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Abstract

Methane is a potent greenhouse gas that is produced in many sectors. Agriculture
and, more specifically, livestock contribute to this phenomenon. Methane is
produced as a result of fermentation in the rumen of dairy cows with a significant
amount of gas being released in the atmosphere via the mouth of ruminants. The
total intake is the main factor influencing methane production followed by
digestibility, fat, and the amount of fibre in the diet. Many strategies exist to
reduce methane emissions such as chemicals, essential oils, and the red
macroalgae in the diet of dairy cows. The majority of these strategies are either
expensive or not feasible to use in a long-term period of time since the microbes
in the rumen will adapt to this change. There is a wide range of methods and tools
to measure methane emissions both in vitro and in vivo. The respiration chamber
is the golden method to measure and quantify the fluxes (methane emissions) in
dairy cows. In some cases where measurements of methane are impossible, vitro
techniques together with modelling approaches could be used to predict methane
emissions. Empirical and mechanistic modelling is a technique widely used to
predict methane emissions. In this case by knowing some feed and animal
characteristics methane could be reliably estimated.
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10.1 Methane Gas

Water vapour is the number one contributor to greenhouse gas (GHG) effect
followed by carbon dioxide (CO,) and methane (CH4) (Kiehl and Trenberth
1997). Methane is a compound with relatively high energy combustion of
55.5 MJ/kg (Crutzen 1995) that contributes to about 20% of total anthropogenic
GHG emissions as shown by Lassey (2007). Methane has a very short turn-over time
of about 10 years in the atmosphere as compared to CO,, but it can trap the heat
20 times greater than CO,, playing a key part in global climate change. The
concentration of CH, gas has been rising rapidly in the atmosphere over the past
decade compared to three centuries ago; it has raised over 2.5-fold (Lassey 2007).
Emissions of CH, lead to increased ground-level ozone, with significant damage to
public health and agriculture (Howarth 2019), giving an estimated social cost of
2700 USD per ton of CH,4 (Shindell 2015).

10.2 Sources of Methane Emissions

There are many sources that CH, originates from; it can be from wetlands, rice
paddies, termites, agriculture, and burning biomass (Immig 1996). The rice paddies
have been shown to be an important contributor with annual emissions reported to be
around 115 teragrams (Tg) per year (Thorpe 2009). The agriculture sector
contributes to about 10-12% of the total global anthropogenic GHG emissions
(McAllister et al. 2011) with livestock sector (enteric fermentation) contributing
the most within the agricultural sector of around 37% of total anthropogenic CH,
emissions. Other reports claim that CH4 emissions from the livestock sector is about
51% of the total agricultural CH4 emissions and that the contribution of rice paddies
and livestock is rather similar, 100 and 110 Tg/year, respectively (Moss et al. 2000).

There is a high demand by the Intergovernmental Panel on Climate Change
(IPCC) to evaluate the number of gases produced and to develop methods and
strategies to reduce the emissions of GHG within a time frame (Ahmed
2017; Moss et al. 2000). Within the European countries, livestock, mainly the enteric
fermentation, has been reported to be the leading CH4 producer within the agricul-
ture sector (Moss et al. 2000).

Within the European Union (EU-27) and based on data that was obtained in 2003,
Lesschen et al. (2011) reported that dairy cow and beef cattle contributed to the most
GHG emissions (Fig. 10.1).

As shown in Fig. 10.1, the enteric fermentation from dairy cow and beef cattle
contributes the most to the GHG emissions followed by the N,O soil emission and
manure management.

Recently published data based on radioactive carbon (CM) content in CHy
indicates that anthropogenic emissions of CH, in recent decades have been higher
than previously estimated (Petrenko et al. 2017). Satellite data (Howarth 2019)
suggest that the increased global CH, emissions in the period 2005-2015 were
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Fig. 10.1 Greenhouse gas emissions from the livestock production in the EU-27. (Source:
Lesschen et al. 2011)

mostly due to increased extraction of shale gas and that the natural gas and oil
industry contributes twice as much CH, emissions as animal agriculture.

10.3 Methane in Ruminants

Methane is produced in the rumen of ruminants with a minor contribution from the
hindgut as a result of food digestion and fermentation. The majority (95%) of CH,
gas is produced during the enteric fermentation and is lost to the atmosphere via
belching, whereas the remaining 5% is emitted through the rectal (Fig. 10.2).

The food eaten by dairy cows (mainly silage and concentrates) is then fermented
in the rumen by the help of microorganisms. A result of this fermentation is
hydrogen (H,) gas which then needs to be absorbed in order to make this fermenta-
tion pathway happening all time. There are specific microorganisms in the rumen
belonging to the domain of Archaea (Methanobrevibacter spp.) which uses the H, to
produce CH, gas. One of the dominant species of methanogenic bacteria living in the
rumen is Methanobacterium ruminantium (Miller et al. 1986). The phenomenon of
CH, emission starts around 4 weeks after birth in dairy cows when the rumen is
almost shaped, and solid particles are kept in the rumen (Johnson and Johnson
1995). Methanogenic bacteria are mainly in both the liquid and solid phases in the
rumen (Morgavi et al. 2010). The food entering the rumen (stomach) of a cow is first
digested by microorganisms that contain mainly bacteria, protozoa, and fungi. The
simple monomers produced by primary microorganisms are then used by both
primary and secondary fermenters to produce end products such as volatile fatty
acids (VFA), CO,, and H, (McAllister et al. 1996). In the final step of fermentation,
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the H; that is produced in previous steps is then used together with CO, to produce
CH, gas by methanogens in the rumen (Eq. 10.1).

Methane emission from dairy cows depends on many factors, such as type of
feed, the amount of feed intake, quality of the feed, and digestibility. Grass contains
energy; this energy is called gross energy (GE) and once eaten by dairy cows a part
of this energy is lost as CH,4 gas. Depending on the factors mentioned above, CH,
emission as a proportion of GE varies between 2% and 12% of GE intake (Johnson
and Johnson 1995).

10.4 Factors Affecting Methane Emission

There are many factors influencing CH, emission in dairy cows. The main element is
dry matter intake. In addition to intake, diet digestibility, amount of fat and fibre in
the diet has effects on CH, emission in dairy cows (Ramin and Huhtanen 2013).
There are some feed characteristics influencing CH,4 emission in dairy cows as
there is a close relationship between rumen-fermented organic matter and CH,
emission (Ramin and Huhtanen 2013). Diets that contain high amounts of digestible
fibre will increase the digestibility in the diet resulting in higher emissions of CHy.
The forage to concentrate ratio in the diet also affects CH,4 emission, for example,
feeding high concentrate proportions (above 90%) in the diet of feedlot beef cattle
can reduce CH,4 significantly (Johnson and Johnson 1995). Moss et al. (1995)
showed that CH, as a proportion of GE increased more when the concentrate was
increased in the diet of sheep fed on a low level of intake. The effect of fat in the diet
is another factor influencing CH, emission (Grainger and Beauchemin 2011). There
are some theories behind the effect of fat on CH, emissions: (1) unsaturated fatty
acids are bio-hydrogenated in the rumen, a process that utilizes H,, (2) inclusion of
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fat in the diet simply reduces the supply of carbohydrates resulting in less ferment-
able substrates, and (3) inclusion of fat in the diet favours the pathway of propionic
acid production (H; sink) in the rumen (Ramin and Huhtanen 2013).

10.5 Factors Inhibiting CH; Emissions

To date, there are many strategies to reduce CH, emission in dairy cows, ranging
from chemicals to algae. Some show direct effects on methanogenic bacteria and
some act by interrupting the last step in the biochemical process of producing CH, in
the rumen. For the chemicals, the efficient methane inhibitor identified is
3-nitrooxypropanol (3NOP). The 3NOP has proven to be the most effective inhibitor
without showing any adverse effect on milk production (Hristov et al. 2015). The
amount of 3NOP needed to reduce enteric methane from cows is very small, 80 mg
per kg of DM intake showed reductions up to 30% of methane production from high
producing dairy cows (Hristov et al. 2015). In addition, other chemicals have been
reported in the literature decreasing CH, emissions, such as 2-nitroethanol and
bromoform (Chagas et al. 2019; Zhang and Yang 2011).

Regarding dietary strategies with the potential to mitigate CH, emission, the
rapeseed oil added to a grass silage-based diet reduced ruminal CH, emissions from
lactating cows as reported by Bayat et al. (2018), where the decrease in CH, was
explained by reductions in DM intake and the dilution effect on fermentable organic
matter. Franco et al. (2017) in an in vitro study replaced soybean meal by dried
distiller’s grain in grass silage-based diet, and the authors reported a decrease in
predicted in vivo CH,4 production, which was related to a shift in the ruminal
fermentation pattern to decreased acetate and butyrate production and increased
propionate production. Further, the use of oats in the diet has also been shown as a
potential strategy to reduce CH, emission, and a recent study conducted by Fant
et al. (2020) showed that predicted in vivo CH4 emission was 8.5% lower for a diet
that used oats compared to barley.

Several studies have recently reported the potential of essential oils to reduce
enteric CH, production, primarily in vitro and short-term trials. The most common
essential oils reported in the literature as methane mitigate strategies are derived
from thyme, oregano, horseradish, rhubarb, frangula, and highlighting garlic, cinna-
mon, and its derivatives (Benchaar and Greathead 2011). However, the authors draw
attention to the need for in vivo investigation to propose whether these ingredients/
additives can be used successfully to inhibit rumen methanogenesis, without
depressing feed intake, digestibility, and animal productivity.

Recently, the red macroalgae Asparagopsis taxiformis (AT) has shown promising
effects on reducing CH4 emission from dairy cows. In vivo (Stefenoni et al. 2019)
and in vitro (Chagas et al. 2019) studies showed a decrease of 80% on CH,4 emission
by adding 0.5% of AT on a dry matter basis and inhibition of CH, by adding 0.5% of
AT on organic matter basis, respectively. Previous in vitro studies also had reported
the potential to mitigate methane emission to adding AT in ruminants diets
(Machado et al. 2014, 2016).
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One major problem with additives used in the diet is the excess of H, gas in the
rumen if there is no other sink to uptake the H, production (Fig. 10.3).

10.6 Methods and Models for Measuring or Predicting CH,
Emission

There are many tools and models in the literature to predict CH4 emission. Respira-
tion chamber is the most accurate method of measuring CH,4 emission in dairy cows
(Johnson and Johnson 1995). The animal is basically allocated in a chamber for
2-3 days in which all exhaled breath is measured including CH,4. The technique is
laborious with high construction costs. The alternative to in vivo techniques mea-
suring CH,4 emissions, in vitro methods, is also used. In the in vitro method, a small
sample size (1 g) is incubated in fermentation units in which buffered rumen fluid is
added. The fermentation takes place in an anaerobic condition at the same tempera-
ture of the rumen (39 °C). The unit is then gently shacked for about 48 h.

The in vitro gas production system’s main advantage is that it provides a large
number of data points, which allow accurate estimates of CH, emissions. In another
hand, this system has some limitations compared with in vivo studies (e.g. no
absorption of VFA over time and the intake dynamics).

Recently, Ramin and Huhtanen (2012) developed the application of an in vitro
method so CH,4 emission could be predicted in vivo by applying the data obtained
from the in vitro in a rumen model. The method allows estimation of CH, emissions
every 20 min of incubating a sample up to 48 h. Figure 10.4 shows the curve of CHy
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Fig. 10.4 In vitro method (a) and methane emission (b) over a 48 h incubation period from a
silage-based diet using the model as described by Ramin and Huhtanen (2012)

emission over a 48 h incubation time for a diet consisting of silage. One main
advantage of in vitro systems is that it allows digestion kinetics to be evaluated from
feeds and that the method could be used as a screening tool for assessing different
CH, inhibitors.

Danielsson et al. (2017) evaluated the in vitro system developed by Ramin and
Huhtanen (2012) by formulating 49 diets used in 13 in vivo studies in which CH4
emission was measured by the respiration chamber. The results indicated that the
in vitro system predicted in vivo CH, emissions very well with a high R* = 0.96.
However, the values obtained (mean 399 L/d) also showed a slight underestimation
compared to the observed (mean 418 L/d) in vivo CH4 emissions (Fig. 10.5).

Models are developed from data sets that consist of animal and dietary
characteristics. The most widely used models to predict CH, emissions are the
empirical models. However, models can be categorized into two main groups:
empirical models (e.g. Ellis et al. 2007; Ramin and Huhtanen 2013; Niu et al.
2018) or dynamic mechanistic models (Huhtanen et al. 2015).

Empirical models relate CH, emissions to the total amount of intake and dietary
composition (Ramin and Huhtanen 2013). The empirical models developed by
Ramin and Huhtanen (2013) use a data set in which no additive study is used. It is
also advisable to use a mixed model regression analysis so that random study effect
will be taken into account (St-Pierre 2001) when developing models predicting CH,
emission. The model predicting CH, as a proportion of GE developed by Ramin and
Huhtanen (2013) takes into account total dry matter intake per kg of body weight
(DMIBW), organic matter digestibility estimated at the maintenance level of feeding
(OMDm), and dietary concentrations of neutral detergent fibre (NDF), non-fibre
carbohydrates (NFC), and ether extract (EE).
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Fig. 10.5 Relationship between predicted in vivo CH,4 emission by the in vitro technique and
observed CH, emission in vivo (L/d; n = 49), with fixed and mixed model regression analysis.
(Source: Danielsson et al. 2017)

CH, — E/GE (kI/MJ) = —0.6 (£12.76) — 0.70 (£0.072)
x DMIBW (g/kg) + 0.076 (+0.0118)
x OMDm (g/kg) — 0.13 (£0.020)
x EE (g/kg DM) + 0.046 (+0.0097)
x NDF (g/kg DM) + 0.044 (£0.0094)
x NFC (g/kg DM) (10.2)

And the equation predicting total CH, emission (litres per day) developed by
Ramin and Huhtanen (2013) was closely related to total DMI, and further adding
other variables improved the model:

CH4(L/d) = —64.0 (£35.0) +26.0 (£1.02) x DMI (kg/d)
—0.61 (£0.132) x DMI2 (centered) + 0.25 (+0.051)
x OMDm (g/kg) — 66.4 (£8.22) x EE intake(kg DM/d)
— 45.0 (£23.50) x NFC/(NDF + NFC) (10.3)

Mechanistic models are a little bit more complicated as compared to empirical
models. Mechanistic models simulate CH, emissions using mathematical formulas
and descriptions of ruminal fermentation biochemistry, making it a great tool for
understanding the mechanisms and factors influencing CH,4 emissions in the rumen.
Karoline is a dynamic, deterministic, and mechanistic simulation model of a lactat-
ing dairy cow developed by Danfer et al. (2006). The sub-model predicting CH4
emission was further developed by Huhtanen et al. (2015). A recent evaluation of the
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Fig. 10.6 Relationship between predicted (using the Karoline model) and observed CH, emissions
(L/d) (n = 184) with fixed and mixed model regression analysis. (Source: Ramin and Huhtanen
2015)

Table 10.1 The comparison of empirical and mechanistic models in predicting CH, emission

Reference Observation R? RMSE
Empirical models
Axelsson (1949) 175 0.75 0.131
Ellis et al. (2007) 172 0.71 0.296
Ramin and Huhtanen (2013) 184 0.93 0.104
Mechanistic models
Mills et al. (2001) 32 0.76 0.154
Ramin and Huhtanen (2015) 184 0.93 0.101

Karoline model using a data set developed from studies that respiration chamber was
used to measure CH, emission suggested that the model has a potential to predict
CH, emissions accurately and precisely as shown in Fig. 10.6 (Ramin and Huhtanen
2015). Furthermore, evalution of CH, at whole farm scale is need of time (Ahmed
et al. 2020).

Table 10.1 summarizes some empirical and mechanistic models developed in the
literature. The empirical model developed by Ramin and Huhtanen (2013) predicted
CH,4 emission better than other models as observed by a smaller root mean square
error (RMSE). The mechanistic model Karoline also showed better predictions of
CH, emission (Table 10.1) compared to the mechanistic model evaluated by Mills
et al. (2001).

There are many equations developed in the literature predicting CH, production.
Equations are basically developed from larger data sets in which intake and dietary
factors are gathered. Since dry matter intake is the driving force in predicting CH,
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Table 10.2 Equations predicting CH,4 production

Source Equation

Ellis et al. (2007) CH,4 [MJ/d] = 3.41 + 0.520 x DMI® [kg/d]—0.996 x ADF"
[kg/d] + 1.15 x NDF° [kg/d]

Jentsch et al. (2007) CH,4 [kJ] = 1802-21.1 x DMI [g/kg BW]

Bell et al. (2016) CH, (g/kg DM intake) = 0.046 (+0.001) x DOMD®-0.113
(£0.023) x EE°-2.47 (£0.29) x (feeding level — 1)

Ramin and Huhtanen | CH, (L/d) = —64.0 (£35.0) + 26.0 (+1.02) x DMI (kg/d)—0.61
(2013) (£0.132) X DMP (cenreq) + 0.25 (£0.051) x OMD',, (2/kg)—66.4
(+£8.22) x EE (kg DM/d)—45.0 (£23.50) x NFC&/(NDF + NFC)

4DMI dry matter intake, YADF acid detergent fibre, “NDF neutral detergent fibre, YpomMD digestible
organic matter, °EE ether extract, \OMD,, organic matter digestibility at maintenance level of
feeding, *NFC non-fibrous carbohydrate

production, often all equations require this parameter for predicting CH,4 production.
Table 10.2 summarizes some equations predicting CH,4 production in dairy cattle.

10.7 Conclusion

Methane is emitted from ruminants as a result of fermentation in rumen. There are
many strategies to inhibit CH, emissions from ruminants. Most strategies reducing
CH, emission require adaptation of the inhibitor used in the rumen and that the
rechannelling of H, remains unclear in the rumen upon using any inhibitor. There are
both in vitro and in vivo methods to measure CH, emission from dairy cows.
Empirical and mechanistic models such as the Karoline model usually predicts
CH, emission reliably in which they could be used by national inventories and
advisory services for predicting CH4 emission.
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