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Abstract

Biotic stress is one of the major environmental factors that affect the plant’s
growth and life cycle. Plant pathogens are major constraints and severe threats to
agricultural production in changing climate scenarios. The effects of climate
variability on plant diseases and pathogens have been examined in various
plant pathosystems. Climate change is predicted to affect the development of
pathogens, their survival, vigor, sporulation, multiplicity, and host susceptibility
that ultimately cause changes in the crop diseases. It also affects the inoculum
dispersion and pathogenicity. These effects vary depending on pathosystems and
geographic locations. Climate change not only affects optimal conditions of
infection but also host specificity and infection mechanism in plants.
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Temperature, light, and humidity are the major factors that control the develop-
ment and growth of diseases. So, climate change is an emerging challenge that is
impacting and driving the plants and pathogens growth, disease development in a
pathosystem. This overview is aimed to summarize the previous research,
reviews, opinions, and recent trends in studying the effects of climate variability
on pathogens and plants health. However, managing and predicting climate
change impacts are complicated because of the interaction between the indirect
effects and global climate change drivers. Similarly, uncertainty in plant disease
development models in changing climate needs the diversification in manage-
ment strategies. Protection of plants against diseases and pathogens is an essential
direction for researchers to make the plants more resistant to pests and diseases.
There is a need for further research in different areas under multiple climate-
changing factors and scenarios using the disease modeling frameworks such as
BIOMA and APSIM-DYMEX.
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12.1 Introduction

Change in the statistical distribution of weather for an extended period of time is
called climate change. The end of the twentieth century and the start of the twenty-
first century were the warmest periods globally. The availability of information on
the effects of climate variability upon plant diseases is very limited. It was
documented that plant diseases will be affected by the changing climate like other
global change components (Regniere 2011; Bradley et al. 2012). The influence of
the environment on plant disease is considered by plant pathologists disease studies,
and the disease triangle illustrates the interaction among host plants, environment,
and pathogen for disease development (Grulke 2011). Climate variability is one of
the ways in which the environment can be suppressive or conducive for disease
(Ahmed 2020; Ahmed and Stockle 2016; Perkins et al. 2011; Fuhrer 2003). There-
fore plant diseases are indicators of climate variability (Garrett et al. 2015). Since the
last decade plant virus distribution and the population is increasing swiftly as well as
many new infectious diseases are also identified. Plant diseases are not only
accelerated by increased activity of pathogens but also due to declined tolerance in
plants as a result of adverse environmental conditions (Huseynova et al. 2014).
Anthropogenic activities are the important causes of plant diseases spread; sudden
oak death is an example of these activities (Prospero et al. 2009). Climate variability
is impacting the plants in agriculture ecosystems globally (Stern 2008). Little work
has been carried out on modeling the impacts of climate variability on disease
epidemics in plants. However, several tree diseases are emerging because of climate
change (Garrett et al. 2006; Garrett et al. 2015). This change is affecting the crops
directly as well as indirectly by interacting with microbial pests and resulting in
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several disease epidemics in plants (Bosch et al. 2007; Chakraborty 2005). A variety
of mechanisms can affect the health of plants in changing climates such as accelera-
tion in pathogen evolution, fewer incubation periods, and extreme climatic events
(Sutherst et al. 2011). Climate change is impacting the hosts and pathogens directly
and indirectly by altering their physiology (Desprez-Loustau et al. 2006; Garbelotto
et al. 2010).

12.2 Recently Occurred Changes

Climate variability has been measured, and these changes have been associated with
plant pathosystems. Environment and climatic conditions strongly affect the plant
diseases in the forests. Pathogens, moisture, temperature, and stress interaction
influence the severity of infections and diseases. Climate changes result in the
evolvement of more invasive species and increase stress on plants leading to the
condition that is favorable for diseases in plants. Changes in temperature, moisture,
and precipitation in North America were associated with tree death events (Van
Mantgem et al. 2009; Sturrock et al. 2011). In central Europe rise in winter
temperature and fluctuations in the rain favored the root rot diseases in forests by
supporting infection through Phytophthora spp. (Jung 2009). At Oregon coast
climatic changes resulted in the Swiss needle epidemic, and a further increase of
0.4 �C in temperature is predicted by 2050 in Pacific Northwest forests that will
further increase the severity of the epidemic and increase the outbreak (Stone et al.
2008; Sturrock et al. 2011). In Oregon and California sudden death of Oak trees
caused by Phytophthora ramorum abruptly increased due to extreme climatic
events. Heavy rains and extension of moist weather in warm season favor the
infection in plants and lead to the death (Swiecki and Bernhardt 2016; Frankel
2007). In Europe study was carried out for Phytophthora cinnamomi in Oak. Results
demonstrated that an increase in temperature worsens the root disease (Brasier 1996;
Brasier and Scott 1994). A similar study was carried out for eucalyptus (Booth et al.
2000). In Alaska yellow cedar tree’s mortality rate is also increasing due to changing
climatic conditions. As earlier, melting of snow exposed roots to the cold conditions
that result in freezing and cause injury (Thompson 2007).

Several studies were carried out to assess the climate change impacts on plant
diseases. Most studies investigated the head blight, leaf rust and blotch in wheat,
downy mildew in grapes, and phoma stem canker in oilseed rapes. These studies are
mostly carried out in European countries and Brazil (Juroszek and von Tiedemann
2015). However, rice is a major crop in Asian countries, and rice blast is an
important disease that results in major losses in rice production. Luo et al. (1995)
conducted an analysis of the blast epidemic produced byMagaporthe grisea. Results
showed that change in rainfall has no impacts, while in subtropical regions, disease
severity is increased because of high temperatures. However, the opposite trend was
observed in humid areas. An experiment was conducted to study the impacts on soil-
borne pathogens. Results showed an increase in damping-off in cotton plants under
elevated CO2 (Ahmad and Hasanuzzaman 2020; Runion et al. 1994). In barley an
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increase in growth was observed at high CO2 concentrations but after the infection of
powdery mildew, the growth was retarded (Hibberd et al. 1996). The incidence of
leaf rust was studied in spring wheat under elevated CO2 and ozone. The infection
rate was inhibited by the ozone; however, ozone damage on leaves was altered by
infection and CO2 (Tiedemann and Firsching 2000). Temperature evaluation can
increase the yellow dwarf symptoms in wheat and barley (Mikkelsen et al. 2015). In
maize crop, increased CO2 makes it more prone to Fusarium (Vaughan et al. 2014).
Fusarium Crown rot diseases in wheat increased with more CO2 (Melloy et al. 2014)
while reduced in elevated temperature (Vary et al. 2015). Increased CO2 effects were
studied on a C3 Scirpus olneyi, and the C4 grass Spartina patens. However, shoot N
and water content were also determined. Plants with increased CO2 levels showed an
increase of 37% in resistance while in reduced N and increased water content the
disease severity was also enhanced (Thompson and Drake 1994). Similarly, in
Finland, climate variability will affect potato production. The risk of potato blight
resulted from Phytophthora infestans will be increased and a nematode called
Globodera rostochiensis will also be distributed all over the country because it has
the ability to support many generations in a single year (Carter et al. 1996). In tomato
plants, climate change will not affect diseases like white mold, late blight,
verticillium wilt, septoria leaf spot, and tomato mosaic. But the importance of
powdery mildew, early blight, bacterial wilt, and leaf curl will increase (Gioria
et al. 2008).

12.3 Climate Change Impacts on Pathogens

The rise in temperature may initiate the growth and development of inactive
pathogens (Fig. 12.1). Temperature and rainfall changes may cause alteration in
growth, rate of progress, physiology, and resistivity of the host (Chakraborty and
Datta 2003). Temperature affects the diseases caused by bacteria like Acidovorax
avenae, Ralstonia solanacearum, and Burkholderia glumae. Bacteria can move to
the areas where temperature depending diseases are not previously noticed (Kudela
2009). As the rise in temperature reduce winter length, whereas growth and repro-
duction of pathogens get modified (Ladanyi and Horvath 2010). Researches
indicated that wheat and oats are becoming more susceptible to the rust disease
due to the increase in temperature and humidity, while resistant has been shown by
few forage species to alleviated temperatures (Coakley et al. 1999). In the cold
duration of the year, warming can release cold stress but in the hot period of the year,
it increases heat stress. Various models have been used for forecasting the epidemics
based on the rise in pathogen growth and infection in a specific range of
temperatures. Fungi that are causing the disease to plant at cold temperatures
experience longer suitable temperature periods for reproduction and growth in a
warmer climate. Late blight epidemic became more severe and required more
fungicide to control diseases if warm temperature onset earlier. These effects of
increased temperature vary throughout the year as increase in temperature in colder
parts may reduce plant stress while in hotter parts it results in increase of alleviated
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temperature stress. Lower rainfall decreases the incidence of downy mildew
infections in grape plants. Temperature and moisture are corelated and affect the
pathogens reproduction (Caffarra et al. 2012) and also affect the populations of
pathogens (Legler et al. 2012). When the temperature is higher, the moisture will be
reduced and result in reduced risk of disease (Desprez-Loustau et al. 2006). Dense
canopies result in more moisture and increase leaf wetness that will favor the growth
and development of pathogens.

Alleviated CO2 impacts both pathogen and host in multiple manners. Under
alleviated CO2 and temperature, new races are evolving very rapidly, and the
population of pathogens is boosted as well as infectious cycles are also increasing

Fig. 12.1 Impacts of climate variability on plant diseases
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due to favorable climate in the large canopy (Chakraborty 2013). Higher
concentrations of CO2 lead to the increased production of biomass depending on
the availability of nutrients and water, weeds, diseases, and pests damage. However,
the increased carbohydrates amount in plant tissues favors the biotrophic fungi, that
is, rust (Chakraborty and Datta 2003). Therefore, biomass increase can alter the
microclimate of plants and also the chances of infection. More CO2 will result in
slow decomposition of residues that will favor in overwintering of harmful
organisms and more fugal spore production will occur. Increased CO2 can affect
the growth of pathogens by leading to higher production of fungal spores but it can
also cause some physiological alterations in host plants that enhance the resistance
against pathogens (Coakley et al. 1999). At higher concentrations of CO2 growth of
germ tube and germination rate were slower in conidium of C. gleosprioides fungi
but after infection fungi develop quickly and attain sporulation (Chakraborty et al.
2002). Similarly, higher ozone concentration can increase rust infection on the tree
of poplar but it is minimized by increased CO2 (Karnosky et al. 2002).

12.4 Climate Change Impacts on Plants

Plants show alteration in their gene expression in response to the climatic changes,
while transcriptome enables plants to respond to these changes (Garrett et al. 2006).
Climate variability directly impacts the plant’s biology, physiology, biochemical
process, and morphology (Fig. 12.1). These changes affect the pathogens coloniza-
tion, symptoms expression, colonization infection, etc.

Drought can reduce stomatal activity as well as photosynthesis and affect leaf
growth and morphology of root and shoot (Ahmed et al. 2020). Temperature and
moisture stress affects the plants by changes in abscisic acid, salicylic acid, jasmonic
acid, and adversely affect the plant resistance to stresses (Asselbergh et al. 2008). It
may also reduce the plant’s ability to produce growth and defense substances,
making the plant susceptible to pathogens.

Increased CO2 affect photosynthesis and change the structure of plants as well as
affect the functioning of ecosystems. Under increased CO2 conditions, plant organ
size also increases, such as leaves and branches (Pritchard et al. 1999), and water use
efficiency of plants also increases (Ahmed and Ahmad 2019; Wong et al. 2002). It
results in the humid climate, and plant pathogen infection rate may rise. Similarly,
elevated ozone can increase the attack of necrotrophic fungi (Sandermann 2000)
because leaf composition and structure are affected by the ozone (Karnosky et al.
2002).

12.5 Climate Change Impacts on Host Resistance

The assessment of plant resistance in the context of climate change is complicated.
Under drought conditions, infection rate and success tend to decrease (Huber and
Gillespie 1992). Fewer symptoms were observed under drought conditions when
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alfalfa plants were exposed to verticillium albo-atrum (Pennypacker et al. 1991).
However, in some cases, plant resistance is reduced under drought stress
(Christiansen 1982). Resistance genes are also affected by temperature, but it is
complicated to assess the effect of temperature on resistance genes and pathogen
aggressiveness. Effects of temperature on wheat and barley were studied, and the
response of resistance was different to different ranges of temperature (Browder and
Eversmeyer 1986; Newton and Young 1996). A higher level of ozone and CO2 also
affects the host resistance (Plazek et al. 2001; Plessl et al. 2005). Reduction in host
resistance was observed under elevated CO2 (Chakraborty and Datta 2003). An
increase or decrease in the conduciveness of the disease environment due to climate
change can cause shifts in the presence and diversity of resistance genes (Fig. 12.1).

12.6 Climate Change Impacts on Microbial Interaction

Climate change is impacting the microbial communities in the soil and causing
various shifts in different interactions. Temperature, CO2, nitrogen, etc. are the main
factors influencing interactions in soils. Increased CO2 results in a reduction of soil
nitrates in grasslands (Barnard et al. 2005) and enhances the nitrogen uptake of
plants because of increased growth in plants (Hu et al. 2001). In tallgrass prairies,
increased temperature favors plant growth that facilitates fungi dominance in the
community and uptake of nitrogen. Lesser availability of nitrogen is experienced by
microbial communities, while the type of soil and composition of plants have effects
on these observed responses (Hungate et al. 1996). In both agricultural and natural
ecosystems prediction of climate change impacts on the disease; suppression is
complicated due to variations in the interaction between the microbial species
(Davelos et al. 2004). Recent advancements in technology like metagenomic analy-
sis will enhance knowledge about the dynamics of microbes in soil and various
environments (Riesenfeld et al. 2004).

Host response to climate change may be affected by symbiosis, as fungal
endophytes had shown tolerance to heat, nutrient availability, and water stress
(Kannadan and Rudgers 2008; Rodriguez et al. 2008). Brosi et al. (2011) studied
the effects of climate change on endophytes, and results concluded that higher
infection rates in tall fescue are led by elevated CO2 levels than the precipitation
and temperature.

12.7 Simulation Modeling for Disease Prediction

There are several approaches that can be used in modeling the impacts of climate
variability on pathogens and diseases. Different empirical or regressions models can
be used to predict the pathogens’ success and development of epidemics (Booth et al.
2000). Models can be used for predicting the success of the pathogen in changing
environments in the context of a reference climate where pathogens are successful.
Climate variability occurs gradually that causes difficulty in studying its effects
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directly, and hence simulation models can become helpful in outcomes prediction
over broader range scenarios. However, problems have been identified in models
application for disease forecasting in climate change scenarios (Scherm 2004;
Seherm and Coakley 2003). Major issues involve difficulty in acquiring data regard-
ing climate and epidemiological responses (Otten et al. 2004), disease geographic
distribution that may lead to higher uncertainties (Katz 2002; Scherm 2000), and
ignorance of adaptation potential of plants in simulation models.

12.7.1 History of Disease Modeling

Since the 1960s, models for disease prediction are available, and the first mathemat-
ical model was published by Van der Plank (Van der Plank 2013). At the start, the
models were empirical. Later on, mechanistic and analytical models were developed.
The early model’s focus was only based on the units of pathogen and diseased tissue,
while the growth of plants was neglected. With the passage of time models for
disease prediction became more sophisticated as they included host, environment,
and management effects as well. GIS-based models may also be used for disease
predictions (Aurambout et al. 2009). At present, a wide range of simple and complex
models is in practice for the forecasting and management of disease (Pavan et al.
2011; Rakotonindraina et al. 2012).

Climate change affects the various stages of crops and pathogens, both directly
and indirectly. Pathosystems are generally affected by the response of organisms to
climate change. However, it is not well understood whether the effects are either
positive or negative. To predict the plant diseases in response to climate change,
various models had been used in the past (Table 12.1).

12.7.2 Recent Goals and Challenges in Disease Modeling

Integration of crop disease modeling in decision support systems development is
mainly dominated by short-term strategic planning to support the scheduling of
pesticide application, pest scouting activities, adaptation, and mitigation measures to
prevent the diseases (Isard et al. 2015; Magarey et al. 2002). Disease modeling
activities are frequently based on the development of relationships using multi-
seasonal crop and environmental variables in a specific pest-crop system (Madden
et al. 2007). The development of effective decision support systems involves the
knowledge of key aspects and dynamics of a system based on the reliable multiple
seasonal and specific crop-pest environment data (Madden et al. 2007). Representa-
tion of biotic stress and host interaction has been simplified by focusing on the
specific environment and pathogens in a system. Moreover, the controlled experi-
ment data can be used to parameterize the model to identify the responses of targeted
host and pathogen under a variety of environmental changes. Infection models and
Susceptible-Exposed-Infectious-removed (SEIR) models are well-known examples
of such disease models (Magarey et al. 2005; Zadoks 1971). For instance, such
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disease prediction models can be used to predict the host alterations, disease severity,
and yield losses in changing climate (Dillehay et al. 2005).

Priorities for disease modeling are rerouting due to the newly arising challenges
and more specific goals. The major challenge for disease modeling is climate
change, as it is resulting in the variable average temperature, more erratic rainfall,
and humidity. These climate irregularities indicate that previously observed datasets
are losing their importance in reliable disease prediction modeling. Moreover, due to
these variabilities, several pathogens that were previously unharmful are now
becoming detrimental for crops (Gramaje et al. 2016; Berger et al. 2007). Presently,
there are increasing concerns about the goal to estimate and predict global food
security risks. But it requires the addition of production systems and geographical
areas to develop the baseline data for local and robust empirical relationships.
However, climate variability makes this goal impossible to achieve due to the
nonlinearity of the process involved in statistical models (Garrett et al. 2006).
Similarly, climate change impacts the goal of seeking effective estimation and

Table 12.1 Models used in different regions of the world to study various crop diseases

Region Crop Predicted diseases/Pests References

Australia Wheat Yellow dwarf virus Nancarrow et al. (2014)

Australia Wheat Fusarium crown rot Vary et al. (2015)

Europe Wheat Karnal bunt Baker et al. (2000)

Europe Rice Fungal diseases Bregaglio et al. (2013)

Brazil Corn Rust Moraes et al. (2011)

Denmark Barley Powdery mildew Mikkelsen et al. (2015)

France Barley Net blotch Launay et al. (2014)

United Kingdom Oilseed rape Phoma stem canker Barnes et al. (2010)

Brazil Soybean Rust Alves et al. (2011)

Europe Sugar beet Soil borne pathogens Manici et al. (2014)

Germany Sugar beet Leaf spot Richerzhagen et al. (2011)

Australia Pea Ascochyta blight Salam et al. (2011)

Globally Potato Late blight Sparks et al. (2014)

Brazil Cocoa Moniliasis Moraes et al. (2012b)

Brazil Coffee Rust Ghini et al. (2011)

Brazil Coffee Leaf miner Hamada et al. (2006)

Brazil Coffee Nematodes and leaf miner Ghini et al. (2008)

Brazil Coffee Leaf spot Moraes et al. (2012a)

Globally Date palm Fusarium wilt Shabani and Kumar (2013)

Northern Italy Grapevines Powdery mildew Caffarra et al. (2012)

Italy Grapevines Downy mildew Francesca et al. (2006)

Globally Grapevines Downy mildew Salinari et al. (2007)

France Grapevines Botrytis Gouache et al. (2011)

Brazil Banana Black sigtoka Ghini et al. (2007)

Globally Banana Black sigtoka Junior et al. (2008)

Switzerland Apple Fire blight Hirschi et al. (2012)
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prediction of disease dynamics in future scenarios and impedes the trend analysis
based on the several observed weather patterns. To address these challenges, the
most efficient and appealing way involves the use of process-based modeling with
efficiently designed scenarios and shared modeling approaches among the scientist
related to a variety of field. Additionally, the utilization of disease modeling
increased its important manifolds, ranging from the strategic decisions making
(Duveiller et al. 2007), risk analysis (Venette et al. 2010), research priority and
policy making (Willocquet et al. 2004), and resource allocation (Beddow et al.
2015). A new generation of technologically advanced tools is needed to understand
the system processes and their dynamics to allow system analysis.

12.7.3 Modeling Approaches in Disease Modeling

Crop growth, performance, and disease dynamics are linked with discrete sets of
developmental processes. Efficient understanding and knowledge of these processes
can be mobilized to address the problems related to crop pests and diseases.
Recently, the concept of integrating pest and disease models with crop models has
made easier and effective to study pest and disease dynamics. However, complex
disease and crop models are hard to link with each other.

12.7.3.1 Existing Trends in Disease Modeling
Several recent advances have been documented in the domain of designing and
integrating the generic disease simulation models to predict the reliable disease and
pest damage to crops (Esker et al. 2012; Savary et al. 2006). Process-based disease
modeling has emerged as a key approach to quantitatively understand the behavior
and address the problems related to the complex crop-pest systems. A typical
process-based disease modeling encompasses four basic steps: (1) Infection chain
in a disease cycle is considered as the prime focus for analysis (Kranz 1974).
(2) Then the functional traits of a pathogen corresponding to infection chain are
studied (Pariaud et al. 2009). (3) The efficiency and performance of these traits based
on the environment are studied in a pathosystem, as these functional traits are
involved in quantitative processes (Zadoks and Schein 1979). (4) Finally, the
observed and measured information from these processes is used for the develop-
ment of process-based models (Savary and Willocquet 2014; Bregaglio and
Donatelli 2015). There is a number of disease modeling structures that have been
developed with an emphasis on inoculum mobility, spread, efficiency, and produc-
tion (Rossi et al. 2009). Moreover, a wider range of concepts and development of
mechanistic simulation models made it possible to study the interaction between
crops, pests, and diseases within a given pathosystem.

The development of generic simulators enables the illustration of several species
in a pathosystem. The application of these generic simulators can be extended by
adding several specialized biological mechanisms of species. Generic simulators
make the disease modeling approach simpler due to the possibility of developing the
species-specific disease model. Moreover, these simulators provide a framework to
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collect adequate data for disease modeling regarding insect phenology, physiology
(Welch et al. 1978), populations (Yonow et al. 2004), development, and reproduc-
tion (Hong et al. 2015; Sutherst et al. 2007).

Knowledge sharing and modification among the wider scientific communities can
enhance the impacts and progress of disease modeling (Stein et al. 2002; Tatusov
et al. 2000). For instance, AgMIP (Agricultural Model Inter-comparison and
Improvement Project) is a recent knowledge sharing example of international col-
laboration to assess the impacts of climate change on global agriculture based on
global agricultural modeling (Rosenzweig et al. 2013). These approaches can mobi-
lize the generic disease modeling platform by combining all fragmented theories and
concepts existing in disease modeling globally. APSnet (American Phytopathology
Society) plant health instructor is a well-known illustration of such approaches
(Bregaglio and Donatelli 2015; Savary and Willocquet 2014). Simulated disease
epidemics can be used as input in crop models accounting for the physiological
impacts of disease on crops and damage mechanisms (Rouse 1988). Over the past
few decades, crop growth models involving damage mechanisms have been devel-
oped with the concept of integration of disease and crop models to simulate the crop
yield losses due to disease epidemics (Boote et al. 1983; Bastiaans et al. 1994).

12.7.3.2 Data Requirements for Disease Modeling
Most common data inputs for disease modeling are based on variables such as
temperature, precipitation, relative humidity, and leaf wetness with hourly or daily
resolutions (Magarey et al. 2001). However, the soil variables and wind are consid-
ered in more complex models focusing on soil pathogens. Mostly the daily data is
sufficient for disease models, but some models need hourly data to improve the
accuracy and reliability of disease simulations and scenarios development
(Bregaglio et al. 2010). However, the gridded current and forecasted data with fine
resolution can be obtained by numerical weather models such as AGRI4CAST in
Europe, RTMA (Real Time Mesoscale Analysis System) in the United States
(De Pondeca et al. 2011), and CFSR (Climate Forecast System Reanalysis) globally
(Saha et al. 2014). Data regarding leaf wetness is a limitation due to the unavailabil-
ity of such data, but simulations models are now being used as alternatives to target
the climate change scenarios (Magarey et al. 2006; Bregaglio et al. 2012).

12.7.3.3 Calibration and Evaluation of Disease Models
Models calibration is the fine-tuning of models with real-time data to improve the
model accuracy and application in a desired environment or pathosystem. Most of
the disease and pest models are calibrated with experimental data obtained from
controlled conditions. Data regarding variables such as pest virulence, development,
fecundity, longevity, mortality, and environment of pathosystem is needed to
parameterize and calibrate the models (Régnière et al. 2012). Similarly, data from
the experiments with controlled temperature and leaf wetness can be used to
calibrate the infection models (Magarey et al. 2005; Madden and Ellis 1988).
Moreover, when the data is unavailable to calibrate the model, then closely related
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species can be used to identify parameter, and then field studies are enabled to see if
the estimated parameters are in line with observed data or not.

Model evaluation is necessary to estimate the accuracy of simulations in compar-
ison with real-time data. Several ways and methods can be used to evaluate the pest
and disease models (Rabbinge 1993). The most common approach to evaluate the
models involves the comparison of observed and simulated data in terms of disease
severity, incidence, and damage. However, evaluation of disease models is usually
done by the developing party or by the end-user according to their pathosystems.
Overfitting is a serious concern in the model evaluation and to perform simulation in
different pathosystems. Overfitting occurs when the output of model adjusted
parameters closely matches the data used for calibration but leads to compromised
accuracy when simulations are performed over an independent dataset.

12.7.4 Frameworks for Disease Modeling

In the past various types of models were being used by scientists to model plant
pathogens and disease. Matrix models have been used widely over several decades
in the past for determining the population densities of pests and insects in a certain
region (Lewis 1977). Several equations were used in competitive models to deter-
mine the effects of competition between crops and pathogen species (Kaplan and
Denno 2007).

12.7.5 Recent Development and Addition in Modeling Frameworks

Recently, disease modeling gained importance and various developments occurred.
Different modeling frameworks are developed for pests and disease modeling in the
last few years.

12.7.5.1 APSnet
It is an (American Phytopathology Society) website that provides a module to help in
modeling epidemiology and crop loss analysis. It has various models such as
GENEPEST for simulations (Donatelli et al. 2017) and provides guidance for
running the simulation models. Savary et al. (2006) summarized an overall disease
modeling framework to simulate the disease impacts on agriculture systems using
such models. The development of this platform involved several steps.
Multilocational farmer’s field survey was conducted for several years to observe
the production systems and associated injuries. Similarly, the field experiments
performed to assess disease damage and crop losses. Mechanistic models were
developed by using this collected data based on the damage mechanisms. This
approach was used to simulate pest and disease systems in Asian rice-growing
regions (Willocquet et al. 2004; Willocquet et al. 2002) and European and UK
wheat-growing regions (Willocquet et al. 2008; Foster et al. 2004).
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12.7.5.2 APSIM-DYMEX
APSIM (Agriculture Production Systems Simulator) is a modeling framework
developed over the last two decades (Holzworth et al. 2015). APSIM does not
have the ability to consider pests and diseases. But recently, it has been linked
with DYMEX (Whish et al. 2015). DYMEX is a mechanistic model for simulation
of pests, diseases, and weeds life cycles. Models involved in DYMEX are enabled to
run in the DYMAX simulator (Whish et al. 2015). The coupling of these modules
enabled the multi-point APSIM features with simplified communication within both
models. Both these frameworks can simultaneously model the crop growth and
disease dynamics.

12.7.5.3 BioMA-Diseases
For fungal plant disease modeling, this framework was developed, having four
extendable software (Bregaglio and Donatelli 2015). This framework is used for
modeling the impacts of fungal epidemics on plant growth. It simulates and
quantifies the polycyclic fungal epidemics and impacts of epidemics on crops.
BioMA is a public-domain framework to parameterize and run the biophysical
models in the agriculture field (Fig.12.2). This module was applied to study major
diseases such as brown rust (wheat) and leaf blast (Carlsson et al. 2008) in Europe,
China, and Italy and assess the model behavior under diverse environments
(Bregaglio et al. 2016).

12.7.5.4 NAPPFAST
NAPPFAST (North Carolina State University/Animal and Plant Health Inspection
Service Plant Pest Forecasting System) module was developed during a project from
2002 to 2013 (Magarey et al. 2007; Magarey et al. 2015) with having an Internet-
based GUI (graphical user interface). This module was interlinked with the weather
datasets. It has three simulation modeling templates: phenology models (with
degree-day approach), infection models (with pathogens and diseases approach),
and generic models (with a simple empirical model approach). All these templates
were generic to meet the diverse needs of users. NAPPFAST has the ability of pest
risk mapping with several resolutions (Magarey et al. 2011).

12.7.6 Case Study

Climate variability has significant impact on interactions among plants, pests, and
diseases. However, limited research has been conducted on disease severity, inci-
dence, and distribution in response to the changing climate. Few studies simulated
the future potential changes in disease epidemics and plant health (Sparks et al.
2014; Bregaglio et al. 2013). Application of disease models can dissect the role of
climate change in disease spread, severity, and plant health.

Black Sigatoka is a major disease of tropical crops especially banana. The causal
agent of this disease Pseudocercospora fijiensis is dependent on microclimate and
weather variables. It requires the high relative humidity and leaf wet surface to
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germinate and cause infections in banana plant (Uchôa et al. 2012). A disease model
for simulating the Black Sigatoka in future climate change scenarios was developed
by using the climate data of banana growing areas in Caribbean and Latin America
(Bebber 2019). During the process of model development past 60 years observed
and reported climate data was used to parameterize the model. The temperature
(Tmin, Tmax, and Topt) and leaf wetness data were used to develop and parameterize
the model. The data regarding these variables was observed at 3-h intervals in
studied regions.

The model simulated the fraction of spore’s cohort development F (t) over the
time (t) during the wet intervals and had a Weibull hazard (H ) function based on

Fig. 12.2 BIOMA modeling
framework
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prevailing temperature (T ). The temperature-dependent cohort development rate (r)
was simulated on the basis of cardinal temperatures such as Tmin, Tmax, and Topt.
Model was parameterized using observations and simulations based on Tmin, Tmax,
Topt, the scale factor (α) and shape parameter (ɤ) for hazard function.

F t, Tð Þ ¼ 1� �eH t,Tð Þ

H t,Tð Þ ¼ r Tð Þ t=α½ �γ

r Tð Þ ¼ Tmax � T=Tmax � Topt
� � � T � Tmin=Topt � Tmin

� �Topt�Tmin=Tmax�Topt

Disease simulations using this model defined the Black Sigatoka infection risks
on the basis of total number of simulated spore’s cohorts per hour over a specific
time duration. Disease simulations predicted the 44% increase in infection rate of
Black Sigatoka across Caribbean and Latin America since 1960. This simulated
increase was due to the increased temperature and leaf surface wetness that favored
the pathogen infection ability. Conclusively, the changing climate and global trading
of banana resulted in the establishment of more conducive environment in banana
growing regions for Black Sigatoka infection.

12.7.7 Strategies for Effective Disease Modeling

There are some effective strategies that can be used to enhance the reliability of
simulation in agricultural disease and crop modeling. These strategies comprise the
actions to enhance the availability of quality data for disease model input and model
evaluation, coupling with crop models, and develop the modeler’s community to
share the knowledge.

Process-based disease modeling is aimed to reproduce the dynamics of biophysi-
cal processes depending on the input variables. Pathogen growth and development
are highly dependent on weather variables; hence the model should modulate the
responses according to the fluctuations in model input variables (Pfender et al. 2012;
Magarey et al. 2005). Therefore, the availability of high resolution and quality data is
essential to calibrate the model, especially for the moisture- and temperature-
mediated responses. Low-quality data reduces the reliability of model empirical
coefficients and impede the model fitness and application. Hence, the quality input
dataset is a key in crop disease modeling and the high-resolution real-time data
regarding temperature, humidity, and leaf wetness are required to minimize the
uncertainties during model calibration and evaluation.

Field measurements and data about the impacts of diseases on crops have been
collected in previous years, but these observation methods had no standards and
usually are not coupled with crop and weather data to be used as disease modeling
data input (Esker et al. 2012; Nutter Jr 1989). Consequently, the disease model
validation was limited across diversified environments (Willocquet et al. 2004;
Willocquet et al. 2002). Hence, the development of designs, guides, templates, and
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protocols is needed to collect the adequate and required standard data to validate the
disease models effectively (Willocquet et al. 2000). Detailed observations should
include the disease or pest data (Disease severity, incidence, injury level), weather
data (temperature, humidity, and leaf wetness), and crop data (physiological pro-
cesses such as respiration, photosynthesis, senescence, etc.) (Esker et al. 2012;
Savary et al. 2006).

The disease and host crop dynamics are the coupling points among disease and
crop models. Quantification of disease damage and injuries can be assessed by
performing experiments in different pathosystems (Robert et al. 2005; Bassanezi
et al. 2001). Mathematical representation of these injuries may enable the integration
into crop models for simulation of biophysical processes (Pavan and Fernandes
2009). Disease simulation modeling can be done in conjunction with crop growth
models to assess the impacts of disease on crop growth. However, the integration of
disease and crop models may lead to issues such as complexity in model structures,
binary incompatibilities, and sharing difficulties. There are some critical points to be
considered for integrating the disease and crop models. Identification and adequate
knowledge about damage mechanisms are necessary to simulate the disease
impacted outputs by crop models. The disease model’s output must be compatible
directly or indirectly with the crop model variables. Moreover, the communication
compatibilities of both types of models must also be considered for the efficient
integration of disease and crop models. Crop model selection to integrate with the
disease model must consider the presence of variables affected by the disease in both
kinds of models.

Lack of modeling community and cohesive research hampered the development
of improved and advanced disease models. Such modelers community development
efforts may help in the efficient understanding of biophysical processes, system
behaviors, and bridge the communication gaps. However, there are several
limitations in such efforts like limited availability of generic disease model
frameworks that allow the shift between pathogens and pests. Similarly, modeling
cooperation efforts are limited due to the inadequate availability of standard data. In
2015, PeDiMiP (Pest and Disease Modeling Inter-comparison Project) was launched
as part of the AgMIP (Agricultural Modeling Inter-comparison Project) to improve
disease and pest modeling and to assess the impacts of climate change on crop
losses. This project is mainly focused on modeling of crop health, wheat rust, and
potato late blight diseases.

12.8 Plant Disease Management

Climate change increases the plant protection complexity. It also causes changes in
the chemical market due to the changes in pathogen distribution. Similarly, climate
change results in the resistance development in pathogens which ultimately leads to
the increased cost for crop production due to high application rates and treatments
(Juroszek and Von Tiedemann 2011). Some production systems show more flexibil-
ity than others to adopt better practices and strategies to reduce certain diseases.
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However, adaptation strategies depend on cost-benefit analyses. One of the great
strategies in changing climate involves the efficiency evaluation of current
biological, physical, and chemical practices. We can prevent the increased risk of
diseases under predicted climate change by using various agronomic practices
(irrigation, crop rotation, etc.) that can minimize the overwintering amount of
inoculum (Juroszek and Von Tiedemann 2011). There is a need for adjustment in
management strategies under changing climate. In biological control, the
populations vary with changes in environmental conditions. Under the extreme
condition of the environment, the populations of biological agents may become
smaller and do not recover even in favorable conditions. Disease management may
be affected by climate change and results in uncertainties in decision making when
climate variability is greater. But, El Nino-based climate predictions were useful in
decision making for farmers of Zimbabwe (Patt et al. 2005).

12.9 Knowledge Gaps and Future Directions

Over the past decade, climate change studies have improved the understanding of
how environmental factors impact plant disease epidemics. Climate change is not
occurring in isolation, and it may intensify in the coming years. While only a few
studies were carried out to evaluate the combined impact of multiple factors,
evaluation of the combined effect of various factors on hosts, pathogens, and
diseases is needed. Simulation modeling provides an opportunity to simulate several
factors simultaneously. While climatic models used to study the impacts of climate
change on plant diseases focused on a few variables like precipitation and rainfall,
models based on multiple factors should be used to study climate changes and plant
disease relationships. Molecular analysis and mechanistic studies can help to con-
sider the change in plant diseases as a result of climate change. Over the past few
years, foliar diseases are mainly focused while little work has been done on soilborne
diseases. Therefore, studies should be conducted to evaluate the climate change
impacts on soilborne diseases.

Plant disease management and severity will probably be increased due to climate
change. Prediction of diseases and their management is of great interest to farmers
and agro-industries. The following plant protection strategies can help in disease
management to a certain extent:

1. Use of models to forecast disease epidemics
2. Crop rotation
3. Diversity in crop species
4. Use cultivars with superior disease resistance
5. Adjustment in sowing time
6. Effective quarantine measures
7. Use of Integrated Pest Management strategy
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12.10 Conclusion

Climate change is impacting the crops, trees, and agricultural productivity and, at the
same time, influencing the pathogens and disease development in plants. It is a major
challenge to understand and realize the impacts of climate change in terms of plant
diseases, pathogens, and health of plants because of the limitation in the knowledge
that how various changes in the atmosphere are affecting the physiology of host and
pathogens development, spread and resistance in host and pathogen. Achievements
in plant protection are limited due to the lack of knowledge about changes in the
environment, pathogen, and host interaction globally. For effective plant protection
and disease management, detailed study and research are needed to understand the
relationship among the changing environment, pathogens, and hosts under the
climate change scenario. Modeling of diseases can become more effective if we
combine the developed tools in our studies.
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