror) can also be calculated by pooling the within treatments SS
as shown below:

SSerror ¼
X
i

X
j

X2ij� X2i:
r

 !

¼ 4593:45� 148:12

5

� �
þ 3623:34� 132:82

5

� �
þ 1980:28� 95:82

5

� �
þ 2406:37� 109:32

5

� �
þ 1435:61� 83:72

5

� �
þ 2054:51� 100:92

5

� �
¼517:54
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These generated numerical results are presented in an AONVA (Table 3.11), and
it shows that there is significant difference among treatments. The standard error of
treatment mean (SEXÞ and differences between treatment, CV, and least significance
difference (LSD) are calculated by using the following equations:

SEX ¼
ffiffiffiffi
s2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
21:56
5

r
mg ¼

ffiffiffiffiffiffiffiffiffiffiffi
4:312

p
¼ 2:07 mg

SEXi:�XiN: =

ffiffiffiffiffiffiffi
2s2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
43:12
5

r
¼

ffiffiffiffiffiffiffiffiffi
8:62

p
¼ 2:93 mg

CV Coefficient of variabilityð Þ ¼
ffiffiffiffiffi
S2

p

X
� 100 ¼

ffiffiffiffiffiffiffiffiffiffiffi
21:56

p
22:4

� 100 ¼ 4:64
22:4

� 100

¼ 20:7%

LSD ¼ tα=2SXi:�XiN: ¼ tα=2S

ffiffiffi
2
r

r
for equal rð Þ

LSD0:05 ¼ t0:025SXi:�XiN: ¼ 2:064

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼ 2:064

ffiffiffiffiffiffiffiffiffi
8:62

p
¼ 2:064� 2:93

¼ 6:06 mg

LSD0:01 ¼ t0:005SXi:�XiN: ¼ 2:797

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼ 8:21 mg

Table 3.11 Analysis of variance for data of Table 3.10

SOV df SS

Mean
squares
(MS) Fcalulated Ftablulated

Among
treatments

6–1 ¼ 5 585.87 585:87
5

¼ 117.17

117:17
21:56 ¼ 5:43��

Since
Fcal > Ftab at 0.05 and 0.01
thus there are highly
significant (��) differences
among treatments

2.62
(0.05)
3.90
(0.01)

Error 6
(5–1) ¼ 24

517.54 517:54
24

¼ 21.56

Total (5)(6)�
1 ¼ 29

1103.41
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The observed differences are X1:� X2: ¼ 29.62–26.56 ¼ 3.06; X3:� X4: ¼
19.16–21.86 ¼ �2.7; and X5:� X6: ¼ 16.74–20.18 ¼ �3.44. Now rank the

means from the smallest to largest as shown below:

RTS1 RTS2 RTS3 RTS4 RTS5 Composite

29.62 (6) 26.56 (5) 19.16 (2) 21.86 (4) 16.74 (1) 20.18 (3)

Next is to calculate the difference and test significance level using LSD test at 5%.

6–1 ¼ 29.62–16.74 ¼ 12.88 > 6.06 ¼ significant
6–2 ¼ 29.62–19.16 ¼ 10.46 > 6.06 ¼ significant
6–3 ¼ 29.62–20.18 ¼ 9.44 > 6.06 ¼ significant
6–4 ¼ 29.62–21.86 ¼ 7.76 > 6.06 ¼ significant
6–5 ¼ 29.62–26.56 ¼ 3.06 < 6.06 ¼ nonsignificant
5–1 ¼ 26.56–16.74 ¼ 9.82 > 6.06 ¼ significant
5–2 ¼ 26.56–19.16 ¼ 7.4 > 6.06 ¼ significant
5–3 ¼ 26.56–20.18 ¼ 6.38 > 6.06 ¼ significant
5–4 ¼ 26.56–21.86 ¼ 4.70 < 6.06 ¼ nonsignificant
4–1 ¼ 21.86–16.74 ¼ 5.12 < 6.06 ¼ nonsignificant
4–2 ¼ 21.86–19.16 ¼ 2.70 < 6.06 ¼ nonsignificant
4–3 ¼ 21.86–20.18 ¼ 1.68 < 6.06 ¼ nonsignificant
3–1 ¼ 20.18–16.74 ¼ 3.44 < 6.06 ¼ nonsignificant
3–2 ¼ 20.18–19.16 ¼ 1.02 < 6.06 ¼ nonsignificant
2–1 ¼ 19.16–16.74 ¼ 2.42 < 6.06 ¼ nonsignificant

3.8.2 Randomized Complete Block Design (RCBD)

The randomized complete block design (RCBD) is one of the most widely used
designs in an agronomic field research. In this design experimental unit can be
meaningfully grouped, and number of units in a group is equal to the number of
treatments. These groups are called block or replication. The objective to have
groups in blocks is to minimize error and ensure that observed differences will be
due to treatments only. The RCBD has more advantages than the CRD due to
blocking and further randomization which results to the more precision. The main
purpose of blocking is to have higher accuracy by minimizing the experimental error
due to the known sources of variation (SOV) among the experimental units. Group-
ing is done in such a way that variability within each block is minimized, while
among block it is maximized. Variation within a block will be part of the experi-
mental error; thus blocking is most effective when experimental area has a predict-
able pattern of variability. An ideal known SOV which can be used as basis for the
blocking includes soil heterogeneity in nitrogen fertilizer experiments or varietal
trials at multiple sites or sowing date experiments.
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Thus, basis of blocking depends on the main SOV. The size and shape of blocks
are selected in such a way so that there should be maximum variability among
blocks. To do blocking, firstly, identify the gradient and do blocking vertical to the
gradients, and if gradient occurs in two directions (one strong and other weak), then
consider that gradient which is stronger, e.g., in case of fertility gradient. If fertility
gradient is strong on both sides and perpendicular to each other, then use square
blocks and choose Latin square design as elaborated by Gomez and Gomez (1980).
Furthermore, whenever blocking is done, blocks identity and purpose should be
clear. Similarly, if SOV is beyond the control, then ensure that such variation occurs
among blocks as compared to within blocks. For example, in case of application of
herbicides or data collection which might not be possible to complete in one day. In
such scenario, it is recommended that it should be completed firstly for all plots of
the same block. In this way, variation due to collection of data by multiple observers
or application of treatments in more than one day becomes part of block variation
and excluded from the experimental error. Following steps should be followed to
design layout for RCBD.

1. Division of experimental area into “R” equal blocks (R ¼ replications). The
experimental area is divided into four blocks as shown in Fig. 3.4.

2. Subdivision of blocks into experimental plots based on number of treatments. For
example, here if we suppose there are six treatments, i.e. A, B, C, D, E, and F,
then divide each block into six subplots and assign each treatment into subplot
using the random numbers (Fig. 3.5).

3. Repetition of step 2 for the remaining blocks (Fig. 3.6).

Let’s apply the concept of RCBD on the data provided in Table 3.12 to generate
ANOVA table and see significant difference among different oil contents of different
canola cultivars. Step 1 includes arranging of raw data in ways as shown in
Table 3.4. Calculate ∑X2 and treatment (Xi.) and blocks (X.j) totals, i. e. ,

P
j
X2

ij;

i ¼ 1, 2. . .t, and
P
i
X2

ij; j ¼ 1, 2. . .r. Step 2 is to calculate sum of squares using

following formulas:

Fig. 3.4 Layout for the RCBD (division of experimental area into four blocks)
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Correction factor ¼ CF ¼ Y2
::

rt
¼ 1085:5ð Þ2

24
¼ 1085:5ð Þ2

24
¼ 1, 178, 310:25

24

¼ 49, 096:26

SStotal ¼
X
i, j

X2ij� CF

SStotal ¼ 49, 150:77� 49, 096:26 ¼ 54:51

SSblock ¼

P
j
Y2

:j

t
� CF

SSblock ¼ 269:8ð Þ2 þ 268:8ð Þ2 þ 274:2ð Þ2 þ 272:7ð Þ2
6

� 49, 096:26

Fig. 3.5 Subdivision of blocks into experimental plots based on number of treatments and
randomization of treatments (A, B, C, D, E, and F)

Fig. 3.6 A randomized layout for the RCBD (six treatments and four replications)
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SSblock ¼ 49, 099:4� 49, 096:26 ¼ 3:14

SStreatment ¼

P
i
Y2

i:

r
� CF

SStreatment ¼ 179:2ð Þ2 þ 176:0ð Þ2 þ 185:6ð Þ2 þ 174:8ð Þ2 þ 183:0ð Þ2 þ 186:9ð Þ2
4

� 49, 096:26

SStreatment ¼ 196, 511:70
4

� 49, 096:26

SStreatment ¼ 49, 127:91� 49, 096:26 ¼ 31:65

SSerror ¼ SStotal � SSblock � SStreatment

SSerror ¼ 54:51� 3:14� 31:65 ¼ 19:72

3.8.3 Missing Values Estimation

Sometimes due to poor germination or due to climatic conditions, etc., data might be
missing from the experimental unit. This missing data can be calculated by using
following equation:

y ¼ rBo þ tTo � Go

r � 1ð Þ t � 1ð Þ
where y ¼ missing value estimation; t ¼ number of treatments; r ¼ number of
replications; Bo ¼ replication total that contains missing value; To ¼ treatments total
that contains missing value; and Go ¼ total of all observed values.

3.8.4 Latin Square Design

Treatments are arranged in rows and columns in Latin square design. Treatments (t)
are repeated “t” times in such a way that t appear exactly one time in each column
and row and denoted by Roman characters, thus called as Latin square design. The
main purpose of this design is to reduce systematic error due to columns and rows
(treatments) (n� n). The advantage in the use of this design is in the field experiment
where two major SOVs exist, e.g., in case of soil difference in two directions, this
design will help to remove variation. The disadvantage of this design is that number
of rows, columns, and treatments should be equal. Latin square design for six
treatments, i.e., A, B, C, D, E, and F, will be like as shown in Fig. 3.7. Analysis of
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variance for an r � r (6 � 6) Latin square data set oil yield (kg ha�1) of canola
cultivars is given in Table 3.13. The calculation involves following steps:

1. Calculation of row totals (Xi.), column totals (X.j), treatment totals (Xt), and grand
total (Y..). Similarly, calculate

P
j
X2

ij and
P
i
X2

ij for each value of rows and

columns (Table 3.13).
2. Calculation of correction factor and sum of squares (SS):

CF ¼ X2::

r2
¼ 40, 380ð Þ2

62
¼ 452, 92, 900

SStotal ¼
X
i, j

X2
ij � CF ¼ 459, 82, 806� 452, 92, 900 ¼ 689, 906

SSrow ¼

P
i
X2

i:

r
� CF

¼ 6669ð Þ2 þ 6732ð Þ2 þ 6781ð Þ2 þ 6757ð Þ2 þ 6718ð Þ2 þ 6723ð Þ2
6

� 452, 92, 900 ¼ 452, 94, 108� 45, 292, 900 ¼ 1208

SScolumn ¼

P
j
X2

:j

r
� CF

¼ 6592ð Þ2 þ 6839ð Þ2 þ 6750ð Þ2 þ 6749ð Þ2 þ 6680ð Þ2 þ 6770ð Þ2
6

� 452, 92, 900 ¼ 452, 98, 864� 452, 92, 900 ¼ 5964

Fig. 3.7 Layout for Latin square design
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SStreatment ¼
P
t
X2

t

r
� CF

¼ 8049ð Þ2 þ 5772ð Þ2 þ 5905ð Þ2 þ 6876ð Þ2 þ 6322ð Þ2 þ 7456ð Þ2
6

� 452, 92, 900 ¼ 459, 68, 401� 452, 92, 900 ¼ 675, 501

SSerror ¼ SStotal � SSrow � SScolumn � SStreatment

¼ 689, 906� 1208� 5964� 675, 501 ¼ 7233

Standard error of treatment means ¼ SX ¼
ffiffiffiffiffi
S2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
361:6
6

r
¼ 7:76 kg

Sample standard error of difference between two treatment means ¼ SXi�Xit

¼
ffiffiffiffiffiffiffi
2S2

r

r
¼

ffiffiffiffiffiffiffi
2S2

r

r
¼ 10:97 kg

3.8.5 Factorial Experiments

Factorial experiments consist of number of factors as treatment with all possible
combinations with different levels of equal importance. For example, an experiment
involves temperature as treatment (factor) will have different levels of temperature.
Similarly, if silicon (Si) fertilization is used as factor in pot experiment, several levels
will be used to evaluate the experiment. For example, if we use two sources of Si
(potassium silicate and sodium silicate) each at two different concentrations, it will
be referred as a 2 � 2 or 22 factorial experiment. The possible combinations of two
levels in each of the two factors will be four as shown in Table 3.14. Similarly, if Si
fertilization experiment is conducted by using only potassium silicate with its two
levels (no application as Si0 and 200 mg L�1 of potassium silicate as Si200) under

Table 3.14 2 � 2 or 22 factorial treatment combinations

Treatment combinations

Treatment number Source (factor A) Concentrations (factor B)
1 Potassium silicate 100 mg L�1

2 Potassium silicate 200 mg L�1

3 Sodium silicate 100 mg L�1

4 Sodium silicate 200 mg L�1

Treatment number Water regimes Concentrations
1 W+ Sio
2 W� Si200
3 W+ Sio
4 W� Si200
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two water regimes, i.e., with water (W+) and without water (W�), the design should
be factorial with 2 � 2 or 22 as shown in Table 3.14. In factorial experiment, term
level represents several treatments within any factor. The capital letters are used to
represent factors, while levels (treatment combinations and means) were represented
with small letters and numerical subscripts, e.g., a1b2 may refer to treatment combi-
nation consists of first level of A and second level of factor B with the mean of
corresponding treatment. The df and SS for the variance among four treatment
means in a 22 can be divided into single df and SS. Symbolic representation of
3 � 3 or 32 factorial treatment combinations has been shown in Table 3.15. The
principles involved in the partitioning can be elaborated by Table 3.16. The four
differences a2�a1 at each level of B and b2�b1 at each level of A are called simple

Table 3.15 Symbolic
representation of 3 � 3 or
32 factorial treatment
combinations

Factors A

B Levels a0 a1 a2
b0 a0b0 a1b0 a2b0
b1 a0b1 a1b1 a2b1
b2 a0b2 a1b2 a2b2

Table 3.16 Shoot dry weight (g) of sorghum plant under different silicon source as factor A and
silicon concentration as factor B to illustrate simple effects, main effects, and interactions

Factor A = Si source (case I)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 32.13 34.13 33.13 2

b2 38.13 44.13 41.13 6

Mean 35.13 39.13 37.13 4 (main effect)

b2�b1 (simple
effects)

6 10 8 (main
effect)

Factor A = Si source (case II)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 34.13 37.13 35.63 3

b2 43.13 33.13 38.13 �10

Mean 38.63 35.13 36.88 �3.5 (main
effect)

b2�b1 (simple
effects)

9 �4 2.5 (main
effect)

Factor A = Si source (case III)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 30.13 32.13 31.13 2

b2 38.13 40.13 39.13 2

Mean 34.13 36.13 35.13 2 (main effect)

b2�b1 (simple
effects)

8 8 8 (main
effect)
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effects. Average of simple effects is called main effect denoted by capital letters, e.g.,
A and B. The A and B for 22 factorial experiment can be calculated by using
following equations:

A ¼ 1
2

a2b2 � a1b2ð Þ þ a2b2 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a2b1ð Þ � a1b2 þ a1b1ð Þ½ �

B ¼ 1
2

a2b2 � a2b1ð Þ þ a1b2 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a1b2ð Þ � a2b1 þ a1b1ð Þ½ �

Main effects in factorial experiment are averaged in number of ways same as
other treatment. Different conditions might prevail within blocks and among blocks
for factorial experiment in RCBD, and Latin square design thus in Table 3.16 factor
A is replicated within every block as it is present at both levels for each level of factor
B. In case of factorially arrangement treatment, hypothesis that is usually tested is
“there is no interaction among factors.” Data presented in Table 3.16 have shown
that simple effects under I and II for Si sources (A) and concentrations (B) are
different, while for III the simple effects for A and B as well as main effect are the
same. The differential response obtained between the simple effects of a factor is
called interaction as seen in cases I and II of Table 3.16. However, interaction is not
present in case III of Table 3.16. This is the major advantage of application of
factorial experiment as it provides information about the interaction between factors.
The interaction of A and B can be defined by using following equations:

AB ¼ 1
2

a2b2 � a1b2ð Þ � a2b1 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a1b1ð Þ � a1b2 þ a2b1ð Þ½ �

The interaction for the data in Table 3.16:

AB ¼ 1
2

6� 2ð Þ ¼ 2 simple effects of A for Case Ið Þ

AB ¼ 1
2

10� 6ð Þ ¼ 2 simple effects of B for Case Ið Þ

The interaction for case II in Table 3.16:

AB ¼ 1
2

33:13� 43:13ð Þ � 37:13� 34:13ð Þ½ �

AB ¼ 1
2

33:13� 43:13� 37:13þ 34:13½ �

AB ¼ 1
2

�13½ �

3 Statistics and Modeling 91



AB ¼ �6:5

The interaction for case III in Table 3.16:
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Fig. 3.8 Graphical
illustration of interaction
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AB ¼ 1
2

40:13� 38:13ð Þ � 32:13� 30:13ð Þ½ �

AB ¼ 1
2

40:13� 38:13� 32:13þ 30:13½ �

AB ¼ 1
2

0½ � ¼ 0 no intearctionð Þ

Interaction concept is further elaborated by using graph as shown in Fig. 3.8. It
should be noted that presence or absence of main effects does not tell anything about
interaction presences or absence and vice versa. If interaction is nonsignificant, we
can conclude that factors act independently. However, if interaction is large and
significant, then main effects have little meaning. For large factorial experiments, it
has been suggested to use confounded designs as described by Das and Giri (1979).

Factorial experiment other case includes e.g. if we have actor A as three locations
and factor B as Si fertilizer with two levels, while factor C consists of three sorghum
cultivars; such kind of factorial experiment will be referred as 3 � 2 � 3 or 32 � 2
(Table 3.17).

Table 3.17 Three factor (3 � 2 � 3 or 32 � 2) factorial experiments

Factor C (sorghum cultivars) Factor B (Si fertilizer)

Factor A (locations)

a1 a2 a3
c1 b1 a1b1c1 a2b1c1 a3b1c1

b2 a1b2c1 a2b2c1 a3b2c1
c2 b1 a1b1c2 a2b1c2 a3b1c2

b2 a1b2c2 a2b2c2 a3b2c2
c3 b1 a1b1c3 a2b1c3 a3b1c3

b2 a1b2c3 a2b2c3 a3b2c3

Table 3.18 Analysis of variance table for 32 � 2 factorial experiment in RCBD

SOV df SS MS F

Replication r�1 ¼ 2 61.65 30.83 8.96

A ¼ locations a�1 ¼ 2 687.75 343.88 99.96��
B ¼ Si fertilizer b�1 ¼ 1 149.25 149.25 43.39��
C ¼ sorghum cultivars c�1 ¼ 2 1438.93 719.46 209.15��
AB (a�1)(b�1) ¼ 2 2.47 1.24 0.36

AC (a�1)(c�1) ¼ 4 6.35 1.59 0.46

BC (b�1)(c�1) ¼ 2 1.38 0.69 0.20

ABC (a�1)(b�1)(c�1) ¼ 4 0.024 0.006 0.001744

Error (r�1)(abc�1) ¼ 34 116.98 3.44

Total abcr�1 ¼ 53 2464.78

** P < 0.05
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ANOVA calculation for the 3 � 3 � 2 or 32 � 2 factorial experiments involves
following steps with results presented in ANOVA Table 3.18:

1. Calculation of correction factor, total sum of square, block SS, treatment SS and
error SS

Correction factor ¼ CF ¼ X2
::

rabc
¼ 2903ð Þ2

54
¼ 156, 038:77

SStotal ¼
X
i, j, k, r

X2
ijkr � CF ¼ 158, 503:56� 156, 038:77 ¼ 2464:78

SSreplication ¼
Pr

k¼1R
2
k

abc
� CF

SSrepliaction ¼ 968ð Þ2 þ 983ð Þ2 þ 953ð Þ2
18

� 156, 038:77

¼ 156, 100:43� 156, 038:77 ¼ 61:65

SStreatment ¼
Pa

j¼1

Pb
k¼1

Pc
i¼1Tr

2
ijk

R
� CF

SStreatment ¼ 187ð Þ2 þ . . .þ 134ð Þ2
3

� 156, 038:77 ¼ 158, 324:90� 156, 038:77

¼ 2286:15

SSerror ¼ SStotal � SSrepliaction � SStreatment ¼ 2464:78� 61:65� 2286:15 ¼ 116:98

2. Partitioning of treatments sum of squares into main effects and interactions

SSA ¼

P
j

a j

� �2
rbc

� CF

SSA ¼ 1053ð Þ2 þ 952ð Þ2 þ 898ð Þ2
18

� 156, 038:77 ¼ 156, 726:5� 156, 038:77

¼ 687:75

SSB ¼

P
k

bkð Þ2

rac
� CF
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SSB ¼ 1406ð Þ2 þ 1496ð Þ2
27

� 156, 038:77 ¼ 156, 188� 156, 038:77 ¼ 149:25

SSC ¼

P
i

cið Þ2

rab
� CF

SSC ¼ 1067ð Þ2 þ 992ð Þ2 þ 843ð Þ2
18

� 156, 038:77 ¼ 157, 477:7� 156, 038:77

¼ 1438:93

SSAB ¼

P
j, k

a jbk
� �2
rc

� CF� SSA þ SSBð Þ

SSAB ¼ 509ð Þ2 þ 544ð Þ2 þ 462ð Þ2 þ 490ð Þ2 þ 435ð Þ2 þ 462ð Þ2
9

� 156, 038:77� 687:75� 149:25 ¼ 2:47

SSAC ¼

P
j, i

a jci
� �2
rb

� CF� SSA þ SSCð Þ

SSAC ¼ 387ð Þ2 þ 360ð Þ2 þ 306ð Þ2 þ 350ð Þ2 þ 326ð Þ2 þ 277ð Þ2 þ 330ð Þ2 þ 307ð Þ2 þ 261ð Þ2
6

� 156, 038:77� 687:75þ 1438:93ð Þ ¼ 6:35

SSBC ¼

P
k, i

bkcið Þ2

ra
� CF � SSB þ SSCð Þ

SSBC ¼ 517ð Þ2 þ 550ð Þ2 þ 481ð Þ2 þ 512ð Þ2 þ 409ð Þ2 þ 435ð Þ2
9

� 156, 038:77� 149:25þ 1438:93ð Þ ¼ 1:38

SSABC ¼

P
i, j, k

a jbkci
� �2
r

� CF� SSA � SSB � SSC � SSAB � SSAC � SSBC

SSABC ¼ 187ð Þ2 þ . . . 134ð Þ2
3

� 156, 038:77

� SSA þ SSB þ SSC þ SSAB þ SSAC þ SSBCð Þ

SSABC ¼ 187ð Þ2 þ . . . 134ð Þ2
3

� 156, 038:77� 2286:3 ¼ 0:024
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3.8.6 Fractional Factorial Design

Fractional factorial design is used when large number of factors needs to be tested. In
this case, only fraction of total number of treatments is going to be tested based upon
the systematic selection.

3.8.7 Nested and Split Plot Design

Nested and split plot experiments are multifactor experiments. Split plot design is
used for factorial experiment with a principle that whole plots are divided into
subplots or subunits. The factors which need more importance, greater precision,
and smaller experimental material and expected to exhibit smaller differences are
placed in the subunits. Consider an experiment to test factor A (nitrogen fertilizer) at
four levels of RCBD and second factor B (sorghum cultivars) at three levels which
can be placed by dividing each A units into subunits. Thus, layout for the split plot
includes factor A which will be in the main plot while factor B in the subplot as
shown in Fig. 3.9.

Layout design steps for the split plot includes (i) Division of experimental area
into three blocks or replication with further division into four main plots for the
nitrogen fertilizer application (ii) Two separate randomization is needed, firstly for
the main plot (N treatments) and then for the subplots (cultivars). Split plot design in
figure showed that size of the main plot is “c” times greater than subplot. Since in this
experiment c ¼ 3 (cultivars in subplot), thus the size of main plot is three times
greater than subplot. However, each main plot treatment is tested, e.g., 3 times, while
subplot treatment will be tested 12 times which leads to more precision in subplot
treatments as compared to the main plot. Partitioning of degree of freedom for the
split plot design under different arrangements has been presented in Table 3.19.

3.8.8 Strip Plot/Split-Block Design

Experiments in which both factors (e.g., A and B with multiple levels of a and b)
require larger plot area strip plot design are used. In this design, whole area is divided
into “a” horizontal and “b” vertical strips. One level of factor A is applied in

Fig. 3.9 Layout for the split plot design
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horizontal strips while level of B in vertical strips. Strip plot main difference from
split plot is to have second factor as strip.

3.8.9 Split-Split Plot Design

Split-split plot designs are applicable when there are three-factor factorial
experiments with factor A assign to whole plots while factor B to subplot and factor
C to sub-subplot. The ANOVA for split-split plot design with r blocks, a levels of
factor A, b levels of factor B, and c levels of factor C has been shown in Table 3.20.

Table 3.19 Degree of freedom for split plot design under different arrangements

Completely randomized
(r replications) RCBD Latin square

SOV df SOV df SOV df

Main unit or main plot

Rows a�1

Blocks r�1 Columns a�1

A a�1 A a�1 A a�1

Error (a) a(r�1) Error (a) (a�1)(r�1) Error (a) (a�1)(a�2)

Total ar�1 Total ar�1 Total a2–1

Subunit or subplot

B b�1 B b�1 B b�1

AB (a�1)(b�1) AB (a�1)(b�1) AB (a�1)(b�1)

Error (b) a(r�1)(b�1) Error (b) a(r�1)(b�1) Error (b) a(a�1)(b�1)

Subtotal ar(b�1) Subtotal ar(b�1) Subtotal a2(b�1)

Total abr�1 Total abr�1 Total a2b�1

Table 3.20 Analysis of
variance for split-split plot
design

SOV df

(Main plot)

Block r�1

Factor A a�1

Whole plot error (r�1)(a�1)

(Subplots)

Factor B b�1

A � B (a�1)(b�1)

Subplot error a(r�1)(b�1)

(Sub-subplots)

Factor C c�1

A � C (a�1)(c�1)

B � C (b�1)(c�1)

A � B � C (a�1)(b�1)(c�1)

Sub-subplot error ab(r�1)(c�1)

Total (rabc) �1
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3.8.10 MANOVA (Multivariate Analysis of Variance)

Multivariate analysis of variance (MANOVA) is ANOVA with several dependent
variables. It tests the difference in two or more vectors of means, e.g., evaluation of
student’s improvements in Physics and Chemistry using different syllabus. In this
case, response variable (students’ improvements) is altered by the observer manipu-
lation of the independent variables. The assumptions to use MANOVA are:

1. The dependent variable should be normally distributed.
2. Linear relationship among all pairs of dependent variables.
3. Homogeneity of variances.

3.9 ANCOVA (Analysis of Covariance)

Analysis of covariance (ANCOVA) uses concepts of both analysis of variance and
regression, and it is used when one independent variable is not at predetermined
level. The uses of ANCOVA includes (i) increase of precision and control of error,
(ii) estimation of missing data, (iii) adjustment of treatment means of dependent
variables for corresponding independent variables, (iv) assistance in the data inter-
pretation, and (v) partitioning of total covariance into parts.

3.10 Principal Component Analysis (PCA)

Principal component analysis is the method of multivariate statistics used to check
variation and patterns in a data set. It is an easy way to visualize and explore
data (Ahmed et al. 2020). Consider a data in two dimensions first (e.g., height and
weight). The data can be plotted using scatter plot, but if we want to see variation, we
must use PCA with new coordinate system. The axes don’t have any physical
meaning. Thus, PCA is a statistical procedure that uses orthogonal transformation
to convert set of observation of correlated variables into values of linearly uncorre-
lated variables. It is the most common form of factor analysis applied to analyze
interrelationship among variables (Fig. 3.10). The main objective of PCA is to
cluster variables into manageable groups. These groups are known as the
components (factors). Steps involved for the PCA are:

1. Standardization of the data z ¼ Variable value�Mean=Standard deviationð )
2. Computing the covariance matrix (identification of correlation and dependence

among features in a data set)
3. Eigenvectors and eigenvalues calculation
4. Commuting the principal components
5. Reducing the dimension of data set
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3.11 Regression

Consider a random sample of n observations in which Y values are determined from
the corresponding X values, i.e., (X1, Y1), (X2, Y2), (X3, Y3). . . . (Xn, Yn). In this case,
Y is a dependent variable while X is an independent variable. First descriptive
technique which can be used to determine the relationship between X and Y is the
scatter diagram. This diagram is drawn by plotting the X and Y in Cartesian
coordinates. The plotting pattern of points obtained between variables tells the
relationship which can be either linear or nonlinear (Fig. 3.11). If relationship is

Fig. 3.10 PCA flow diagram
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linear, then we need to fit model that fits with the given data. Mathematically, the
relation between X and Y can be elaborated by the following equation:

Y / X

This shows that there is relationship present between the two variables and drawn
straight line between the points can serve as moving average of the Y values. The
equation of straight line can be:

Y ¼ aþ bX

Any point (X, Y ) on this line has a X coordinate (abscissa) and a Y coordinate
(ordinate) whose values satisfy this equation. When X ¼ 0 or minimum, Y ¼ a
(intercept, value of Y X is minimum or zero). When intercept (a) is zero, the line
passes through the origin. A unit change in Y due to unit change in X is called slope
of the line and represented with b. Thus b¼ ΔY

ΔX ¼ Unit change in Y
Unit Change in X. If b is positive, both

values increase or decrease together, but if b is negative, then one value increases
while other decreases. This is an example of simple linear regression
equation (Ahmed et al. 2011). However, if we increase number of X variables called
as predictor variable (X1 to Xn) against Y, it will be called multiple linear regression.
The form of equation for the multiple linear regression will be:

Y ¼ aþ βoX1 þ β1X2 þ β2X3 þ . . . βnXn þ ε

where X1. . .Xn ¼ independent non-random variable; β0, β1, β2. . .βn ¼ slope; and
ε ¼ random varible represnting error term and genearlly equal to zero.

Let’s consider the data set presented in Table 3.21 to describe the method of least
square in order to fit a straight line and calculate simple regression equation and
coefficient of determination (R2). The calculation involves determination of SSxx,
SSxy, X, Y , and β1 as shown in the following equations:

SSxx ¼
Xn

i¼1
X2

i �
Pn

i¼1Xi

� �2
n

¼ 639� 45ð Þ2
10

¼ 436:5

Fig. 3.11 Scatter plot to show relationship between two variables X and Y
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SSxy ¼
Xn

i¼1
XiYi �

Pn
i¼1Xi

� � Pn
i¼1Yi

� �
n

¼ 1060� 45ð Þ 55ð Þ
10

¼ 812:5

X ¼ 4:5 and Y ¼ 5:5:

β1 ¼ SSXX
SSX

¼ 812:5
436:5

¼ 1:86

and

Y ¼ aþ β1X

a ¼ Y � β1X ¼ 5:5� 1:86ð Þ 4:5ð Þ ¼ 5:5� 8:37 ¼ �2:87:

Hence simple regression equation for this data is:

Table 3.21 Data set to
illustrate method of least
squares to fit a straight line

Xi Yi XiYi Xi
2

�2 �7 14 4

0 �3 0 0

4 3 12 16

�4 �9 36 16

7 8 56 49

8 11 88 64

10 15 150 100

13 23 299 169

14 25 350 196

�5 �11 55 25

∑Xi¼45 ∑Yi¼55 ∑XiYi¼1060 ∑Xi
2¼639

Fig. 3.12 Simple linear
regression line with regression
equation and coefficient of
determination (R2)
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bY ¼ aþ β1X ¼ �2:87þ 1:86ð ÞX:
The plot for this least square line is shown in Fig. 3.12. The quality of this fit can

be measured quantitatively by using coefficient of determination (R2). The equation
for R2 calculation is:

R2 ¼ SSyy � SSerror
SSyy

¼ 1�
Pn
i¼1

yi � byið Þ2Pn
i¼1 yi � yð Þ2

SSerror ¼
Xn
i¼1

yi �byið Þ2 ¼
Xn
i¼1

yi � aþ β1Xð Þ2 ¼
Xn
i¼1

yi � a� β1Xð Þ2
 

Other approach which could be used to test hypothesis is use of ANOVA table as
presented in earlier section. The ANOVA table for regression analysis is presented in
Table 3.22. Furthermore, application of concept of multiple linear stepwise regres-
sion models has been elaborated using spring wheat grain yield data with respective
R2 (Table 3.23).

3.12 Correlation

Correlation is used to measure intensity or degree of association between variables.
It is the same as covariance. It is a bivariate statistical technique. The simple linear
correlation coefficient or simple correlation (total correlation and product-moment
correlation) is sued for descriptive purposes and can be calculated by using follow-
ing equations:

r=

P
X2Xð Þ Y2Yð Þ=n2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X2Xð Þ2=n2 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y2Yð Þ2=n2 1

q

Table 3.22 ANOVA table for simple regression

SOV df Sum of squares (SS) Mean squares (MS) F

Regression (model) 1
SSR ¼Pn

i¼1
byi � yð Þ2

SSR
dfR

MSR
MSerror

Error (residuals) n�2
SSE ¼Pn

i¼1
yi � byið Þ2

SSerror
dferror

Total n�1
SST ¼Pn

i¼1
yi � yð Þ2
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Table 3.23 Multiple linear stepwise regression models for spring wheat grain yield with environ-
mental variables (E¼ environments (2008–09 and 2009–10), PW¼ planting windows, SR1¼ solar
radiation at anthesis, SR1¼ solar radiation at maturity, T1¼mean average temperature at anthesis,
T2 ¼ mean average temperature at anthesis, PTQ1 ¼ photothermal quotient at anthesis,
PTQ2 ¼ photothermal quotient at maturity) using stepwise method developed to predict wheat
grain yield under changing climate

Regression models

GY = β0 + β1X1 R2

GY ¼ 4495.18–872.517�E 69.13

GY ¼ 4115.66–309.75�PW 69.28

GY ¼ �1516.48 + 3.95491�SR1 92.63

GY ¼ �1575.85 + 2.57179�SR2 93.43

GY ¼ 3284.76–5.97019�T1 51.02

GY ¼ 4542.37–57.863�T2 52.15

GY ¼ �3814.55 + 49.8777�PTQ1 87.77

GY ¼ �2582.32 + 31.8736�PTQ2 93.34

GY = β0 + β1X1 + β2X2 R2

GY ¼ 5424.43–872.517�E � 309.75�PW 87.41

GY ¼ �2440.37 + 224.118�E + 4.44915�SR1 93.18

GY ¼ �2366.93 + 193.912�E + 2.84192�SR2 93.86

GY ¼ 5196.35–901.852�E � 39.8932�T1 69.85

GY ¼ 1594.13–1225.4�E + 146.385�T2 73.54

GY ¼ �2465.19 � 302.166�E + 43.4934�PTQ1 89.34

GY ¼ �3268.13 + 149.999�E + 34.4196�PTQ2 93.61

GY ¼ �836.161 � 80.6277�PW + 3.5862�SR1 93.51

GY ¼ �820.636 � 92.5138�PW + 2.31383�SR2 94.63

GY ¼ 1995.01–443.928�PW + 153.171�T1 76.77

GY ¼ 5347.72–308.175�PW � 52.7775�T2 70.24

GY ¼ �3453.92 � 26.2988�PW + 47.8705�PTQ1 87.84

GY ¼ �2399.35 � 16.9782�PW + 31.144�PTQ2 93.38

GY ¼ �1667.97 + 1.65868�SR1 + 1.55638�SR2 94.14

GY ¼ �1241.88 + 3.96355�SR1–17.2937�T1 92.77

GY ¼ �4931.17 + 27.4934�SR1–519.678�T2 93.91

GY ¼ �1411.9 + 4.0845�SR1–1.84298�PTQ1 92.64

GY ¼ �2262.19 + 1.62354�SR1 + 19.4378�PTQ2 93.91

GY ¼ �945.844 + 2.61657�SR2–43.2789�T1 94.29

GY ¼ �2612.93 + 2.64662�SR2 + 38.3422�T2 93.90

GY ¼ �1808.8 + 2.39643�SR2 + 3.97299�PTQ1 93.46

GY ¼ �2133.2 + 1.35065�SR2 + 15.5732�PTQ2 93.97

GY ¼ 4550.48–0.599316�T1–57.7877�T2 52.15

GY ¼ �3680.6 � 8.23152�T1 + 49.8894�PTQ1 87.80

GY ¼ �2804.74 + 12.603�T1 + 31.9554�PTQ2 93.42

GY ¼ �4063.73 + 8.96602�T2 + 50.156�PTQ1 87.80

GY ¼ �4661.87 + 71.4527�T2 + 34.112�PTQ2 94.89

GY ¼ �2572.68 � 0.241837�PTQ1 + 32.0078�PTQ2 93.34

GY = β0 + β1X1 + β2X2 + β3X3 R2

(continued)
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Table 3.23 (continued)

Regression models

GY ¼ �1121.59 + 49.1956�E � 70.8354�PW + 3.73947�SR1 93.52

GY ¼ �740.097 � 14.575�E � 95.0961�PW + 2.28633�SR2 94.63

GY ¼ 3783.86–791.812�E � 405.893�PW + 109.752�T1 91.10

GY ¼ 2365.39–1246.31�E � 314.376�PW + 155.057�T2 92.36

GY ¼ 305.873–494.994�E � 139.285�PW + 28.7889�PTQ1 90.73

GY ¼ �4950.36 + 342.09�E + 74.6�PW + 40.8858�PTQ2 93.81

GY ¼ �2778.85 + 266.679�E + 2.0718�SR1 + 1.67498�SR2 94.90

GY ¼ �2210.96 + 209.746�E + 4.42281�SR1–10.7162�T1 93.23

GY ¼ �3512.62 + 0.220823�E + 4.23482�SR1 + 70.9633�T2 94.16

GY ¼ �1752.91 + 564.722�E + 7.79189�SR1–36.8568�PTQ1 94.12

GY ¼ �3220.65 + 230.332�E + 2.10348�SR1 + 19.6712�PTQ2 94.49

GY ¼ �1660.51 + 164.599�E + 2.8428�SR2–40.3133�T1 94.59

GY ¼ �2686.81 + 105.353�E + 2.7677�SR2 + 25.1835�T2 93.97

GY ¼ �2248.81 + 223.19�E + 3.06154�SR2–4.05167�PTQ1 93.88

GY ¼ �2985.38 + 203.511�E + 1.58608�SR2 + 16.1864�PTQ2 94.44

GY ¼ 2279.55–1352.58�E � 73.2781�T1 + 176.787�T2 75.78

GY ¼ �2050.44 � 322.027�E � 20.0369�T1 + 43.1024�PTQ1 89.52

GY ¼ �3836.52 + 190.605�E + 21.6873�T1 + 35.2497�PTQ2 93.81

GY ¼ �3818.53 � 545.453�E + 87.7865�T2 + 41.0788�PTQ1 90.87

GY ¼ �4546.3 � 96.9147�E + 82.7066�T2 + 32.8195�PTQ2 94.97

GY ¼ �3189.3 + 212.106�E � 9.10147�PTQ1 + 40.5279�PTQ2 93.72

GY ¼ �981.556 � 81.4573�PW + 1.27236�SR1 + 1.56575�SR2 95.03

GY ¼ �959.051 � 111.806�PW + 3.43148�SR1 + 24.3069�T1 93.65

GY ¼ �2758.03 � 61.055�PW + 3.92173�SR1 + 62.4805�T2 94.64

GY ¼ 881.792–127.627�PW + 5.00859�SR1–23.2851�PTQ1 94.09

GY ¼ �1734.58 � 43.2957�PW + 1.93291�SR1 + 15.2077�PTQ2 94.11

GY ¼ �772.826 � 75.9091�PW + 2.37316�SR2–12.596�T1 94.67

GY ¼ �1696.5 � 86.1818�PW + 2.39096�SR2 + 30.4708�T2 94.92

GY ¼ 365.25–128.985�PW + 2.88071�SR2–15.1477�PTQ1 94.97

GY ¼ �765.837 � 95.1082�PW + 2.38026�SR2–0.939409�PTQ2 94.63

GY ¼ 3529.35–449.248�PW + 161.654�T1–70.7574�T2 78.47

GY ¼ �3435.79 � 31.2956�PW + 3.09644�T1 + 47.4847�PTQ1 87.85

GY ¼ �2497.58 � 63.0856�PW + 33.7223�T1 + 29.3817�PTQ2 93.66

GY ¼ �3669.07 � 24.3883�PW + 6.79871�T2 + 48.2274�PTQ1 87.86

GY ¼ �4910.46 + 15.9228�PW + 74.0978�T2 + 34.879�PTQ2 94.92

GY ¼ �2318.27 � 18.7935�PW � 1.54335�PTQ1 + 31.923�PTQ2 93.38

GY ¼ �1128.05 + 1.28052�SR1 + 1.82477�SR2–35.6472�T1 94.68

GY ¼ �3287.84 + 2.29884�SR1 + 1.27881�SR2 + 58.5742�T2 95.13

GY ¼ �1166.99 + 2.14204�SR1 + 1.65779�SR2–9.00197�PTQ1 94.26

GY ¼ �1975.86 + 1.25311�SR1 + 1.08073�SR2 + 9.23233�PTQ2 94.29

GY ¼ �4391.49 + 1.78814�SR1 + 74.2775�T2 + 20.5039�PTQ2 95.58

GY ¼ �1715.88 + 2.1342�SR1–11.1793�PTQ1 + 21.734�PTQ2 94.10

GY ¼ �2132.17 + 2.71418�SR2–49.035�T1 + 46.9579�T2 94.98
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Table 3.23 (continued)

Regression models

GY ¼ �860.582 + 2.6733�SR2–44.0303�T1–1.2676�PTQ1 94.29

GY ¼ �987.816 + 2.5613�SR2–42.0901�T1 + 0.689252�PTQ2 94.29

GY ¼ �2736.16 + 2.53799�SR2 + 37.6309�T2 + 2.42991�PTQ1 93.91

GY ¼ �4176.79 + 0.754416�SR2 + 63.405�T2 + 24.7552�PTQ2 95.07

GY ¼ �2003.58 + 1.38361�SR2–2.97666�PTQ1 + 16.8284�PTQ2 93.99

GY ¼ �3948.13 � 9.1929�T1 + 10.189�T2 + 50.2071�PTQ1 87.84

GY ¼ �4766.43 + 7.30566�T1 + 70.6152�T2 + 34.1332�PTQ2 94.92

GY ¼ �4497.06 + 81.5281�T2–11.4913�PTQ1 + 40.8087�PTQ2 95.12

GY = β0 + β1X1 + β2X2 + β3X3 + β4X4 R2

GY ¼ �1717.12 + 125.93�E � 56.4191�PW + 1.58618�SR1 + 1.61888�SR2 95.12

GY ¼ �668.395 � 53.9363�E � 128.193�PW + 3.2354�SR1 + 28.713�T1 93.66

GY ¼ �1479.49 � 418.451�E � 132.643�PW + 2.81869�SR1 + 99.8435�T2 95.20

GY ¼ �117.991 + 382.545�E � 84.8503�PW + 7.21027�SR1–39.8168�PTQ1 94.61

GY ¼ �4412.45 + 362.263�E + 52.7493�PW + 2.00147�SR1 + 24.9586�PTQ2 94.59

GY ¼ �1029.59 + 50.4408�E � 59.3438�PW + 2.49561�SR2–18.383�T1 94.68

GY ¼ �818.424 � 375.193�E � 144.014�PW + 1.78818�SR2 + 72.0508�T2 95.36

GY ¼ 211.56 + 35.3623�E � 124.003�PW + 2.96738�SR2–15.6806�PTQ1 94.98

GY ¼ 17.1993–84.1002�E � 125.078�PW + 2.60741�SR2–6.39615�PTQ2 94.65

GY ¼ 1809.0–1117.23�E � 380.863�PW + 76.9233�T1 + 124.976�T2 93.99

GY ¼ 1727.51–626.402�E � 285.99�PW + 72.3236�T1 + 14.7125�PTQ1 91.54

GY ¼ �4499.41 + 276.811�E + 40.3019�PW + 12.304�T1 + 38.3838�PTQ2 93.83

GY ¼ �345.954 � 932.419�E � 203.84�PW + 125.59�T2 + 18.5194�PTQ1 93.55

GY ¼ �4041.76 � 179.645�E � 25.9982�PW + 87.9945�T2 + 30.4637�PTQ2 94.98

GY ¼ �5519.16 + 522.302�E + 105.491�PW � 14.7528�PTQ1 + 53.4642�PTQ2 94.07

GY ¼ �2201.79 + 233.107�E + 1.71356�SR1 + 1.87739�SR2–28.8663�T1 95.25

GY ¼ �3381.18 + 122.646�E + 2.32382�SR1 + 1.40491�SR2 + 43.4754�T2 95.23

GY ¼ �1594.43 + 1002.58�E + 7.31229�SR1 + 2.8626�SR2–76.3668�PTQ1 98.07

GY ¼ �3001.23 + 259.019�E + 1.72496�SR1 + 1.27873�SR2 + 7.62509�PTQ2 95.00

GY ¼ �2118.36 � 13.347�E + 2.69947�SR2–49.4896�T1 + 48.7048�T2 94.98

GY ¼ �1298.82 + 231.246�E + 3.36756�SR2–44.8499�T1–9.67945�PTQ1 94.74

GY ¼ �1996.51 + 173.71�E + 2.46492�SR2–31.7531�T1 + 4.86799�PTQ2 94.61

GY ¼ �3250.19 � 640.28�E � 41.8047�T1 + 107.051�T2 + 39.7331�PTQ1 91.58

GY ¼ �4587.11 � 89.3775�E + 2.22363�T1 + 81.5764�T2 + 32.9265�PTQ2 94.97

GY ¼ �4475.23 � 28.2616�E + 84.084�T2–10.6634�PTQ1 + 39.9494�PTQ2 95.12

GY ¼ �955.007 � 73.689�PW + 1.24475�SR1 + 1.61059�SR2–6.07485�T1 95.04

GY ¼ �2462.56 � 66.0303�PW + 1.87942�SR1 + 1.33248�SR2 + 48.8522�T2 95.69

GY ¼ 1674.45–155.41�PW + 2.88299�SR1 + 1.98577�SR2–36.528�PTQ1 96.35

GY ¼ �312.752 � 112.05�PW + 1.66867�SR1 + 2.20423�SR2–12.3245�PTQ2 95.17

GY ¼ �1843.34 � 44.634�PW + 2.55566�SR2–30.0858�T1 + 39.5518�T2 95.09

GY ¼ 363.669–128.524�PW + 2.88078�SR2–0.28732�T1–15.1136�PTQ1 94.97

GY ¼ �408.71 � 81.9211�PW + 2.81537�SR2–20.0906�T1–5.75433�PTQ2 94.69

GY ¼ �3670.93 � 24.1757�PW � 0.12556�T1 + 6.83431�T2 + 48.2449�PTQ1 87.86

GY ¼ �4874.7 + 10.215�PW + 3.72791�T1 + 72.7223�T2 + 34.6149�PTQ2 94.92
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Table 3.23 (continued)

Regression models

GY ¼ �4602.61 + 6.44894�PW + 82.3013�T2–11.1513�PTQ1 + 40.9213�PTQ2 95.12

GY ¼ �2789.6 + 1.91952�SR1 + 1.55887�SR2–39.4595�T1 + 62.1691�T2 95.80

GY ¼ �396.329 + 1.89706�SR1 + 1.98872�SR2–39.1942�T1–12.183�PTQ1 94.91

GY ¼ �480.841 + 1.59121�SR1 + 2.54324�SR2–53.3785�T1–11.3543�PTQ2 94.77

GY ¼ �1893.98 + 2.90465�SR2–51.719�T1 + 48.6524�T2–4.17775�PTQ1 95.01

GY ¼ �3391.81 + 1.46283�SR2–23.0213�T1 + 58.4869�T2 + 15.9022�PTQ2 95.16

GY ¼ �3981.32 + 0.791952�SR2 + 73.4787�T2–11.9459�PTQ1 + 31.2513�PTQ2 95.31

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 R2

GY ¼ �2348.68 + 258.764�E + 12.2235�PW + 1.76716�SR1 + 1.9187�SR2–
33.0254�T1

95.25

GY ¼ �1792.68 � 234.418�E �
105.354�PW + 1.58191�SR1 + 1.12343�SR2 + 71.9212�T2

95.84

GY ¼ �184.511 + 838.766�E � 73.2942�PW + 6.81694�SR1 + 2.82043�SR2–
78.3416�PTQ1

98.43

GY ¼ �289.506 � 2.53508�E � 112.94�PW + 1.66736�SR1 + 2.21121�SR2–
12.48�PTQ2

95.17

GY ¼ �2589.5 � 27.4556�PW + 1.85404�SR1 + 1.50077�SR2–
28.13�T1 + 57.0945�T2

95.84

GY ¼ 2202.57–231.216�PW + 3.51711�SR1 + 1.77738�SR2 + 43.6298�T1–
46.4137�PTQ1

96.65

GY ¼ 245.489–93.855�PW + 1.78851�SR1 + 2.83208�SR2–29.5739�T1–
20.2299�PTQ2

95.30

GY ¼ �746.366 � 94.1724�PW + 3.00058�SR2–17.8032�T1 + 36.8552�T2–
13.6174�PTQ1

95.34

GY ¼ �3009.02 � 20.8459�PW + 1.63506�SR2–
19.2907�T1 + 52.7591�T2 + 12.7727�PTQ2

95.18

GY ¼ �4266.05 � 32.9476�PW + 23.4955�T1 + 76.5957�T2–
15.1799�PTQ1 + 41.4392�PTQ2

95.21

GY ¼ �1819.0 + 3.50132�SR1 + 1.81621�SR2–48.6106�T1 + 85.463�T2–
26.5257�PTQ1

96.70

GY ¼ �3031.46 + 1.8465�SR1 + 1.33771�SR2–
34.3125�T1 + 64.033�T2 + 3.36904�PTQ2

95.80

GY ¼ �3461.14 + 1.27339�SR2–15.7506�T1 + 69.2434�T2–
10.9138�PTQ1 + 24.633�PTQ2

95.32

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 R2

GY ¼ �2115.22 � 148.483�E � 67.5486�PW + 1.67558�SR1 + 1.30211�SR2–
17.0565�T1 + 68.4621�T2

95.88

GY ¼ �517.057 + 898.256�E � 38.6623�PW + 6.85498�SR1 + 2.95882�SR2–
16.5802�T1–77.5504�PTQ1

98.47

GY ¼ �738.307 + 118.975�E � 48.5922�PW + 1.87334�SR1 + 2.62473�SR2–
35.251�T1–14.4497�PTQ2

95.32

GY ¼ �1178.05 + 899.602�E + 6.8455�SR1 + 2.96831�SR2–
31.9094�T1 + 13.5518�T2–74.1903�PTQ1

98.46

GY ¼ �3028.67 + 21.7114�E + 1.86749�SR1 + 1.38125�SR2–
34.1386�T1 + 61.0605�T2 + 2.95928�PTQ2

95.80

(continued)
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r ¼
P

X � X
� �

Y � Y
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X � X
� �2q P

Y � Y
� �2

Correlation coefficient ranges from +1 to �1. If r ¼ +1, then it shows positive
covariance, while if r ¼ �1, it means negative correlation, and if r ¼ 0, it means no
correlation at all. Correlation measures co-relation a joint property of two variables,
while regression deals with the change of one variable in relation to change of
another variable. In correlation, random pair of observation was obtained, while in
regression, only the dependent variable needs to be randomly and normally
distributed. The application of concept of correlation has been illustrated in
Fig. 3.13 (Ahmed 2011).

3.13 Analytical Tools/Software

Analytical tools which can be used for the statistical analysis are listed below:

1. R
2. SAS
3. Sigma plot

Table 3.23 (continued)

Regression models

GY ¼ �3486.29 + 92.9008�E + 1.41235�SR2–12.406�T1 + 59.2894�T2–
13.9926�PTQ1 + 25.9524�PTQ2

95.38

GY ¼ 594.397–
196.044�PW + 4.63831�SR1 + 1.66246�SR2 + 23.0033�T1 + 72.8577�T2–
53.4338�PTQ1

97.91

GY ¼ �2481.28 � 29.6402�PW + 1.8767�SR1 + 1.58055�SR2–
29.1928�T1 + 55.9794�T2–1.28573�PTQ2

95.84

GY ¼ �2227.94 � 68.9646�PW + 1.75248�SR2 + 0.0719391�T1 + 55.4433�T2–
16.1384�PTQ1 + 18.4592�PTQ2

95.50

GY ¼ �2930.65 + 3.35027�SR1 + 0.709417�SR2–23.3052�T1 + 98.4384�T2–
30.3258�PTQ1 + 17.4223�PTQ2

96.86

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 R2

GY ¼ �522.117 + 734.207�E � 62.8549�PW + 6.59519�SR1 + 2.7072�SR2–
12.0194�T1 + 22.7315�T2–74.0542�PTQ1

99.53

GY ¼ �1202.83 � 216.846�E � 100.018�PW + 1.73874�SR1 + 1.72226�SR2–
18.7737�T1 + 66.5448�T2–8.24543�PTQ2

96.90

GY ¼ 905.486–
202.513�PW + 4.70728�SR1 + 1.88784�SR2 + 20.0973�T1 + 69.7402�T2–
53.5304�PTQ1–3.62754�PTQ2

98.92

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 R2

GY ¼ �3670.28 + 1097.09�E + 56.959�PW + 6.98681�SR1 + 1.34258�SR2–
5.07598�T1 + 23.9757�T2–83.4396�PTQ1 + 30.2752�PTQ2

99.78
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4. Stat graphics
5. Minitab
6. SPSS
7. MS Excel
8. MATLAB
9. GraphPad Prism

10. GenStat
11. SigmaStat
12. Stata
13. Statistica
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