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Preface

Artificial intelligence (AI) or machine intelligence is helping mankind to solve
different problems at a faster pace. Similarly, qualitative and quantitative knowledge
is increasing at a rapid pace with the invention of modern tools. These tools help to
generate big data sets that can be used by different decision support tools. Knowl-
edge is meagre and unsatisfactory if it is not in the numerical form. Thus, artificial
intelligence is playing a role to generate big data sets in numerical form. Sustainable
agricultural production requires new methods and techniques under challenges like
climate change, market globalization, and increased population. Field-based
approaches (e.g., agronomic diagnosis and prototyping) have been used success-
fully, but these approaches are too slow to provide timely responses to such rapid
contextual changes. Similarly, a large number of systems could not be easily
explored by using such techniques. Current social, political, and environmental
concerns could be easily tackled by the use of in silico approaches. These approaches
can help study a broader range of possible systems through modeling and simulation,
and can offer the possibility of identifying more quickly new sustainable systems.
The goals of agroecosystems models can be sorted into the following groups:
(i) models as representative of knowledge, concepts, and methods for scientists,
(ii) models as communication tools, (iii) models as tools to manage or run systems
(iv), models as tools to assist debates, and (v) models to design crop management
systems. Models have been used as an excellent tool to develop new cropping
systems. Steps to design new cropping systems include (i) defining goals and
constraints of new cropping systems, (ii) designing of new compatible systems with
the set of constraints, (iii) evaluation of new systems, and (iv) testing and transfer of
new innovative systems to the practitioners. Simulation models can be instrumental
in determining recommendations for various agro-technology packages. Crop
models help us to understand complex and nonlinear crop responses to management
at different spatio-temporal scales (e.g., different soil and climate). Similarly, innu-
merable interactions among weather, soil, crop, and management factors throughout
the growing season could be easily explored through modeling. Models can predict
crop productivity under various climate change scenarios that are even not possible
through field experimentation. Simulated outputs can be delivered to the
policymakers at local, national, regional, and global levels to help implement
appropriate measures. Computer applications in the field of agriculture can help to
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understand the interactions between the system and its variables. Models, which are
mainly mathematical representations of the biological system, can generate answers
to the problems. Most people think that models are complicated and complex thus
need time to be implemented on the ground scale. However, no special mathematics
are necessary for big or complex models. They come from small bits and pieces.
There is a prosperous future for systems modeling, and it can open new frontiers, and
it helps in the agroecological transitions of agriculture. Similarly, it’s essential to
understand belowground processes, roots, soil, and their complex abiotic and biotic
interactions. We need to consider plants or crops as holobionts (individual host and
its microbial community). Such consideration can account for their extended
phenotypes and (phyllosphere and rhizosphere) microbiomes. Simulation is a good
substitute for experiments, and it has been shown by different researchers and
technologists that models work with a higher degree of accuracy. Thus, we should
include simulation at all levels of system understandings. The system can be soil,
plant, and atmosphere. This book with title “System Modeling” is useful for under-
graduate and post-graduate students from different disciplines of Data Science,
Agronomy, Crop Physiology, Plant Breeding, Plant Pathology, Entomology, Soil
Science, Remote Sensing, Agricultural Meteorology, and Environmental Science. It
can be used by policymakers and administrators to direct teaching, research, and
extension activities.

Chapter 1 presents a fundamental description of Systems Modeling in which the
focus is agricultural systems that have complex interactions with their surrounding
environments and soil, and in which a better understanding is possible through
computer applications. Solar radiation, temperature, photoperiod, humidity, ozone,
and wind are some of the important environmental variables which interact with the
agricultural system that are discussed in this chapter. These variables are important
considerations for the development of understanding of the agricultural system on a
scientific basis. Similarly, the application of different models at different scales is
presented, which could help one to understand the mechanisms in qualitative and
quantitative ways. Finally, the concept of digital agriculture and its linkage with
modeling is elaborated. In general, the chapter discusses in detail the type, methods
of measurement along with mathematical representation, terminologies and their
impacts on the various processes of plants. Chapter 2 summarizes crop phenotyping
and elaborates on different techniques/approaches used in the process of
phenotyping. Corresponding to genotypic, the phenotypic form of the plant is
more important for high yield. The selection of germplasm based on phenotype
has been of great interest of breeders and farmers. Considering the importance of
phenotyping, Tuberosa (2012) referred to phenotyping as “king” and heritability as
“queen.” Chapter 3 discusses the role of statistics and modeling for the analysis of
experimental data. Also discussed is the data that should be collected to address our
research questions and what should be our experimental design. All these aspects are
discussed in this chapter with the description about Completely Randomized Design
(CRD), Randomized Complete Block Design (RCBD), Latin Square Design, Nested
and Split Plot Design, Strip-Plot/Split-Block Design, Split-Split plot Design, facto-
rial experiments, fractional factorial design, multivariate analysis of variance
(MANOVA), Analysis of Covariance (ANCOVA), Principal component analysis,
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regression, correlation, and different analytical tools/softwares. Chapter 4 focuses on
different dynamic modeling approaches and description of different dynamic models
in practical use. Similarly, a general description of modeling with a history of
dynamic modeling from the eighteenth century until today is presented. Calibration
of crop model as standard practice and the estimation of crop parameters based upon
observed field data are discussed in Chap. 5.

Calibration is the process of the estimation of unknown parameters using practi-
cal observations. It is generally carried out manually by adjusting the settings of the
model. It consists of choosing the accurate coefficients that play a significant role in
the adjustment of soil nitrogen, soil organic carbon, soil phosphorus, crop growth,
phenological development, biomass accumulation, dry matter partitioning, nutrient
uptake, grain dry weight, grain numbers, grain yield, grain nitrogen (N) at maturity,
and protein contents. Chapter 6 presents the application of crop models for wheat
production. Potential and limitation of wheat crop models to assist breeders,
researchers, agronomists, and decision-makers are discussed in this chapter.
Chapter 7 is about genetic analysis that requires phenotyping and genotyping,
followed by the application of statistical principles. Chapter 8 elaborates the contri-
bution of process-based models in sugarcane research. Climate characterization of
the leading sugarcane producing countries with the influence of main weather
variables on sugarcane growth, development, and yields are presented in this
chapter. Chapter 9 presents the forecasting of rainfed wheat yield using Landsat
8 satellite imagery and DSSAT. Methane (CH4) is a potent greenhouse gas that is
produced in many sectors, and is discussed in Chap. 10. Measurements of methane
are impossible in some cases, thus in vitro techniques together with modeling
approaches are presented in this chapter to predict methane emissions. Chapter 11
is a review of sunflower modeling with a description of different models used in the
improvement of sunflower. Disease modeling is discussed in Chap. 12. DSSAT-
CROPGRO-Chickpea model is presented in Chap. 13.

Chapter 14 focuses on potatoes, which is one of the important crops in the world
after rice and wheat. This crop is under threat due to climate variability; thus,
different adaptation strategies are needed through simulation modeling to mitigate
the impacts of climate change. Different process-based models such as Decision
Support System for Agrotechnology Transfer (DSSAT), Agricultural Production
Systems Simulator (APSIM), CropSyst (CropSyst VB – Simpotato), and STICS
(Simulateur multidisciplinaire pour les Cultures Standard) are presented in this
chapter as they have shown great potential to develop sustainable agronomic
practices as well as virtual potato cultivars to have good potato cultivars for the
future. Finally, in Chap. 15, application of a generalized additive model for rainfall
forecasting is presented with the aim to predict the most suitable sowing time for
rainfed wheat.

It is my hope that knowledge about system modeling presented in this book will
enhance the understanding and catalyze the application of artificial intelligence,
phenotyping, and modeling at different scales.

Rawalpindi, Pakistan Mukhtar Ahmed
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Mukhtar Ahmed and Shakeel Ahmad

Abstract

The agricultural systems have complex interactions with the surrounding envi-
ronment and soil, and better understanding is possible through computer applica-
tion. The interactions between systems and environment are so complex that one
cannot quantify their cumulative affects without application of latest computing
tools. The solar radiations, temperature, photoperiod, humidity, and wind are
some of the important environmental variables which interact with agricultural
system. These variables should be considered with importance for understanding
the agricultural system on scientific basis. The light required is for photosynthesis
and photoperiod, humidity for determination of water loss, and wind to transfer
water vapors and gases to and from plants. The model converts qualitative data
into quantitative to give out quantitative predictions to the theories which can be
compared very easily in the real world. There is rich future for systems modeling,
and it can open new frontiers and helps in the agroecological transitions of
agriculture. Plants and crops should be considered as holobionts (individual
host and its microbial community). In system modeling, the environmental
variables are linked to various physiological processes to predict the crop
responses with a given set of environmental conditions. The increased ozone
concentration in the environment also damages the crop, and these impacts
should be considered during model development. Similarly, application of
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different models at different scales is presented which could help to understand
the mechanisms in qualitative and quantitative way. Last but not least, the concept
of digital agriculture and its linkage with modeling were elaborated. In general the
chapter discusses in detail the type, methods of measurement along with mathe-
matical representation, terminologies, and their impact on the various processes
of the plants.

Keywords

Agricultural systems · System modeling · Holobionts · Environmental variables ·
Solar radiations · Temperature · Photoperiod · Humidity · Wind ozone

1.1 Introduction

System is anything under observation. Here in this chapter, we will be mainly
focusing on the system related to the agricultural sector, so it could be an agricultural
system or cropping system or farming system. System is the complex combination of
various components. Since agricultural disciplines are changing at rapid pace, thus
quantitative experimentations are very important to understand the system. An
accurate description of the system such as photosynthesis to light, water, and carbon
dioxide (CO2); crop phenology to temperature; crop biomass to radiation use
efficiency (RUE); and crop yield to fertilizer is no doubt very important, but these
responses will be more useful if we also understand the mechanisms behind all these
responses. Thus, the working hypothesis is required to explain and predict responses
in the agricultural science. The progress in this sector is only due to the continuous
interaction between experiment and hypothesis, observation and theory, and day-by-
day precision in the techniques used to understand the problem first and then suggest
appropriate solution. Computer application in the field of agriculture can help to
understand the interactions between system and its variables. Models, which are
mainly mathematical representation of the biological system, could generate answers
to the problems. Most people think that models are difficult and complex thus need
time to be implemented on the ground scale. However, no special mathematics is
needed for big or complex models. They come from small bits and pieces. There is a
rich future for systems modeling, and it can open new frontiers and helps in the
agroecological transitions of agriculture. Similarly, it is essential to understand
belowground processes, roots, soil, and their complex abiotic and biotic interactions.
Plants or crops should be considered as holobionts (individual host and its microbial
community). This can account for their extended phenotypes and (phyllosphere and
rhizosphere) microbiomes (Fig. 1.1). Agriculture deals with the activities that take
place on the farm, and it results in the production of food, fuel, and energy. It is the
interaction of environment, crop, soil, and animal among each other. The environ-
ment consists of abiotic variables such as light/solar radiation, temperature, water,
CO2, wind speed, and humidity. Thus, agriculture is the interaction of farm and
ecology.

2 M. Ahmed and S. Ahmad



Light is one of the important variables in the agricultural sector. Plants convert
light energy to the biochemical energy through the process of photosynthesis.
Biomass production through the action of light could be elaborated by considering
the Planck’s quantum (PQ) theory of radiation:

EPQ ¼ hv ð1:1Þ
whereE is energy according to the Planck’s quantum theory of radiation, h is Planck’s
constant (6.62607004 � 10�34 joule∙ second), and v is frequency.

Since frequency is inversely proportional to wavelength (λ), thus

v α
1
λ

ð1:2Þ

v ¼ C
λ

ð1:3Þ

where C is speed of light ¼ 3 � 108 m s�1.
Putting value of v in Eq. (1.1) results to the following equation:

EPQ ¼ h c=λ ð1:4Þ
Furthermore, Einstein equation will be required to convert light energy into mass

(m).

Eeinstein ¼ mc2 ð1:5Þ
Comparing both equations of energy:

Fig. 1.1 Holobionts (host (blue) and all its symbiotic microbes, red; one that affects the holobiont’s
phenotype, gray; one that do not affect the holobiont’s phenotype)

1 Systems Modeling 3



EPQ ¼ Eeinstein ð1:6Þ

h c=λ ¼ mc2 ð1:7Þ
h
λ
¼ mc ð1:8Þ

m ¼ hc
λ

ð1:9Þ

Thus, we can find the mass by putting values of λ as h and c which are constants.
Therefore, this is the simple model of light energy conversion to mass energy, and is
the law of thermodynamics in the field of crop production.

1.2 Photosynthesis

Photosynthesis is the capture of light by grana of chloroplast, and it results to the
fixation of carbon dioxide (CO2) into simple sugar (C6H12O6). Different environ-
mental variables have significant impact on the rate of photosynthesis as shown in
Fig. 1.2. This process is strongly dependent on photon flux density (PFD) and
intracellular CO2 concentration (Ci). The simple model equation for this reaction
can be expressed as

6CO2 þ 6H2O
Light

Chloroplast
> C6H12O6 þ 6O2

Light reaction is the primary photochemical reaction initiated by the PAR
absorbed by the photosynthetic pigment, which results in the activation of chloro-
phyll molecules to an excited sate. Electron carriers take the electrons and move
down through the electron transport chain (ETC) resulting in the formation of ATP
(adenosine triphosphate). This light-initiated process is known photophosphoryla-
tion. Furthermore, reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH) and oxygen was released in this process (Fig. 1.3). Light reaction is the
photolysis of water, and in this process, ATP (adenosine triphosphate), NADPH
(nicotinamide dinucleotide phosphate hydrogenase), and O2 are produced. This
reaction takes place at grana of chloroplast which is the green pigment in leaf
(Fig. 1.3). Afterward in dark reaction C is fixed to three-carbon compounds known
as PGA (phosphoglyceraldehyde) or G3P (glyceraldehyde-3-phosphate). The
enzyme which plays a role in this reaction is RUBISCO (ribulose bisphosphate
carboxylase) which is dual in nature (carboxylase as well as oxidase) as it can
combine with both CO2 and Oxygen (O2). If O2 is in excess in the mesophyll cell
of leaf, it will combine with G3P and lead to the process of photorespiration which is
a typical feature of C3 plants. In this reaction, most of the photosynthates are lost.
There are other types of plants which can fix CO2 more efficiently and are known as
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Fig. 1.2 Photosynthesis as function of different environmental variables (Landsberg and Sands
2011a)
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C4 plants. These plants can avoid O2 due to their leaf anatomy (bundle sheath cell
surrounded with mesophyll cell) and, thus, do not show any process of photorespi-
ration. In the bundle sheet cell, CO2 combines with three carbon molecules, i.e., PEP
(phosphoenolpyruvate or phosphoenolpyruvic acid) in the presence of enzyme
PEPCO (phosphoenol pyruvate carboxylase) resulting to 4-C compound
(Fig. 1.12). This is the efficient way of producing sugars. Thus, plants can be
classified into C3, C4, and CAM (Crassulacean acid metabolism) plants based
upon PCR cycle. CAM plants are a subset of C4 plants, but they open stomata at
night as they have to conserve water due to their presence in hot desert climate
(Fig. 1.3).

The rate of light reaction depends on the quality and intensity of light alone, and it
is not affected by temperature or CO2 concentration. Excessive photon other than
excitation of chlorophyll acceptors results in fluorescence or heat. Dark reaction
doesn’t require light energy; it uses energy produced in the light reaction to do the
reduction of CO2 to carbohydrate (CH2O). Ribulose bisphosphate (RuBP) will be
the initial acceptor for CO2, and it will be catalyzed by the enzyme ribulose
bisphosphate (RuBP) or RUBISCO (ribulose bisphosphate carboxylase). The first
product of dark reaction is 3-phosphoglyceric acid (3-PGA), a three-carbon com-
pound in C3 plant species. ATP and NADPH then reduce this molecule in a complex

Fig. 1.3 Photosynthetic reactions in plants showing the role of multiple actors. (Source: Landsberg
and Sands 2011a, b)
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sequence of reactions to produce sugars. Temperature and CO2 concentration are
necessary to model this reaction, as it is dependent upon them. In general, we can say
that this reaction is the function of temperature and CO2 concentration. Photosyn-
thesis as the function of environmental variables was explained by Wang et al.
(2001) and presented in Fig. 1.2, which showed nonlinear response to different
environmental variables. However, there are crops (e.g., maize and sugar cane)
where first carbon reduction product is a four-carbon compound called as C4 plants.
Furthermore, there are plants, which can do carboxylation at night by opening
stomata, thus called as water-conserving plants following crassulacean acid metabo
lism (CAM). Photosynthetic parameters, i.e., stomatal conductance (gs)
(mol m�2 s�1), net photosynthetic rate (An) (mol m�2 s�1), and intercellular and

Fig. 1.3 (continued)
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leaf surface concentrations of CO2 (Ci and Cs, mol mol�1, respectively), are
interlinked with each other and can be expressed by the following equation:

gs ¼ An

Ca � Cið Þ
However, this simple model equation can be transformed to the complex model if

we consider the number of different factors which affect the availability of light to
the leaves in a plant canopy. Light response curve depicts how availability of light
(irradiance or photon flux density) is related to the rate of photosynthesis (Fig. 1.4).

The portion of light spectrum utilized by the plant called PAR (photosynthetically
active radiation) and PPFD (photosynthetic photon flux density) is defined as the
photon flux density of PAR. Accurate modeling of PAR is essential to predict the
crop behavior under different systems. Nowadays light is measured as the rate at
which moles (Avogadro’s number, 6.02� 1023 quanta) of PAR land on a unit area of
leaves (μmol quanta m�2 s�1). However, there are different other units also available
to measure light (Table 1.1).

Fig. 1.3 (continued)
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1.3 Solar Radiation

Photosynthesis at canopy level is a key driver of crop growth in most of available
crop models, e.g., APSIM (Agricultural Production Systems Simulator) (Holzworth
et al. 2014), CropSyst (StÖckle et al. 2003), DSSAT (Decision Support Systems for
Agrotechnology Transfer) (Jones et al. 2003), GECROS (Yin and van Laar 2005),
and STICS (Simulateur multidiscplinaire pour les Cultures Standard) (Brisson et al.
1998; Coucheney et al. 2015). It can be either (i) photosynthesis of individual leaves

Fig. 1.3 (continued)
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Fig. 1.4 Generalized photosynthetic response model to photosynthetic active radiation (PAR)

Table 1.1 Conversion factors for different light (400–700 nm) measuring units (Carruthers et al.
2001)

(a) Sunlight Measure Units Conversion
Photosynthetic photon flux density
(PPFD)

μmol quanta
m�2 s�1

1

Irradiance Langley h�1 0.0187

Watts m�2 0.217

Luminosity Lux ¼ lumens
m�2

51.2

Ft candles 4.78

Other unit conversions 1 Langley 1 g cal m�2

1 Watts 107 ergs s�1

1 lux 1 lm m�2

(b) Artificial
light

klux (= 1 3 103lux) Wm22 μmol quanta
m22 s21

Metal halide 1 3.1 14

Sodium/
mercury

1 2.9 14

White
fluorescent

1 2.7 12

Incandescent 1 4 20
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in the canopy or (ii) linear relationship between accumulated crop canopy biomass
and intercepted solar radiation known as radiation use efficiency (RUE, g MJ�1).

Light intensity (I )/radiation is the main environmental factor of photosynthesis.
Modeling the response of net photosynthesis (An) to I or the An/I curve is the main
focus of modeling of photosynthesis. The response of “An” to “I” increases linearly
with a slope α (maximum quantum yield) until it reaches to the maximum rate of
photosynthesis (Amax) where CO2 supply becomes limited. The maximum efficiency
of light which can be converted to chemical energy is represented by α (Table 1.2).

Solar radiations can be direct and diffuse. Both of these are important for canopy
photosynthesis and are an essential part of canopy photosynthesis modeling in plant.
Canopy level photosynthesis was first described by Boysen Jensen (1932), which
stated that canopy photosynthesis light response is different from individual leaf.
This difference could be because leaves in a canopy exposed to different light
environment in a day due to their spatial arrangements (leaf angle and leaf position
in the canopy), location of the sun during diurnal, and seasonal cycle and solar
radiation intensity. Thus, canopy photosynthesis is a complicated process due to
heterogeneity of radiation in the canopy. First model is used to quantify how sunlight
is intercepted by leaves when it moves from top to bottom and was named as 1D
canopy model (Monsi and Saeki 1953). They showed that the light attenuation in the
canopies is exponential and can be modeled by the Beer-Lambert equation:

I ¼ Ioe
�k�LAI

where I is the light intensity at point of interest, Io is the light intensity at the top of
the canopy, K is the light extinction coefficient, and LAI is the leaf area index.

Table 1.2 Photosynthesis as function of light intensity elaborated by light response models

Type of model Generic function References

Linear
An ¼

/ I, I � Amax� /
Amax, I > Amax� /

(
, where Amax is the

maximum rate of photosynthesis, I is the light
intensity, and / is the maximum quantum
yield

Blackman (1905)

Rectangular
hyperbola

An ¼ /IAmax=aIþAmax
Maskell (1928)

Non-
rectangular
hyperbola

θAn
2 � (/I + Amax)An + / IAmax ¼ 0 Thornley (1976, 1998)

Exponential
equation

An ¼ Amax 1� e
�/I=Amax

n o
Hammer and Wright
(1994) and Hammer et al.
(2006)

Rectangular
hyperbola
(modified)

An ¼ δ 1�βI
1þγI I � Icð Þ, where δ, β, and γ are

coefficients and Ic is the compensation
irradiance

Ye (2007)
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Multilayer canopy models were further developed by dividing the canopy into
layers specified by the respective LAI. The intensity of solar radiations reaching each
fraction (sunlit and shaded leaf fractions) was specified by the Beer-Lambert equa-
tion. It was assumed that diffuse solar radiation was intercepted by shaded fraction,
while direct solar radiation could be intercepted by sunlit fraction. Different K values
were used to incorporate attenuation of different types of radiation in canopy models.
De Pury and Farquhar (1997) reported that single-layer sunshade modeling approach
agrees with multilayer modeling approach as well as with 3D plant architecture
model in simulating canopy photosynthesis. This confirms the robustness of the
sunshade modeling approach. It has been proven that K has significant effect on crop
growth, and it can be influenced by crop developmental stage, canopy
configurations, and canopy architectural traits (leaf shape, angle, and internode
length). However, earlier researchers like deWit (1959) and Loomis and Williams
(1963) in their work reported crop productivity as the function of radiation instead of
leaf photosynthesis. Many other researchers showed that dry-matter production and
intercepted radiation have linear relationship among each other. This resulted to the
term of RUE (Sinclair and Muchow 1999). The simplicity of RUE approach resulted
to its widespread use in quantification of crop growth in different crop models (e.g.,
Hammer et al. 2010). The RUE values vary among crop species as it is higher in C4

than in C3. The reported RUE of C4 crops like maize is 1.6–1.9 g MJ�1; for pearl
millet, it is 2.0 g MJ�1; for sorghum it is 1.2–1.4 g MJ�1 (dwarf species), while for
Indian dwarf sorghum hybrid, it is 1.6–1.8 g MJ�1. However, in C3 plants like
wheat, RUE is 1.2 g MJ�1, while for dicotyledonous legume crop like soybean, it is
1.0 g MJ�1 (Lindquist et al. 2005; Hammer et al. 2010; Sinclair and Muchow 1999).
The RUE also has relationship with specific leaf nitrogen (SLN); e.g., in C4 crop
species, RUE increases from SLN of 0.3 g m�2 and reaches to plateau when
SLN ¼ 1.0 g m�2. SLN is a key driver of leaf level photosynthesis and RUE.
However, for C3 crops like wheat, SLN is in the range of 0.3–2.0 g m�2 showing
higher values than C4 crops. Other factors like vertical profile of SLN and environ-
mental variables (air temperature, partial pressure of atmospheric CO2, and plant
water status) also affect the RUE. Higher RUE was reported under diffuse solar
radiation (Sinclair et al. 1992). Different indices as multipliers were used to incor-
porate the impacts of change in air temperature, CO2 concentrations, and plant water
status on RUE. However, in APSIM-Wheat, RUE is not affected in the temperature
range of 10–25 �C, while in CERES-Maize model, it is 17–33 �C. Similarly, for
CO2, RUE is increased with elevated CO2 in C3 plants but not in C4 (Lobell et al.
2015).

Photosynthesis depends nonlinearly on the rate of absorption of solar energy by
the leaves. The solar constant (flux of radiant energy from the sun exterior to the
earth atmosphere) varies from 1321 W m�2 to 1412 W m�2. Radiation emitted from
material bodies such as the sun, atmosphere, ground, and plant parts are called as
thermal radiation. It is determined by the absolute temperature T (k) and total flux
φ(T ) (W m�2). Solar radiations from the sun (direct and diffused) are called as short-
wave radiation, while radiation that originates from earth is called long-wave
radiation.

12 M. Ahmed and S. Ahmad



1.3.1 Photosynthetically Active Solar Radiation (PAR)

Photosynthetically active solar radiation (PAR) or visible radiation or visible radia-
tion lies in the spectral band of 0.4–0.7 μm (400–700 nm), while full solar spectrum
or total solar radiation lie in the range of 0.15–3.2 μm. Outside earth atmosphere, the
ratio of PAR to total solar radiation is 0.44, while if we consider atmospheric effects,
it is in the range of 0.4–0.6; thus generally used value is 0.5. Energy flux density
(W m�2) is used to consider the process of transpiration (energy balance of bodies).
Since the actual number of photons is important in photochemical processes (e.g.,
photosynthesis), thus PAR is expressed in mole, and one mole of photon is called
Einstein (E). PAR can be expressed as energy flux density or photon flux density
(mol m�2 s�1) but has great advantage to express as number of moles of CO2 fixed/
mole of photons in the visible band which activates photosynthesis
(1 JPAR ¼ 4.6 μmol, i.e., for solar radiation 1000 W m�2 � 2300 μmol m�2 s�1

PAR).

1.3.2 Irradiance (I, W m22, or J m22 s21)

The irradiance (I )/flux density of radiant energy is the power incident on a unit area
(W m�2 or J m�2 s�1). It can be of two types Idir (direct beam solar irradiance) and
Idif (diffuse irradiance). Idif is measured on horizontal plane, while Idir is measured on
a plane perpendicular to the beam.

1.3.3 Insolation (Q, MJ m22 day21)

The amount of solar radiation on a given surface in a given time period is called
insolation. It is the solar radiation in a day on a horizontal surface, and it varies
throughout the year. Total energy comes at various sites across the globe ranging
from 6 MJ m�2 day�1 to 30 MJ m�2 day�1 (Monteith and Unsworth 2013)
(Fig. 1.5). Different units have been used to express radiation (Table 1.3), and the
standard unit used is megajoule per square meter and per day (MJ m�2 day�1) or as
equivalent evaporation in mm per day (mm day�1).

1.3.4 Radiant Energy

Radiant energy is the total energy that comprises of short-wave (from the sun) and
long-wave radiations (from the sky, the ground, and other bodies). Stefan-Boltzman
law could be used to determine long-wave radiation. The term net radiation (φn)
could be used to represent the sum of short-wave and long-wave radiation:
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φn ¼ φSWRþ φLWR # �φLWR "
where φSWR is the short-wave radiation (direct and diffuse radiation sum),
φLWR# is the incoming long-wave radiation, and φLWR" is the outgoing long-
wave radiation. The value of φLWR" on clear skies is 100 W m�2, while on cloudy
skies it is 10 W m�2. At night φSWR ¼ 0, and so on clear skies net radiation will be
�100 W m�2. Net radiation for bodies like leaves or canopies which absorbs
radiation it is balance between incoming short-wave and long-wave radiation,
reflected radiation, and thermal radiation from the body depending on its surface
temperature (Ts). Thus the equation would be

φn ¼ 1� αð ÞφSWRþ φLWR # �φLWR " Tsð Þ
where α is albedo or refection coefficient of the surface. The net radiation absorbed
by the body could be used to drive metabolic process such as evapotranspiration.

1.3.5 Albedo

The albedo (α) or reflectivity is measures of how much light that hits surface is
reflected by the body without being absorbed. It can be the main drivers of land
surface temperature. Heat is less absorbed by snow and ice (higher albedo) and more
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Fig. 1.5 Insolation at Tasmania (total annual energy ¼ 5200 MJ m�2) and Brazil (total annual
energy ¼ 6400 MJ m�2) predicted by Bird and Hulstrom (1981) model). (Source: Landsberg and
Sands 2011a, b; reproduced by permission of Elsevier)

Table 1.3 Units for radiation expression

Units Equivalence to MJ m�2 day�1

Equivalent evaporation
(mm day�1)

1 mm day�1 ¼ 2.45 MJ m�2 day�1

Joule per cm2 per day
(J cm�2 day�1)

1 J cm�2 day�1 ¼ 0.01 MJ m�2 day�1

Calorie per cm2 per day
(cal cm�2 day�1)

1 cal ¼ 4.1868 J ¼ 4.1868 � 10�6 MJ,
1 cal cm�2 day�1 ¼ 4.1868 � 10�2 MJ m�2 day�1

Watt per m2 (W m�2) 1 W ¼ 1 J s�1, 1 W m-2 ¼ 0.0864 MJ m�2 day�1
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absorbed by vegetation, soil, and water bodies (lower albedo). It also varies with the
surface roughness and height of the canopy as shown in Fig. 1.6.

1.4 Temperature

Temperature is the key determinant abiotic factor which controls the rate of meta-
bolic processes in plants. Thus, it has major impact on plant growth, development,
and yield through its influence on photosynthesis and respiration. It controls evapo-
ration, transpiration, and water balance in plants. Temperature can be air temperature
(Tair) measured at a standard height of 1.4 m, tissue temperature (Ttis), leaf tempera-
ture (TL), canopy temperature (Tcanopy), stem temperature (Tstem), and soil tempera-
ture (Tsoil). In general, most of the time, Ta is in focus as it determines the
temperature environment of the plant. It has been also reported earlier that some-
times Ta around plants is very low, but they have very high Ttis due to the higher
radiation loads. It can be further divided into daily maximum and minimum
temperatures. Generally, the average of maximum and minimum temperatures has
been used to study the impacts on plant growth (Fig. 1.7).

1.4.1 Leaf Temperatures (TL)

Leaf is the main photosynthesizing machinery; thus TL has significant impacts on the
physiological process related to the photosynthesis and respiration. It also governs
energy balance and transpiration rate. Leaf temperatures are generally determined by
the radiation load instead of Tair. It can be higher than Tair when radiation loads are
high and wind speed is low (Fig. 1.8).

Fig. 1.6 Albedo and height of the canopy. (Source (a): Landsberg and Sands 2011a, b; (b):
Kempes et al. (2011))
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1.4.2 Cardinal Temperature

Cardinal temperature includes minimum, maximum, and optimum temperatures.
Minimum and maximum temperatures define the growth and development of an
organism, while optimum temperature (Topt) is the one in which growth proceeds
with a great pace (temperature at which rate is maximum (99%)). Cardinal tempera-
ture components include Tbase (base temperature belowwhich development rate¼ 0),
Topt1 (first optimum temperature at which development rate is most rapid), Topt2
(second optimum temperature; highest temperature at which rate is still at its

Fig. 1.7 Annual maximum and minimum air temperatures

Fig. 1.8 Variation in the TL and Tair in response to changing solar radiation. (Source: Landsberg
and Sands 2011a, b; reproduced by permission of Elsevier)
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maximum), and Tmax (maximum temperature at which development rate ¼ 0)
(Fig. 1.9). Tbase (the x-axis intercept), and Topt from field data can be calculated by
plotting reciprocal of days to anthesis to temperature as shown in Fig. 1.10. How-
ever, this relationship between temperature and rate of development can be nonlinear
as revealed in Fig. 1.11.

Yan and Hunt (1999) presented simple generalized equation to simulate the
temperature impacts on plant’s daily rate of growth (r) or development. According
to them plant response to temperature can be summarized by three cardinal temper-
ature base or minimum (Tmin), the optimum (Topt), and the maximum (Tmax)
temperatures. In earlier linear model, it has been found that the rate of development
(r) is the linear function of the temperature. Thus, commonly accepted concepts of
growing degree days (GDD) or thermal time and leaf unit or phyllochron interval
were used. However, this approach is good if the temperature does not exceed Topt
which is not possible under natural conditions. Therefore, bilinear modelwas used to
describe the response to suboptimum and supra-optimum temperatures:

r ¼ a1 þ b1T T < Topt
� �

r ¼ a2 þ b2T T > Topt
� �

Fig. 1.9 Cardinal temperature

Fig. 1.10 Calculation of Tbase (the x-axis intercept) and Topt from field data
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where a1, a2, b1, and b2 are the ones from where cardinal temperatures were
determined. However, this model also has issues in the prediction of Tmin and
Tmax. Thus, a multilinear model was constructed to minimize this issue and has
been used in most process-based crop models. Furthermore, it has been stated that
temperature response of a given process should be smooth and suggested implemen-
tation of exponential and polynomial equations. Yan et al. (1996) and Yan and
Wallace (1998) proposed quadratic equation to incorporate reduced rate of develop-
ment at high temperature.

r ¼ Rmax � b T � Topt
� �2

However, the application of quadratic equation at low and high temperature
can generate inaccurate results. Yin et al. (1995) introduces beta-distribution
(unimodal response to an independent variable x in the range of 0–1). The function
density ¼ 0 if x � 0 or x 	 1, and it will be maximum if x is between 0 and
1. Replacing “x” with “T” between base temperatures (Tmin) and Tmax leads to an
expression that can be used to describe a T response:

r ¼ Rmax
T � Tmin

Topt � Tmin

� �
Tmax � T
Tmax � Topt

� �Tmax�Topt
Topt�Tmin

2
4

3
5
c

where Rmax is the maximum rate at Topt and c is the parameter that determines the
shape of the curve. Yin et al. (1995) equation depicted a reasonably good result as it
produces smooth and realistic curve. In order to make equation biologically mean-
ingful, Yan and Hunt (1999) replaced “c”. Thus, the new suggested equation is

r ¼ Rmax
Tmax � T
Tmax � Topt

� �
T � Tmin

Topt � Tmin

� �Topt�Tmin
Tmax�Topt
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Fig. 1.11 Nonlinear
relationship between
temperature and rate of
development. (Source: Yin
et al. 1995; reproduced by
permission of Elsevier)
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where Rmax is the maximum rate at Topt, r is 0 (if T ¼ Tmin or if T ¼ Tmax), and
r is Rmax (if T ¼ Topt). Here c ¼ Topt�Tmin

Tmax�Topt
¼ 1 (Reed et al. 1976). If the rate of growth

or development is presented relative to the Rmax, the new equation would be

r
Rmax

¼ Tmax � T
Tmax � Topt

� �
T � Tmin

Topt � Tmin

� �Topt�Tmin
Tmax�Topt

This equation has three parameters (minimum, optimum, and maximum
temperatures), but it cannot be used in curve fitting unless Rmax is well established.
To simplify further they assumed Tmin ¼ 0 for growth and development. Thus, new
equations are

r ¼ Rmax
Tmax � T
Tmax � Topt

� �
T
Topt

� � Topt
Tmax�Topt

r
Rmax

¼ Tmax � T
Tmax � Topt

� �
T
Topt

� � Topt
Tmax�Topt

The work of Yan and Hunt (1999) showed that beta-distribution equation could
be used to describe temperature response of different plant processes (Fig. 1.12).

1.4.3 Crown Temperature

Crown temperature is the temperature that resides near crown tissues. These tissues
are the most important organ for regeneration after overwintering. This temperature
is important as it determines whether the plant will suffer from frost kill during
winter or not (Fig. 1.13). Crown temperature in response to air temperature used by
APSIM-Wheat model has been elaborated by Zheng et al. (2014).

1.4.4 Growing Degree Day Approach

Temperature impacts on organism growth, and development can be expressed by
using growing degree day (GDD) approach. This approach has been used in most of
the cropping systems models. According to GDD approach, if

Tair > Tbase

then
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GDD ¼ Taverage � Tbase

if

Tair < Tbase

then

GDD ¼ 0

if

Tair > Topt

then
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Topt ¼ 5�35 �C). (b) Predicated relative rate of maize with measured values with single curve
only (Tmax ¼ 41 �C and Topt ¼ 31 �C). (Source: Yan and Hunt 1999)
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GDD ¼ Topt � Tbase

For example, if Tbase ¼ 8 and Topt ¼ 30, then GDD can be calculated as shown in
Table 1.4.

1.4.4.1 Growing Degree Day Calculation: Nonlinear Approach
Crop model’s accuracy to simulate crop growth, development, and yield depends
upon accurate calculation of growing degree days (GDD). Since traditional method
of GDD calculation assumes linear response to temperature, thus it generates
inaccuracy above the Topt. Zhou and Wang (2018) suggested new nonlinear method
which addresses this issue of prediction of crop response at higher temperature
(Fig. 1.14).

GDD ¼ ∑ DTT (cumulative daily thermal time (DTT)).

Method 1

DTT ¼
0 Tavg < Tb

Tavg � Tb Tb < Tavg
�

< Tu

Tu � Tb Tavg > Tu

Fig. 1.13 Crown temperature in response to air temperature used by APSIM-Wheat model.
(Source: Zheng et al. 2014)

Table 1.4 Average
temperature and growing
degree day calculations

Average temperature (�C) Growing degree days (�C)
7 0

15 7

30 22

40 22
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where Tmax is the maximum temperature, Tmin is the minimum temperature,
Tavg is (Tmax + Tmin)/2, Tb is the base temperature, and Tu is the upper threshold
temperature.

Method 2

DTT ¼
0 Tavg < Tb

Tavg
0 � Tb Tb < Tavg

�
< Tu

Tu � Tb Tavg > Tu

where Tm ¼ min (Tmax, Tu), Tn ¼ max (Tm, Tb), and Tavg0 ¼ (Tm + Tn)/2.
Tb is compared with Tu before the average temperature (Tavg0) is calculated. Tm

and Tn are adjusted if they are < Tb or > Tu. In this method, DTT is given by

Method 3

HTT ¼

0 Th < Tb

Th � T

Topt � Tb

Tu � Topt

8<
: Tu � Thð Þ

Tb � Th � Topt

Topt < Th � Tu

0 Tu < Th

T
upper

-T
base

T
upper

-T
base

DTT

(Tmax-Tavg)>(Tavg-Tmin)

Method1
Method2

(Tmax-Tavg)=(Tavg-Tmin)

Method1
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(Tmax-Tavg)<(Tavg-Tmin)
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Fig. 1.14 Comparison of thermal time (DTT and HTT) calculation methods. (Source: Zhou and
Wang 2018)
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DTT ¼
P24
1
HTTi

� �
24

Method 4

r ¼ Rmax

0 Th < Tb

Th � Tb

Topt � Tb

� ��
Tu � Th

Tu � Topt

� �Tu�Topt
Topt�Tb

Tb � Th � Tu

0 Tu < Th

1.5 Photoperiod

Photoperiod is the time in each day in which plants receives illumination (day
length). It can be called exposure of plants to light in a 24-h period. According to
the Oxford Dictionary of English (2010), it is day length or the period of illumination
received by an organism and remains constant between years at any given geograph-
ical location. It controls many developmental processes (e.g., flowering,
tuberization, and bud set) in plants. This is due to the entertainment of circadian
rhythms (biological clock) in the plant due to the detection of light signals. This
sensing mechanism in plants helps them to do flowering/reproduction under favor-
able conditions and avoid harsh weather.

The reason for this photoperiod response in plants is due to the influence of
latitude, since the axis of the earth remains tilted in the same direction throughout the
year. Therefore, one hemisphere will be directed away from the sun at one side of the
orbit, and after half a year, it will be directed toward the sun. Thus, latitude has great
effect on day length at different times of the year. At the equator day length is equal
to night length and remains constants throughout the year, while if we move away
from the equator toward the poles, the days becomes shorter in winter and longer in
summer. Photoperiodism response to changes in day length enables plants to adapt
to seasonal changes in the surrounding environment. However, the rate of change of
day length is linked with latitude (Figs. 1.15 and 1.16). Garner and Allard (American
physiologist) were the first scientists to explore the flowering responses in plants
linked with long days (LD) or short days (SD) and introduce the term photoperiod
and photoperiodism. However, these things were mentioned clearly in the verses of
the Holy book Quran, dating around 1400 years back. It has been stated in the Quran
that the night and day are signs of the great power of Allah. Allah reminds us of the
great signs that He created, including the alternation of the night and day, so that
people may rest at night and go out and earn a living, do their work, and travel during
the day, and so that they may know the number of days, weeks, months, and years, so
they will know the appointed times for paying debts, doing acts of worship, dealing
with transactions, paying rents, and so on. Garner and Allard classified plants into
short-day plants (SDP) (day length < critical day length), long-day plants (LDP)
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(day length > critical day length), and day-neutral plants (DNP). Furthermore, it has
been concluded that flowering only occurred if the night length was greater than
8.5 h. Particularly in SDP, the night length is the decisive factor. If night period is
disturbed even for short period of time, it will eventually affect the process of
flowering. If response to day length depends on dark period length, plants are called
dark dominant, and if not, plants are called as light dominant. Generally, LDP are
light dominant, while SDP are dark dominant (Fig. 1.17).

Flowering is a highly complex response linked with biological clock through
environmental signals (day length and temperature). Different types of receptors
called as photoreceptors are present in plants to detect light. They can be categorized
into the phytochromes (PHY) and the cryptochromes. Phytochromes are family of
chromoproteins sensitive to the red and far-red parts of the spectrum. There are five
different PHY (PHYA to PHYE). Two common forms of phytochromes are red
(Pr) and far-red (Pfr), and they are interconvertible due to the action of light as shown
in Fig. 1.18.

The application of the concept of the photoperiod in models (CERES-sorghum
and STICS) was implemented by Folliard et al. (2004). Alagarswamy and Ritchie’s
(1991) linear relationship concept was employed by considering P2O as threshold. If
photoperiod (P) is below P2O (P< P2O) than the duration of vegetative phase, “fp” is
a constant/minimum and equals to the duration of juvenile phase (P1)
( fp ¼ constant, minimum,P1 ). Above P2O, the fp increases as linear function of
day length with slope P2R. Thomas and Vince-Prue (1997) reported that this model
matches to the quantitative plants that will finally flower even if photoperiod remains
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Fig. 1.15 Change in day length with latitude. (Source: http://wordpress.mrreid.org/)
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high. Brisson et al. (2003) employed hyperbolic relationship in crop model STICS
by considering vegetative stage fp constant, minimum, and equals to the duration of
juvenile phase P1 below threshold photoperiod Psat. However, above Psat, the fp
increases as a hyperbolic function of day length until an asymptote is reached for
P ¼ Pbase. Flowering is not possible if P > Pbase and development are stopped. This
model is applicable for qualitative plants as vegetative phase continues until day
length conditions were not met.

Daily developmental rate (DRj) was calculated as function of thermal time and
photoperiod, and if DRj ¼ 1, panicle initiation occurs. Following two approaches
(cumulative and threshold) could be used for the calculation of DRj:

DRj ¼ ∑ i ¼ 1jdtti( fPi) (cumulative method, dtti ¼ daily thermal time and ( fPi) ¼
thermal time required for panicle initiation)

Fig. 1.17 Flowering response of plants to the combinations of different length of light and dark
periods. (Source: Thomas 2003; reproduced by permission of Elsevier)
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DRj ¼ 1f(Pj) ∑ i ¼ 1jdtti (threshold method, panicle initiation occurs when the sum
of temperatures ∑dtti meets the demand expressed by f(Pj)).

These two methods have different meanings as in cumulative method plant
progress every day toward flowering as function of temperature and photoperiod at
variable rate. However, in threshold method, flowering is only possible if day length
conditions are met.

Alagarswamy and Ritchie (1991) stated that in cumulative linear case f(Pi) is
calculated by following ways with the assumptions that phenological stage starts at
the end of the juvenile phase.

If

Pi > P2O

then

f Pið Þ ¼ 102þ P2R Pi � P2Oð Þ
Otherwise

f Pið Þ ¼ 102

For the cumulative hyperbolic case (as in STICS), phenological stage is assumed
to start at emergence, and f(Pi) is computed as follows (Brisson et al. 2003):

According to the Brisson et al. (2003), f(Pi) in cumulative hyperbolic case is
computed with assumptions that phenological stage starts at emergence. The
suggested equation will be

Fig. 1.18 Phytochromes photoconversion for physiological responses (e.g., germination,
flowering, and photomorphogenesis) in plants
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if

Pi > Psat

then

f Pið Þ ¼ P1Psat � PbasePi � Pbase

Otherwise

f Pið Þ ¼ P1

Like the threshold concept, trigger effect has been also used to explain the
concept of photoperiodicity in plants. It has been concluded by Folliard et al.
(2004) that hyperbolic response to photoperiod and a daily threshold iteration
procedure could be used to monitor the development of crops (Figs. 1.19 and 1.20).

APSIM model calculates photoperiod from day of year and latitude using the
parameter twilight (interval between sunrise or sunset and the time when the true
center of the sun is 6� below the horizon). Photoperiod affects phenology between
emergence and floral initiation as elaborated by Zheng et al. (2014). Thermal time
during this period (between emergence and floral initiation) is affected by photope-
riod factor ( fD):

fD ¼ 1� 0:002Rp 20� Lp
� �2

where Lp is the day length (h) and RP is the sensitivities to photoperiod which is
cultivar-specific and is specified by photop_sens (default value of RP ¼ 3)
(Fig. 1.21).

P20 Psat Pbase

P1

P2R

Photoperiod (h Photoperiod (h))

T
T

P
I (

°C
d)

P1

T
T

P
I (

°C
d)

Linear (CERES-sorghum) Hyperbolic (STICS)

Fig. 1.19 Linear and hyperbolic relationship between the duration of vegetative stage fp expressed
as TTPI (thermal time to panicle initiation) (�C days) and photoperiod. (Source: Folliard et al. 2004;
reproduced by permission of Elsevier)

28 M. Ahmed and S. Ahmad



1.5.1 Photo Growing Degree Days (PGDD)

The combination of GDD with photoperiod gives another concept called as photo
growing degree days (PGDD). This concept was presented by Aslam et al. (2017b)
in their work to monitor wheat development between emergence and floral initiation.
Firstly, the Wang and Engel (1998) degree day (WEDD) equation was used to
calculate GDD with assumption that if Tav < Tmin or Tav > Tmax, then WEDD ¼ 0.
Two different cardinal temperatures were used which includes pre-anthesis
(Tmin ¼ 0.00, Topt ¼ 27.70, and Tmax ¼ 40.00) and post anthesis (Tmin ¼ 0.00,
Topt ¼ 32.75, and Tmax ¼ 44.00) cardinal temperatures.

Fig. 1.20 Reversing traditional approach of cumulative thermal age as function of photoperiod to
determine threshold day length as function of thermal age. (Source: Folliard et al. 2004; reproduced
by permission of Elsevier)

Fig. 1.21 Photoperiod approach used by APSIM. (Source: Zheng et al. 2014)
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α ¼ ln 2=ln Tmax�Tmin
Topt�Tmin

� 	

Numerator ¼ 2 Tav � Tminð Þα Topt � Tmin
� �α � Tav � Tminð Þ2α

Denominator ¼ Topt � Tmin
� �2α

Wang and Engel degree days WEDDð Þ ¼ Numerator
Denominator

h i
Topt � Tmin
� �

Zheng et al. (2014) APSIM-Wheat approach was used to calculate photoperiod.

Photoperiod ¼ 1� 0:002 Photoperiod coefficientð Þ � 20� day lengthð Þ2

After combining Wang and Engel (1998) equation and Zheng et al. (2014)
photoperiod approach, the new equation of photo growing degree days (PGDD)
has been presented below:

PGDD ¼ WEDDð Þ Photoperiodð Þ

1.6 Humidity and Vapor Pressure Deficit

Water vapor in the air is important to be considered for modeling as it can determine
water lost from the leaves through the process of transpiration. Transpiration is
mainly driven by water vapor pressure gradient between leaves and air through the
sensing mechanism of stomata. Partial pressure of water vapor in the atmosphere is
called as vapor pressure (e). The vapor pressure can be saturated es(T ) at a particular
temperature (T ), and relative humidity (Hr) is the ratio of vapor pressure of unsatu-
rated air to saturated air at the same temperature and expressed in percentage (%).

The vapor pressure difference (Δe) between the inside of the leaves and the
ambient air is an important variable. It depends on the foliage temperature (Tf) and
vapor pressure of the air (ea).

Δe ¼ es T f

� �� ea

The drying power of air is determined by the vapor pressure deficit (D):

D ¼ es Tð Þ � ea ¼ es Tð Þ 1� Hr

100

� 	
where es(T ) is the saturated vapor pressure at T, ea is the unsaturated vapor pressure,
and Hr is the relative humidity.
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According to Campbell and Norman (2012), D could be determined by following
equation:

D ¼ a� e
b�Tair
Tairþc � 1� RHh i

where Tair is the air temperature (�C); RH is the relative humidity (%); and a, b, and
c are constants.

Vapor pressure could be used to calculated potential evapotranspiration (PET,
mm day�1) as proposed by Shuttleworth (2007):

PET ¼ ðmRnþg�6:13� 1�0:31Uð Þ�D=L� mþgð Þ

where m is the slope of the saturation vapor pressure curve (kPa K�1), Rn is the net
irradiance (MJ m�2 day�1), g is the psychrometric constant ¼ 0.0016286, D is
the vapor pressure deficit (kPa), U is the wind speed (m s�1), and L is the latent heat
of vaporization (MJ kg�1).

Similarly, transpiration efficiency (TE) can also be calculated by considering “D”
given below:

TE ¼ BM�D=TEn

where BM is biomass, D is vapor pressure deficit, and TEn is the normalized
transpiration efficiency.

Plants have developed several adaptive strategies to survive under drought stress/
water-deficit environments. One top strategy is to limit transpiration rate under high
D. Since high D usually occurs in the midday to end of day thus limiting transpira-
tion, this situation is the best option to conserve water (Devi and Reddy 2018).

1.7 Wind

Wind affects plant growth by influencing on the transfer of water vapor, heat, and
CO2 to and from leaf and plant canopies. Thus, it has significant effects on the
energy balance and transpiration of whole canopies.

1.8 Canopy Transpiration

Penman-Monteith equation is generally used to determine canopy transpiration, and
in this equation canopy conductance was considered as stomatal conductance.
Granier et al. (1996) concept of Penman-Monteith equation to determine stomatal
conductance and canopy transpiration is
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gs ¼ yλTr=ρaCpD

where gs is canopy stomatal conductance (m s�1), y is psychrometric constant
(kPa K�1), λ is the latent heat of vaporization (J g�1), ρa is dry air density
(kg m�3), Cp is the specific heat of air at constant pressure (J kg

�1 K�1), and D is
atmospheric vapor pressure deficit (kPa).

1.9 Eddy Correlation

It is the standard technique used for the production of continuous data on the fluxes
of CO2, water vapor, and heat from extensive vegetated surfaces. Since forest
occupies a major portion of land, it is mostly used to collect data from forest
surfaces. Under the FLUXNET program (https://daac.ornl.gov/cgi-bin/dataset_
lister.pl?p¼9), large number of stations has been established to monitor CO2 and
water vapor fluxes worldwide.

1.10 Ozone Effects on Crop Modeling

The changes in ozone concentrations may harm the plants at canopy level which
further affects the internal physiological processes and overall crop responses to the
environment. It should be considered for the development of crop model to incorpo-
rate ozone effects to improve model performance. The observation ozone data is
absent in the world, and ozone damage assessment for crop is only made through
crop modeling approach (Emberson et al. 2018). It was reported by Van Dingenen
et al. (2009) and Avnery et al. (2011) that worldwide ozone may reduce yield of
maize (2–5%), wheat (4–15%), rice (3–4%), and soybean (5–15%). In the past,
empirical concentration-based modeling was used for the assessment of yield losses
due to ozone. It was followed by semiempirical ozone effects modeling, and because
of certain limitations, flux-based approach was used. It accounts the statistical
relationship between ozone effects and crop yield. However, dynamic process-
based modeling was introduced to overcome the shortcoming of previous modeling
approaches. These are most appropriate as these also consider the effective ozone
flux. The effective ozone flux represents the stomatal ozone flux which is above the
detoxification capacity of the plants. There large-scale application is limited by
unavailability of ozone flux data.

The plants have the ability to detoxify a certain amount of ozone and remaining
results damages to crop pants. The incorporation of different types of the damages to
plants from ozone is necessary in model development. For generating such informa-
tion, the in-depth studies must be carried out to find out the damages at various plant
processes at cellular processes. Some important considerations for modeling the
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ozone effects on plants are necessary. These include time step, carbon assimilation,
canopy development, assimilate partitioning, and water uptake and stomatal ozone
uptake. The time step of 1 day is appropriate to overcome the co-variations in ozone
concentration with various physiological processes. The carbon assimilation is used
to assess the zone damage to photosynthesis. The canopy measurement is necessary
for estimating ozone damages to leaves. Assimilate partitioning is used for
incorporating the effects of ozone on leaf senescence. The water uptake and transpi-
ration help the models to estimate the ozone effects on roots and interception of
radiations on the leaves (Emberson et al. 2018). For modeling the ozone damages to
the plants, the experimental datasets would be required for testing and calibration of
the models. These datasets include daily, ideally hourly, ozone values and meteoro-
logical conditions during the course of the crop development and yield. The avail-
ability of such datasets is the main limitation for such studies. The development of
varieties to avoid the adverse effects of the ozone on crop is also the need of the day.

1.11 Agriculture, Science, and Systems Modeling

Agriculture (cultivation of fields) consists of activities which took place at farms and
results in the production of food, fuel, and fiber. The farm work involves wider
ecological context; thus, agriculture and ecology interact, so agriculture could be a
science that deals with the interaction of ecology/environment, soil, crops, and
animals. All variables discussed in the above headings are thus most important in
understanding the agricultural system on a scientific basis. Since science is the
systematic study of knowledge, thus agriculture involves all important components
of science. Agricultural practices involve three components, i.e., traditional, scien-
tific, and estimation. Scientific knowledge is very important for the progress of
agriculture as it involves proper steps to get answers to the problems (Fig. 1.22).
In every field of life and particularly in agriculture, numbers matter; thus hypothesis
needs to be expressed numerically, and in order to do this, we need to apply concepts
of modeling. Thus, modeling converts qualitative data into quantitative, and it can be
statistical modeling or mathematical modeling. It gives quantitative predictions to
the theories which can be compared very easily in the real world (Fig. 1.23).

System is anything under observation, and it has a set of components which
interacts with each other. Agricultural systems which involve crops mainly have
interactions with crop, soil, environment, and management. To understand this
system effectively, we need to use the concept of modeling (Fig. 1.24).

1.12 Mathematical Modeling

Modeling by the use of mathematical equations which represent the behavior of a
system is called mathematical modeling. It represents the relationship between
dependent and independent variables. Growth curve between applications of fertil-
izer and dry-matter produced by the crops could be represented by the mathematical
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equations. Thornley and France (2007) describe the application of mathematical
model by considering relationship between growth (G) and food intake (F)
(Fig. 1.24) which is an example of static model as there is no time variable:

G ¼ G1
F

K þ F
� G2

where G1 andG2 are growth rate, F is food intake, and K is the steepness of curve.

Fig. 1.22 Cycle of scientific enquiry and application of modeling

Fig. 1.23 Crops as an example of agricultural systems modeling and its interactions with different
components
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1.13 Dynamic Model

Dynamic model is the model in which time is involved, and it describes time-
dependent relationship. Consider the following equation,

DM ¼ DM0 þ DM f � DM0
� �

1� e�kt
� �

where DM is dry matter, DM0 is the initial value of dry matter at t ¼ 0, DMf is
the final (asymptotic) value when t ! 1, and k is the rate constant that determines
the time scale of growth, higher value of k means higher growth. This equation can
give more practical answer when converted to the differential form, i.e., rate of
change of dry matter. Thus, the equation is

ΔDM
Δt ¼ k DM f � DM

� �

1.14 Deterministic Models

These are models which give predictions for quantities (e.g., plant dry matter)
without any associated probability distribution (Fig. 1.25).

Fig. 1.24 Application of mathematical model to show relationship between animal growth and
food intake. (Source: Thornley and France 2007)
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1.15 Stochastic Models

These are models which give predictions for quantities (e.g., plant dry matter) with
associated probability distribution. It involves random variables (Fig. 1.25).

1.16 Empirical Models

These are models which describe the relationship among two variables often using
mathematical or statistical equation without considering scientific principles.

1.17 Mechanistic Models

These are models which can describe relationship from lower hierarchy of one
variable to higher hierarchy by considering different factors and incorporate the
understanding of the phenomenon which are going to be predicted. For example,
crop growth rate (higher hierarchy) could be considered as function of photosynthe-
sis, respiration, transpiration, and nutrients uptake (lower hierarchy). Mechanistic
models are more research oriented than application oriented. Many models with
different levels of abstraction have been presented in Table 1.5. Application of these
models at different scales could help to understand the mechanisms in qualitative
and quantitative way (Ijaz et al. 2017; Jabeen et al. 2017; Aslam et al. 2017a; Ahmed
et al. 2014, 2016, 2017, 2018, 2019; Ahmad et al. 2017, 2019). Therefore, they can
boost system efficiencies, e.g., agricultural production or agronomic activities,
which might lead to the transformation of agriculture to digital agriculture. Future
agronomists will be digital agronomist having strong link with data and crops.
Digital technologies help to monitor soil quality, weather patterns, and crop produc-
tivity and quality. These technologies and analytical tools help to optimize key

Fig. 1.25 Comparison between deterministic and stochastic models
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Table 1.5 Models with different levels of abstraction

Scale Cell-Cm2

(minutes day-1)

Organs

(minutes day-1)

Plant or 

Canopy

(minutes to 

weeks)

Canopy in a 

range of 

environments 

(Weeks to 

months)

Genetic 

complexity

Genome wide 

allelic 

composition

Mechanisms Transcripts/ Ion 

Channels/

Biophysics

Hydraulics/

Metabolism/

Hormones

Coordination/

Hormones/

Nutrients

Feedbacks, 

Water/C/N 

balances, 

coordination

Models Networks

Boolean and 

differential equation

Differential 

equation, 

gradients,

Conserved 

fluxes

Functional 

structural plant 

model (FSPM)

Regression 

Models

Crop Models

Abstraction Explicit 

genes/Metabolites/No 

Explicit Organs

No explicit 

genes/No 

explicit 

organs/Explicit 

fluxes (m2 Sec-1)

No explicit 

genes/ Explicit 

organs (x,y,z)/ 

No explicit 

fluxes

No explicit 

genes/ No 

explicit organs/ 

No explicit 

fluxes

Total number 

of parameters

100 50 100 150

Trait Simple Complex

Trait Stomatal Leaf growth rate Radiation Grain number
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component of food systems and increase productivity and profitability by giving
options to reduce environmental impacts. Furthermore, digital agriculture revolution
provides new means and methods for farmers to optimize management and improve
crop quality and quantity even under changing climate. Traditional method of
fertilizer application and other managements will be replaced by digital agricultural
system which can gather data more frequently and accurately in combination with
external factors. This collected data is analyzed and interpreted so that farmers can
have accurate information and appropriate decisions. These decisions then can be
implemented with greater accuracy through technologies (e.g., sensors, communica-
tion networks, unmanned aviation system, artificial intelligence, robotics, and
advanced machinery), and afterward farmers can get real benefits. Thus, our system
of agriculture will be more productive, consistent, and higher in efficiency. Many of
the sustainable development goals (SDGs) can be easily achieved by adopting digital
agriculture (Figs. 1.26 and 1.27).

Table 1.5 (continued)

conductance interception 

efficiency

Phenotypic 

distribution

Few alleles Many alleles

Heritability High Low

QTLs for 

explaining 30% 

genetic 

variation

Few many

References Vialet-Chabrand et 

al. (2017)

Caldeira et al.

(2014)

Mairhofer et al. 

(2012)

Pradal et al. 

(2015)

Hammer et al. 

(2010); Millet et 

al. (2019); 

Tardieu et al. 

(2018); Louca et 

al. (2019); Wu et 

al. (2019)
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1.18 Conclusion

Anything under observation is referred as system. The agricultural systems (farming
systems and cropping systems) basically interact with the environment. In the past,
the better understanding of these systems were made through quantitative experi-
mentation and now various crop models are used for the purpose. The models are
mathematical representation of the biological system. The main types of modeling
include mathematical, dynamic, deterministic, stochastic, empirical, and mechanistic
models. These are used to represent the relationship between dependent and inde-
pendent factor, the time-dependent relation, predictions for quantities without prob-
ability distribution, predictions with associated probability, relationship between two
variables through mathematical and statistical equations, and relationship of lower
hierarchy of one variable to higher hierarchy, respectively. Such models can be
successfully applied to estimate the impact of environmental variables on various
growth processes. The impact of changes in ozone layers on crop growth may
influence the model performance, since these impacts should be considered to
improve model performance.

Fig. 1.26 Digital agronomy
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Abstract

The visible form of an organism is the result of its genotype, environment and
complex interaction and is referred to as phenotype. Quick, precise and
non-destructive measurement of phenotypic traits has been of key importance
in the field of plant breeding and crop production. The image-based non-destruc-
tive phenotyping started in early twenty-first century, and these techniques are
based on spectra, canopy temperature and visible light. Initially, such approaches
were used for phenotyping the plants in a controlled environment, where the
influence of the environment could not be considered for phenotypic expression.
Hence, the need for the development of high-throughput phenotyping (HTPPs)
was realized to get the required information. This chapter provides an overview of
advanced phenotyping techniques with special focus on field phenotyping. These
techniques have the ability to evaluate multiple traits of interest from mixed
populations, monitoring of crop growth and development, and health, and also
provide key information on various physiological processes. The range of plant
phenotyping techniques starts from phenotyping the whole plant canopy to organ
and tissue.
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2.1 Definition and Introduction

The description of plant anatomical, biochemical, physiological and ontogenetical
properties of plants in quantitative term is called plant phenotyping (Walter et al.
2015), and producing such description is the basic objective of phenotyping (Guo
and Zhu 2014). The phenotype may be described as the functional plant body, which
is formed during growth and development by interaction of the genotypes with the
physical environment. The term phenotype was initially known during the 1960s.
The study of phenotypes at a large-scale level is termed phenomics. Besides genetic
(G) and environmental factors (E), management practices (M) also influence the
phenotypic expression, thus phenotype is the result of G � E � M (Porter and
Christensen 2013). Because of complex interactions, it is difficult to estimate the
individual contribution of these factors in phenotypic expression. Mathematically, it
would be expressed according to the following proposed formula

Phenotype ¼ G� E �M

The visible plant shape that we observe is the expression of genotypes in a given
environment. The cob size and colour in Fig. 2.1 are phenotypic characters that
resulted from genetic and environmental influence. The selection of the best
genotypes based on phenotypic characters has been in practice since a long time
ago. In this conventional system, one or few traits act as a basis of selection without
considering the functional analysis of constituent traits. Moreover, the system is
labor-intensive, time-consuming and expensive, which is a bottleneck for efficient
breeding (Fig. 2.2). Various disciplines like agronomy, information technology,
math, engineering and modern image analysis technologies are integrated together
in the field of phenotyping. Many advanced phenotypic platforms have been made
by realizing the need for phenotyping multiple traits in a short time. The major focus
of the latest phenotyping techniques in literature has been non-destructive optical
analysis through imaging techniques.

Such platforms are based on various imaging techniques to estimate the plant
morphology, biomass, health, plant water contents, photosynthesis etc. The modern
high-throughput plant phenotyping platforms (HTPPP) are low-cost, automated,
precise and have the ability to analyze images (Pratap et al. 2019). The
non-destructive image-based identification of traits to a field level has gained
popularity since the beginning of the twenty-first century. Now, new techniques
have been developed that are not only helpful for trait identification but also are very
important for monitoring overall crop growth and development.
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Fig. 2.1 Phenotype is the outcome of genotype and environment

Fig. 2.2 Phenotyping as a bottleneck in developing genetic information
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Agriculture is the main source of food, fibre, fuel and raw materials, which are
vital components for human livelihood. In this era of climate change, it is very
important to uplift the agricultural sector in such a way that it can ensure environ-
mental sustainability and food security (Ahmed et al. 2013; Ahmed and Ahmad
2019; Ahmed and Stockle 2016; Ahmed 2020). Thus, to ensure food for billions of
people in future it is very important to adopt modern tools in agricultural production.
Remote sensing (RS) has the potential to support the adaptive evolution of agricul-
tural practices to face the future challenges by providing information throughout the
seasons at different spatio-temporal scales. It is the collection of information about
the phenomenon or an object without making any physical contact. Different
agronomical variables and plant traits e.g. canopy height and green area index
(Primary variables) and grain yield (Secondary variables) can be estimated by
RS. Different empirical and deterministic approaches could be used to retrieve
information. Application of RS is gaining attention in different agricultural
disciplines such as crop breeding, crop yield forecasting, crop damage assessment,
cropping systems analysis, stress detection in crop, evaluation of pests and disease
infestation, soil moisture estimation, drought monitoring and nutrient defi-
ciency detection.

Sensors are devices that detect and respond to input from physical environment.
The resultant outputs are signals, which are subjected to further process to make
them readable for humans. These are actually a part of a bigger system; a few classes
of sensors include temperature sensors, light sensors, colour sensors and humidity
sensors. Sensor use has become so common that we are living in the world of
sensors. The arrangement of light according to wavelength of visible, ultraviolet and
infrared light is called as spectrum. The term was first used by Isaac Newton in the
seventeenth century to describe the range of colours when light passes through a
prism or drop of water.

Remote sensing is an important phenotyping technique, and the term remote
sensing was first introduced by Ms. Evelyn Pruitt in the U.S. Office of Naval
Research during the 1950s. As the word “remote” indicates, it is a technique of
obtaining information from long distances. Remote sensing uses various active and
passive sensors, which are mostly deployed on satellites and other related platforms.
Radio detection and ranging (RADAR), optical sensor and near-infrared sensors are
the main sensors used in remote sensing. The data recorded by sensors fall in the
range of electromagnetic spectrum, and these datasets are further subjected to
processing techniques for image and signal analysis.

The Yara N-Sensor ALS 2 (active light source) is used for monitoring crop
nitrogen requirement through measuring light reflectance from canopy. Crop identi-
fication, land use systems, land cover, monitoring of crop health and field
phenotyping are a few applications of remote sensing in agriculture. The SPAD
reading is based on the light transmission through the leaf, which is emitted from
light-emitting diodes at 650 and 940 nm. The reflected light from the canopy is
measured with sensors, and technology is used for non-destructive measurement of
the leaf area (Kim et al. 2012).

The choices of phenotyping tool vary with scale of measurement, as phenotyping
in controlled environment is carried out with automated phenotyping platform.
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While high-throughput phenotyping is used at field scale level, in-depth and high
resolution is used for organ, tissue and cell characterization. Generally, a complex
micro-phenotyping is recommended for studying the phenotypes at cellular and
tissue level (Ahmed et al. 2020; Zhao et al. 2019). Phenotyping is equally important
particularly for precision farming like its basic role in plant breeding. It is being
applied for irrigation, fertilizer application, weeds detection and overall monitoring
of plant health, and the key aim is to improve crop management practices. The
physical crop damage from different biotic and abiotic stresses is assessed with the
help of satellite imaging. The tools developed from Australian Plant Phenomics
Facility are presented in Fig. 2.3. The future success of plant phenotyping lies in
synergy between national and international organizations working in this particular
field (Coppens et al. 2017).

2.2 Field Phenotyping

High-throughput phenotyping devices were initially developed to study phenotypes
in growth chambers and green houses and mainly used to characterize individual
plant characters. These technologies do not fulfill the requirement of field

Fig. 2.3 Pictorial view of various phenotypic approaches developed by Australian Phenotypic
Facility
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phenotyping, as plant phenotypes in controlled environments do not fully depict the
environment and genotype interactions. Phenotyping at field scale is very important
because visible characters express the role of genetic factors. High-throughput field
phenotyping (HTPPs) is classified into two types, namely based and aerial HTPPs.
Ground-based HTPPs are mostly used for phenotyping at plot level, while aerial
HTPPs are made for entire fields. Ground-based HTPPs are driven by cart, tractor
etc., and aerial HTPPs use small airplanes, drones, unmanned small aerial platforms
etc. The important pillars of field phenotyping are trait of interest, sensors for
measurement, positioning of sensors mounted on the system, experimental sites
and environmental monitoring (Muller et al. 2018). The current phenotyping plat-
form uses spectral imaging and sensor technologies in the form of ground wheels,
aerial vehicles and robotics, equipped with high-quality sensors, cameras and com-
puting devices (Fritsche-Neto and Borém 2015; Pratap et al. 2019). However, the
proper working of these platforms depends on a set of conditions. For example,
ground-based field phenotyping platform is unsuitable for large crops like maize
(Montes et al. 2011), and the use of aerial vehicles is a better alternative.

The phenotypic characterization of various plant parts (root, stem and leaves),
physiological processes (leaf water and chlorophyll contents) and detection of
abiotic stresses through canopy temperature measurement and stomatal conductance
have been successfully carried out through these modern imaging technologies
(Pratap et al. 2019). Morphological plant phenotyping is carried out at three levels
including plant and canopy scale in the fields, plant and organ scale and microscale
laboratory (Wang et al. 2019). Roots are important plant parts, and studies on root
variations are very important particularly for nutrient and water uptake. Root
architecture was conventionally studied through excavating roots followed by wash-
ing with water. It was very difficult to study the genetic control of roots due to
laborious root excavation processes. Following the roots, phenotyping seedling
vigor and shoot growth is another important study to quantify the genetic impact.
The estimation of genetic variations with respect to plant height, leaf area, canopy,
number and angle of branches in necessary for field conditions.

Light reflection from the leaves is related to the concentration of various pigments
in the leaves. Light reflection in visible light is associated with chlorophyll, lutein
and carotenoids in the palisade tissues. Meanwhile, light reflection in the range of
near-infrared band is used for cell composition (Yang et al. 2017). Yield prediction is
made in an indirect way like measuring canopy temperature, leaf chlorophyll and
nitrogen status and various growth and development indicators.

The collection of phenotypic data from field population is the first step, which is
followed by phenotypic extraction based on image analysis. The image is extracted
on the basis of geometry, texture, quantity and colour. The use of clustering
algorithm, support vector machines and neutral network are some important
techniques for image analysis of field-based phenotyping (Singh et al. 2016). The
conversion of image into quantitative data is relatively more tedious in field
phenotyping. The advanced non-destructive imaging techniques used in literature
for phenotyping plant traits are listed in Table 2.1.
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2.3 Experimental Designs

The details of randomization and layout Randomized Complete Block Design
(RCBD) for cotton genotypes are presented in Table 2.2. The historical weather
trends of the experimental site (at latitude 30�120N, longitude 71�280E and altitude
123 m a.s.l.) are given in Fig. 2.4. For modelling purposes, the meteorological data
(Tmax, Tmin, solar radiation and precipitation), soil data (texture, structure and
fertility profile) and crop management data (date and method of sowing, time,

Table 2.1 Description of a few examples of modern phenotypic techniques in crop sciences

Sr.
No. Crop Parameters Technique Reference

1 Rapeseed Biomass and
nitrogen

Laser-induced chlorophyll
florescence

Thoren and
Schmidhalter
(2009)

2 Maize Crosssection,
cortex and steel
studies

Laser Ablation Tomography (LAT) Burton et al.
(2012)

3 Sorghum Plant architecture,
height and stem
diameter

Phenobot 1.0 Fernandez
et al. (2017)

4 Sorghum Shoot height, leaf
area

Microsoft Kinect cameras McCormick
et al. (2016)

5 Maize Biomass Spectral reflectance sensors and
light curtains

Montes et al.
(2011)

6 Cotton Plant height,
canopy
temperature and
NDVI

Infrared thermometer, sonar
proximity sensor and multispectral
crop canopy sensor

Andrade-
Sanchez et al.
(2014)

7 Maize Water stress Thermography Romano et al.
(2011)

8 Grapevine Water status Near-infrared spectroscopy De Bei et al.
(2011)

9 Wheat Canopy
temperature

Airborne thermography Deery et al.
(2016)

10 Barley
and sugar
beet

Laser scanning Crop height Hoffmeister
et al. (2016)

Table 2.2 Randomized Complete Block Design (RCBD) for evaluation of the cotton genotypes
yield performance

R1 V1 V2 V3 V4
R2 V2 V3 V4 V1

R3 V4 V1 V2 V3

Note: No. of replications: 3; Plant-to-plant distance: 22.5 cm; Row-to-row distance: 75 cm; Net plot
size: 600 cm � 1000 cm; Plant population: 355
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amount and method of nutrient application and irrigation) would be required
(Ahmed et al. 2014, 2016, 2017, 2018, 2019; Ahmad et al. 2017, 2019. The time
to events like days to emergence, squaring, flowering and first boll split would
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Fig. 2.4 Historical seasonal weather data (Tmax, Tmin, rainfall and solar radiation) from
1999–2018 during cotton season at Multan, Pakistan
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describe the phenology data. The quantitative measurement of total dry matter, leaf
area index (LAI) and seedcotton yield will be made through destructive and
non-destructive means (Ahmad and Hasanuzzaman 2020). The plants are harvested
from field for destructive sampling and rows allocated for destructive sampling are
not used for yield measurement. In non-destructive samplings, advanced tools are
used, which have the ability to quantitatively measure the various traits in the field.
The non-destructive measurement of leaf area index of row crops is carried out with
allometric methods, AccuPAR, Li-cor’s LAI-2000 Plant Canopy Analyzer, Decagon
Devices and Delta T Devices’ SunScan. The Digital Vegetation Charting
Techniques (DVCT), visual obstruction and light penetration, terrestrial laser scan-
ning and attenuated total reflection (ATR)-fourier transform infrared (FTIR) spec-
troscopy are helpful for non-destructive biomass measurement. However, the
accuracy of non-destructive method often falls below the destructive measurement
because it provides estimated values.

2.4 Phenotyping Types

2.4.1 3D Laser Scanner

2D phenotyping systems lack the in-depth structural information and influence of
plant structure (Großkinsky et al. 2015). These are especially designed to record the
3D view of plant shoot and branching pattern to monitor the geometric development.
3D systems are applied for measurement of biomass and other morphological traits
in the field, while in a controlled environment, it is applicable for the measurement of
leaf angles and growth rates. The 3D measuring techniques are described by active
and passive sensors (Paulus 2019). Active sensors are light emitters and passive
sensors utilize the sunlight for recording phenotypic parameters. The time of flight
measurement and triangulation-based systems are categorized under active sensors,
and structure from motion and light field camera use passive sensors. Although 3D
imaging techniques are being used as important tools for phenotyping, they cannot
evaluate the hidden plant organs like roots, and their performance is negatively
affected by sunlight and plant movement. The detailed processes used in 3D
phenotyping are shown in Fig. 2.5.

2.4.2 X-Ray Tomography

It is a part of electromagnetic spectrum but uses short wavelength than ultraviolet
(UV) imaging. The tomography technique is used as a 3D phenotyping method, and
it is the best approach to investigate the internal plant structure for in vivo
phenotyping. Computerized tomography (CT) is being combined with other imaging
techniques to extend its utilization. For example, combining with inflorescence
imaging and positron emission tomography (PET) has been done for determining
the metal concentration in the tissue and to trace the positron-emitting
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radionucleotides, respectively (Punshon et al. 2013; Garbout et al. 2012). Tracing of
positron-emitting radionucleotides has been an important application for the quanti-
fication of real-time soil–plant interaction. Photoacoustic tomography (PAT) is used
for recording anatomical and functional readings of organelles to organs (Wang and
Hu 2012).

2.5 Phenomics

The term phenomics was derived from the word “phenome” indicating phenotype,
and the study of phenotype is referred as phenomics. Furthermore, Furbank and
Tester (2011) defined plant phenomics as the study of plant growth, performance and
composition. The systematic study of physical and biochemical traits of an organism
with the concerns of efficient measurement and analysis of the phenotypic traits at
various levels of organization (Houle et al. 2010). Therefore, it may be called as a
link between genomics and environment. Analogous to genomics, the concept of
phenomics was introduced by Nicholas Schork in 1997. The overall concept of
phenomics is given in Fig. 2.6. The importance of the phenomics can be judged by

Fig. 2.5 The detail of 3D phenotyping
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the fact that the phenotype of an organism is of great importance for agronomists as
well as biologists than the corresponding genotypes. There are two types of
phenomics i.e. forward phenomics and reverse phenomics. In the first type, the
germplasm is screened out for valuable traits, and in the second type, a detailed
dissection of these traits is performed to understand the mechanism and its exploita-
tion in new approaches. Fig. 2.7 represents the different steps of phenomics.

2.6 Plant Phenotyping Techniques

The following high-throughput field phenotyping techniques were proposed by
Chawade et al. (2019).

2.6.1 Satellite Imaging

Satellites are objects that revolve around other objects; moon is a satellite (natural
satellite) of the Earth (object). Medium-resolution satellite data is free, while high-
resolution data is provided commercially. High-resolution satellite imaging is
required for phenotyping for breeding because plots are relatively small. A few
examples of satellite imaging technologies are WorldView-3, WorldView-4, Digital
Globe WorldView-2 and CBERS-2. WorldView-3 is the most advanced form of

Fig. 2.6 Diagrammatic concept of phenomics
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satellite imaging with spatial sensor resolution of 0.31 m GSD (ground sample
distance) and multispectral resolution of 1.24 m (Chawade et al. 2019). Satellite
imaging is not very useful for phenotyping small plots, for which remote sensing and
proximal phenotyping are recommended. Satellite imaging is performed for
phenotyping large plots and multilocation trials. It has been applied for monitoring
growth (Nandibewoor et al. 2015) and vegetation height (Petroua et al. 2012). The
sensors have no direct contact with the object, and carry information from object to
sensors through physical career in intervening medium. The remote sensing data
ranges between visible and reflective infrared regions, hence reflectance from the
object determines the range of spectrum.

2.6.2 Unmanned Aerial Vehicles (UAVs)

These are flown at relatively low height, thus have least GSD and provide better
spatial, spectral and temporal resolution than satellite imaging. Hence, it provides
better trait identification, and chances of data losses due to clouds, smog and raining
are very rare (Su et al. 2019). There are four different types of UAVs, which include
parachute, blimps, rotocopter and fixed wing (Sankaran et al. 2015). Their respective
payload and flight time values are 1.5, >3.0, 0.8–8.0, 1.0–10 kg and 10–30, ~600,
8–120, 30–240 min. The parachutes and blimps are simple in operation but perfor-
mance is affected by winds, mainly due to light weight. The main advantages of
rotocopters are navigation facility, flying and carrying capacity of multiple sensors.
However, its battery and flight timing are limited by high payload. Just like
rotocopters, the fixed wings UAVs also have waypoint navigation systems, better

Fig. 2.7 Steps in plant phenomics
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flight and hold multiple sensors. At the same time, their working is limited by low
hovering capacity and high velocity. The technique was applied for measuring plant
height of sorghum and vegetation cover and leaf area index of wheat; strong
correlations were observed between UAVs and ground truth values (Shi et al. 2016).

2.6.3 Proximal Phenotyping

Phenotyping with ground-based vehicles equipped with sensor is referred to as
proximal phenotyping (Chawade et al. 2019). The sensors may be mounted on
vehicles or may be handheld. The handheld devices can evaluate small number of
plots, while sophisticated mobile vehicles should be used for phenotyping large
fields. Few examples of ground-based vehicles are Phenocart, Proximal sensing cart,
Phenomobiles, PhenoTrac 4 and GPhenoVision. These crafts or vehicles are advan-
tageous over the handheld devices because of their ability to move and evaluate
multiple traits over multiple rows in a single pass. The screening of cotton genotypes
for drought tolerance has been carried out through proximal sensing cart (Thompson
et al. 2018).

2.6.4 Thermography or Thermal Imaging

Thermography is basically a remote sensing technique that integrates canopy tem-
perature approach to make the selection process speedier for drought tolerance. It
records the surface temperature by evaluating the long-wave radiations which are
being emitted from the surface of the leaves. More infrared radiations are discharged
from the canopy of stressed plants due to low water content. The thermal camera is
highly temperature sensitive and detects minor fluctuations in temperature. It is
placed at a certain distance to record leaf information on large canopies. The leaves
temperature is used to measure transpiration rate because of their close association.
Hence, this technology is used for plant water status to monitor irrigation require-
ment and to detect drought tolerance trait in a population. The temperature
differences are indicated by variations of image colour. It was observed that the
image colour for maize was blue, light blue, green, yellow, red and light red at
25.7 �C, 27.0 �C, 29.0 �C, 30.5 �C, 32 �C and 33 �C, respectively (Siddiqui et al.
2019). The technique has been successfully applied to screen out salt-tolerant cereal
germplasm on the basis of variations in stomatal traits (Sirault et al. 2009). The
microclimate due to difference in plant density, variations in genotypes development
rate, radiations, wind speed and cloudy conditions may mislead the results.

2.7 Summary

Corresponding to genotypic, the phenotypic form of plant is more important for high
yield. The selection of germplasm based on phenotype has been of great interest for
breeders and farmers. Keeping in view the importance of the phenotyping, Tuberosa
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(2012) referred to phenotyping as “king” and heritability as “queen”. The modern
phenotyping techniques are based on image science and are used as non-destructive
tools for trait measurement. To extend the application of these techniques in the field,
high-throughput field phenotypic platform was designed and equipped with different
sensors. However, the type of sensors varies according to the trait of interest;
thermography is suitable for drought tolerance and x-ray tomography is used for
3D phenotyping and investigation of internal plant structure.
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Statistics and Modeling 3
Mukhtar Ahmed

Abstract

This chapter describes the application of statistical concepts with illustration
about statistical models, probability, normal distribution, and analysis of variance
(ANOVA). Statistical analysis is an important action process in research that
deals with data. It follows well-defined, systematic, and mathematical procedures
and rules. Data is information obtained to answer questions related to how much,
how many, how long, how fast and how related. Statistics main objective is the
analysis of data from generated experiment, but how should this data be collected
to address our research questions and what should be our experimental design?
Thus, in order to address question of interest clearly and efficiently, we need to
organize experiment accurately so that we can have right type and amount of data.
This is only possible using experimental design which has been elaborated in this
chapter. The designs discussed here are completely randomized design (CRD),
randomized complete block design (RCBD), Latin square design, nested and split
plot design, strip-plot/split-block design, and split-split plot design. Similarly,
factorial experiments have been discussed in detail with description about the
interaction. The concept about fractional factorial design, multivariate analysis of
variance (MANOVA), and analysis of covariance (ANCOVA) has been
presented. Principal component analysis which is the method of multivariate
statistics and used to check variation and patterns in a data set was also presented.
It is easy way to visualize and explore data. The relationship between one or more
variables to generate model which could be used for the prediction analysis has
been discussed using concept of regression. Finally, association between two or
more variables was presented using correlation. At the end different analytical
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tools/software were listed which can be used to do different kind of statistical
analysis.

Keywords

Statistics · Probability · Normal distribution · Analysis of variance · Experimental
designs · Factorial experiments · Regression · Correlation

3.1 Basic Statistics

Statistics is the science (pure and applied) dealing with creating, developing, and
applying techniques to evaluate uncertainty of inductive inferences. It helps to
answer the question about different hypothesis. It can model the role of chance in
our experiments in a quantitative way and gives estimates with errors. Propagation of
error in input values could also be determined by the statistics. History of statistics
goes back to the experience of gambling (seventeenth century) which leads to the
concept of probability. Afterwards concepts of normal curve/normal curve of error
were introduced. Charles Darwin (1809–1882) work was largely biostatistical in
nature. Karle Pearson (1857–1936) founded the journal Biometrika and school of
statistics. Pearson was mainly concerned with large data, and his student W. S.
Gosset (Pseudonym, Student) (1876–1937) presented Student’s t-test which is a
basic tool of statistician and experimenters throughout the globe. Genichi Taguchi
(1924–2012) promoted the use of experimental designs.

Observations in the form of numbers are very important to perform different kind
of statistical analysis. In case of crop production, observation can be phenology, leaf
area, crop biomass, and yield. These numbers then constitute data, and its common
characteristics include variability or variation. Variables may be quantitative or
qualitative. Observations on quantitative variables may be further classified as
discrete or continuous. Furthermore, probability of occurrence of value such as
blondeness may be measured by probability function or probability density function
(PDF). Chance and random variable terms are generally used for the variables
possessing PDF. Population is all possible values of a variable, while part of
population is called a sample. The concept of randomness is used to have true
representative data sample from the population. Collected data could be
characterized using tables, charts (pie chart, bars, etc.), and pictures (histogram).
Afterwards data are presented in frequency tables, and measure of central tendency is
used to locate center. This can help to find measure of spreading of the observation.
Mean or average (μ) is the most common method to use the measure of central
tendency. In case of dice, μ can be calculated by using following equation

μ ¼ 1þ 2þ 3þ 4þ 5þ 6
6

¼ 3
1
2

ð3:1Þ

If a sample is taken from the population having four observation, then Y (sample
mean) for the four observation (3, 5,7,9) is
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Y ¼ 3þ 5þ 7þ 9
4

¼ 6 ð3:2Þ

This can be further symbolized by

Y ¼ Y1 þ Y2 þ Y3 þ Y4

4
ð3:3Þ

where Y1 ¼ value of first observation, Y2 ¼ value of second observation, Y3¼ value
of third observation, and Y4¼ value of fourth observation. For the nth observations,
Yi is used to represent the ith observation and ̄Y is given by

Y ¼ Y1 þ Y2 þ Y3 þ Y4 þ . . .þ Yi þ . . . :þ Yn

n
ð3:4Þ

This equation can be further shortened to

Y ¼
Pn

i¼1Yi

n
ð3:5Þ

Difference between observations (Yi) and sample mean (YÞ is called sample
deviation (Yi� YÞ, and its sum is equal to zero

P
Yi � Y
� � ¼ 0.

For the different number of observations, it’s better to use weights that depend on
the number of observations in each mean called weighted mean. A weighted mean is
defined as follows:

Yw ¼
P

wiYiP
wi

ð3:6Þ

Another term supplement to the mean is median and it is value for which 50% of
the observations lie on each side. However, if values are even, then median is
average of the two middle values, e.g., 3, 6, 8, and 11 median is 7 (6 + 8)/2. If
data is nonsymmetrical in that case, mean and median could be different, and data
might be skewed in one direction; thus arithmetic mean may not be a good criteria to
measure central value. Mode (most frequent value) is another measure to calculate
central tendency. Central tendency provides summary about the data but does not
provide information about variation. Standard deviation or variance or square root
(Yi � μ)2 is used to measure variation or dispersion from the mean. It can be
represented by two symbols: (i) σ2 (sigma square for the population) and (ii) S2

(sample). Population variance is defined as sum of squared deviations divided with
total number, and it can be elaborated by the following equation if we intent to
sample this population with replacement:

σ2 ¼ Y1 � μð Þ2 þ Y2 � μð Þ2 þ Y3 � μð Þ2 þ . . .þ YN � μð Þ2
N

ð3:7Þ
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¼
P

i Y i � μð Þ2
N

ð3:8Þ

However, when sampling is without replacement, then divisor is N�1, and it
could be represented by the equation as follows:

S2 ¼ Y1 � μð Þ2 þ Y2 � μð Þ2 þ Y3 � μð Þ2 þ . . .þ YN � μð Þ2
N � 1

ð3:9Þ

¼
P

i Y i � μð Þ2
N � 1

ð3:10Þ

The sample variance/mean square can be computed by using following formulas:

s2 ¼ Y1 � Y
� �2 þ Y2 � Y

� �2 þ Y3 � Y
� �2 þ . . .þ YN � Y

� �2
n� 1

ð3:11Þ

s2 ¼
P

i Y i � Y
� �2
n� 1

ð3:12Þ

n� 1ð Þs2 ¼
X

i
Y i � Y
� �2 ð3:13Þ

s2 ¼ SS (sum of squares). For example, for the numbers 3, 5, 7, and 9, the SS is

3� 6ð Þ2 þ 5� 6ð Þ2 þ 7� 6ð Þ2 þ 9� 6ð Þ2 ¼ �3ð Þ2 þ �1ð Þ2 þ 1ð Þ2 þ 3ð Þ2
¼ 9þ 1þ 1þ 9 ¼ 20

The variance for this data set will be 20/3 ¼ 6.66, and the square root of the
sample variance is called the standard deviation (s). For the above example, it can be
calculated by the following method:

s ¼
ffiffiffiffiffi
20
3

r
¼ 2:58

Thus Eq. (3.12) can be represented as follows:

SS ¼
X

i
Y i � Y
� �2 ð3:14Þ

This Eq. (3.14) could be further modified to a computing formula as follow:

X
i
Y i � Y
� �2 ¼X

i

Yi
2 � P

i
Yið Þ2=n ð3:15Þ
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The term
P

i
Yið Þ2=n is called the correction factor (CF) or correction term or

adjustment for the mean. The Eq. (3.15) could be easily validated by using following
data set in the Table 3.1.

Thus, SS ¼Pi Y i � Y
� �2 ¼ 20 and by the

P
i
Y i

2 � P
i
Yið Þ2=n ¼ 164� 24ð Þ2

4 ¼
20 (Table 3.1). Another term which is generally used is called degree of freedom
(df) (number of values in the calculation that are free to vary), and it is equal to n�1.
The absolute mean deviation or average deviation is calculated as:

Average deviation or Absolute mean deviation ¼
P

i Y i � Y
�� ��
n

ð3:16Þ

The absolute mean deviation or average deviation for the values 3, 5, 7, and 9 is
2 as vertical bars tell us consider all deviations as positive. The variance of the
population σ2Y

� �
of Y can be calculated by the following equation:

σ2Y ¼ σ2

n
ð3:17Þ

However, σY for the population can be computed by the following expression:

σY ¼
ffiffiffiffiffi
σ2

n

r
ð3:18Þ

σY ¼ σffiffiffi
n

p ð3:19Þ

Standard deviation of sample mean is called standard error (SE). Variance for the
sample (s2YÞ can be calculated by the following equations:

s2Y ¼ s2

n
ð3:20Þ

SEY ¼
ffiffiffiffi
s2

n

r
ð3:21Þ

Table 3.1 Data set for the
validation of sum of squares
equation

Yi Yi
2 Yi � Y Yi � Y

�� �� Yi � Y
� �2

3 9 3–6 ¼ �3 3 9

5 25 5–6 ¼ �1 1 1

7 49 7–6 ¼ 1 1 1

9 81 9–6 ¼ 3 3 9

∑i: 24 164 0 8 20

Y 6
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SEY ¼ sffiffiffi
n

p ð3:22Þ

SE can be calculated by using following equation for the numbers 3, 5, 7, and 9 as
used above to calculate standard deviation.

SE ¼
ffiffiffiffi
s2

n

r
¼

ffiffiffiffiffiffiffiffiffi
6:66
4

r
¼

ffiffiffiffiffiffiffiffiffi
1:66

p
¼ 1:29

Variation can also be measured using coefficient of variability (CV) or relative
standard deviation (RSD) which is widely used as a well-known indicator as
described in Table 3.2. It is a measure of relative variability. It is the ratio of standard
deviation (σ) to the mean (μ) and can be calculated by the following expression:

coefficient of variation CVð Þ ¼ σ
μ

ð3:23Þ

Y ¼
P

Yi

5
¼ 7680

5
¼ 1536kg ha�1

s2 ¼
P

Yi
2 � P

Yið Þ2=5
4

¼ 12, 045, 400� 7680ð Þ2=5
4

¼ 62, 230

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62, 230

p
¼ 249:45kg ha�1

s2Y ¼ s2

5
¼ 62, 230

5
¼ 12, 446

SEY ¼
ffiffiffiffi
s2

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
62, 230

5
¼ 12, 446

r
¼ 111:56kg ha�1

CV ¼ 249:45
1536

� 100 ¼ 16%

Table 3.2 Example of the data set for the calculation of above concepts

Number of observations ¼ i Yield (kg ha�1) ¼ Yi Y¼ Mean Yi � Y

1 1500 1536 �36

2 1850 1536 314

3 1300 1536 �236

4 1730 1536 194

5 1300 1536 �236

Total 7680 508 �508
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3.2 Statistical Models

A model is an abstract representation of a system in a quantitative way. It is a way of
describing a real system in mathematical functions or diagrams. It can also be used to
represent the simplification in different process trying to represent biological
systems. A model can summarize factors affecting different process in a system.
Mathematical models use different notation and expressions from mathematics to
describe process, while statistical model is a mathematical model that allows
variability in the process. This variability might be due to the number of reasons
such as sampling, biological, and inaccuracies in measurements or due to the
influential variables being omitted from the model. Thus, statistical models have
potential to measure uncertainty associated with it. Statistical models come in the
category of empirical models where principle of correlation was used to build a
simple equation to describe relationship with different explanatory variables. Fur-
thermore, if the explanatory variables are in numbers (quantitative), they were
referred as variates, while if they are qualitative, then they were considered as factors
and distinct groups as factor levels. For example, qualitative trait height can be
classified as short, medium, or tall. Linear models are most importantly used
statistical model.

3.3 The Linear Additive Model

Natural phenomenon in science such as earth rotation could be explained by the
models. Linear additive model (LAM) is a commonly used model to describe the
observation which has mean and error. Assumption for the application of this model
includes that population of Y should be selected at random as well as errors are at
random. This model could be used to make inferences about population means and
variance. The simple LAM could be represented by the following equation:

Yi ¼ μþ εi

where μ ¼ mean and εi¼ sampling error.
The sampling error for the population having mean zero could be calculated by

the following procedure in which sample from the population is drawn in a random
manner. The steps include

Y ¼
P

iY i

n
¼
P

i μþ εið Þ
n

¼ μþ
P

iεi
n

For random sampling the equation will be ¼
P

i
εið Þ

n , and it is expected to be
smaller as sample size increases and positive and negative epsilon will cancel.
Generally variance of mean of large samples are usually small. Epsilon could be
calculated by using Yi � Y

� �
.

3 Statistics and Modeling 67



3.4 Probability

Probability is a numerical description of how likely an event is to occur or how likely
it is that a proposition is true. Probability is a number between 0 and 1, where
0 indicates impossibility and 1 indicates certainty. The best example for understand-
ing probability is flipping a coin: There are two possible outcomes—heads (H ) or
tails (T ). What’s the probability of the coin landing on heads? We can find out using
the equation

probability of head PH ¼ 1
2

or

Probability of an event ¼ number of ways it can happen
total number of outcomes

Similarly, in case of dice rolling, there are six different outcomes (1, 2, 3, 4, 5, and
6), and probability of getting a one will be:

P1 ¼ 1
6

The probability of getting 1 or 6 can be calculated by following way:

P1 or 6 ¼ 2
6
¼ 1

3

The probability of rolling an even number (2, 4, and 6) will be:

P2,4 or 6 ¼ 3
6
¼ 1

2

For many experiments there are only two possible outcomes, for example, a
tossed coin falls heads or tails or student fail or pass or plant could be tall or short.
Such outcomes are referred as binomial, and sample space will consist of two points
only. Thus, sample space is made up of sample points (represented with E and, if
event does not occur, represented with �E or Ē or Ɇ) as shown in the following
Fig. 3.1. Probability associated with each value of the random variable is called as

Fig. 3.1 Illustration of
sample space and sample
point
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binomial probability function or binomial distribution. Formula that can gives the
probability associated with each chance event e.g. for a fair coin if we consider Y¼ 0
for tail and Y ¼ 1 for head will be:

PY¼Yi ¼ 1
2
Yi ¼ 0 and 1

For tossing a fair dice, probability distribution would be:

PY¼Yi ¼ 1
6
Yi ¼ 1, 2, 3, 4, 5 and 6

Ten thousand random digit tables are a very large sample for a population, and
probability distribution for this table would be

PY¼Yi ¼ 1
10

Yi ¼ 0, 1, 2, 3, 4, 5 . . . 9

If we consider only odd and even numbers, then we can relate ten thousand
random digit tables with PY¼Yi ¼ 1

2 Yi ¼ 0 and 1, PY¼Yi ¼ 1
6Yi ¼ 1, 2, 3, 4, 5 and

6 and PY¼Yi ¼ 1
10Yi ¼ 0, 1, 2, 3, 4, 5. . .9, but it would not be binomial now, it will be

multinomial. Probabilities of binomial distribution in single statement can be
elaborated by generating single equation. Consider an experiment that contains
n independent trials. Let PE ¼ P1 ¼ p then P̄E ¼ P0 ¼ 1 � p as we know that
p ¼ number of successes

total number of events SuccessesþFailuresð Þ and probability of an event (Ei) lies between

0 and 1 0 � PEi � 1ð Þ and sum of the probabilities of events in a mutually exclusive

set is 1
P
i
PEi ¼ 1

 !
: Five tosses of coins could result in (0, 0, 1, 1, 0), that is, two

tails followed by two heads and final tail. Since trial is independent, thus probability
of this outcome can be found by multiplying probabilities in each stage, i.e., (1�p)
(1�p)pp(1�p) ¼ p2(1 � p)3. If p ¼ 0.5 then (0.5)5 ¼ 0.03125 or 3 % . The random
variable Y associates a unique value with each sample point, e.g., for sample vector
(0, 0, 1, 1, 0), we have Y ¼ 2, and there are possibilities of 10 sequences with Y ¼ 2.
Thus Y ¼ 2 is 10p2(1 � p)3. The equatin which can be used to calculate this value
directly will be:

n

Y

� �
¼ n!

Y ! n� Yð Þ!
where n! ¼ n factorial ¼ n(n�1)(n�2). . .0.1. Thus, for Y ¼ 2, i.e., two 1 s in n ¼ 5
trials, the equation would be:
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5

2

� �
¼ 5:4:3:2:1

2:1:3:2:1
¼ 10

One formula which can be used to count sample points with the same Y and one
that assigns probability to each sample point in the binomial probability distribution
can be represented as:

P Y ¼ Yijnð Þ ¼ n

Yi

� �
pYi 1� pð Þn�Yi (In this equation the probability that the

random variable Y takes the particular value Yi in a random experiment with n trials).
For the coin above illustration, this equation will be:

P Y ¼ 2j5ð Þ ¼ 5

2

� �
1
2

� 	2 1
2

� 	3
The mean and variance of a random variable with a binomial distribution could be

calculated by using following equations:

Mean : μ ¼ np

Variance : σ2 ¼ np 1� pð Þ

3.5 Normal Distribution

Normal distribution is the most important widely used probability distribution as it
fits with many natural processes such as heights, blood pressure, IQ score, and
measurement error. It is also called as bell curve or Gaussian distribution. It is a
standard reference for probability-related problems. The normal distribution has two
parameters, i.e., mean (μ) and standard deviation (σ) (Fig. 3.2). The characteristics of
normal distributions are as follows: (i) X lies between �1 and 1 (�1 � X �1);

(ii) symmetric; (iii) normal density function rule, f x; μ, σ2ð Þ ¼ 1ffiffiffiffiffiffiffi
2πσ2

p e� x�μð Þ2=2σ2 ;
(iv) 2/3 of the most cases lies with one σ of μ, i.e., P(μ�σ � X � μ + σ) ¼ 0.6826;
and (iv) 95% of cases lies two σ of μ, i.e., P(μ�2σ � X � μ + 2σ) ¼ 0.9544.

3.6 Comparison of Means

Statistical concepts are used everywhere in daily life, e.g., while purchasing honey
bottle from market, it may be labelled as 500 g, but to confirm this claim, we need to
take random sample from the population. We could report the probability of
obtaining a sample at least this uncommon if true mean is 500 g. This can be the
problem of hypothesis testing. In such cases testing is done by using Student’s t-test
or F-Test. If means are more than two, the analysis of variance (ANOVA) F-test is to

70 M. Ahmed



be used. Thus, sample size should be considered while selecting a test. Hypothesis
test and confidence interval (CI) are interlinked. The formula to apply Student’s t-test
is

t ¼ Y � μ
SY

t ¼ Y � μffiffi
s

n

q
t ¼ Y � μ

sffiffi
n

p

For the data having two means, t-test equation will be:

t ¼ Y1 � Y2

SY1
� SY2

where Y ¼ sample mean , s is the sample standard deviation, and n is the
sample size.

Consider a null hypothesis Ho : μ ¼ μo and alternative hypothesis H1 : μ 6¼ μo, if
t exceeds critical value t0.025, then Ho is rejected, but if null hypothesis is true and
still, it has been rejected and is called type I error. However, if H1 is true and we
accept Ho anyway, this type of error is called type II error.

Fig. 3.2 Normal distribution curve
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3.7 Analysis of Variance (ANOVA)

It is an undeniable fact that agronomic research resulted to the improved quality of
life and sustainability of the planet earth. The principles and procedures of analysis
of variance (ANOVA) have been considered as fundamental tools in all agronomic
research. ANOVA is an established statistical procedure that can be used to test the
hypothesis by partitioning the sources of variation (SOV), variance components
estimation, explanation and reduction of residual variation, and determination of the
significance of effects. ANOVA history of application in agronomic field research
and plant breeding trials goes back to the early twentieth century in which the main
goal of research work was to have a better understanding of the effects of treatments,
e.g., fertilizer, cultivars, planting dates, soil amendments, and their interactions.
Earlier, trials main focus was on yield and thus to have better scientific understand-
ing of the effects of treatments and guidance to the farmers; ANOVA was used
widely. ANOVA helped in the early twentieth century to have good credibility of
field agronomic trials. Furthermore, significant differences between treatment and
check plots could be evaluated by ANOVA; however, there were issues between
years as random effects of years could not be replicated (Loughin 2006). Fisher was
a pioneer in the introduction of ANOVA, and he applied this concept in the 1920s on
long-term wheat yield experiments (>half century) in response to the soil
amendments (Fisher 1921). Fisher used ANOVA to disentangle large variability in
average yield from other changes and evaluate significant difference between
treatments. The basis of ANOVA was described as the variance (mean σ of variate
from its mean thus square of its standard deviation) produced by all the causes at
once in an operation is the sum of the values produced by each cause individually.
Thus, with ANOVA we can partition the total variation into separate and indepen-
dent SOV. To implement ANOVA accurately, it is important that treatment plots
(experimental units) must be replicated and randomized. The basic assumptions to
apply ANOVA are (i) Treatments and environment effects are additive and
(ii) Experimental errors are random, independently and normally distributed about
zero mean and with a common variance. Fisher in his experimental design work
documented that the systematic arrangement of treatments resulted in the biased
estimates of treatment averages, overestimation, and underestimation of error varia-
tion and correlated errors. Thus, replication is needed to estimate experimental error
and randomization to have correct probability or level of significance. Generally,
ANOVA divides total variation into two independent sources: (i) variation among
treatments and (ii) variation within treatments (experimental error/residual error/error
mean square/error variance). After considering that data is normally and independently
distributed, F-ratio F ¼ variation between sample means=variation within the samples

� �
is used to test

the null hypothesis that treatment means are equal or not. One-way ANOVA
example could be best way to understand this ratio. Firstly, ANOVA was used for
the fixed effect models (Model I, specific treatments or level of treatments of interest)
but later used also for the random effect models (Model II). Afterwards it has been
proposed that ANOVA should also be used for the mixed effect models (both fixed
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and random treatment factors) (Gbur et al. 2012; West and Galecki 2012). The
importance of mixed effect models was shown in some of experiments where use of
fixed model instead of mixed models resulted to the misleading results (Acutis et al.
2012; Bolker et al. 2009; Moore and Dixon 2015; Yang 2010). Fisher’s ANOVA is
the most frequently used method to determine if differences among means are
significant or not. His preference was to declare significance when P � 0.05
(P value) by considering F table also. The components of ANOVA include sources
of variations (SOV), degrees of freedom, sum of squares, mean squares, F values,
and P values (Tables 3.3, 3.4 and 3.5). The ANOVA importance and applications in
different earlier work have been presented in Table 3.6. Meantime as Fisher was
working on his ANOVA framework, Neyman and Pearson presented the concept of
type of errors (type I (true null hypothesis rejection) and type II errors (failing to
reject false null hypothesis)) (McIntosh 2015).

3.7.1 Calculation of the F-Test

F-ratio calculation for one-way ANOVA is possible by using following equations
and is reported in the representative Table 3.7.

Table 3.3 One-way analysis of variance with equal replication

SOV df Sum of squares (SS) Mean squares (MS) F

Treatments t�1 r
P
i

Xi:� X::
� �2 ¼P

i

Xi
2

r � X2 ::
rt

SStreatments
dftreatments

MStreatments
MSerror

Error t(r�1) P
i, j

Xij � X:
� �2 SSerror

dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � X2 ::
rt

Table 3.4 Analysis of variance in randomized complete block

SOV df Sum of squares (SS)
Mean
squares (MS) F

Blocks r�1
t
P
j

X:j � X::
� �2 ¼

P
j

X2
:j

t � C

SSblocks
dfblocks

Treatments t�1 r
P
i

Xi:� X::
� �2 ¼P

i

Xi
2

r � C
SStreatments
dftreatments

MStreatments
MSerror

Error (r�1)
(t�1)

P
i, j

Xij � X:J � Xi:þ X::
� �2

¼SStotal � SSblocks � SStreatments

SSerror
dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � C
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Table 3.5 Analysis of variance for Latin square

SOV df Sum of squares (SS)

Mean
squares
(MS) F

Rows r�1
r
P
i

Xi:� X::
� �2 ¼

P
i

X2
i :

r � C

SSblocks
dfblocks

Columns r�1
r
P
j

X j:� X::
� �2 ¼

P
j

X2
j :

r � C

Treatments r�1 r
P
t

Xt � X::
� �2 ¼P

t

Xt
2

r � C
SStreatments
dftreatments

MStreatments
MSerror

Error (r�1)
(r�2)

P
i, j

Xij � Xi:� X: j � X X::
� �2

¼SStotal � SSblocks � SStreatments

SSerror
dferror

Total rt�1 P
i, j

Xij � X::
� �2 ¼P

i, j
Xij

2 � C

Table 3.6 ANOVA importance and applications in different earlier work

S.
no Applications References

1. Statistical guidelines for authors Nature Publishing Group
(2005) and (2013a, b)

2. Raising of data analysis standards McNutt (2014)

3. Improvement in the accuracy of the statistical analyses Acutis et al. (2012)

4. ANOVA is a commonly used technique, but selection of
factors as fixed or random can be complex

Bennington and Thayne
(1994)

5. Mixed model analysis Yang (2010)

6. Inclusion/exclusion of fixed by random effects in mixed
model

Blouin et al. (2011)

7. Analysis of combined experiments McIntosh (1983)

8. Combined experiment analysis Moore and Dixon (2015)

9. Choice of models Lencina et al. (2005)

10. Mixed models controversy Nelder (2008)

11. Accurate selection of analysis Nelder and Lane (1995)

12. Mixed models controversy Voss (1999)

13. Two-way factorial ANOVA with mixed effects and
interactions

Wang and DeVogel (2019)

14. ANOVA to show relationship between sources of
variation (SOV) and terms in the general linear model
(GLM)

Gomez and Gomez (1984)

15. Explanation of statistical ideas Mead (2017)

16. Tests of significance Snedecor (1942)

17. Application of statistics principles and procedures Steel and Torrie (1980)

18. SAS application in experimental design and analysis Lawson (2010)
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σ2 ¼
P

xi � xð Þ2
n� 1

where σ2 ¼ vraince, xi ¼ observation, x ¼ sample population mean, and n ¼
obsevtaion number.

Sum of squares (SS) in ANOVA is sum of the squared deviations of observation
from the mean. Total sum of squares (SST) can be calculated by using following
equation:

SST ¼
X

xij � x
� �2

where xij ¼ ith observation in the jth group. The formulae can be rewritten as:

SST ¼
X

xij � x
� �2 ¼X x2ij

� 	
�
P

xij
� �

n

2

The total SS between group (SSB) and within group (SSw) can be calculated by
using following equations:

SSB ¼
X

x j � x
� �2 ¼X

j

n j x j
2

� � ¼ P
xij

� �2
n

SSW ¼
X
j

X
i

xij � x j

� �2
Total SS in the model can be calculated by following equation which can be

further used to get SSw:

SST ¼ SSB þ SSW

SSW ¼ SSTT þ SSB

The mean square (MS) (mean of entire sample population or average squared
deviation of observation from grand mean) is calculated next which is sum of
squares (SST) by the total number of degrees of freedom (df) or n–1. The mean
square between groups (MSB) can be calculated by using following equation:

MSB ¼ SSB
dfB

Finally, R ratio is calculated by using following equation:

F ¼ MSB
MSW
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3.8 Experimental Design and Its Principles

New knowledge can be easily obtained by careful planning, analysis, and interpre-
tation of data. Designing of an efficient experiment needs consultation with statisti-
cian as they can help to have appropriate design which can enable researchers to
have unbiased estimates of treatment means and experimental error. An experiment
is planned inquiry to obtain new facts or to confirm earlier findings. Experiments are
generally designed to answer the questions or test the hypothesis. Before designing
an experiment, it is important that objectives of the experiment should be clear. The
unit of material or place where one application of treatment is applied is called
experimental unit or experimental plot. Variation is the characteristics of all experi-
mental material and experimental error is used to measure the variation among
experimental unit. Variation could be due to number of reasons. It can be due to
inherent variability or lack of uniformity in the physical conduction of experiment.
Replication is another important component of experimental design. The main
functions of replication are to (i) estimate experimental error, (ii) improve precision
of the experiment by minimizing standard deviation of treatments, (iii) control error
variance, and (iv) increase the scope of inference of the experiment. Error in the
experiments could be controlled by the selection of appropriate experimental design,
use of parallel observations, and choice of size and shape of the experimental units.
Furthermore, unbiased estimate of experimental error is possible by the application
of randomization.

3.8.1 Completely Randomized Design (CRD)

Completely randomized design is used when experimental units are homogeneous
and less to be gained by putting them into blocks due to similarity of response. For
example, variety trial in greenhouse will be subjected to CRD because of uniformity
of soil. Similarly, laboratory experiments where it’s easy to control variability and
experimental units are homogenous; CRD is used. The advantages of CRD are as
follows: number of replicates can vary from treatment to treatment, and loss of
information due to missing data is small. The precision of experiment is high due to
maximum degree of freedom (df) for estimating experimental error. In this design
treatments are assigned at random so that each experimental unit receives same
chance of getting treatment. The randomization procedure and layout for the pot
experiment having four treatments (A, B, C, and D) replicated four times have
following steps:

1. Determination of total number of plots or experimental unit (n): Determine the
total number of plots or experimental unit by multiplying treatments (t) with the
number of replications (R); n¼ Rt¼ 4� 4¼ 16. However, if replications are not
the same, then “n” can be calculated by getting sum of the replications of each
treatment.

2. Assigning of plot number
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3. Assigning of treatments into plots using random number method and further its
ranking as shown in the Table 3.8. Afterwards group number assigned based on
random number ranking (Table 3.9) and treatments was placed in the experimen-
tal units as shown in the layout (Fig. 3.3).

Table 3.8 Random ranking of experimental unit

Random number Experimental unit Ranking Treatments

0.07 1 4 A

0.842 2 15 B

0.502 3 10 C

0.174 4 5 D

0.426 5 8 A

0.699 6 14 B

0.926 7 16 C

0.039 8 2 D

0.244 9 6 A

0.663 10 13 B

0.045 11 3 C

0.305 12 7 D

0.503 13 11 A

0.429 14 9 B

0.583 15 12 C

0.025 16 1 D

Table 3.9 Group numbers
based on random numbers
ranking

Treatments Group number Ranks in the group

A 1 4 8 6 11

B 2 15 14 13 9

C 3 10 16 3 12

D 4 5 2 7 1

Fig. 3.3 A layout of
completely randomized
design with four treatments
(A, B, C, and D) replicated
four times
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In order to have ANOVA for the treatments mentioned in Table 3.10, we need to
obtain Xi. and

P
j
X2ij as mentioned in Table 3.10 (points 1 and 2). Afterwards each

treatment total is squared and divided by r¼ 5 to get Xi:ð Þ2=r named as treatments sum
of square. Correction factor (CF) is calculated afterwards by dividing total sum of
squares of all observations with total numbers (rt). The equation to calculate CF is:

CF ¼ X2::
rt

¼

P
i, j
Xij

 !2

rt
¼ 670:6ð Þ2

5ð Þ 6ð Þ ¼ 14, 990:15

SS totalð Þ ¼
X

i,j
X2ij� CF ¼ 16, 093:56� 14, 990:15 ¼ 1103:41

SS treatmentð Þ between or among groupsð Þ ¼ X21:þ � � � þ X2t:
r

� CF

¼ 148:1ð Þ2 þ 132:8ð Þ2 þ � � � þ 100:9ð Þ2
5

¼ 7, 788, 008:00
5

� 14, 990:15

¼ 15, 576:02� 14, 990:15

¼ 585:87

The sum of squares (SS) among individuals is called within group SS, residual
SS, error SS, or discrepancy SS, and it can be obtained by following equation:

SSerror ¼SSTotal � SSTreatment

¼1103:41� 585:87

¼517:54

The error SS (SSerror) can also be calculated by pooling the within treatments SS
as shown below:

SSerror ¼
X
i

X
j

X2ij� X2i:
r

 !

¼ 4593:45� 148:12

5

� �
þ 3623:34� 132:82

5

� �
þ 1980:28� 95:82

5

� �
þ 2406:37� 109:32

5

� �
þ 1435:61� 83:72

5

� �
þ 2054:51� 100:92

5

� �
¼517:54
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These generated numerical results are presented in an AONVA (Table 3.11), and
it shows that there is significant difference among treatments. The standard error of
treatment mean (SEXÞ and differences between treatment, CV, and least significance
difference (LSD) are calculated by using the following equations:

SEX ¼
ffiffiffiffi
s2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
21:56
5

r
mg ¼

ffiffiffiffiffiffiffiffiffiffiffi
4:312

p
¼ 2:07 mg

SEXi:�XiN: =

ffiffiffiffiffiffiffi
2s2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
43:12
5

r
¼

ffiffiffiffiffiffiffiffiffi
8:62

p
¼ 2:93 mg

CV Coefficient of variabilityð Þ ¼
ffiffiffiffiffi
S2

p

X
� 100 ¼

ffiffiffiffiffiffiffiffiffiffiffi
21:56

p
22:4

� 100 ¼ 4:64
22:4

� 100

¼ 20:7%

LSD ¼ tα=2SXi:�XiN: ¼ tα=2S

ffiffiffi
2
r

r
for equal rð Þ

LSD0:05 ¼ t0:025SXi:�XiN: ¼ 2:064

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼ 2:064

ffiffiffiffiffiffiffiffiffi
8:62

p
¼ 2:064� 2:93

¼ 6:06 mg

LSD0:01 ¼ t0:005SXi:�XiN: ¼ 2:797

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 21:56ð Þ

5

r
¼ 8:21 mg

Table 3.11 Analysis of variance for data of Table 3.10

SOV df SS

Mean
squares
(MS) Fcalulated Ftablulated

Among
treatments

6–1 ¼ 5 585.87 585:87
5

¼ 117.17

117:17
21:56 ¼ 5:43��

Since
Fcal > Ftab at 0.05 and 0.01
thus there are highly
significant (��) differences
among treatments

2.62
(0.05)
3.90
(0.01)

Error 6
(5–1) ¼ 24

517.54 517:54
24

¼ 21.56

Total (5)(6)�
1 ¼ 29

1103.41
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The observed differences are X1:� X2: ¼ 29.62–26.56 ¼ 3.06; X3:� X4: ¼
19.16–21.86 ¼ �2.7; and X5:� X6: ¼ 16.74–20.18 ¼ �3.44. Now rank the

means from the smallest to largest as shown below:

RTS1 RTS2 RTS3 RTS4 RTS5 Composite

29.62 (6) 26.56 (5) 19.16 (2) 21.86 (4) 16.74 (1) 20.18 (3)

Next is to calculate the difference and test significance level using LSD test at 5%.

6–1 ¼ 29.62–16.74 ¼ 12.88 > 6.06 ¼ significant
6–2 ¼ 29.62–19.16 ¼ 10.46 > 6.06 ¼ significant
6–3 ¼ 29.62–20.18 ¼ 9.44 > 6.06 ¼ significant
6–4 ¼ 29.62–21.86 ¼ 7.76 > 6.06 ¼ significant
6–5 ¼ 29.62–26.56 ¼ 3.06 < 6.06 ¼ nonsignificant
5–1 ¼ 26.56–16.74 ¼ 9.82 > 6.06 ¼ significant
5–2 ¼ 26.56–19.16 ¼ 7.4 > 6.06 ¼ significant
5–3 ¼ 26.56–20.18 ¼ 6.38 > 6.06 ¼ significant
5–4 ¼ 26.56–21.86 ¼ 4.70 < 6.06 ¼ nonsignificant
4–1 ¼ 21.86–16.74 ¼ 5.12 < 6.06 ¼ nonsignificant
4–2 ¼ 21.86–19.16 ¼ 2.70 < 6.06 ¼ nonsignificant
4–3 ¼ 21.86–20.18 ¼ 1.68 < 6.06 ¼ nonsignificant
3–1 ¼ 20.18–16.74 ¼ 3.44 < 6.06 ¼ nonsignificant
3–2 ¼ 20.18–19.16 ¼ 1.02 < 6.06 ¼ nonsignificant
2–1 ¼ 19.16–16.74 ¼ 2.42 < 6.06 ¼ nonsignificant

3.8.2 Randomized Complete Block Design (RCBD)

The randomized complete block design (RCBD) is one of the most widely used
designs in an agronomic field research. In this design experimental unit can be
meaningfully grouped, and number of units in a group is equal to the number of
treatments. These groups are called block or replication. The objective to have
groups in blocks is to minimize error and ensure that observed differences will be
due to treatments only. The RCBD has more advantages than the CRD due to
blocking and further randomization which results to the more precision. The main
purpose of blocking is to have higher accuracy by minimizing the experimental error
due to the known sources of variation (SOV) among the experimental units. Group-
ing is done in such a way that variability within each block is minimized, while
among block it is maximized. Variation within a block will be part of the experi-
mental error; thus blocking is most effective when experimental area has a predict-
able pattern of variability. An ideal known SOV which can be used as basis for the
blocking includes soil heterogeneity in nitrogen fertilizer experiments or varietal
trials at multiple sites or sowing date experiments.

82 M. Ahmed



Thus, basis of blocking depends on the main SOV. The size and shape of blocks
are selected in such a way so that there should be maximum variability among
blocks. To do blocking, firstly, identify the gradient and do blocking vertical to the
gradients, and if gradient occurs in two directions (one strong and other weak), then
consider that gradient which is stronger, e.g., in case of fertility gradient. If fertility
gradient is strong on both sides and perpendicular to each other, then use square
blocks and choose Latin square design as elaborated by Gomez and Gomez (1980).
Furthermore, whenever blocking is done, blocks identity and purpose should be
clear. Similarly, if SOV is beyond the control, then ensure that such variation occurs
among blocks as compared to within blocks. For example, in case of application of
herbicides or data collection which might not be possible to complete in one day. In
such scenario, it is recommended that it should be completed firstly for all plots of
the same block. In this way, variation due to collection of data by multiple observers
or application of treatments in more than one day becomes part of block variation
and excluded from the experimental error. Following steps should be followed to
design layout for RCBD.

1. Division of experimental area into “R” equal blocks (R ¼ replications). The
experimental area is divided into four blocks as shown in Fig. 3.4.

2. Subdivision of blocks into experimental plots based on number of treatments. For
example, here if we suppose there are six treatments, i.e. A, B, C, D, E, and F,
then divide each block into six subplots and assign each treatment into subplot
using the random numbers (Fig. 3.5).

3. Repetition of step 2 for the remaining blocks (Fig. 3.6).

Let’s apply the concept of RCBD on the data provided in Table 3.12 to generate
ANOVA table and see significant difference among different oil contents of different
canola cultivars. Step 1 includes arranging of raw data in ways as shown in
Table 3.4. Calculate ∑X2 and treatment (Xi.) and blocks (X.j) totals, i. e. ,

P
j
X2

ij;

i ¼ 1, 2. . .t, and
P
i
X2

ij; j ¼ 1, 2. . .r. Step 2 is to calculate sum of squares using

following formulas:

Fig. 3.4 Layout for the RCBD (division of experimental area into four blocks)
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Correction factor ¼ CF ¼ Y2
::

rt
¼ 1085:5ð Þ2

24
¼ 1085:5ð Þ2

24
¼ 1, 178, 310:25

24

¼ 49, 096:26

SStotal ¼
X
i, j

X2ij� CF

SStotal ¼ 49, 150:77� 49, 096:26 ¼ 54:51

SSblock ¼

P
j
Y2

:j

t
� CF

SSblock ¼ 269:8ð Þ2 þ 268:8ð Þ2 þ 274:2ð Þ2 þ 272:7ð Þ2
6

� 49, 096:26

Fig. 3.5 Subdivision of blocks into experimental plots based on number of treatments and
randomization of treatments (A, B, C, D, E, and F)

Fig. 3.6 A randomized layout for the RCBD (six treatments and four replications)
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SSblock ¼ 49, 099:4� 49, 096:26 ¼ 3:14

SStreatment ¼

P
i
Y2

i:

r
� CF

SStreatment ¼ 179:2ð Þ2 þ 176:0ð Þ2 þ 185:6ð Þ2 þ 174:8ð Þ2 þ 183:0ð Þ2 þ 186:9ð Þ2
4

� 49, 096:26

SStreatment ¼ 196, 511:70
4

� 49, 096:26

SStreatment ¼ 49, 127:91� 49, 096:26 ¼ 31:65

SSerror ¼ SStotal � SSblock � SStreatment

SSerror ¼ 54:51� 3:14� 31:65 ¼ 19:72

3.8.3 Missing Values Estimation

Sometimes due to poor germination or due to climatic conditions, etc., data might be
missing from the experimental unit. This missing data can be calculated by using
following equation:

y ¼ rBo þ tTo � Go

r � 1ð Þ t � 1ð Þ
where y ¼ missing value estimation; t ¼ number of treatments; r ¼ number of
replications; Bo ¼ replication total that contains missing value; To ¼ treatments total
that contains missing value; and Go ¼ total of all observed values.

3.8.4 Latin Square Design

Treatments are arranged in rows and columns in Latin square design. Treatments (t)
are repeated “t” times in such a way that t appear exactly one time in each column
and row and denoted by Roman characters, thus called as Latin square design. The
main purpose of this design is to reduce systematic error due to columns and rows
(treatments) (n� n). The advantage in the use of this design is in the field experiment
where two major SOVs exist, e.g., in case of soil difference in two directions, this
design will help to remove variation. The disadvantage of this design is that number
of rows, columns, and treatments should be equal. Latin square design for six
treatments, i.e., A, B, C, D, E, and F, will be like as shown in Fig. 3.7. Analysis of
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variance for an r � r (6 � 6) Latin square data set oil yield (kg ha�1) of canola
cultivars is given in Table 3.13. The calculation involves following steps:

1. Calculation of row totals (Xi.), column totals (X.j), treatment totals (Xt), and grand
total (Y..). Similarly, calculate

P
j
X2

ij and
P
i
X2

ij for each value of rows and

columns (Table 3.13).
2. Calculation of correction factor and sum of squares (SS):

CF ¼ X2::

r2
¼ 40, 380ð Þ2

62
¼ 452, 92, 900

SStotal ¼
X
i, j

X2
ij � CF ¼ 459, 82, 806� 452, 92, 900 ¼ 689, 906

SSrow ¼

P
i
X2

i:

r
� CF

¼ 6669ð Þ2 þ 6732ð Þ2 þ 6781ð Þ2 þ 6757ð Þ2 þ 6718ð Þ2 þ 6723ð Þ2
6

� 452, 92, 900 ¼ 452, 94, 108� 45, 292, 900 ¼ 1208

SScolumn ¼

P
j
X2

:j

r
� CF

¼ 6592ð Þ2 þ 6839ð Þ2 þ 6750ð Þ2 þ 6749ð Þ2 þ 6680ð Þ2 þ 6770ð Þ2
6

� 452, 92, 900 ¼ 452, 98, 864� 452, 92, 900 ¼ 5964

Fig. 3.7 Layout for Latin square design
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SStreatment ¼
P
t
X2

t

r
� CF

¼ 8049ð Þ2 þ 5772ð Þ2 þ 5905ð Þ2 þ 6876ð Þ2 þ 6322ð Þ2 þ 7456ð Þ2
6

� 452, 92, 900 ¼ 459, 68, 401� 452, 92, 900 ¼ 675, 501

SSerror ¼ SStotal � SSrow � SScolumn � SStreatment

¼ 689, 906� 1208� 5964� 675, 501 ¼ 7233

Standard error of treatment means ¼ SX ¼
ffiffiffiffiffi
S2

r

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
361:6
6

r
¼ 7:76 kg

Sample standard error of difference between two treatment means ¼ SXi�Xit

¼
ffiffiffiffiffiffiffi
2S2

r

r
¼

ffiffiffiffiffiffiffi
2S2

r

r
¼ 10:97 kg

3.8.5 Factorial Experiments

Factorial experiments consist of number of factors as treatment with all possible
combinations with different levels of equal importance. For example, an experiment
involves temperature as treatment (factor) will have different levels of temperature.
Similarly, if silicon (Si) fertilization is used as factor in pot experiment, several levels
will be used to evaluate the experiment. For example, if we use two sources of Si
(potassium silicate and sodium silicate) each at two different concentrations, it will
be referred as a 2 � 2 or 22 factorial experiment. The possible combinations of two
levels in each of the two factors will be four as shown in Table 3.14. Similarly, if Si
fertilization experiment is conducted by using only potassium silicate with its two
levels (no application as Si0 and 200 mg L�1 of potassium silicate as Si200) under

Table 3.14 2 � 2 or 22 factorial treatment combinations

Treatment combinations

Treatment number Source (factor A) Concentrations (factor B)
1 Potassium silicate 100 mg L�1

2 Potassium silicate 200 mg L�1

3 Sodium silicate 100 mg L�1

4 Sodium silicate 200 mg L�1

Treatment number Water regimes Concentrations
1 W+ Sio
2 W� Si200
3 W+ Sio
4 W� Si200
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two water regimes, i.e., with water (W+) and without water (W�), the design should
be factorial with 2 � 2 or 22 as shown in Table 3.14. In factorial experiment, term
level represents several treatments within any factor. The capital letters are used to
represent factors, while levels (treatment combinations and means) were represented
with small letters and numerical subscripts, e.g., a1b2 may refer to treatment combi-
nation consists of first level of A and second level of factor B with the mean of
corresponding treatment. The df and SS for the variance among four treatment
means in a 22 can be divided into single df and SS. Symbolic representation of
3 � 3 or 32 factorial treatment combinations has been shown in Table 3.15. The
principles involved in the partitioning can be elaborated by Table 3.16. The four
differences a2�a1 at each level of B and b2�b1 at each level of A are called simple

Table 3.15 Symbolic
representation of 3 � 3 or
32 factorial treatment
combinations

Factors A

B Levels a0 a1 a2
b0 a0b0 a1b0 a2b0
b1 a0b1 a1b1 a2b1
b2 a0b2 a1b2 a2b2

Table 3.16 Shoot dry weight (g) of sorghum plant under different silicon source as factor A and
silicon concentration as factor B to illustrate simple effects, main effects, and interactions

Factor A = Si source (case I)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 32.13 34.13 33.13 2

b2 38.13 44.13 41.13 6

Mean 35.13 39.13 37.13 4 (main effect)

b2�b1 (simple
effects)

6 10 8 (main
effect)

Factor A = Si source (case II)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 34.13 37.13 35.63 3

b2 43.13 33.13 38.13 �10

Mean 38.63 35.13 36.88 �3.5 (main
effect)

b2�b1 (simple
effects)

9 �4 2.5 (main
effect)

Factor A = Si source (case III)
B ¼ Si
concentrations

Level a1 a2 Mean a2�a1 (simple
effects)

b1 30.13 32.13 31.13 2

b2 38.13 40.13 39.13 2

Mean 34.13 36.13 35.13 2 (main effect)

b2�b1 (simple
effects)

8 8 8 (main
effect)
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effects. Average of simple effects is called main effect denoted by capital letters, e.g.,
A and B. The A and B for 22 factorial experiment can be calculated by using
following equations:

A ¼ 1
2

a2b2 � a1b2ð Þ þ a2b2 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a2b1ð Þ � a1b2 þ a1b1ð Þ½ �

B ¼ 1
2

a2b2 � a2b1ð Þ þ a1b2 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a1b2ð Þ � a2b1 þ a1b1ð Þ½ �

Main effects in factorial experiment are averaged in number of ways same as
other treatment. Different conditions might prevail within blocks and among blocks
for factorial experiment in RCBD, and Latin square design thus in Table 3.16 factor
A is replicated within every block as it is present at both levels for each level of factor
B. In case of factorially arrangement treatment, hypothesis that is usually tested is
“there is no interaction among factors.” Data presented in Table 3.16 have shown
that simple effects under I and II for Si sources (A) and concentrations (B) are
different, while for III the simple effects for A and B as well as main effect are the
same. The differential response obtained between the simple effects of a factor is
called interaction as seen in cases I and II of Table 3.16. However, interaction is not
present in case III of Table 3.16. This is the major advantage of application of
factorial experiment as it provides information about the interaction between factors.
The interaction of A and B can be defined by using following equations:

AB ¼ 1
2

a2b2 � a1b2ð Þ � a2b1 � a1b1ð Þ½ � ¼ 1
2

a2b2 þ a1b1ð Þ � a1b2 þ a2b1ð Þ½ �

The interaction for the data in Table 3.16:

AB ¼ 1
2

6� 2ð Þ ¼ 2 simple effects of A for Case Ið Þ

AB ¼ 1
2

10� 6ð Þ ¼ 2 simple effects of B for Case Ið Þ

The interaction for case II in Table 3.16:

AB ¼ 1
2

33:13� 43:13ð Þ � 37:13� 34:13ð Þ½ �

AB ¼ 1
2

33:13� 43:13� 37:13þ 34:13½ �

AB ¼ 1
2

�13½ �
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AB ¼ �6:5

The interaction for case III in Table 3.16:
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Fig. 3.8 Graphical
illustration of interaction
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AB ¼ 1
2

40:13� 38:13ð Þ � 32:13� 30:13ð Þ½ �

AB ¼ 1
2

40:13� 38:13� 32:13þ 30:13½ �

AB ¼ 1
2

0½ � ¼ 0 no intearctionð Þ

Interaction concept is further elaborated by using graph as shown in Fig. 3.8. It
should be noted that presence or absence of main effects does not tell anything about
interaction presences or absence and vice versa. If interaction is nonsignificant, we
can conclude that factors act independently. However, if interaction is large and
significant, then main effects have little meaning. For large factorial experiments, it
has been suggested to use confounded designs as described by Das and Giri (1979).

Factorial experiment other case includes e.g. if we have actor A as three locations
and factor B as Si fertilizer with two levels, while factor C consists of three sorghum
cultivars; such kind of factorial experiment will be referred as 3 � 2 � 3 or 32 � 2
(Table 3.17).

Table 3.17 Three factor (3 � 2 � 3 or 32 � 2) factorial experiments

Factor C (sorghum cultivars) Factor B (Si fertilizer)

Factor A (locations)

a1 a2 a3
c1 b1 a1b1c1 a2b1c1 a3b1c1

b2 a1b2c1 a2b2c1 a3b2c1
c2 b1 a1b1c2 a2b1c2 a3b1c2

b2 a1b2c2 a2b2c2 a3b2c2
c3 b1 a1b1c3 a2b1c3 a3b1c3

b2 a1b2c3 a2b2c3 a3b2c3

Table 3.18 Analysis of variance table for 32 � 2 factorial experiment in RCBD

SOV df SS MS F

Replication r�1 ¼ 2 61.65 30.83 8.96

A ¼ locations a�1 ¼ 2 687.75 343.88 99.96��
B ¼ Si fertilizer b�1 ¼ 1 149.25 149.25 43.39��
C ¼ sorghum cultivars c�1 ¼ 2 1438.93 719.46 209.15��
AB (a�1)(b�1) ¼ 2 2.47 1.24 0.36

AC (a�1)(c�1) ¼ 4 6.35 1.59 0.46

BC (b�1)(c�1) ¼ 2 1.38 0.69 0.20

ABC (a�1)(b�1)(c�1) ¼ 4 0.024 0.006 0.001744

Error (r�1)(abc�1) ¼ 34 116.98 3.44

Total abcr�1 ¼ 53 2464.78

** P < 0.05
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ANOVA calculation for the 3 � 3 � 2 or 32 � 2 factorial experiments involves
following steps with results presented in ANOVA Table 3.18:

1. Calculation of correction factor, total sum of square, block SS, treatment SS and
error SS

Correction factor ¼ CF ¼ X2
::

rabc
¼ 2903ð Þ2

54
¼ 156, 038:77

SStotal ¼
X
i, j, k, r

X2
ijkr � CF ¼ 158, 503:56� 156, 038:77 ¼ 2464:78

SSreplication ¼
Pr

k¼1R
2
k

abc
� CF

SSrepliaction ¼ 968ð Þ2 þ 983ð Þ2 þ 953ð Þ2
18

� 156, 038:77

¼ 156, 100:43� 156, 038:77 ¼ 61:65

SStreatment ¼
Pa

j¼1

Pb
k¼1

Pc
i¼1Tr

2
ijk

R
� CF

SStreatment ¼ 187ð Þ2 þ . . .þ 134ð Þ2
3

� 156, 038:77 ¼ 158, 324:90� 156, 038:77

¼ 2286:15

SSerror ¼ SStotal � SSrepliaction � SStreatment ¼ 2464:78� 61:65� 2286:15 ¼ 116:98

2. Partitioning of treatments sum of squares into main effects and interactions

SSA ¼

P
j

a j

� �2
rbc

� CF

SSA ¼ 1053ð Þ2 þ 952ð Þ2 þ 898ð Þ2
18

� 156, 038:77 ¼ 156, 726:5� 156, 038:77

¼ 687:75

SSB ¼

P
k

bkð Þ2

rac
� CF
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SSB ¼ 1406ð Þ2 þ 1496ð Þ2
27

� 156, 038:77 ¼ 156, 188� 156, 038:77 ¼ 149:25

SSC ¼

P
i

cið Þ2

rab
� CF

SSC ¼ 1067ð Þ2 þ 992ð Þ2 þ 843ð Þ2
18

� 156, 038:77 ¼ 157, 477:7� 156, 038:77

¼ 1438:93

SSAB ¼

P
j, k

a jbk
� �2
rc

� CF� SSA þ SSBð Þ

SSAB ¼ 509ð Þ2 þ 544ð Þ2 þ 462ð Þ2 þ 490ð Þ2 þ 435ð Þ2 þ 462ð Þ2
9

� 156, 038:77� 687:75� 149:25 ¼ 2:47

SSAC ¼

P
j, i

a jci
� �2
rb

� CF� SSA þ SSCð Þ

SSAC ¼ 387ð Þ2 þ 360ð Þ2 þ 306ð Þ2 þ 350ð Þ2 þ 326ð Þ2 þ 277ð Þ2 þ 330ð Þ2 þ 307ð Þ2 þ 261ð Þ2
6

� 156, 038:77� 687:75þ 1438:93ð Þ ¼ 6:35

SSBC ¼

P
k, i

bkcið Þ2

ra
� CF � SSB þ SSCð Þ

SSBC ¼ 517ð Þ2 þ 550ð Þ2 þ 481ð Þ2 þ 512ð Þ2 þ 409ð Þ2 þ 435ð Þ2
9

� 156, 038:77� 149:25þ 1438:93ð Þ ¼ 1:38

SSABC ¼

P
i, j, k

a jbkci
� �2
r

� CF� SSA � SSB � SSC � SSAB � SSAC � SSBC

SSABC ¼ 187ð Þ2 þ . . . 134ð Þ2
3

� 156, 038:77

� SSA þ SSB þ SSC þ SSAB þ SSAC þ SSBCð Þ

SSABC ¼ 187ð Þ2 þ . . . 134ð Þ2
3

� 156, 038:77� 2286:3 ¼ 0:024
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3.8.6 Fractional Factorial Design

Fractional factorial design is used when large number of factors needs to be tested. In
this case, only fraction of total number of treatments is going to be tested based upon
the systematic selection.

3.8.7 Nested and Split Plot Design

Nested and split plot experiments are multifactor experiments. Split plot design is
used for factorial experiment with a principle that whole plots are divided into
subplots or subunits. The factors which need more importance, greater precision,
and smaller experimental material and expected to exhibit smaller differences are
placed in the subunits. Consider an experiment to test factor A (nitrogen fertilizer) at
four levels of RCBD and second factor B (sorghum cultivars) at three levels which
can be placed by dividing each A units into subunits. Thus, layout for the split plot
includes factor A which will be in the main plot while factor B in the subplot as
shown in Fig. 3.9.

Layout design steps for the split plot includes (i) Division of experimental area
into three blocks or replication with further division into four main plots for the
nitrogen fertilizer application (ii) Two separate randomization is needed, firstly for
the main plot (N treatments) and then for the subplots (cultivars). Split plot design in
figure showed that size of the main plot is “c” times greater than subplot. Since in this
experiment c ¼ 3 (cultivars in subplot), thus the size of main plot is three times
greater than subplot. However, each main plot treatment is tested, e.g., 3 times, while
subplot treatment will be tested 12 times which leads to more precision in subplot
treatments as compared to the main plot. Partitioning of degree of freedom for the
split plot design under different arrangements has been presented in Table 3.19.

3.8.8 Strip Plot/Split-Block Design

Experiments in which both factors (e.g., A and B with multiple levels of a and b)
require larger plot area strip plot design are used. In this design, whole area is divided
into “a” horizontal and “b” vertical strips. One level of factor A is applied in

Fig. 3.9 Layout for the split plot design
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horizontal strips while level of B in vertical strips. Strip plot main difference from
split plot is to have second factor as strip.

3.8.9 Split-Split Plot Design

Split-split plot designs are applicable when there are three-factor factorial
experiments with factor A assign to whole plots while factor B to subplot and factor
C to sub-subplot. The ANOVA for split-split plot design with r blocks, a levels of
factor A, b levels of factor B, and c levels of factor C has been shown in Table 3.20.

Table 3.19 Degree of freedom for split plot design under different arrangements

Completely randomized
(r replications) RCBD Latin square

SOV df SOV df SOV df

Main unit or main plot

Rows a�1

Blocks r�1 Columns a�1

A a�1 A a�1 A a�1

Error (a) a(r�1) Error (a) (a�1)(r�1) Error (a) (a�1)(a�2)

Total ar�1 Total ar�1 Total a2–1

Subunit or subplot

B b�1 B b�1 B b�1

AB (a�1)(b�1) AB (a�1)(b�1) AB (a�1)(b�1)

Error (b) a(r�1)(b�1) Error (b) a(r�1)(b�1) Error (b) a(a�1)(b�1)

Subtotal ar(b�1) Subtotal ar(b�1) Subtotal a2(b�1)

Total abr�1 Total abr�1 Total a2b�1

Table 3.20 Analysis of
variance for split-split plot
design

SOV df

(Main plot)

Block r�1

Factor A a�1

Whole plot error (r�1)(a�1)

(Subplots)

Factor B b�1

A � B (a�1)(b�1)

Subplot error a(r�1)(b�1)

(Sub-subplots)

Factor C c�1

A � C (a�1)(c�1)

B � C (b�1)(c�1)

A � B � C (a�1)(b�1)(c�1)

Sub-subplot error ab(r�1)(c�1)

Total (rabc) �1
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3.8.10 MANOVA (Multivariate Analysis of Variance)

Multivariate analysis of variance (MANOVA) is ANOVA with several dependent
variables. It tests the difference in two or more vectors of means, e.g., evaluation of
student’s improvements in Physics and Chemistry using different syllabus. In this
case, response variable (students’ improvements) is altered by the observer manipu-
lation of the independent variables. The assumptions to use MANOVA are:

1. The dependent variable should be normally distributed.
2. Linear relationship among all pairs of dependent variables.
3. Homogeneity of variances.

3.9 ANCOVA (Analysis of Covariance)

Analysis of covariance (ANCOVA) uses concepts of both analysis of variance and
regression, and it is used when one independent variable is not at predetermined
level. The uses of ANCOVA includes (i) increase of precision and control of error,
(ii) estimation of missing data, (iii) adjustment of treatment means of dependent
variables for corresponding independent variables, (iv) assistance in the data inter-
pretation, and (v) partitioning of total covariance into parts.

3.10 Principal Component Analysis (PCA)

Principal component analysis is the method of multivariate statistics used to check
variation and patterns in a data set. It is an easy way to visualize and explore
data (Ahmed et al. 2020). Consider a data in two dimensions first (e.g., height and
weight). The data can be plotted using scatter plot, but if we want to see variation, we
must use PCA with new coordinate system. The axes don’t have any physical
meaning. Thus, PCA is a statistical procedure that uses orthogonal transformation
to convert set of observation of correlated variables into values of linearly uncorre-
lated variables. It is the most common form of factor analysis applied to analyze
interrelationship among variables (Fig. 3.10). The main objective of PCA is to
cluster variables into manageable groups. These groups are known as the
components (factors). Steps involved for the PCA are:

1. Standardization of the data z ¼ Variable value�Mean=Standard deviationð )
2. Computing the covariance matrix (identification of correlation and dependence

among features in a data set)
3. Eigenvectors and eigenvalues calculation
4. Commuting the principal components
5. Reducing the dimension of data set
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3.11 Regression

Consider a random sample of n observations in which Y values are determined from
the corresponding X values, i.e., (X1, Y1), (X2, Y2), (X3, Y3). . . . (Xn, Yn). In this case,
Y is a dependent variable while X is an independent variable. First descriptive
technique which can be used to determine the relationship between X and Y is the
scatter diagram. This diagram is drawn by plotting the X and Y in Cartesian
coordinates. The plotting pattern of points obtained between variables tells the
relationship which can be either linear or nonlinear (Fig. 3.11). If relationship is

Fig. 3.10 PCA flow diagram
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linear, then we need to fit model that fits with the given data. Mathematically, the
relation between X and Y can be elaborated by the following equation:

Y / X

This shows that there is relationship present between the two variables and drawn
straight line between the points can serve as moving average of the Y values. The
equation of straight line can be:

Y ¼ aþ bX

Any point (X, Y ) on this line has a X coordinate (abscissa) and a Y coordinate
(ordinate) whose values satisfy this equation. When X ¼ 0 or minimum, Y ¼ a
(intercept, value of Y X is minimum or zero). When intercept (a) is zero, the line
passes through the origin. A unit change in Y due to unit change in X is called slope
of the line and represented with b. Thus b¼ ΔY

ΔX ¼ Unit change in Y
Unit Change in X. If b is positive, both

values increase or decrease together, but if b is negative, then one value increases
while other decreases. This is an example of simple linear regression
equation (Ahmed et al. 2011). However, if we increase number of X variables called
as predictor variable (X1 to Xn) against Y, it will be called multiple linear regression.
The form of equation for the multiple linear regression will be:

Y ¼ aþ βoX1 þ β1X2 þ β2X3 þ . . . βnXn þ ε

where X1. . .Xn ¼ independent non-random variable; β0, β1, β2. . .βn ¼ slope; and
ε ¼ random varible represnting error term and genearlly equal to zero.

Let’s consider the data set presented in Table 3.21 to describe the method of least
square in order to fit a straight line and calculate simple regression equation and
coefficient of determination (R2). The calculation involves determination of SSxx,
SSxy, X, Y , and β1 as shown in the following equations:

SSxx ¼
Xn

i¼1
X2

i �
Pn

i¼1Xi

� �2
n

¼ 639� 45ð Þ2
10

¼ 436:5

Fig. 3.11 Scatter plot to show relationship between two variables X and Y

100 M. Ahmed



SSxy ¼
Xn

i¼1
XiYi �

Pn
i¼1Xi

� � Pn
i¼1Yi

� �
n

¼ 1060� 45ð Þ 55ð Þ
10

¼ 812:5

X ¼ 4:5 and Y ¼ 5:5:

β1 ¼ SSXX
SSX

¼ 812:5
436:5

¼ 1:86

and

Y ¼ aþ β1X

a ¼ Y � β1X ¼ 5:5� 1:86ð Þ 4:5ð Þ ¼ 5:5� 8:37 ¼ �2:87:

Hence simple regression equation for this data is:

Table 3.21 Data set to
illustrate method of least
squares to fit a straight line

Xi Yi XiYi Xi
2

�2 �7 14 4

0 �3 0 0

4 3 12 16

�4 �9 36 16

7 8 56 49

8 11 88 64

10 15 150 100

13 23 299 169

14 25 350 196

�5 �11 55 25

∑Xi¼45 ∑Yi¼55 ∑XiYi¼1060 ∑Xi
2¼639

Fig. 3.12 Simple linear
regression line with regression
equation and coefficient of
determination (R2)
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bY ¼ aþ β1X ¼ �2:87þ 1:86ð ÞX:
The plot for this least square line is shown in Fig. 3.12. The quality of this fit can

be measured quantitatively by using coefficient of determination (R2). The equation
for R2 calculation is:

R2 ¼ SSyy � SSerror
SSyy

¼ 1�
Pn
i¼1

yi � byið Þ2Pn
i¼1 yi � yð Þ2

SSerror ¼
Xn
i¼1

yi �byið Þ2 ¼
Xn
i¼1

yi � aþ β1Xð Þ2 ¼
Xn
i¼1

yi � a� β1Xð Þ2
 

Other approach which could be used to test hypothesis is use of ANOVA table as
presented in earlier section. The ANOVA table for regression analysis is presented in
Table 3.22. Furthermore, application of concept of multiple linear stepwise regres-
sion models has been elaborated using spring wheat grain yield data with respective
R2 (Table 3.23).

3.12 Correlation

Correlation is used to measure intensity or degree of association between variables.
It is the same as covariance. It is a bivariate statistical technique. The simple linear
correlation coefficient or simple correlation (total correlation and product-moment
correlation) is sued for descriptive purposes and can be calculated by using follow-
ing equations:

r=

P
X2Xð Þ Y2Yð Þ=n2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X2Xð Þ2=n2 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y2Yð Þ2=n2 1

q

Table 3.22 ANOVA table for simple regression

SOV df Sum of squares (SS) Mean squares (MS) F

Regression (model) 1
SSR ¼Pn

i¼1
byi � yð Þ2

SSR
dfR

MSR
MSerror

Error (residuals) n�2
SSE ¼Pn

i¼1
yi � byið Þ2

SSerror
dferror

Total n�1
SST ¼Pn

i¼1
yi � yð Þ2
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Table 3.23 Multiple linear stepwise regression models for spring wheat grain yield with environ-
mental variables (E¼ environments (2008–09 and 2009–10), PW¼ planting windows, SR1¼ solar
radiation at anthesis, SR1¼ solar radiation at maturity, T1¼mean average temperature at anthesis,
T2 ¼ mean average temperature at anthesis, PTQ1 ¼ photothermal quotient at anthesis,
PTQ2 ¼ photothermal quotient at maturity) using stepwise method developed to predict wheat
grain yield under changing climate

Regression models

GY = β0 + β1X1 R2

GY ¼ 4495.18–872.517�E 69.13

GY ¼ 4115.66–309.75�PW 69.28

GY ¼ �1516.48 + 3.95491�SR1 92.63

GY ¼ �1575.85 + 2.57179�SR2 93.43

GY ¼ 3284.76–5.97019�T1 51.02

GY ¼ 4542.37–57.863�T2 52.15

GY ¼ �3814.55 + 49.8777�PTQ1 87.77

GY ¼ �2582.32 + 31.8736�PTQ2 93.34

GY = β0 + β1X1 + β2X2 R2

GY ¼ 5424.43–872.517�E � 309.75�PW 87.41

GY ¼ �2440.37 + 224.118�E + 4.44915�SR1 93.18

GY ¼ �2366.93 + 193.912�E + 2.84192�SR2 93.86

GY ¼ 5196.35–901.852�E � 39.8932�T1 69.85

GY ¼ 1594.13–1225.4�E + 146.385�T2 73.54

GY ¼ �2465.19 � 302.166�E + 43.4934�PTQ1 89.34

GY ¼ �3268.13 + 149.999�E + 34.4196�PTQ2 93.61

GY ¼ �836.161 � 80.6277�PW + 3.5862�SR1 93.51

GY ¼ �820.636 � 92.5138�PW + 2.31383�SR2 94.63

GY ¼ 1995.01–443.928�PW + 153.171�T1 76.77

GY ¼ 5347.72–308.175�PW � 52.7775�T2 70.24

GY ¼ �3453.92 � 26.2988�PW + 47.8705�PTQ1 87.84

GY ¼ �2399.35 � 16.9782�PW + 31.144�PTQ2 93.38

GY ¼ �1667.97 + 1.65868�SR1 + 1.55638�SR2 94.14

GY ¼ �1241.88 + 3.96355�SR1–17.2937�T1 92.77

GY ¼ �4931.17 + 27.4934�SR1–519.678�T2 93.91

GY ¼ �1411.9 + 4.0845�SR1–1.84298�PTQ1 92.64

GY ¼ �2262.19 + 1.62354�SR1 + 19.4378�PTQ2 93.91

GY ¼ �945.844 + 2.61657�SR2–43.2789�T1 94.29

GY ¼ �2612.93 + 2.64662�SR2 + 38.3422�T2 93.90

GY ¼ �1808.8 + 2.39643�SR2 + 3.97299�PTQ1 93.46

GY ¼ �2133.2 + 1.35065�SR2 + 15.5732�PTQ2 93.97

GY ¼ 4550.48–0.599316�T1–57.7877�T2 52.15

GY ¼ �3680.6 � 8.23152�T1 + 49.8894�PTQ1 87.80

GY ¼ �2804.74 + 12.603�T1 + 31.9554�PTQ2 93.42

GY ¼ �4063.73 + 8.96602�T2 + 50.156�PTQ1 87.80

GY ¼ �4661.87 + 71.4527�T2 + 34.112�PTQ2 94.89

GY ¼ �2572.68 � 0.241837�PTQ1 + 32.0078�PTQ2 93.34

GY = β0 + β1X1 + β2X2 + β3X3 R2

(continued)
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Table 3.23 (continued)

Regression models

GY ¼ �1121.59 + 49.1956�E � 70.8354�PW + 3.73947�SR1 93.52

GY ¼ �740.097 � 14.575�E � 95.0961�PW + 2.28633�SR2 94.63

GY ¼ 3783.86–791.812�E � 405.893�PW + 109.752�T1 91.10

GY ¼ 2365.39–1246.31�E � 314.376�PW + 155.057�T2 92.36

GY ¼ 305.873–494.994�E � 139.285�PW + 28.7889�PTQ1 90.73

GY ¼ �4950.36 + 342.09�E + 74.6�PW + 40.8858�PTQ2 93.81

GY ¼ �2778.85 + 266.679�E + 2.0718�SR1 + 1.67498�SR2 94.90

GY ¼ �2210.96 + 209.746�E + 4.42281�SR1–10.7162�T1 93.23

GY ¼ �3512.62 + 0.220823�E + 4.23482�SR1 + 70.9633�T2 94.16

GY ¼ �1752.91 + 564.722�E + 7.79189�SR1–36.8568�PTQ1 94.12

GY ¼ �3220.65 + 230.332�E + 2.10348�SR1 + 19.6712�PTQ2 94.49

GY ¼ �1660.51 + 164.599�E + 2.8428�SR2–40.3133�T1 94.59

GY ¼ �2686.81 + 105.353�E + 2.7677�SR2 + 25.1835�T2 93.97

GY ¼ �2248.81 + 223.19�E + 3.06154�SR2–4.05167�PTQ1 93.88

GY ¼ �2985.38 + 203.511�E + 1.58608�SR2 + 16.1864�PTQ2 94.44

GY ¼ 2279.55–1352.58�E � 73.2781�T1 + 176.787�T2 75.78

GY ¼ �2050.44 � 322.027�E � 20.0369�T1 + 43.1024�PTQ1 89.52

GY ¼ �3836.52 + 190.605�E + 21.6873�T1 + 35.2497�PTQ2 93.81

GY ¼ �3818.53 � 545.453�E + 87.7865�T2 + 41.0788�PTQ1 90.87

GY ¼ �4546.3 � 96.9147�E + 82.7066�T2 + 32.8195�PTQ2 94.97

GY ¼ �3189.3 + 212.106�E � 9.10147�PTQ1 + 40.5279�PTQ2 93.72

GY ¼ �981.556 � 81.4573�PW + 1.27236�SR1 + 1.56575�SR2 95.03

GY ¼ �959.051 � 111.806�PW + 3.43148�SR1 + 24.3069�T1 93.65

GY ¼ �2758.03 � 61.055�PW + 3.92173�SR1 + 62.4805�T2 94.64

GY ¼ 881.792–127.627�PW + 5.00859�SR1–23.2851�PTQ1 94.09

GY ¼ �1734.58 � 43.2957�PW + 1.93291�SR1 + 15.2077�PTQ2 94.11

GY ¼ �772.826 � 75.9091�PW + 2.37316�SR2–12.596�T1 94.67

GY ¼ �1696.5 � 86.1818�PW + 2.39096�SR2 + 30.4708�T2 94.92

GY ¼ 365.25–128.985�PW + 2.88071�SR2–15.1477�PTQ1 94.97

GY ¼ �765.837 � 95.1082�PW + 2.38026�SR2–0.939409�PTQ2 94.63

GY ¼ 3529.35–449.248�PW + 161.654�T1–70.7574�T2 78.47

GY ¼ �3435.79 � 31.2956�PW + 3.09644�T1 + 47.4847�PTQ1 87.85

GY ¼ �2497.58 � 63.0856�PW + 33.7223�T1 + 29.3817�PTQ2 93.66

GY ¼ �3669.07 � 24.3883�PW + 6.79871�T2 + 48.2274�PTQ1 87.86

GY ¼ �4910.46 + 15.9228�PW + 74.0978�T2 + 34.879�PTQ2 94.92

GY ¼ �2318.27 � 18.7935�PW � 1.54335�PTQ1 + 31.923�PTQ2 93.38

GY ¼ �1128.05 + 1.28052�SR1 + 1.82477�SR2–35.6472�T1 94.68

GY ¼ �3287.84 + 2.29884�SR1 + 1.27881�SR2 + 58.5742�T2 95.13

GY ¼ �1166.99 + 2.14204�SR1 + 1.65779�SR2–9.00197�PTQ1 94.26

GY ¼ �1975.86 + 1.25311�SR1 + 1.08073�SR2 + 9.23233�PTQ2 94.29

GY ¼ �4391.49 + 1.78814�SR1 + 74.2775�T2 + 20.5039�PTQ2 95.58

GY ¼ �1715.88 + 2.1342�SR1–11.1793�PTQ1 + 21.734�PTQ2 94.10

GY ¼ �2132.17 + 2.71418�SR2–49.035�T1 + 46.9579�T2 94.98
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Table 3.23 (continued)

Regression models

GY ¼ �860.582 + 2.6733�SR2–44.0303�T1–1.2676�PTQ1 94.29

GY ¼ �987.816 + 2.5613�SR2–42.0901�T1 + 0.689252�PTQ2 94.29

GY ¼ �2736.16 + 2.53799�SR2 + 37.6309�T2 + 2.42991�PTQ1 93.91

GY ¼ �4176.79 + 0.754416�SR2 + 63.405�T2 + 24.7552�PTQ2 95.07

GY ¼ �2003.58 + 1.38361�SR2–2.97666�PTQ1 + 16.8284�PTQ2 93.99

GY ¼ �3948.13 � 9.1929�T1 + 10.189�T2 + 50.2071�PTQ1 87.84

GY ¼ �4766.43 + 7.30566�T1 + 70.6152�T2 + 34.1332�PTQ2 94.92

GY ¼ �4497.06 + 81.5281�T2–11.4913�PTQ1 + 40.8087�PTQ2 95.12

GY = β0 + β1X1 + β2X2 + β3X3 + β4X4 R2

GY ¼ �1717.12 + 125.93�E � 56.4191�PW + 1.58618�SR1 + 1.61888�SR2 95.12

GY ¼ �668.395 � 53.9363�E � 128.193�PW + 3.2354�SR1 + 28.713�T1 93.66

GY ¼ �1479.49 � 418.451�E � 132.643�PW + 2.81869�SR1 + 99.8435�T2 95.20

GY ¼ �117.991 + 382.545�E � 84.8503�PW + 7.21027�SR1–39.8168�PTQ1 94.61

GY ¼ �4412.45 + 362.263�E + 52.7493�PW + 2.00147�SR1 + 24.9586�PTQ2 94.59

GY ¼ �1029.59 + 50.4408�E � 59.3438�PW + 2.49561�SR2–18.383�T1 94.68

GY ¼ �818.424 � 375.193�E � 144.014�PW + 1.78818�SR2 + 72.0508�T2 95.36

GY ¼ 211.56 + 35.3623�E � 124.003�PW + 2.96738�SR2–15.6806�PTQ1 94.98

GY ¼ 17.1993–84.1002�E � 125.078�PW + 2.60741�SR2–6.39615�PTQ2 94.65

GY ¼ 1809.0–1117.23�E � 380.863�PW + 76.9233�T1 + 124.976�T2 93.99

GY ¼ 1727.51–626.402�E � 285.99�PW + 72.3236�T1 + 14.7125�PTQ1 91.54

GY ¼ �4499.41 + 276.811�E + 40.3019�PW + 12.304�T1 + 38.3838�PTQ2 93.83

GY ¼ �345.954 � 932.419�E � 203.84�PW + 125.59�T2 + 18.5194�PTQ1 93.55

GY ¼ �4041.76 � 179.645�E � 25.9982�PW + 87.9945�T2 + 30.4637�PTQ2 94.98

GY ¼ �5519.16 + 522.302�E + 105.491�PW � 14.7528�PTQ1 + 53.4642�PTQ2 94.07

GY ¼ �2201.79 + 233.107�E + 1.71356�SR1 + 1.87739�SR2–28.8663�T1 95.25

GY ¼ �3381.18 + 122.646�E + 2.32382�SR1 + 1.40491�SR2 + 43.4754�T2 95.23

GY ¼ �1594.43 + 1002.58�E + 7.31229�SR1 + 2.8626�SR2–76.3668�PTQ1 98.07

GY ¼ �3001.23 + 259.019�E + 1.72496�SR1 + 1.27873�SR2 + 7.62509�PTQ2 95.00

GY ¼ �2118.36 � 13.347�E + 2.69947�SR2–49.4896�T1 + 48.7048�T2 94.98

GY ¼ �1298.82 + 231.246�E + 3.36756�SR2–44.8499�T1–9.67945�PTQ1 94.74

GY ¼ �1996.51 + 173.71�E + 2.46492�SR2–31.7531�T1 + 4.86799�PTQ2 94.61

GY ¼ �3250.19 � 640.28�E � 41.8047�T1 + 107.051�T2 + 39.7331�PTQ1 91.58

GY ¼ �4587.11 � 89.3775�E + 2.22363�T1 + 81.5764�T2 + 32.9265�PTQ2 94.97

GY ¼ �4475.23 � 28.2616�E + 84.084�T2–10.6634�PTQ1 + 39.9494�PTQ2 95.12

GY ¼ �955.007 � 73.689�PW + 1.24475�SR1 + 1.61059�SR2–6.07485�T1 95.04

GY ¼ �2462.56 � 66.0303�PW + 1.87942�SR1 + 1.33248�SR2 + 48.8522�T2 95.69

GY ¼ 1674.45–155.41�PW + 2.88299�SR1 + 1.98577�SR2–36.528�PTQ1 96.35

GY ¼ �312.752 � 112.05�PW + 1.66867�SR1 + 2.20423�SR2–12.3245�PTQ2 95.17

GY ¼ �1843.34 � 44.634�PW + 2.55566�SR2–30.0858�T1 + 39.5518�T2 95.09

GY ¼ 363.669–128.524�PW + 2.88078�SR2–0.28732�T1–15.1136�PTQ1 94.97

GY ¼ �408.71 � 81.9211�PW + 2.81537�SR2–20.0906�T1–5.75433�PTQ2 94.69

GY ¼ �3670.93 � 24.1757�PW � 0.12556�T1 + 6.83431�T2 + 48.2449�PTQ1 87.86

GY ¼ �4874.7 + 10.215�PW + 3.72791�T1 + 72.7223�T2 + 34.6149�PTQ2 94.92
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Table 3.23 (continued)

Regression models

GY ¼ �4602.61 + 6.44894�PW + 82.3013�T2–11.1513�PTQ1 + 40.9213�PTQ2 95.12

GY ¼ �2789.6 + 1.91952�SR1 + 1.55887�SR2–39.4595�T1 + 62.1691�T2 95.80

GY ¼ �396.329 + 1.89706�SR1 + 1.98872�SR2–39.1942�T1–12.183�PTQ1 94.91

GY ¼ �480.841 + 1.59121�SR1 + 2.54324�SR2–53.3785�T1–11.3543�PTQ2 94.77

GY ¼ �1893.98 + 2.90465�SR2–51.719�T1 + 48.6524�T2–4.17775�PTQ1 95.01

GY ¼ �3391.81 + 1.46283�SR2–23.0213�T1 + 58.4869�T2 + 15.9022�PTQ2 95.16

GY ¼ �3981.32 + 0.791952�SR2 + 73.4787�T2–11.9459�PTQ1 + 31.2513�PTQ2 95.31

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 R2

GY ¼ �2348.68 + 258.764�E + 12.2235�PW + 1.76716�SR1 + 1.9187�SR2–
33.0254�T1

95.25

GY ¼ �1792.68 � 234.418�E �
105.354�PW + 1.58191�SR1 + 1.12343�SR2 + 71.9212�T2

95.84

GY ¼ �184.511 + 838.766�E � 73.2942�PW + 6.81694�SR1 + 2.82043�SR2–
78.3416�PTQ1

98.43

GY ¼ �289.506 � 2.53508�E � 112.94�PW + 1.66736�SR1 + 2.21121�SR2–
12.48�PTQ2

95.17

GY ¼ �2589.5 � 27.4556�PW + 1.85404�SR1 + 1.50077�SR2–
28.13�T1 + 57.0945�T2

95.84

GY ¼ 2202.57–231.216�PW + 3.51711�SR1 + 1.77738�SR2 + 43.6298�T1–
46.4137�PTQ1

96.65

GY ¼ 245.489–93.855�PW + 1.78851�SR1 + 2.83208�SR2–29.5739�T1–
20.2299�PTQ2

95.30

GY ¼ �746.366 � 94.1724�PW + 3.00058�SR2–17.8032�T1 + 36.8552�T2–
13.6174�PTQ1

95.34

GY ¼ �3009.02 � 20.8459�PW + 1.63506�SR2–
19.2907�T1 + 52.7591�T2 + 12.7727�PTQ2

95.18

GY ¼ �4266.05 � 32.9476�PW + 23.4955�T1 + 76.5957�T2–
15.1799�PTQ1 + 41.4392�PTQ2

95.21

GY ¼ �1819.0 + 3.50132�SR1 + 1.81621�SR2–48.6106�T1 + 85.463�T2–
26.5257�PTQ1

96.70

GY ¼ �3031.46 + 1.8465�SR1 + 1.33771�SR2–
34.3125�T1 + 64.033�T2 + 3.36904�PTQ2

95.80

GY ¼ �3461.14 + 1.27339�SR2–15.7506�T1 + 69.2434�T2–
10.9138�PTQ1 + 24.633�PTQ2

95.32

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 R2

GY ¼ �2115.22 � 148.483�E � 67.5486�PW + 1.67558�SR1 + 1.30211�SR2–
17.0565�T1 + 68.4621�T2

95.88

GY ¼ �517.057 + 898.256�E � 38.6623�PW + 6.85498�SR1 + 2.95882�SR2–
16.5802�T1–77.5504�PTQ1

98.47

GY ¼ �738.307 + 118.975�E � 48.5922�PW + 1.87334�SR1 + 2.62473�SR2–
35.251�T1–14.4497�PTQ2

95.32

GY ¼ �1178.05 + 899.602�E + 6.8455�SR1 + 2.96831�SR2–
31.9094�T1 + 13.5518�T2–74.1903�PTQ1

98.46

GY ¼ �3028.67 + 21.7114�E + 1.86749�SR1 + 1.38125�SR2–
34.1386�T1 + 61.0605�T2 + 2.95928�PTQ2

95.80
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r ¼
P

X � X
� �

Y � Y
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

X � X
� �2q P

Y � Y
� �2

Correlation coefficient ranges from +1 to �1. If r ¼ +1, then it shows positive
covariance, while if r ¼ �1, it means negative correlation, and if r ¼ 0, it means no
correlation at all. Correlation measures co-relation a joint property of two variables,
while regression deals with the change of one variable in relation to change of
another variable. In correlation, random pair of observation was obtained, while in
regression, only the dependent variable needs to be randomly and normally
distributed. The application of concept of correlation has been illustrated in
Fig. 3.13 (Ahmed 2011).

3.13 Analytical Tools/Software

Analytical tools which can be used for the statistical analysis are listed below:

1. R
2. SAS
3. Sigma plot

Table 3.23 (continued)

Regression models

GY ¼ �3486.29 + 92.9008�E + 1.41235�SR2–12.406�T1 + 59.2894�T2–
13.9926�PTQ1 + 25.9524�PTQ2

95.38

GY ¼ 594.397–
196.044�PW + 4.63831�SR1 + 1.66246�SR2 + 23.0033�T1 + 72.8577�T2–
53.4338�PTQ1

97.91

GY ¼ �2481.28 � 29.6402�PW + 1.8767�SR1 + 1.58055�SR2–
29.1928�T1 + 55.9794�T2–1.28573�PTQ2

95.84

GY ¼ �2227.94 � 68.9646�PW + 1.75248�SR2 + 0.0719391�T1 + 55.4433�T2–
16.1384�PTQ1 + 18.4592�PTQ2

95.50

GY ¼ �2930.65 + 3.35027�SR1 + 0.709417�SR2–23.3052�T1 + 98.4384�T2–
30.3258�PTQ1 + 17.4223�PTQ2

96.86

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 R2

GY ¼ �522.117 + 734.207�E � 62.8549�PW + 6.59519�SR1 + 2.7072�SR2–
12.0194�T1 + 22.7315�T2–74.0542�PTQ1

99.53

GY ¼ �1202.83 � 216.846�E � 100.018�PW + 1.73874�SR1 + 1.72226�SR2–
18.7737�T1 + 66.5448�T2–8.24543�PTQ2

96.90

GY ¼ 905.486–
202.513�PW + 4.70728�SR1 + 1.88784�SR2 + 20.0973�T1 + 69.7402�T2–
53.5304�PTQ1–3.62754�PTQ2

98.92

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8 R2

GY ¼ �3670.28 + 1097.09�E + 56.959�PW + 6.98681�SR1 + 1.34258�SR2–
5.07598�T1 + 23.9757�T2–83.4396�PTQ1 + 30.2752�PTQ2

99.78
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4. Stat graphics
5. Minitab
6. SPSS
7. MS Excel
8. MATLAB
9. GraphPad Prism

10. GenStat
11. SigmaStat
12. Stata
13. Statistica
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Dynamic Modeling 4
Mukhtar Ahmed, Muhammad Ali Raza, and Taimoor Hussain

Abstract

Dynamic modeling is a valuable technique used to understand different systems
on a temporal basis. This approach resulted in a more practical, intuitive endeavor
modeling. The main objective of this chapter is to elaborate on different modeling
approaches with more emphasis on dynamic modeling. Firstly mathematical
modeling was discussed and defined as the quantitative expression of the
biological system from the lower hierarchy to the higher. It is a description of a
system using mathematical concepts and language to facilitate the process of
explanation of a system. The mathematical model can be further classified into
static or dynamic, deterministic or stochastic, and continuous or discrete. A model
that uses large numbers of theoretical information to predict what happens at one
level by considering processes at lower levels of the system is known as mecha-
nistic models. In this book chapter, we present a general description of modeling
with a history of dynamic modeling from the eighteenth century to today.
Furthermore, the application of dynamic process-based crop growth model in
different fields of studies was discussed. Outcomes of the reviewed studies
confirmed that process-based dynamic crop simulation models are valuable
tools for the understanding of the system and giving options and solutions to
the what-if questions under different sets of scenarios and managements.
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Keywords

Dynamic modeling · Modeling approaches · Mathematical modeling · Static or
dynamic · Deterministic or stochastic · Continuous or discrete · Mechanistic
models

4.1 Introduction

Modeling is the mathematical expression of the biological system starting from the
lower to the higher hierarchy, e.g., cell, tissues, organ, organ system, and complete
plant as a system. However, the system can also be anything under observation that
could be soil organic carbon, soil water and temperature, nutrients, erosion, runoff,
and drainage, etc. A mathematical model is a description of a system using mathe-
matical concepts and language to facilitate the process of explanation of a system. It
can also be used to check the relationship between different variables. The relation-
ship can be linear, i.e., y ¼ a+bx, or it can be nonlinear. Mathematical concepts and
languages are used to describe all kinds of systems. It can be systems belonging to
the social sciences, engineering, natural sciences, and agricultural sciences. The
process of developing a mathematical model is called mathematical modeling
which can further help to solve different what-if scenarios. The typical mathematical
modeling process has been elaborated in Fig. 4.1. For example, how long the pasture
will last in a field depends on the numbers of cows. If there are nine cows, then it
might last for 3 days, and if there are three, it might last for 7. However, how long it
will last if there is only one cow? This can be a good example of a task for the
students to think mathematically and apply linear or nonlinear models to get answers
to the problem. Application tools like GeoGebra (https://www.geogebra.org/?

Fig. 4.1 Typical mathematical modeling process

112 M. Ahmed et al.

https://www.geogebra.org/?lang=en


lang¼en) have been mainly used to develop simple mathematical models and
proposed solutions to different issues. The interaction and linkage of modeling
with various components such as procedures, concepts, communication, relevance,
reasoning, and solution to the problem have been shown in Fig. 4.2.Thus a model
helps to explain systems under different sets of scenarios and give answers to the
issues.

Mathematical modeling has been used due to different reasons such as building a
scientific understanding through the quantitative expression of a system, testing of a
system through different variables, and aiding in decision-making powers of
policymakers. The mathematical model can be further classified into static or
dynamic, deterministic or stochastic, and continuous or discrete. Deterministic
models ignore random variation and all the time produce the same output (fixed
outputs against fixed inputs). A model that can predict the distribution of possible
outcomes is called stochastic (different outputs against fixed inputs by considering
random variation). The distinction between different types of models can also be
made by considering the hierarchy of organizational structures that have been used
to model the system (Fig. 4.3). A model that employs large numbers of theoretical
information to predict what happens at one level by considering processes at lower
levels of the system is called mechanistic models. These models consider a mecha-
nism to describe the changes occur at any level of the systems. However, in the case
of empirical models, mechanisms were not considered. These two-division models
(deterministic/stochastic and mechanistic/empirical) represent a wide range of model
types. Furthermore, two other methods of classification are complementary, e.g., a
deterministic model can be either be empirical or mechanistic but can never be

Fig. 4.2 Modeling
interaction and linkage with
different components
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stochastic as presented in Table 4.1. Further elaboration of the classification of
mathematical models has been displayed in Fig. 4.4.

Chew et al. (2014) reported that nowadays it is complementary to use mathemati-
cal modeling as a tool with experimental approaches to have a clear understanding of
different biological mechanisms from lower hierarchy to higher at different spatio-
temporal scale. Different time-based dynamic models have been used to elaborate
events at a wide range of biological levels. These models were able to answer

Fig. 4.3 Hierarchy of system

Table 4.1 Four briad categories of models

Deterministic Stochastic

Mechanistic Differential equation (Newtonian
mechanics based on planetary
motion)

Probabilistic equations

Empirical Regression relationship (Predicting
cattle growth with feed intake)

Analysis of variance (ANOVA) of crop
yields over sites, sowing dates and years

Fig. 4.4 Type of modeling
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specific biological questions and help to facilitate the investigation of several
phenomena in the plant system, e.g., light signaling and environmental responses.
Models could be classified into three categories: (i) molecular-level modeling, which
can be (a) oscillating system (time-dependent) and (b) non-oscillating system (time-
independent constant/steady state); (ii) cellular-level modeling; and (iii) phenology-
level modeling. The circadian clock (a sensor of time) is the best example of an
oscillating system, while activation of phytochrome by red light comes under the
non-oscillating system. Examples of circadian-regulated processes include hypo-
cotyl elongation, stomatal activity, photosynthetic rate, cold acclimation, signaling
of hormones, and starch turnover (Dodd et al. 2005; Dong et al. 2011; Graf et al.
2010; Keily et al. 2013; Nomoto et al. 2012). Similarly, the circadian clock enables
plants to recognize day length necessary to have flowering and complete reproduc-
tion in favorable climatic conditions. Thus, flowering is induced by photoperiod in
many species (Corbesier et al. 1996, 2007).

Models can help in the building, testing, and refining of the hypothesis. Roeder
et al. (2010) conducted a modeling study of cell growth and division with the
question of how cell size distribution in the sepal epidermis is regulated by
endoreduplication or endo-cycling (nuclear genome replication in the absence of
mitosis) patterns. The epidermal cell growth and development model was developed
with integration to the stochastic model of the cell cycle. This helps to switch
between endoreduplication and mitotic states. The model was able to generate
sepal epidermis with proper distribution of cell sizes, and its linkage with
endoreduplication observed patterns with the size of individual cells in tissues.
Finally, it provides a simple mechanistic explanation for the complex observed
phenotype. Peng et al. (2020) reported that prediction of manipulation of genotype
(G) and agronomic management (M) on agricultural ecosystem performances under
future environmental (E) conditions remains a challenge that can be solved by
process based modelling. They also suggested multiscale crop modelling framework
that can design gene to farm level resilient systems from regional to global scale.

Dupuy et al. (2010) used similar techniques to study the coupling of growth and
development to determine cell shape. Biomechanical modeling was further used by
Hamant et al. (2008) and Kierzkowski et al. (2012), in which they demonstrated how
cell growth is regulated by mechanical forces by using mathematical modeling of the
tissue mechanics. Similarly, modeling helps to connect tissue- and organ-level
phenomena to molecular mechanisms. Furthermore, there are models with a long
history that can stimulate growth and development at the organismal level. These
models have been used practically in the simulation of crop growth and develop-
ment. Simulation models can be a useful helping tool for crop management (Ahmed
et al. 2013; Asseng et al. 2019; Aslam et al. 2017a; Ahmed and Stockle 2016; van
Keulen and Asseng 2019). Nowadays, these models are trying to be merged with
genetics to have gene-based modeling, which will improve their predictive power.
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4.2 History of Dynamic Models

The history of the dynamic model goes back to the eighteenth century when
developmental events (e.g., flowering) in plants were modeled in relation to cumu-
lative daily temperature (Robertson 1968). A positive correlation between tempera-
ture and plant development was observed in this model, but later studies showed that
above a critical temperature, plant development is impaired (Summerfield et al.
1992). The photothermal time model concept was further introduced in crop
modeling after the discovery of photoperiodism (Brisson et al. 2003; Stöckle et al.
2003; Dingkuhn et al. 2008). Additionally, the concept of vernalization (winter
chilling) was incorporated in the thermal time models. Crop growth modeling was
further improved by Farquhar et al. (1980). They were able to simulate photosynthe-
sis by considering kinetic details of light-dependent and light-independent reactions.
A number of key events and drivers that led to the development of a dynamic
agricultural systems model have been presented in Table 4.2 (Jones et al. 2017).

4.3 Examples of Dynamic Agricultural Systems Models

4.3.1 AquaCrop

AquaCrop is developed by the Food and Agriculture Organization (FAO) to simu-
late the effect of management and environment on crop production under conditions
where water is the limiting factor (Fig. 4.5). Zeleke (2019) calibrated and validated
AquaCrop for faba bean under supplemental irrigation, sowing time, and sowing rate
and concluded that this model could be used as a decision support tool for different
agronomic managements. Drought frequency and severity are increasing day by day,
and there is dire need to determine water productivity and total evaporation (ET).
This will help manage water resource in an effective way. Mbangiwa et al. (2019)
used the FAO AquaCrop model to measure water productivity and ET for soybean
(Glycine max L.) crop. Application of AquaCrop for cotton production under film-
mulched drip irrigation in salt-affected soil was conducted by Tan et al. (2018) using
a 4-year dataset. One-year data was used for model calibration, while the remaining
3 years of data was used for validation. The model was able to simulate canopy
cover, soil water content, and dry matter with good accuracy. Thus this model can be
a good tool to simulate cotton growth under film-mulched drip irrigation. The
irrigation schedule for good crop production can be designed by the use of the
AquaCrop model. Ran et al. (2018) conducted maize simulation under plastic film-
mulch using default parameters initially. Afterward, model parameters which
include soil water content, canopy cover, biomass, and yield were parameterized
using field data. The results showed that the parameterized model was better
compared to the default model. However, model behavior was very sensitive to
water stress conditions. Traditional leafy vegetables (TLV) are a good source of
nutrients to combat micronutrient deficiency, but they are not utilized properly due to
lack of information related to TLV water and fertilizer management. Nyathi et al.
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Table 4.2 Historical prospective of dynamic models in the agricultural systems

S.
No Year Event References

1. 1940–50 Computational analysis of soil and
plant process for the optimization of
plant soil system research

de Wit (1958), van Bavel (1953)

2. 1940–50 Dairy cattle nutritional requirement
and modeling animal response to
nutrients

NRC (1945)

3. 1950–70 Policy analysis of rural development
by modeling agricultural production
through linear programming methods

Heady and students at Iowa State
University

4. 1960–70 Soil-water balance modeling
(WATBAL)

Slatyer (1960, 1964), Keig and
McAlpine (1969), Ritchie (1972),
McCown (1973)

5. 1964–74 Development of grassland ecosystem
models by International Biological
Program

–

6. 1965 Europe feeding systems models ARC (Agricultural Research Council
(Great Britain)) (1965)

7. 1965–70 Development of photosynthesis and
growth models

de Wit (1958, 1965), de Wit et al.
(1970, 1978), Duncan et al. (1967)

8. 1969–75 Cotton models by Cotton Systems
Analysis Project

Jones et al. (1974, 1980), Stapleton
et al. (1974), Baker et al. (1983)

9. 1970 Development of insect and disease
models through Integrated Pest
Management (IPM) Project

–

10. 1971 Biological System Simulation Group
(BSSG)

–

11. 1970–80 Herd dynamics simulation models IADB (Inter-American Development
Bank) (1975), Konandreas and
Anderson (1982)

12. 1970 Modeling predator-prey, host-
disease interactions

May (1976)

13. 1972–74 Crop forecasts through crop models
and remote sensing

Pinter Jr et al. (2003)

14. 1974–78 Agro-ecological zoning (AEZ) for
land evaluation on a global basis by
FAO

Higgins et al. (1978)

15. 1975–82 First crop and pest model in the
hands of Australian farmers for
decision support by the Australian
cotton modeling

CSIRO (1980)

16. 1975–82 SOYGRO and GLYCIM (soybean
models)

Wilkerson et al. (1983), Acock et al.
(1985)

17. 1976 Agricultural system journal to
publish about agricultural systems
modeling

Spedding (1976)

(continued)
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Table 4.2 (continued)

S.
No Year Event References

18. 1979 Feed degradability in the rumen by
dacron bag technique (Animal
Model)

Orskov and McDonald (1979)

19. 1980 EPIC (Environmental Policy
Integrated Climate) model to predict
impacts of soil erosion on crop
productivity

Williams et al. (1984)

20. 1981 First soil nitrogen (N) model Seligman and Keulen (1980)

21. 1982–86 CERES (maize and wheat) and GRO
(SOYGRO and PNUTGRO) models

Boote et al. (1986)

22. 1980–90 Pasture modeling (Hurley and the
SAVANNA models)

Johnson and Thornley (1983),
Coughenour et al. (1984)

23. 1983–93 USAID-funded IBSNAT
(International Benchmark Sites
Network for Agrotechnology
Transfer) project and development of
DSSAT

IBSNAT (1984), Uehara and Tsuji
(1998)

24. 1991 ORYZA dynamic rice model Penning de Vries et al. (1991)

25. 1985–92 APSIM (Agricultural Production
Systems Simulator) evolution

McCown et al. (1992), Keating et al.
(1991)

26. 1986 IGBP (International Geosphere-
Biosphere Program) by the ICSU
(International Council for Science)
about ecosystem modeling to give
attention to the planet under pressure

–

27. 1990 Application of carbon dynamics and
economic models for assessing
impacts of climate change on
agriculture (Intergovernmental Panel
on Climate Change (IPCC) First
Assessment Report)

IPCC (1990)

28. 1990–
continue

Livestock systems model integration Herrero et al. (1996), Freer et al.
(1997)

29. 1990–94 First modeling work about potential
climate change global impacts on
agricultural systems

Rosenzweig and Parry (1994)

30. 1991–
continue

Development of APSRU
(Agricultural Production Systems
Research Unit) for agricultural
systems modeling

Keating et al. (2003), Holzworth
et al. (2014)

31. 1992 Model-based scenario analysis Netherlands Scientific Council for
Government Policy (1992)

32. 1992 CNCPS (Cornell Net Carbohydrate
and Protein System) dynamic model
of digestion in ruminants

Russell et al. (1992)

33. 1993–11 ICASA (International Consortium
for Agricultural Systems

Hunt et al. (1994), White et al.
(2013)

(continued)
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(2018) used the AquaCrop model to better assess TLV response to water stress. The
model was able to simulate soil water content, canopy cover, biomass, actual
evapotranspiration, and water productivity with good accuracy under well-watered
treatment as compared to the water-stressed treatment. Similarly, the authors pointed
out that it was cumbersome to run each harvest separately as the model was unable to
do sequential harvests run at one time. Thus they suggested that vegetables should be
included in the model with the facility of subsequent harvesting.

Table 4.2 (continued)

S.
No Year Event References

Applications) consortium to help
crop modelers to develop standards
for input data for crop models. This
leads to the ICASA data dictionary
and data standards used nowadays in
AgMIP project.

34. 1998 Open-source software availability
(e.g., APSIM and DSSAT)

–

35. 1999 Projected growth of livestock sector Delgado (1999)

36. 1990–10 Crop modeling and breeding White and Hoogenboom (1996),
Hoogenboom and White (2003),
Hammer et al. (2006), Messina
et al. (2006).

37. 2001–03 Special session on modeling
cropping systems by the European
Society for Agronomy. published in
the European Journal of Agronomy

–

38. 2006 Modeling CO2 effects in crop model Long et al. (2006)

39. 2005–09 SEAMLESS (System for
Environmental and Agricultural
Modeling: Linking European
Science and Society)

–

40. 2005–10 GCMs (general circulation models) Challinor et al. (2004)

41. 2006 Livestock footprint Steinfeld et al. (2006)

42. 2005–
contiue

Global livestock models Bouwman et al. (2005), FAO (2013),
Havlík et al. (2014), Herrero et al.
(2013)

43. 2010–
continue

The AgMIP (Agricultural Model
Intercomparison and Improvement
Project)

Asseng et al. (2013), Rosenzweig
et al. (2013, 2014),

44. 2010–
continue

Private sector in agricultural system
models and public-private
collaborations

–

45. 2010–
continue

Developments of new ICT tools
(e.g., UAVs for agricultural
management, smart phones app
stores, cloud and mobile computing)

–
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Potato (Solanum tuberosum L.), a crop highly sensitive to water stress, ranks 4th
in production across the globe after rice, wheat, and maize. The effect of water stress
on potato production could be minimized by the implementation of irrigation
management strategies through crop modeling.

Razzaghi et al. (2017) used the AquaCrop model to simulate potato soil water
content, dry matter, and yield under different water stress regimes. Treatments
include If (full irrigated), Id (deficit irrigated), and I0 (not irrigated). Complete
irrigated treatment data in 2014 was used for model calibration, while 3 years of
data from 2013–2015 for all treatments (If, Id, and I0) was used for model validation.
The sensitivity analysis results showed that specific parameters such as KcTr, HI0,
CCX, calendar day from sowing to start of senescence, and WP have a significant
effect on tuber yield. The model was able to predict results with good accuracy but
not performed well under I0. Groundnut (Arachis hypogaea L.) canopy cover (CC),
biomass, yield, and evapotranspiration (ET) were simulated for water stress
conditions after calibration of AquaCrop by Chibarabada et al. (2020). The model
was able to simulate CC, biomass, yield, and ET with good accuracy. Thus
AquaCrop can be a useful tool to support a decision on when and how much to
irrigate. Further details about the AquaCrop model are available at www.fao.org/
aquacrop.

Fig. 4.5 AquaCrop four-step working mechanism. (Source: Foster et al. 2017)
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4.3.2 APSIM Next Generation

Agricultural Production Systems Simulator (APSIM) has grown from a farming
system framework to a collection of models with a large number of users across the
globe. APSIM is the top cited model among other crop models, as shown in Fig. 4.6.
APSIM consists of 100–1000 lines of codes and runs in 6 different programming
languages. In order to meet new computing challenges, APSIM Initiative developed
APSIM Next Gen (APSIM 7.x Framework). It is a new modern rewrite of APSIM.
The aim behind the development of APSIM Next Generation is to have a model that
can run faster on multiple operating systems and under multiple spatiotemporal
scales (Holzworth et al. 2018). APSIM Next Generation has a range of tools in a
single-user interface to help modelers. It ensures model reliability and accessibility
with updates as it uses a modern control system. Brown et al. (2018) used the APSIM
Next Generation wheat model as a case study to describe the model development
process. Simulation models (CLEM, barley, chicory, controlled environment, euca-
lyptus, EucalyptusRotation, factorial, fodder beet, maize, oats, oil palm, plantain,
potato, red clover, SCRUM, SLURP, sugarcane, wheat, and white clover) available
yet in the APSIM Next Generation have been shown in Fig. 4.7. Further details about
APSIM Next Generation usage, development, and documentation are available at
https://apsimnextgeneration.netlify.com/.

4.3.3 APSIM (Agricultural Production Systems Simulator)

APSIM is one of the well-known modeling frameworks to model crop and pasture
production, cropping systems, decomposition of residues, soil water and nutrient
dynamics, agronomic management, and climate change impact assessments (Osman
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et al. 2020; Ijaz et al. 2017). The model was well elaborated by McCown et al.
(1996) and tested by Meinke et al. (1998a, b). System components of APSIM
include atmosphere, plant, soil, and management as shown in Fig. 4.8. Furthermore,
its working mechanism has been elaborated in Fig. 4.9, and key features of APSIM
have been displayed in Table 4.3. APSIM is a powerful tool for agricultural system
research such as crop rotation, intercropping, farming systems, tree windbreak, crop-
weed associations, genetic trait identification, seasonal climate forecasting, drought
policy formation, environmental impacts, and on-farm trial analyses (Schepen et al.

Fig. 4.7 Overview of APSIM Next Generation
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2020; Xin and Tao 2019). The main application of APSIM in different fields has
been reviewed and presented in Table 4.4.

4.3.4 CropSyst

CropSyst is a comprehensive cropping system model that can analyze management
practices of water and nitrogen on a wide range of crops. CropSyst’s ability to
simulate ET, crop N content, leaf area, biomass, and grain yield was tested in a
Mediterranean type of environment by Stockle et al. (1994). The results showed that
the model was able to simulate these parameters with good accuracy. Pala et al.
(1996) evaluated CropSyst to simulate water and nitrogen use, growth, and yield of
wheat. Crop coefficients related to the crop growth named as growth parameters

Fig. 4.9 APSIM -System Components

Table 4.3 Key features of APSIM (Source: APSIM)

Key features

Soil Availability and dynamics of water and nutrients

Plant Growth and development of crops, seeds, trees

Weather Changes of radiation, temperature, rainfall, CO2

Management Tillage, sowing, irrigation, fertilization

Residue Decomposition of crop residues

Erosion Soil loss through erosion
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Table 4.4 Application of APSIM in different fields

S. no Research applications References

1. Modeling forage chicory Cichota et al. (2020)

2. Simulation of sorghum yield under different management
practices

Akinseye et al. (2020)

3. Water use and crop production of different cropping
systems under three irrigation strategies

Yan et al. (2020)

4. Modeling crop-livestock system and agricultural
sustainability

Smith and Moore
(2020), Ahmed et al. (2013)

5. Hypothetical crop production modeling under three
rotations: (i) continuous wheat (ii), wheat-chickpea, and
(iii) wheat-fallow

Cann et al. (2020)

6. Climate impact projections Tao et al. (2020)

7. Modeling annual crop mixtures Gaudio et al. (2019)

8. Modeling N release from Brassica catch crop residues Vogeler et al. (2019)

9. Genotype to phenotype (G2P) modeling approaches Bustos-Korts et al. (2019)

10. Adoption of conservation agriculture Bahri et al. (2019)

11. Precision cost-benefit analysis of variable seeding and
nitrogen application rates

McNunn et al. (2019)

12. Moisture and root growth Ebrahimi-Mollabashi et al.
(2019)

13. Double cropping system modeling Gao et al. (2019)

14. Modeling yield potential of near isogenic lines of barley Ibrahim et al. (2019)

15. APSIM-sugar Dias et al. (2019)

16. Elevated CO2 and winter wheat productivity Ahmed et al. (2019)

17. Modeling water and heat stress patterns on sorghum Carcedo and Gambin
(2019)

18. Optimization of the genotype (G) � environment (E) �
management (M) interactions

19. APSIM-soilP-wheat model Ahmed et al. (2018)

20. Simulation of fertilizer management of hypothetical dairy
farm under different scenarios

Cichota et al. (2018)

21. Modeling cropping systems of Asia Gaydon et al. (2017)

22. APSIM-wheat under rainfed conditions Ahmed et al. (2016)

23. Agronomic management of zero tillage wheat Balwinder et al. (2016)

24. Canola (Brassica napus) simulation Robertson and Lilley
(2016)

25. Climate change benefits on crop productivity Yang et al. (2015)

26. Flowering time of wheat and future wheat varieties Wang et al. (2015)

27. Ideotype designing of cereal Rötter et al. (2015)

28. APSIM-Oryza Nissanka et al. (2015)

29. APSIM to model nitrogen use efficiency Ahmed et al. (2014), Aslam
et al. (2017b)

30. SWIM3(Soil Water Infiltration and Movement 3) model
for soil water and solute dynamics

Huth et al. (2012)

31. Soybean-wheat cropping system Mohanty et al. (2012)

32. Modeling mulch and irrigation management Balwinder et al. (2011)

(continued)

4 Dynamic Modeling 125



(e.g., biomass transpiration coefficient, light to aboveground biomass conversion,
ratio of actual to potential transpiration, maximum water uptake, critical leaf water
potential, wilting leaf water potential, unstressed harvest index (HI), HI sensitivity to
water stress during flowering and grain filling, and translocation factor) were
adjusted to have accurate calibration. Similarly, crop phenology parameters such
as growing degree days (GDD) to emergence, GDD to flowering, GDD to grain
filling, GDD to physiological maturity, base temperature, cutoff temperature, phe-
nological sensitivity to water stress, photoperiod (day length) insensitivity, and
photoperiod (day length) to inhibit flowering were also adjusted. Crop parameters
that affect crop morphology include maximum rooting depth, maximum leaf area
index (LAI), a fraction of maximum LAI at physiological maturity, specific leaf area,
leaf stem partition, leaf duration, extinction coefficient for solar radiation, leaf
duration sensitivity to water stress, and ET crop coefficients were calibrated. Simi-
larly, nitrogen parameters, i.e., maximum plant N content at early linear growth,
minimum plant N content at rapid linear growth, maximum plant N content at
maturity, and maximum N content at standing stubble, were also adjusted to have
accurate calibration of the model. Model results showed that crop phenology (e.g.,
anthesis, grain filling, and physiological maturity) was predicted very well. How-
ever, the underwater stress model resulted in accelerated phenology. The model was
able to simulate LAI, ET, crop N content, and aboveground biomass and grain yield,
but extreme conditions (e.g., water stress, frost, and heat) created discrepancies
between observed and simulated grain yield. Donatelli et al. (1997) did an evaluation
of CropSyst as a cropping system model by using field-based crop rotation data. The
model was able to simulate a number of cropping systems, but they suggested further
improvement in the model so that it can be considered a promising tool in agricul-
tural systems research. An improved version of CropSyst (daily time step, multi-
year, and multi-crop) was released to capture actual field impacts on the cropping
system by Stöckle et al. (2003). Components of CropSyst include CropSyst parame-
ter editor, cropping system simulator, ClimGen (weather generator), ArcCS
(GIS-CropSyst simulation co-operator), and CropSyst Watershed. CropSyst mainly
runs by considering two important folders, (i) database and (ii) scenario. The
database folder consists of six further sub-components, i.e., crop, soil, weather,

Table 4.4 (continued)

S. no Research applications References

33. Modeling nitrous oxide emissions from sugarcane
production systems

Thorburn et al. (2010)

34. Genotype (G) � environment (E) interactions Chapman (2008), Wallach
et al. (2018)

35. APSIM-SWIM Connolly et al. (2002)

36. G � E and grain sorghum Chapman et al.
(2000a, b, c)

37. Modeling dynamics of nitrogen and water in fallow
system

Probert et al. (1998)

38. Simulation of legume-ley farming system Carberry et al. (1996)
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rotation, management, and output format, as shown in Fig. 4.10. Further details of
CropSyst are available at http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/
index.html, and a flowchart of biomass growth calculations in CropSyst has been
elaborated in Fig. 4.11.

CropSyst was used to assess the impact of climate change on economically
important crops using historical and future climate sequences, and it was concluded
that climate change impact will be mild for the next two decades but could be
detrimental at the end of the century (Stöckle et al. 2010). Maize crop yield and water
footprint (green, rainfall water stored in soil, and blue, water other than rainfall
during the cropping season or extracted from underground or water flowing in rivers
and lakes, water footprint) in response to future climate change scenarios were
simulated by using CropSyst. Results depicted that under extreme scenarios
(increased temperature and decreased precipitation), blue water footprint increases,
which could be due to increased ET and higher irrigation demand. This resulted in
lower crop yield (Bocchiola et al. 2013). Jalota et al. (2014) used the CropSyst model
to evaluate location-specific climate change scenarios (mid-century and end-century)
impact on rice-wheat cropping system with delaying of trans-/planting date of crops
as adaptation measures. The simulation parameters included crop duration, yield,
water and N balance, and use efficiency of the system. Results showed that crop
duration might be shortened at mid-century, while ET, transpiration, irrigation, and
drainage could be decreased at both the mid- and end-century. Delayed sowing of
15–21 days in wheat and 15 days in rice could be the best adaptation measures to
have sustainable crop yield in rice-wheat cropping systems. CropSyst to predict
water use and crop coefficients (Kc) in Japanese plum trees was examined by
Samperio et al. (2014). CropSyst crop parameters, i.e., Kc.Fc (crop coefficient at
full canopy) and Cmax (maximum plant hydraulic conductance), were parameterized
using one season data but validated with the other two seasons dataset. The results
showed that different sets of CropSyst parameters (Kc.Fc, and Cmax) are required to
have accurate crop evapotranspiration, water potential, and Kc. AquaCrop and
CropSyst modeling approaches were compared to simulate barley growth and
yield under different water and N regimes (Abi Saab et al. 2015). The results showed
that both models could be calibrated with data of any of the 1 year and validated with

Fig. 4.10 CropSyst components
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all other year’s data. Furthermore, CropSyst was also used as a risk assessment tool
in comparison with other growth models which could help to design adaptation
strategies like crop insurance (Castañeda-Vera et al. 2015). The transparency (num-
ber of input parameters) and robustness (validation) of four wheat models
(CropSyst, SSM, APSIM, and DSSAT) were evaluated by using a wide range of
environmental and growth conditions dataset from Iran by Soltani and Sinclair
(2015). The results showed that CropSyst and SSM were robust, while APSIM and
DSSAT had higher transparency. This is because transparency is gauged by a
number of input parameters that were higher in APSIM (292 parameters), followed
by DSSAT (211 parameters), SSM (55 parameters), and CropSyst (50 parameters).
Karimi et al. (2017) simulated shifts in the dry land cropping system of the Pacific
Northwest in response to climate change using CropSyst. The results showed that
climate change due to the direct effect of atmospheric CO2 would be positive for
transpiration use efficiency and grain yield of crops. Regional opportunities for
agricultural diversification and intensification are possible for the Pacific North-
west of the USA due to warming with an increase in rainfall and atmospheric CO2,
as evaluated by Stöckle et al. (2018). The model could help to design crop
diversification with the introduction of new winter crops. Nasrallah et al. (2020)
use the CropSyst biophysical simulation model to have optimum rotations and
managements for a wheat-based cropping system. The study was designed with the
aim to have low-risk, sustainable farming systems. The data from four rotations
(wheat-fallow, wheat-wheat, wheat-potato, and wheat-fava bean) and four man-
agement systems, i.e., (i) full fertilization and full irrigation, (ii) full fertilization
and zero irrigation, (iii) zero fertilization and full irrigation, and (iv) zero fertiliza-
tion and irrigation, were used for model calibration and evaluation. The results
showed that wheat-fava bean rotation with no fertilization could be a better
substitute for wheat-wheat rotation in terms of protein production. This system
showed a higher net profit and high resource-use efficiency and to be less risky for
farmers. Similarly, a very high profit is possible with wheat-potato rotation but
with low input efficiency and higher risk.

4.3.5 DSSAT

The Decision Support System for Agrotechnology Transfer (DSSAT) is a model
with a long history and has been used all around the world by researchers as a
decision support tool. DSSAT was developed by the IBSNAT project to facilitate
agronomic research. It was designed to improve decisions about production
technologies of crops and for the analysis of complex alternative choices. Although
crop models like CERES models for maize and wheat, SOYGRO soybean, and
PNUTGRO peanut were available already, to make these models compatible, the
DSSAT model was designed with the addition of new crops. The first version of
DSSAT was released in 1989 (v2.1), then v3.0 in 1994, and v3.5 in 1998. There
were 16 different crops in v3.5, but now, in v4.7, there are 42 different crops
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available. A further detailed description of DSSAT is available in the work of Jones
et al. (2003) and also at https://dssat.net/about. The potential effects of climate
change on wheat production were explored by Luo et al. (2003) using the DSSAT
3.5 CERES-Wheat model. The results showed that wheat yield was increased under
all levels of CO2 but crop quality was decreased. CROPGRO-soybean model’s
ability to predict canopy and leaf photosynthesis to photosynthetic photon flux
under different concentrations of CO2 was evaluated by Alagarswamy et al.
(2006). Net leaf photosynthesis was simulated well by the CROPGRO default
photosynthesis equations. Cropping system model (CSM)-CERES-maize model
was used with the objectives to evaluate the impacts of different planting dates on
maize yield under rainfed and irrigated conditions and to do yield forecasting (Soler
et al. 2007). The model was able to simulate crop phenology and grain yield with
reasonable accuracy. Thus, it can be used in the practical decisions related to the
management of maize. Soltani and Hoogenboom (2007) assessed crop management
options for maize, wheat, and soybean using DSSAT based on observed (30 years)
and weather generated data (90 years) through WGEN and SIMMETEO. Their
results showed that DSSAT is a useful complement to experimental research.
Apollo, a prototype decision support system, was developed by Thorp et al.
(2008) to analyze the precision farming system dataset using DSSAT.

The pattern recognition approach was used by Bannayan and Hoogenboom
(2008) to estimate cultivar coefficients to be used in the crop models. This approach
classifies data based on statistical information or prior knowledge obtained from the
patterns. K-nearest neighbor (k-NN) approach is one of the well-known most
attractive similarity-based techniques or attractive pattern classification algorithms
in different scientific disciplines (Bannayan and Hoogenboom 2008). Six cultivar
coefficients (P1,

�
C day, thermal time from seedling emergence to the end of the

juvenile phase (expressed in degree days,
�
C day, above a base temperature of 8

�
C)

during which the plant is not responsive to changes in photoperiod; P2, days, extent
to which development (expressed as days) is delayed for each hour increase in
photoperiod above the longest photoperiod at which development proceeds at a
maximum rate (which is considered to be 12.5 h); P5,

�
C day, thermal time from

silking to physiological maturity (expressed in degree days above a base temperature
of 8

�
C); G2, number, maximum possible number of kernels per plant; G3, mg day�1,

kernel filling rate during the linear grain filling stage and under optimum conditions;
and PHINT,

�
C day, phyllochron interval, the interval in thermal time (degree days)

between successive leaf tip appearances) of the DSSAT-CSM-CERES-maize were
used using pattern recognition approach to construct 27,789 hypothetical cultivars,
and then model was run for the potential production of all cultivars. Afterward,
outputs of all simulations were used as feature databases. Furthermore, this approach
was evaluated by utilizing maize cultivars (29) of the DSSAT database and addi-
tional 4 cultivars from three study sites that have not been used anywhere earlier. The
simulation outcome showed that the pattern recognition approach was able to
estimate cultivar coefficients with good accuracy. MANIHOT, a new mechanistic
cassava simulation model version 4.7 of DSSAT (Hoogenboom et al. 2019), was
evaluated by Moreno-Cadena et al. (2020). The objective of their study was to
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identify the most sensitive genotype-specific parameters (GSPs) and their contribu-
tion to the uncertainty of the model. Global sensitivity and uncertainty analysis
(GSUA) was applied to see performance of GSPs. The results showed that about
80% of the GSPs contributed to the variation in crop parameters like LAI, yield and
biomass at harvest. However, importance of GSPs was variable between warm and
cool temperatures. The most important GSPs they reported were individual node
weight, radiation use efficiency, and maximum individual leaf area. Under cool
conditions base temperature for leaf development was more important. Further
application of DSSAT in different fields has been reviewed and presented in
Table 4.5.

4.3.6 STICS

STICS (Simulateur multidisciplinaire pour Les Cultures Standard) is a dynamic,
generic, and robust model to simulate the soil-crop-atmosphere system. It was
developed by INRA (Institut national de la recherche Agronomique). STICS
model was created by combining pieces of GOA (plant), BYM (water) and LIXIM
(nitrogen) models. Earlier, the STICS model was used for the simulation of two main
crops, but with the passage of time, it was able to simulate new crops and other
agronomic practices (Yin et al. 2020). Now the model is well-recognized all over the
globe and is part of the inter-model comparison projects of AgMIP (Agricultural
Model Intercomparison and Improvement Project) and MACSUR (Modelling
European Agriculture with Climate Change for Food Security). The developmental
time period of STICS has been shown in Fig. 4.12. Strullu et al. (2020) used the
STICS model to simulate the effects of cultivation practices on alfalfa crop biomass
production and N accumulation. Since alfalfa is a perennial crop that undergoes
regular defoliation, thus, establishment and regrowth phases were simulated with the
hypothesis that crop growth is controlled by the interaction between abiotic stresses
and crop development stage. The model was able to simulate total and aboveground
biomass with good accuracy and performed well during the evaluation process. Soil
water and nitrate contents were simulated accurately during the cropping period and
after crop harvesting. STICS soil crop model was used to quantify ecosystem
functions (EF) and ecosystem services (ES) to ensure maximum productivity of
apple orchards. The conceptual scheme of the study of the apple orchard system with
EF (yellow boxes) and ES (red boxes) has been presented in Fig. 4.13 as elaborated
by Demestihas et al. (2018). These two services, EF and ES, were impacted by
agricultural practices, e.g., cropping system (green boxes). Thus STICS could be
used to simulate EF and ES under different sets of soil and climatic conditions.
Mesbah et al. (2017) applied the STICS model in Canada to find the ecophysiologi-
cal optimum rate of N application to have maximum achievable corn yield and
minimum N losses.
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Table 4.5 Application of DSSAT in different fields

S.
No Research applications Refrences

1. Pasture growth modeling Bosi et al. (2020)

2. Modeling N losses Malik and Dechmi (2020)

3. Conservation tillage (CT) and N modeling Liben et al. (2020)

4. Alfalfa (Medicago sativa L.) regrowth and biomass modeling Jing et al. (2020)

5. Phenology modeling of the rice-wheat cropping system
under climate warming and management

Ahmad et al. (2019)

6. Model evaluation under a set of agronomic practices Mehrabi and Sepaskhah
(2019)

7. Climate change (rising temperature and elevated CO2) Kheir et al. (2019)

8. Modeling climate change impact on water and nitrogen use
efficiencies using DSSAT-CERES-maize and sorghum

Amouzou et al. (2019)

9. Elevated CO2 and winter wheat productivity Ahmed et al. (2019)

10. Optimization of sowing window Jahan et al. (2018)

11. Climate change Hussain et al. (2018),
Jabeen et al. (2017)

12. Application of cropping system model (CSM)-SUBSTOR-
potato

Woli and Hoogenboom
(2018)

13. Canegro model improvement with revised algorithms for
tillering, respiration, and crop-water relations.

Jones and Singels (2018)

14. Climate change Ahmed et al. (2017)

15. Cropping system modeling Araya et al. (2017)

16. Irrigation management Dar et al. (2017)

17. Modeling canola phenology under climate warming and crop
management

Ahmad et al. (2017)

18. Hybrid modeling (coupling of DSSAT and SWAP models) Dokoohaki et al. (2016)

19. Review about DSSAT models (CERES-wheat, CERES-
maize and CERES-rice)

Basso et al. (2016)

20. Heat stress modeling Liu et al. (2016)

21. DSSAT-Nwheat evaluation Kassie et al. (2016)

22. Irrigation scheduling Jiang et al. (2016), Attia
et al. (2016)

23. Climatic variability Singh et al. (2015), Liu
et al. (2019)

24. Modeling soil organic carbon, N dynamics, and grain yield Li et al. (2015)

25. Aerobic rice-maize cropping systems management for the
improvement of water and nitrogen use efficiencies

Kadiyala et al. (2015)

26. SALUS (System Approach to Land Use Sustainability) Dzotsi et al. (2015)

27. Modeling water saving irrigation and conservation
agriculture practices

Devkota et al. (2015)

28. Evaluation of CERES-maize and IXIM models Ban et al. (2015)

29. Climate change and future maize yield Araya et al. (2015)

30. Conservation agriculture and climate change Ngwira et al. (2014)

31. Application of DRAINMOD-DSSAT model Negm et al. (2014)

(continued)
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4.4 List of Other Dynamic Models

Other process-based models used across the globe includes APEX (Agricultural
Policy/Environmental eXtender Model) (https://epicapex.tamu.edu/apex/),
AFRCWHEAT2 (Porter 1993), CLM (http://www.cgd.ucar.edu/projects/chsp/
research/crop-modeling.html), DAISY (https://soil-modeling.org/resources-links/
model-portal/daisy) (Gyldengren et al. 2020), DNDC (http://www.dndc.sr.unh.
edu/), EPIC (https://epicapex.tamu.edu/epic/), ECOSYS (https://ecosys.ualberta.ca/
model-development-01/), FASSET (https://www.fasset.dk/), GLAM (Droutsas et al.
2019), HERMES (http://www.zalf.de/de/forschung_lehre/software_downloads/
Seiten/default.aspx) (Hlavinka et al. 2013), INFOCROP (Aggarwal et al. 2006),
LINTUL3 (Shibu et al. 2010), LPJmL (https://www.pik-potsdam.de/research/
projects/activities/biosphere-water-modelling/lpjml/lpjml) (Sitch et al. 2003),
LPJmL4 (Schaphoff et al. 2018a, b), LPJmL5 (von Bloh et al. 2018), MCWLA
(Tao et al. 2009), MONICA (Nendel et al. 2011), OLEARY (O’Leary and Connor
1996), RZWQM2 (https://www.ars.usda.gov/plains-area/fort-collins-co/center-for-
agricultural-resources-research/rangeland-resources-systems-research/docs/system/
rzwqm/), SIRIUS (http://resources.rothamsted.ac.uk/mas-models/sirius), SALUS
(Dzotsi et al. 2013), SIRIUSQUALITY (http://www1.clermont.inra.fr/
siriusquality/), and WOFOST (de Wit et al. 2019).

Table 4.5 (continued)

S.
No Research applications Refrences

32. Yield variability and yield gaps analysis Kassie et al. (2014)

33. CROPGRO-groundnut model to simulate drought and heat
tolerance and yield-enhancing traits

Singh et al. (2014a)

34. CROPGRO-chickpea model to simulate benefits of
incorporation of drought and heat tolerance traits in Chickpea

Singh et al. (2014b)

35. Modeling rice-wheat system productivity Subash and Ram Mohan
(2012)

36. Modeling spring barley yield in Europe Rötter et al. (2012)

37. Estimation of cultivar coefficient Bannayan and
Hoogenboom (2009)

38. Precision agriculture and improving soil fertility
recommendations

Thorp et al.
(2008), Ahmed (2012)

39. Simulation of photosynthesis to CO2 levels (CROPGRO-
soybean model)

Alagarswamy et al.
(2006)

40. Linking field performance to genomics Boote et al. (2003)
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Fig. 4.12 STICS developmental time period. (Source: https://www6.paca.inra.fr/stics_eng/About-
us/Stics-model-overview)
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4.5 Conclusion

Dynamic models are considered perfect tools that can be used from a lower to a
higher hierarchy of a system to have good decision power under a different set of
management scenarios. However, the performance of the model depends upon the
availability of good-quality dataset. Thus, real-time field experiments complemented
with the modeling approaches can lead to improve answering capability of what-if
questions. Dynamic model as the whole farm could further help to monitor plant,
animal, and market interactions by considering different climate shocks (Ahmed
et al. 2020). Modeling annual and perennial crop mixtures and intercropping would
be future thrust to design different agroecosystems. Since most of the earlier
modeling studies were mainly on the evaluation of sole crop models, thus a mixture
of crops would be new avenues for the modeling community. Therefore, identifica-
tion of crop parameters, platform, and multiple datasets for the evaluation of models
for the crop mixture is needed. Similarly, designing of plant x environment x
managements interactions is possible through the use of different process-based
models (Stöckle and Kemanian 2020). Furthermore, models could be used for the
problem situation analysis, optimization of management practices, gene-based stud-
ies, QTL modeling (Aslam et al. 2017c), crop yield potential analysis, farming

Fig. 4.13 Conceptual scheme of STICS crop-soil model. (Source: Demestihas et al. 2018 with
permission from Elsevier)
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system evaluation, environmental sustainability evaluation, yield gap assessment,
climate impact projections (Ahmed 2020), and economic risk analysis of different
systems.
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Abstract

Calibration of crop model is standard practice, and it involves estimation of crop
parameters based upon observed field data. It is the process of estimation of
unknown parameters using practical observations. It is generally carried out
manually by adjusting the parameters of the model. It consists of choosing the
accurate numbers of coefficients that play a significant role in the adjustment of
soil nitrogen, soil organic carbon, soil phosphorus, crop growth, phenological
development, biomass accumulation, dry-matter partitioning, nutrients uptake,
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grain dry weight, grain numbers, grain yield, grain nitrogen (N) at maturity and
protein content. A minimum data set (MDS) is required for the calibration of the
model. A number of different steps could be used to calibrate the crop model. The
initial step involves running of the model with default crop parameters and
comparison of simulation outcomes with the observed data set. Afterwards,
crop parameters are adjusted to have good agreement with observed and
simulated data. It starts with phenology, then vegetative growth and biomass,
afterwards yield components and finally yield. Optimization tools such as
generalized likelihood uncertainty estimation (GLUE) and Markov chain Monte
Carlo (MCMC) can be used for the calibration. Finally, evaluation of models
needs to be performed with independent data set. The quantification of calibration
and evaluation goodness should be evaluated by different skill scores such as
root-mean-squared error (RMSE)/root-mean-square deviation (RMSD), relative
RMSE (RRMSE) or normalized objective function (NOF), root-mean-square
deviation-systematic error (RMSDse), root-mean-square deviation-non-system-
atic error (RMSDnse), mean absolute error (MAE), mean bias error (ME),
coefficient of determination (R2), Nash-Sutcliffe modelling efficiency (EF) test,
maximum difference (MD) and D index (index of agreement). These skill scores
confirm the calibrated model performances under different sets of scenarios.

Keywords

Calibration · Estimation · Minimum data set · Phenology · Optimization tools ·
Skills scores

5.1 Introduction

Calibration of crop models is the common practice; it involves the estimation of
model parameters to get a better fit of the model to the observed data. Wallach (2011)
provided a statistical framework to understand crop model calibration in a better
way. He considered the asymptotic limit of the parameter estimators firstly under a
finite set of data which helped to remove noise and separated the fundamental
behaviour of calibration. Secondly, he stated that theory should only be applied to
such cases where only a single type of measurement is present. Finally, he concluded
that calibration uses lease squares. According to his theoretical result, crop model
could be specified, and this misspecification could be helpful for crop model
calibration. Furthermore, according to him, calibration involves compensation of
errors. Calibration of crop model is the estimation process of unknown parameters
using practical observations (Ahmed et al. 2014, 2016, 2017, 2018, 2019; Ahmad
et al. 2017, 2019). It is generally done manually by adjusting the model parameters,
which test the skill and patience of the modeller, and it also consists of choosing the
accurate numbers of crop coefficients that play a significant role in crop growth,
phenological development (anthesis and maturity dates), biomass accumulation,
dry-matter partitioning, nutrients uptake, grain dry weight, grain numbers, grain
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yield, grain nitrogen (N) at maturity and protein content. The calibration process
requires the data set needed to run the model. The data involves climatic variables
(solar radiation, temperature, rainfall, humidity, etc.), crop management, soil envi-
ronment and genotypic parameters of crop. Similarly, previous history of the field is
also very important to have accurate calibration of the model. Minimum data set
(MDS) required to calibrate and validate crop model is given in Table 5.1. It shows
that all crop model requires aerial and soil environment information with proper
details for model calibration and validation. This MDS was already well described
by the IBSNAT (International Benchmark Sites Network for Agrotechnology Trans-
fer) project (Hunt and Boote 1998). Wallach (2011) defined model calibration as the
procedure of estimating unknown model parameters by comparing with observed
data. It is also model parameters tuning to increase agreement between observed
field data and model outcomes. It decreases model prediction uncertainty, and it
involves judicious use of parameters based upon expert opinions or using sensitivity
analysis. It is an essential part of modelling which confirms that model is acceptable
for its use under different circumstances. For example, in the case of calibration
of any crop trait, different crop parameters or coefficients or genetic-specific
parameters (GSPs) (e.g. thermal time to a single development stage; vernalisation;

Table 5.1 Minimum data sets (MDS) for crop model calibration and validation

Site information

Geographical coordinates (latitude and longitude), altitude, average annual maximum and
minimum temperature, average annual amplitude in temperature, slope

Weather

Daily total solar radiation, daily maximum and minimum temperatures and rainfall

Soils

Soil surface and soil profile

Initial conditions

Previous field conditions

Managements

Cultivar name and type

Planting geometry

Sowing date

Fertilizer application methods and rates

Irrigation and water management

Chemical applications

Tillage

Harvesting

Calibration

All of the above plus crop parameters such as date of emergence, date of flowering and maturity,
leaf area index, crop dry matter and yield and N dynamics in plant parts

Validation

Model outcomes (crop phenology, biomass, leaf area and yield) comparison with observed field-
based data set

Source: Hunt and Boote (1998)
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photoperiod; phyllochron; etc.) could be used. Calibration then allows us to modify
the values for the coefficients and minimize the differences between the simulated
and observed trait. Crop phenology involves phasic development, and it is an
essential element in the crop model calibration. It is vital to predicting crop phenol-
ogy accurately to have acceptable biomass and yield. A major determinant of crop
yield is phenology as it describes the timing of plant development. Since climate
change is affecting crop phenology significantly, thus, most of the simulation efforts
were on the prediction of penology as a function of the environment (Ahmed 2020).
Many previous studies elaborated how phenology responds to weather by using
different equations, but calibration was not given so much importance. ThusWallach
et al. (2019) conducted the study with the objectives to evaluate the prediction
capability of crop phenology and role of calibration. The study concluded that
most of the prediction error was due to using different calibration approaches.
They suggested that calibration could be improved using proper calibration tool
and appropriate parameters. Thus, the estimation of GSPs is fundamental to have
reliable predictions from crop models. However, most of the crop models have a
large number of crop parameters (>100), but some are fixed and specific. The
example of some of GSPs from DSSAT, APSIM and EPIC crop models have

Table 5.2 Cultivar-specific parameters of DSSAT CSM-CERES-wheat in species, ecotype and
cultivar files

Crop file

Species

TRGFW ¼ temperature, response grain filling, dry weight (�C)
Tbase ¼ base temperature below which increase in grain weight is ¼ 0

Topt1 ¼ first optimum temperature at which increase in grain weight is most rapid

Topt2 ¼ second optimum temperature, highest temperature at which increase in grain weight is still
at its maximum

Tmax ¼ maximum temperature at which increase in grain weight ¼ 0

Ecotype

P1 ¼ duration of phase end juvenile to terminal spikelet (growing degree days (GDD))

P2 ¼ duration of phase terminal spikelet to end leaf growth (GDD)

P3 ¼ duration of phase end leaf growth to end spike growth (GDD)

P4 ¼ duration of phase end spike growth to end grain fill lag (GDD)

SLAS ¼ specific leaf area (cm2 g�1)

PARUE ¼ PAR conversion to dry matter ratio before the last leaf stage (g MJ�1)

PARU2 ¼ PAR conversion to dry matter ratio after the last leaf stage (g MJ�1)

Genotype

P1V ¼ days at optimum vernalising temperature required to complete vernalisation

P1D ¼ percentage reduction in development rate in a photoperiod 10 h shorter than the

P5 ¼ grain filling period duration (GDD)

G1 ¼ kernel number per unit canopy weight at anthesis (g�1)

G2 ¼ standard kernel size under optimum condition (mg)

G3 ¼ standard non-stressed dry weight (total including grain) of a single tiller at maturity (g)

PHINT ¼ phyllochron interval (GDD)
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been shown in Tables 5.2, 5.3, 5.4 and 5.5. Since there are many crop varieties which
have the area-specific characters, and additionally new crop varieties are developed
and released regularly, thus obtaining GSPs is a never-ending process. Calibration of
model is usually performed by using field-based data. It involves searching for GSPs
that have a good fit for the field data. GSPs concepts could be used to characterize
genotypes or cultivars as these GSPs define the crop growth and development (Boote
et al. 2003). Similarly, they can also be used to describe quantitative response of crop
to environmental factors. EasyGrapher (EG) is a graphical and statistical software
program designed for the DSSAT to allow users to manipulate hundreds of graphs
within minutes and calculates evaluation statistics (Yang et al. 2014). If new

Table 5.3 Generic coefficients used in DSSAT for potato, sugarcane and sunflower models

Generic coefficients for potato model DSSAT-SUBSTOR

G2 Leaf area expansion rate in degree days(cm2/m2 d)

G3 Potential tuber growth rate(g/m2 d)

PD Index that suppresses tuber growth during the period that immediately follows tuber
induction

P2 Index that relates photoperiod response to tuber initiation

TC Upper critical temperature for tuber initiation (�C)
Genetic coefficients for DSSAT-Canegro-sugarcane

P1 Degree days from emergence to harvest maturity

RATPOT Maximum # of ratoon crops before reseeding

LFMAX Maximum # of green leaves on a shoot

G1 General leaf shape to be used to calculate the maximum area, leaf width and total leaf
populations. Users can choose either 1.0, 2.0 or 3.0, depending on the cultivar
characteristics. G1 ¼ 1.0 corresponds to the NCO376 and N14 leaf type—high
population (greater than 13 plants/m2) and narrow leaf (less than 30 mm in width)

G1 ¼ 2.0 corresponds to the N12 leaf type—medium population (10–13 plants/m2)
and medium leaf width (30–50 mm in width)

G1¼ 3.0 corresponds to the R570 leaf type—low population (less than 10 plants/m2)
and broad leaf (greater than 50 mm in width)

PI1 Phyllochron interval #1. When 0 < heat units < DDTPI

PI2 Phyllochron interval #2. When heat units > DTTPI

DTTPI Degree day threshold between phyllochron interval 1 and 2

Genetic coefficients for DSSAT-oilcrop-sunflower

P1 Duration of juvenile phase (in degree days, with a base temperature of 4 �C)
P2 Amount (in days/hour) that development is slowed when crop is grown in a

photoperiod shorter than the optimum (which is considered to be 15 h)

P5 Duration of the first anthesis-physiological maturity stage (in degree days above a
base of 4 �C)

G2 Maximum possible number of grains per head (measured in plants grown under
optimum conditions and low plant population density)

G3 Potential kernel growth rate during the linear kernel filling phase (in mg/day,
measured in plants grown under optimum conditions and low plant population
density)

O1 Maximum kernel oil content (%)
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breeding lines or local cultivars need to be used in the modelling, firstly, cultivar
coefficients were determined and then reconfirmed/evaluated with independent data.
Suriharn et al. (2007) reported that well-designed detailed field experiments are ways
to derive cultivar coefficients. The procedure involves sampling of growth and
development data throughout the plant’s life cycle. End-of-season data approach
as proposed by Mavromatis et al. (2001, 2002) can be used to derive cultivar
coefficients. However, in these yield trial end-of-season studies, optimization proce-
dure is difficult due to the availability of limited data set. Thus, genotype coefficient
calculator (GENCALC) technique is needed for the optimization which will be
further discussed below.

Table 5.4 Generic coefficients in APSIM-wheat

Name Unit Range

Cultivars parameters

photop_sens (photoperiod sensitivity) – 3–3.5

vern_sens (vernalisation sensitivity) – 0–1

tt_end_of_juvenile (thermal time needed from sowing to end
of juvenile)

�
C days 250–650

tt_flowering (thermal time needed in anthesis phase)
�
C days 80–180

tt_floral_initiation (thermal time from floral initiation to
flowering)

�
C days 300–900

tt_start_grain_fill (thermal time from start of grain filling to
maturity)

�
C days 450–1000

max_grain_size (maximum grain size) g 0.03–0.065

potential_grain_growth_rate (grain growth rate from
flowering to grain filling)

ggrain�1 day�1 0.001–0.002

potential_grain_filling rate (potential daily grain filling rate) ggrain�1 day�1 0.002–0.006

grains_per_gram_stem (grain number per stem weight at the
start of grain filling)

g 30–60

Table 5.5 EPIC model generic coefficients

Parameters EPIC model default value

Crop parameters (spring wheat)

Biomass to energy ratio (WA) 30

Harvest index (HI 0.42

Optimal temperature for plant growth (top) 15.0

Minimum temperature for plant growth (TBS) 0.0

Maximum potential leaf area index (DMLA) 5.0

Fraction of growing season when leaf area declines (DLAI) 0.6

First point on optimal leaf area development curve (DLAP1) 20.1

Second point on optimal leaf area development curve (DLAP2) 49.95

Maximum stomatal conductance (GSI) 0.007

Minimum harvest index (WSFY) 0.21

Heat units required for germination (GMHU) 100.0

Potential heat units (PHU) 2340
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5.2 Genotype Coefficient Calculator (GENCALC)

The GENCALC software was developed to facilitate the estimation of cultivar
coefficients from field data. Hoogenboom et al. (2004) reported that new version
of software is in progress to incorporate GENCALC into the DSSAT. Long-term
yield trial data of different crops can be used to estimate cultivar coefficients using
GENCALC. Anothai et al. (2008) used GENCALC optimization procedures to
determine the new peanut line cultivar coefficient feasibility. Field trial data from
the studies of Suriharn et al. (2007, 2008) were used to estimate the cultivar
coefficients and model evaluation using GENCALC-DSSAT Version 4.5.
Buddhaboon et al. (2018) compared two methods, i.e. GENCALC and GLUE, to
estimate genetic coefficients of rice. The outcome of studies concluded that
GENCALC and GLUE have good potential to calculate genetic coefficients. Li
et al. (2015) calibrated maize and wheat varieties in China for DSSAT which have
not been used previously. The disadvantage of this technique is that parameters will
be available after variety release which could delay time period between model
calibration and development of crop variety. Another option is gene-based
modelling (GBM) where paraments could be estimated using the allelic composition
of the genotype. Crop models can be calibrated before the release of variety through
this GBM. White and Hoogenboom (2003) developed first gene-based model by
using six levels of genetic detail. Development of this kind of model is a major topic
in modelling nowadays (Wallach et al. 2018). Different phenotyping techniques
(e.g. high-throughput phenotyping) using standard protocol are also used for the
calibration of crop models. Statistical models such as non-dynamic regression as
elaborated by Lobell (2013) are an alternative option to show crop responses where
process-based models are potentially unable to perform well (Lobell and Asseng
2017). The main issue in statistical models is they do not consider mechanism
involved in different biological processes and reactions to be considered during
modelling biogeochemical cycling. Thus, these models are not suitable when genetic
and other adaptation (e.g. agronomic management, climate change, greenhouse
gases (GHG) balance and organic systems modelling) options need to be evaluated.
However, model like SIMPLE (generic, simple dynamic model) could be a good
option as it has fewer data requirements and parameters (Table 5.6) (Zhao et al.
2019). CERES-Wheat (Ritchie et al. 1985) cumulative temperature approach was
used to determine crop phenological development. In this simple model, time to
maturity was calculated by considering temperature higher than Tbase (base temper-
ature) of the crop only without putting OTT (optimum threshold temperature).
Cumulative temperature needed for the model calibration from sowing to maturity
was calculated by using the following formulae:
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ΔTT ¼
T � Tbase T > Tbase

0, T � Tbase

(
TTiþ1 ¼TTi þ ΔTT

where TTi is the cumulative mean temperature of ith day, ΔTT is the mean tempera-
ture daily added, T is the daily average temperature and Tbase is the base temperature
for crop growth and phenological development.

Monteith (1965) concept of radiation use efficiency (RUE) was used in which
plant canopy intercept daily PAR (photosynthetically active radiation) and converted
to crop biomass considered as total biomass. Stress variables (high temperature,
drought and atmospheric CO2 concentration) affect plant daily biomass production.
Finally, biomass and harvest index (HI) were used to calculate the final yield.

Biomassrate ¼ radiation � fsolar � RUE� fCO2 � ftemp � min f heatð Þ, f waterð Þð Þ
Biomass cumiþ1 ¼ biomass cumi þ biomass rate

Yield ¼ biomass cummaturity � HI

where biomassrate is the daily biomass growth rate, biomass_cum is the cumulative
biomass until the ith day, fsolar is the fraction of the solar radiation intercepted by the
crop canopy based on Beer-Lambert’s law of light attenuation, fCO2 is the CO2

impact, fheat is the heat stress function and fwater is the water stress function.
Calibration of the model is possible by doing a simulation in a number of steps as

elaborated in Figs. 5.1 and 5.2. Simulation zero (S0) was conducted with default
crop parameters, and results were compared with the observed data set. Next

Table 5.6 SIMPLE model generic coefficients

Cultivar parameters

Tsum: Cumulative temperature requirement from sowing to maturity (�C days)

HI: Potential harvest index

I50A: Cumulative temperature requirement for leaf area development to intercept 50% of
radiation (�C days)

I50B: Cumulative temperature till maturity to reach 50% radiation interception due to leaf
senescence (�C days)

Species parameters

Tbase: Base temperature for phenology development and growth (�C)
Topt: Optimal temperature for biomass growth (�C)
RUE: Radiation use efficiency (aboveground only and without respiration) (g MJ�1 m�2)

I50maxH: The maximum daily reduction in I50B due to heat stress (�C days)

I50maxW: The maximum daily reduction in I50B due to drought stress (�C days)

Tmax: Threshold temperature to start accelerating senescence from heat stress (�C)
Text: The extreme temperature threshold when RUE becomes 0 due to heat stress (�C)
SCO2: Relative increase in RUE per ppm elevated CO2 above 350 ppm

Swater: Sensitivity of RUE (or harvest index) to drought stress (ARID index)
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simulation (S1) should be performed by adjusting the crop parameters. Afterwards,
in simulation 2 (S2), crop phenology needs to be calibrated by adjusting crop
parameters. Similarly, step-by-step crop leaf area, biomass and grain yield were
calibrated if all comes in the required range; this ends the simulation otherwise needs
to go back to simulation 1 (S1).

Fig. 5.1 Model calibration steps
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5.3 Inferential Statistics

The branch of statistics which has been used dominantly for the parameter optimi-
zation is called inferential statistics, and it has two important categories,
i.e. frequentist inference and Bayesian inference. In frequentist inference
(FI) parameters are considered as fixed value, while in Bayesian approach (BsA),
it is assumed that a parameter follows a probability distribution. The choice between
the use of an FI and BsA would have a reasonable impact on the parameter estimated
values and uncertainties related to it. Thus, the reliable approach in the selection of
estimation parameters is very important. Beven and Binley (1992) reported that in
BsA generally generalized likelihood uncertainty estimation (GLUE) is considered,
while Gasparini (1997) and Gilks et al. (1995) reported Markov chain Monte Carlo
(MCMC) technique for the estimation of crop model parameters. These two

Fig. 5.2 Simple model calibration steps
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parameter optimization techniques have been commonly used in the assessment of
crop models (Tan et al. 2019; Sheng et al. 2019) and environmental models
(Rankinen et al. 2006; Jin et al. 2010; Whitehead et al. 2018; Leandro et al. 2019).
The Markov chain Monte Carlo can separate the effect of input/output, model
structural and parameter error, but interaction among these sources makes statistical
inference difficult. Similarly, this method dependence on error model assumption
has been criticized. In the case of agricultural systems, it is generally assumed in
earlier studies that model residual errors are normally distributed. This assumption
can be violated in many studies as model errors coupled with the agricultural
production systems are often highly correlated (Beven et al. 2008; Dumont et al.
2014; Sexton et al. 2016). Another popular Bayesian method is DREAM (differen-
tial evolution adaptive metropolis) which has been used for the parameter estimation
in crop model like Agricultural Production Systems Simulator (APSIM) by Sheng
et al. (2019). APSIM-maize parameters were estimated by using DREAM and
GLUE, and the study concluded that GLUE is more appropriate and simpler to use
than DREAM. These two methods were evaluated theoretically and practically in
which maize yield from 2003–2006 was used for model calibration, while validation
was performed from 2007–2013 yield data set. The uncertainty bands of DREAM
were wider than GLUE. He et al. (2017) investigated how different data impacted on
the efficacy of process-based model (APSIM-Canola) calibration. A Bayesian
optimisation approach was used to have cultivar parameters. Parameters used for
the optimisations includes maximum thermal time required to complete the juvenile
process at no vernalisation (TTJuv,max; 1551 �C d�1); maximum thermal time
required to complete the photoperiod sensitive stage at photoperiod less than
10.8 h (TTFI,max; 240–300 �C d�1); thermal time for grain filling period (TTGF,
540–610 �C d�1); radiation use efficiency (RUE, 1–2 gMJ�1); potential leaf area per
node (Leaf size; node1¼ 200–5000 node5¼ 1000–12,000, node13¼ 10,000–30,000,
node16 ¼ 11,000–35,000 mm2); number of leaves per node (leaf number, node0 ¼ 1
node5¼ 1 node8¼ 1–2 node14¼ 1.5–2.5 leaves node�1); potential node appearance
rate (Node Phyllochron, 20–120 �C d node�1) and harvest index (HI ¼ 0.1–0.5).
Eight different strategies for the model calibration (Cali1–Cali8) were used, and
results showed that the best data for the calibration should be from different
environments.

5.4 Quantification of the Goodness of a Calibration

Different skill scores are used to quantify the goodness of a calibration. It includes
root-mean -squared error (RMSE)/root-mean-square deviation (RMSD) which
aggregate the magnitude of errors in simulation outcomes into a single measure of
predictive power. It can be calculated using the following equations:
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

Pi � Oið Þ2

n

vuuut
ð5:1Þ

where Pi is the predicted values, Oi is the observed values and n is the observed data
points.

The RMSE can be used to find normalized objective function (NOF) using the
following formulae:

NOF ¼ RMSE
Oavg

ð5:2Þ

where Oavg is the average observed values, if NOF ¼ 0 (perfect match between
observed and simulated values).

Root-mean-square deviation-systematic error (RMSDse) and root-mean-square
deviation-non-systematic error (RMSDnse) can be calculated using the following
formulae:

RMSDse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

bSi � Oi

� �2
s

ð5:3Þ

RMSDnse ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

Si � bSi� �2
s

ð5:4Þ

Mean difference between two continuous variables such as � and Y could be
calculated by mean absolute error (MAE) using the following formulae:

MAE ¼
PN

i¼1 Oi � Pij j
N

ð5:5Þ

Similarly, the mean bias error (ME) could also be used to check the performance
of models. It can be calculated by using the following formulae:

ME ¼
PN
i¼1

Pi � Oið Þ
N

ð5:6Þ

Systematic bias in the prediction could be indicated by ME values; if it is positive,
it means overprediction, and if negative values come, it means overall under
prediction.

Coefficient of determination (R2) is another approach to conduct regression
evaluation between experimental and predicted data. It can be determined by using
the following formulae:
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R2 ¼
PN
i¼1

Oi � Oavg
� �

Pi � Pavg
� �� �2

PN
i¼1

Oi � Oavg
� �2 PN

i¼1
Pi � Pavg
� �2 ð5:7Þ

The R2 value ranges from 0–1. If R2¼ 1, it indicates a perfect correlation between
observed (O) and predicted (P) values, and if R2¼ 0, it shows no correlation between
O and P results. The R2 approach does not consider systematic bias, so it might be
misleading.

Different other indices such as Nash-Sutcliffe modelling efficiency (NSEF) test,
maximum difference (MD) and D index (index of agreement) could also be used to
check model performance after calibration. They can be calculated using the follow-
ing formulas:

NSEF ¼ 1:0�
PN
i¼1

Oi � Pið Þ2

PN
i¼1

Oi � Oavg
� �2 EF ¼ 1 perfect simulationð Þ ð5:8Þ

MD ¼ max Pi � Oij jNi¼1 ð5:9Þ

D ¼ 1:0�
PN
i¼1

Oi � Pið Þ2

PN
i¼1

Pi � Oavg

		 		þ Oi � Oavg

		 		
 �2 D ¼ 0� 1; 1

¼ perfect simulation ð5:10Þ
Coefficient of residual mass (CRM) is another useful indicator which could be

used to check the differences among observed and simulated data sets. It can be
calculated using the following equation:

CRM ¼
PN
i¼1

Oi �
PN
i¼1

Pi

� �
PN
i¼1

Oi

ð5:11Þ

The indices such as percent bias (PBIAS) and the ratio of RMSE to the SD
(standard deviation) of measured data (RSR) have also been utilized to quantify
model performance. These can be computed by using the following formulae:
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PBIAS ¼
PN
i¼1

1
N Oi � Pið Þ100

PN
i¼1

Oi

ð5:12Þ

RSR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

1
N Oi � Pið Þ2

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

1
N Oi � Oavg
� �2s ð5:13Þ

5.5 Case Studies of Calibration and Evaluation

The 7-year maize variety trial data (2003–2010) was used by Bao et al. (2017) for the
calibration and evaluation of EPIC and CSM-CERES-maize models. Average grain
yield (kg ha�1) of seven maize varieties from six sites in Georgia (irrigated and
rainfed) were used by considering different years for calibration (2007, 2008, 2009
and 2010) and evaluation (2003, 2005, 2007, 2008 and 2009). Crop cultivar
coefficients were adjusted to have the best fit with the observed field data. The
cultivar coefficients used for CSM-CERES-maize model includes P1, thermal time
from seedling emergence to the end of the juvenile phase (110–458�days); P2, extent
to which development is delayed for each hour increase in photoperiod above the
longest photoperiod at which development proceeds at a maximum rate (0–-
3 day h�1); P5, thermal time from silking to physiological maturity
(390–1000�days); G2, maximum possible number of kernels per plant (248–990
kernel plant�1); G3, kernel filling rate during the linear grain filling state and under
optimum conditions (4.4–16.5 Mg day�1) and PHINT, the interval in thermal time
(degree days) between successive leaf tip appearances (30–75�days). Similarly,
SLPF, soil fertility factor (0.70–0.94), was adjusted as it affects the overall growth
rate of modelled total biomass by adjusting daily canopy photosynthesis. It is also
attributed with soil fertility and soil-based pests (Guerra et al. 2008; Mavromatis
et al. 2001). Crop-specific coefficients used for the EPIC includes, PHU, potential
heat units (total number of heat units from planting to physiological maturity)
(1600–200 �C); WA, biomass energy ratio (40–55); BE, crop parameter, converts
energy to biomass (kg ha MJ�1 m�2); HI, potential harvest index, ratio of crop yield
to aboveground biomass (0.1–0.6); To, optimal temperature for a crop; Tb, base
temperature for a crop (plant start growing); DMLA, maximum LAI potential for a
crop (2–6); DLAI, fraction of growing season when leaf area starts declining
(0.5–0.95); HUIo, heat unit index value when leaf area index starts declining; ah1
and ah2, crop parameters that determine the shape of the leaf area index development
curve; af1 and af2, crop parameters for frost sensitivity; Ad, crop parameters that
governs leaf area index decline rate; ALT, aluminium tolerance index number; CAF,
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critical aeration factor for a crop; HMX, maximum crop height; RDMX, maximum
root depth for a crop; WSFY, water stress factor for adjusting harvest index; bn1, bn2
and bn3, crop parameters for plant N concentration equation; and bp1, bp2 and bp3,
crop parameters for plant P concentration equation. The statistical criteria used for
the model calibration and evaluation were the coefficient of determination (R2),
index of agreement (d ) and root-mean-square error (RMSE) and mean absolute error
(MAE). Model calibration and evaluation results showed that both models were able
to predict grain yield. In the case of CSM-CERES-maize model, differences between
simulated and observed yield were not more than 3% and 8% for calibration and
evaluation, respectively. However, EPIC overestimated grain yield and range of
differences between predicted and observed grain yield for calibration and evalua-
tion were 2–23% and 10–20%, respectively. Model calibration under stress
conditions need to be given higher importance as reported in the study of Mehrabi
and Sepaskhah (2019). Wheat growth and yield under diverse semi-arid climate with
different management strategies (e.g. irrigation, plant methods and nitrogen rates)
were predicted through DSSAT. Six data sets were used to calibrate and validate the
APSIM model by Balboa et al. (2019). Results indicated that APSIM was able to
simulate crop biomass, yield and N dynamics with modelling efficiency of
0.75–0.92 and relative RMSE of 18–31% (Fig. 5.3).

Falconnier et al. (2019) calibrated and evaluated the STICS model for faba bean,
which is widely grown grain legumes in Europe. The STICS model was calibrated
using 38 crop-related parameters based on literature, field measurements and sequen-
tial estimation through OptimiSTICS optimisation tool (Fig. 5.4). In total, 35 differ-
ent plots were used from which 22 experimental plots data were used for the model
calibration and 13 plots data were used for the model evaluation. Three steps used for
calibration, as shown in Fig. 5.4, involve the determination of existing crop
parameters values using literature review, while in the second step, crop parameters
were adjusted based upon field data set. Finally, in the third step, the optimisation of
parameters was performed to have the best parameters. Furthermore, sensitivity
analysis and expert knowledge were used to have parameters which have the
strongest impact on model output, and 29 crop parameters were mathematically
optimized. Model results after calibration show that it can reproduce crop phenol-
ogy, leaf area index, aboveground biomass, uptake of N, N2 fixation and grain yield
with good accuracy.

DSSAT-Canegro model was calibrated and validated by Jones and Singels (2018)
using a data set from Singels and Bezuidenhout (2002). Aerial dry biomass (ADM,
t ha�1), stalk dry mass (SDM, t ha�1) and stalk sucrose mass were used for model
calibration and validation. Results were more realistic in this study compared to the
old model. In another study, three commonly used calibration methods (generalized
likelihood uncertainty estimation (GLUE), ordinary least square (OLS) and Markov
chain Monte Carlo (MCMC)) were compared by Gao et al. (2020) for rice phenology
calibration using DSSAT-CSM-CERES-rice model. The results showed that the
selection of the calibration method has an important impact on parameter estimation
and quantification of the uncertainties. If goodness-of-fit is the main criterion, then
OLS is the effective and fastest method, while for the quantification of uncertainties,
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MCMC is a reliable method. Thus, they concluded that MCMC should be
incorporated into the crop modelling platforms.

CSM-CROPGRO-perennial forage model (CSM-CROGRO-PFM) was used to
predict alfalfa regrowth under Canadian conditions (Jing et al. 2020). The results
show that aboveground biomass was simulated with good accuracy at all sites with
RMSE of 936 kg dry matter ha�1 and a normalized RMSE of 24%. Similarly, CSM-
CROGRO-PFM was able to show the effect of a rise in temperature on annual
herbage yield. Since the model was able to simulate alfalfa physiological processes,
more model functions are required to simulate the alfalfa regrowth for the studies
related to the climate change. The functions should include a decline in the plant
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density quantification and its relationships with dry matter during post-seeding
years, crowns temperature estimation during the overwintering period and nutritive
quality of herbage.

Parametrisation of crop phenology is a major challenge for newly released crop
varieties. This challenge becomes worse under climate warming. Ahmad et al.
(2016) quantified the effect of climate warming and crop management on sugarcane
using CSM-CANEGRO-sugarcane model. The calibrated model was able to simu-
late the impact of rising temperature on sugarcane phenology. The study concluded
that adoption in planting date and the use of new cultivars with higher total GDD
requirements could be good for the future. Similarly, in another study by Ahmad
et al. (2019), CSM-CERES-rice and CSM-CERES-wheat models were calibrated to
simulate the impact of climate warming on the rice-wheat cropping system.

The performance of CSM-CERES-rice model was evaluated to determine the
impact of nitrogen application and plant densities on rice grain yield in semi-arid

Fig. 5.4 Model calibration steps used by Falconnier et al. (2019) for calibration and evaluation of
faba bean with the STICS soil/crop model
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conditions (Ahmad et al. 2012) (Table 5.7). The simulation results showed that two
seedlings per hill and 200 kg N ha�1 produced the highest yield (Figs. 5.5 and 5.6).
CSM-CERES-rice model was evaluated by Ahmad et al. (2013) to determine the
appropriate combination of plant densities (PD1 ¼ one seedling per hill, PD2 ¼ two
seedling per hill and PD3 ¼ three seedling per hill) and irrigation regimes
(Irri1 ¼ 625 mm, Irri2 ¼ 775 mm, Irri3 ¼ 925 mm, Irri4 ¼ 1075 mm and
Irri5 ¼ 1225 mm) (Table 5.7). Evaluation results showed that the model was able
to accurately simulate rice growth and yield under different agronomic managements
(Figs. 5.7 and 5.8). Process-based CSM-CROPGRO-canola model was calibrated
using field data from different locations of Punjab Pakistan by Ahmad et al. (2017).
The results show that climate warming resulted in the earlier phenological develop-
ment as compared with the observed crop phenological stages. APSIM-wheat and
CERES-wheat were calibrated by Ahmed et al. (2016) using manual calibration
method under rainfed conditions. Calibration model was evaluated and results show
that both models were able to predict the impact of climate variability on wheat crop
phenology (days to flowering and maturity), leaf area, biomass and grain yield of
wheat crop.

A Web-based survey about crop calibration practices was conducted by Seidel
et al. (2018). About 211 responses related to the calibration procedures were used.
These involve calibration of crop parameters, the method used for calibration,
software for calibration, uncertainty and evaluation of calibration procedures. The
results show that most calibration studies used less than ten parameters, and there
was huge variability in approaches to crop model calibration. Therefore, proper
guidance is needed for accurate crop model calibration. This will help to answer how
to decide which parameters to estimate, how many parameters need to be estimated
and how to avoid overfitting. Since in this study, actual estimation is done by using
GLUE or trial and error search, the least squares approach and a Bayesian approach,
thus guidelines are primarily needed to have accurate model calibration techniques
with a good estimation of parameter uncertainty.

5.6 Conclusion

Model calibration and evaluation are needed to use the process-based model accu-
rately as decision-making tool under different management options. Availability of
good-quality long-term data is needed for model calibration, while observed inde-
pendent data could be used for the accurate evaluation of crop models. Different
statistical criteria such as coefficient of determination (R2), index of agreement (d ),
root-mean-square error (RMSE), normalized objective function (NOF), root-mean-
square deviation-systematic error (RMSDse), root-mean-square deviation-non-sys-
tematic error (RMSDnse), mean absolute error (MAE), mean bias error, Nash-
Sutcliffe modelling efficiency (NSME), coefficient of residual mass and ratio of
RMSE to the SD (standard deviation) of measured data (RSR) are good to be used
for comparison between observed and simulated values during the process of
calibration and evaluation.
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Table 5.7 Rice crop field experiments used for CERES-rice model calibration and evaluation

Treatments and description

PD2 � N100

02 seedlings
hill�1 � 200 kg N ha�1 C�

02 seedlings
hill�1 � 16
irrigations PD2 � I5

Nitrogen experiment (2000) Evaluation Irrigation experiment (2000)

PD1 � N0 01 seedling
hill�1 � 0 kg N ha�1

01 seedling
hill�1 � 8
irrigations

PD1 � I1

PD1 � N50 01 seedling
hill�1 � 50 kg N ha�1

01 seedling
hill�1 � 10
irrigations

PD1 � I2

PD1 � N100 01 seedling
hill�1 � 100 kg N ha�1

01 seedling
hill�1 � 12
irrigations

PD1 � I3

PD1 � N150 01 seedling
hill�1 � 150 kg N ha�1

01 seedling
hill�1 � 14
irrigations

PD1 � I4

PD1 � N200 01 seedling
hill�1 � 200 kg N ha�1

01 seedling
hill�1 � 16
irrigations

PD1 � I5

PD2 � N0 02 seedlings
hill�1 � 0 kg N ha�1

02 seedling
hill�1 � 8
irrigations

PD2 � I1

PD2 � N50 02 seedlings
hill�1 � 50 kg N ha�1

02 seedling
hill�1 � 10
irrigations

PD2 � I2

PD2 � N150 02 seedlings
hill�1 � 150 kg N ha�1

02 seedling
hill�1 � 12
irrigations

PD2 � I3

PD2 � N200 02 seedlings
hill�1 � 200 kg N ha�1

02 seedling
hill�1 � 14
irrigations

PD2 � I4

PD3 � N0 03 seedlings
hill�1 � 0 kg N ha�1

03 seedling
hill�1 � 8
irrigations

PD3 � I1

PD3 � N50 03 seedlings
hill�1 � 50 kg N ha�1

03 seedling
hill�1 � 10
irrigations

PD3 � I2

PD3 � N100 03 seedlings
hill�1 � 100 kg N ha�1

03 seedling
hill�1 � 12
irrigations

PD3 � I3

PD3 � N150 03 seedlings
hill�1 � 150 kg N ha�1

03 seedling
hill�1 � 14
irrigations

PD3 � I4

PD3 � N200 03 seedlings
hill�1 � 200 kg N ha�1

03 seedling
hill�1 � 16
irrigations

PD3 � I5

(continued)
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Table 5.7 (continued)

Treatments and description

PD2 � N100

02 seedlings
hill�1 � 200 kg N ha�1 C�

02 seedlings
hill�1 � 16
irrigations PD2 � I5

Nitrogen experiment (2001) Evaluation
(independent data
set)

Irrigation experiment (2001)

PD1 � N0 01 seedling
hill�1 � 0 kg N ha�1

01 seedling
hill�1 � 8
irrigations

PD1 � I1

PD1 � N50 01 seedling
hill�1 � 50 kg N ha�1

01 seedling
hill�1 � 10
irrigations

PD1 � I2

PD1 � N100 01 seedling
hill�1 � 100 kg N ha�1

01 seedling
hill�1 � 12
irrigations

PD1 � I3

PD1 � N150 01 seedling
hill�1 � 150 kg N ha�1

01 seedling
hill�1 � 14
irrigations

PD1 � I4

PD1 � N200 01 seedling
hill�1 � 200 kg N ha�1

01 seedling
hill�1 � 16
irrigations

PD1 � I5

PD2 � N0 02 seedlings
hill�1 � 0 kg N ha�1

02 seedling
hill�1 � 8
irrigations

PD2 � I1

PD2 � N50 02 seedlings
hill�1 � 50 kg N ha�1

02 seedling
hill�1 � 10
irrigations

PD2 � I2

PD2 � N100 02 seedlings
hill�1 � 100 kg N ha�1

02 seedling
hill�1 � 12
irrigations

PD2 � I3

PD2 � N150 02 seedlings
hill�1 � 150 kg N ha�1

02 seedling
hill�1 � 14
irrigations

PD2 � I3

PD2 � N200 02 seedlings
hill�1 � 200 kg N ha�1

02 seedling
hill�1 � 16
irrigations

PD2 � I5

PD3 � N0 03 seedlings
hill�1 � 0 kg N ha�1

03 seedling
hill�1 � 8
irrigations

PD3 � I1

PD3 � N50 03 seedlings
hill�1 � 50 kg N ha�1

03 seedling
hill�1 � 10
irrigations

PD3 � I2

PD3 � N100 03 seedlings
hill�1 � 100 kg N ha�1

03 seedling
hill�1 � 12
irrigations

PD3 � I3

PD3 � N150 03 seedlings
hill�1 � 150 kg N ha�1

03 seedling
hill�1 � 14
irrigations

PD3 � I4

PD3 � N200 03 seedlings
hill�1 � 200 kg N ha�1

03 seedling
hill�1 � 16
irrigations

PD3 � I5

Modified and adopted; Ahmad et al. (2012, 2013)
C� ¼ PD2 � N100 and PD2 � I5 C ¼ calibrated treatments for nitrogen and irrigation experiments,
respectively
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Fig. 5.5 Simulated (continuous line) and observed (triangular symbols) leaf area index and
simulated (dotted lines) and observed (round symbols) biomass of rice Basmati-385 at variable
plant density and nitrogen application rates under irrigated semi-arid conditions at Faisalabad,
Pakistan, during 2000, used for model calibration (N) and all others treatments for model evalua-
tion. (Adopted from Ahmad et al. 2012)
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Fig. 5.6 Simulated (continuous line) and observed (triangular symbols) leaf area index and
simulated (dotted lines) and observed (round symbols) biomass of rice Basmati-385 at variable
plant density and nitrogen application rates under irrigated semiarid conditions at Faisalabad,
Pakistan, during 2001 used for model evaluation. (Adopted from Ahmad et al. 2012)
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Fig. 5.7 Simulated (continuous line) and observed (triangular symbols) leaf area index and
simulated (dotted lines) and observed (round symbols) biomass of rice Basmati-385 at variable
plant density and irrigation levels (n part; calibrated treatment) and all other treatments used for
model evaluation during 2000 under irrigated semi-arid conditions at Faisalabad, Pakistan.
(Adopted from Ahmad et al. 2013)
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Fig. 5.8 Simulated (continuous line) and observed (triangular symbols) leaf area index and
simulated (dotted lines) and observed (round symbols) biomass of rice Basmati-385 at variable
plant density and irrigation levels during 2001 under irrigated semi-arid conditions at Faisalabad,
Pakistan, used for model evaluations. (Adopted from Ahmad et al. 2013)
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Wheat Crop Modelling for Higher
Production 6
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Abstract

Due to quick growth of population, climate change and diminished natural
resources, food security and nutrition issues face major challenges. Crop models
successfully proved crop yield simulation under diverse environments, biotic
constraints, gene factors and climate change impacts and adaptation. But, the
accuracy of crop models for yield estimates needs to be improved with other
limitation factors affecting yield growth and production to ensure global food
security. These factors include short-term severe stresses (i.e. cold and heat), pest
and diseases, soil dynamic changes due to climate changes, soil nutrient balance,
grain quality (i.e. protein, iron and zinc) as well as the potential integration
between genotype and phenotype in crop models. Here, we outlined the potential
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and limitation of wheat crop models to assist breeders, researchers, agronomists
and decision-makers to address the current and future challenges linked with
global food security.

Keywords

Wheat production and consumption · Food security · Nutrition · Wheat models ·
Climate change · Impacts · Adaptation

6.1 Introduction

The global population is growing vastly, causing challenges to agricultural practices
to ensure food security (Godfray et al. 2010) and to minimize the projected malnu-
trition (Godfray et al. 2011). The major calorific intake for human society is mainly
derived from the botanical family of grasses (i.e. wheat, rice, maize, barley, sor-
ghum, millet and pasture grasses). The maximum production of these crops requires
balance of interactions between the environment, genotype and crop management
practices (Chenu et al. 2017). In this connection, these factors influence the
efficiencies of captured nutrients, water and solar radiation by crop for calories
and nutritional value production. The simple mathematical formulations were
initiated and used as models into computers for crop processes during the
mid-1960s (de Wit 1995). Following that, many developments in crop models
were achieved and arose for wheat crop such as ARC-Wheat (Porter 1984),
CERES-Wheat (Ritchie et al. 1985) as well as developed photosynthesis models
still used today (Farquhar et al. 1980). Crop modelling is a powerful tool
representing the quantitative knowledge of interaction between crop development
and the environment through mathematical algorithms (Asseng et al. 2019; Ahmed
and Stockle 2016; Asseng et al. 2014; Ahmed 2012; Ahmed et al. 2011, 2013, 2014,
2016, 2017, 2018, 2019; Ahmad et al. 2017, 2019). Crop models could simulate crop
production dynamically based on the fundamentals of soil science, agrometeorology
and crop physiology (Loomis et al. 1979). The minimum data required for
simulating crop development, biomass, water and nutrient use include crop manage-
ment and cultivar characteristics, soil properties, initial soil conditions, rainfall, daily
maximum and minimum temperature as well as daily solar radiation. Climate change
impacts were incorporated with crop models during the 1990s, to explore the
projected effects of carbon dioxide concentration (CO2) (Rosenzweig and Parry
1994). At the same time, merging models to crop modelling platforms were initiated
and developed. The crop modelling platforms could ensure combining models of
many crops with a specific software, facilitating model testing and applications for
various purposes (Jones et al. 2003). Crop modelling platforms include but not
limited to Agricultural Production Systems Simulator (APSIM) (Keating et al.
2003), Environmental Policy Integrated Climate (EPIC) (Kiniry et al. 1995), Deci-
sion Support System for Agrotechnology Transfer (DSSAT) (Jones et al. 2003),
CropSyst (Stockle et al. 2003a), Wageningen crop models and Simulator mulTIdis-
ciplinary pour les Cultures Standards (STICS) (Brisson et al. 1998). Over the last
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decade, new approaches have been added to both single model and crop modelling
platforms creating a consolidated integration between them (Fig. 6.1). The most
currently used models for wheat in research and applications are listed in Table 6.1.
These models depict in a wide range of details for both plant leaf interception with
solar radiation and dynamic action between roots and water and nutrient uptake. In
general, crop models could simulate crop growth and development as outputs using
different types of inputs such as climatic data, soil characteristics and management
practices based on genetic parameters of cultivars and specific equations. Mean-
while, the modern wheat models are developed in complexity and could simulate
crop development daily, predicting grain yield at the final step (Chenu et al. 2017).

Therefore, crop models are considered powerful tools to predict crop growth,
development and yield by integrating the crop processes with their response to
external and internal factors (Jabeen et al. 2017). Furthermore, they allow facilitating
the result extrapolation from a small number of experiments to large-scale
conditions. Consequently, crop models are valuable tools to explore the effect of
external cues (i.e. management and weather) and internal factors (i.e. gene and traits)
on crop development and yield. Despite such development in crop models, new
challenges have been found and need to be tackled including (1) developing models
with climate extreme impacts (i.e. higher temperature, drought, frost, CO2 and O3),
(2) simulating many complex interactions of climate, (3) including aspects of grain
yield quality and nutrition (i.e. protein, Fe and Zn), (4) incorporating environmental
aspects (e.g. pesticides and nitrate leaching) and soil restrictions (e.g. salinity,
sodicity, acidity and excess water), (5) incorporating biotic factors (e.g. pest and

Fig. 6.1 Integration between single crop models and crop modelling platforms including wheat
models (Rosenzweig et al. 2014b)
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Table 6.1 The current available wheat crop models

Model (version) Reference Documentation

AFRCWHEAT2 Porter (1993) Send to jrp@plen.ku.dk

APSIM-E Wang et al. (2002), Keating et al.
(2003)

http://www.apsim.info

APSIM-Nwheat
(V.1.55)

Asseng et al. (1998), Keating et al.
(2003), Asseng et al. (2004)

http://www.apsim.info

APSIM-Wheat
(V.7.4)

Keating et al. (2003) http://www.apsim.info

AquaCrop (V.4.0) Steduto et al. (2009), Vanuytrecht
et al. (2014)

http://www.fao.org/nr/water/
aquacrop.html

CropSyst
(V.3.04.08)

Stockle et al. (2003b) http://modeling.bsyse.wsu.edu/
CS_Suit_4/CropSyst/index.html

DAISY (V.5.19) Hansen et al. (1991), Hansen et al.
(2012)

https://code.google.com/p/daisy-
model/

DSSAT-CERES
(V.4.0.1.0)

Ritchie et al. (1985), Hoogenboom
and White (2003), Jones et al. (2003)

http://www.dssat.net

DSSAT-
CROPSIM
(V4.5.1.013)

Hunt and Pararajasingham (1995),
Jones et al. (2003)

http://www.dssat.net

DSSAT-Nwheat
(V4.7.1)

Holzworth et al. (2014), Kassie et al.
(2016)

http://www.dssat.net

EPIC-Wheat
(V1102)

Williams et al. (1989), Kiniry et al.
(1995)

http://epicapex.brc.tamus.edu/

Expert-N
(V3.0.10)-CERES
(V2.0)

Ritchie et al. (1987), Stenger et al.
(1999), Biernath et al. (2011)

http://www.helmholtz-
muenchen.de/en/iboe/expertn/

Expert-N
(V3.0.10)-
GECROS (V1.0)

Stenger et al. (1999), Biernath et al.
(2011)

http://www.helmholtz-
muenchen.de/en/iboe/expertn/

Expert-N
(V3.0.10)-SPASS
(2.0)

Stenger et al. (1999), Biernath et al.
(2011)

http://www.helmholtz-
muenchen.de/en/iboe/expertn/

Expert-N
(V3.0.10)-
SUCROS (V2)

Stenger et al. (1999), Biernath et al.
(2011)

http://www.helmholtz-
muenchen.de/en/iboe/expertn/

FASSET (V.2.0) Olesen et al. (2002), Berntsen et al.
(2003)

http://www.fasset.dk

GLAM (V.2) Challinor et al. (2004), Li et al.
(2010)

http://www.see.leeds.ac.uk/
research/icas/climate-impacts-
group/research/glam

HERMES
(V.4.26)

Kersebaum (2007, 2011) http://www.zalf.de/en/forschung/
institute/lsa/forschung/oekomod/
hermes

INFOCROP (V.1) Aggarwal et al. (2006) http://www.iari.res.in

LINTUL4 (V.6) Spitters and Schapendonk (1990),
Shibu et al. (2010)

http://models.pps.wur.nl/models

LINTUL5 (V.5) Spitters and Schapendonk (1990),
Shibu et al. (2010)

http://models.pps.wur.nl/models

(continued)
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diseases) and (6) linking genetics and molecular science to crop models (Aslam et al.
2017b). These challenges could be tackled through incorporating these processes
into crop models using detailed field experiments with high-quality data over time.
This chapter outlines crop model evaluation using global field experiments and
extrapolation. In addition, it outlines the potential and limitations and adaptation
of current wheat models for higher production.

6.2 Crop Model Extrapolation

One of the most advantages of crop models is their ability to extrapolate data from
minimum experimental data. The input methodology and model design are consid-
ered the main factors for crop model simulations leading to different spatial and time
outputs. Therefore, it is necessary to investigate the projected interactions between
modelling the environment and crop.

Table 6.1 (continued)

Model (version) Reference Documentation

LOBELL Gourdji et al. (2013) dlobell@stanford.edu

LPJmL (V3.2) Gerten et al. (2004), Beringer et al.
(2011)

http://www.pik-potsdam.de/
research/projects/lpjweb

MCWLA-Wheat
(V.2.0)

Tao et al. (2009), Tao and Zhang
(2013)

taofl@igsnrr.ac.cn

MONICA (V.1.0) Nendel et al. (2011) http://monica.agrosystem-
models.com

OLEARY (V.7) O’Leary et al. (1985), Latta and
O’Leary (2003)

gjoleary@yahoo.com

SALUS (V.1.0) Senthilkumar et al. (2009), Basso
et al. (2010)

http://salusmodel.glg.msu.edu

SIMPLACE (V.1) Angulo et al. (2013) Frank.ewert@uni-bonn.de

SIRIUS (V2010) Semenov and Shewry (2011) http://www.rothamsted.ac.uk/
mas-models/sirius.php

SiriusQuality
(V.2.0)

He et al. (2010) http://www1.clermont.inra.fr/
siriusquality/

SSM-Wheat Soltani et al. (2013) Macro.bindi@unifi.it

STICS (V.1.1) Brisson et al. (2003) http://www.avignon.inra.fr/
agroclim_stics_eng/

WHEATGROW Pan et al. (2007) yanzhu@njau.edu.cn

WOFOST (V.7.1) Boogaard and Kroes (1998) http://www.wofost.wur.nl

Source: Modified after Guarin and Asseng (2017)
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6.3 Treatments and Time

Like treatments in field experiments, crop models could simulate the agronomic
treatments very well. These simulations characterize with their complexity allowing
a wider range of variables over time than field experiments, making crop models a
powerful tool for evaluating treatments in different environments. As clear in
Fig. 6.2a, the total wheat biomass was simulated using two different nitrogen
fertilizer treatments over the growing season. These simulations could avoid repeat-
ing the field experiments, saving time, efforts and energy. Furthermore, crop models
could predict yield over a long time (e.g. many decades) in different soil types with
difficult achievement in the field (Fig. 6.2b). Therefore, crop models could simulate
yield using multiple treatments across many seasons, saving time and efforts in

Fig. 6.2 (a) Simulated (lines) and observed (symbols) total wheat biomass subjected to different
levels of nitrogen fertilizer N1 (circle) and N2 (triangle) in the Netherlands (1993). The arrow refers
to date of anthesis. (Source: Asseng et al. 2000) (b) Simulated wheat grain yield in Argentina from
1937 to 2005 in three soil types (A, fine sand; B, coarse sand; and C, loam). (Source: Asseng et al.
2013b)
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understanding cropping systems, and thus can help decision-makers in policy
planning.

6.4 Farm or Field

Based on the hierarchy theory (Ewert et al. 2009) and using a conceptual framework,
crop models could simulate components in different spatial scales. This theory could
divide crop model application into a nested approach with the same time and spatial
scale for each level (Ewert et al. 2009). Farm or field represents the smallest level in
this approach. Figure 6.3 shows simulating wheat yield on a specific field in the
semiarid environment using different records of rainfall and soil properties.

6.5 Region

Larger than field or small-scale area, crop models could simulate and aggregate
many points to form a large scale or region. Figure 6.4 shows a simulation of many
points in Egypt to predict the gap between wheat production and demand in the
region (Asseng et al. 2018). They used three crop models to simulate wheat yield
across 100 years (1980–2100) using experimental data and climate change scenarios
of 48 locations in Egypt. Also, crop models used to predict wheat production under
multilevels of temperature and CO2 in Nile Delta in Egypt (Fig. 6.5) (Kheir et al.
2019).

6.6 Global

Crop models could simulate the global scale by aggregating multipoints worldwide.
Figure 6.6 shows the prediction of global wheat yield and protein using 32 crop
models and different climate change scenarios around the mid-century (2050).

Fig. 6.3 Simulated wheat yields for soil with 60 kg N/ha fertilizer under three rainfall levels
0–33.3% (260 mm), 33.3–66.6% (370 mm) and 66–100% (470 mm). (Source: Wong and Asseng
2006)
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Multi-models and climate change scenarios were used globally to predict wheat
yield and protein with and without genotype adaptation using the specific crop
management, soils and cultivars of each region (Asseng et al. 2019). These findings
would have been impossible to determine globally by field experiments. Upscaling
simulation from the field or regional to global scale requires determination of
uncertainties (Zhao et al. 2015).

6.7 Experiments for Crop Model Evaluation

To test and evaluate crop models, the outputs should always be compared with field
experiments (Ziska and Bunce 2007). Crop models were tested and validated with
field experimental data in diverse environments (Asseng et al. 1998; Jamieson et al.
1998; Lv et al. 2013). The required dataset for model’s calibration and validation
include but not limited to daily weather, soil properties, crop phenology, crop
management, yield and yield attributes, nutrient and water balance, energy
measurements and CO2 and water fluxes (Kersebaum et al. 2015). For grain yield
validation, comparing the simulated growth dynamics with observed values is
required under a wide range of crop management and diverse environments. The
quality of validation could be quantified using different statistical parameters
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(i.e. determination coefficient, degree of agreement and root mean square deviation).
Here are subsections of good-quality experiments used for model evaluation.

6.7.1 Nitrogen Experiment in the Netherlands

Field data of winter wheat from different sites, growing seasons and nitrogen
fertilization levels in the temperate climate of the Netherlands were collected by

Fig. 6.5 The combined effect of rising temperature and carbon dioxide on wheat yield (a) and the
relative reduction compared to the baseline (b) in Nile Delta
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Groot and Verberne (1991). These experiments are assigned to three levels of N at
each site. Many measurements were recorded over the season such as soil moisture,
soil N content, production and distribution of dry matter, groundwater contribution,
N distribution and uptake and density of root length. Hereafter, these experiments
have been widely used in model testing and evaluation for crop production (Asseng
et al. 2000; Olesen et al. 2000; Wang and Engel 2002). Crop models were used here
to determine different N rate and timing following calibration. Additional field data
were used for model validation, proving high accuracy based on the used statistical
indicators (coefficient determination, r2 and root mean square deviation).

6.7.2 Deficit Water Experiment in New Zealand

Experimental study had been conducted in New Zealand to explore the response of
wheat to drought when sown in a mobile rain shelter (Jamieson et al. 1995). Eleven
treatments of drought were used to change the duration with wheat growth stages

Fig. 6.6 Multi-model ensemble projection to simulate the global wheat yield (left half) and protein
(right half) without genotype adaptation (a) and with genotype adaptation (b)
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and determining yield in each treatment. The findings included that wheat yield
reduction was mainly due to reduced grain number under drought stress. The
collected data from this experiment has been widely used in simulation modelling
to compare the output accuracy of different wheat models and to simulate wheat
yield and biomass under different scenarios of water stress (Jamieson et al. 1998;
Asseng et al. 2004).

6.7.3 FACE Experiment in Arizona

The free-air carbon dioxide enrichment (FACE) experiment was conducted at
Maricopa, Arizona, in several years to explore the combined effects of elevated
CO2 with limited water and N level on spring wheat. Despite increasing wheat yield
due to elevated CO2, limited water and N supply influenced the overall effect of CO2

concentrations (Kimball et al. 2002). Using this experiment, several crop models
have been evaluated to predict wheat grain yield and phenology under projected
climate change scenarios, achieving high accuracy (GRANT et al. 1995; Kartschall
et al. 1995; Tubiello et al. 1999; Asseng et al. 2004; Ko et al. 2010). This indicates
that crop models could successfully simulate crop growth and development using
different levels of CO2, water and N in the cropping systems.

6.7.4 FACE Experiment in Australia

Field experiments were conducted for 3 years at the semiarid environment in
Australian Grains FACE experiment to measure wheat yield and water use (Mollah
et al. 2009). This experiment aimed at exploring the combined effects of elevated
CO2 with different regimes of water and N on wheat yield and water use. Several
studies used these data for simulation models to compare models’ outputs by
experiment measurements (Nuttall et al. 2012; O’Leary et al. 2015). Six models
were tested using these data in one study and found that wheat yield, biomass and
water use simulated in a good performance by these models in rainfed and low-input
systems (O’Leary et al. 2015).

6.7.5 Hot Serial Cereal Experiment in Arizona

Spring wheat cultivar was sown in well-irrigated and fertilized environment and
exposed to artificial heating and different sowing dates under field conditions at
Maricopa, Arizona (WALL et al. 2011; Ottman et al. 2012). The infrared radiation
heaters were used for artificial heat treatments using thermometers to control the
canopy temperature through growing season. The main findings concluded that
rising temperature reduced wheat growth and yield, particularly in late and earlier
planting dates. Using these data, a global modelling study (30 models) predicted
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wheat yield in response to rising temperature (Asseng et al. 2015). The main findings
highlighted that rising temperature by 1 �C reduced global wheat production by 6%.

6.7.6 INRA Temperature Experiment

In containers with total area 2 m2 for each and depth 0.5 m, wheat was sown in black
and peat soil. The experiments included three planting dates 10, 08, and
07 November for years 1999, 2000, and 2006, respectively, in INRA, France
(45.8�N, 3.2�E, 329 m elevation) (Majoul-Haddad et al. 2013). After 1–5 days
from anthesis date, containers were transferred to crop climate control and gas
exchange measurement units. In these units, plants were exposed to different
temperature regimes (28, 38, and 38 �C) for three experiments, respectively.
Wheat phenology, growth, yield and protein contents in grains were measured in
all experiments. This data were used after that in global modelling study to explore
the impact of climate change and adaptation on global wheat production and protein
using 32 crop models (Asseng et al. 2019).

6.8 Potential and Limitations of Current Crop Models

6.8.1 Agronomy

Wheat crop is the oldest cultivated crop worldwide, while cultivated over 8000 years
ago by Ancient Egyptians. The recent technology improved the yield of wheat up to
16.5 t ha�1 as achieved recently in the UK. This improvement in yield is a result of
using crop models in research for decades. Recently, crop models help researchers,
agronomists and decision-makers in the assessment of gains and risks of new
agricultural techniques, the possibility of expanding crops into new regions, explor-
ing the adaptation of new varieties and responding to challenges of food security,
nutrition and sustainability. The most common use of wheat crop models is to
quantify the gap between simulated yield using factors limiting production and
farmers’ yield (Hochman et al. 2013). Several studies have evaluated the impacts
of management practices on simulated crop productivity including but not limited to
irrigation (Liu et al. 2007), tillage systems (Basso et al. 2006), planting methods
(Andarzian et al. 2015), fertilization (Dumont et al. 2015) and weed control (Hunt
and Kirkegaard 2011). All these studies aimed at exploring the best management
option ensuring the sustainable productivity and profitability on the long term.

Although crop models were widely used to help farmers, extension specialists,
consultants, retailers and decision-makers (Robertson et al. 2015), they were still
limited and costly to be used for the individual commercial applications
(i.e. individual farm). To tackle this problem, different communication strategies
and technology tools have been developed and used (Adam et al. 2010). For
example, “Yield Prophet” application has been widely used in Australia to assess
the risk during wheat yield simulations and provide farmers and advisors with
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information in a digested format, enabling them to select the appropriate manage-
ment system to avoid such risks. As part of these tools, integration between socio-
economic and crop modelling could be used to provide the suitable
recommendations for both irrigation and fertilization management, ensuring
sustainability (Basso et al. 2013).

Due to the growing population and the importance of farming systems, crop
models could be used to assist in planning and designing of strategies to increase the
crop productivity and profitability while avoiding the environmental footprint
(Godfray et al. 2011). Recently, many applications have been assessed by farming
system models such as crop residue management, tillage, crop rotation, nitrate
balance and leaching (Hasegawa and Denison 2005), emissions of nitrous oxide
(Huth et al. 2010), soil carbon sequestration (Huth et al. 2010) and environmental
and economic impacts (Basso et al. 2016). However, there are some constraints in
using crop models in farming systems such as soil salinity, acidity and toxicity. The
base of model applications depends mainly on science and the embedded parameters
in models. In case of new conditions like new region and new varieties, models need
to be assessed first using experimental data (Asseng et al. 2013a). Crop models are
always supposing a homogenous in simulation of soil conditions, and this does not
exist in nature, causing some limitations and major uncertainty in model outputs.
This issue could be tackled by simulating multiple subregions at the farm level or
catchment area (Paydar and Gallant 2007).

6.8.2 Breeding

By the mid-century (2050), the global wheat demand is projected to increase by
70%, requiring improvement in the global production from current lower percent
(<1%) (Fischer and Edmeades 2010) to about 1.7% (Tester and Langridge 2010).
Due to the climate change, improvements in wheat yield are too modest and going
slow (Brisson et al. 2003). The key factors driving the changes in wheat develop-
ment are abiotic stresses such as drought and heat (Ahmed et al. 2020). Producing
new cultivar takes about 8–12 years; thus using crop models to help wheat breeding
in producing cultivars adapted with agronomic practices and current and future
environments is an urgent need (Brisson et al. 2003; Kirkegaard and Hunt 2010).
Consequently, some wheat models were developed for breeding needs as shown in
Fig. 6.7. However, wheat models need more improvements with breeding in diverse
environments and cultivars worldwide (Stöckle and Kemanian 2020).

6.8.3 The Global Impact

The complex issues of climate change, environmental footprints, overpopulation and
food security (Godfray et al. 2011), require global tactics. Consequently, crop
models have been widely used from the regional to global scale to predict the
sustainable yield across different environments (Wallach et al. 2018; Asseng et al.
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2015). The range of applications should be done from a unit to a field (Chenu et al.
2011), farm (Rodriguez et al. 2011), region (Basso et al. 2006), continent (Chenu
et al. 2013) and upscale (Rosenzweig et al. 2014a). As the essential scale for
modelling systems is the homogenous unit or field, any simulations in the global
scale induce uncertainty in outputs. This uncertainty may be due to insufficient
information about soil, climate, crop management and/or model parameters. There-
fore, many recent efforts were exerted to better understand this uncertainty (Zhao
et al. 2015). The first studies of uncertainty were conducted in some parts of Europe
and found that uncertainty induced by climate manipulation is relatively smaller than
that related to soil conditions (van Bussel et al. 2015). However, much less work has
been done to explore the upscale effects of crop management and model parameters,
particularly in the case of diverse cultivars in a region or a country (van Bussel et al.
2015). Recently, crop models have been widely used to estimate the potential
impacts of crop production on food security even under climate change scenarios.
Although the application of crop models in a global scale is too new, the specific
demands of crop modelling increased and were considered a current hot spot
(Asseng et al. 2015). This requires a better understanding of interactions between
modelling G � E �M in a large scale and factors affecting yield production such as
management and genetic factors. However, the improvement in crop modelling
depends mainly on the availability of detailed data of soil, weather, management
and cultivar information to cover upscale issue. This is especially important for
developing countries and tropics vulnerable to climate change and with limited
resources for data, analysis and adaptation resources (Hertel and Lobell 2014;
Wing and De Cian 2014).
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traits to simple traits, (II) characterize the target environment, (III) simulate and predict yield
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6.8.4 Climate Change

The better understanding of climate change impacts on crop yield and sustainability
could assist developing the best adaptation option in the future. Using the interactions
between G � E � M, crop models could quantify the potential impacts of climate
change on crop productivity and generate the suitable adaptation option that would
offset the climate drawbacks on yield (Martín et al. 2014). Climate change will
negatively influence on the distribution and mean of climate factors (IPCC 2014).
Despite recent changes in patterns of temperature, CO2 and rainfall have been recently
recorded, the climate models have also projected analogous changes in the future
including the heat waves (Ahmed and Ahmad 2019; Ahmed 2020). Therefore, crop
models need to be used to simulate yield production under interaction between the
climatic factors and processes affecting yield. Eventually, crop models were not
developed in climate change studies and restricted to study only the average values
of temperature, CO2 and rainfall. Meanwhile, studies of climate change impacts and
adaptation are developed recently using crop models (Liu et al. 2019; Zheng et al.
2016; Challinor et al. 2014), with better understanding to uncertainties.

Wheat crop models simulate the effect of temperature on different processes in
crop development such as photosynthesis, phenology (Aslam et al. 2017a), evapo-
transpiration and respiration. Nevertheless, few models can consider the potential
effects of rising temperature on leaf senescence, fertility of floret and grain develop-
ment (Lobell et al. 2015; ASSENG et al. 2011). Furthermore, model improvements
should include simulation of heat stress on wheat grain quality such as glutenin
aggregation (Nuttall et al. 2017); grain protein, iron and zinc; as well as the
combined effects of abiotic stresses such as drought and heat. In addition to
temperature, crop models have widely tested with elevated concentration on CO2

(O’Leary et al. 2015). There are also additional opportunities to include other
climatic factors in wheat models on the future such as ozone (Ewert and Porter
2000), frost (Brisson et al. 2003), snow, hail, excess water and limited oxygen in root
zone and wind damage. However, predicting the impacts of higher events remains a
big challenge.

6.9 Concluding and Future Perspectives

Overpopulation growth, climate change and diminished natural resources are con-
sidered major challenges for food security and nutrition. Due to the considerable
challenges, new notions called “sustainable intensification” and “climate smart
agriculture” need to be widely applied. Sustainable intensification is aimed at
increasing the production and resource use efficiency of nutrient, water and solar
radiation, while climate smart agriculture is most related to minimizing the emissions
of greenhouse gases in both unit area and harvested yield. Therefore, great efforts are
necessary to include simulation of climate smart agriculture and sustainable intensi-
fication using crop models. Crop models have been widely used to provide
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comprehensive appraisals of different agricultural, environmental and climatic
scenarios. However, there is lack of sensitivity in most crop models towards the
short-term severe stresses (i.e. cold and warm) that can affect crop growth and
development. Therefore, extending research and field experiments to explore the
effect of heat on crop growth stages is urgently necessary for model simulation
improvement.

Due to diminished natural resources (land, nutrient and water), crop models were
used to assist decision-makers in related issues. However, most of the crop models
consider only N uptake and dynamic, with limited information about other important
nutrients (i.e. phosphorus and potassium). Furthermore, climate change will effect
on soil nutrient dynamics and alterations, requiring improvement in crop models to
consider such factors.

Climate change is likely to influence crop yield quality (i.e. protein), while
considered simulations by crop models are still poor. To improve further
simulations, integration between crop physiology and yield quality into crop models
should be understood. In addition, pests and diseases have negative effects on crop
quality. Crop models can simulate the effects of pests and diseases on crop yield
through including disease models into crop models. However, simulation of interac-
tion between dynamic of disease and occurrence movement is still a major challenge.
Crop models can also be extended to crop genetic factors, but integration between
genotype and phenotype into crop models is still unknown.

Crop models are considered powerful tools in agricultural research and can assist
decision-makers in policy and strategic planning to offset the negative impacts of
climate change on food security and nutrition. However, future applications in
breeding, agronomy, NRM and climate change need to be considered for new
cropping systems and improving model accuracy.
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Genetic Analysis 7
Munir Ahmad and Rashid Mehmood Rana

Abstract

Analysis of complex relationships between genotype and phenotype is imperative
for crop improvement and better production. Genetic analysis started when
humans practiced selective breeding for crop improvement and reorganized
with the advent of the Mendelian genetic principles. Genetic analysis requires
phenotyping and genotyping followed by application of statistical principles.
Advances in the field of automation and informatics lead to high-throughput
phenotyping and genotyping which eventually revolutionized the field of genetic
analysis. Massive parallel sequencing (MPS) based on genotyping by sequencing
(GBS) is one of the best high-throughput genotyping techniques utilized for
discovering single-nucleotide polymorphism (SNP) in crop genomes and
provides the insight into the genome, epigenome, and transcriptome on an
extraordinary scale. Estimation of the type and extent of gene action controlling
the inheritance of quantitative traits is made possible through genetic analysis.
Genotype by genotype by environment (GGE) interaction is useful for evaluation
of genotypes in mega-environment. Mapping of quantitative trait loci (QTL) is
made through association between genotypic and phenotypic data and reveals the
genetic basis of variation of multifactor traits in crop plants. The identified QTLs
could be utilized as marker-assisted selection tool to enhance the efficiency of a
breeding program dealing with the improvement of quantitative traits in a crop
breeding program.
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Abbreviation

AFLP Amplified fragment length polymorphism
AMMI Additive main effects and multiplicative interaction
ANOVA Analysis of variance
BC Backcross
CIMMYT International Maize and Wheat Improvement Center
COI Crossover interaction
CSSLs Chromosome segment substitution lines
DH Double haploid
DNA Deoxyribonucleic acid
EDTA Ethylenediaminetetraacetic acid
GBS Genotyping by sequencing
GEI Genotype by environment interaction
GGE Genotype by genotype by environment
IL Introgressive lines
MPS Massive parallel sequencing
NGS Next-generation sequencing
NILs Near-isogenic lines
PCA Principal component analysis
QEI QTL-by-environment interactions
QTL Quantitative trait analysis
RAPD Random amplified polymorphic DNA
RFLP Restriction fragment length polymorphism
RHLs Residual heterozygous lines
RIL Recombinant inbred line
SNP Single-nucleotide polymorphism
SSLs Single-segment lines
SSR Simple sequence repeats
SVD Singular value decomposition

7.1 Introduction

Genetic analyses are related to understand the complex relationships between geno-
type and phenotype. Fundamental research work which laid down the foundation of
genetic analysis started in ancient time when human practiced selective breeding for
crop improvement. Modern genetic analysis started with the advent of the Mendelian
genetic works and principles. Gregor Mendel was the first who studied the
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transmission genetics and genetic analysis. His major findings included that traits
were transferred from parents to offspring and traits can differ among offspring.
Later on it was confirmed that these traits are controlled by genes. The study of
biologically inherited traits, including traits that are influenced in part by the
environment, is referred as genetics (Wilstermann 2019), whereas the overall pro-
cess of studying and researching in fields of science that involve genetics and
molecular biology is called as genetic analysis. Numerous techniques and processes
have been developed to study the genetic analysis including conventional and
modern approaches.

Genetic analysis involves a set of genetic populations. A genetic population is
derived from F1 obtained after a cross between two genetically distinct parents.
There are two main types of populations used for genetic analysis. (1) Primary
population includes F2 and its derivatives (e.g., F3, F4 lines), BC1, BC2, DH, RIL,
and IF2 (immortalized F2). (2) Secondary populations included NILs, residual
heterozygous lines (RHLs), QTL isogenic recombinant lines (QIRs), introgressive
lines (ILs), single-segment lines (SSLs), and chromosome segment substitution lines
(CSSLs) (Tian et al. 2015a).

7.2 Prerequisite of Genetic Analysis

7.2.1 Plant Phenomics

Plant phenomics is the study of plant growth, performance and composition. It is
derived from the word phenome which means expression of a gene in an environ-
ment. The term forward phenomics is used to screen large population for important
traits. Screening of germplasm could be high-throughput higher-resolution or lower-
throughput measurements (Furbank and Tester 2011). The process of collecting the
information of phenotype or characterizing a phenotype is called phenotyping. An
essential principle of genetics is the phenotype-genotype relationship. Phenotype is
the combination of all the morphological, physiological, biochemical, and develop-
mental characteristics (Ahmed et al. 2020). Genotype is the hereditary information
contained in the individual. In plant breeding, agronomy, ecology, and physiology,
phenotyping is frequently practiced (Pieruschka and Poorter 2012).

Crop improvement programs for biotic or abiotic stress tolerance through con-
ventional or nonconventional techniques depend on high-quality measurements of
field experiment. Field experiments conducted for abiotic stress tolerance require
special attention. Understanding the ecology of target population, site selection of
experiment, maintenance of suitable large plant population, plant border rows to
minimize the border effects, application of recommended dose of fertilizers, effec-
tive control of weed and insect pests, and drought treatment imposition and resump-
tion are important considerations for accurate phenotyping (Zaidi 2019).

Phenotypes can be characterized in different ways.
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(i) Manual or conventional phenotyping: Traits visible to the naked eyes are in
general measured manually. Various plant traits are measured manually, e.g.,
plant height, spike length, spikelets and grain number, fruit or pod number, etc.
In some cases destructive sampling is required for the measurement of trait, e.g.,
fresh shoot and root weight, dry shoot and root weight, fruit fresh weight, etc.
Manual phenotyping is laborious, low-throughput, and time-consuming, and it
is difficult to evaluate large number of sample. Due to variation between the
observers, there are more chances of experimental error.

(ii) High-throughput or automated phenotyping: Automated phenotyping provides
precise, accurate, large-scale, and fast trait measurements; nevertheless, its
adoption in crop improvement is limited due to high cost of equipments. A
high-throughput phenotyping system mechanically observes and grows many
plant samples for analysis. Advancement in automated imaging has made
possible the use of digital imaging for high-throughput phenotyping of plants.
The use of whole shoot imaging is nondestructive, and plant growth and
development can be studied throughout their life cycle.

7.2.2 High-Throughput Phenotyping in Plants

High-throughput phenotyping of important plant traits is getting significant consid-
eration to characterize gene function and circadian rhythms. Digital imaging is not a
recent technique; it has been in use for a long time. Automated digital imaging made
plant shoot phenotyping high-throughput. Digital imaging is nondestructive; there-
fore, the same plant can be used for sampling throughout its life cycle. Digital
images can be saved and reanalyzed through improved image processing techniques.

Plant root monitoring system has made possible the high-throughput phenotyping
of seedlings. The extraordinary accuracy of automated image processing software
made it much suitable for exploration of root elongation rate and detection of
circadian and diurnal rhythms in root elongation. Chlorophyll content is an impor-
tant indicator of plant growth under stress conditions. Conventional methods used
for the determination of chlorophyll content are time-consuming and not suitable for
evaluating large numbers of samples. High-throughput chlorophyll determination
analysis of fluorescence images presents better choice. Additionally, these methods
also permit evaluation of the same leaf repetitively at different growth stages.

Prediction of effects of climate change and efficient ecosystem management
needs better models to know how plants and climate interact from individual to
ecosystem levels. Monitoring of phenological plant stages over large spatial and
temporal scales through conventional methods is time-consuming, laborious, and
intricate. Conventional sampling and satellite imaging have no sufficient spatial and
temporal resolution for the collection of plant data. Therefore, there is a dire need of
high-throughput technology for large-scale data collection. This type of data collec-
tion has been recently termed “near-surface” remote sensing. Development of
economical, high-resolution imaging systems, dynamic computers, and wireless
and solar technology offers break through to revolutionize the quality of
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phenological data that can be collected in the field. A latest developed camera system
called Gigavision has the ability to record hourly, gigapixel resolution panoramic
image set in the field (Normanly 2012).

7.3 Mendelian and Non-Mendelian Genetics

Mendelian genetics is a type of inheritance which follows the Mendel’s laws of
dominance, segregation, and independent assortment. A trait controlled by a single
locus of qualitative nature is called Mendelian trait, e.g., pod shape, seed color, and
flower position in pea plant. Any mutation in Mendelian trait follows the typical
Mendelian inheritance, e.g., sickle cell anemia. Genetic analyses of Mendelian traits
are carried out following monohybrid, dihybrid, trihybrid, test cross ratios,
chi-square test, etc.

On the other hand, non-Mendelian genetics do not follow the Mendel’s laws of
inheritance. There are numerous exceptions where traits do not follow the Mendelian
inheritance, e.g., cytoplasmic inheritance, incomplete dominance, codominance,
epistasis, pleiotropy, multiple alleles, polygenic and sex influenced traits, linkage,
epigenetics, bar bodies, domestication, reduced penetrance, variable
expressivity, etc.

7.4 Forward and Reverse Genetic Analysis

Forward genetics studies the genetic basis of an inherited variation. “Forward
genetic analysis starts with a genetic screen that identifies specific phenotypic
abnormalities in a population of organisms that have been mutagenized.” Reverse
genetic analysis starts with a gene sequence and looks for the identification of
subsequent mutant phenotype. In this technique loss-of-function alleles of particular
genes are created by various methods, and consequential phenotypes are studied to
know how they vary from the wild type.

Forward genetic approach is used to recognize genes concerned with a biological
process through screening of mutated population having random variation through-
out the genome that can alter the gene function. In forward genetic analysis first of
all, heritable mutations are generated in a population that are screened for a particular
phenotypic effect. Large numbers of individuals (inbred lines) are mutated through a
mutagenic approach called saturation mutagenesis followed by screening of mutant
individuals. These mutations are variable and only individual with useful mutations
are selected. The heritable mutated variation is then used to study the inheritance
pattern and the normal functions of associated gene. Eventually, the gene sequence
responsible for the anomaly is determined and may propose the function of resultant
gene product. Dominance/recessiveness of the mutated allele is evaluated following
the Mendelian inheritance. Homozygous mutant individuals are crossed with wild
type, and resulting F1will help us to designate the allele as recessive or dominant
(Sanders and Bowman 2014).
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7.5 Qualitative and Quantitative Genetics

Traits regulated by single or a few genes with major effects are known as qualitative
traits, and their inheritance is called qualitative inheritance. Qualitative traits can be
easily distinguished, least affected by environment, and have discrete classes, e.g.,
seven Mendelian traits, two-row or six-row barley, and hooded or awned wheat
spike. Mendel used monohybrid, dihybrid, trihybrid, and test crosses to analyze the
qualitative traits in Pisum sativum. Traits regulated by polygene with additive effects
are known as quantitative traits, and their inheritance is called quantitative inheri-
tance. Quantitative traits are much influenced by environment, continuous in their
expression, and cannot be classified into discrete classes, e.g., grain yield and plant
height in wheat. The effect of individual gene in controlling a particular trait is so
small to be calculated; instead the effect of all the genes controlling a trait is
measured. Johannsen and Nilssen-Ehle measured the seed size and weight in
princess bean and seed color in wheat and concluded that inheritance of these traits
is not as simple as of monogenic traits (Poehlman 2013).

7.5.1 Genetic Analysis of Quantitative Traits

There is simplest relationship between genotype and phenotype when a genetic
variation is controlled by a single gene. In the absence of gene interaction, segrega-
tion of alleles of a single gene determines if a pea plant will be tall or short. Many
traits are regulated by interaction among the genes at different loci. Additionally
various traits are polygenic in nature which are also influenced by environment;
these are called multifactorial traits, e.g., weight and height in plants and animals
(Sanders and Bowman 2014).

Quantitative traits can be controlled by oligogenes with major effect or by a
numerous genes with minor effect. The genetic effect of every minor gene can be of
diverse nature. Gene action can be of additive, dominant, or epistatic type; in
addition to this, there may be interaction between genes and environment (Tian
et al. 2015b). Abiotic stress (drought, heat, salinity) tolerance is a multifactorial trait
controlled by 16 genes (Yu et al. 2018).

Sir Ronald Fisher utilized statistical approaches for genetic analysis of quantita-
tive traits in 1918. He used statistical techniques and concluded that quantitative
traits arise due to segregation of alleles of polygenes having additive effects.
Frequency distribution is the first step in the quantification of phenotypic variation
of quantitative traits. Sample size and number of classes are very important for the
reliability of frequency distribution of data set. Identification of mode and median is
also significant for the study of quantitative trait distribution.

Variance is the “numerical measurement of the spread of distribution around the
mean.” Variance analysis is useful when data is normally distributed and not
skewed. The value of the variance will be small when most of the observations are
present around the mean. Large variance value indicates the wide spread of the data
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around the mean and shows greater genetic variation for that trait (Sanders and
Bowman 2014). Variance is calculated following the formula given below:

S2 ¼
P

x2 �
P

xð Þ2
n

n� 1

Total variance or phenotypic variance is further divided as

Vp ¼ VG þ VE

VG ¼ VA þ VD þ V I þ VE

VP ¼ phenotypic variance (variance due to variation in quantitative trait).
VG ¼ genotypic variance (proportion of phenotypic variance that is due to variation

in genotypes).
VA ¼ additive variance (variance due to genes having additive effect).
VD ¼ dominance variance (variance due to genes having dominant effect).
VI ¼ interaction variance (variance due to interaction between genotype and

environment).
VE ¼ environmental variance (proportion of phenotypic variance that is due to

variation in the environment of the individual’s habitat).

7.5.2 Heritability and Its Role in Selection

“The degree to which the variability of a quantitative character is transmitted to the
progeny is referred to as its heritability.” When genetic differences in a progeny are
greater than environmental differences, then heritability will be high and vice versa.
When genetic variation is higher than environmental variation, then selection is more
efficient.

Broad-sense heritability (H2) is the proportion of phenotypic variance that is due
to genetic variance. It is called broad sense because it estimates heritability from all
types of genetic variances.

H2 ¼ VG=VP

or

H2 ¼ VG=VP
� 100

The narrow-sense heritability (h2) is the proportion of phenotypic variance that is
only due to additive variance. It is more useful and usually less than the broad-sense
heritability.

Polygenic traits are greatly influenced by the environment; that is why they differ
in heritability estimates. Yield of the plant is a quantitative trait, greatly influenced
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by the environment, and has low heritability. On the other hand, qualitative trait has
high heritability as they are least affected by the environment. Selection procedure
depends on the genetics and heritability of the trait. Traits having low heritability
(e.g., yield) cannot be selected efficiently in the early segregating generation (F2).
For such traits selection in the lateral generation will be successful. Traits having
high heritability can be selected efficiently in the early segregating generation
(Poehlman 2013).

7.6 Genotype by Environment Interaction (GEI)

Genotype by environment interaction (GEI) can be explained by the combined effect
of genotype and environmental factors that alter the gene frequency in a population.
Changing environment can change the gene frequency in population, or the geno-
type is not independent of change in environment. It is a major factor that can alter a
phenotype and hence shows a range of variation, hence shows the statistical concept
of “heteroscedasticity,” where a single variance is insufficient to explain the
variability of different genotypes (Shah et al. 2009).

GEI may be unsystematic or directional (if the mean of subgroup increases so
does the variance). Experimental analysis on Drosophila have revealed that GEI
commonly occurs in many systems, but rarely accounts for more than 20% of the
total phenotypic variation (Saltz et al. 2018).

7.6.1 Genotypic Performance Stability

The performance of genotypes is explained and grouped into static and dynamic
stability. Static stability is explained by stable performance of genotypes in different
environments, and no environmental variations occur. It is also referred as biological
stability, and increase in inputs does not affect the genotypic performance. With
regard to dynamic performance (also known as agronomic stability), the genotypic
performance varies among different environments (Kaya and Turkoz 2016).

7.6.2 Linear-Bilinear Model

Linear-bilinear models determine the subgroups of genotype and environment with
neglecting the COI (crossover interaction). It is classified into many models, among
which two-way ANOVA is the basic one and used widely to determine the GEI.

The environment and genotype stability is estimated by AMMI (additive main
effects and multiplicative interaction) model and describes the least square of
parameter with their mean values (Das et al. 2018). So by substituting the genotypic
and environment means on x-axis and PCA score on y-axis forms a bi-plot model.
Based on the PCA values, by supposing the first PCA as the most important pattern
of the GEI, specific interaction single genotype and environment are determined. It
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also estimates the identification of pattern of GEI. It may also help to estimate the
eigenvalues for genotype and environment and also for PCA1 means. If the PCA1
value is closed to zero, it represents the common adaptation to tested environment.
Poor genotype shows PCA1 value zero. If it is a large value, then performance is also
high. The positive values show linear relation with the environment and genotype,
while negative PCA1 values show the relation is inverse (Mohammed 2009).

7.6.3 Analysis Based on GGE Bi-plot

Genotype by genotype by environment (GGE) interaction bi-plot was first described
by Gabriel (1971) and modified by Yan et al. (2000), Yan and Kang (2002), and Yan
and Tinker (2006). It is useful for detecting the GEI in many fields including
agriculture for evaluation of mega-environment (Ahmed et al. 2020). These provide
the two sources of variation related to cultivar evaluation of both G and GE with
singular value decomposition (SVD) of the environment focused.

yij� μj ¼
Xt

k¼1

ℵk αik γjþ εij

7.7 Molecular Events

Looking at molecular events, at population level, polymorphism is highly demand-
ing because through the combination of many alleles in population, many
recombinant-tolerant genotypes may be obtained. Haploids are more polymorphic
and require no maintenance of genetic variation in population for diploids and sexual
reproduction. GEI is very laborious for alleles favored by the environment if
selection is done in it. So no surety of protection of polymorphism is ensured
while changes in ranking occur. Experiment made on natural and laboratory lactose
operon mutant of E. coli determines environment and genetic variation. This reveals
the growth rate was limited by nutrient galactosides in varying environment. This
result shows the significant differences in fitness among operon strain in varying
environment which was estimated by one-way ANOVA. Also estimation made by
linear additive model shows this differences is due to GEI. Molecular investigation
also proves this by using the strain DD320, which has no ability to metabolize any
galactosides (Dean 1995).

Molecular markers are now widely used for finding region on chromosome
responsible for variation, and approaches are also developed to quantify these traits
in different environments. Molecular techniques can also investigate the environ-
mental portioning of various environmental components and genetic control of
various environmental traits such as phototropism, male sterility, and temperature
sensitivity. For instance, taking the example of rice recombinant inbred lines (RILs),

7 Genetic Analysis 211



CO39 exposed to different photo-regimes and individual lines were evaluated for
10-h and 14-h day length for days to flowering. Associated loci have been identified
on the basis of delay in flowering less than the 14 h. For this 15 QTLs were
distinguish, out of which four were also identified as associated to photoperiod
and present on chromosome 7. Marker-based investigation provides better under-
standing about quantitative traits evaluation of QEI and GEI (Rodrigues 2018).

7.7.1 Molecular Marker-Based Linkage Maps

Quantitative trait loci (QTL) mapping requires phenotypic as well as genotypic data.
Genotypic data is obtained through molecular marker. Molecular marker is a
trackable and quantifiable segment of DNA having association with a particular
trait of interest (Hayward et al. 2015). There have been several molecular marker
techniques evolved since the discovery of molecular markers. These techniques
include RFLP (restriction fragment length polymorphism), AFLP (amplified frag-
ment length polymorphism), RAPD (random amplified polymorphic DNA), micro-
satellite/SSR (simple sequence repeats), SNP (single-nucleotide polymorphism), etc.
Among these techniques, SNPs are latest and considered as best markers as these
markers could be discovered on whole-genome basis. The SNPs are best discovered
by sequencing, hence called as genotyping by sequencing (GBS) (He et al. 2014).
There are different types of platforms used for sequencing. Massive parallel
sequencing (MPS) and Illumina dye sequencing are the most famous methods
used for SNP discovery through GBS. A short detail of MPS is given as under.

7.7.2 Massive Parallel Sequencing (MSP)

Massive parallel sequencing is a next-generation sequencing (NGS) approach using
massive parallel sequencing (He et al. 2014). The MPS starts with the sequencing of
in vitro synthesized DNA sequencing libraries followed by sequencing by synthesis.
Finally, simultaneous sequencing of spatially segregated, amplified DNA templates
is carried out in a massively parallel fashion without the requirement for a physical
separation step (He et al. 2014).

7.7.3 DNA Extraction and Quality Assessment

There are several methods available for DNA extraction (Table 7.1). However, the
most utilized, easy, and cost-effective method is CTAB (cetyltrimethylammonium
bromide) DNA extraction method (Yu et al. 2019). Plant samples are ground in
liquid nitrogen to make fine powder. The powder is then homogenized with CTAB
buffer (2% cetyltrimethylammonium bromide, 1% polyvinylpyrrolidone, 100 mM
Tris-HCl, 1.4 M NaCl, 20 mM EDTA). The homogenate is mixed by vortexing and
incubated at 65� C for 30 min. After incubation, the homogenate is centrifuged
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(14,000�g) for 5 min. The resultant supernatant is treated with RNase at 32� C for
20 min to digest any RNA present in the solution. An equal volume of chloroform/
isoamyl alcohol (24:1) is added to the samples followed by centrifugation
(14,000�g) for 1 min. Supernatant is separated into a new tube, and 0.7 volume
isopropanol (chilled) is added to the samples and mixed by inversion. The samples
are incubated on ice for 10 min and centrifuged (14,000�g) for 10 min. Supernatant
is discarded to recover pellet containing DNA. The DNA pallet is washed twice with
70% ethanol. After drying the ethanol residues, DNA pallet is resuspended in TE
buffer (10 mM Tris, pH 8, 1 mM EDTA).

The extracted DNA is evaluated for quality through gel electrophoresis as well as
spectrophotometer. A good-quality DNA shows intact band while runs on 1%
agarose gel. DNA purity is evaluated by measuring absorbance of sample at
260 and 280 nm. A ratio of A260/A280 is calculated, and samples having the ratio
of 1.7–2.0 are ranked as good for their DNA quality (Canforaa and Rosb 2018).

Table 7.1 DNA extraction methods commonly used for plants

Methods Plant source Solution

DNeasy Plant Mini Kit Plant cells, plant
tissues and fungi

Buffers DNeasy Plant Mini Kit
EtOH 100%

Sorbitol DNA extraction Endocarp, hard
leaves, woody bark

Liquid nitrogen
Extraction buffer (0.1 M Tris-
HCl
0.005 M EDTA
0.35 M sorbitol
10 nM 2-mercaptoethanol) lysis
buffer (0.2 M Tris-HCl 0.05 M
EDTA
2 M NaCl
2% CTAB)
Chloroform-isoamyl alcohol
(24:1)
Isopropanol
80% EtOH
TE

CTAB extraction Leaves root endocarp,
stem, or embryo

CTAB isolation buffer
chloroform-isoamyl alcohol
(24:1) isopropanol
EtOH
TE

Genome DNA purification
GenElute™ plant genomic DNA
purification kit

Leaves root endocarp,
stem, or embryo and
fungi

Liquid nitrogen
Lysis solution (part A + part B)
Precipitation solution
Binding solution
Wash solution
EtOH 100%
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7.8 QTL Mapping Across Environments

Environmental factors act as the regulator of gene expression for quantitative traits.
Great phenotypic variation occurs in these traits due to varying external conditions.
Soil moisture, temperature, and humidity are the key factors responsible for change
in phenotypic expression of that traits. Many QTLs were identified for varying
environmental conditions (Aslam et al. 2017). Some of them are shows that QTL
detection depends on special environment, and these were called as “environmental-
dependent” QTLs. Results obtained from multiple environment from QTL detection
tells the strong estimation of QEI (QTL + GEI) and GEI and explains the trait
dependence on the environment (Courtois et al. 2009).

7.9 Breeding for GEI

For efficient use of GEI in breeding, three strategies must adopted by utilization of
genotypic mean in the environment even when GEI exists. These three ways are
ignoring them, avoiding them, and exploiting them. If interaction is significant and
of crossover type, then interaction should not be ignored. If interaction is less
significant, then avoid them. For this, make cluster of similar environments. In this
type of environment, genotype may show the same performance and COIs would not
be expected, and useful data may be lost. Different research areas working on wheat
and rice, such as CIMMYT, propose the broad-range adaptation of these crops
(Kang 2002). Broad adaptation of these crops can be done by using few environ-
mental sites and optimizing the environment to eliminate factors that are the same to
each other. Stability of genotype in any environment can be explained by using the
third approach, exploitation. This can help in estimating the GEI and give an
approach to correct them. Genotype can only be improved if problem is known,
and utilization of genetic means and proper environment can be provided to increase
the productivity (Eisemann 1981).

7.10 Conclusion

All the traits of an organism are controlled either by single or multiple genes. The
traits controlled by multiple genes are known as quantitative traits harboring contin-
uous variation. Quantitative traits are affected by the environment; hence under-
standing genotype by the environment interaction is a prerequisite to study such
traits. Molecular markers are used to detect genomic regions responsible for
controlling quantitative traits. These regions are called quantitative trait loci
(QTL). These QTLs are greatly helpful in identifying genes controlling a trait.
Moreover, markers associated to a QTL could be employed in marker-assisted
breeding for improving a quantitative trait.

214 M. Ahmad and R. M. Rana



References

Ahmed K, Shabbir G, Ahmed M, Shah KN (2020) Phenotyping for drought resistance in bread
wheat using physiological and biochemical traits. Sci Total Environ 729:139082. https://doi.
org/10.1016/j.scitotenv.2020.139082

Aslam MU, Shehzad A, Ahmed M, Iqbal M, Asim M, Aslam M (2017) QTL Modelling: an
adaptation option in spring wheat for drought stress. In: Ahmed M, Stockle CO (eds) Quantifi-
cation of climate variability, adaptation and mitigation for agricultural sustainability. Springer
International Publishing, Cham, pp 113–136. https://doi.org/10.1007/978-3-319-32059-5_6

Canforaa L, Rosb M (2018) 2. Deoxyribonucleic acid (DNA) extraction. In: Crop diversification
and low-input farming across Europe: from practitioners’ engagement and ecosystems services
to increased revenues and value chain organisation: 22–25

Courtois B, Ahmadi N, Khowaja F, Price AH, Rami J-F, Frouin J, Hamelin C, Ruiz M (2009) Rice
root genetic architecture: meta-analysis from a drought QTL database. Rice 2(2):115

Das CK, Bastia D, Naik B, Kabat B, Mohanty M, Mahapatra S (2018) GGEBiplot and AMMI
analysis of grain yield stability & adaptability behaviour of paddy (Oryza sativa L.) genotypes
under different agro-ecological zones of Odisha. Oryza 55(4):528–542

Dean AM (1995) A molecular investigation of genotype by environment interactions. Genetics 139
(1):19–33

Eisemann R (1981) Two methods of ordination and their application in analysing genotype
environment interactions. In: Byth DE, Mungomery VE (eds) Interpretation of plant response
and adaptation to agricultural environments. Australian Institute of agricultural Sciences,
Brisbane, pp 293–307

Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck.
Trends Plant Sci 16(12):635–644

Gabriel KR (1971) The biplot graphic display of matrices with application to principal component
analysis. Biometrika 58(3):453–467

Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J (2015) Molecular marker applications in
plants. In: Plant genotyping. Springer, New York, pp 13–27

He J, Zhao X, Laroche A, Lu Z-X, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an
ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci
5:484

Kang MS (2002) Chapter 15: Genotype–environment interaction: progress and prospects. In:
Quantitative genetics, genomics, and plant breeding. CAB International, Wallingford, p 219

Kaya Y, Turkoz M (2016) Evaluation of genotype by environment interaction for grain yield in
durum wheat using non-parametric stability statistics. Turk J Field Crops 21(1):51–59

Mohammed MI (2009) Genotype � environment interaction in bread wheat in northern Sudan
using AMMI analysis. Am Eurasian J Agric Environ Sci 6:427–433

Normanly J (2012) High-throughput phenotyping in plants: methods and protocols. Springer,
Totowa

Pieruschka R, Poorter H (2012) Phenotyping plants: genes, phenes and machines. Funct Plant Biol
39(11):813–820

Poehlman JM (2013) Breeding field crops. Springer, New York
Rodrigues PC (2018) An overview of statistical methods to detect and understand genotype-by-

environment interaction and QTL-by-environment interaction. Biometr Lett 55(2):123–138
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J (2018) Why does the magnitude

of genotype-by-environment interaction vary? Ecol Evol 8(12):6342–6353
Sanders MF, Bowman JL (2014) Genetic analysis: an integrated approach. Pearson Education,

New York
Shah SH, Shah SM, Khan MI, Ahmed M, Hussain I, Eskridge KM (2009) Nonparametric methods

in combined heteroscedastic experiments for assessing stability of wheat genotypes in Pakistan.
Pak J Bot 41(2):711–730

7 Genetic Analysis 215

https://doi.org/10.1016/j.scitotenv.2020.139082
https://doi.org/10.1016/j.scitotenv.2020.139082
https://doi.org/10.1007/978-3-319-32059-5_6


Tian J, Deng Z, Zhang K, Yu H, Jiang X, Li C (2015a) Genetic analysis methods of quantitative
traits in wheat. In: Genetic analyses of wheat and molecular marker-assisted breeding, vol
1. Springer, Dordrecht, pp 13–40

Tian J, Zhiying D, Zhang K, Yu H, Jiang X, Li C (2015b) Genetic analyses of wheat and molecular
marker-assisted breeding, volume 1: genetics map and QTL mapping. Springer, Dordrecht

Wilstermann AM (2019) THE GENE: from genetics to postgenomics. Perspect Sci Christ Faith 71
(3):184–187

Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment
investigation based on the GGE biplot. Crop Sci 40(3):597–605

Yan W, Kang MS (2002) GGE biplot analysis: a graphical tool for breeders, geneticists, and
agronomists. CRC press, Boca Raton, FL

Yan W, Tinker NA (2006) Biplot analysis of multi-environment trial data: principles and
applications. Can J Plant Sci 86(3):623–645

Yu Z, Wang X, Zhang L (2018) Structural and functional dynamics of dehydrins: a plant protector
protein under abiotic stress. Int J Mol Sci 19(11):3420

Yu D, Zhang J, Tan G, Yu N, Wang Q, Duan Q, Qi X, Cheng M, Yan C, Wei Z (2019) An easily-
performed high-throughput method for plant genomic DNA extraction. Anal Biochem
569:28–30

Zaidi PH (2019) Management of drought stress in field phenotyping. CIMMYT, Mexico

216 M. Ahmad and R. M. Rana



Sugarcane: Contribution of Process-Based
Models for Understanding and Mitigating
Impacts of Climate Variability and Change
on Production

8

Henrique Boriolo Dias and Geoff Inman-Bamber

Abstract

Sugarcane is cultivated on about 26 M ha across tropics and subtropics worldwide
as a source of many industrial products, especially sugar and also bioenergy
purposes (biofuel as ethanol and electricity). As the crop is grown in a wide range
of climates, soils, and countries, different cropping systems are adopted across
producing areas, resulting in large genotype � environment � management
interactions, consequently large variations in yield levels are found. Climate
and its variability and change play an important role in plant processes. In this
chapter, a climate characterization of the main producing countries is presented
along with the influence of main weather variables on sugarcane growth, devel-
opment, and yields. The key variables of climate change are also explored. The
effect of weather conditions on key sugarcane yield-building processes are well
captured by process-based models. Two are embedded in the well-known and
readily available agricultural systems modeling platforms; DSSAT/CANEGRO
and APSIM-Sugar. These two models and a third (WaterSense) are described
briefly with highlights of recent improvements and weaknesses. Finally, this
chapter lists a series of application papers found so far in literature that included,
at least to some extent, the intrinsic effect of climate and its variability mostly
based on long-term weather data series. Special focus is then given to irrigation
and nitrogen management, yield analysis (gaps, benchmarking, and forecasting),
climate change issues, drought adaptation, and breeding studies. Even though
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sugarcane models have some weaknesses, they are considered as powerful tools
for understanding and proposing management and adaptive actions to mitigate or
increase yields in risky climates, in the present or future.
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8.1 Introduction

Sugarcane (Saccharum spp.) is grown in the tropics and subtropics around the world
as a source of food (mainly as sugar, and also as molasses), bioenergy (biofuel as
ethanol and electricity), and others (for instance, alcoholic beverages and chemicals).
Sugarcane products (especially sugar) are important components of the economy of
many countries worldwide, many of which are developing countries. Sugarcane is
produced by nearly 100 countries and occupies roughly 26 M ha of land (Table 8.1;

Table 8.1 Sugarcane production, area, and yield of the 20 largest producing countries worldwide
in 2017 (FAO 2019)

Country Production (M t)a % Total Area (M ha)b % Total Yield (t/ha)

Brazil (BRA) 758.5 41.19 10.18 39.2 74.5

India (IND) 306.1 16.62 4.39 16.9 69.7

China (CHN) 104.8 5.69 1.38 5.3 76.1

Thailand (THA) 102.9 5.59 1.37 5.3 75.2

Pakistan (PAK) 73.4 3.99 1.22 4.7 60.3

Mexico (MEX) 57.0 3.09 0.77 3.0 73.8

Australia (AUS) 36.6 1.99 0.45 1.7 80.6

Colombia (COL) 34.6 1.88 0.40 1.5 87.2

Guatemala (GTM) 33.8 1.83 0.28 1.1 121.0

United States (USA) 30.2 1.64 0.37 1.4 82.4

Philippines (PHL) 29.3 1.59 0.44 1.7 66.9

Indonesia (IDN) 21.2 1.15 0.43 1.7 49.3

Argentina (ARG) 19.2 1.04 0.38 1.5 50.6

Viet Nam (VNM) 18.4 1.00 0.28 1.1 65.3

South Africa (ZAF) 17.4 0.94 0.26 1.0 65.7

Cuba (CUB) 16.1 0.87 0.39 1.5 41.5

Egypt (EGY) 15.3 0.83 0.14 0.5 112.7

Myanmar (MMR) 10.4 0.56 0.16 0.6 63.5

Peru (PER) 9.4 0.51 0.08 0.3 121.2

Ecuador (ECU) 9.0 0.49 0.11 0.4 81.6

Others 138.2 7.50 2.51 9.7 55.1

Overall 1841.5 100.00 25.98 100.00 70.9
aM t, mega tonnes (metric tons � 106)
bM ha, mega hectare (ha � 106)
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FAO 2019). The largest producer is Brazil, followed by India, China, and Thailand,
which together produce more than two-thirds (~ 69%) of the entire world’s sugar-
cane (Table 8.1).

A spatial view of sugarcane production by each country can be found in Fig. 8.1.
The crop is grown between roughly 35� north and south of the equator, where a wide
range of climates is found. A comparison between producing regions in terms of
climate in some countries is presented in Sect. 8.2. In addition to the variability faced
year by year, climate is changing arguably due to anthropic greenhouse gases
emissions, and further changes are predicted by climate scientists of the Intergovern-
mental Panel on Climate Change (IPCC 2014). Increments in global temperatures and
weather extremes such as heat and cold waves, drought, and flooding are likely to be
more severe and more often, which will affect agriculture, livestock, location and
production from forestry, and many others sectors of society and environment (IPCC
2014). Hence, it is important to develop an overall understanding of sugarcane
production systems worldwide to assess its vulnerability to climate change and
adaptation strategies. The sugarcane industry has a considerable potential to offset
greenhouse gases emissions (Börjesson 2009) considering its capability to produce
renewable energy (bioelectricity and ethanol). Thus it is likely that the cultivated area
with this crop will increase in regions where land is available for expansion, like under
degraded pastures in Brazil (Goldemberg et al. 2014; Alkimim and Clarke 2018).

A wide variety of production systems have evolved across the world in response
to local climates and soils as well as the availability of resources and genetic
material. Traditional and evolving arrangements between growers and millers and
scales of production also influence the way the crop is grown and delivered for
processing. The range of genotypes (varieties), planting dates and crop ages, row
spacings, irrigation methods, harvest methods, residue management, crop nutrition
(especially nitrogen), and pest, weed and disease control methods is large. Thus,
there are large genotype � environment � management (G � E � M) interactions
that affect crop growth, development, yield, and quality. Differences in yield levels
between producing countries can be found in Table 8.1. A basic understanding of

Fig. 8.1 Schematic representation of production quantities of sugarcane by country in 2017. Red
circles represent the 20 largest producing countries
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sugarcane yield-building processes responsive to climatic factors, including elevated
CO2 and high temperature, is described in Sect. 8.3.

Mechanistic or process-based crop models are useful tools that integrate crop/
genotype, weather/climate, and soil and management practices and can be used to
help with the understanding of G� E�M interactions, thus serving as powerful tools
for several sectors, such as consulting, farmers, agro-industry, government, and policy
makers (Boote et al. 1996; Lisson et al. 2005; Singels 2014; Wallach 2006). In
Sect. 8.4 we briefly describe crop models dedicated to sugarcane and summarize the
history of the two most important ones, with details of their most recent improvements.
Applications of sugarcane models for sustainability of the cropping systems regarding
irrigation, nitrogen fertilization, yield gap analysis, yield forecasting, impacts of
climate change, drought adaptation and breeding are also shown and discussed in
Sect. 8.5.

This chapter therefore aims to present the main sugarcane models and their role in
understanding and mitigating the impacts of climate variability and change on
sugarcane systems toward sustainable crop production.

8.2 Climate of Sugarcane Growing Regions Around the World

Climate is the average condition of weather variables at a given spatial scale (for
instance farm, site, region, or country) in a given time scale (for example, month and
year), thus, has a static pattern. The climate is influenced by basically two types of
factors: fixed and changeable. Latitude, altitude, distance of water bodies and main
oceans, and air and snow currents can be categorized as fixed factors. On the other
hand, changeable factors drive the variability within the same area and are influenced
by global, regional and local circulation of atmosphere. An important phenomenon
that affects climate variability worldwide, and thus crop yields, is the El Niño–
Southern Oscillation (ENSO), and also others like the Indian Ocean Dipole (IOD),
the North Atlantic Oscillation (NAO) and Tropical Atlantic Variability (TAV)
(Heino et al. 2018; Anderson et al. 2019).

Regarding climate variables for sugarcane growing regions, the monthly maxi-
mum air temperatures across sites range from 19 �C (January at Nanning, CHN) to
45 �C (June at Faisalabad, PAK), whereas minimum temperatures range from 6 �C
(July at Tucumán, ARG) to 31 �C (July at Faisalabad, PAK). Annual solar radiation
ranges from around 5000 MJ/m2/year (at Nanning, CHN) to more than 7000 MJ/m2/
year (at sites in EGY, PER, AUS, IDN, and GTM). Radiation and temperature are
the main drivers of sugarcane biomass accumulation under non-limiting (potential)
conditions (Muchow et al. 1997b; Inman-Bamber 2014; Sage et al. 2014). Rainfall,
evaporation from the soil and plant transpiration (evapotranspiration), air humidity,
and wind speed also affect yields and demand for irrigation (Thornthwaite 1948;
Allen et al. 1998; Inman-Bamber and McGlinchey 2003).

Rainfall varies through the year in all sugarcane countries and some monsoonal
countries have extremes with excessive rain in some months and very little in others
(Fig. 8.2). Sugarcane is grown in desert areas, such as in EGY, PER, and MMR,
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where average annual rainfall is less than 200 mm, and also in regions where rain is
more than 1500 mm, such as in GTM, PHL, and IND. Annual potential evapotrans-
piration ranges from 719 mm (at Florida, COL, highest place in terms of altitude) to
more than 1600 mm (at Mandalay, MMR). An integrative index called annual water
deficit, represented by the difference between rainfall and potential evapotranspira-
tion, can also be employed to compare the climate across sugarcane growing regions.
This index varies between�36 mm (at Florida, COL) to less than�1311 mm at sites
in MMR, EGY, and PAK. On the other hand, there are areas with excess of water,
especially in the monsoon months, such as those in the tropics where annual rainfall
surpasses potential evapotranspiration by more than 500 mm (GTM and IND).

Even in the same country, many types of climate and degrees of variability are
found, therefore, the better the understanding of the climate where the crop is grown,
the lower the risk of failure for new decisions and business plans. Climate zones
(CZ) may be distinguished within a production region based on homogeneity in
weather variables that have the greatest influence on crop growth and yield (van
Wart et al. 2013). CZs already exist for the South African sugar industry
(Bezuidenhout and Singels 2007a) and are used as a basis for providing forecasts
of sugarcane yield using a model-based system (presented in Sect. 8.5.4).

A recent spatial analysis framework called “technology extrapolation domain” or
TED (Edreira et al. 2018) couples soil with climatic factors and aims to facilitate the
assessment of cropping system performance across producing regions, including
continents, which in turn could facilitate the sharing of better management practices
toward improved yields. A simulation study with wheat in Argentina and Australia
was done to show the potential of the TED approach. The study revealed that an
annual rainfed double-crop (as adopted in Argentina) of wheat-mungbean would be
a superior alternative to the crop-fallow system that currently predominates in the
analog TED in Australia. While the use of CZs or TED approaches in the sugarcane
industry could be highly beneficial, the only country to adopt this approach to date is
South Africa. These types of approaches would also be useful for understanding and
adapting the current sugarcane production systems worldwide to changing climates.

8.3 Climate Influence on Sugarcane Performance

The performance of a particular crop, ultimately yields, can be categorized in terms
of the following levels (Rabbinge 1993; van Ittersum and Rabbinge 1997; Evans and
Fischer 1999; Lobell et al. 2009; van Ittersum et al. 2013; Fischer 2015):

• Potential yield (Yp): yield of a given cultivar grown in an environment to which it
is adapted that is not significantly affected by water, nutrients, lodging, and biotic
factors; being determined by solar radiation, air temperature, photoperiod, CO2

concentration, and other air constituents (determining factors).
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• Water-limited yield (Yw): similar to Yp, but influenced by water stress (limiting
factor) as determined by rainfall amount and distribution along the crop cycle,
evapotranspiration, soil water holding capacity, and topography.

• Water- and nutrient-limited yield: Yw plus nutrient deficiency (ies) and other
limiting factors.

• Attainable, exploitable, or economic yield: yield attained by farmers or a particu-
lar agro-industry with average natural resources when economically optimal
practices and levels of inputs have been adopted while facing all the vagaries of
weather in rainfed, supplementary- and full-irrigated cropping systems.

• Actual or average yield (Ya): yield actually obtained by farmers or a particular
agro-industry, considering the determining, limiting, and also reducing factors
associated with pests, diseases, weeds, and mechanical (harvester) damage.

Apart from its role in determining, limiting, and reducing factors that affect
sugarcane yield, climate also indirectly limits industry performance by affecting
field operations, and the transport, processing, and marketing of sugar (Muchow
et al. 1997b), and other products such as ethanol. While climate is important for these
processes, only yield determining and limiting processes are considered in this
chapter.

Before moving into climate interactions with the crop, a brief elucidation of
sugarcane plant is needed. Sugarcane species (Saccharum spp.) are generally
large, perennial, tropical, or subtropical grasses that evolved in environments with
high radiation incidence, high air temperatures, and large quantities of water (Moore
et al. 2014). Commercial sugarcane genotypes are complex interspecific hybrids
primarily between Saccharum officinarum L. (also known as noble canes) and other
species (Moore et al. 2014). According to (Bonnett 2014), sugarcane phenology can
be divided into the following stages: (1) germination from true seed or sprouting of
buds (from culm pieces or ratoons), (2) leaf development, (3) tillering, (4) stalk
elongation, (5) development of harvestable stalks, (6) maturation (sucrose accumu-
lation), and (7) flowering.

For commercial purposes, mainly for sugar production, the ideal climate for
sugarcane according to (Mangelsdorf 1950) is “a long, warm growing season and
a fairly dry, cool, but frost-free, ripening and harvest season, free from hurricanes
and typhoons”. As previously shown, however, sugarcane is grown in a wide range
of environments and many of these would never experience such ideal conditions
over a given crop. Furthermore, inter- and intra-seasonal meteorological conditions
during crop growth and development influence the yield-building and yield-limiting
processes of sugarcane, culminating in different levels of yields (Muchow et al.
1997b; Inman-Bamber 2014).

As sugarcane is planted with culm pieces in most industries worldwide, the
following description is based on this type of planting strategy. After planting or
harvesting, sprouting strongly depends on temperature and on soil water to some
extent (Yang and Chen 1980; Donaldson 2009; Smit 2010). Compared to other C4

plants, such as maize, sorghum, and napier grass, sugarcane grows slowly during the
early part of its growth period, characterized by rates of leaf and tiller production
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(Allison et al. 2007). Leaf and tiller production are both dependent on temperature,
soil water (Inman-Bamber 2004), and management (Bell and Garside 2005; Singels
and Smit 2009), all of which affect light interception by the canopy. The character-
istic initial slow growth of sugarcane is responsible for “wasting” radiation in the
first few months (Inman-Bamber 2014). Generally, the warmer the climate, the faster
is the canopy development and the greater is the proportion of incident radiation
captured by the crop (Inman-Bamber 1994; Donaldson 2009; Dias et al. 2019).

As the sugarcane canopy develops, the ratio of leaf to ground area (leaf area index
or LAI) increases as does solar radiation interception and biomass production. Solar
radiation (approximately 300–3000 nm) is an important component of the energy
and water balances affecting crop growth and development, but photosynthetically
active radiation (PAR, 400–700 nm) is the component of radiation that is important
for the carbon balance and, hence, biomass accumulation. Canopy closure occurs
when 70% of PAR is intercepted by leaves, which depends on climate and variety, as
well crop management (Inman-Bamber 1994, 2014; Singels and Smit 2009). Leaf
and stalk initiation, elongation, and senescence are to a large extent influenced by
temperature and water stress (Inman-Bamber and Jager 1988; Inman-Bamber 1995,
2004; Robertson et al. 1996, 1998; Sinclair et al. 2004; Inman-Bamber and Smith
2005; Grof et al. 2010). However, Robertson et al. (1999a, b) found that water
deficits imposed during the tillering phase (LAI < 2), while having large impacts on
leaf area, tillering, and biomass accumulation, had little impact on final yield. Many
other factors in the G� E�M interaction during the long growth cycle of sugarcane
influence its biomass yield at harvest.

Biomass accumulation can be expressed in terms of radiation use efficiency
(RUE). RUE can be defined as the mass of aboveground biomass accumulated by
a crop per MJ of solar radiation or of PAR intercepted or absorbed by the green leaf
canopy (Monteith 1972; Sinclair and Muchow 1999; Bonhomme 2000). Sugarcane
is one of the most efficient crops in terms of RUE (Sinclair and Muchow 1999),
associated with high C4 rates of photosynthesis (Sage et al. 2014), a long growing
season (Inman-Bamber 2014), and low metabolic cost of plant organs (de Vries et al.
1989). RUE ranging between 1.38 g MJ�1 and 2.09 g MJ�1 are found in literature
(Robertson et al. 1996; Muchow et al. 1997a; da Silva 2009; Singels and Smit 2009;
De Silva and De Costa 2012; Ferreira Junior et al. 2015), which appears to be
strongly controlled by temperature during sugarcane growth (Donaldson 2009).
However, a recent study suggest that this trait is quite conservative between elite
varieties across production countries (Dias et al. 2019).

An important constraint in sugarcane yield, mainly in high input conditions, is
known as reduced growth phenomenon or RGP (Park et al. 2005; van Heerden et al.
2010). RGP was recognized in an indirect way in the past by authors such as Rostron
(1974), Lonsdale and Gosnell (1976), Thompson (1978), Inman-Bamber and
Thompson (1989), and Muchow et al. (1994). Factors such as lodging, reduced
nitrogen leaf content, stalk loss, negative feedback of sucrose accumulation on
photosynthesis, and increasing maintenance respiration during development and
maturation (sucrose) have been associated with RGP, but none of these causes

224 H. B. Dias and G. Inman-Bamber



have been clearly defined. Those factors for which meteorological conditions play an
important role are discussed next.

Lodging disrupts the canopy, damages stalks, and reduces yield through reducing
RUE in high-yielding areas where roots may be poorly supported in wet soil and a
wet canopy raises the crop’s center of gravity and in windy conditions (> 200 km
d�1) (Singh et al. 2002; van Heerden et al. 2010). Field experiments in Australia
(Singh et al. 2002) and South Africa (van Heerden et al. 2010) showed that lodging
reduces cane yields by 7.3–15% and sucrose yields by 8.8–35%, depending on the
variety and weather conditions.

The larger the biomass, the higher the maintenance respiration, which is also
increased with temperature up to a certain point (de Vries et al. 1989; Liu and Bull
2001; Jones and Singels 2019). It is likely therefore that global warming will
exacerbate the maintenance respiration rates of sugarcane. In high-yielding areas
where temperatures are consistently high, this process could be important for
biomass accumulation during the late stages of the growth cycle, thus contributing
to RGP (van Heerden et al. 2010). Maintenance respiration also depends of the type
of tissue (de Vries et al. 1989; Jones and Singels 2019) being maintained. A finding
in the van Heerden et al. (2010) study, based on data from well-watered and well-
managed crops in South Africa (Donaldson et al. 2008), was that crops which started
in summer (December) gave lower yields than those starting in winter (July). In
summer crops, the slowdown commenced in the next spring due to low
temperatures, but then persisted after temperatures rose again. Maintenance respira-
tion of high biomass yields in summer was thought to be a limiting factor for
sugarcane yield of summer crops.

Flowering, an undesired stage for commercial purposes (Moore and Berding
2014), is highly dependent on climate. After an initial juvenile stage of 2–3 months,
a decline of photoperiod (or day-length) from 12.5 to 12.0 h per day can lead to
flower induction in an unstressed crop and, in most cases, the emergence of the
inflorescence (Bonnett 2014; Moore and Berding 2014). As the photoperiod is
entirely latitude-dependent, the window for flower induction is easily found through
astronomical equations. Temperature also plays an important role in sugarcane
flowering which is favored by values higher than 18.3 �C (Coleman 1963) and
lower than 32 �C (Berding and Moore 2001), but other factors such as water and
nutrient status, genotype, and crop age also have their influence (Gosnell 1973;
Moore and Berding 2014). Thus, flower induction and emergence are highly depen-
dent on climate and its variability.

8.3.1 Climate Change-Related Environmental Variables

The global concentration of atmospheric CO2 is currently around 411 ppm (NOOA
2019), about 147% higher than pre-Industrial Revolution levels in the nineteenth
century (~ 280 ppm). Elevation of CO2 and other greenhouse gases with current and
future emission scenarios will lead to changes in climate patterns worldwide (IPCC
2014). Therefore, it is crucial to understand how sugarcane plants and cropping
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systems will be influenced by changing climates in order to predict impacts and to
design adaptive and mitigation actions.

The effect of CO2 on agricultural crops has been extensively studied, but for
sugarcane there are only a few studies that assess the impact of this gas on crop
performance. Photosynthesis and biomass yields increased and transpiration
decreased when CO2 was increased to 720 ppm for 70–350 days in pot studies
under near-optimum conditions (Vu et al. 2006; de Souza et al. 2008; Vu and Allen
2009a, b). The reported increments in photosynthesis might be influenced by
reduced transpiration and better water relations and also by short-term measurements
using small segments of leaves, not representing the whole-canopy (Stokes et al.
2016). Stokes et al. (2016) found no difference in photosynthesis or biomass yield at
elevated CO2 when plants were watered on demand, suggesting that the reported
increments in biomass were due to water-related processes. Even under water stress,
elevated CO2 does not directly enhance C4 species photosynthesis (Ghannoum et al.
2003). Sorghum and maize (C4 crops) grown in free-air CO2 enrichment field
experiments (FACE) showed higher shoot biomass and yields only when water
stress was imposed (Kimball 2016). It is known that crop responses to CO2 in
FACE experiments are lower than open-top chambers or glasshouses (Ainsworth
et al. 2008). Although FACE experiments with sugarcane have not been reported so
far, Stokes et al. (2016) presented model simulations to show how open canopy
(FACE) conditions would dampen the response to CO2 measured on single leaves or
plants. Summing up, the CO2 responses in sugarcane might be predominantly
restricted to reductions in water use rather than an augmented photosynthesis rate,
which is quite well represented with model simulations (Stokes et al. 2016; Jones
and Singels 2019). It does not necessarily minimize the need for new experiments,
particularly under field conditions, which will confirm or bring new evidence to this
important matter.

Climate change is likely to increase the frequency and intensity of weather
extreme events, such as droughts, floods, and heat and cold waves (IPCC 2014).
Drought is a common concern and some countries have already started programs to
improve varietal resistance to drought (Basnayake et al. 2012). Heat stress physiol-
ogy is a topic that has received little attention in sugarcane research (Inman-Bamber
et al. 2011; Lakshmanan and Robinson 2014). According to Lakshmanan and
Robinson (2014), heat stress is an abiotic stress that refers to a condition in which
plants experience irreversible physical or metabolic injury following exposure to a
threshold temperature for a period of time that varies from species to species. Despite
being adapted to warm climates, air temperatures beyond 40 �C affect sugarcane
germination and shoot emergence, leaf phenology, and increase plant respiration
(Bonnett et al. 2006; Lakshmanan and Robinson 2014; Jones and Singels 2019), thus
affecting yields.
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8.4 Process-Based Models Dedicated to Sugarcane

According to Wallach (2006) “crop models are mathematical models which describe
the growth and development of a crop interacting with soil” that “consist of a set of
dynamic equations that are integrated to get predictions of responses versus inputs”.
The dynamic nature of crop models is essential for simulating G � E � M
interactions when climate variability and change are involved. Thereby, crop models
can be used for many application studies (Boote et al. 1996; Wallach 2006),
including some for the sugarcane industry (Lisson et al. 2005; Singels 2014).

This section presents the current crop models dedicated to sugarcane and
summarizes the history and recent improvements for three of them after Singels
(2014), highlighting their strengths and weaknesses. Simple statistical or empirical
models (i.e. Thompson 1976; Kingston 2002; Cardozo et al. 2015) and those based
on data mining techniques (i.e. Everingham et al. 2016; de Oliveira et al. 2017;
Peloia et al. 2019) are not addressed here despite their usefulness in the conditions
where they were developed and tested (see Chap. 4).

Process-based crop models found in literature that are dedicated to, or adapted
for, sugarcane are listed in Table 8.2. Further details about some of them can be

Table 8.2 List of process-based sugarcane models

Model Main references

Developed specifically for sugarcane crop

CANEGRO Inman-Bamber (1991), Singels and Bezuidenhout (2002), Singels et al.
(2008), Jones and Singels (2019)

CANESIM Bezuidenhout and Singels (2007a, b)

AUSCANE Jones et al. (1989)

APSIM-Sugar Keating et al. (1999), Thorburn et al. (2005), Inman-Bamber et al. (2016)

QCANE Liu and Kingston (1994), Liu and Bull (2001)

WaterSense Inman-Bamber et al. (2005, 2007), Armour et al. (2013), Stokes et al.
(2016)

Singels & Inman-
Bamber

Singels and Inman-Bamber (2011)

MOSICAS Martiné (2003)

CASUPRO Villegas et al. (2005)

SimCana Machado (1981)

SAMUCA Marin and Jones (2014)

Included in, or adapted from, other crop model platforms

AquaCrop Steduto et al. (2009), Bello (2013)

CropSyst Stöckle et al. (2003), Tatsch et al. (2009), Scarpare et al. (2018)

SWAP-WOFOST Qureshi et al. (2002), van Dam et al. (2008), Scarpare (2011), Boogaard
et al. (2014)

ALMANAC Kiniry et al. (1992), Meki et al. (2015), Baez-Gonzalez et al. (2018)

BioCro Miguez et al. (2009), Jaiswal et al. (2017)

PS123 Driessen and Konijn (1992), van den Berg et al. (2000)

Agro-IBIS Kucharik and Brye (2003), Cuadra et al. (2012)

STICS Brisson et al. (1998), Valade et al. (2014)

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 227



found in Singels (2014) and the papers listed in Table 8.2. The majority of these
sugarcane models are not available publicly and this limits model evaluation,
intercomparison, identification of shortcomings for improvements and application.

Sugarcane models usually employ the concepts of yield levels as in Sect. 8.3 and
are able to predict Yp and Yw at least, and some of them simulate the interaction
with nitrogen and residues (such as APSIM-Sugar and QCANE). The time step of
calculations is usually 1 day, but some sub-models operate hourly. Phenology or
developmental stages are commonly driven by thermal time (or growing degree-
days), using one or more cardinal temperatures. Light interception by the canopy is
mostly simulated using Beer’s Law (Monsi and Saeki et al. 1953, cited by Saeki
1963), where the exponent is the product of LAI and a light extinction coefficient.
The amount of solar radiation or PAR intercepted is then converted via RUE to
generate crop biomass. Some sophisticated photosynthesis and respiration
sub-models are employed such as in BioCro, or a more simplified
RUE-transpiration use efficiency (TUE) approach such as in APSIM-Sugar. The
biomass produced, limited or not by environmental stresses, is then partitioned to
several plant components or just to stalks or sucrose, via allometric fractions or a
simple harvest index. A common limitation in many of the sugarcane models,
including those with continuous improvements, is the lack of traits or parameters
for varieties that are currently grown commercially. Efforts to improve a model’s
ability and applicability to simulate variety differences are rare in sugarcane
modeling with a few exceptions (Cheeroo-Nayamuth et al. 2000; Singels and
Bezuidenhout 2002; Suguitani 2006; Singels et al. 2010a; Singels and Inman-
Bamber 2011; Sexton et al. 2014; Thorburn et al. 2014; Leal 2016; Hoffman et al.
2018; Dias et al. 2020).

The two models widely used and currently available, APSIM-Sugar and
CANEGRO, are explored in Sects. 8.4.1 and 8.4.2, with a focus on recent
improvements after the comprehensive review by Singels (2014). WaterSense is
another important sugarcane model that was not explored in Singels’ review, thus we
review this model concerning its concepts and performance in Sect. 8.4.3. Lastly,
strengths and weaknesses of the models are briefly explored in Sect. 8.4.4 and gaps
for advancing the knowledge on sugarcane modeling are highlighted as well.

8.4.1 CANEGRO

The development of the CANEGRO model started in the 1980s after questions
posed by South African sugar industry to their local sugarcane scientists. One of the
key questions was in regard to the optimum crop age at harvest because of a problem
with an important sugarcane pest (Eldana borer) particularly for crops older than
12 months (Inman-Bamber and Thompson 1989). South African Sugarcane
Research Institute (SASRI, former SASEX) is the institution involved with past
and present CANEGRO activities. CANEGRO modeling group is also involved
with other initiatives such as the International Consortium for Sugarcane Modelling
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(ICSM, https://sasri.sasa.org.za/agronomy/icsm/index.php) and The Agricultural
Model Intercomparison and Improvement Project (AgMIP, http://www.agmip.org/).

A timeline of main events of CANEGRO development, reviews, and
improvements is presented in Fig. 8.3, in which many of these events were described
and detailed by Inman-Bamber (2000), O’Leary (2000), Lisson et al. (2005), Singels
et al. (2008) and Singels (2014). Currently, the model is readily available in the
Decision Support System for Agrotechnology Transfer (DSSAT, latest version
4.7.5, Hoogenboom et al. 2019) software.

Jones and Singels (2019) recently proposed improvements to CANEGRO regard-
ing deficiencies found in the model, and in key plant processes influenced by
changing climate variables (temperature and CO2). Thermal time calculations, a
main driver of canopy development and growth in the model, is now limited by high
as well as low temperature. A simpler, more dynamic tiller sub-model that accounts
for water and temperature stresses, bud population, and the shading effect of the
developing canopy was implemented. Maintenance respiration for total biomass was
replaced by respiration required for living tissue and the cycling of stored sucrose in
the stalk. The CERES water stress approach (Jones and Kiniry 1986) was replaced
with the simpler AquaCrop model (Steduto et al. 2009), which according to the
authors, enables a more gradual and realistic transition from well-watered to water-
stressed states. CO2 effects are simulated by modifying the stomatal resistance term
in the calculation of canopy resistance (Allen et al. 1985), which together with
canopy radiation interception and sugarcane reference evaporation is used to calcu-
late potential transpiration, following Singels et al. (2008) and Boote et al. (2010).
The direct effect of CO2 on sugarcane photosynthesis is accommodated in a new
algorithm but will have no influence on photosynthesis with current or higher CO2

levels unless new evidence from physiological studies shows otherwise (topic
discussed in Sect. 8.3).

Fig. 8.3 Timeline of main events of the CANEGRO model currently embodied in the DSSAT
cropping system
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Although CANEGRO was built to benefit the South African sugar industry rather
than other growing regions worldwide (Inman-Bamber 2000), many versions of the
model have been successfully adapted for other varieties/cropping systems world-
wide, including Brazil (Marin et al. 2011, 2015; Dias and Sentelhas 2017), Mauritius
(Cheeroo-Nayamuth et al. 2003), and India (Bhengra et al. 2016). Recent
improvements by Jones and Singels (2019) could well replace the various versions
around the world given that the modifications have been introduced to make the
model more representative of a wide range of varieties and cropping systems. This
would help to concentrate testing and improvement on just one version for the
model.

8.4.2 APSIM-Sugar

The Agricultural Production Systems SIMulator (APSIM) is a modular modeling
framework that allows for farming system simulations according to a “plugged
in/out” approach of desired modules, such as crop, soil and management practices
(McCown et al. 1996; Keating et al. 2003; Holzworth et al. 2014). APSIM was first
designed and developed in the early 1990s by a group called the Agricultural
Production Systems Research Unit (APSRU) formed by a collaboration between
regional Australian government agencies (Queensland State) and the Common-
wealth Scientific and Industrial Research Organisation (CSIRO). A module for
sugarcane was built by Keating et al. (1999) as one of APSIM’s many crop modules
to overcome the weakness of key biological aspects of a previous widely distributed
cane model in Australia called AUSCANE (O’Leary 2000). Currently, APSIM is an
initiative headed by Australian and New Zealand organizations, in which the CSIRO
is an important leader. Version control is a key aspect of their approach, so there is
only one version of the “Sugar” module available for any one release of the APSIM
platform.

A timeline of main events of APSIM-Sugar development, reviews, and
improvements is presented in Fig. 8.4. Unlike CANEGRO, APSIM-Sugar’s first
version was evaluated across a diverse range of varieties and environments from
Australia, South Africa, Swaziland, and USA (Hawaii) with considerable success
(Keating et al. 1999; O’Leary 2000). The nitrogen and carbon cycles were important
to the Australia sugar industry due to off-site impacts on the Great Barrier Reef and
the impact of residues on water conservation, soil health, and mechanization. The
nitrogen and residue modules were reviewed and improved in the early 2000s
(Thorburn et al. 2005). Greenhouse gases emissions in sugarcane fields were also
a target for model improvement in 2000s (Thorburn et al. 2010).

The sugarcane crop module itself has received little attention in terms of
improvements since its development. The user is allowed a large degree of control
through various parameter files and the model has been quite successfully adapted
for other varieties/cropping systems worldwide, including Brazil (Marin et al. 2015;
de Oliveira et al. 2016; Costa 2017; Dias and Sentelhas 2017), Mauritius (Cheeroo-
Nayamuth et al. 2000) and USA for bioenergy grasses species (Ojeda et al. 2017). A
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preliminary assessment raised the question of whether APSIM-Sugar was able to
predict yield differences between varieties after the inclusion of their specific
phenology traits (Thorburn et al. 2014). The study suggested that vital phenology
data for varieties may be deficient or the APSIM-Sugar model (and real sugarcane
crops) are not overly sensitive to these traits when it comes to yield comparisons.
Some of the model’s shortcomings were recently raised and reasonably addressed by
Inman-Bamber et al. (2012, 2016) and Dias et al. (2019), and are briefly
described next.

Inman-Bamber et al. (2012) performed a theoretical study assessing traits for
water-limited environments and found that transpiration efficiency and rooting depth
were the ones with potentially important commercial impacts. Nevertheless,
APSIM-Sugar lacked the capability for determining the trade-offs and interactions
between traits. The shortcomings were later addressed by Inman-Bamber et al.
(2016) resulting in the enhanced capability of APSIM-Sugar to simulate water-
related physiological processes aiming to support crop improvement in breeding
programs and to better distinguish between varieties in the model. The following
four features were included and tested against the original dataset used for the
model’s development as well additional data from other field experiments: (1) the
response of transpiration efficiency to water stress, (2) the midday flattening of
hourly transpiration when plants are stressed, (3) conductance limits to hourly
transpiration, which can apply even without stress, and (4) the separation of soil
hydraulic conductivity (k) and root length density (l ) rather than the use of a
combined kl for determining root water supply. The new features allowed APSIM-
Sugar to account well for observed yields and thus to accommodate genetic
differences in stomatal conductance, responses to vapor pressure deficit, and
differences in shoot:root ratio. The response of transpiration efficiency to CO2 was
also incorporated, in line with the CO2 responses found in the literature for C4 crops.
No field data is yet available to validate the CO2 response, however.

Fig. 8.4 Timeline of main events of the APSIM-Sugar model
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Dias et al. (2019) tested APSIM-Sugar in a new, hot environment where sugar-
cane is expected to expand in Brazil. Outstanding yields under high input conditions
(water and nutrients) were achieved by six Brazilian varieties grown in six planting
dates and harvested at about 8, 11.5 and 15 months. High yields were explained by
high but not excessive temperatures allowing the canopy to close after 73 days on
average. Fresh cane yield accumulated on average at about 23 t/ha per month up to
8 months and then at about 10 t/ha per month thereafter. A new modeling feature was
proposed to deal with the observed growth slowdown when the crop was about
8 months old and stalk dry mass yields were about 40 t/ha. This slowdown was
attributed to a reduced growth phenomenon (RGP) discussed above (Sect 8.3).
While a number of factors are thought to contribute to the RGP (Sect. 8.3) the new
version of APSIM allows for RUE to be modified by leaf stage as a catchall for all
RGP factors. Canopy parameters and slowdown factors linked to leaf stage were
validated with independent experiments as well as with the original dataset used for
developing the model. APSIM-Sugar now allows for reliable simulations in
environments where high yields are expected. Despite the advances with these
empirical slowdown coefficients, a mechanistic way to deal with RGP is still needed.

8.4.3 WaterSense

WaterSense was developed as a web-based irrigation scheduling system from
concepts embodied in APSIM-Sugar and CANEGRO. The CANEGRO model was
considered to be more reliable for representing the energy balance and APSIM the
carbon balance (Inman-Bamber et al. 2005, 2006, 2007). WaterSense is no longer
available as web service but the concepts are worth discussing here because of the
benefits that were, and still can be obtained from combining concepts used in the two
most widely applied modeling platforms for sugarcane. The concepts in WaterSense
can also be easily adapted for use in other crops. Armour et al. (2013) showed how
well drainage was simulated for both banana and sugarcane using WaterSense.
Stokes et al. (2016) showed how WaterSense could be used to scale up from leaf
to canopy in regard to CO2 effects on stomatal resistance. Everingham et al. (2015)
used this capability to for assessing climate change impacts on sugarcane in
Australia.

In WaterSense, the development of the canopy, radiation interception, biomass
accumulation and root water extraction are all based on concepts embodied in
APSIM-Sugar. Potential transpiration is derived from reference evapotranspiration
from FAO56 Penman-Monteith equation (Allen et al. 1998) and a crop factor
(Kc) approach, similar to the recent version of the CANEGRO model. Evaporation
from the soil surface is obtained from the amount of radiation reaching the soil
surface and the water content of the top layer of soil (Armour et al. 2013).

The development of WaterSense in conjunction with farmers is an example of
how research tools can be appropriated for end-users, provided the “technological
frames” of developers and users overlap sufficiently after a “mutual” or “participa-
tory action” learning process (Inman-Bamber et al. 2006; Webb et al. 2006; Jakku
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and Thorburn 2010). The outcome of the successful merging of technological frames
for irrigation management during the development of WaterSense are now embodied
in an active web service for sugarcane farmers in Australia provided by consultants
(Wang et al. 2018a).

8.4.4 Model’s Weaknesses

Historically, sugarcane models were developed on existing knowledge of crop
physiology. It soon became evident that the knowledge available to account for
available observations of crop growth, development, and yield was incomplete, and
this led to an iterative process between field research and model building. For
example, Lisson et al. (2005) acknowledged that crop aging processes, sucrose
accumulation, water stress physiology, and the physiology of water retention in
stalks, were important gaps for sugarcane at that time. Inman-Bamber et al. (2012)
identified weaknesses in modeling the interaction between various drought resis-
tance mechanisms. Some of these gaps have been filled at least to some extent; for
example, Inman-Bamber et al. (2016) on drought resistance mechanisms and Dias
et al. (2019) on aging. Knowledge gaps in water stress physiology have received
more attention than other gaps in physiological knowledge because of the large
influence of the water balance on crop production (Inman-Bamber and Jager 1988;
Robertson et al. 1999a; Inman-Bamber and Smith 2005; Smit and Singels 2006;
Singels et al. 2010b; Basnayake et al. 2012, 2015; Jackson et al. 2016; Marchiori
et al. 2017; Zhao et al. 2017a). Generally, sugarcane models have been predicting
Yw (rainfed conditions) quite well worldwide (see validations of Keating et al. 1999;
Cheeroo-Nayamuth et al. 2000; Liu and Bull 2001, Inman-Bamber et al. 2001, 2016;
Singels et al. 2008, 2010a; Sexton et al. 2014; Marin et al. 2015; Dias and Sentelhas
2017; Jones and Singels 2019).

O’Leary (2000) tested and reviewed three sugarcane models (APSIM-Sugar,
CANEGRO and QCANE) regarding sucrose dynamics. This author proposed a
(conceptual) process-based model that takes into account the dynamics between
sucrose and reducing sugars and factors such as water, nitrogen, and temperatures
stresses. Singels and Bezuidenhout (2002) improved the dry matter partitioning of
CANEGRO regarding water stress and temperature, and suggested an interesting
option to accommodate effects of nitrogen, variety differences, and ripener as well.
Singels and Inman-Bamber (2011) proposed a process-based model that helped to
understand genetic differences in sucrose accumulation and responses to water and
temperature, by accounting for the differences in plant development and partitioning
to structural components such as leaf and stalk fiber. Aging processes and lodging
have received some attention in the literature (Park et al. 2005) and in improvements
to some models such as CANEGRO (van Heerden et al. 2015) and APSIM-Sugar
(Dias et al. 2019). Water retention in stalks remains as a weakness in current models
and is an important issue because of its impact on costs of cane harvesting and
transportation (Lisson et al. 2005).
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Other important topics on sugarcane physiology for advancing our understanding
and improving existing models are root dynamics and its role in crop yield-building
processes, nutrients, flowering, and heat stress effects. Theoretical studies by Inman-
Bamber et al. (2012) and Singels et al. (2016) with APSIM-Sugar and CANEGRO,
respectively, indicated that roots are an important component for drought adaptation
and that knowledge is limiting for modeling and understating adaptation to water
stress. Studies by Chopart et al. (2008, 2010), Laclau and Laclau (2009) and Otto
et al. (2011) provided valuable information for improved simulation of root profiles,
penetration rate, and specific root length. This knowledge has not yet been used in
models as far as we know.

While some models include a comprehensive nitrogen balance, the high nitrogen
use efficiency found in Brazilian cropping systems (Robinson et al. 2011; Otto et al.
2016), particularly for plant cane (Franco et al. 2011), has not been well clarified.
This is a topic that deserves attention because it could bring important insights for
nitrogen management worldwide.

Sugarcane models do not currently simulate flowering even though flowering in
favorable environments causes large losses in yield and quality worldwide. Simula-
tion of this process would help in many applications such as determining yield
potential, harvest management, varietal planning, and decision-making for chemical
control.

Lastly, but not least, heat stress is expected to be an important crop constraint in
tropical areas under changing climates where temperatures and heat waves are
predicted to increase considerably. Temperature response functions in wheat and
maize process-based models have been recently revised and improved for predicting
yields in changing climates (Wang et al. 2017, 2018b). Jones and Singels (2019)
made improvements in CANEGRO regarding temperature effects, but in other
models this topic has received little attention.

The future of sugarcane models will also depend on advances and cooperation
with genetics research, which has indeed already started for annual crops (Singels
2014). Simulations could indicate the desirability of traits (or QTL or genes) in target
environments and thus help for ideotyping and breeding by design (Singels 2014;
Hoffman et al. 2018).

Targeted experimentation and perhaps revisitation of existing experimental data
to gain insight into sugarcane processes that still are poorly understood, such as crop
slowdown with age, lodging, and roots-related and heat stress, will be needed.

8.5 Toward Sustainable Sugarcane Production: Usefulness
of Process-Based Models Applications

Applications of sugarcane process-based models started in the beginning of 1990s
with the development of CANEGRO (Fig. 8.3), ramping up considerably after
CANEGRO’s inclusion in the DSSAT platform in 1997 and 2008 (Figs. 8.5 and
8.6). During the end of 1900s and beginning of 2000s, APSIM-Sugar applications
increased substantially with a peak of papers published in 2001 (Figs. 8.5 and 8.6).
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The second boom of the use of sugarcane models happened around 2007 and since
then, modeling publications increased year by year, reaching other peaks in 2016
and 2018 (Fig. 8.5). Table 8.3 lists many of the referenced studies that employed
sugarcane models we have found so far, categorized by the type of application. The

Fig. 8.5 Sugarcane process-based model application papers published over years

Fig. 8.6 Papers published per and over years categorized according to the main models
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Table 8.3 List of various types of applications of the sugarcane models and example references
that describe these applications in detail, organized by continent on which the studies were
conducted. Participations, as a percentage of total number of papers, of each continent are shown
in brackets

Continent Application References

Americas Breeding support &
variety comparison

Suguitani (2006), Leal (2016)

(22%) Climate variability &
change

da Silva (2012), Bello (2013), Singels et al. (2014), dos
Vianna and Sentelhas (2014), de Carvalho et al. (2015),
Marin et al. (2015), Jaiswal et al. (2017), Baez-Gonzalez
et al. (2018), Sentelhas and Pereira (2019)

Crop/Farm
management

Galdos et al. (2009a, b) Brandani et al. (2015), de
Oliveira et al. (2016)

Fertilizer management Costa et al. (2014), Marin et al. (2014), de Oliveira et al.
(2016), de Barros et al. (2018)

Water management &
efficiency

dos Vianna and Sentelhas (2016), Costa (2017), Dias and
Sentelhas (2018a)

Yield benchmarking &
gap

van den Berg et al. (2000), Marin et al. (2016), Dias and
Sentelhas (2018b

Yield forecasting Pagani et al. (2017)

Asia Breeding support &
variety comparison

Bhengra et al. (2016)

(7%) Climate variability &
change

Jintrawet and Prammaneem (2005), Ahmad et al. (2016),
Mishra et al. (2017), Ruan et al. (2018), Gunarathna et al.
(2019)

Water management &
efficiency

Qureshi et al. (2002)

Yield benchmarking &
gap

Zu et al. (2018)

Yield forecasting Promburom et al. (2001), Piewthongngam et al. (2009),

Africa Breeding support &
variety comparison

Cheeroo-Nayamuth et al. (2003, 2011), Hoffman et al.
(2018)

(32%) Climate variability &
change

Inman-Bamber (1994), Martiné et al. (1999), Cheeroo-
Nayamuth and Nayamuth (2001), Walker and Schulze
(2010), Knox et al. (2010), Black et al. (2012), Singels
et al. (2018), Jones et al. (2014, 2015), Singels et al.
(2014), Hoffman et al. (2017), Jones and Singels (2019)

Crop/Farm
management

Bezuidenhout et al. (2002), McGlinchey and Dell (2010),
Paraskevopoulos et al. (2016)

Drought adaptation Singels et al. (2016)

Fertilizer management Thorburn et al. (2001b), Van Antwerpen et al. (2002),
van der Laan et al. (2011)

Water management &
efficiency

Inman-Bamber et al. (1993), McGlinchey et al. (1995),
Donaldson and Bezuidenhout (2000), Olivier and Singels
(2001), Singels and Smith (2006), Kunz et al. (2014),
Paraskevopoulos and Singels (2014), Singels et al.
(2019)

Yield benchmarking &
gap

Inman-Bamber (1995), Cheeroo-Nayamuth et al. (2000,
2011), Singels (2007), van den Berg and Singels (2013),
Jones and Singels (2015), Christina et al. (2019)

(continued)

236 H. B. Dias and G. Inman-Bamber



majority of model applications found employed APSIM-Sugar (45%) mostly in
Australia, and CANEGRO plus CANESIM (a simpler version of CANEGRO)
(37%) mostly in South Africa (Fig. 8.5). Use and applications of APSIM-Sugar
and CANEGRO have increased in Americas in this decade, especially in Brazil
(Table 8.3).

Water management and efficiency, nitrogen management, yield benchmarking,
gap, and forecasting, and most recently climate change impact studies predominate
in sugarcane model applications (Table 8.3 and Fig. 8.7). A common aspect in
applications of models is the intrinsic effect of climate and its variability on
production. Long-term climate series were employed in the majority of these studies.
The following subsections provide some examples of model applications aimed at
informing sustainable planning and decision-making processes in the sugarcane
sector (Fig. 8.7).

Table 8.3 (continued)

Continent Application References

Yield forecasting Lumsden et al. (1998), McGlinchey (1999), de Lange
and Singels (2003), Bezuidenhout and Singels
(2007a, b), Martiné (2007), Morel et al. (2014a, b)

Oceania Breeding support &
variety comparison

Sexton et al. (2014)

(40%) Climate variability &
change

Lisson et al. (2000), Park et al. (2007), Park (2008),
Webster et al. (2009), Biggs et al. (2013), Singels et al.
(2014), Everingham et al. (2015)

Crop/Farm
management

McDonald and Lisson (2001)

Drought adaptation Inman-Bamber et al. (2012, 2016)

Environmental
pollution

Thorburn et al. (2001a, 2010, 2011), Webster et al.
(2009), Armour et al. (2013), Biggs et al. (2013)

Fertilizer management (Keating et al. (1997), Thorburn et al. (1999, 2001b,
2003, 2004, 2017, 2018), Stewart et al. (2006), Park et al.
(2010), Skocaj et al. (2013), Meier and Thorburn (2016),
Zhao et al. (2017b), Kandulu et al. (2018)

Land management Mallawaarachchi and Quiggin (2001)

Pest management Liu and Allsop (1996)

Water management &
efficiency

Robertson et al. (1997, 1999b), Muchow and Keating
(1998), Inman-Bamber et al. (1999, 2001, 2004, 2005,
2006), Attard et al. (2003), Everingham et al. (2002,
2008), Stoeckl and Inman-Bamber (2003), Lisson et al.
(2003), Webb et al. (2006), Inman-Bamber and Attard
(2008), An-Vo et al. (2019)

Yield benchmarking &
gap

Muchow et al. (1997b), Liu and Bull (2001)

Yield forecasting Everingham et al. (2002, 2005, 2007, 2009, 2016)
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8.5.1 Irrigation Management

Irrigation and its associated topics (for example, water allocation and water use
efficiency assessment) are some of the most common areas of sugarcane model
applications (Table 8.3). Examples are:

• Helping farmers with irrigation planning and management with web-based tools
(McGlinchey et al. 1995; Inman-Bamber et al. 2005, 2007; Singels and Smith
2006; Inman-Bamber and Attard 2008), by coupling with seasonal climate
forecasts (Everingham et al. 2002, 2008; An-Vo et al. 2019), or for new
environments where little is known (Muchow and Keating 1998; Lisson et al.
2000; Inman-Bamber et al. 2006);

• Optimizing yields and making the best use of limited irrigation water (Inman-
Bamber et al. 1999, 2007; Singels et al. 1999, 2019);

• Estimating drying-off days before harvest to optimize sucrose yields (Robertson
et al. 1999b; Donaldson and Bezuidenhout 2000; Dias and Sentelhas 2018a);

• Dimensioning dam building for water storage (Lisson et al. 2003);
• Assessing risks of crop lodging considering irrigation strategies across varieties,

environments, and growing months (Inman-Bamber et al. 2004; Paraskevopoulos
et al. 2016).

Consultants are now using models to provide some of these irrigation applications
as well as other services for sugarcane production (https://www.sqrsoftware.com/;
http://agritechsolutions.com.au/).

Fig. 8.7 Papers published per year and over years categorized according to the main types of
application
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8.5.2 Nitrogen Management and Its Implications to Environment

Nitrogen management is a particular topic that has been evaluated using sugarcane
models (Table 8.3), mostly with APSIM-Sugar. Mechanization in sugarcane fields
has increased in many areas worldwide, especially at harvesting, requiring
adjustments in the cropping systems due to the residues left in the soil. Impacts of
the green cane trash blanket on cane yield, soil components, and nitrogen fertilizer
requirements have been assessed in Australia (Thorburn et al. 1999, 2001b, 2004;
Meier and Thorburn 2016), South Africa (Thorburn et al. 2001b; Van Antwerpen
et al. 2002) and Brazil (Costa et al. 2014; Marin et al. 2014; de Oliveira et al. 2016;
de Barros et al. 2018) by using APSIM-Sugar.

Crop rotation with legumes to provide nitrogen through biological fixation is a
practice that is recommended in many sugarcane cropping systems worldwide. Park
et al. (2010) employed APSIM-Sugar to assess the impact of soybean rotation on
nitrogen requirements in six sites (four of them in the Burdekin region) across
Australia. Long-term simulations showed that nitrogen fertilizer could be reduced
around 60–100%, 40–100%, 20–60%, 5–30% and < 10% for plant crops and the
subsequent four ratoons, respectively, when compared to bare fallow systems. Their
findings suggest a potential economic and environmental win–win outcome from
refining and adopting sugarcane–legume rotation cropping systems in Australia and
perhaps other countries.

Thorburn et al. (2017) simulated nitrogen management practices such as fertilizer
rate, timing, and splitting, fallow management and tillage intensity with APSIM-
Sugar across several sites in Australia and concluded that optimizing the application
rate and fallow management should be prioritized for improving the nutrient effi-
ciency. Thorburn et al. (2018) recently showed that rather than trying to improve
nitrogen recommendations by changing concepts around target yields, the direct
prediction of optimum nitrogen rates through the application APSIM-Sugar would
be more beneficial for Australian environments, since the model captures soil and
crop physiological processes, and their interactions with climate and management.

Environment implications of nitrogen fertilization can be also assessed through
sugarcane models. Reducing impacts into the World Heritage listed Great Barrier
Reef Marine Park from sugarcane farming is a particular concern in Australia.
Sugarcane models (mainly APSIM-Sugar) have been applied to estimate nitrogen
losses through runoff and leaching at several sites in the Australia Northeast region
(Thorburn et al. 2003, 2011, 2017; Stewart et al. 2006; Armour et al. 2013; Biggs
et al. 2013) and at Pongola, South Africa (van der Laan et al. 2011). Kandulu et al.
(2018) integrated the APSIM-Sugar model with other techniques (probability theory,
Monte Carlo simulation, and financial risk analysis) in a framework that allowed an
assessment of economic and environmental trade-offs for nitrogen management
strategies considering variable climatic and economic conditions. The framework
was applied to a high rainfall production area close to the Great Barrier Reef in
Australia. On average, net economic returns and nitrogen fertilizer rates were
lowered when environmental costs were taken into account (Kandulu et al. 2018).
This framework is interesting because it incorporates farmer risk behavior and
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environmental impacts, which in turn enhances the sustainability of a particular
cropping system.

8.5.3 Yield Gap and Benchmarking

There are at least four approaches to estimate Yp and Yw and then to perform yield
gap and benchmarking analysis; however, crop simulation models are recommended
as a preference for such analyses, once they take into account the biological,
biochemical, and biophysical aspects related to crop yield (van Ittersum et al. 2013).

Inman-Bamber (1995) first used CANEGRO to assess Yp and Yw (stalk and
sucrose fresh mass yields) for 32 sites in South Africa considering two types of soils
(a shallow loamy-sand and a deep structured one). These estimates were validated
with variety trials, where variety NCo376 was common at 17 sites. Differences
between Yp and Yw varied greatly depending on rainfall. In South Africa, irrigation
is essential where Yw is less than 75% Yp. Years later van den Berg and Singels
(2013) compared Yw estimates of CANESIM with Ya from small- and large-scale
farmers using a CZ approach. Considering the period from 1988 to 2010, on average,
Ya of large-scale farmers reached 77% of Yw, while for small-scale growers Ya
stayed below 50% Yw. Factors such as damaging effects of a new pest (sugarcane
thrips), inadequate nutrition and inadequate replanting, apparently linked to unfa-
vorable socioeconomic conditions, were hypothesized to be the causes of the
suboptimal production, revealing important points to be tackled by South African
sugar industry.

Muchow et al. (1997b) demonstrated the remarkable variation in commercial
sugar yields (Ya) across 14 sites along the Australian east coast and compared these
to Yp using long-term APSIM-Sugar simulations. Maximum yields at four of these
sites in some growing seasons were equivalent to Yp in less than 5% of the area
harvested. District mean yields were 53–69% of Yp showing considerable room for
improvement in the Australian sugar industry.

CANEGRO was used to develop norms for yield decline over successive ratoons
in Swaziland (McGlinchey and Dell 2010). Yields tended to decline by about 1% for
each successive ratoon in good soils but as much as 2.8% in poor soils. Ya/Yp for
plant crops ranged from 0.81 to 0.90 depending on soil type.

Similar studies were performed using CANEGRO, APSIM-Sugar and other crop
models in Mauritius (Cheeroo-Nayamuth et al. 2000, 2011), Brazil (Marin et al.
2016; Dias and Sentelhas 2018b), China (Zu et al. 2018) and Réunion (Christina
et al. 2019). In Brazil, despite water being the factor that contributes most to cane
yield gaps (Dias and Sentelhas 2018b), the gap attributed to general deficiencies in
crop management, ranged from as low as 6 t/ha to as much as 79 t/ha depending on
the region (Marin et al. 2016; Dias and Sentelhas 2018b).

Such analyses can help to quantify, identify the causes of, and mitigate yield gaps,
in order to increase efficiency and consequently the production and sustainability of
sugarcane industries worldwide. For instance, by increasing the national yield of
Brazil on average by 10 t/ha (8.9 mi ha of crop area), an increment of 89 mi t would
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approach the total production of China (105 mi t) and Thailand (103 mi t)
(Table 8.1). Such a vertical increase in production could meet future demands for
sugarcane products (Marin et al. 2016) and relieve land use (Dias and Sentelhas
2018b) for other activities such as growing other crops or forest restoration in Brazil.

8.5.4 Yield Forecasting

Sugarcane and sugar yield forecasts are, or can be, useful for many agents involved
in the sugarcane industries. Everingham et al. (2002), Higgins et al. (2007) and
Bocca et al. (2015) provided examples of how forecasts can benefit planning and
decision-making processes in the sugarcane industry. Sugarcane models can be used
to generate the forecasts and two systems that are currently operating based on two
models are briefly described below.

The CANESIM model is employed in an operational way in the South African
sugar industry since 2000 and provides monthly yield forecasts for 48 CZs covering
14 mill supply areas. Further details can be found in Everingham et al. (2002) and
Bezuidenhout and Singels (2007a, b). Basically, the system uses daily data from
several automatic weather stations and completes the time-series with likely future
weather conditions, to forecast yields for the pending harvest season, through model
simulations at district, mill, and industry scales. Ten analog daily weather sequences
are selected from past climate records, which best represent future weather
conditions expected from ENSO indices provided by the South African Weather
Service. Yields are represented as a percentage of those for the previous season.
Forecasts are released monthly from November, 4 months before the start of the
milling season (April to December), to September. Harvesting schedules and milling
decisions are based on CANESIM forecasts, which are also used by South African
Sugar Association as a support for planning and decision-making regarding sugar
marketing.

TempoCampo is a recent yield forecasting system that is being developed for the
Brazilian sugarcane industry and intended to extend the forecasts to other agro-
industries (Marin 2017). The systems firstly used CANEGRO, but now is using the
recently built SAMUCA model (Marin and Jones 2014), which relies on modeling
approaches similar to those of CANEGRO and APSIM-Sugar. The system operates
in a similar way to the South African one for supporting some mills in Southern
Brazil.

Apart from the two systems presented previously, sugarcane models have been
employed in studies worldwide together with other techniques, such as remote
sensing (Morel et al. 2014a, b), statistics (Martiné 2007; Pagani et al. 2017) and
data mining (Everingham et al. 2009, 2016). These all deserve attention for further
development of integrated and operational yield forecasting systems for sugarcane
industries worldwide.

Irrigation management, yield benchmarking, and yield forecasting are services
based on the CANEGROmodel that are offered by a commercial software developer
(https://www.sqrsoftware.com/) providing many options for managing large and
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small sugarcane production systems in Africa, the Americas, and Australia (pers.
com. Mark McGlinchey 2019).

8.5.5 Climate Change

Climate change is a huge concern of many societies globally, and this phenomenon
will certainly influence sugarcane industries. Process-based crop models such as
those previously discussed are preferred because they tend to include the effects of
CO2 increases that accompany warming, whereas statistical models typically do not
(Lobell and Asseng 2017). Therefore, despite many approaches being used to assess
climate change effects on the sugarcane crop/industry (Linnenluecke et al. 2018),
only those with process-based sugarcane models are considered here. Studies
involving this topic have increased substantially in the past few years (Tables 8.3
and 8.4).

The majority of climate change studies using crop models for sugarcane world-
wide can be classified as impact studies (Table 8.4; Linnenluecke et al. 2018). The
methodology varies considerably in regard to timeframe, future climate scenarios,
type of global circulation models, downscaling, and other methods (Table 8.4;
Linnenluecke et al. 2018), which makes comparisons difficult. Overall, the impact
of climate change is predicted to be positive for sugarcane yields; however, it is also
variable (Table 8.4). A recent assessment by Linnenluecke et al. (2019) has shown
that sugarcane production in Australia of 1964–1995 compared to 1996–2012 has
already been negatively affected by changes in climate variables, which reinforces
the need for attention from policymakers and future research.

Sensitivity analyses, considering ranges for the main weather variables under
changing climates (CO2, air temperature, and rainfall), were performed for several
sites worldwide mainly by using CANEGRO (Jones et al. 2014; Marin et al. 2015;
Jones and Singels 2019). The simulations showed that sugarcane yields would, in
general, be enhanced by changes in CO2 and air temperature within the expected
ranges predicted by IPCC (2014). Decreases in yields were predicted when rainfall
was decreased within the expected ranges. Jones and Singels (2019) refined
CANEGRO with regard to some plant processes, including CO2 interactions and
high temperature effects (see Sect. 8.4.1), and confirmed previous findings, except
that the increments in yields were lower due to the inclusion of a more rational
representation of the effect of temperature on sugarcane physiological processes.

Climate change adaptation studies using sugarcane models are scarce
(Linnenluecke et al. 2018), but some can be found in literature. Cheeroo-Nayamuth
and Nayamuth (2001) explored climate change adaptation strategies for sugar yields
in Mauritius by using APSIM-Sugar, which included irrigation, cultivar and changes
in harvest date. They concluded that irrigation was the best adaptive option
depending on water availability, water storage, and cost. Park et al. (2007) used
APSIM-Sugar to assess the adaptive strategy of changing planting dates in the most
important growing regions in Australia. The simulations suggested that yield
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potential will increase marginally by the year 2030 if planting the date occurs earlier
than is presently practiced in the south of the industry and later in the north.

8.5.6 Drought Adaptation and Breeding

Water deficit, caused by lack of or irregular distribution of rainfall throughout the
sugarcane cycle, is one of the main causes of yield losses in sugarcane regions
around the world (Inman-Bamber and Smith 2005; Basnayake et al. 2012; Dias and
Sentelhas 2018b). Even for irrigated cropping systems, there is an increasing
concern about the amount and efficiency of water use, owing to the rising costs of
applying water, limited availability of water for irrigation, and environmental issues
(Jackson et al. 2016) (see Sect. 8.5.2).

There is an increasing interest in breeding for crops grown in water-limited
environments (Inman-Bamber et al. 2012). Inman-Bamber et al. (2012) employed
APSIM-Sugar for a theoretical assessment aiming to find traits that could reduce the
loss of sugarcane yield under rainfed conditions. Simulations showed that reduced
root conductance or stomatal conductance would increase biomass yield in only
about 5% in the driest climates on well-structured soils. Transpiration efficiency, a
genotype-dependent trait (Saliendra and Meinzer 1992; Jackson et al. 2016), was
also tested and an improvement in this trait arising from increased intrinsic water use
efficiency would usually improve biomass under water deficit. Leaf and culm
senescence were generally unsuccessful in conferring adaptation to water deficit.

In South Africa crop modelers are working together with breeders for sugarcane
yield improvement. Ngobese et al. (2018) assessed traits for several varieties
described in CANEGRO, to explore G � E interactions across environments and
crop classes to assist in breeding efforts, according to the authors. Hoffman et al.
(2018) predicted stalk dry mass yields reasonably well by estimating the
RUE-related trait parameter in CANEGRO using leaf level photosynthesis and
stomatal conductance measurements for several varieties, thus, showing that it is
possible to apply crop models for helping sugarcane breeding.

8.6 Final Considerations

Sugarcane production is highly dependent on climate and its variability, and there-
fore also to climate change. Modeling groups and process-based models have been
helping industries across the sugarcane producing regions worldwide, of which we
can highlight irrigation management and yield forecasting as the most common
applications. Possible climate change impacts are now quite well elucidated for
some environments through model simulations, but studies focusing on adaptation
strategies that minimize or even take further advantage of these impacts are neces-
sary. Usefulness of sugarcane models in breeding started being demonstrated for
South African and Australian programs. Nevertheless, there is room for
improvements that were also discussed, many of which were previously
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acknowledged in the past. Continuous physiology experimentation and modeling
efforts are needed to fill the knowledge gaps in these sugarcane research areas.
Collaboration between research groups worldwide might speed up this process.
Despite their weaknesses, sugarcane models are a powerful tool to understand and
propose management and adaptive actions to mitigate losses or increase yields under
current and future climates.

Acknowledgments This contribution was not funded by any institution. However, the first author
(HBD) is truly grateful to the São Paulo Research Foundation (FAPESP), which facilitated his
studies in sugarcane agrometeorology, physiology, and modeling in the past few years through the
grants #2014/05173-3, #2016/11170-2, and #2017/24424-5.

Climate data used in Fig. 8.2 were obtained from the NASA Langley Research Center (LaRC)
POWER Project funded through the NASA Earth Science/Applied Science Program.

References

Ahmad S, Nadeem M, Abbas G et al (2016) Quantification of the effects of climate warming and
crop management on sugarcane phenology. Clim Res 71:47–61. https://doi.org/10.3354/
cr01419

Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008) FACE-ing the facts: inconsistencies and
interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop
yield and food supply. New Phytol 179:5–9. https://doi.org/10.1111/j.1469-8137.2008.02500.x

Alkimim A, Clarke KC (2018) Land use change and the carbon debt for sugarcane ethanol
production in Brazil. Land Use Policy 72:65–73. https://doi.org/10.1016/j.landusepol.2017.
12.039

Allen LH, Jones P, Jones JW (1985) Rising atmospheric CO2 and evapotranspiration. In:
Proceedings of the national conference on advances in evapotranspiration. ASAE, St Joseph/
Chicago, pp 13–27

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration: guidelines for computing
crop water requirements. FAO, Rome

Allison JCS, Pammenter NW, Haslam RJ (2007) Why does sugarcane (Saccharum sp. hybrid) grow
slowly? S Afr J Bot 73:546–551. https://doi.org/10.1016/j.sajb.2007.04.065

Anderson WB, Seager R, Baethgen W et al (2019) Synchronous crop failures and climate-forced
production variability. Sci Adv 5:eaaw1976. https://doi.org/10.1126/sciadv.aaw1976

An-Vo DA, Mushtaq S, Reardon-Smith K et al (2019) Value of seasonal forecasting for sugarcane
farm irrigation planning. Eur J Agron 104:37–48. https://doi.org/10.1016/j.eja.2019.01.005

Armour JD, Nelson PN, Daniells JW et al (2013) Nitrogen leaching from the root zone of sugarcane
and bananas in the humid tropics of Australia. Agric Ecosyst Environ 180:68–78. https://doi.
org/10.1016/j.agee.2012.05.007

Attard SJ, Inman-Bamber NG, Engelke J (2003) Irrigation scheduling in sugarcane based on
atmospheric evaporative demand. Proc Aust Soc Sugar Cane Technol 25 (CD-ROM)

Baez-Gonzalez AD, Kiniry JR, Meki MN et al (2018) Potential impact of future climate change on
sugarcane under dryland conditions in Mexico. J Agron Crop Sci:1–14. https://doi.org/10.1111/
jac.12278

Basnayake J, Jackson PA, Inman-Bamber NG, Lakshmanan P (2012) Sugarcane for water-limited
environments. Genetic variation in cane yield and sugar content in response to water stress. J
Exp Bot 63:6023–6033. https://doi.org/10.1093/jxb/ers251

Basnayake J, Jackson PA, Inman-Bamber NG, Lakshmanan P (2015) Sugarcane for water-limited
environments. Variation in stomatal conductance and its genetic correlation with crop produc-
tivity. J Exp Bot 66:3945–3958. https://doi.org/10.1093/jxb/erv194

246 H. B. Dias and G. Inman-Bamber

https://doi.org/10.3354/cr01419
https://doi.org/10.3354/cr01419
https://doi.org/10.1111/j.1469-8137.2008.02500.x
https://doi.org/10.1016/j.landusepol.2017.12.039
https://doi.org/10.1016/j.landusepol.2017.12.039
https://doi.org/10.1016/j.sajb.2007.04.065
https://doi.org/10.1126/sciadv.aaw1976
https://doi.org/10.1016/j.eja.2019.01.005
https://doi.org/10.1016/j.agee.2012.05.007
https://doi.org/10.1016/j.agee.2012.05.007
https://doi.org/10.1111/jac.12278
https://doi.org/10.1111/jac.12278
https://doi.org/10.1093/jxb/ers251
https://doi.org/10.1093/jxb/erv194


Bell MJ, Garside AL (2005) Shoot and stalk dynamics and the yield of sugarcane crops in tropical
and subtropical Queensland, Australia. Field Crop Res 92:231–248. https://doi.org/10.1016/j.
fcr.2005.01.032

Bello CAC (2013) Uso del modelo Aquacrop para estimar rendimientos para el cultivo de caña de
azúcar en el departamento del Valle del Cauca

Berding N, Moore PH (2001) Advancing from opportunistic sexual recombination in sugarcane.
Lessons from tropical photoperiodic research. Proc Int Soc Sugar Cane Technol 24:482–487

Bezuidenhout CN, Singels A (2007a) Operational forecasting of South African sugarcane produc-
tion: part 1 – system description. Agric Syst 92:23–38. https://doi.org/10.1016/j.agsy.2006.02.
001

Bezuidenhout CN, Singels A (2007b) Operational forecasting of South African sugarcane produc-
tion: part 2 – system evaluation. Agric Syst 92:39–51. https://doi.org/10.1016/j.agsy.2006.02.
001

Bezuidenhout CN, Singels A, Hellmann D (2002) Whole farm harvesting strategy optimisation
using the CANEGRO model: a case study for irrigated and rainfed sugarcane. Proc S Afr Sugar
Technol Assoc 76:250–259

Bhengra AH, Yadav MK, Patel C et al (2016) Calibration and validation study of sugarcane
(DSSAT-CANEGRO V4.6.1) model over North Indian region. J Agrometeorol 18:234–239

Biggs JS, Thorburn PJ, Crimp S et al (2013) Interactions between climate change and sugarcane
management systems for improving water quality leaving farms in the Mackay Whitsunday
region, Australia. Agric Ecosyst Environ 180:79–89. https://doi.org/10.1016/j.agee.2011.11.
005

Black E, Vidale PL, Verhoef A et al (2012) Cultivating C4 crops in a changing climate: sugarcane in
Ghana. Environ Res Lett 7:044027. https://doi.org/10.1088/1748-9326/7/4/044027

Bocca FF, Rodrigues LHA, Arraes NAM (2015) When do I want to know and why? Different
demands on sugarcane yield predictions. Agric Syst 135:48–56. https://doi.org/10.1016/j.agsy.
2014.11.008

Bonhomme R (2000) Beware of comparing RUE values calculated from PAR vs solar radiation or
absorbed vs intercepted radiation. Field Crop Res 68:247–252. https://doi.org/10.1016/S0378-
4290(00)00120-9

Bonnett GD (2014) Developmental stages (phenology). In: Moore PH, Botha FC (eds) Sugarcane:
physiology, biochemistry, and functional biology. Wiley, Chichester, pp 35–53

Bonnett GD, Hewitt ML, Glassop D (2006) Effects of high temperature on the growth and
composition of sugarcane internodes. Aust J Agric Res 57:1087–1095. https://doi.org/10.
1071/AR06042

Boogaard HL, Van Diepen CA, Rötter RP et al (2014) WOFOST Control Centre 2.1 and WOFOST
7.1.7. 133

Boote KJ, Jones JW, Pickering NB (1996) Potential uses and limitations of crops models. Agron J
88:704–716. https://doi.org/10.2134/agronj1996.00021962008800050005x

Boote KJ, Allen LH, Prasad PVV, Jones JW (2010) Testing effects of climate change in crop
models. In: Hillel D, Rosenzweig C (eds) Handbook of climate change and agroecosystems –
impacts, adaptation and mitigation. Imperial College Press, London, pp 109–129

Börjesson P (2009) Good or bad bioethanol from a greenhouse gas perspective – what determines
this? Appl Energy 86:589–594. https://doi.org/10.1016/j.apenergy.2008.11.025

Brandani CB, Abbruzzini TF, Williams S et al (2015) Simulation of management and soil
interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB
Bioenergy 7:646–657. https://doi.org/10.1111/gcbb.12175

Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne-Barret F,
Antonioletti R, Durr C, Richard G, Beaudoin N, Recous S, Tayot X, Plenet D, Cellier P, Machet
JM, Meynard J-M, Delécolle R (1998) STICS: a generic model for the simulation of crops and
their water and nitrogen balances, I. Theory and parameterization applied to wheat and corn.
Agronomie 18:311–346

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 247

https://doi.org/10.1016/j.fcr.2005.01.032
https://doi.org/10.1016/j.fcr.2005.01.032
https://doi.org/10.1016/j.agsy.2006.02.001
https://doi.org/10.1016/j.agsy.2006.02.001
https://doi.org/10.1016/j.agsy.2006.02.001
https://doi.org/10.1016/j.agsy.2006.02.001
https://doi.org/10.1016/j.agee.2011.11.005
https://doi.org/10.1016/j.agee.2011.11.005
https://doi.org/10.1088/1748-9326/7/4/044027
https://doi.org/10.1016/j.agsy.2014.11.008
https://doi.org/10.1016/j.agsy.2014.11.008
https://doi.org/10.1016/S0378-4290(00)00120-9
https://doi.org/10.1016/S0378-4290(00)00120-9
https://doi.org/10.1071/AR06042
https://doi.org/10.1071/AR06042
https://doi.org/10.2134/agronj1996.00021962008800050005x
https://doi.org/10.1016/j.apenergy.2008.11.025
https://doi.org/10.1111/gcbb.12175


Cardozo NP, Sentelhas PC, Panosso AR et al (2015) Modeling sugarcane ripening as a function of
accumulated rainfall in Southern Brazil. Int J Biometeorol 59:1913–1925. https://doi.org/10.
1007/s00484-015-0998-6

Cheeroo-Nayamuth FB, Nayamuth RAH (2001) Climate change and sucrose production in
Mauritius. Proc Int Soc Sugar Cane Technol 24:107–112

Cheeroo-Nayamuth F, Robertson M, Wegener M, Nayamuth AR (2000) Using a simulation model
to assess potential and attainable sugar cane yield in Mauritius. Field Crop Res 66:225–243.
https://doi.org/10.1016/S0378-4290(00)00069-1

Cheeroo-Nayamuth BF, Bezuidenhout CN, Kiker GA, Nayhamuth AR (2003) Validation of
CANEGRO-DSSAT V3.5 for contrasting sugarcane varieties in Mauritius. Proc S Afr Sugar
Technol Assoc 7:601–604

Cheeroo-Nayamuth B, Nayamuth A, Koonjah S (2011) Yield analysis in the west sector of the
Mauritian sugarcane industry. Proc S Afr Sugar Technol Assoc 84:106–115

Chopart J-L, Rodrigues SR, Carvalho de Azevedo M, de Conti Medina C (2008) Estimating
sugarcane root length density through root mapping and orientation modelling. Plant Soil
313:101–112. https://doi.org/10.1007/s11104-008-9683-4

Chopart JL, Azevedo MCB, Le Mézo L, Marion D (2010) Functional relationship between
sugarcane root biomass and length for cropping system applications. Sugar Tech 12:317–321.
https://doi.org/10.1007/s12355-010-0044-2

Christina M, Le Mezo L, Mezino M et al (2019) Modelling the annual yield variability in sugarcane
in Réunion. Proc Int Soc Sugar Cane Technol 30:393–401

Coleman RE (1963) Effect of temperature on flowering in sugarcane. Int Sugar J 6:351–353
Costa LG (2017) Crescimento, desenvolvimento e consumo hídrico de cana-de-açúcar sob dois

sistemas de manejo da palha. Universidade de São Paulo, Escola Superior de Agricultura “Luiz
de Queiroz”. Piracicaba, Brasil [in Portuguese]

Costa LG, Marin FR, Nassif DSP et al (2014) Simulação do efeito do manejo da palha e do
nitrogênio na produtividade da cana-de-açúcar. Rev Bras Eng Agrícola e Ambient 18:469–474.
https://doi.org/10.1590/S1415-43662014000500001

Cuadra SV, Costa MH, Kucharik CJ et al (2012) A biophysical model of sugarcane growth. GCB
Bioenergy 4:36–48. https://doi.org/10.1111/j.1757-1707.2011.01105.x

da Silva TGF (2009) Análise de crescimento, interação biosfera-atmosfera e eficiência do uso de
água da cana-de-açúcar irrigada no submédio do Vale do São Francisco. Universidade Federal
de Viçosa, Viçosa, Brasil [In Portuguese]

da Silva RF (2012) Calibração do modelo DSSAT/Canegro para a cana-de-açúcar e seu uso para a
avaliação do impacto das mudanças climáticas. Universidade Federal de Viçosa, Viçosa, Brasil
[In Portuguese]

de Barros I, Thorburn PJ, Biggs JS, et al (2018) Simulações de Práticas de Manejo na Produção de
Cana-de-Açúcar nos Tabuleiros Costeiros de Alagoas. Aracaju, SE, Brazil

de Carvalho AL, Menezes RSC, Nóbrega RS et al (2015) Impact of climate changes on potential
sugarcane yield in Pernambuco, northeastern region of Brazil. Renew Energy 78:26–34. https://
doi.org/10.1016/j.renene.2014.12.023

de Lange JDE, Singels A (2003) Using the internet-based Canesim model for crop estimation in the
Umfolozi mill supply area. Proc S Afr Sugar Technol Assoc 77:592–595

de Oliveira APP, Thorburn PJ, Biggs JS et al (2016) The response of sugarcane to trash retention
and nitrogen in the Brazilian coastal tablelands: a simulation study. Exp Agric 52:69–86. https://
doi.org/10.1017/S0014479714000568

de Oliveira MPG, Bocca FF, Rodrigues LHA (2017) From spreadsheets to sugar content modeling:
a data mining approach. Comput Electron Agric 132:14–20. https://doi.org/10.1016/J.
COMPAG.2016.11.012

De Silva ALC, De Costa WAJM (2012) Growth and radiation use efficiency of sugarcane under
irrigated and rain-fed conditions in Sri Lanka. Sugar Tech 14:247–254. https://doi.org/10.1007/
s12355-012-0148-y

248 H. B. Dias and G. Inman-Bamber

https://doi.org/10.1007/s00484-015-0998-6
https://doi.org/10.1007/s00484-015-0998-6
https://doi.org/10.1016/S0378-4290(00)00069-1
https://doi.org/10.1007/s11104-008-9683-4
https://doi.org/10.1007/s12355-010-0044-2
https://doi.org/10.1590/S1415-43662014000500001
https://doi.org/10.1111/j.1757-1707.2011.01105.x
https://doi.org/10.1016/j.renene.2014.12.023
https://doi.org/10.1016/j.renene.2014.12.023
https://doi.org/10.1017/S0014479714000568
https://doi.org/10.1017/S0014479714000568
https://doi.org/10.1016/J.COMPAG.2016.11.012
https://doi.org/10.1016/J.COMPAG.2016.11.012
https://doi.org/10.1007/s12355-012-0148-y
https://doi.org/10.1007/s12355-012-0148-y


de Souza AP, Gaspar M, Da Silva EA et al (2008) Elevated CO2 increases photosynthesis, biomass
and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127.
https://doi.org/10.1111/j.1365-3040.2008.01822.x

de Vries FWTP, Jansen DM, ten Berge HFM, Bakema A (1989) Simulation of ecophysiological
process of growth in several annual crops. Pudoc/IRRI, Wageningen

Dias HB, Sentelhas PC (2017) Evaluation of three sugarcane simulation models and their ensemble
for yield estimation in commercially managed fields. Field Crop Res 213:174–185. https://doi.
org/10.1016/j.fcr.2017.07.022

Dias HB, Sentelhas PC (2018a) Drying-off periods for irrigated sugarcane to maximize sucrose
yields under Brazilian conditions. Irrig Drain 67:527–537. https://doi.org/10.1002/ird.2263

Dias HB, Sentelhas PC (2018b) Sugarcane yield gap analysis in Brazil – a multi-model approach for
determining magnitudes and causes. Sci Total Environ 637–638:1127–1136. https://doi.org/10.
1016/j.scitotenv.2018.05.017

Dias HB, Inman-Bamber G, Bermejo R, Sentelhas PC, Christodoulou D (2019) New APSIM-Sugar
features and parameters required to account for high sugarcane yields in tropical environments.
Field Crop Res 235:38–53. https://doi.org/10.1016/j.fcr.2019.02.002

Dias HB, Inman-Bamber G, Everingham Y, Sentelhas PC, Bermejo R, Christodoulou D (2020)
Traits for canopy development and light interception by twenty-seven Brazilian sugarcane
varieties. Field Crop Res 249:107716. https://doi.org/10.1016/j.fcr.2020.107716

Donaldson RA (2009) Seasonal effects on the potential biomass and sucrose accumulation of some
commercial cultivars of sugarcane. University of KwaZulu-Natal, Faculty of Science and
Agriculture

Donaldson RA, Bezuidenhout CN (2000) Determining the maximum drying-off periods for
sugarcane grown in different regions of the South African Industry. Proc S Afr Sugar Technol
Assoc 74:162–166

Donaldson RA, Redshaw KA, Rhodes R, van Antwerpen R (2008) Season effects on productivity
of some commercial south African sugarcane cultivars, I: biomass and radiation use efficiency.
Proc S Afr Sugar Technol Assoc 81:517–527

dos Vianna MS, Sentelhas PC (2014) Simulação do risco de deficit hídrico em regiões de expansão
do cultivo de cana-de-açúcar no Brasil. Pesqui Agropecuária Bras 49:237–246. https://doi.org/
10.1590/S0100-204X2014000400001

dos Vianna MS, Sentelhas PC (2016) Performance of DSSAT CSM-CANEGRO under operational
conditions and its use in determining the ‘saving irrigation’ impact on sugarcane crop. Sugar
Tech 18:75–86. https://doi.org/10.1007/s12355-015-0367-0

Driessen PM, Konijn NT (1992) Land-use system analysis. Wageningen Agricultural University,
Wageningen

Edreira JIR, Cassman KG, Hochman Z et al (2018) Beyond the plot: technology extrapolation
domains for scaling out agronomic science. Environ Res Lett 13:054027. https://doi.org/10.
1088/1748-9326/aac092

Evans LT, Fischer RA (1999) Yield potential: its definition, measurement, and significance. Crop
Sci 39:1544–1551. https://doi.org/10.2135/cropsci1999.3961544x

Everingham YL, Muchow RC, Stone RC et al (2002) Enhanced risk management and decision-
making capability across the sugarcane industry value chain based on seasonal climate forecasts.
Agric Syst 74:459–477. https://doi.org/10.1016/S0308-521X(02)00050-1

Everingham Y, Ticehurst C, Barrett D et al (2005) Yield forecasting for marketers. Proc Aust Soc
Sugar Cane Technol 27:51–60

Everingham YL, Inman-Bamber NG, Thorburn PJ, McNeill TJ (2007) A Bayesian modelling
approach for long lead sugarcane yield forecasts. Aust J Agric Res 58:87–94

Everingham Y, Baillie C, Inman-Bamber G, Baillie J (2008) Forecasting water allocations for
Bundaberg sugarcane farmers. Clim Res 36:231–239. https://doi.org/10.3354/cr00743

Everingham YL, Smyth CW, Inman-Bamber NG (2009) Ensemble data mining approaches to
forecast regional sugarcane crop production. Agric For Meteorol 149:689–696. https://doi.org/
10.1016/j.agrformet.2008.10.018

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 249

https://doi.org/10.1111/j.1365-3040.2008.01822.x
https://doi.org/10.1016/j.fcr.2017.07.022
https://doi.org/10.1016/j.fcr.2017.07.022
https://doi.org/10.1002/ird.2263
https://doi.org/10.1016/j.scitotenv.2018.05.017
https://doi.org/10.1016/j.scitotenv.2018.05.017
https://doi.org/10.1016/j.fcr.2019.02.002
https://doi.org/10.1016/j.fcr.2020.107716
https://doi.org/10.1590/S0100-204X2014000400001
https://doi.org/10.1590/S0100-204X2014000400001
https://doi.org/10.1007/s12355-015-0367-0
https://doi.org/10.1088/1748-9326/aac092
https://doi.org/10.1088/1748-9326/aac092
https://doi.org/10.2135/cropsci1999.3961544x
https://doi.org/10.1016/S0308-521X(02)00050-1
https://doi.org/10.3354/cr00743
https://doi.org/10.1016/j.agrformet.2008.10.018
https://doi.org/10.1016/j.agrformet.2008.10.018


Everingham YL, Inman-Bamber NG, Sexton J, Stokes C (2015) A dual ensemble agroclimate
modelling procedure to assess climate change impacts on sugarcane production in Australia.
Agric Sci 6:870–888. https://doi.org/10.4236/as.2015.68084

Everingham YL, Sexton J, Skocaj D, Inman-Bamber NG (2016) Accurate prediction of sugarcane
yield using a random forest algorithm. Agron Sustain Dev 36. https://doi.org/10.1007/s13593-
016-0364-z

FAO (2019) FAOSTAT. Food and Agriculture Organization of the United Nations. http://www.fao.
org/faostat/en/#home. Accessed 8 May 2019

Ferreira Junior RA, de Souza JL, Lyra GB et al (2015) Energy conversion efficiency in sugarcane
under two row spacings in northeast of Brazil. Rev Bras Eng Agrícola e Ambient 19:741–747.
https://doi.org/10.1590/1807-1929/agriambi.v19n8p741-747

Fischer RA (2015) Definitions and determination of crop yield, yield gaps, and of rates of change.
Field Crop Res 182:9–18. https://doi.org/10.1016/j.fcr.2014.12.006

Franco HCJ, Otto R, Faroni CE et al (2011) Nitrogen in sugarcane derived from fertilizer under
Brazilian field conditions. Field Crop Res 121:29–41. https://doi.org/10.1016/j.fcr.2010.11.011

Galdos MV, Cerri CC, Cerri CEP et al (2009a) Simulation of soil carbon dynamics under sugarcane
with the CENTURY model. Soil Sci Soc Am J 73:802. https://doi.org/10.2136/sssaj2007.0285

Galdos MV, Cerri CC, Cerri CEP (2009b) Soil carbon stocks under burned and unburned sugarcane
in Brazil. Geoderma 153:347–352. https://doi.org/10.1016/j.geoderma.2009.08.025

Ghannoum O, Conroy JP, Driscoll SP et al (2003) Nonstomatal limitations are responsible for
drought-induced photosynthetic inhibition in four C4 grasses. New Phytol 159:599–608. https://
doi.org/10.1046/j.1469-8137.2003.00835.x

Goldemberg J, Mello FFC, Cerri CEP et al (2014) Meeting the global demand for biofuels in 2021
through sustainable land use change policy. Energy Policy 69:14–18. https://doi.org/10.1016/j.
enpol.2014.02.008

Gosnell JM (1973) Some factors affecting flowering in sugarcane. Proc S Afr Sugar Technol Assoc
47:144–147

Grof CPL, Campbell JA, Kravchuk O et al (2010) Temperature effect on carbon partitioning in two
commercial cultivars of sugarcane. Funct Plant Biol 37:334. https://doi.org/10.1071/fp09216

Gunarathna MHJP, Sakai K, Nakandakari T et al (2019) Sensitivity analysis of plant- and cultivar-
specific parameters of APSIM-Sugar model: variation between climates and management
conditions. Agronomy 9:242. https://doi.org/10.3390/agronomy9050242

Heino M, Puma MJ, Ward PJ et al (2018) Two-thirds of global cropland area impacted by climate
oscillations. Nat Commun 9:1257. https://doi.org/10.1038/s41467-017-02071-5

Higgins A, Thorburn P, Archer A, Jakku E (2007) Opportunities for value chain research in sugar
industries. Agric Syst 94:611–621. https://doi.org/10.1016/J.AGSY.2007.02.011

Hoffman N, Patton A, Malan C et al (2017) An experimental and crop modelling assessment of
elevated atmospheric CO2 effects on sugarcane productivity. Proc S Afr Sugar Technol Assoc
90:131–134

Hoffman N, Singels A, Patton A, Ramburan S (2018) Predicting genotypic differences in irrigated
sugarcane yield using the Canegro model and independent trait parameter estimates. Eur J
Agron 96:13–21. https://doi.org/10.1016/j.eja.2018.01.005

Holzworth DP, Huth NI, deVoil PG et al (2014) APSIM – evolution towards a new generation of
agricultural systems simulation. Environ Model Softw 62:327–350. https://doi.org/10.1016/j.
envsoft.2014.07.009

Hoogenboom G, Porter CH, Shelia V et al (2019) Decision Support System for Agrotechnology
Transfer (DSSAT) Version 4.7.5

Inman-Bamber NG (1991) A growth model for sugar-cane based on a simple carbon balance and
the CERES-Maize water balance. S Afr J Plant Soil 9:37–41. https://doi.org/10.1080/02571862.
1991.10634587

Inman-Bamber NG (1994) Temperature and seasonal effects on canopy development and light
interception of sugarcane. Field Crop Res 36:41–51. https://doi.org/10.1016/0378-4290(94)
90051-5

250 H. B. Dias and G. Inman-Bamber

https://doi.org/10.4236/as.2015.68084
https://doi.org/10.1007/s13593-016-0364-z
https://doi.org/10.1007/s13593-016-0364-z
http://www.fao.org/faostat/en/#home
http://www.fao.org/faostat/en/#home
https://doi.org/10.1590/1807-1929/agriambi.v19n8p741-747
https://doi.org/10.1016/j.fcr.2014.12.006
https://doi.org/10.1016/j.fcr.2010.11.011
https://doi.org/10.2136/sssaj2007.0285
https://doi.org/10.1016/j.geoderma.2009.08.025
https://doi.org/10.1046/j.1469-8137.2003.00835.x
https://doi.org/10.1046/j.1469-8137.2003.00835.x
https://doi.org/10.1016/j.enpol.2014.02.008
https://doi.org/10.1016/j.enpol.2014.02.008
https://doi.org/10.1071/fp09216
https://doi.org/10.3390/agronomy9050242
https://doi.org/10.1038/s41467-017-02071-5
https://doi.org/10.1016/J.AGSY.2007.02.011
https://doi.org/10.1016/j.eja.2018.01.005
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1016/j.envsoft.2014.07.009
https://doi.org/10.1080/02571862.1991.10634587
https://doi.org/10.1080/02571862.1991.10634587
https://doi.org/10.1016/0378-4290(94)90051-5
https://doi.org/10.1016/0378-4290(94)90051-5


Inman-Bamber NG (1995) Climate and water constraints to production in the south African sugar
industry. Proc S Afr Sugar Technol Assoc 69:55–59

Inman-Bamber NG (2000) History of the Canegro model. In: Proceedings of international
CANEGRO work. South African Sugarcane Research Institute, Mount Edgecombe,
South Africa, pp 5–8

Inman-Bamber NG (2004) Sugarcane water stress criteria for irrigation and drying off. Field Crop
Res 89:107–122. https://doi.org/10.1016/j.fcr.2004.01.018

Inman-Bamber NG (2014) Sugarcane yields and yield-limiting processes. In: Moore PH, Botha FC
(eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp
579–600

Inman-Bamber NG, Attard SJ (2008) Water savings and water accounting in irrigated sugarcane.
Proc Aust Soc Sugar Cane Technol 30:251–259

Inman-Bamber NG, Jager MDE (1988) Effect of water stress on sugarcane stalk growth and quality.
Proc S Afr Sugar Technol Assoc 52:140–144

Inman-Bamber NG, Kiker GA (1998) DSSAT/CANEGRO 3.10: DSSAT version 3.1. University of
Hawaii, Honolulu

Inman-Bamber NG, McGlinchey MG (2003) Crop coefficients and water-use estimates for sugar-
cane based on long-term Bowen ratio energy balance measurements. Field Crop Res
83:125–138. https://doi.org/10.1016/S0378-4290(03)00069-8

Inman-Bamber NG, Smith DM (2005) Water relations in sugarcane and response to water deficits.
Field Crop Res 92:185–202. https://doi.org/10.1016/j.fcr.2005.01.023

Inman-Bamber NG, Thompson GD (1989) Models of dry matter accumulation by sugarcane. Proc
S Afr Sugar Technol Assoc 63:212–216

Inman-Bamber NG, Culverwell TL, McGlinchey MG (1993) Predicting yield responses to irriga-
tion of sugarcane from a growth model and field records. Proc S Afr Sugar Technol Assoc
67:66–72

Inman-Bamber NG, Robertson MJ, Muchow RC et al (1999) Boosting yields with limited irrigation
water. Proc Aust Soc Sugar Cane Technol 21:203–211

Inman-Bamber NG, Everingham YL, Muchow RC (2001) Modelling water stress response in
sugarcane: validation and application of the APSIM-Sugarcane model. In: Proceedings of the
10th Australian agronomy conference, Hobart, Australia

Inman-Bamber NG, Attard SJ, Spillman MF (2004) Can lodging be controlled through irrigation?
Proc Aust Soc Sugar Cane Technol 26:1–11

Inman-Bamber NG, Attard SA, Baillie C et al (2005) A web-based system for planning use of
limited irrigation water in sugarcane. Proc Aust Soc Sugar Cane Technol 27:170–181

Inman-Bamber NG, Webb WA, Verrall SA (2006) Participatory irrigation research and scheduling
in the Ord: R&D. Proc Aust Soc Sugar Cane Technol 28:155–163

Inman-Bamber NG, Attard SJ, Verrall SA et al (2007) A web-based system for scheduling irrigation
in sugarcane. Proc Aust Soc Sugar Cane Technol 26:459–464

Inman-Bamber NG, Jackson P, Bourgault M (2011) Genetic adjustment to changing climates:
sugarcane. In: Yadav SS, Redden R, Hatfield JL et al (eds) Crop adaptation to climate change.
Wiley, Chichester, pp 439–447

Inman-Bamber NG, Lakshmanan P, Park S (2012) Sugarcane for water-limited environments:
theoretical assessment of suitable traits. Field Crop Res 134:95–104. https://doi.org/10.1016/j.
fcr.2012.05.004

Inman-Bamber NG, Jackson PA, Stokes CJ et al (2016) Sugarcane for water-limited environments:
enhanced capability of the APSIM sugarcane model for assessing traits for transpiration
efficiency and root water supply. Field Crop Res 196:112–123. https://doi.org/10.1016/j.fcr.
2016.06.013

IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to
the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 251

https://doi.org/10.1016/j.fcr.2004.01.018
https://doi.org/10.1016/S0378-4290(03)00069-8
https://doi.org/10.1016/j.fcr.2005.01.023
https://doi.org/10.1016/j.fcr.2012.05.004
https://doi.org/10.1016/j.fcr.2012.05.004
https://doi.org/10.1016/j.fcr.2016.06.013
https://doi.org/10.1016/j.fcr.2016.06.013


Jackson P, Basnayake J, Inman-Bamber G et al (2016) Genetic variation in transpiration efficiency
and relationships between whole plant and leaf gas exchange measurements in Saccharum spp.
and related germplasm. J Exp Bot 67:861–871. https://doi.org/10.1093/jxb/erv505

Jaiswal D, De Souza AP, Larsen S et al (2017) Brazilian sugarcane ethanol as an expandable green
alternative to crude oil use. Nat Clim Chang 7:788–792. https://doi.org/10.1038/nclimate3410

Jakku E, Thorburn PJ (2010) A conceptual framework for guiding the participatory development of
agricultural decision support systems. Agric Syst 103:675–682. https://doi.org/10.1016/J.
AGSY.2010.08.007

Jintrawet A, Prammaneem P (2005) Simulating the impact of climate change scenarios on sugar-
cane production systems in Thailand. Proc Int Soc Sugar Cane Technol 25:64–68

Jones CA, Kiniry JR (1986) CERES-maize: a simulation model of maize growth and development.
Texas A&M University Press, College Station

Jones MR, Singels A (2015) Analysing yield trends in the South African sugar industry. Agric Syst
141:24–35. https://doi.org/10.1016/j.agsy.2015.09.004

Jones MR, Singels A (2019) Refining the Canegro model for improved simulation of climate
change impacts on sugarcane. Eur J Agron 100:76–86. https://doi.org/10.1016/j.eja.2017.12.
009

Jones CA, Wegener MK, Russel JS (1989) AUSCANE – simulation of Australian sugarcane with
EPIC, Tropical agronomy technical paper no. 29. CSIRO Division of Tropical Crops and
Pastures, Brisbane

Jones MR, Singels A, Thornburn P et al (2014) Evaluation of the DSSAT-Canegro model for
simulating climate change impacts at sites in seven countries. Proc S Afr Sugar Technol Assoc
87:323–329. https://doi.org/10.1007/BF02722738

Jones MR, Singels A, Ruane AC (2015) Simulated impacts of climate change on water use and
yield of irrigated sugarcane in South Africa. Agric Syst 139:260–270. https://doi.org/10.1016/j.
agsy.2015.07.007

Kandulu J, Thorburn P, Biggs J, Verburg K (2018) Estimating economic and environmental trade-
offs of managing nitrogen in Australian sugarcane systems taking agronomic risk into account. J
Environ Manag 223:264–274. https://doi.org/10.1016/j.jenvman.2018.06.023

Keating BA, Verburg K, Huth NI, Robertson MJ (1997) Nitrogen management in intensive
agriculture: sugarcane in Australia. In: Keating BA, Wilson JR (eds) Intensive sugarcane
production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 20–23

Keating BA, Robertson MJ, Muchow RC, Huth NI (1999) Modelling sugarcane production systems
I. Development and performance of the sugarcane module. Field Crop Res 61:253–271. https://
doi.org/10.1016/S0378-4290(98)00167-1

Keating BA, Carberry PS, Hammer GL et al (2003) An overview of APSIM, a model designed for
farming systems simulation. Eur J Agron 18:267–288. https://doi.org/10.1016/S1161-0301(02)
00108-9

Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature.
Curr Opin Plant Biol 31:36–43. https://doi.org/10.1016/J.PBI.2016.03.006

Kingston G (2002) Recognising the impact of climate on CCS of sugarcane across tropical and
sub-tropical regions of the Australian sugar industry. Proc Aust Soc Sugar Cane Technol
24 (CD-ROM)

Kiniry JR, Williams JR, Gassman PW, Debaeke P (1992) A general, process-oriented model for
two competing plant species. Trans ASAE 35:801–810. https://doi.org/10.13031/2013.28665

Knox JW, Rodríguez Díaz JA, Nixon DJ, Mkhwanazi M (2010) A preliminary assessment of
climate change impacts on sugarcane in Swaziland. Agric Syst 103:63–72. https://doi.org/10.
1016/j.agsy.2009.09.002

Kucharik CJ, Brye KR (2003) Integrated BIosphere Simulator (IBIS) yield and nitrate loss
predictions for Wisconsin maize receiving varied amounts of nitrogen fertilizer. J Environ
Qual 32:247–268. https://doi.org/10.2134/jeq2003.2470

252 H. B. Dias and G. Inman-Bamber

https://doi.org/10.1093/jxb/erv505
https://doi.org/10.1038/nclimate3410
https://doi.org/10.1016/J.AGSY.2010.08.007
https://doi.org/10.1016/J.AGSY.2010.08.007
https://doi.org/10.1016/j.agsy.2015.09.004
https://doi.org/10.1016/j.eja.2017.12.009
https://doi.org/10.1016/j.eja.2017.12.009
https://doi.org/10.1007/BF02722738
https://doi.org/10.1016/j.agsy.2015.07.007
https://doi.org/10.1016/j.agsy.2015.07.007
https://doi.org/10.1016/j.jenvman.2018.06.023
https://doi.org/10.1016/S0378-4290(98)00167-1
https://doi.org/10.1016/S0378-4290(98)00167-1
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/S1161-0301(02)00108-9
https://doi.org/10.1016/J.PBI.2016.03.006
https://doi.org/10.13031/2013.28665
https://doi.org/10.1016/j.agsy.2009.09.002
https://doi.org/10.1016/j.agsy.2009.09.002
https://doi.org/10.2134/jeq2003.2470


Kunz R, Schulze R, Mabhaudhi T, Mokonoto O (2014) Modelling the potential impacts of climate
change on yield and water use of sugarcane and sugar beet: preliminary results based on the
AquaCrop model. Proc S Afr Sugar Technol Assoc 87:285–289

Laclau PB, Laclau JP (2009) Growth of the whole root system for a plant crop of sugarcane under
rainfed and irrigated environments in Brazil. Field Crop Res 114:351–360. https://doi.org/10.
1016/j.fcr.2009.09.004

Lakshmanan P, Robinson N (2014) Stress physiology: abiotic stresses. In: Moore PH, Botha FC
(eds) Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp
411–434

Leal DPV (2016) Parametrização do modelo CANEGRO (DSSAT) e caracterização biométrica de
oito variedades de cana-de-açúcar irrigadas por gotejamento. Universidade de São Paulo, Escola
Superior de Agricultura “Luiz de Queiroz”. Piracicaba, Brasil [In Portuguese]

Linnenluecke MK, Nucifora N, Thompson N (2018) Implications of climate change for the
sugarcane industry. Wiley Interdiscip Rev Clim Chang 9:1–34. https://doi.org/10.1002/wcc.498

Linnenluecke MK, Zhou C, Smith T et al (2019) The impact of climate change on the Australian
sugarcane industry. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.118974

Lisson SN, Robertson MJ, Keating BA, Muchow RC (2000) Modelling sugarcane production
systems II: analysis of system performance and methodology issues. Field Crop Res 68:31–48

Lisson S, Brennan L, Bristow K et al (2003) DAM EA$Y—software for assessing the costs and
benefits of on-farm water storage based production systems. Agric Syst 76:19–38. https://doi.
org/10.1016/S0308-521X(02)00112-9

Lisson SN, Inman-Bamber NG, Robertson MJ, Keating BA (2005) The historical and future
contribution of crop physiology and modelling research to sugarcane production systems.
Field Crop Res 92:321–335. https://doi.org/10.1016/j.fcr.2005.01.010

Liu DL, Allsop PG (1996) QCANE and armyworms: to spray or no to spray, that is the question.
Proc Aust Soc Sugar Cane Technol 18:106–112

Liu DL, Bull TA (2001) Simulation of biomass and sugar accumulation in sugarcane using a
process-based model. Ecol Model 144:181–211. https://doi.org/10.1016/S0304-3800(01)
00372-6

Liu DL, Kingston G (1994) QCANE: a simulation model of sugarcane growth and sugar accumu-
lation. In: Robertson MJ (ed) Research and modeling approaches to assess sugarcane production
opportunities and constraints. Workshop Proceedings University of Queensland, St. Lucia,
p 144

Lobell DB, Asseng S (2017) Comparing estimates of climate change impacts from process-based
and statistical crop models. Environ Res Lett 12:1–12. https://doi.org/10.1088/1748-9326/
015001

Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and
causes. Annu Rev Environ Resour 34:179–204. https://doi.org/10.1146/annurev.environ.
041008.093740

Lonsdale JE, Gosnell JM (1976) Growth and quality of four sugarcane varieties as influenced by
age and season. Proc S Afr Sugar Technol Assoc 50:82–86

Lumsden TG, Lecler NL, Schulze RE, S African Sugar Technologists Assoc SASTA (1998)
Simulation of sugarcane yield at the scale of a mill supply area. Proc S Afr Sugar Technol
Assoc 72:12–17

Machado EC (1981) Um modelo matemático-fisiológico para simular o acúmulo de matéria seca na
cultura de cana-de-açúcar (Saccharum spp.). Universidade de Campinas, Campinas, Brasil
[in Portuguese]

Mallawaarachchi T, Quiggin J (2001) Modelling socially optimal land allocations for sugar cane
growing in North Queensland: a linked mathematical programming and choice modelling study.
Aust J Agric Resour Econ 45:383–409. https://doi.org/10.1111/1467-8489.00149

Mangelsdorf AJ (1950) Sugar-cane—as seen from Hawaii. Econ Bot 4:150–176. https://doi.org/10.
1007/bf02873319

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 253

https://doi.org/10.1016/j.fcr.2009.09.004
https://doi.org/10.1016/j.fcr.2009.09.004
https://doi.org/10.1002/wcc.498
https://doi.org/10.1016/j.jclepro.2019.118974
https://doi.org/10.1016/S0308-521X(02)00112-9
https://doi.org/10.1016/S0308-521X(02)00112-9
https://doi.org/10.1016/j.fcr.2005.01.010
https://doi.org/10.1016/S0304-3800(01)00372-6
https://doi.org/10.1016/S0304-3800(01)00372-6
https://doi.org/10.1088/1748-9326/015001
https://doi.org/10.1088/1748-9326/015001
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1146/annurev.environ.041008.093740
https://doi.org/10.1111/1467-8489.00149
https://doi.org/10.1007/bf02873319
https://doi.org/10.1007/bf02873319


Marchiori PER, Machado EC, Sales CRG et al (2017) Physiological plasticity is important for
maintaining sugarcane growth under water deficit. Front Plant Sci 8:1–12. https://doi.org/10.
3389/fpls.2017.02148

Marin FR (2017) Tempocampo: a system for operational forecasting of Brazilian sugarcane and
soybean yield. In: ASA, CSSA and SSSA international annual meeting. ACS Societies, Tampa,
FL, USA

Marin FR, Jones JW (2014) Process-based simple model for simulating sugarcane growth and
production. Sci Agric 71:1–16

Marin FR, Jones JW, Royce F et al (2011) Parameterization and evaluation of predictions of
DSSAT/CANEGRO for Brazilian sugarcane. Agron J 103:304–315. https://doi.org/10.2134/
agronj2010.0302

Marin FR, Jones JW, Singels A, Royce F, Assad ED, Pellegrino GQ, Justino J (2013) Climate
change impacts on sugarcane attainable yield in southern Brazil. Clim Chang 117:227–239.
https://doi.org/10.1007/s10584-012-0561-y

Marin FR, Thorburn PJ, Costa LG, Otto R (2014) Simulating Long-term effects of trash manage-
ment on sugarcane yield for Brazilian cropping systems. Sugar Tech 16:164–173. https://doi.
org/10.1007/s12355-013-0265-2

Marin FR, Thorburn PJ, Nassif DSP, Costa LG (2015) Sugarcane model intercomparison: structural
differences and uncertainties under current and potential future climates. Environ Model Softw
72:372–386. https://doi.org/10.1016/j.envsoft.2015.02.019

Marin FR, Martha GB, Cassman KG, Grassini P (2016) Prospects for increasing sugarcane and
bioethanol production on existing crop area in Brazil. Bioscience 66:307–316. https://doi.org/
10.1093/biosci/biw009

Martiné J-F (2003) Modélisation de la production potentielle de la Canne à Sucre en zone tropicale,
sous conditions hydriques et thermiques contrastées. Applications du Modèle. Thése de Docteur
de l’Institut National Agronomique Paris-Grignon [in French]

Martiné J-F (2007) Analysis and forecasting of the sucrose content of sugarcane crops during the
harvest period in Reunion Island. Proc Int Soc Sugar Cane Technol 26:607–612

Martiné J-F, Siband P, Bonhomme R (1999) Simulation of the maximum yield of sugar cane at
different altitudes: effect of temperature on the conversion of radiation into biomass. Agronomie
19:3–12. https://doi.org/10.1051/agro:19990101

McCown RL, Hammer GL, Hargreaves JNG et al (1996) APSIM: a novel software system for
model development, model testing and simulation in agricultural systems research. Agric Syst
50:255–271. https://doi.org/10.1016/0308-521X(94)00055-V

McDonald L, Lisson SN (2001) The effect of planting and harvest time on sugarcane productivity.
In: Proceedings of the 10th Australian agronomy conference. Hobart, Australia

McGlinchey MG (1999) Computer crop model applications: developments in Swaziland. Proc S
Afr Sugar Technol Assoc 73:35–44

McGlinchey MG, Dell MP (2010) Using computer simulation models to aid replant planning and
harvest decisions in irrigated sugarcane. Proc Int Soc Sugar Cane Technol 27:1–10

McGlinchey MG, Inman-Bamber NG, Culverwell TL (1995) An irrigation scheduling method
based on a crop model and an automatic weather station. Proc S Afr Sugar Technol Assoc
69:69–73

Meier EA, Thorburn PJ (2016) Long term sugarcane crop residue retention offers limited potential
to reduce nitrogen fertilizer rates in Australian wet tropical environments. Front Plant Sci
7:1–14. https://doi.org/10.3389/fpls.2016.01017

Meki MN, Kiniry JR, Youkhana AH et al (2015) Two-year growth cycle sugarcane crop parameter
attributes and their application in modeling. Agron J 107:1310–1320. https://doi.org/10.2134/
agronj14.0588

Miguez FE, Zhu X, Humphries S et al (2009) A semimechanistic model predicting the growth and
production of the bioenergy crop Miscanthus � giganteus: description, parameterization and
validation. GCB Bioenergy 1:282–296. https://doi.org/10.1111/j.1757-1707.2009.01019.x

254 H. B. Dias and G. Inman-Bamber

https://doi.org/10.3389/fpls.2017.02148
https://doi.org/10.3389/fpls.2017.02148
https://doi.org/10.2134/agronj2010.0302
https://doi.org/10.2134/agronj2010.0302
https://doi.org/10.1007/s10584-012-0561-y
https://doi.org/10.1007/s12355-013-0265-2
https://doi.org/10.1007/s12355-013-0265-2
https://doi.org/10.1016/j.envsoft.2015.02.019
https://doi.org/10.1093/biosci/biw009
https://doi.org/10.1093/biosci/biw009
https://doi.org/10.1051/agro:19990101
https://doi.org/10.1016/0308-521X(94)00055-V
https://doi.org/10.3389/fpls.2016.01017
https://doi.org/10.2134/agronj14.0588
https://doi.org/10.2134/agronj14.0588
https://doi.org/10.1111/j.1757-1707.2009.01019.x


Mishra SK, Singh G, Singh K (2017) Sugarcane growth and yield simulation under varying
planting dates in sub tropical India. J Agrometeorol 19:200–204

Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766.
https://doi.org/10.2307/2401901

Moore PH, Berding N (2014) Flowering. In: Moore PH, Botha FC (eds) Sugarcane: physiology,
biochemistry, and functional biology. Wiley, Chichester, pp 379–410

Moore PH, Paterson AH, Tew T (2014) Sugarcane: the crop, the plant, and domestication. In:
Moore PH, Botha FC (eds) Sugarcane: physiology, biochemistry, and functional biology.
Wiley, Chichester, pp 1–17

Morel J, Bégué A, Todoroff P et al (2014a) Coupling a sugarcane crop model with the remotely
sensed time series of fIPAR to optimise the yield estimation. Eur J Agron 61:60–68. https://doi.
org/10.1016/j.eja.2014.08.004

Morel J, Todoroff P, Bégué A et al (2014b) Toward a satellite-based system of sugarcane yield
estimation and forecasting in smallholder farming conditions: a case study on reunion island.
Remote Sens 6:6620–6635. https://doi.org/10.3390/rs6076620

Muchow RC, Keating BA (1998) Assessing irrigation requirements in the Ord Sugar Industry using
a simulation modelling approach. Aust J Exp Agric 38:345–354. https://doi.org/10.1071/
EA98023

Muchow RC, Spillman MF, Wood AW, Thomas MR (1994) Radiation interception and biomass
accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agric Res
45:37–49. https://doi.org/10.1071/AR9940037

Muchow RC, Evensen CI, Osgood RV, Robertson MJ (1997a) Yield accumulation in irrigated
sugarcane: II. Utilization of intercepted radiation. Agron J 89:646–652. https://doi.org/10.2134/
agronj1997.00021962008900040017x

Muchow RC, Robertson MJ, Keating BA (1997b) Limits to Autralian sugar industry: climate and
biological factors. In: Keating BA, Wilson J (eds) Intensive sugarcane production: meeting the
challenges beyond 2000. CAB International, Wallingford, pp 37–54

Ngobese I, Ramburan S, Labuschagne M (2018) Quantifying sugarcane cultivar differences in tiller
and stalk phenology: identifying traits suited to crop model-assisted breeding. J Crop Improv
32:847–860. https://doi.org/10.1080/15427528.2018.1534762

NOOA (2019) Trends in atmospheric carbon dioxide – global greenhouse gas reference network.
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html. Accessed 26 Jun 2019

O’Leary GJ (2000) A review of three sugarcane simulation models with respect to their prediction
of sucrose yield. Field Crop Res 68:97–111. https://doi.org/10.1016/S0378-4290(00)00112-X

Ojeda JJ, Volenec JJ, Brouder SM et al (2017) Evaluation of Agricultural Production Systems
Simulator as yield predictor of Panicum virgatum and Miscanthus x giganteus in several US
environments. GCB Bioenergy 9:796–816. https://doi.org/10.1111/gcbb.12384

Olivier FC, Singels A (2001) A database of crop water use coefficients for irrigation scheduling of
sugarcane. Proc S Afr Sugar Technol Assoc 75:81–83

Otto R, Silva AP, Franco HCJ et al (2011) High soil penetration resistance reduces sugarcane root
system development. Soil Tillage Res 117:201–210. https://doi.org/10.1016/j.still.2011.10.005

Otto R, Castro SAQ, Mariano E et al (2016) Nitrogen use efficiency for sugarcane-biofuel
production: what is next? Bioenergy Res 9:1272–1289. https://doi.org/10.1007/s12155-016-
9763-x

Pagani V, Stella T, Guarneri T et al (2017) Forecasting sugarcane yields using agro-climatic
indicators and Canegro model: a case study in the main production region in Brazil. Agric
Syst 154:45–52. https://doi.org/10.1016/j.agsy.2017.03.002

Paraskevopoulos AL, Singels A (2014) Integrating soil water monitoring technology and weather
based crop modelling to provide improved decision support for sugarcane irrigation manage-
ment. Comput Electron Agric 105:44–53. https://doi.org/10.1016/j.compag.2014.04.007

Paraskevopoulos AL, Singels A, Tweeddle PB, van Heerden PDR (2016) Quantifying the negative
impact of lodging on irrigated sugarcane productivity: a crop modelling assessment. Proc S Afr
Sugar Technol Assoc 89:154–158

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 255

https://doi.org/10.2307/2401901
https://doi.org/10.1016/j.eja.2014.08.004
https://doi.org/10.1016/j.eja.2014.08.004
https://doi.org/10.3390/rs6076620
https://doi.org/10.1071/EA98023
https://doi.org/10.1071/EA98023
https://doi.org/10.1071/AR9940037
https://doi.org/10.2134/agronj1997.00021962008900040017x
https://doi.org/10.2134/agronj1997.00021962008900040017x
https://doi.org/10.1080/15427528.2018.1534762
https://www.esrl.noaa.gov/gmd/ccgg/trends/global.html
https://doi.org/10.1016/S0378-4290(00)00112-X
https://doi.org/10.1111/gcbb.12384
https://doi.org/10.1016/j.still.2011.10.005
https://doi.org/10.1007/s12155-016-9763-x
https://doi.org/10.1007/s12155-016-9763-x
https://doi.org/10.1016/j.agsy.2017.03.002
https://doi.org/10.1016/j.compag.2014.04.007


Park SE (2008) A review of climate change impact and adaptation assessments on the Australian
sugarcane industry. Proc Aust Soc Sugar Cane Technol 30:1–9

Park SE, Robertson M, Inman-Bamber NG (2005) Decline in the growth of a sugarcane crop with
age under high input conditions. Field Crop Res 92:305–320. https://doi.org/10.1016/j.fcr.2005.
01.025

Park SE, Howden M, Horan HL (2007) Evaluating the impact of and capacity for adaptation to
climate change on sectors in the sugar industry value chain in Australia. Proc Int Soc Sugar Cane
Technol 26:312–326

Park SE, Webster TJ, Horan HL et al (2010) A legume rotation crop lessens the need for nitrogen
fertiliser throughout the sugarcane cropping cycle. Field Crop Res 119:331–341. https://doi.org/
10.1016/j.fcr.2010.08.001

Peloia PR, Bocca FF, Rodrigues LHA et al (2019) Identification of patterns for increasing
production with decision trees in sugarcane mill data. Sci Agric 76:281–289. https://doi.org/
10.1590/1678-992x-2017-0239

Piewthongngam K, Pathumnakul S, Setthanan K (2009) Application of crop growth simulation and
mathematical modeling to supply chain management in the Thai sugar industry. Agric Syst
102:58–66. https://doi.org/10.1016/j.agsy.2009.07.002

Promburom P, Jintrawet A, Ekasingh M (2001) Estimating sugarcane yields with Oy-Thai inter-
face. Proc Int Soc Sugar Cane Technol 24:81–86

Qureshi SA, Madramootoo CA, Dodds GT (2002) Evaluation of irrigation schemes for sugarcane in
Sindh, Pakistan, using SWAP93. Agric Water Manag 54:37–48. https://doi.org/10.1016/S0378-
3774(01)00142-1

Rabbinge R (1993) The ecological background of food production. In: Chadwick D, Marsh J (eds)
Crop protection and sustainable agriculture, Ciba found. Wiley, Chichester, pp 2–29

Robertson MJ, Wood AW, Muchow RC (1996) Growth of sugarcane under high input conditions in
tropical Australia, I. Radiation use, biomass accumulation and partitioning. Field Crop Res
48:11–25. https://doi.org/10.1016/S0378-4290(96)00043-3

Robertson MJ, Inman-Bamber NG, Muchow RC (1997) Opportunities for improving the use of
limited water by the sugarcane crop. In: Keating BA, Wilson J (eds) Intensive sugarcane
production: meeting the challenges beyond 2000. CAB International, Wallingford, pp 287–304

Robertson MJ, Bonnett GD, Highes RM et al (1998) Temperature and leaf area expansion of
sugarcane: integration of controlled-environment, field and model studies. Aust J Plant Physiol
25:819–828

Robertson MJ, Inman-Bamber NG, Muchow RC, Wood AW (1999a) Physiology and productivity
of sugarcane with early and mid-season water deficit. Field Crop Res 64:211–227. https://doi.
org/10.1016/S0378-4290(99)00042-8

Robertson MJ, Muchow RC, Donaldson RA et al (1999b) Estimating the risk associated with
drying-off strategies for irrigated sugarcane before harvest. Aust J Agric Res 50:65–77

Robinson N, Brackin R, Vinall K et al (2011) Nitrate paradigm does not hold up for sugarcane.
PLoS One 6:e19045. https://doi.org/10.1371/journal.pone.0019045

Rostron H (1974) Some effects of environment, age and growth regulating compounds on the
growth, yield and quality of sugarcane in Southern Africa. University of Natal, Pietermaritzburg

Ruan H, Feng P, Wang B et al (2018) Future climate change projects positive impacts on sugarcane
productivity in southern China. Eur J Agron 96:108–119. https://doi.org/10.1016/j.eja.2018.03.
007

Saeki T (1963) Light relations in plant communities. In: Evans LT (ed) Environmental control of
plant growth. Academic Press, New York, pp 79–84

Sage RF, Peixoto MM, Sage TL (2014) Photosynthesis in sugarcane. In: Moore PH, Botha FC (eds)
Sugarcane: physiology, biochemistry, and functional biology. Wiley, Chichester, pp 121–154

Saliendra NZ, Meinzer FC (1992) Genotypic, developmental and drought-induced differences in
root hydraulic conductance of contrasting sugarcane cultivars. J Exp Bot 43:1209–1217. https://
doi.org/10.1093/jxb/43.9.1209

256 H. B. Dias and G. Inman-Bamber

https://doi.org/10.1016/j.fcr.2005.01.025
https://doi.org/10.1016/j.fcr.2005.01.025
https://doi.org/10.1016/j.fcr.2010.08.001
https://doi.org/10.1016/j.fcr.2010.08.001
https://doi.org/10.1590/1678-992x-2017-0239
https://doi.org/10.1590/1678-992x-2017-0239
https://doi.org/10.1016/j.agsy.2009.07.002
https://doi.org/10.1016/S0378-3774(01)00142-1
https://doi.org/10.1016/S0378-3774(01)00142-1
https://doi.org/10.1016/S0378-4290(96)00043-3
https://doi.org/10.1016/S0378-4290(99)00042-8
https://doi.org/10.1016/S0378-4290(99)00042-8
https://doi.org/10.1371/journal.pone.0019045
https://doi.org/10.1016/j.eja.2018.03.007
https://doi.org/10.1016/j.eja.2018.03.007
https://doi.org/10.1093/jxb/43.9.1209
https://doi.org/10.1093/jxb/43.9.1209


Scarpare FV (2011) Simulação do crescimento da cana-de-açúcar pelo modelo agrohidrológico
SWAP/WOFOST. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de
Queiroz”. Piracicaba, Brasil [In Portuguese]

Scarpare FV, Stockle CO, Nelson RL et al (2018) Sugarcane CropSyst assessment under Brazilian
environmental conditions. In: AGU fall meeting abstracts. American Geophysical Union,
Washington

Sentelhas PC, Pereira AB (2019) El Niño–Southern oscillation and its impacts on local climate
and sugarcane yield in Brazil. Sugar Tech 21:976–985. https://doi.org/10.1007/s12355-019-
00725-w

Sexton J, Inman-Bamber NG, Everingham Y et al (2014) Detailed trait characterisation is needed
for simulation of cultivar responses to water stress. Proc Aust Soc Sugar Cane Technol
36:82–92

Sinclair TR, Muchow RC (1999) Radiation use efficiency. In: Sparks DL (ed) Advances in
agronomy, 65th edn. Academic, San Diego, pp 215–265

Sinclair TR, Gilbert RA, Perdomo RE et al (2004) Sugarcane leaf area development under field
conditions in Florida, USA. Field Crop Res 88:171–178. https://doi.org/10.1016/j.fcr.2003.12.
005

Singels A (2007) A new approach to implementing computer-based decision support for sugarcane
farmers and extension staff: the case of My CANESIM. Proc Int Soc Sugar Cane Technol
26:211–219

Singels A (2014) Crop models. In: Moore PH, Botha FC (eds) Sugarcane: physiology, biochemis-
try, and functional biology. Wiley, Chichester, pp 541–577

Singels A, Bezuidenhout CN (2002) A new method of simulating dry matter partitioning in the
Canegro sugarcane model. Field Crop Res 78:151–164. https://doi.org/10.1016/S0378-4290
(02)00118-1

Singels A, Inman-Bamber NG (2011) Modelling genetic and environmental control of biomass
partitioning at plant and phytomer level of sugarcane grown in controlled environments. Crop
Pasture Sci 62:66–81. https://doi.org/10.1071/CP10182

Singels A, Smit MA (2009) Sugarcane response to row spacing-induced competition for light. Field
Crop Res 113:149–155. https://doi.org/10.1016/j.fcr.2009.04.015

Singels A, Smith MT (2006) Provision of irrigation scheduling advice to small scale sugarcane
farmers using a web-based crop model and cellular technology: a south African case study. Irrig
Drain 55:363–372. https://doi.org/10.1002/ird.231

Singels A, Bezuidenhout CN, Smith EJ (1999) Evaluation strategies for scheduling supplementary
irrigation of sugarcane in South Africa. Proc Aust Soc Sugar Cane Technol 21:219–226

Singels A, Jones M, van den Berg M (2008) DSSAT v4.5 Canegro sugarcane plant module:
scientific documentation. S Afr Sugarcane Res Inst (Mount Edgecombe) 34

Singels A, Jones MR, Porter CH (2010a) The DSSAT4.5 Canegro model: a useful decision support
tool for research and management of sugarcane production. Proc Int Soc Sugar Cane Technol
27:1–5

Singels A, van den Berg M, Smit MA et al (2010b) Modelling water uptake, growth and sucrose
accumulation of sugarcane subjected to water stress. Field Crop Res 117:59–69. https://doi.org/
10.1016/j.fcr.2010.02.003

Singels A, Jones M, Marin FR et al (2014) Predicting climate change impacts on sugarcane
production at sites in Australia, Brazil and South Africa using the Canegro model. Sugar Tech
16:347–355. https://doi.org/10.1007/s12355-013-0274-1

Singels A, Jones MR, van der Laan M (2016) Modelling impacts of stomatal drought sensitivity and
root growth rate on sugarcane yield. In: International crop modelling symposium. MACSUR &
AgMIP, Berlin, pp 392–393

Singels A, Jones MR, Lumsden TG (2018) Sugarcane productivity and water use in South Africa
under a future climate: what can we expect? Proc S Afr Sugar Technol Assoc 91:57–61

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 257

https://doi.org/10.1007/s12355-019-00725-w
https://doi.org/10.1007/s12355-019-00725-w
https://doi.org/10.1016/j.fcr.2003.12.005
https://doi.org/10.1016/j.fcr.2003.12.005
https://doi.org/10.1016/S0378-4290(02)00118-1
https://doi.org/10.1016/S0378-4290(02)00118-1
https://doi.org/10.1071/CP10182
https://doi.org/10.1016/j.fcr.2009.04.015
https://doi.org/10.1002/ird.231
https://doi.org/10.1016/j.fcr.2010.02.003
https://doi.org/10.1016/j.fcr.2010.02.003
https://doi.org/10.1007/s12355-013-0274-1


Singels A, Paraskevopoulos AL, Mashabela ML (2019) Farm level decision support for sugarcane
irrigation management during drought. Agric Water Manag 222:274–285. https://doi.org/10.
1016/j.agwat.2019.05.048

Singh G, Chapman LS, Jackson PA, Lawn R (2002) Lodging reduces sucrose accumulation of
sugarcane in the wet and dry tropics. Aust J Agric Res 53:1183–1195

Skocaj DM, Everingham YL, Schroeder BL (2013) Nitrogen management guidelines for sugarcane
production in Australia: can these be modified for wet tropical conditions using seasonal climate
forecasting? Springer Sci Rev 1:51–71. https://doi.org/10.1007/s40362-013-0004-9

Smit MA (2010) Characterising the factors that affect germination and emergence in sugarcane.
Proc S Afr Sugar Technol Assoc 83:230–234

Smit MA, Singels A (2006) The response of sugarcane canopy development to water stress. Field
Crop Res 98:91–97. https://doi.org/10.1016/j.fcr.2005.12.009

Steduto P, Hsiao TC, Raes D, Fereres E (2009) Aquacrop-the FAO crop model to simulate yield
response to water: I. concepts and underlying principles. Agron J 101:426–437. https://doi.org/
10.2134/agronj2008.0139s

Stewart LK, Charlesworth PB, Bristow KL, Thorburn PJ (2006) Estimating deep drainage and
nitrate leaching from the root zone under sugarcane using APSIM-SWIM. Agric Water Manag
81:315–334. https://doi.org/10.1016/j.agwat.2005.05.002

Stöckle CO, Donatelli M, Nelson R (2003) CropSyst, a cropping systems simulation model. Eur J
Agron 18:289–307. https://doi.org/10.1016/S1161-0301(02)00109-0

Stoeckl N, Inman-Bamber NG (2003) Value of irrigation water with uncertain future rain: a
simulation case study of sugarcane irrigation in northern Australia. Water Resour Res 39:1–7.
https://doi.org/10.1029/2003WR002054

Stokes CJ, Inman-Bamber NG, Everingham YL, Sexton J (2016) Measuring and modelling CO2

effects on sugarcane. Environ Model Softw 78:68–78. https://doi.org/10.1016/j.envsoft.2015.
11.022

Suguitani C (2006) Entendendo o crescimento e produção da cana de açúcar: avaliação do modelo
Mosicas. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”.
Piracicaba, Brasil [In Portuguese]

Tatsch JD, Bindi M, Moriondo M (2009) A preliminary evaluation of the Cropsyst model for
sugarcane in the southeast of Brazil. In: Bind M, Brandani G, Dibari C et al (eds) Impact of
climate change on agricultural and natural ecosystems. Firenze University, Firenze, pp 75–84

Thompson GD (1976) Water use by sugarcane. S Afr Sugar J 60:593–600. and 627–635
Thompson GD (1978) The production of biomass by sugarcane. Proc S Afr Sugar Technol Assoc

52:180–187
Thorburn PJ, Probert M, Lisson S et al (1999) Impacts of trash retention on soil nitrogen and water:

an example from the Australian sugarcane industry. Proc S Afr Sugar Technol Assoc 73:75–79
Thorburn PJ, Biggs JS, Keating BA et al (2001a) Nitrate in groundwaters in the Australian sugar

industry. Proc Int Soc Sugar Cane Technol 24:131–134
Thorburn PJ, Van Antwerpen R, Meyer JH et al (2001b) Impact of trash blanketing on soil nitrogen

fertility: Australian and South African experience. Proc Int Soc Sugar Cane Technol 24:33–39
Thorburn PJ, Park SE, Biggs IM (2003) Nitrogen fertiliser management in the Australia sugar

industry: strategic opportunities for improved efficiency. Proc Aust Soc Sugar Cane Technol
25:1–12

Thorburn PJ, Horan HL, Biggs JS (2004) The impact of trash management on sugarcane production
and nitrogen management: a simulation study. Proc Aust Soc Sugar Cane Technol 26:1–12

Thorburn PJ, Meier EA, Probert ME (2005) Modelling nitrogen dynamics in sugarcane systems:
recent advances and applications. Field Crop Res 92:337–351. https://doi.org/10.1016/j.fcr.
2005.01.016

Thorburn PJ, Biggs JS, Collins K, Probert ME (2010) Using the APSIM model to estimate nitrous
oxide emissions from diverse Australian sugarcane production systems. Agric Ecosyst Environ
136:343–350. https://doi.org/10.1016/j.agee.2009.12.014

Thorburn PJ, Biggs JS, Attard SJ, Kemei J (2011) Environmental impacts of irrigated sugarcane
production: nitrogen lost through runoff and leaching. Agric Ecosyst Environ 144:1–12. https://
doi.org/10.1016/j.agee.2011.08.003

258 H. B. Dias and G. Inman-Bamber

https://doi.org/10.1016/j.agwat.2019.05.048
https://doi.org/10.1016/j.agwat.2019.05.048
https://doi.org/10.1007/s40362-013-0004-9
https://doi.org/10.1016/j.fcr.2005.12.009
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.1016/j.agwat.2005.05.002
https://doi.org/10.1016/S1161-0301(02)00109-0
https://doi.org/10.1029/2003WR002054
https://doi.org/10.1016/j.envsoft.2015.11.022
https://doi.org/10.1016/j.envsoft.2015.11.022
https://doi.org/10.1016/j.fcr.2005.01.016
https://doi.org/10.1016/j.fcr.2005.01.016
https://doi.org/10.1016/j.agee.2009.12.014
https://doi.org/10.1016/j.agee.2011.08.003
https://doi.org/10.1016/j.agee.2011.08.003


Thorburn PJ, Biggs J, Jones MR et al (2014) Evaluation of the APSIM-Sugar model for simulation
sugarcane yield at sites in seven countries: initial results. Proc S Afr Sugar Technol Assoc
87:318–322

Thorburn PJ, Biggs JS, Palmer J et al (2017) Prioritizing crop management to increase nitrogen use
efficiency in Australian sugarcane crops. Front Plant Sci 8:1–16. https://doi.org/10.3389/fpls.
2017.01504

Thorburn PJ, Biggs JS, Skocaj D et al (2018) Crop size and sugarcane nitrogen fertiliser
requirements: is there a link? Proc Aust Soc Sugar Cane Technol 40:210–218

Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55.
https://doi.org/10.2307/210739

Valade A, Vuichard N, Ciais P, Ruget F, Viovy N, Gabrielle B, Huth N, Martiné J-F (2014)
ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of
model parameters governing phenology. GCB Bioenergy 6:606–620. https://doi.org/10.1111/
gcbb.12074

Van Antwerpen R, Thorburn PJ, Horan HL et al (2002) The impact of trashing on soil carbon and
nitrogen: II: implications for sugarcane production in South Africa. Proc S Afr Sugar Technol
Assoc 76:269–280

van Dam JC, Groenendijk P, Hendriks RFA, Kroes JG (2008) Advances of modeling water flow in
variably saturated soils with SWAP. Vadose Zone J 7:640–653. https://doi.org/10.2136/
vzj2007.0060

van den Berg M, Singels A (2013) Modelling and monitoring for strategic yield gap diagnosis in the
south African sugar belt. Field Crop Res 143:143–150. https://doi.org/10.1016/j.fcr.2012.10.
009

van den Berg M, Burrough PA, Driessen PM (2000) Uncertainties in the appraisal of water
availability and consequences for simulated sugarcane yield potentials in Sao Paulo state, Brazil.
Agric Ecosyst Environ 81:43–55. https://doi.org/10.1016/S0167-8809(00)00167-5

van der Laan M, Miles N, Annandale JG, du Preez CC (2011) Identification of opportunities for
improved nitrogen management in sugarcane cropping systems using the newly developed
Canegro-N model. Nutr Cycl Agroecosyst 90:391–404. https://doi.org/10.1007/s10705-011-
9440-6

van Heerden PDR, Donaldson RA, Watt DA, Singels A (2010) Biomass accumulation in sugar-
cane: unravelling the factors underpinning reduced growth phenomena. J Exp Bot
61:2877–2887. https://doi.org/10.1093/jxb/erq144

van Heerden PDR, Singels A, Paraskevopoulos A, Rossler R (2015) Negative effects of lodging on
irrigated sugarcane productivity – an experimental and crop modelling assessment. Field Crop
Res 180:135–142. https://doi.org/10.1016/j.fcr.2015.05.019

van Ittersum MK, Rabbinge R (1997) Concepts in production ecology for analysis and quantifica-
tion of agricultural input-output combinations. Field Crop Res 52:197–208

van Ittersum MK, Cassman KG, Grassini P et al (2013) Yield gap analysis with local to global
relevance—a review. Field Crop Res 143:4–17. https://doi.org/10.1016/j.fcr.2012.09.009

van Wart J, van Bussel LGJ, Wolf J et al (2013) Use of agro-climatic zones to upscale simulated
crop yield potential. Field Crop Res 143:44–55. https://doi.org/10.1016/j.fcr.2012.11.023

Villegas FD, Daza OH, Jones JW, Royce FS (2005) CASUPRO: an industry-driven sugarcane
model. In: ASAE annual international meeting. Presented at the Transactions of American
Society of Agricultural and Biological Engineer, Tampa

Vu JCV, Allen LH (2009a) Stem juice production of the C4 sugarcane (Saccharum officinarium) is
enhanced by growth at double-ambient CO2 and high temperature. J Plant Physiol
166:1141–1151. https://doi.org/10.1016/J.JPLPH.2009.01.003

Vu JCV, Allen LH (2009b) Growth at elevated CO2 delays the adverse effects of drought stress on
leaf photosynthesis of the C4 sugarcane. J Plant Physiol 166:107–116. https://doi.org/10.1016/J.
JPLPH.2008.02.009

8 Sugarcane: Contribution of Process-Based Models for Understanding and. . . 259

https://doi.org/10.3389/fpls.2017.01504
https://doi.org/10.3389/fpls.2017.01504
https://doi.org/10.2307/210739
https://doi.org/10.1111/gcbb.12074
https://doi.org/10.1111/gcbb.12074
https://doi.org/10.2136/vzj2007.0060
https://doi.org/10.2136/vzj2007.0060
https://doi.org/10.1016/j.fcr.2012.10.009
https://doi.org/10.1016/j.fcr.2012.10.009
https://doi.org/10.1016/S0167-8809(00)00167-5
https://doi.org/10.1007/s10705-011-9440-6
https://doi.org/10.1007/s10705-011-9440-6
https://doi.org/10.1093/jxb/erq144
https://doi.org/10.1016/j.fcr.2015.05.019
https://doi.org/10.1016/j.fcr.2012.09.009
https://doi.org/10.1016/j.fcr.2012.11.023
https://doi.org/10.1016/J.JPLPH.2009.01.003
https://doi.org/10.1016/J.JPLPH.2008.02.009
https://doi.org/10.1016/J.JPLPH.2008.02.009


Vu JCV, Allen LH, Gesch RW (2006) Up-regulation of photosynthesis and sucrose metabolism
enzymes in young expanding leaves of sugarcane under elevated growth CO2. Plant Sci
171:123–131. https://doi.org/10.1016/J.PLANTSCI.2006.03.003

Walker NJ, Schulze RE (2010) Simulations of rainfed and irrigated sugarcane yields at the scale of
mill supply areas in South Africa with the APSIM Model: a verification analysis and study of
sensitivities of yields to scenarios of climate change. In: Schulze RE (ed) Climate change and the
South African sugarcane sector: a 2010 perspective. University of KwaZulu-Natal, School of
Bioresources Engineering and Environmental Hydrology, Pietermaritzburg, pp 83–104

Wallach D (2006) The two forms of crop models. In: Wallach D, Makowski D, Jones JW (eds)
Working with dynamic crop models, 1st edn. Elsevier, Amsterdam, pp 3–10

Wang E, Martre P, Zhao Z et al (2017) The uncertainty of crop yield projections is reduced by
improved temperature response functions. Nat Plants 3:1–11. https://doi.org/10.1038/nplants.
2017.102

Wang E, Attard SJ, Everingham YL et al (2018a) Smarter irrigation management in the sugarcane
farming system using internet of things. Proc Aust Soc Sugar Cane Technol 40:14

Wang N, Wang E, Wang J et al (2018b) Modelling maize phenology, biomass growth and yield
under contrasting temperature conditions. Agric For Meteorol 250–251:319–329. https://doi.
org/10.1016/J.AGRFORMET.2018.01.005

Webb WA, Inman-Bamber NG, Mock O (2006) Participatory irrigation research and scheduling in
the Ord: extension. Proc Aust Soc Sugar Cane Technol 28:155–163

Webster AJA, Thorburn PJB, Roebeling PCC et al (2009) The expected impact of climate change
on nitrogen losses from wet tropical sugarcane production in the Great Barrier Reef region. Mar
Freshw Res 60:1159–1164

Yang S, Chen J (1980) Germination response of sugarcane cultivars. Proc Int Soc Sugar Cane
Technol 17:30–37

Zhao P, Jackson PA, Basnayake J et al (2017a) Genetic variation in sugarcane for leaf functional
traits and relationships with cane yield, in environments with varying water stress. Field Crop
Res 213:143–153. https://doi.org/10.1016/j.fcr.2017.08.004

Zhao Z, Verburg K, Huth N (2017b) Modelling sugarcane nitrogen uptake patterns to inform design
of controlled release fertiliser for synchrony of N supply and demand. Field Crop Res
213:51–64. https://doi.org/10.1016/j.fcr.2017.08.001

Zu Q, Mi C, Liu DL et al (2018) Spatio-temporal distribution of sugarcane potential yields and yield
gaps in Southern China. Eur J Agron 92:72–83. https://doi.org/10.1016/j.eja.2017.10.005

260 H. B. Dias and G. Inman-Bamber

https://doi.org/10.1016/J.PLANTSCI.2006.03.003
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1016/J.AGRFORMET.2018.01.005
https://doi.org/10.1016/J.AGRFORMET.2018.01.005
https://doi.org/10.1016/j.fcr.2017.08.004
https://doi.org/10.1016/j.fcr.2017.08.001
https://doi.org/10.1016/j.eja.2017.10.005


Forecasting of Rainfed Wheat Yield
in Pothwar Using Landsat 8 Satellite
Imagery and DSSAT

9

Sana Younas, Mukhtar Ahmed, and Naeem Abbas Malik

Abstract

Drought leads to serious reduction in the yield of wheat in rainfed regions, which
is a growing environmental phenomenon faced by wheat crop. The effect of
drought stress during grain filling on yield and some physiological traits of wheat
confirms that post-anthesis drought significantly reduces photosynthesis rate and
grain yield. We tested the DSSAT (Decision Support System for Agrotechnology
Transfer) CERES-Wheat model with details of field experimental data having
different sowing dates, and their effect on yield and result were compared with the
maps obtained by the Landsat 8 satellite imagery using ERDAS. ERDAS IMAG-
INE is an easy-to-use, raster-based software designed specifically to extract
information from images. The field trial was carried out at Islamabad and the
University Research Farm (URF)-Koont, Chakwal Road. Field survey was also
carried out in rainfed region to collect field data from farmers, and Landsat
imagery was downloaded from the EarthExplorer USGS website. Yield simulated
from DSSAT (Decision Support System for Agrotechnology Transfer) was
compared with the maps obtained from Landsat 8 satellite imagery using
ERDAS. Simulated grain yields during 2017–2018 have close association with
observed data for different sowing date experiments. At Islamabad maximum
grain yield (3263 kg/ha) was observed for Sd2 (sowing date two), while
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minimum (1126.66 kg/ha) was recorded for Sd5 (sowing date five). At
URF-Koont, maximum grain yield (3024 kg/ha) was observed for Sd2 (sowing
date two), whereas minimum (1058.33 kg/ha) was recorded for Sd5 (sowing date
five). Simulated harvest index showed close association with observed data for
different treatments during 2017–2018. Higher harvest index (35%) was
observed for Sd2 (sowing date two, 15 November), while minimum (28%) was
recorded for Sd5 (sowing date five, 30 December). At URF-Koont, maximum
grain yield (35%) was observed for Sd2 (15 November), whereas minimum
(28%) was recorded for Sd5 (30 December).

Keywords

Landsat 8 satellite · Wheat · DSSAT · Modeling · Phenology · Yield

9.1 Introduction

The change that occurs for a long period of time due to natural and anthropogenic
activities is known as climate change. Increasing concentration of carbon dioxide,
rising temperature, and severity of extreme events are involved in climate change
(Rosenzweig and Tubiello 2007). Anthropogenic activities resulted in the emissions
of greenhouse gases (carbon dioxide, methane, nitrous oxide, and water vapors)
(Motha and Baier 2005). Due to these activities, the concentration of greenhouse
gases is increasing at the rate of 23 ppm/decade, which is a maximum increase since
the past 6.5 million years. Sectors such as agriculture (13%), energy (53%), forestry
(18%), and other wastes (13%) are contributing in the emission of greenhouse gases
(Rosegrant et al. 2008). Similarly, during combustion of fossil fuels, wood, and
wastes, carbon dioxide is produced. From the past years, concentration of carbon
dioxide is high and increasing rapidly (Siegenthaler et al. 2005). Deforestation and
massive uses of fossil fuels are the main causes of increased concentration of carbon
dioxide. In the future greenhouse gases may increase from 500 to 700 ppm if there
will be no policy to control the emission of these gases which would result in the
increased temperature from 3 to 6 �C. Crop growth, development, and yield have
been affected by climate change directly or indirectly from few decades (Ahmed and
Stockle 2016; Ahmed 2020; Liu et al. 2019). The increasing concentration of carbon
dioxide results in the increase in photosynthesis and water use efficiency, and it falls
in direct effect (Ahmed and Ahmad 2019; Challinor and Wheeler 2008). The net
revenue of crop yield and productivity has been directly affected by temperature and
rainfall (Amassaib et al. 2015).

Wheat is an important food grain cereal which contributes about 21% to world
food supply. According to the FAO, Pakistan is one of the ten major producers of
wheat in the world. In Pakistan, 14% of value added in agriculture is contributed by
wheat and provides 3% of the country’s GDP. The total cultivable area is 34.54 M/
ha, in Pakistan of which 22 M/ha is under cultivation. Wheat is cultivated over the
largest area about 9.18 M/ha. Of this total 9.18 M/ha area, about 6 M/ha is irrigated
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and the rest is under rainfed (Kazmi and Rasul 2012). Wheat is a major food crop in
Pakistan grown in irrigated and rainfed regions during winter. Rainfed area
contributes only about 12% of wheat production to the country. In rainfed regions
drought leads to serious reduction in the yield of wheat which is one of the most vital
cereal crops of the rainfed regions. The severe reduction in wheat yield occurs due to
the long duration of drought stress which is a growing environmental phenomenon
faced by wheat crop. The average wheat yield reduction is up to 50% due to
inadequate rainfall in arid and semiarid regions limiting crop production. In dry
land areas, grain filling in wheat crop depends upon the stem reserves as compared to
current photosynthesis (Ehdaie et al. 2006). The effect of drought stress during grain
filling on yield and some physiological traits of wheat cultivars confirms that post-
anthesis drought significantly reduced photosynthesis rate and grain yield (Ahmed
et al. 2020; Saeidi and Abdoli 2015). In rainfed regions crops are grown in Rabi
season which are susceptible to change in minimum temperature and tolerate high
temperature (Venkateswarlu and Rao 2010).

Crop yield forecasting refers to the prediction of crop yield and production prior
to harvesting. Reliable timely and accurate crop yield forecasts can provide infor-
mation for food security planning, particularly in the context of climate variability,
change, and extremes. Crop yield forecasting uses meteorological data, cultivar-
specific genotype, soil properties, and various management practice data to stimulate
plant-weather-soil interactions in quantitative terms and predict the crop yield over a
given area, prior to the harvest. Models like DSSAT (Decision Support System for
Agrotechnology Transfer) and APSIM (Agriculture Production Systems Simulator)
try to mimic fundamental mechanisms of plant growth and related processes in the
soil-plant-atmospheric continuum to stimulate specific outcomes. For any soil,
cultivar, and management conditions, weather is a prime driver of interannual
variations in the crop yield. To determine wheat production on the basis of the
cultivated area in the long run, there is a need to use model which can estimate wheat
production forecasting in cultivated areas. Many studies have been conducted to
forecast and determine constraints in the production of major crops such as wheat,
cotton, rice, and canola in Pakistan (Ahmed et al. 2017).

Modeling concept was used to find the easiest way of evaluating the interactions
of genotype, environment, and management (G� E�M) (Wallach et al. 2018; Coo-
per and Hammer 1996). Crop models are powerful tools used broadly for the
analysis of crop growth, quality and cropping systems (Matthews et al. 2013;
Ahmed et al. 2013; Asseng et al. 2019; White et al. 2011). Previous studies revealed
that simulation models can successfully simulate all growth and development stages
of the crop (Asseng et al. 2001; Ahmed et al. 2014, 2016, 2017, 2018, 2019; Ahmad
et al. 2017, 2019). International network of scientists developed DSSAT (Decision
Support System for Agrotechnology Transfer) which facilitates the crop researcher.
The Decision Support System for Agrotechnology Transfer is a software application
program that comprises crop simulation models for over 42 crops. To simulate crop
growth, development, and yield on a uniform area of land and change in soil water,
nitrogen, and carbon that take place in the cropping system, the model DSSAT
(Decision Support System for Agrotechnology Transfer) is designed which is most
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widely used. To select improved agricultural practices, DSSAT has been proven to
be a useful tool. Further modification of DSSAT was made like soil organic matter
model was incorporated into DSSAT to improve tillage, soil carbon and nitrogen
dynamics, soil water, and crop residues (Ahmed 2012). Under various environmen-
tal and management conditions and a wide range of growing conditions, crop models
are used to predict yield (White et al. 2011). DSSAT is also used to measure the
performance of conservation agriculture systems and compare the yield of crop
grown in conservation agriculture (CA) system with conservation tillage-based
practices under different climatic conditions.

Landsat imagery allows yield predictions at a higher resolution, and the pattern of
measurements highlights yield performance difference due to soil type and topo-
graphic location, and large variations in yield are evident. Precision agriculture and
more specifically yield mapping provide an alternative method to collect yield
measurements at a matching scale. Yield and spatial position are collected via a
combined harvester every 1 to 3 seconds, allowing maps of yield to be produced at a
high spatial resolution that is similar to the resolution of the spectral indices
produced by the Landsat sensor. Previous studies have reported a strong relationship
between yield and Landsat imagery, but most studies are from individual fields and
rarely have these relationships been used to predict yields elsewhere. The observa-
tory through which Landsat 8 developed was NASA (National Aeronautics and
Space Administration) and USGS (US Geological Survey), Landsat 8 was launched
on 11 February 2013 from Vandenberg Air Force Base, California (Irons and
Loveland 2013). The OLI (Operational Land Imager) and TIRS (Thermal Infrared
Sensor) are two sensors which are carried by the Landsat 8 satellite (Irons et al.
2012). These two sensors OLI and TIRS provide improved radiometric resolution,
geometric fidelity, and signal-to-noise characteristics compared to the earlier
Landsat sensors (Lee et al. 2004). In a year maximum 22 or 23Worldwide Reference
System (WRS)-2/row is overpassed which is a 16-day repeat cycle, and Landsat
8 has completed its one cycle in 16 days. By using Landsat data and information, we
can understand the Earth system and its response to natural and human-induced
changes enabling prediction of weather, climate, and natural hazards (Irons et al.
2012). Landsat 8 imagery predicts wheat yield by using Normalized Difference
Vegetation Index (NDVI) and using wheat yield prediction model for the compari-
son of two high resolutions over different growing seasons, and the result helps the
agriculture decision-making (Jabeen et al. 2017; Lyle et al. 2013). Maps are obtained
by the Landsat 8 satellite imagery using ERDAS. ERDAS IMAGINE is an easy-to-
use, raster-based software designed specifically to extract information from the
images. A geographic imaging toolset extends the capabilities of IMAGINE
Essentials by adding more precise mapping and image processing functions.
ERDAS IMAGINE includes a complete set of tools to analyze data from imagery
via mosaicking, surface interpolation, preprocessing like radiometric correction and
environmental correction advanced image interpretation and ortho-rectification.
QGIS was launched by Gary Sherman in July 2002 and was also known as Quantum
GIS till 2012. By using raster (satellite images) and vector data, it helped in making
maps, and analysis of spatial data imagery preprocessing can be done by using QGIS
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and extraction of NDVI values. ArcMap can be used for supervised classification
and mapping of Landsat 8 satellite imagery. Normalized Difference Vegetation
Index (NDVI) can be used for analyzing Landsat 8 imagery and is a graphical
indicator of green vegetation; it can be measured by using band 5 which is near
infrared (NIR) and bad four red of LANDSAT 8 imagery.

Various indices such as Normalized Difference Wheat Index, Normalized Differ-
ence Vegetation Index (NDVI), Vegetation Condition Index (VCI), and Tempera-
ture Condition Index (TCI) are used for mapping and monitoring of drought and
assessment of vegetation health and productivity. NDVI, soil moisture, surface
temperature, and rainfall are valuable sources of information for the estimation and
prediction of crop conditions (Prasad et al. 2006). MODIS (Moderate Resolution
Imaging Spectroradiometer), a two-band Enhanced Vegetation Index (EVI2),
provides a better basis for predicting yields relative to the widely used Normalized
Difference Vegetation Index (NDVI) (Bolton and Friedl 2013).

9.2 Methodology

The experiment was conducted to study “Yield forecasting of wheat in rainfed
region.” The field experiment was carried out at Islamabad (38.78� N, 73.57� E)
having altitude of (1722 ft) and (1770 ft), with an elevation of (1634 ft) and (1663 ft)
above sea level, respectively, and in the URF-Koont, Chakwal Road (33.40� N,
72.51� E) with elevation range from 500 to 1200 m. While wheat yield data will be
collected from different sites of Pothwar region through field survey of farmers, e.g.,
Jhelum, Landsat imagery was collected from EarthExplorer USGS website. The
experiment was laid out in Randomized Complete Block Design (RCBD); each
treatment was replicated thrice during the growing season of 2017 and 2018. Wheat
genotype Pak-13 will be used as planting material. The treatments include study sites
(SS1¼ Islamabad and SS2¼ URF-Koont) and sowing dates (ST1¼ October 21–30
(2017–18), ST2 ¼ November 11–20 (2017–18), ST3 ¼ December 1–10 (2017–18),
and ST4 ¼ December 21–30 (2017–18)). Crop phenological and agronomic
parameters were recorded using standard protocol.

9.2.1 Landsat 8 Methodology for Crop Map

Landsat 8 imagery was collected from the EarthExplorer USGS website (https://
earthexplorer.usgs.gov/). We used the Landsat 8 images for the yield forecasting of
wheat. Landsat 8 has 11 bands. Landsat 8 consists of Operational Land Imager, and
Thermal Infrared Sensor images consist of nine spectral bands with a spatial resolu-
tion of 30 m band 1 to 7 of different wavelengths where red, green, and blue sensors
were combined to produce true color image. New band 9 is useful for cloud
detection. The band 8 has 15 m resolution. Bands 10 and 11 are thermal bands
which are useful in providing more accurate surface temperature with resolution of
100 meters (Table 9.1).
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9.2.2 ERDAS

ERDAS IMAGINE is an easy-to-use, raster-based software designed specifically to
extract information from the images. ERDAS IMAGINE includes a complete set of
tools to analyze data from imagery via.

• Mosaicking
• Surface interpolation
• Advanced image interpretation
• Ortho-rectification
• Radiometric correction
• Mapping

9.2.3 QGIS

QGIS was initiated by Gary Sherman in July 2002 and also known as Quantum GIS
till 2012. By using raster (satellite images) and vector data, it helped in making maps
and analysis of spatial data. QGIS was used for preprocessing (radiometric correc-
tion and environmental correction) of Landsat 8 satellite imagery and extraction of
Normalized Difference Vegetation Index (NDVI) values.

QGIS comprised the following menu bars:

1. Project
2. Edit
3. View
4. Layer
5. Setting
6. Plug-ins
7. Vector

Table 9.1 Landsat 8 bands and resolutions

Band Wavelength (micro, m) Resolution (m)

Band 1 – Coastal aerosol 0.43–0.45 30

Band 2 – Blue 0.45–0.51 30

Band 3 – Green 0.53–0.59 30

Band 4 – Red 0.64–0.67 30

Band 5 – Near infrared (NIR) 0.85–0.88 30

Band 6 – SWIR 1 1.57–1.65 30

Band 7 – SWIR 2 2.11–2.29 30

Band 8 – Panchromatic 0.50–0.68 15

Band 9 – Cirrus 1.36–1.38 30

Band 10 – Thermal Infrared Sensor (TIRS) 1 10.60–11.19 100

Band 11 – Thermal Infrared Sensor (TIRS) 2 11.50–12.51 100
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8. Raster
9. Database

10. Web
11. Processing
12. Help

9.2.4 ArcGIS

Image processing is done by using ArcGIS 10.8. It is used for supervised classifica-
tion and creating maps, compiling geographic data, and analyzing mapped informa-
tion. For forecasting of wheat yield using Landsat imagery, we extracted maps and
geographic information using ArcGIS as shown below (Figs. 9.1, 9.2, 9.3, and 9.4).

Fig. 9.1 Download Landsat 8 images (EarthExplorer USGS website)
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9.2.5 Image Processing

Image processing involves making of composite first and addition of point data and
finally classification of image (Figs. 9.2, 9.3, and 9.4). Landsat 8 bands and
resolutions have been presented in Table 9.1.

9.2.5.1 Normalized Difference Vegetation Index (NDVI)
NDVI was used in this study, and its index is sensitive to the presence of green
vegetation. NDVI can be defined by following equation:

NDVI ¼ NIR� R=NIRþ R

where NIR and R are the reflectance in the near infrared and red region, respectively.

Fig. 9.2 Composite

Fig. 9.3 Add point data
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9.2.5.2 Enhanced Vegetation Index (EVI)
Enhanced Vegetation Index can be defined by the formula:

EVI ¼ 2:5 NIR� RED=NIRþ 2:4 REDþ 1

9.3 Results

9.3.1 Land Cover Classification

Accessing and mapping the Islamabad and URF-Koont, Chakwal Road, by using
Landsat 8 satellite imagery for the classification. QGIS software was used for the
preprocessing of imagery and extraction of NDVI values, while ArcMap was applied
for the supervised classification of Landsat 8 satellite imagery. Supervised classifi-
cation was performed which created different classes of land cover of Islamabad and
URF-Koont, Chakwal Road. Five main surface classes including water, built-up
area, Baran land, other vegetation, and wheat were produced. Land classification of
Islamabad is shown in Fig. 9.5, whereas land classification of URF-Koont, Chakwal
Road, is shown in Fig. 9.6.

9.3.2 Remote Sensing-Based Yield Forecasting

Landsat 8 imageries cover growth of wheat from its sowing to harvesting stage.
Different five wheat sowing dates are 31 October, 15 November, 30 November,

Fig. 9.4 Image classification
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15 December, and 30 December. We have different sowing date experiments, so we
collected imagery throughout the season from November to April. The imageries of
November, December, January, February, March, and April were used for the
analysis. Full processing of the Landsat imagery for NDVI was done, and NDVI

Fig. 9.5 Land cover classification map of NARC Islamabad 2017–2018

Fig. 9.6 Land cover classification map of URF-Koont, Chakwal Road, 2017–2018
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is calculated using the mean values of the reflectance in green, red, and NIR portion
of the electromagnetic spectrum. NDVI proposed a band ratio demonstrating the
feasibility of forecasting the wheat yield throughout the growing season of
2017–2018. NDVI for each month were used for the simple regression analysis
which was performed on the field yield data to calculate equations for predicting
wheat yield.

9.3.2.1 Yield Forecasting by NDVI
By using Normalized Difference Vegetation Index (NDVI), we calculated the
photosynthetically absorbed radiation. NDVI map showed the wheat yield of
Islamabad in Figs. 9.7, 9.8, and 9.9 and wheat yield of URF-Koont, Chakwal
Road, in Figs. 9.10, 9.11, and 9.12. NDVI value ranges between �1 and +1.
Water bodies and built-up area showed negative value, while rainfed area has zero
value. Maps of NDVI were made with the help of GIS software like QGIS, ArcMap,
and ERDAS using Landsat 8 imagery band 5 near infrared (NIR) and band 4 red.
NDVI values of NARC Islamabad observed on 28 November (R2 ¼ 0.1655) and
12 December (R2 ¼ 0.0154) were very low (Table 9.2). Similarly, NDVI values of
URF-Koont, Chakwal Road, observed on 12 December R2¼ 0.1952 and 15 January
R2 ¼ 0.2375 were very low (Table 9.3). That was attributing to the continuity of
early vegetation growth stages. The factors that contributed to lower NDVI values of
those images were lesser crop leaf area and background reflection of soil in the red
band. The highest NDVI values were observed on the imagery of 16 February of
both Islamabad and URF-Koont, Chakwal Road, when the chlorophyll content and
biomass were maximum. In March the NDVI values of NARC Islamabad as well as
URF-Koont, Chakwal Road, started decreasing due to low chlorophyll content and
leaf senescence, which caused increased reflectance in the red band.

9.3.2.2 Linear Regression Model Development
The linear regression model was developed between the observed yield and mean
NDVI values of the points of NARC Islamabad (Figs. 9.13, 9.14, and 9.15) and
URF-Koont, Chakwal Road, field (Figs. 9.16, 9.17, and 9.18). After observing the
linear relationship between field yields and the six imagery mean NDVI values, the
16 February imagery showed the highest fit between NDVI and yield of NARC
Islamabad and URF-Koont, Chakwal Road. The correlation between the wheat grain
yield and corresponding NDVI values of NARC Islamabad during early vegetation
growth period in December was very low R2 ¼ 0.0514 because of reflectance from
mixed pixel of wheat, other vegetation and soil background. While the correlation
between the wheat grain yield and NDVI values of URF-Koont, Chakwal Road, was
very low in the months of December R2 ¼ 0.1952 and January R2 ¼ 0.2375.
Subsequently the relationship between NDVI and wheat grain yield of NARC
Islamabad started increasing up-to the month of February R2 ¼ 0.7075 because of
increase in chlorophyll content and biomass as well. However, it declined in March
R2 ¼ 0.2246 and April R2 ¼ 0.002 because crop is at harvest stage and chlorophyll
content is very low in the leaves. While the relationship between NDVI and wheat
grain yield of URF-Koont started increasing up-to March R2¼ 0.5462 and highest in

9 Forecasting of Rainfed Wheat Yield in Pothwar Using Landsat 8 Satellite. . . 271



Fig. 9.7 NDVI map of Islamabad during the wheat growing season of 2017–2018
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Fig. 9.8 NDVI map of Islamabad during the wheat growing season of 2017–2018
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Fig. 9.9 NDVI map of Islamabad during the wheat growing season of 2017–2018
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Fig. 9.10 NDVI map of URF-Koont, Chakwal Road, during the wheat growing season of
2017–2018
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Fig. 9.11 NDVI map of URF-Koont, Chakwal Road, during the wheat growing season of
2017–2018
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Fig. 9.12 NDVI map of URF-Koont, Chakwal Road, during the wheat growing season of
2017–2018
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the February R2 ¼ 0.6312 due to high chlorophyll content and biomass. It declined
in the April R2 ¼ 0.33 due to deceasing chlorophyll content. The relation between
the observed yield and NDVI values was used in forecasting the wheat yield using
the following equation:

y ¼ �9837:5xþ 5497:7

9.3.3 Simulation Outcomes

9.3.3.1 Days to Anthesis
Simulated days to anthesis during 2017–2018 have close association with observed
data for different sowing date experiments (Fig. 9.19). At NARC maximum (123)
days to anthesis were observed for sowing date one (Sd1), while minimum (82) were
counted for sowing date five (Sd5). Meanwhile, maximum (120) and minimum
(90) simulated days to anthesis were recorded for sowing date one (Sd1) and sowing
date five (Sd5), respectively. The comparison of model performance was measured
by using validation skills scores R2 RMSE which was (0.92). At URF-Koont highest
(135) number of days to anthesis was counted for Sd1 (sowing date one), whereas
minimum (90) was recorded for Sd5 (sowing date five). DSSAT model was able to
reproduce the effect of different sowing dates on wheat phenology. The model
predicted maximum (120) number of days to anthesis Sd1 followed by Sd5, whereas

Table 9.2 Mean NDVI of Islamabad and the R2 values for 15 points of field

S. no.
Date of
acquisition

Mean NDVI of NARC
Islamabad

R2 of mean NDVI and observed
yield

1 28 Nov. 2017 0.10746807 0.1655

2 12 Dec. 2017 0.5479084 0.0154

3 15 Jan. 2018 0.332320 0.4498

4 16 Feb. 2018 0.322173 0.7075

5 4 March 2018 0.697954 0.2246

6 21 April 2018 0.464193 0.002

Table 9.3 Mean NDVI of URF-Koont, Chakwal Road, and the R2 values for 15 points of field

S. no.
Date of
acquisition

Mean NDVI of
URF-Koont

R2 of mean NDVI and observed
yield

1 28 Nov. 2017 0.242683 0.3923

2 12 Dec. 2017 0.065125 0.1952

3 15 Jan. 2018 0.043119 0.2375

4 16 Feb. 2018 0.433295 0.6312

5 4 March 2018 0.042297 0.5462

6 21 April 2018 0.041880 0.33
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minimum (90) were predicted for Sd5. The comparison of model performance was
measured by using validation skills scores R2 RMSE which was (0.96).

9.3.3.2 Days to Maturity
Predicted days to maturity have close association with observed data for different
sowing date experiments during the wheat growing season of 2017–2018 (Fig. 9.20).
At NARC higher (181) days to maturity were observed for Sd1 (sowing date one),

Fig. 9.13 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of Islamabad
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while minimum (119) were counted for Sd5 (sowing date five). DSSAT model was
able to reproduce the effect of different sowing dates on wheat phenology. The
model predicted maximum (151) number of days to anthesis Sd1 followed by Sd5,
whereas minimum (114) were predicted for Sd5. Validation skills scores (R2 RMSE)
were used for the comparison of model performance which was (0.99). At
URF-Koont the highest (181) number of days to maturity was counted for Sd1

Fig. 9.14 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of Islamabad
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(sowing date one), whereas minimum (119) was recorded for Sd5 (sowing date five).
DSSAT model significantly reproduced the effect of different sowing date
experiments on wheat phenology. The model predicted maximum (151) number of
days to anthesis Sd1 followed by Sd5, whereas minimum (114) were predicted for
Sd5. Validation skills scores (R2 RMSE) were used for the comparison of model
performance which was (0.99).

Fig. 9.15 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of Islamabad
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9.3.3.3 Leaf Area Index
Simulated leaf area index during 2017–2018 has close association with observed
data for different sowing date experiments (Fig. 9.21). At Islamabad maximum
(5) leaf area index was observed for Sd1 and Sd2 (sowing dates one and two),
while minimum (4.5) were calculated for Sd5 (sowing date five). Meanwhile, the
model’s predicted maximum (5.1) and minimum (4.7) leaf area indices were
recorded for Sd2 (sowing date two) and Sd5 (sowing date five) experiment of
different sowing dates. The comparison of model performance was measured by
using validation skills scores R2 RMSE which was (0.89). At URF-Koont highest
(5.1) leaf area index was counted for Sd2 (sowing date two), whereas minimum (4.4)
was recorded for Sd5 (sowing date five). DSSAT model efficiently reproduced the

Fig. 9.16 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of URF-Koont, Chakwal Road
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effect of different sowing dates on wheat phenology. The model predicted maximum
(5.1) leaf area index for Sd2, whereas minimum (4.7) was predicted for Sd5. The
comparison of model performance was measured by using validation skills scores R2

RMSE which was (0.7).

9.3.3.4 Grain Yield (kg/ha)
Simulated grain yield during 2017–2018 has close association with observed data for
different sowing date experiments (Fig. 9.22). At Islamabad maximum grain yield

Fig. 9.17 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of URF-Koont, Chakwal Road
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(3263 kg/ha) was observed for Sd2 (sowing date two), while minimum (1126.66 kg/
ha) was recorded for Sd5 (sowing date five). Meanwhile, the model predicted
maximum (3802 kg/ha) for Sd2 (sowing date two), and minimum (1098 kg/ha)
grain yield was recorded for Sd5 (sowing date five) treatment experiment of different
sowing dates. Delay in sowing dates reduces grain yield effectively. The comparison
of model performance was measured by using validation skills scores R2 RMSE
which was (0.88). At URF-Koont maximum grain yield (3024 kg/ha) was observed
for Sd2 (sowing date two), whereas minimum (1058.33 kg/ha) was recorded for Sd5
(sowing date five).The model reproduced the effect of different sowing date

Fig. 9.18 Linear regression curve showing the relationship between NDVI values and observed
wheat yield of URF-Koont, Chakwal Road
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experiments on wheat phenology. Maximum simulated grain yield (2802 kg/ha) was
recorded for Sd2, whereas minimum (1098 kg/ha) was predicted for Sd5. The
comparison of model performance was measured by using validation skills scores
R2 RMSE which was (0.86).

9.3.3.5 Biomass Yield (kg/ha)
Wheat biomass has close association with observed data for different sowing date
experiments during the wheat growing season of 2017–2018 (Fig. 9.23). The highest
value of biomass accumulation (8410 kg/ha) was recorded for Sd2 (sowing date two)
at Islamabad, while the lowest (4040 kg/ha) was observed for Sd5 (sowing date five).
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Fig. 9.19 Observed and simulated days to anthesis at Islamabad and URF-Koont under different
climatic conditions and different sowing date experiments
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However, the model estimated maximum (9432 kg/ha) and minimum (4289 kg/ha)
of biomass for Sd2 and Sd5. However, statistic index values for evaluation of
CERES-Wheat were R2 RMSE which was (0.93). The highest observed biomass
(8700 kg/ha) was observed for Sd1 (sowing date one), while lower (3635.13 kg/ha)
was recorded for Sd5 (sowing date five) at URF-Koont. However, the model
efficiently estimated maximum (9432 kg/ha) and minimum (4289 kg/ha) of biomass
for Sd2 and Sd5. Statistic index values for evaluation of CERES-Wheat were R2

RMSE which was (0.95).
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Fig. 9.20 Observed and simulated days to maturity under different climatic conditions and
different sowing date experiments
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9.3.3.6 Harvest Index
Simulated harvest index has close association with observed data for different source
sink partitioning and varying nitrogen regimes during 2017–2018 (Fig. 9.24). Higher
harvest index (35%) was observed for Sd2 (sowing date two, 15 November), while
minimum (28%) was recorded for Sd5 (sowing date five, 30 December). Meanwhile,
the model predicted maximum (30%) for Sd2 (sowing date two, 15 November), and
minimum (24%) harvest index was recorded for Sd1 (sowing date one, 31 October).
At URF-Koont maximum grain yield (35%) was observed for Sd2 (15 November),
whereas minimum (28%) was recorded for Sd5 (30 December). The model
reproduced the effect of different sowing dates on wheat phenology. Maximum
simulated harvest index (30%) was recorded for S2, whereas minimum (24%) was
predicted for Sd5.
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Fig. 9.21 Observed and simulated leaf area index under different climatic conditions and different
sowing date experiments
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Methane Production in Dairy Cows,
Inhibition, Measurement, and Predicting
Models

10

Mohammad Ramin, Juana C. Chagas, and Sophie J. Krizsan

Abstract

Methane is a potent greenhouse gas that is produced in many sectors. Agriculture
and, more specifically, livestock contribute to this phenomenon. Methane is
produced as a result of fermentation in the rumen of dairy cows with a significant
amount of gas being released in the atmosphere via the mouth of ruminants. The
total intake is the main factor influencing methane production followed by
digestibility, fat, and the amount of fibre in the diet. Many strategies exist to
reduce methane emissions such as chemicals, essential oils, and the red
macroalgae in the diet of dairy cows. The majority of these strategies are either
expensive or not feasible to use in a long-term period of time since the microbes
in the rumen will adapt to this change. There is a wide range of methods and tools
to measure methane emissions both in vitro and in vivo. The respiration chamber
is the golden method to measure and quantify the fluxes (methane emissions) in
dairy cows. In some cases where measurements of methane are impossible, vitro
techniques together with modelling approaches could be used to predict methane
emissions. Empirical and mechanistic modelling is a technique widely used to
predict methane emissions. In this case by knowing some feed and animal
characteristics methane could be reliably estimated.
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10.1 Methane Gas

Water vapour is the number one contributor to greenhouse gas (GHG) effect
followed by carbon dioxide (CO2) and methane (CH4) (Kiehl and Trenberth
1997). Methane is a compound with relatively high energy combustion of
55.5 MJ/kg (Crutzen 1995) that contributes to about 20% of total anthropogenic
GHG emissions as shown by Lassey (2007). Methane has a very short turn-over time
of about 10 years in the atmosphere as compared to CO2, but it can trap the heat
20 times greater than CO2, playing a key part in global climate change. The
concentration of CH4 gas has been rising rapidly in the atmosphere over the past
decade compared to three centuries ago; it has raised over 2.5-fold (Lassey 2007).
Emissions of CH4 lead to increased ground-level ozone, with significant damage to
public health and agriculture (Howarth 2019), giving an estimated social cost of
2700 USD per ton of CH4 (Shindell 2015).

10.2 Sources of Methane Emissions

There are many sources that CH4 originates from; it can be from wetlands, rice
paddies, termites, agriculture, and burning biomass (Immig 1996). The rice paddies
have been shown to be an important contributor with annual emissions reported to be
around 115 teragrams (Tg) per year (Thorpe 2009). The agriculture sector
contributes to about 10–12% of the total global anthropogenic GHG emissions
(McAllister et al. 2011) with livestock sector (enteric fermentation) contributing
the most within the agricultural sector of around 37% of total anthropogenic CH4

emissions. Other reports claim that CH4 emissions from the livestock sector is about
51% of the total agricultural CH4 emissions and that the contribution of rice paddies
and livestock is rather similar, 100 and 110 Tg/year, respectively (Moss et al. 2000).

There is a high demand by the Intergovernmental Panel on Climate Change
(IPCC) to evaluate the number of gases produced and to develop methods and
strategies to reduce the emissions of GHG within a time frame (Ahmed
2017; Moss et al. 2000). Within the European countries, livestock, mainly the enteric
fermentation, has been reported to be the leading CH4 producer within the agricul-
ture sector (Moss et al. 2000).

Within the European Union (EU-27) and based on data that was obtained in 2003,
Lesschen et al. (2011) reported that dairy cow and beef cattle contributed to the most
GHG emissions (Fig. 10.1).

As shown in Fig. 10.1, the enteric fermentation from dairy cow and beef cattle
contributes the most to the GHG emissions followed by the N2O soil emission and
manure management.

Recently published data based on radioactive carbon (C14) content in CH4

indicates that anthropogenic emissions of CH4 in recent decades have been higher
than previously estimated (Petrenko et al. 2017). Satellite data (Howarth 2019)
suggest that the increased global CH4 emissions in the period 2005–2015 were
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mostly due to increased extraction of shale gas and that the natural gas and oil
industry contributes twice as much CH4 emissions as animal agriculture.

10.3 Methane in Ruminants

Methane is produced in the rumen of ruminants with a minor contribution from the
hindgut as a result of food digestion and fermentation. The majority (95%) of CH4

gas is produced during the enteric fermentation and is lost to the atmosphere via
belching, whereas the remaining 5% is emitted through the rectal (Fig. 10.2).

The food eaten by dairy cows (mainly silage and concentrates) is then fermented
in the rumen by the help of microorganisms. A result of this fermentation is
hydrogen (H2) gas which then needs to be absorbed in order to make this fermenta-
tion pathway happening all time. There are specific microorganisms in the rumen
belonging to the domain of Archaea (Methanobrevibacter spp.) which uses the H2 to
produce CH4 gas. One of the dominant species of methanogenic bacteria living in the
rumen is Methanobacterium ruminantium (Miller et al. 1986). The phenomenon of
CH4 emission starts around 4 weeks after birth in dairy cows when the rumen is
almost shaped, and solid particles are kept in the rumen (Johnson and Johnson
1995). Methanogenic bacteria are mainly in both the liquid and solid phases in the
rumen (Morgavi et al. 2010). The food entering the rumen (stomach) of a cow is first
digested by microorganisms that contain mainly bacteria, protozoa, and fungi. The
simple monomers produced by primary microorganisms are then used by both
primary and secondary fermenters to produce end products such as volatile fatty
acids (VFA), CO2, and H2 (McAllister et al. 1996). In the final step of fermentation,

Fig. 10.1 Greenhouse gas emissions from the livestock production in the EU-27. (Source:
Lesschen et al. 2011)
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the H2 that is produced in previous steps is then used together with CO2 to produce
CH4 gas by methanogens in the rumen (Eq. 10.1).

CO2 þ 4H2 ! CH4 þ 2H2O ð10:1Þ
Methane emission from dairy cows depends on many factors, such as type of

feed, the amount of feed intake, quality of the feed, and digestibility. Grass contains
energy; this energy is called gross energy (GE) and once eaten by dairy cows a part
of this energy is lost as CH4 gas. Depending on the factors mentioned above, CH4

emission as a proportion of GE varies between 2% and 12% of GE intake (Johnson
and Johnson 1995).

10.4 Factors Affecting Methane Emission

There are many factors influencing CH4 emission in dairy cows. The main element is
dry matter intake. In addition to intake, diet digestibility, amount of fat and fibre in
the diet has effects on CH4 emission in dairy cows (Ramin and Huhtanen 2013).

There are some feed characteristics influencing CH4 emission in dairy cows as
there is a close relationship between rumen-fermented organic matter and CH4

emission (Ramin and Huhtanen 2013). Diets that contain high amounts of digestible
fibre will increase the digestibility in the diet resulting in higher emissions of CH4.
The forage to concentrate ratio in the diet also affects CH4 emission, for example,
feeding high concentrate proportions (above 90%) in the diet of feedlot beef cattle
can reduce CH4 significantly (Johnson and Johnson 1995). Moss et al. (1995)
showed that CH4 as a proportion of GE increased more when the concentrate was
increased in the diet of sheep fed on a low level of intake. The effect of fat in the diet
is another factor influencing CH4 emission (Grainger and Beauchemin 2011). There
are some theories behind the effect of fat on CH4 emissions: (1) unsaturated fatty
acids are bio-hydrogenated in the rumen, a process that utilizes H2, (2) inclusion of

Fig. 10.2 Picture showing
that the majority of CH4 is
eructated from the mouth of
dairy cows
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fat in the diet simply reduces the supply of carbohydrates resulting in less ferment-
able substrates, and (3) inclusion of fat in the diet favours the pathway of propionic
acid production (H2 sink) in the rumen (Ramin and Huhtanen 2013).

10.5 Factors Inhibiting CH4 Emissions

To date, there are many strategies to reduce CH4 emission in dairy cows, ranging
from chemicals to algae. Some show direct effects on methanogenic bacteria and
some act by interrupting the last step in the biochemical process of producing CH4 in
the rumen. For the chemicals, the efficient methane inhibitor identified is
3-nitrooxypropanol (3NOP). The 3NOP has proven to be the most effective inhibitor
without showing any adverse effect on milk production (Hristov et al. 2015). The
amount of 3NOP needed to reduce enteric methane from cows is very small, 80 mg
per kg of DM intake showed reductions up to 30% of methane production from high
producing dairy cows (Hristov et al. 2015). In addition, other chemicals have been
reported in the literature decreasing CH4 emissions, such as 2-nitroethanol and
bromoform (Chagas et al. 2019; Zhang and Yang 2011).

Regarding dietary strategies with the potential to mitigate CH4 emission, the
rapeseed oil added to a grass silage-based diet reduced ruminal CH4 emissions from
lactating cows as reported by Bayat et al. (2018), where the decrease in CH4 was
explained by reductions in DM intake and the dilution effect on fermentable organic
matter. Franco et al. (2017) in an in vitro study replaced soybean meal by dried
distiller’s grain in grass silage-based diet, and the authors reported a decrease in
predicted in vivo CH4 production, which was related to a shift in the ruminal
fermentation pattern to decreased acetate and butyrate production and increased
propionate production. Further, the use of oats in the diet has also been shown as a
potential strategy to reduce CH4 emission, and a recent study conducted by Fant
et al. (2020) showed that predicted in vivo CH4 emission was 8.5% lower for a diet
that used oats compared to barley.

Several studies have recently reported the potential of essential oils to reduce
enteric CH4 production, primarily in vitro and short-term trials. The most common
essential oils reported in the literature as methane mitigate strategies are derived
from thyme, oregano, horseradish, rhubarb, frangula, and highlighting garlic, cinna-
mon, and its derivatives (Benchaar and Greathead 2011). However, the authors draw
attention to the need for in vivo investigation to propose whether these ingredients/
additives can be used successfully to inhibit rumen methanogenesis, without
depressing feed intake, digestibility, and animal productivity.

Recently, the red macroalgae Asparagopsis taxiformis (AT) has shown promising
effects on reducing CH4 emission from dairy cows. In vivo (Stefenoni et al. 2019)
and in vitro (Chagas et al. 2019) studies showed a decrease of 80% on CH4 emission
by adding 0.5% of AT on a dry matter basis and inhibition of CH4 by adding 0.5% of
AT on organic matter basis, respectively. Previous in vitro studies also had reported
the potential to mitigate methane emission to adding AT in ruminants diets
(Machado et al. 2014, 2016).
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One major problem with additives used in the diet is the excess of H2 gas in the
rumen if there is no other sink to uptake the H2 production (Fig. 10.3).

10.6 Methods and Models for Measuring or Predicting CH4
Emission

There are many tools and models in the literature to predict CH4 emission. Respira-
tion chamber is the most accurate method of measuring CH4 emission in dairy cows
(Johnson and Johnson 1995). The animal is basically allocated in a chamber for
2–3 days in which all exhaled breath is measured including CH4. The technique is
laborious with high construction costs. The alternative to in vivo techniques mea-
suring CH4 emissions, in vitro methods, is also used. In the in vitro method, a small
sample size (1 g) is incubated in fermentation units in which buffered rumen fluid is
added. The fermentation takes place in an anaerobic condition at the same tempera-
ture of the rumen (39 �C). The unit is then gently shacked for about 48 h.

The in vitro gas production system’s main advantage is that it provides a large
number of data points, which allow accurate estimates of CH4 emissions. In another
hand, this system has some limitations compared with in vivo studies (e.g. no
absorption of VFA over time and the intake dynamics).

Recently, Ramin and Huhtanen (2012) developed the application of an in vitro
method so CH4 emission could be predicted in vivo by applying the data obtained
from the in vitro in a rumen model. The method allows estimation of CH4 emissions
every 20 min of incubating a sample up to 48 h. Figure 10.4 shows the curve of CH4

Fig. 10.3 This cartoon
shows the side effects of
dietary CH4 inhibitors.
(Reprinted from: An
Introduction to Rumen
Studies by J.W. Czerkawski,
page 172. Copyright
# (1986))
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emission over a 48 h incubation time for a diet consisting of silage. One main
advantage of in vitro systems is that it allows digestion kinetics to be evaluated from
feeds and that the method could be used as a screening tool for assessing different
CH4 inhibitors.

Danielsson et al. (2017) evaluated the in vitro system developed by Ramin and
Huhtanen (2012) by formulating 49 diets used in 13 in vivo studies in which CH4

emission was measured by the respiration chamber. The results indicated that the
in vitro system predicted in vivo CH4 emissions very well with a high R2 ¼ 0.96.
However, the values obtained (mean 399 L/d) also showed a slight underestimation
compared to the observed (mean 418 L/d) in vivo CH4 emissions (Fig. 10.5).

Models are developed from data sets that consist of animal and dietary
characteristics. The most widely used models to predict CH4 emissions are the
empirical models. However, models can be categorized into two main groups:
empirical models (e.g. Ellis et al. 2007; Ramin and Huhtanen 2013; Niu et al.
2018) or dynamic mechanistic models (Huhtanen et al. 2015).

Empirical models relate CH4 emissions to the total amount of intake and dietary
composition (Ramin and Huhtanen 2013). The empirical models developed by
Ramin and Huhtanen (2013) use a data set in which no additive study is used. It is
also advisable to use a mixed model regression analysis so that random study effect
will be taken into account (St-Pierre 2001) when developing models predicting CH4

emission. The model predicting CH4 as a proportion of GE developed by Ramin and
Huhtanen (2013) takes into account total dry matter intake per kg of body weight
(DMIBW), organic matter digestibility estimated at the maintenance level of feeding
(OMDm), and dietary concentrations of neutral detergent fibre (NDF), non-fibre
carbohydrates (NFC), and ether extract (EE).

Fig. 10.4 In vitro method (a) and methane emission (b) over a 48 h incubation period from a
silage-based diet using the model as described by Ramin and Huhtanen (2012)

10 Methane Production in Dairy Cows, Inhibition, Measurement, and. . . 301



CH4 � E=GE kJ=MJð Þ ¼ �0:6 �12:76ð Þ � 0:70 �0:072ð Þ
� DMIBW g=kgð Þ þ 0:076 �0:0118ð Þ
� OMDm g=kgð Þ � 0:13 �0:020ð Þ
� EE g=kg DMð Þ þ 0:046 �0:0097ð Þ
� NDF g=kg DMð Þ þ 0:044 �0:0094ð Þ
� NFC g=kg DMð Þ ð10:2Þ

And the equation predicting total CH4 emission (litres per day) developed by
Ramin and Huhtanen (2013) was closely related to total DMI, and further adding
other variables improved the model:

CH4ðL=dÞ ¼ �64:0 ð�35:0Þ þ 26:0 ð�1:02Þ � DMI ðkg=dÞ
� 0:61 ð�0:132Þ � DMI2 ðcenteredÞ þ 0:25 ð�0:051Þ
� OMDm ðg=kgÞ � 66:4 ð�8:22Þ � EE intakeðkg DM=dÞ
� 45:0 ð�23:50Þ � NFC=ðNDFþ NFCÞ ð10:3Þ

Mechanistic models are a little bit more complicated as compared to empirical
models. Mechanistic models simulate CH4 emissions using mathematical formulas
and descriptions of ruminal fermentation biochemistry, making it a great tool for
understanding the mechanisms and factors influencing CH4 emissions in the rumen.
Karoline is a dynamic, deterministic, and mechanistic simulation model of a lactat-
ing dairy cow developed by Danfær et al. (2006). The sub-model predicting CH4

emission was further developed by Huhtanen et al. (2015). A recent evaluation of the

Fig. 10.5 Relationship between predicted in vivo CH4 emission by the in vitro technique and
observed CH4 emission in vivo (L/d; n ¼ 49), with fixed and mixed model regression analysis.
(Source: Danielsson et al. 2017)
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Karoline model using a data set developed from studies that respiration chamber was
used to measure CH4 emission suggested that the model has a potential to predict
CH4 emissions accurately and precisely as shown in Fig. 10.6 (Ramin and Huhtanen
2015). Furthermore, evalution of CH4 at whole farm scale is need of time (Ahmed
et al. 2020).

Table 10.1 summarizes some empirical and mechanistic models developed in the
literature. The empirical model developed by Ramin and Huhtanen (2013) predicted
CH4 emission better than other models as observed by a smaller root mean square
error (RMSE). The mechanistic model Karoline also showed better predictions of
CH4 emission (Table 10.1) compared to the mechanistic model evaluated by Mills
et al. (2001).

There are many equations developed in the literature predicting CH4 production.
Equations are basically developed from larger data sets in which intake and dietary
factors are gathered. Since dry matter intake is the driving force in predicting CH4

Fig. 10.6 Relationship between predicted (using the Karoline model) and observed CH4 emissions
(L/d) (n ¼ 184) with fixed and mixed model regression analysis. (Source: Ramin and Huhtanen
2015)

Table 10.1 The comparison of empirical and mechanistic models in predicting CH4 emission

Reference Observation R2 RMSE

Empirical models

Axelsson (1949) 175 0.75 0.131

Ellis et al. (2007) 172 0.71 0.296

Ramin and Huhtanen (2013) 184 0.93 0.104

Mechanistic models

Mills et al. (2001) 32 0.76 0.154

Ramin and Huhtanen (2015) 184 0.93 0.101
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production, often all equations require this parameter for predicting CH4 production.
Table 10.2 summarizes some equations predicting CH4 production in dairy cattle.

10.7 Conclusion

Methane is emitted from ruminants as a result of fermentation in rumen. There are
many strategies to inhibit CH4 emissions from ruminants. Most strategies reducing
CH4 emission require adaptation of the inhibitor used in the rumen and that the
rechannelling of H2 remains unclear in the rumen upon using any inhibitor. There are
both in vitro and in vivo methods to measure CH4 emission from dairy cows.
Empirical and mechanistic models such as the Karoline model usually predicts
CH4 emission reliably in which they could be used by national inventories and
advisory services for predicting CH4 emission.
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Sunflower Modelling: A Review 11
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Abstract

Vegetable oils are a key component of human dietary need and health worldwide.
Oil quality of sunflower is better than all others because of the higher percentage
of the linoleic acid that is the most appropriate character missing in all other
oilseed crops. Changing climate and extreme weather events are making crop
highly vulnerable and threatening global food security. Application of different
crop models was evaluated to quantify the sunflower genotypes selection, assess-
ment of phenotypic plasticity, physiology, and estimation of seed yield and oil
concentration in response to the climate variability. The present study evaluated
the worldwide sunflower modelling performance, and a case study of SUNFLO
hybrid modelling technique was assessed for crop model adaptation to new
genotypes under contrasting environment. Extended field experiment was
conducted at 52 locations (28 genotypes) at the 75% of the total sunflower
cultivated region in France. Compared to initial models the experiential correla-
tion decreased mean square error (MSE) on an average of 54% for seed yield
production, and 26% for oil content concentration. The study also identified smart
management practices and evaluated the performance of different models and
concluded with the utilization of hybrid modelling skills. Further research
expresses the thrust to use system modelling for screening the existing hybrids
on grounds of their responses to several growth parameters and adaptation
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capacity to rapidly changing climatic conditions. This will eventually minimize
the yield losses and help in increasing the crop yield even in limited resources.
The present study is also proposing a clear optimization framework for genetic
diversity of sunflower hybrids and management practices under changing cli-
matic scenario.

Keywords

Climate variability · Crop adaptation · Smart management · Modelling sunflower

11.1 Introduction

Sunflower belongs to the Asteraceae family, formerly denoted as the Compositae.
The wild sunflower (diploid annual Helianthus annuus) has history back to 0.5 to
1 million years for producing seeds (Rieseberg et al. 1991; Harter et al. 2004), and
widely dispersed across many states of the United States, i.e. temperate North
America. Currently, wild annual Helianthus annuus nurture throughout the United
States but habitats are more confined to north of the Trans-Mexican Volcanic Belt
(Heiser et al. 1969; Lentz et al. 2008a). Domesticated Helianthus annuus are planted
throughout Northern America (Lentz et al. 2008a, 2008b). Sunflower (Helianthus
annuus L.), a famous ornamental plant due to its sun like artistic flower shape
(Badouin et al. 2017; Ma et al. 2019), is one of the major oil seed crops in the
world (Salunkhe et al. 1992; Putt 1997; Stefansson et al. 2007). Globally, it is
planted on 24.77 million hectares with an average yield of 44.31 million metric
tons and covers 8% of the world oil seed market (USDA 2016). Pakistan being
deficient in edible oil production invests almost 2.71 billion US dollars to import
edible oil (Govt. of Pakistan 2017). Sunflower shares 9.19% in local edible oil
production followed by cotton and rapeseed/mustard (Govt. of Pakistan 2017;
Amin et al. 2017; Nasim et al. 2018).

Edible oils, especially vegetable oils, are a key component of human dietary need
and also health (Gholamhoseini et al. 2013; Manivannan et al. 2015). Oil quality of
sunflower is better than all others because of the higher percentage of the linoleic
acid that is the most appropriate character missing in all other oilseed crops (Nasim
et al. 2011). The sunflower oil is also rich in the A, D, E and K vitamins. Sunflower
oil is also free from the toxic compounds (Abbas et al. 2017). Sunflower seed
comprises of 40–50% oil and 17–20% proteins (Abbas et al. 2017; Amin et al.
2018). This high percentage of edible oil highlighted its potential to minimize the
feed gap between production and consumption and ensure food security for future
population of the world. Sunflower belongs to tropical and subtropical lands, where
semi-arid to arid climate persists. It can be grown in different environmental
conditions ranging from humid to dry lands accompanying irrigation. However,
like other agri-crops, sunflower productivity is affected by different biotic (pests)
and abiotic factors (drought, heat and salinity) (Pekcan et al. 2015; Robert et al.
2016). The optimum growth and development temperature for sunflower plant
ranges from 26 to 29 �C (Rondanini et al. 2006; Awais et al. 2017; Hammad et al.
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2017). Climate change is a threat to sustainable crop production (Kalyar et al. 2013)
and agricultural land is shrinking day by day due to urbanization (Farooq et al. 2012)
leading to the competition for water between different users, and plants will suffer
from drought (Elliott et al. 2014).

In the past few decades, different areas of the world (Asia and Africa) faced
hilarious drought stresses (Miyan 2015; Farooq et al. 2014) which raised the value of
climate study. Drought stress mostly affects the crops at early stages of growth
(Debaeke et al. 2017) depending on the plant species, like in sunflower; it suppresses
the seed germination, stem elongation and leaf expansion (Fulda et al. 2011; Fatemi
2014). Even though domesticated sunflower has potential to adapt climate variations
due to its drought escape nature and likely to maintain yield under drought and heat
stress conditions, but aforementioned stresses can affect early flowering and achene
filling stages due to imbalance in leaf growth and evapotranspiration under deficient
soil water (García-López et al. 2014). Leaf wilting under water deficit is the major
challenge in semiarid areas due to limited rainfall because ample water at early stage
improves vegetative growth (Aboudrare et al. 2006). It is widely reported that
drought and heat stresses caused substantial decreases in achene and oil yield as
well as affected the oil quality (Soleimanzadeh et al. 2010; Ibrahim et al. 2016).
Drought stress is more prune in sunflower at flowering and achene development
stage and caused almost 50% yield loss (Kalarani et al. 2004; Hussain et al. 2008)
due to pollen infertility resulting empty achene (Lyakh and Totsky 2014; Totsky and
Lyakh 2015).

Climate change drives the productivity shift in agriculture, for instance abrupt
changes in day and night temperatures severely affect crops production (Ahmed
2020; Farooq et al. 2014). Modern approaches are compulsory to achieve sustainable
crop production of current crops to cope the food security challenge (Reddy et al.
2003; Nasim et al. 2016b). According to the Intergovernmental Panel on Climate
Change (IPCC), temperature will raise almost 1.4 to 5.8 �C in this century (IPCC
et al. 2014; Arshad et al. 2020; Nasim et al. 2016b). Use of modern technologies
along with exiting germplasm of sunflower is dire need under limited water supply in
the future agriculture. Many researchers tried to observe the impacts of drought and
heat stress on oil yield and quality (Gholamhoseini et al. 2013; Manivannan et al.
2015), defined mitigation strategies about drought stress and discovered physiologi-
cal and molecular responses of crops to stress (Ahmed et al. 2020; Baloğlu et al.
2012; Ghobadi et al. 2013; Bowsher et al. 2016), but no roadmap was developed for
sustainable productivity of the sunflower crop.

Use of genetic material from wild and domesticated sunflower is technically
possible to improve production of drought-efficient hybrids (Burke et al. 2002).
Different population of the sunflower from the world can be used to get valuable
genetic resource for further breeding of the sunflower (Van et al. 1997; Burke et al.
2002; Lentz et al. 2008a). Because crop management and genetic improvements
(Wang et al. 2016a, b; Awais et al. 2017; Jabran et al. 2017; Nasim et al. 2016a),
along with variable phenology of genotypes, are major attributes to cope climate
change (Visser and Both 2005; Miller-Rushing et al. 2007; Gordo and Sanz 2010;
Szabó et al. 2016). Further research expresses the thrust to use system modelling for
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screening the existing hybrids on grounds of their responses to several growth
parameters and adaptation capacity to rapidly changing climatic conditions (Lentz
et al. 2008a). This will eventually minimize the yield losses and help in increasing
the crop yield even in limited resources. This review chapter summarizes the
potential role of sunflower underutilized crop modelling systems to enhance the
efficacy of hybrids system modelling to oilseed security under the changing climate.
The present study is also proposing a clear optimization framework for genetic
diversity of sunflower hybrids and management practices under future climate
scenarios. The objective of the study is to analyse multiple sunflower crop models’
skills to simulate the phenotypic variability of composite plant characteristics under
ambient climatic conditions, along with observation of several possible modelling
approaches to reach high yields.

11.2 Crop Modelling as Agriculture Decision Support Tools

Agriculture science provokes knowledge that allow the researcher to estimate future
problems. The world has become complex with several factors threatening the
integrity of life from recent years, including increasing pressure of population,
scarcity of food, contamination of water, unavailability of land for cultivation of
crop and reduction of natural resources. All these factors further effected by climatic
condition will lead to changes in the world as we have known it (Wheeler and von
Braun 2013). System models component and their interactions are well understood
by the scientific studies in the sustainable agroecosystem. Models are considered
necessary for understanding agricultural problems. Thus, the overall performance of
agroecosystem predicted with the help of models. Agricultural system models play
increasingly important roles in the development of sustainable land management
across diverse agroecological and socioeconomic conditions because field and farm
experiments require large amounts of resources and may still not provide sufficient
information in space and time to identify appropriate and effective management
practices (Teng and Penning de Vries 1992; Jones et al. 2017).

Models prove helpful for land managers and policy-makers to recognize man-
agement option which enhance sustainability of agro-ecosystem (Ahmed and
Stockle 2016; Aslam et al. 2017; Ijaz et al. 2017; Jabeen et al. 2017; Wallach
et al. 2018; Liu et al. 2019; Asseng et al. 2019; Gyldengren et al. 2020; Schepen
et al. 2020; Peng et al. 2020; Stöckle and Kemanian 2020). The soil management and
socio-economical and metrological information get across space and time by using
these models (Jones et al. 2017). The field study may be carried at potential risk
areas. Thus, potential risk area was screened with the help of models. The computer
software programmes such as Decision Support Systems (DSSs) make use of other
information and model to make site-specific recommendations. These
recommendations are helpful in farm financial planning, pest and livestock
enterprises management and general crop and land management (Plant 1989;
Basso et al. 2013). The evidence-based decision-making is helpful in agriculture to
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manage environment output. Decision support tools that are software-based may be
important to searching for evidence-based decision-making in agriculture. These
decisions may be helpful to improve productivity and environmental outputs. The
evidence-based decision was improved by using information based upon these tools,
and these tools can lead users through clear steps and suggest optimal decision paths.
Users design efficient decisions with the help of decision support tools (DSTs). The
recommendation of these dynamics’ tools was varied according to the inputs from
users. These tools may recommend an optimal decision path. Such softer tools
facilitate the adviser of farmer for management of farm by recording data and its
analysis. Several management techniques and recommendations may be decided
based on of the evidence (Ahmed 2011; Ahmed et al. 2012, 2013, 2014, 2016, 2017,
2018, 2019; Ahmad et al. 2017, 2019; Rossi et al. 2014).

Several models are used in agroecosystems such as Environmental Policy
Integrated Climate (EPIC) which are considered as cropping model. From a long
time, EPIC has been used in a wide range of applications such as irrigation,
environmental change, erosion of soil, quality of water and in the crop productivity
(Rosenzweig et al. 2014; Wriedt et al. 2009; Elliott et al. 2015). As a combined
meteorology and air quality modelling system, WRF/CMAQ is an important deci-
sion support tool that is widely used for increasing our understanding of the chemical
and physical processes contributing to air quality impairment and for facilitating the
development of policies to mitigate harmful effects of air pollution on human health
and the environment (Cohan et al. 2007; Compton et al. 2011; Wang et al. 2016a). N
deposition to FEST_C EPIC and WRF/CMAQmodel provides daily weather inputs,
which stimulates growth of plant along with fertilization, planting, harvesting,
hydrology and complete biogeochemical properties, under several management
practices and soil conditions. In return, information on daily nitrogen fertilization,
properties of soil along with the soil moisture, pH or NH3 conditions stimulated by
FEST-C extracts EPIC need input for CMAQ bidirectional NH3 modelling. The Soil
and Water Assessment Tool (SWAT) is important tool that has been used to assess
the impact of management of land, soil and weather/climate upon sediments, water
and agro-chemical at water shed scale (Abbaspour et al. 2015; Saleh et al. 2000;
White et al. 2014).

11.3 Climatic Variability and Smart Practices

Climate Smart Agriculture (CSA) is an approach to help people who manage
agricultural systems respond effectively to climate change. The CSA approach
pursues the objectives of sustainably increasing productivity and income, adapting
to climate change and reducing greenhouse gas emissions whenever possible. CSA
is an approach to help smallholder owners implement a variety of smart climate
agriculture practices and technologies in order to minimize the negative effects of
climate change and variability, but their adoption depends on much of the economic
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benefits associated with the practices. The goal of CSA practices is to improve the
ability of agricultural systems to support food security, sustainably increasing
productivity and income, adapting to climate change by incorporating the need for
adaptation and mitigation potential into development strategies. However, produc-
tion Climate Intelligent Farming is a sustainable agricultural production system that
addresses climate change. Sustainable agricultural systems offer opportunities for
adaptation and mitigation of climate change by contributing to the delivery and
maintenance of a wide range of public goods, such as clean water, carbon sequestra-
tion, flood protection, recharging groundwater and the value of landscape services.
By definition, sustainable agricultural systems are less vulnerable to shocks and
stresses. In terms of technologies, productive and sustainable agricultural systems
take full advantage of crop varieties and animal breeds and their agroecological and
agronomic management (Beddington et al. 2012).

At the field level, there are a wide range of agricultural practices and approaches
that are currently available and can contribute to increased production while still
focusing on environmental sustainability. Climate change causes some serious
challenges to the agricultural sector like temperature increase, heat stress or
increased disease which could reduce yields, leading to increased production costs.
Appropriate CSA practices are heat tolerant varieties, mulching, water management,
shade house, boundary trees. Weeds, Pests and Disease: It is also possible that
increases in temperature, moisture and carbon dioxide could result in higher
populations of destructive pests so appropriate CSA practices such as intercropping,
crop diversity, mulching, container gardening and encased beds should be applied.
Irrigation and Rainfall: Changes in climate may also impact the water availability
and water needs for agriculture. Rain shortage leads to extended dry spells, and
excessive rains lead to erosion and loss of soil fertility, so follow appropriate
rainwater harvesting, efficient irrigation, mulching, composting, treated manure
and nitrogen fixing trees.

11.4 Uncertainties and Phenotype Optimization: A Case Study

Present global accounting for the annual climatic variability is a recognized issue for
projection-based studies of environmental models. Worldwide sunflower is consid-
ered as a major oilseed crop. Mainly sunflower seed production considered regions,
Europe produces 62% of the total world sunflower production, 19% by the United
States and 15% by Asian region (FAO). Improvements in yield with changing
environmental conditions depend on the genotype’s adaptability to the local climate
and cropping systems. It frequently involves intensive field sampling and averaging
the simulation outputs over many series of replications. Therefore, researchers need
to develop and evaluate the performance of promising sunflower genotypes of every
potential variety. Crop modelling can help scientists and breeders in assessment of
genotypes, by their capacity to simulate the phenotypic plasticity in response to the
climate variability (Fig.11.1). For sunflower, crop physiology has been combined
with complementary and different methods in few crop models (Casadebaig et al.
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2011). The SUNFLO is a process-based simulation model for sunflower crop that
was developed to estimate the grain yield and oil concentration (%) as a function of
time, environment (soil and climate), management practices and genetic diversity.

The crop SUNFLO model can simulate variation in promising genotype’s perfor-
mance among different environmental conditions. Model SUNFLO simulates the
above-ground biomass production of a sunflower crop from incident solar radiation
and mean air temperature. The model works in daily period steps and designates the
phenology of plant, leaf area expansion, the biomass production and canopy alloca-
tion (Lecoeur et al. 2015). SUNFLO crop model takes into account the behaviour of
several genotypes at the same time by the mode of some parameters that are
genotype dependent. SUNFLO crop model has the ability to rank the sunflower
genotypes with relative performance from its predictive quality. SUNFLO might be
helpful to evaluate the capacity ranking of different genotypes due to an appropriate
phenotypic variability description. These interactions play important role in yield
variability between simulated and actual networks. The originality of the model is
that it is SUNFLO tested for estimate differences between genotypes on different
criteria (penology, architecture, abiotic stresses). The model also allows forecasting
the performance of the oil content of sunflower on the scale and dimensions of a plot
and calculates indicators of experienced stresses. Cadic et al. (2012) used the

Fig. 11.1 Variety of evaluation processes in crop modelling. (Source: Casadebaig et al. 2016, with
permission from Elsevier)
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SUNFLO crop model for estimation of drought stress index in each environment
condition through the response of previously characterized probe genotypes. Fur-
thermore, approach by Picheny et al. (2015) achieves good performances even with
limited computational budgets, outclassing significantly more simple practices. In
another study, SUNFLO model was developed to simulate the oil concentration and
achene yield of sunflower crop with a distinct attention paid to the report of varietal
range. The results of Lecoeur et al.’s (2015) SUNFLO biophysical model account for
80 to 90% accuracy of observed variability in different genotype’s yield potential.
The model is also an interesting tool for investigating the phenotypic variability of
complex plant characteristics, i.e. drought, water demand and light interception
efficiency. SUNFLO model showed multiple approaches that in several ways are
possible to reach high yields (Table 11.1).

Table 11.1 Classification characteristic of sunflower crop models to different parameters

Models Region Remarks References

SUNFLO America
Europe
Asia

Assessment of genotypes performance
Phenotypic plasticity to different environment
conditions
Simulate grain yield and oil concentration
Management practices and field budgeting
Abiotic stresses, light interception, fertilizers and
water demand

Lecoeur
et al. (2015)
Cadic et al.
(2012)
Casadebaig
et al. (2011)
Lecoeur
et al. (2011)

APSIM
(APSIM-
Sunflower)

Asia
Australia

Simulate crop phenology in the intercropping
system
Under different saline soil conditions to water-
extraction coefficient (KL)
Root growth pattern in soil profile (XF)
N-levels to leaf area (LAI), dry matter (DM) and
seed yield (SY)
Different sowing (SD) dates and irrigation

Holzworth
et al. (2014)

WOFOST
(WOFOST-
ES)

Asia Simulate and calibrate environmental stresses
factors to estimate best management practices

Zhu et al.
(2018)

DSSAT
(OILCROP-
SUN)

Asia
South
America

Simulate different hybrids crop growth and
development
Water and nitrogen limited demands to yield
variability
Different sowing dates, fertilizer levels and yield
potential

Ahmad et al.
(2017)
Awais et al.
(2017)
Leite et al.
(2014)

SWB Africa Simulate the soil water balance and crop growth
and development
Irrigation scheduling and WUE

EPIC and
ALMANAC

America Crop phenology, growth, and yield
Growth degree days (GDD) and radiation use
efficiency (RUE)
Combine high yield potential with great
adaptability by different management schemes

Kiniry et al.
(1992)
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The SUNFLO model has 10 genotype-dependent parameters: 2 parameters for
growth degree days (GDD) to important development stages, 4 for shoot architec-
ture, 2 for response to water deficit and 2 for biomass allocation in plant. A case
study of SUNFLO hybrid modelling technique was evaluated for crop model
adaptation to new genotypes. To train the liner model applied in calibration method
an extended field experiment was conducted at 52 locations (28 genotypes) at the
75% of the total sunflower cultivated region in France in 2009/10. A total 82 number
of trials were conducted and observed over the complete model calibration. The data
set of Casadebaig et al. (2016) was reused to validate the model performance. The
two major output variables (grain yield, oil concentration) of the simulation were
calibrated. Compared to initial models the experiential correlation decreased mean
square error (MSE) on an average of 54% for yield production and 26% for oil
content. This modelling approach combines the recompenses of phenotyping
(genotype-specific) parameters that have a clear meaning and are equal between
different genotypes. The benefit of fitting model to the observation data from field,
specifically that the modified model, is adapted to a changing environmental
condition.

Models often cover a maximum number of crop parameters, perhaps more than
one hundred. Some parameters are presumed to apply very commonly and so are not
meant to be changed for different applications. For example, in the SUNFLO model
(Casadebaig et al. 2011; Lecoeur et al. 2011), there are parameters representing the
effect of soil moisture and temperature on rate of nitrogen (N) mineralization.
Additional set of parameters is specific to a particular species, which applies to
generic models like DSSAT (Jones et al. 2003; Hoogenboom et al. 2012), Agricul-
tural Production System Simulator (APSIM; Holzworth et al. 2014) or (STICS;
Jones and Kiniry 1986; Jones 1993; Ritchie and Otter 1984) which can simulate for
various species. The SUNFLO model has 10 genotype-dependent parameters (two
for degree days to key development stages, four for shoot architecture, two for
response to water deficit and two for biomass allocation).

11.5 Sunflower Modelling Way Forward

Development and applications of crop growth models is an effective tool for
sustainable agricultural planning and decision-making process. Outdated experimen-
tal approaches are overpriced, time-consuming and not resourceful to adopt with
changing climatic condition. Modelling of sunflower (Helianthus annuus L.) is
stimulating because the crop species combines high harvest potential with excessive
adaptability. Crop modelling might be an advantageous tool for identifying appro-
priate and economical management practices for sunflower, particularly climate
change vulnerable regions worldwide. The key sunflower crop models are reviewed
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in this section, with an emphasis on their capability to contribute to smart sunflower
crop management (Fig. 11.2).

Numerous research experimentations proved that the modelling skills are effec-
tive to evaluate the applicability of the sunflower model within the APSIM to
observe the climatic adaptation and resilience by shifting the sowing windows or
other parameters (Table 11.1). Zheng et al. tested the APSIM sunflower model on
different salinity levels and nitrogen application rates and studied the characteristics
including the seed yield (SY), dry matter (DM), and leaf area index (LAI) by
modifying the crop lower limit (CLL), the water-extraction coefficient (KL) and
the pattern of root exploration in the soil profile (XF). APSIM-SUNFLO modelling
tool help researchers to precisely simulate the crop phenology in the intercropping
system to signify for the valuation and optimization of intercropping production
systems. Based on APSIM-Sunflower model, interaction analysis of irrigation,
sowing date and nitrogen application on oil yield of sunflower was simulated,
calibrated and validated.

Agricultural monitoring and evaluation of crop plants to environmental stress is
vital for the sustainable development of agriculture and food security. Zhu et al.
(2018) tested World Food Studies (WOFOST) crop model, WOFOST-ES, which
was developed by the addition of a general environmental stress factor (ES) for
sunflower simulation to calibrate and validate with observational data to estimate
the best managing practices for future (Table 11.1). In another study Leite et al.
(2014) evaluated the performance of the crop model OILCROP-SUN to simulate
growth and development of sunflower under Brazilian conditions and to discover
sunflower water nitrogen-limited, water-limited and potential yield and yield
variability over an arrangement of sowing dates. The Soil Water Balance (SWB)
was used by Jovanovic and Annandale to simulate the soil water balance and growth
of sunflower crop. The detailed meteorological, soil and irrigation data were
analysed to calibrate and validate the subroutines of the model. SWB simulations
of crop growth and soil water deficit presented the field capacity were inside, or
marginally outside the reliability criteria imposed during the modelling.

Meanwhile, other studies showed that the combination of EPIC and ALMANAC
models gave realistic yield simulations over changing environment and management
possibilities (Kiniry et al. 1992). The application of sunflower models should be
valuable both for evaluating the impacts of extreme climate to different management
systems and for identifying focus zones where additional basic research is needed.
Besides, the drought and limited supplies of water in many countries of the world
have increased attention to favourable system modelling approaches in farm man-
agement such as efficient irrigation and climate resilient planting system. Further-
more, AquaCrop model has also been successfully applied to estimate the sunflower
crop productivity under irrigated and rainfed agricultural conditions to enhance the
water use efficiency of the crop plants.

For evaluation of adaptive sunflower hybrids, the SUNFLO model might be
supportive to advance genotypic estimation. It will also assist scientists in identifi-
cation, quantification and modelling of phenotypic changeability of sunflower
performance in response to field stresses (abiotic) conditions (Fig. 11.3)
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(Casadebaig et al. 2016). Furthermore, SUNFLO crop model appears adequately
more robust in evaluation of breeding traits which influence on yield to discover
innovative practices while diagnosing environmental challenges, respectively
(Fig.11.4).

11.6 Summary

In a situation of global climatic change, improving yield under different environ-
mental uncertainties is a major challenge for crop production and food security. The
present study proposes various hybrid approaches from adapting a crop model to
promising genotypes. This will also combine phenotyping estimation of genotype-
dependent parameters with calibration using field data. Review research also
suggested that the genotype-dependent constraints of the crop model could be
obtained by phenotype or gene-based modelling. Then field data, especially variety
trials, could be used to provide a simple empirical correction to the model. The

Fig. 11.3 SUNFLO crop model. (Source: Casadebaig et al. 2016, with permission from Elsevier)
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combination the different modelling approach achieves might provide good
performances even for limited research budgets, outperforming suggestively more
simple strategies. The present study is also proposing a clear optimization frame-
work for genetic diversity of sunflower hybrids and management practices under
changing climatic scenario.
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Abstract

Biotic stress is one of the major environmental factors that affect the plant’s
growth and life cycle. Plant pathogens are major constraints and severe threats to
agricultural production in changing climate scenarios. The effects of climate
variability on plant diseases and pathogens have been examined in various
plant pathosystems. Climate change is predicted to affect the development of
pathogens, their survival, vigor, sporulation, multiplicity, and host susceptibility
that ultimately cause changes in the crop diseases. It also affects the inoculum
dispersion and pathogenicity. These effects vary depending on pathosystems and
geographic locations. Climate change not only affects optimal conditions of
infection but also host specificity and infection mechanism in plants.
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Temperature, light, and humidity are the major factors that control the develop-
ment and growth of diseases. So, climate change is an emerging challenge that is
impacting and driving the plants and pathogens growth, disease development in a
pathosystem. This overview is aimed to summarize the previous research,
reviews, opinions, and recent trends in studying the effects of climate variability
on pathogens and plants health. However, managing and predicting climate
change impacts are complicated because of the interaction between the indirect
effects and global climate change drivers. Similarly, uncertainty in plant disease
development models in changing climate needs the diversification in manage-
ment strategies. Protection of plants against diseases and pathogens is an essential
direction for researchers to make the plants more resistant to pests and diseases.
There is a need for further research in different areas under multiple climate-
changing factors and scenarios using the disease modeling frameworks such as
BIOMA and APSIM-DYMEX.

Keywords

Pathosystems Climate change Biotic stress Disease modeling

12.1 Introduction

Change in the statistical distribution of weather for an extended period of time is
called climate change. The end of the twentieth century and the start of the twenty-
first century were the warmest periods globally. The availability of information on
the effects of climate variability upon plant diseases is very limited. It was
documented that plant diseases will be affected by the changing climate like other
global change components (Regniere 2011; Bradley et al. 2012). The influence of
the environment on plant disease is considered by plant pathologists disease studies,
and the disease triangle illustrates the interaction among host plants, environment,
and pathogen for disease development (Grulke 2011). Climate variability is one of
the ways in which the environment can be suppressive or conducive for disease
(Ahmed 2020; Ahmed and Stockle 2016; Perkins et al. 2011; Fuhrer 2003). There-
fore plant diseases are indicators of climate variability (Garrett et al. 2015). Since the
last decade plant virus distribution and the population is increasing swiftly as well as
many new infectious diseases are also identified. Plant diseases are not only
accelerated by increased activity of pathogens but also due to declined tolerance in
plants as a result of adverse environmental conditions (Huseynova et al. 2014).
Anthropogenic activities are the important causes of plant diseases spread; sudden
oak death is an example of these activities (Prospero et al. 2009). Climate variability
is impacting the plants in agriculture ecosystems globally (Stern 2008). Little work
has been carried out on modeling the impacts of climate variability on disease
epidemics in plants. However, several tree diseases are emerging because of climate
change (Garrett et al. 2006; Garrett et al. 2015). This change is affecting the crops
directly as well as indirectly by interacting with microbial pests and resulting in
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several disease epidemics in plants (Bosch et al. 2007; Chakraborty 2005). A variety
of mechanisms can affect the health of plants in changing climates such as accelera-
tion in pathogen evolution, fewer incubation periods, and extreme climatic events
(Sutherst et al. 2011). Climate change is impacting the hosts and pathogens directly
and indirectly by altering their physiology (Desprez-Loustau et al. 2006; Garbelotto
et al. 2010).

12.2 Recently Occurred Changes

Climate variability has been measured, and these changes have been associated with
plant pathosystems. Environment and climatic conditions strongly affect the plant
diseases in the forests. Pathogens, moisture, temperature, and stress interaction
influence the severity of infections and diseases. Climate changes result in the
evolvement of more invasive species and increase stress on plants leading to the
condition that is favorable for diseases in plants. Changes in temperature, moisture,
and precipitation in North America were associated with tree death events (Van
Mantgem et al. 2009; Sturrock et al. 2011). In central Europe rise in winter
temperature and fluctuations in the rain favored the root rot diseases in forests by
supporting infection through Phytophthora spp. (Jung 2009). At Oregon coast
climatic changes resulted in the Swiss needle epidemic, and a further increase of
0.4 �C in temperature is predicted by 2050 in Pacific Northwest forests that will
further increase the severity of the epidemic and increase the outbreak (Stone et al.
2008; Sturrock et al. 2011). In Oregon and California sudden death of Oak trees
caused by Phytophthora ramorum abruptly increased due to extreme climatic
events. Heavy rains and extension of moist weather in warm season favor the
infection in plants and lead to the death (Swiecki and Bernhardt 2016; Frankel
2007). In Europe study was carried out for Phytophthora cinnamomi in Oak. Results
demonstrated that an increase in temperature worsens the root disease (Brasier 1996;
Brasier and Scott 1994). A similar study was carried out for eucalyptus (Booth et al.
2000). In Alaska yellow cedar tree’s mortality rate is also increasing due to changing
climatic conditions. As earlier, melting of snow exposed roots to the cold conditions
that result in freezing and cause injury (Thompson 2007).

Several studies were carried out to assess the climate change impacts on plant
diseases. Most studies investigated the head blight, leaf rust and blotch in wheat,
downy mildew in grapes, and phoma stem canker in oilseed rapes. These studies are
mostly carried out in European countries and Brazil (Juroszek and von Tiedemann
2015). However, rice is a major crop in Asian countries, and rice blast is an
important disease that results in major losses in rice production. Luo et al. (1995)
conducted an analysis of the blast epidemic produced byMagaporthe grisea. Results
showed that change in rainfall has no impacts, while in subtropical regions, disease
severity is increased because of high temperatures. However, the opposite trend was
observed in humid areas. An experiment was conducted to study the impacts on soil-
borne pathogens. Results showed an increase in damping-off in cotton plants under
elevated CO2 (Ahmad and Hasanuzzaman 2020; Runion et al. 1994). In barley an

12 Disease Modeling as a Tool to Assess the Impacts of Climate Variability on. . . 329



increase in growth was observed at high CO2 concentrations but after the infection of
powdery mildew, the growth was retarded (Hibberd et al. 1996). The incidence of
leaf rust was studied in spring wheat under elevated CO2 and ozone. The infection
rate was inhibited by the ozone; however, ozone damage on leaves was altered by
infection and CO2 (Tiedemann and Firsching 2000). Temperature evaluation can
increase the yellow dwarf symptoms in wheat and barley (Mikkelsen et al. 2015). In
maize crop, increased CO2 makes it more prone to Fusarium (Vaughan et al. 2014).
Fusarium Crown rot diseases in wheat increased with more CO2 (Melloy et al. 2014)
while reduced in elevated temperature (Vary et al. 2015). Increased CO2 effects were
studied on a C3 Scirpus olneyi, and the C4 grass Spartina patens. However, shoot N
and water content were also determined. Plants with increased CO2 levels showed an
increase of 37% in resistance while in reduced N and increased water content the
disease severity was also enhanced (Thompson and Drake 1994). Similarly, in
Finland, climate variability will affect potato production. The risk of potato blight
resulted from Phytophthora infestans will be increased and a nematode called
Globodera rostochiensis will also be distributed all over the country because it has
the ability to support many generations in a single year (Carter et al. 1996). In tomato
plants, climate change will not affect diseases like white mold, late blight,
verticillium wilt, septoria leaf spot, and tomato mosaic. But the importance of
powdery mildew, early blight, bacterial wilt, and leaf curl will increase (Gioria
et al. 2008).

12.3 Climate Change Impacts on Pathogens

The rise in temperature may initiate the growth and development of inactive
pathogens (Fig. 12.1). Temperature and rainfall changes may cause alteration in
growth, rate of progress, physiology, and resistivity of the host (Chakraborty and
Datta 2003). Temperature affects the diseases caused by bacteria like Acidovorax
avenae, Ralstonia solanacearum, and Burkholderia glumae. Bacteria can move to
the areas where temperature depending diseases are not previously noticed (Kudela
2009). As the rise in temperature reduce winter length, whereas growth and repro-
duction of pathogens get modified (Ladanyi and Horvath 2010). Researches
indicated that wheat and oats are becoming more susceptible to the rust disease
due to the increase in temperature and humidity, while resistant has been shown by
few forage species to alleviated temperatures (Coakley et al. 1999). In the cold
duration of the year, warming can release cold stress but in the hot period of the year,
it increases heat stress. Various models have been used for forecasting the epidemics
based on the rise in pathogen growth and infection in a specific range of
temperatures. Fungi that are causing the disease to plant at cold temperatures
experience longer suitable temperature periods for reproduction and growth in a
warmer climate. Late blight epidemic became more severe and required more
fungicide to control diseases if warm temperature onset earlier. These effects of
increased temperature vary throughout the year as increase in temperature in colder
parts may reduce plant stress while in hotter parts it results in increase of alleviated
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temperature stress. Lower rainfall decreases the incidence of downy mildew
infections in grape plants. Temperature and moisture are corelated and affect the
pathogens reproduction (Caffarra et al. 2012) and also affect the populations of
pathogens (Legler et al. 2012). When the temperature is higher, the moisture will be
reduced and result in reduced risk of disease (Desprez-Loustau et al. 2006). Dense
canopies result in more moisture and increase leaf wetness that will favor the growth
and development of pathogens.

Alleviated CO2 impacts both pathogen and host in multiple manners. Under
alleviated CO2 and temperature, new races are evolving very rapidly, and the
population of pathogens is boosted as well as infectious cycles are also increasing

Fig. 12.1 Impacts of climate variability on plant diseases
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due to favorable climate in the large canopy (Chakraborty 2013). Higher
concentrations of CO2 lead to the increased production of biomass depending on
the availability of nutrients and water, weeds, diseases, and pests damage. However,
the increased carbohydrates amount in plant tissues favors the biotrophic fungi, that
is, rust (Chakraborty and Datta 2003). Therefore, biomass increase can alter the
microclimate of plants and also the chances of infection. More CO2 will result in
slow decomposition of residues that will favor in overwintering of harmful
organisms and more fugal spore production will occur. Increased CO2 can affect
the growth of pathogens by leading to higher production of fungal spores but it can
also cause some physiological alterations in host plants that enhance the resistance
against pathogens (Coakley et al. 1999). At higher concentrations of CO2 growth of
germ tube and germination rate were slower in conidium of C. gleosprioides fungi
but after infection fungi develop quickly and attain sporulation (Chakraborty et al.
2002). Similarly, higher ozone concentration can increase rust infection on the tree
of poplar but it is minimized by increased CO2 (Karnosky et al. 2002).

12.4 Climate Change Impacts on Plants

Plants show alteration in their gene expression in response to the climatic changes,
while transcriptome enables plants to respond to these changes (Garrett et al. 2006).
Climate variability directly impacts the plant’s biology, physiology, biochemical
process, and morphology (Fig. 12.1). These changes affect the pathogens coloniza-
tion, symptoms expression, colonization infection, etc.

Drought can reduce stomatal activity as well as photosynthesis and affect leaf
growth and morphology of root and shoot (Ahmed et al. 2020). Temperature and
moisture stress affects the plants by changes in abscisic acid, salicylic acid, jasmonic
acid, and adversely affect the plant resistance to stresses (Asselbergh et al. 2008). It
may also reduce the plant’s ability to produce growth and defense substances,
making the plant susceptible to pathogens.

Increased CO2 affect photosynthesis and change the structure of plants as well as
affect the functioning of ecosystems. Under increased CO2 conditions, plant organ
size also increases, such as leaves and branches (Pritchard et al. 1999), and water use
efficiency of plants also increases (Ahmed and Ahmad 2019; Wong et al. 2002). It
results in the humid climate, and plant pathogen infection rate may rise. Similarly,
elevated ozone can increase the attack of necrotrophic fungi (Sandermann 2000)
because leaf composition and structure are affected by the ozone (Karnosky et al.
2002).

12.5 Climate Change Impacts on Host Resistance

The assessment of plant resistance in the context of climate change is complicated.
Under drought conditions, infection rate and success tend to decrease (Huber and
Gillespie 1992). Fewer symptoms were observed under drought conditions when
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alfalfa plants were exposed to verticillium albo-atrum (Pennypacker et al. 1991).
However, in some cases, plant resistance is reduced under drought stress
(Christiansen 1982). Resistance genes are also affected by temperature, but it is
complicated to assess the effect of temperature on resistance genes and pathogen
aggressiveness. Effects of temperature on wheat and barley were studied, and the
response of resistance was different to different ranges of temperature (Browder and
Eversmeyer 1986; Newton and Young 1996). A higher level of ozone and CO2 also
affects the host resistance (Plazek et al. 2001; Plessl et al. 2005). Reduction in host
resistance was observed under elevated CO2 (Chakraborty and Datta 2003). An
increase or decrease in the conduciveness of the disease environment due to climate
change can cause shifts in the presence and diversity of resistance genes (Fig. 12.1).

12.6 Climate Change Impacts on Microbial Interaction

Climate change is impacting the microbial communities in the soil and causing
various shifts in different interactions. Temperature, CO2, nitrogen, etc. are the main
factors influencing interactions in soils. Increased CO2 results in a reduction of soil
nitrates in grasslands (Barnard et al. 2005) and enhances the nitrogen uptake of
plants because of increased growth in plants (Hu et al. 2001). In tallgrass prairies,
increased temperature favors plant growth that facilitates fungi dominance in the
community and uptake of nitrogen. Lesser availability of nitrogen is experienced by
microbial communities, while the type of soil and composition of plants have effects
on these observed responses (Hungate et al. 1996). In both agricultural and natural
ecosystems prediction of climate change impacts on the disease; suppression is
complicated due to variations in the interaction between the microbial species
(Davelos et al. 2004). Recent advancements in technology like metagenomic analy-
sis will enhance knowledge about the dynamics of microbes in soil and various
environments (Riesenfeld et al. 2004).

Host response to climate change may be affected by symbiosis, as fungal
endophytes had shown tolerance to heat, nutrient availability, and water stress
(Kannadan and Rudgers 2008; Rodriguez et al. 2008). Brosi et al. (2011) studied
the effects of climate change on endophytes, and results concluded that higher
infection rates in tall fescue are led by elevated CO2 levels than the precipitation
and temperature.

12.7 Simulation Modeling for Disease Prediction

There are several approaches that can be used in modeling the impacts of climate
variability on pathogens and diseases. Different empirical or regressions models can
be used to predict the pathogens’ success and development of epidemics (Booth et al.
2000). Models can be used for predicting the success of the pathogen in changing
environments in the context of a reference climate where pathogens are successful.
Climate variability occurs gradually that causes difficulty in studying its effects
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directly, and hence simulation models can become helpful in outcomes prediction
over broader range scenarios. However, problems have been identified in models
application for disease forecasting in climate change scenarios (Scherm 2004;
Seherm and Coakley 2003). Major issues involve difficulty in acquiring data regard-
ing climate and epidemiological responses (Otten et al. 2004), disease geographic
distribution that may lead to higher uncertainties (Katz 2002; Scherm 2000), and
ignorance of adaptation potential of plants in simulation models.

12.7.1 History of Disease Modeling

Since the 1960s, models for disease prediction are available, and the first mathemat-
ical model was published by Van der Plank (Van der Plank 2013). At the start, the
models were empirical. Later on, mechanistic and analytical models were developed.
The early model’s focus was only based on the units of pathogen and diseased tissue,
while the growth of plants was neglected. With the passage of time models for
disease prediction became more sophisticated as they included host, environment,
and management effects as well. GIS-based models may also be used for disease
predictions (Aurambout et al. 2009). At present, a wide range of simple and complex
models is in practice for the forecasting and management of disease (Pavan et al.
2011; Rakotonindraina et al. 2012).

Climate change affects the various stages of crops and pathogens, both directly
and indirectly. Pathosystems are generally affected by the response of organisms to
climate change. However, it is not well understood whether the effects are either
positive or negative. To predict the plant diseases in response to climate change,
various models had been used in the past (Table 12.1).

12.7.2 Recent Goals and Challenges in Disease Modeling

Integration of crop disease modeling in decision support systems development is
mainly dominated by short-term strategic planning to support the scheduling of
pesticide application, pest scouting activities, adaptation, and mitigation measures to
prevent the diseases (Isard et al. 2015; Magarey et al. 2002). Disease modeling
activities are frequently based on the development of relationships using multi-
seasonal crop and environmental variables in a specific pest-crop system (Madden
et al. 2007). The development of effective decision support systems involves the
knowledge of key aspects and dynamics of a system based on the reliable multiple
seasonal and specific crop-pest environment data (Madden et al. 2007). Representa-
tion of biotic stress and host interaction has been simplified by focusing on the
specific environment and pathogens in a system. Moreover, the controlled experi-
ment data can be used to parameterize the model to identify the responses of targeted
host and pathogen under a variety of environmental changes. Infection models and
Susceptible-Exposed-Infectious-removed (SEIR) models are well-known examples
of such disease models (Magarey et al. 2005; Zadoks 1971). For instance, such
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disease prediction models can be used to predict the host alterations, disease severity,
and yield losses in changing climate (Dillehay et al. 2005).

Priorities for disease modeling are rerouting due to the newly arising challenges
and more specific goals. The major challenge for disease modeling is climate
change, as it is resulting in the variable average temperature, more erratic rainfall,
and humidity. These climate irregularities indicate that previously observed datasets
are losing their importance in reliable disease prediction modeling. Moreover, due to
these variabilities, several pathogens that were previously unharmful are now
becoming detrimental for crops (Gramaje et al. 2016; Berger et al. 2007). Presently,
there are increasing concerns about the goal to estimate and predict global food
security risks. But it requires the addition of production systems and geographical
areas to develop the baseline data for local and robust empirical relationships.
However, climate variability makes this goal impossible to achieve due to the
nonlinearity of the process involved in statistical models (Garrett et al. 2006).
Similarly, climate change impacts the goal of seeking effective estimation and

Table 12.1 Models used in different regions of the world to study various crop diseases

Region Crop Predicted diseases/Pests References

Australia Wheat Yellow dwarf virus Nancarrow et al. (2014)

Australia Wheat Fusarium crown rot Vary et al. (2015)

Europe Wheat Karnal bunt Baker et al. (2000)

Europe Rice Fungal diseases Bregaglio et al. (2013)

Brazil Corn Rust Moraes et al. (2011)

Denmark Barley Powdery mildew Mikkelsen et al. (2015)

France Barley Net blotch Launay et al. (2014)

United Kingdom Oilseed rape Phoma stem canker Barnes et al. (2010)

Brazil Soybean Rust Alves et al. (2011)

Europe Sugar beet Soil borne pathogens Manici et al. (2014)

Germany Sugar beet Leaf spot Richerzhagen et al. (2011)

Australia Pea Ascochyta blight Salam et al. (2011)

Globally Potato Late blight Sparks et al. (2014)

Brazil Cocoa Moniliasis Moraes et al. (2012b)

Brazil Coffee Rust Ghini et al. (2011)

Brazil Coffee Leaf miner Hamada et al. (2006)

Brazil Coffee Nematodes and leaf miner Ghini et al. (2008)

Brazil Coffee Leaf spot Moraes et al. (2012a)

Globally Date palm Fusarium wilt Shabani and Kumar (2013)

Northern Italy Grapevines Powdery mildew Caffarra et al. (2012)

Italy Grapevines Downy mildew Francesca et al. (2006)

Globally Grapevines Downy mildew Salinari et al. (2007)

France Grapevines Botrytis Gouache et al. (2011)

Brazil Banana Black sigtoka Ghini et al. (2007)

Globally Banana Black sigtoka Junior et al. (2008)

Switzerland Apple Fire blight Hirschi et al. (2012)
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prediction of disease dynamics in future scenarios and impedes the trend analysis
based on the several observed weather patterns. To address these challenges, the
most efficient and appealing way involves the use of process-based modeling with
efficiently designed scenarios and shared modeling approaches among the scientist
related to a variety of field. Additionally, the utilization of disease modeling
increased its important manifolds, ranging from the strategic decisions making
(Duveiller et al. 2007), risk analysis (Venette et al. 2010), research priority and
policy making (Willocquet et al. 2004), and resource allocation (Beddow et al.
2015). A new generation of technologically advanced tools is needed to understand
the system processes and their dynamics to allow system analysis.

12.7.3 Modeling Approaches in Disease Modeling

Crop growth, performance, and disease dynamics are linked with discrete sets of
developmental processes. Efficient understanding and knowledge of these processes
can be mobilized to address the problems related to crop pests and diseases.
Recently, the concept of integrating pest and disease models with crop models has
made easier and effective to study pest and disease dynamics. However, complex
disease and crop models are hard to link with each other.

12.7.3.1 Existing Trends in Disease Modeling
Several recent advances have been documented in the domain of designing and
integrating the generic disease simulation models to predict the reliable disease and
pest damage to crops (Esker et al. 2012; Savary et al. 2006). Process-based disease
modeling has emerged as a key approach to quantitatively understand the behavior
and address the problems related to the complex crop-pest systems. A typical
process-based disease modeling encompasses four basic steps: (1) Infection chain
in a disease cycle is considered as the prime focus for analysis (Kranz 1974).
(2) Then the functional traits of a pathogen corresponding to infection chain are
studied (Pariaud et al. 2009). (3) The efficiency and performance of these traits based
on the environment are studied in a pathosystem, as these functional traits are
involved in quantitative processes (Zadoks and Schein 1979). (4) Finally, the
observed and measured information from these processes is used for the develop-
ment of process-based models (Savary and Willocquet 2014; Bregaglio and
Donatelli 2015). There is a number of disease modeling structures that have been
developed with an emphasis on inoculum mobility, spread, efficiency, and produc-
tion (Rossi et al. 2009). Moreover, a wider range of concepts and development of
mechanistic simulation models made it possible to study the interaction between
crops, pests, and diseases within a given pathosystem.

The development of generic simulators enables the illustration of several species
in a pathosystem. The application of these generic simulators can be extended by
adding several specialized biological mechanisms of species. Generic simulators
make the disease modeling approach simpler due to the possibility of developing the
species-specific disease model. Moreover, these simulators provide a framework to
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collect adequate data for disease modeling regarding insect phenology, physiology
(Welch et al. 1978), populations (Yonow et al. 2004), development, and reproduc-
tion (Hong et al. 2015; Sutherst et al. 2007).

Knowledge sharing and modification among the wider scientific communities can
enhance the impacts and progress of disease modeling (Stein et al. 2002; Tatusov
et al. 2000). For instance, AgMIP (Agricultural Model Inter-comparison and
Improvement Project) is a recent knowledge sharing example of international col-
laboration to assess the impacts of climate change on global agriculture based on
global agricultural modeling (Rosenzweig et al. 2013). These approaches can mobi-
lize the generic disease modeling platform by combining all fragmented theories and
concepts existing in disease modeling globally. APSnet (American Phytopathology
Society) plant health instructor is a well-known illustration of such approaches
(Bregaglio and Donatelli 2015; Savary and Willocquet 2014). Simulated disease
epidemics can be used as input in crop models accounting for the physiological
impacts of disease on crops and damage mechanisms (Rouse 1988). Over the past
few decades, crop growth models involving damage mechanisms have been devel-
oped with the concept of integration of disease and crop models to simulate the crop
yield losses due to disease epidemics (Boote et al. 1983; Bastiaans et al. 1994).

12.7.3.2 Data Requirements for Disease Modeling
Most common data inputs for disease modeling are based on variables such as
temperature, precipitation, relative humidity, and leaf wetness with hourly or daily
resolutions (Magarey et al. 2001). However, the soil variables and wind are consid-
ered in more complex models focusing on soil pathogens. Mostly the daily data is
sufficient for disease models, but some models need hourly data to improve the
accuracy and reliability of disease simulations and scenarios development
(Bregaglio et al. 2010). However, the gridded current and forecasted data with fine
resolution can be obtained by numerical weather models such as AGRI4CAST in
Europe, RTMA (Real Time Mesoscale Analysis System) in the United States
(De Pondeca et al. 2011), and CFSR (Climate Forecast System Reanalysis) globally
(Saha et al. 2014). Data regarding leaf wetness is a limitation due to the unavailabil-
ity of such data, but simulations models are now being used as alternatives to target
the climate change scenarios (Magarey et al. 2006; Bregaglio et al. 2012).

12.7.3.3 Calibration and Evaluation of Disease Models
Models calibration is the fine-tuning of models with real-time data to improve the
model accuracy and application in a desired environment or pathosystem. Most of
the disease and pest models are calibrated with experimental data obtained from
controlled conditions. Data regarding variables such as pest virulence, development,
fecundity, longevity, mortality, and environment of pathosystem is needed to
parameterize and calibrate the models (Régnière et al. 2012). Similarly, data from
the experiments with controlled temperature and leaf wetness can be used to
calibrate the infection models (Magarey et al. 2005; Madden and Ellis 1988).
Moreover, when the data is unavailable to calibrate the model, then closely related
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species can be used to identify parameter, and then field studies are enabled to see if
the estimated parameters are in line with observed data or not.

Model evaluation is necessary to estimate the accuracy of simulations in compar-
ison with real-time data. Several ways and methods can be used to evaluate the pest
and disease models (Rabbinge 1993). The most common approach to evaluate the
models involves the comparison of observed and simulated data in terms of disease
severity, incidence, and damage. However, evaluation of disease models is usually
done by the developing party or by the end-user according to their pathosystems.
Overfitting is a serious concern in the model evaluation and to perform simulation in
different pathosystems. Overfitting occurs when the output of model adjusted
parameters closely matches the data used for calibration but leads to compromised
accuracy when simulations are performed over an independent dataset.

12.7.4 Frameworks for Disease Modeling

In the past various types of models were being used by scientists to model plant
pathogens and disease. Matrix models have been used widely over several decades
in the past for determining the population densities of pests and insects in a certain
region (Lewis 1977). Several equations were used in competitive models to deter-
mine the effects of competition between crops and pathogen species (Kaplan and
Denno 2007).

12.7.5 Recent Development and Addition in Modeling Frameworks

Recently, disease modeling gained importance and various developments occurred.
Different modeling frameworks are developed for pests and disease modeling in the
last few years.

12.7.5.1 APSnet
It is an (American Phytopathology Society) website that provides a module to help in
modeling epidemiology and crop loss analysis. It has various models such as
GENEPEST for simulations (Donatelli et al. 2017) and provides guidance for
running the simulation models. Savary et al. (2006) summarized an overall disease
modeling framework to simulate the disease impacts on agriculture systems using
such models. The development of this platform involved several steps.
Multilocational farmer’s field survey was conducted for several years to observe
the production systems and associated injuries. Similarly, the field experiments
performed to assess disease damage and crop losses. Mechanistic models were
developed by using this collected data based on the damage mechanisms. This
approach was used to simulate pest and disease systems in Asian rice-growing
regions (Willocquet et al. 2004; Willocquet et al. 2002) and European and UK
wheat-growing regions (Willocquet et al. 2008; Foster et al. 2004).
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12.7.5.2 APSIM-DYMEX
APSIM (Agriculture Production Systems Simulator) is a modeling framework
developed over the last two decades (Holzworth et al. 2015). APSIM does not
have the ability to consider pests and diseases. But recently, it has been linked
with DYMEX (Whish et al. 2015). DYMEX is a mechanistic model for simulation
of pests, diseases, and weeds life cycles. Models involved in DYMEX are enabled to
run in the DYMAX simulator (Whish et al. 2015). The coupling of these modules
enabled the multi-point APSIM features with simplified communication within both
models. Both these frameworks can simultaneously model the crop growth and
disease dynamics.

12.7.5.3 BioMA-Diseases
For fungal plant disease modeling, this framework was developed, having four
extendable software (Bregaglio and Donatelli 2015). This framework is used for
modeling the impacts of fungal epidemics on plant growth. It simulates and
quantifies the polycyclic fungal epidemics and impacts of epidemics on crops.
BioMA is a public-domain framework to parameterize and run the biophysical
models in the agriculture field (Fig.12.2). This module was applied to study major
diseases such as brown rust (wheat) and leaf blast (Carlsson et al. 2008) in Europe,
China, and Italy and assess the model behavior under diverse environments
(Bregaglio et al. 2016).

12.7.5.4 NAPPFAST
NAPPFAST (North Carolina State University/Animal and Plant Health Inspection
Service Plant Pest Forecasting System) module was developed during a project from
2002 to 2013 (Magarey et al. 2007; Magarey et al. 2015) with having an Internet-
based GUI (graphical user interface). This module was interlinked with the weather
datasets. It has three simulation modeling templates: phenology models (with
degree-day approach), infection models (with pathogens and diseases approach),
and generic models (with a simple empirical model approach). All these templates
were generic to meet the diverse needs of users. NAPPFAST has the ability of pest
risk mapping with several resolutions (Magarey et al. 2011).

12.7.6 Case Study

Climate variability has significant impact on interactions among plants, pests, and
diseases. However, limited research has been conducted on disease severity, inci-
dence, and distribution in response to the changing climate. Few studies simulated
the future potential changes in disease epidemics and plant health (Sparks et al.
2014; Bregaglio et al. 2013). Application of disease models can dissect the role of
climate change in disease spread, severity, and plant health.

Black Sigatoka is a major disease of tropical crops especially banana. The causal
agent of this disease Pseudocercospora fijiensis is dependent on microclimate and
weather variables. It requires the high relative humidity and leaf wet surface to
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germinate and cause infections in banana plant (Uchôa et al. 2012). A disease model
for simulating the Black Sigatoka in future climate change scenarios was developed
by using the climate data of banana growing areas in Caribbean and Latin America
(Bebber 2019). During the process of model development past 60 years observed
and reported climate data was used to parameterize the model. The temperature
(Tmin, Tmax, and Topt) and leaf wetness data were used to develop and parameterize
the model. The data regarding these variables was observed at 3-h intervals in
studied regions.

The model simulated the fraction of spore’s cohort development F (t) over the
time (t) during the wet intervals and had a Weibull hazard (H ) function based on

Fig. 12.2 BIOMA modeling
framework
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prevailing temperature (T ). The temperature-dependent cohort development rate (r)
was simulated on the basis of cardinal temperatures such as Tmin, Tmax, and Topt.
Model was parameterized using observations and simulations based on Tmin, Tmax,
Topt, the scale factor (α) and shape parameter (ɤ) for hazard function.

F t, Tð Þ ¼ 1� �eH t,Tð Þ

H t,Tð Þ ¼ r Tð Þ t=α½ �γ

r Tð Þ ¼ Tmax � T=Tmax � Topt
� � � T � Tmin=Topt � Tmin

� �Topt�Tmin=Tmax�Topt

Disease simulations using this model defined the Black Sigatoka infection risks
on the basis of total number of simulated spore’s cohorts per hour over a specific
time duration. Disease simulations predicted the 44% increase in infection rate of
Black Sigatoka across Caribbean and Latin America since 1960. This simulated
increase was due to the increased temperature and leaf surface wetness that favored
the pathogen infection ability. Conclusively, the changing climate and global trading
of banana resulted in the establishment of more conducive environment in banana
growing regions for Black Sigatoka infection.

12.7.7 Strategies for Effective Disease Modeling

There are some effective strategies that can be used to enhance the reliability of
simulation in agricultural disease and crop modeling. These strategies comprise the
actions to enhance the availability of quality data for disease model input and model
evaluation, coupling with crop models, and develop the modeler’s community to
share the knowledge.

Process-based disease modeling is aimed to reproduce the dynamics of biophysi-
cal processes depending on the input variables. Pathogen growth and development
are highly dependent on weather variables; hence the model should modulate the
responses according to the fluctuations in model input variables (Pfender et al. 2012;
Magarey et al. 2005). Therefore, the availability of high resolution and quality data is
essential to calibrate the model, especially for the moisture- and temperature-
mediated responses. Low-quality data reduces the reliability of model empirical
coefficients and impede the model fitness and application. Hence, the quality input
dataset is a key in crop disease modeling and the high-resolution real-time data
regarding temperature, humidity, and leaf wetness are required to minimize the
uncertainties during model calibration and evaluation.

Field measurements and data about the impacts of diseases on crops have been
collected in previous years, but these observation methods had no standards and
usually are not coupled with crop and weather data to be used as disease modeling
data input (Esker et al. 2012; Nutter Jr 1989). Consequently, the disease model
validation was limited across diversified environments (Willocquet et al. 2004;
Willocquet et al. 2002). Hence, the development of designs, guides, templates, and
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protocols is needed to collect the adequate and required standard data to validate the
disease models effectively (Willocquet et al. 2000). Detailed observations should
include the disease or pest data (Disease severity, incidence, injury level), weather
data (temperature, humidity, and leaf wetness), and crop data (physiological pro-
cesses such as respiration, photosynthesis, senescence, etc.) (Esker et al. 2012;
Savary et al. 2006).

The disease and host crop dynamics are the coupling points among disease and
crop models. Quantification of disease damage and injuries can be assessed by
performing experiments in different pathosystems (Robert et al. 2005; Bassanezi
et al. 2001). Mathematical representation of these injuries may enable the integration
into crop models for simulation of biophysical processes (Pavan and Fernandes
2009). Disease simulation modeling can be done in conjunction with crop growth
models to assess the impacts of disease on crop growth. However, the integration of
disease and crop models may lead to issues such as complexity in model structures,
binary incompatibilities, and sharing difficulties. There are some critical points to be
considered for integrating the disease and crop models. Identification and adequate
knowledge about damage mechanisms are necessary to simulate the disease
impacted outputs by crop models. The disease model’s output must be compatible
directly or indirectly with the crop model variables. Moreover, the communication
compatibilities of both types of models must also be considered for the efficient
integration of disease and crop models. Crop model selection to integrate with the
disease model must consider the presence of variables affected by the disease in both
kinds of models.

Lack of modeling community and cohesive research hampered the development
of improved and advanced disease models. Such modelers community development
efforts may help in the efficient understanding of biophysical processes, system
behaviors, and bridge the communication gaps. However, there are several
limitations in such efforts like limited availability of generic disease model
frameworks that allow the shift between pathogens and pests. Similarly, modeling
cooperation efforts are limited due to the inadequate availability of standard data. In
2015, PeDiMiP (Pest and Disease Modeling Inter-comparison Project) was launched
as part of the AgMIP (Agricultural Modeling Inter-comparison Project) to improve
disease and pest modeling and to assess the impacts of climate change on crop
losses. This project is mainly focused on modeling of crop health, wheat rust, and
potato late blight diseases.

12.8 Plant Disease Management

Climate change increases the plant protection complexity. It also causes changes in
the chemical market due to the changes in pathogen distribution. Similarly, climate
change results in the resistance development in pathogens which ultimately leads to
the increased cost for crop production due to high application rates and treatments
(Juroszek and Von Tiedemann 2011). Some production systems show more flexibil-
ity than others to adopt better practices and strategies to reduce certain diseases.
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However, adaptation strategies depend on cost-benefit analyses. One of the great
strategies in changing climate involves the efficiency evaluation of current
biological, physical, and chemical practices. We can prevent the increased risk of
diseases under predicted climate change by using various agronomic practices
(irrigation, crop rotation, etc.) that can minimize the overwintering amount of
inoculum (Juroszek and Von Tiedemann 2011). There is a need for adjustment in
management strategies under changing climate. In biological control, the
populations vary with changes in environmental conditions. Under the extreme
condition of the environment, the populations of biological agents may become
smaller and do not recover even in favorable conditions. Disease management may
be affected by climate change and results in uncertainties in decision making when
climate variability is greater. But, El Nino-based climate predictions were useful in
decision making for farmers of Zimbabwe (Patt et al. 2005).

12.9 Knowledge Gaps and Future Directions

Over the past decade, climate change studies have improved the understanding of
how environmental factors impact plant disease epidemics. Climate change is not
occurring in isolation, and it may intensify in the coming years. While only a few
studies were carried out to evaluate the combined impact of multiple factors,
evaluation of the combined effect of various factors on hosts, pathogens, and
diseases is needed. Simulation modeling provides an opportunity to simulate several
factors simultaneously. While climatic models used to study the impacts of climate
change on plant diseases focused on a few variables like precipitation and rainfall,
models based on multiple factors should be used to study climate changes and plant
disease relationships. Molecular analysis and mechanistic studies can help to con-
sider the change in plant diseases as a result of climate change. Over the past few
years, foliar diseases are mainly focused while little work has been done on soilborne
diseases. Therefore, studies should be conducted to evaluate the climate change
impacts on soilborne diseases.

Plant disease management and severity will probably be increased due to climate
change. Prediction of diseases and their management is of great interest to farmers
and agro-industries. The following plant protection strategies can help in disease
management to a certain extent:

1. Use of models to forecast disease epidemics
2. Crop rotation
3. Diversity in crop species
4. Use cultivars with superior disease resistance
5. Adjustment in sowing time
6. Effective quarantine measures
7. Use of Integrated Pest Management strategy
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12.10 Conclusion

Climate change is impacting the crops, trees, and agricultural productivity and, at the
same time, influencing the pathogens and disease development in plants. It is a major
challenge to understand and realize the impacts of climate change in terms of plant
diseases, pathogens, and health of plants because of the limitation in the knowledge
that how various changes in the atmosphere are affecting the physiology of host and
pathogens development, spread and resistance in host and pathogen. Achievements
in plant protection are limited due to the lack of knowledge about changes in the
environment, pathogen, and host interaction globally. For effective plant protection
and disease management, detailed study and research are needed to understand the
relationship among the changing environment, pathogens, and hosts under the
climate change scenario. Modeling of diseases can become more effective if we
combine the developed tools in our studies.
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Chickpea Modeling Under Rainfed
Conditions 13
Afifa Javaid, Mukhtar Ahmed, Fayyaz-ul-Hassan,
Mahmood-ul-Hassan, Munir Ahmad, and Rifat Hayat

Abstract

Climate variability and extreme weather might increase in frequency due to
climate change, which could have significant effect on chickpea production.
Recently, a study was conducted, aided with simulation modeling approach, in
different rainfed regions of Pakistan to check the potential impacts of climate
variability on chickpea. Initially, varieties were screened on the basis of germina-
tion percentage. Two varieties, Balkasar and Thal 2006, performed best in the
germination test and thus grown at two locations, i.e., University Research Farm
(URF), Koont, Chakwal Road, Rawalpindi (medium), and Bijwal Farm, Fateh
Jang (low), rainfall zones of Pothwar, for field evaluation of best-performing
varieties of chickpea. During the course of study, different phenological and yield
component parameters have been recorded. Collected data was analyzed statisti-
cally to see the performance of varieties under different climatic conditions of
these two sites. DSSAT_CROPGRO_Chickpea model was used to simulate crop
phenology and yield, i.e., above-ground mass and grain yield of chickpea under
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rainfed conditions. The model was calibrated and validated on the basis of
experimental data. Values obtained from model runs were compared with
observed values by using validation scores. Simulation outcomes from days to
anthesis, days to maturity, and above-ground mass, i.e., biological yield and grain
yield, showed that the location URF-Koont proved better for chickpea crop.
Observed and simulated data were compared for model efficiency. At both
locations, Thal 2006 performed best under water-limited conditions of Pothwar.
Based upon these values, further yield was predicted for varying environmental
scenarios in order to recommend best-performing varieties in this particular
climate.

Keywords

Chickpea · Phenology · DSSAT_CROPGRO_Chickpea model · Climate change

13.1 Introduction

Pakistan’s rainfed region accounts for 20% of total area under cultivation, which
comprises of 1.82 million hectares, and Pothwar accounts for 90% of that region. In
Pothwar plateau, amount of rainfall varies from 375 to 1750 mm in different parts
from South to North. This variation in rainfall results in inadequate availability of
moisture throughout the growing period. Pakistan’s rainfed region is regularly facing
dry spells during Rabi season (Ahmad et al. 2013). Moisture stress is chiefly
dependent on timing, length, and amount of shortages (Pandey et al. 2013).

Climate change in present scenario is due to devastating human activities such as
increased greenhouse emissions, higher electricity generation and changes in land
use pattern (Stern 2008), refers to global warming, increased levels of atmospheric
carbon dioxide generated by the use of fossil fuels. The increasing levels of carbon
dioxide and other gases trap heat in the atmosphere and can warm up the Earth,
causing global warming, melting of ice, and rising of sea levels, which may result
into storms, floods, and tsunamis.

Climate variability is now accepted as a universal phenomenon with far-reaching
effects (Ali and Erenstein 2017). The rate at which energy from the Sun is absorbed
and dissipated in space regulates the temperature and climate of the Earth. The
dispersion of this solar energy around the globe by wind, ocean, and other means
affects the climate of different regions. The climate change and warming over the
twenty-first century will not be uniform, it will change slowly and gradually but
diversely in different countries, some of them will face drought while some may
experience higher rainfall leading to floods and disasters (IPCC 2014).

Climate change is assumed to be distressing in deprived agricultural societies and
growers have to spend large amounts of money to maintain quality yield (Ali et al.
2017). The rise in global warming gases can damage the low-cost agricultural system
and highly degrade its production superiority. According to the Global Climate Risk
Index (2020), Pakistan ranks seventh among the most adversely affected countries
by climate change. The survey mentions that in the face of having high susceptibility
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to future climate change, Pakistan is a low Green House Gases (GHG) emitter;
however, the susceptibility is due to geographic, demographic, and diverse climate
condition, mostly the environmental changes–related threat to food, energy, and
water security due to inherent arid climate coupled with the high level of reliance on
water from melting glacier. Developing countries are more vulnerable to the adverse
effect of climate change because they are key determinants of agricultural produc-
tivity in the global geography (Apata, 2011), and yet these countries are most
vulnerable to climate change though they only contribute 10% to the annual global
carbon dioxide emissions.

Higher temperatures and increasing climate variability projected in different
world regions, both mean temperature and climate variability, contribute to the
frequency of extreme temperature events. Observed evidence has increasingly
shown that short-term high temperatures around flowering may have a greater
negative impact on yield production, especially in grain-producing crops, a phenom-
enon that is increasingly known as heat stress (Rezaei et al. 2015).

Climate change is the mean variability in the precipitation and temperature for
longer period of time. Large spatio-temporal variation (magnitude and rate of
change) exists in precipitation and temperature among various regions (Ahmed
2020; Ahmed and Ahmad 2019; Aslam et al. 2017; Jabeen et al. 2017; Ijaz et al.
2017; Zhang et al. 2013). Climate variability is most probably considered due to
global warming (Ahmed 2017; Ahmed and Stockle 2016; Fisher et al. 2006;
Oppenheimer and Alley 2004). Warming trend during the last 50 years has been
0.18 �C per decade due to rise in global average surface temperature (Wang et al.
2015). As per projections by the Intergovernmental Panel on Climate Change
(IPCC) fifth assessment, the increase of mean temperature from 2018 to 2100 will
likely be 1.8 � 0.5 �C for RCP4.5 and 3.7 � 0.7 �C for RCP8.5, relative to 1986 to
2005 globally. It is considered that global warming will influence more evaporation
resulting in the increase in intensity and frequency of extreme rainfall events (Meehl
et al. 2007). While the average precipitation intensity is generally increasing, the
frequency of wet days is decreasing in many parts of the world, leading to drought.
Northern China faced a severe drought in the 1920s due to reduced rainfall (Liang
et al. 2006).

Chickpea is a cool season legume crop and ranks third among pulses in global
production. It serves as a key component of cropping systems in many parts of Asia
and Africa, providing families of resource-poor farmers with a valuable source of
dietary protein (Knights and Hobson 2016). Major producing countries include
India, Pakistan, and Iran. It is broad in adaptation and widely distributed, though
its production being limited by several biotic and abiotic stresses.

Chickpea is a valued crop and a nutritious food for an expanding world popula-
tion and will become increasingly important with climate change. Its production
ranks third after beans, a mean annual production of over 10 million tons with most
of the production centered in India. Land area devoted to chickpea has increased in
recent years and now stands at an estimated 13.5 million hectares. Production per
unit area has slowly but steadily increased since 1961 at about 6 kg/ha per annum.
Over 1.3 million tons of chickpea enter into the world markets annually to
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supplement the needs of countries unable to meet demand through domestic produc-
tion. India, Australia, and Mexico are leading exporters.

Chickpea is comprised of Desi and Kabuli types. The Desi type is characterized by
relatively small angular seeds with various coloring and sometimes spotted. The
Kabuli type is characterized by larger seed sizes that are smoother and generally
light colored. Dal is a major use for chickpea in South Asia while hummus is widely
popular in many parts of the world. Research efforts at ICRISAT, ICARDA, and
national programs have slowly but steadily increased yield potential of chickpea
germplasm (Khan and Abourashed 2011). Overall, global production of chickpea is
predominated by the Desi type that accounts for 80% of production with the remaining
20% devoted to Kabuli types. Worldwide, chickpea ranks third among the pulse crops
and accounts for 10.1 million tons annually. This ranking places chickpea behind
beans (21.5 million tons) and peas (10.4 million tons) with mean annual production of
10.1 million tons from 2004 to 2013. Taken together, annual combined production of
peas and chickpea is nearly equal to that of beans, an indication of their overall
importance. These three pulses (beans, peas, and chickpeas) account for about 70%
of global pulse production, with chickpea accounting for approximately 17% of the
total annually (Muehlbauer and Sarker 2017).

Chickpea is more susceptible to high temperature stress at flowering stage as
compared to that of podding (Angadi et al. 2000). There are negative impacts of high
temperatures and low precipitation, as high temperature (>30 �C) and low precipi-
tation at flowering time results in significant yield losses (Kutcher et al. 2010). This
crop requires more moisture to achieve a satisfactory grain size and yield. Low
rainfall during the growth cycle and water stress may accelerate the negative impact
of high temperature and produce low yield of chickpea crop (Gan et al. 2004;
Takashima et al. 2013). Waterlogging at flowering or podding can kill the crop or
significantly reduce yield, especially at higher temperatures (Ruchika and Sandhu
2009). Average yield of chickpea is low in Pakistan as compared to other countries.
Major factors responsible for poor yield are: (i) continuously changing climatic
conditions and inability to cope with their adverse effects; (ii) management factors
under climate change, i.e., inadequate seedbed preparation, unavailability of certified
seed of improved varieties, low plant population, improper nutrients management,
and growing on marginal lands; and (iii) cultivar inherit potential, i.e., low yield
potential, reduced breeding, and lack of knowledge about particular cultivars to be
grown in specific conditions of the area, etc.

Frost is another significant abiotic stress, one of the main constraining variables
for farming around the world, including Australia. Legumes, including field pea,
lentil, and chickpea, are exceptionally susceptible to chilling and critically minimum
temperatures, especially at the stage of anthesis, early pod development, and seed
filling stages (Stoddard et al. 2006). In legumes, the most susceptible levels for frost
are the flowering, early pod formation, and seed filling stages (Nayyar et al. 2005).
One of the early research findings on chilling damage in chickpea was led under field
conditions at different areas in India, and the findings showed difference in flower
abscission rates at various temperatures (Nayyar et al. 2005).

Crop simulation models have been developed for evaluation of agronomic man-
agement strategies procedures and to help analysts in understanding the bridge

356 A. Javaid et al.



linked amid ecosystem, production variation, and management (Ahmed et al.
2013, 2014, 2016, 2017, 2018, 2019; Ahmad et al. 2017, 2019; Berger et al. 2011.
Crop phenological modeling is useful in simulation of plant growth processes that in
field conditions might acquire years to calculate (Fourcaud et al. 2008). These
models have been used by various research groups for decision making in agriculture
systems (Bannayan et al. 2003; Hoogenboom et al. 2015). For assessment of daily
growth and development of the crops, extreme and minimal temperature, average
rainfall data, and daily solar radiations are used as input in such crop models. To
assess and to determine the elucidations of problems observed in management of
crops, particularly in developing countries where changing climatic conditions
prevails, crop model, i.e., decision support system for agro-technology transfer
(DSSAT) model, is a best applied tool in such situation (Hoogenboom et al. 2015;
Jabeen et al. 2017).

In Pakistan there is little study to evaluate the climate change impacts and
adaptation for chickpea crop, whereas this is an issue of prime importance through-
out the world. With the passage of time, climate change is becoming a great threat to
food security, and that is why there is a need to focus on the subject and carry out
necessary research work according to a country’s climatic conditions. The present
study was carried out for modeling the potential impacts of climate variability on
chickpea under contrasting environment, keeping in view the importance of chick-
pea in Pakistan and the objectives: (i) evaluation of chickpea varieties on the basis of
germination percentage, (ii) assessment of the potential impacts of climate variability
on chickpea growth and yield, and (iii) application of DSSAT model for evaluation
of chickpea.

13.2 Chickpea and Climate Variability

Climate change refers to a statistically significant variation in either the mean state of
the climate or in its variability, persisting for an extended period, typically decades
or longer (USEPA 2011). Thornton et al. (2014) quoted in a review that the majority
of researches and studies related to impacts of climate variability mainly focus on
changes in mean climate state. According to a report by Intergovernmental Panel on
Climate Change (IPCC 2013) mean climate state is shifting with the passage of time
due to global warming and greenhouse gas emissions, and the distribution trend is
likely to be more hot weather in summer and less cold weather in winters. This
induced global warming climate variability also results in change in precipitation
distribution pattern including intensity, frequency, and time of rainfall (Huntingford
et al. 2003). Due to changing precipitation distribution pattern, some regions are
getting heavy and frequent rains causing floods whereas others are deprived of
necessary precipitation resulting in aridity (Christensen and Christensen 2004).
However, Greve et al. (2014) reported that only 10.8% of the land area indicates
“dry gets drier, wet gets wetter” pattern while 9.5% land area shows the opposite
trend, i.e., dry gets wetter, and wet gets drier, globally. Dry areas have increased due
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to these trends from about 17% in the 1950s to 27% in the 2000s throughout the
world (Dai 2011).

Crop production is vulnerable to climate variability related with increments in
temperature, increases in CO2, and changing patterns of rainfall, which may lead to
extensive decrease in crop productivity. Additionally, extreme weather occasions,
e.g., droughts, extreme heat waves, and substantial rainfall prompting floods, have
expanded since the past decades. Enhancing crop production to meet rising demands
owing to the increasing population, against the background of the threats of climate
change, is a challenging task (Mall et al. 2017).

Growth and development of field crops may accelerate with rise in temperature
but extreme changes in temperature either hot or cold effect crop productivity
adversely. According to Machado and Paulsen (2001), high temperature combined
with one or more factors like water stress may contribute to heat stress. It was
documented by various researchers that crop phenology, growth and development
rate, and yield are mainly determined by responses that are genetically prescribed to
temperature (Slafer 2003; McMaster et al. 2008; Luedeling et al. 2009). As per report
of Chmielewski et al. (2004), increasing mean temperature and decreasing photope-
riod results into shortening of crop developmental stages and life cycle which
ultimately effects crop yield. Similarly, Craufurd and Wheeler (2009) documented
that higher temperature causes earlier flowering and maturity of legumes resulting in
shortening of growth period in recent decades. This shortening in crop growing
seasons causes less absorption of intercepted radiations throughout the period thus
resulting less biomass accumulation and crop yield. It is evident from the findings of
Siebert and Ewert (2012) that the overall reduction in the length of growing season
of oats by 2 weeks has been observed in Germany during the period from 1959 to
2009 as a result of earlier occasion of phonological events. In flowering plant,
reproductive phase is highly sensitive to extreme temperature stresses, i.e., cold or
hot, within a single day or night being fatal to reproductive process (Zinn et al.
2010). It was investigated by Lobell et al. (2011) that beyond 30 �C, a rise of one
degree per day can reduce yield up to 1.7% in maize crop under drought conditions.
It was observed that not only the increased temperatures at daytime have detrimental
effects on crop growth and development but also impacts of higher temperature at
nighttime is worth noticeable. Mohammed and Tarpley (2009) found that rice yield
was reduced by 90% with night temperatures of 32 �C as compared to 27 �C.

Moisture availability, temperature, and photoperiod suitability determines the
sowing time of this crop for the best yield (Siddique and Krishnamurthy 2016).
The time available for chickpea crops to produce adequate vegetative structures and
then grain yield is often limited by hot or cold temperatures, rainfall distribution, or
competition for use of land by other crops in rotation.

High temperature during the reproductive period can limit grain yield. High
temperature (>30 �C) regulates floral initiation and grain yield in chickpea. At
present, chickpea is generally produced in warm environments (Devasirvatham
et al. 2012).

A pot experiment was conducted at controlled room temperature (21 � 1 �C)
utilizing five sowing depths (2.5–14 cm). Results demonstrated that the response of
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chickpea emergence to temperature was best pronounced at temperatures of 4.5 �C
for base, 20.2 �C for lower optimum, 29.3 �C for upper optimum and, 40 �C for
ceiling temperature (Soltani et al. 2006). Extreme temperatures in combination with
other factors like water shortage may enhance the impact of heat stress (Kutcher et al.
2010). Stress due to water deficit causes detrimental effects on many physiological
processes in plants including reduction in photosynthesis, stomatal exchanges,
accumulation of dry matter, and protein synthesis, which have an effect on their
growth stages (Ohashi et al. 2006).

Research was conducted for two varieties of chickpea, i.e., drought-tolerant
Bivaniej and ILC482, to study the effect of water shortage and moisture stress on
biochemical processes such as chlorophyll contents, photosynthesis, and respiration
rate along with yield and its parameters. The experimental design was RCBD with
four water systems and three replications. Outcomes demonstrated that flowering
stage of this crop is more susceptible to moisture shortage and eventually lowers the
grain production as compared to vegetative phase (Mafakheri et al. 2010).

Simulation models are widely used to simulate the potential impacts of environ-
mental factors on agricultural and natural ecosystems (Asseng et al. 2019; Liu et al.
2019; Wallach et al. 2018; Ahmed 2012). A particularly active region of application
is inquiring about the potential impacts of climate change, and simulations have been
a noteworthy information resource for Intergovernmental Panel on Climate Change
(IPCC) assessments for agriculture (White et al. 2011).

A study was conducted by using 4 crop models with 20 users arranged in RCBD
with 4 replications. Parameters were calibrated. Parameters for maize (well studied
by modelers) and rapeseed (almost ignored) were calibrated. While all models which
were accurate for maize (RMSE from 16.5% to 25.9%), they were, to some extent,
unsuitable for rapeseed. Although differences between biomass simulated by the
models were generally significant for rapeseed, they were significant only in 30% of
the cases for maize. This could suggest that in case of models well suited to a crop,
user subjectivity can hide differences in model algorithms, consequently, the uncer-
tainty due to parameters should be better investigated (Confalonieri et al. 2016).

APSIM model was evaluated for the simulation of different cropping schemes in
Asia from many aspects like crop production, its phenology, water use, soil with
changing features, and CO2 response for crops. This simulation was conducted for
variable crops, environments, and management strategies and performance of the
model was assessed. After appropriate parameterization, model simulation was
better for the range of cropping schemes with some recommendations for further
improvement of model to be used as a valuable tool for Asian cropping schemes
(Gaydon et al. 2017).

For proper testing and validation of crop model, field experimentations under
varying climatic scenarios are needed to compare observed and simulated output and
to verify their limitations (Andarzian et al. 2011).

Crop simulation modeling approach can help to quantify performance of field
crops under diverse climatic scenarios. Adoption of Decision Support System for
Agro-technology Transfer (DSSAT) for chickpea is important to check an opportu-
nity for cultivation under varied climatic conditions. Satisfactory simulated results
for crop growth parameters were observed when compared with observed values.
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Further, it was concluded that CROPGRO model is a valuable tool to predict and
simulate phenology, growth, and yield of crop under semi-arid conditions (Raja et al.
2018).

13.3 Materials and Methods

The experiment was carried out to study the potential impacts of climate variability,
i.e., variant temperature and precipitation on chickpea (Cicer arietinum L.) at
different agro-ecological sites. Different varieties of chickpea were first evaluated
on the basis of germination test in lab and then the two best-performing varieties, i.e.,
Balkasar and Thal 2006, were planted on 31st Oct at URF, Koont, Chakwal, and on
1st Nov at Bijwal Farm, Fateh Jang, simultaneously during the year 2017–2018. All
the operations were kept uniform for the varieties. The experiment was laid out by
Randomized Complete Block Design (RCBD) with three replications at field area.
The size of individual plot at both locations was 2.7 m � 4 m. Total number of
sowing lines in individual plot was 6 with the path of 1 m. Sowing was done through
hand drill in the field areas. Before sowing, land preparation in all plots was done by
using disc followed by cultivator and then surface was planked for good seedbed
preparation. Row to row spacing was kept at 35 cm and plant to plant distance was
maintained at 10 cm. Data was collected on following the agronomic aspects for
chickpea crop. As study was conducted in Pothwar region, which is a rainfed area of
Pakistan, thus no irrigation was given throughout the lifecycle of crop. Basal dose of
fertilizer was given at the rate of 20–30 kgN/ha and 40–60 kg P/ha through broadcast
method. Three varieties of chickpea were taken primarily for the purpose of germi-
nation percentage, i.e., Balkasar, Thal 2006, and Vanhar. All these varieties are
preferably grown in rainfed areas of the country. Five seeds of individual variety
were taken in each petri dish. Seeds were presoaked in water for 1 hour in order to
boost imbibition. These varieties were screened on the basis of germination percent-
age; Thal 2006 and Balkasar showed 100% germination whereas Vanhar variety was
screened due to seeds that failed to germinate. Selected varieties were taken to the
both locations, i.e., Fateh Jang and URF, Koont, Chakwal. For weather data,
previous long-term data was collected from Pakistan Meteorological Department,
Islamabad. Daily rainfall and minimum and maximum temperature data was col-
lected for both study sites during the chickpea growing season 2017–2018. Standard
method proposed by Hoogenboom et al. (1995; 2019a, b) was used to determine the
physiochemical properties of soil. The gravimetric soil moisture content was deter-
mined by using the formula:

% soil moisture dwð Þ ¼ 100 � Fresh weight� dry weightð Þ=dry weightð Þ
Other variables like soil organic carbon %, soil pH, Nitrogen %, silt sand and clay

%, soil lower limit, and soil upper limit were calculated according to the method
proposed by IBSNAT.

Crop phenological data such as days to anthesis were calculated as days when
50% of crop plants-initiated flowering in the respective plot from the date of sowing.
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For sample purpose, five plants were taken at random from individual plot. Leaf area
index (LAI) was calculated from destructive plant samples at harvest stage by using
the following formula given by Pearce et al. 1985:

LAI ¼ LA=GA

where

LA ¼ Leaf Area.
GA ¼ Ground Area.

Crop Growth Rate (CGR) was calculated at harvest stage by using the formula
given by Pearce et al. 1985:

CGR ¼ 1=GA W2 �W1=t2 � t1ð Þ
where

W2 and W1 are the dry weights; t2 and t1 times or interval.
1/GA ¼ Ground area.

Numbers of branches of five randomly selected plants from each plot were
counted and then average was recorded. Weight of 100 grains was recorded by
weighing a sample of 100 grains from every plot on an electric balance. Plant height
was obtained by measuring height of five plants at random from each plot at the time
of maturity. Biological yield was recorded by harvesting one m2 area per plot and it
was converted to get final yield in kg ha�1. Grain yield was recorded by harvesting a
one m2 area per plot and it was converted to get final yield in kg ha�1. Harvest index
was calculated using the formula given by Donald (1962; 1968).

HI ¼ Grain yield=Biological yield

13.3.1 DSSAT Model

Among the inputs required for DSSAT simulation, the detailed physical and hydrau-
lic properties of soil are needed. The model is not programmed with auto validation
and calibration. To validate the model for local conditions of any locality, changes
are made in its parameters. Various new files are generated for different management
zones to precise agriculture using DSSAT. Comparison of simulations with observed
results evaluates the model’s worth and appropriateness for precise predictions and
area (Porter et al. 2010). Diverse packages are easy to incorporate due to their
defined and documented modular interface. Independent programs operated together
with DSSAT model. Required inputs for model application under different situations
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are soil, genotypes, weather, and experimental conditions. Improvement of model
accuracy and efficiency, comparison of simulated and observed values, and database
preparation are aided with software application. Proper crop management for risks
assessment can be simulated with DSSAT crop model.

13.3.2 DSSAT Model Parameterization and Evaluation

The model was evaluated on the basis of data collected during chickpea growing
season of 2017–2018. Field experiments (Otter-Nacke et al. 1986) were of opinion
that calibration and validation are approaches to evaluate model efficiency. Adjust-
ment of genotypic coefficient was performed till the simulation results differ at 10%
of actual data for major development stages of chickpea. Comparison between
observed and simulated values was developed for parameters regarding growth
and development of chickpea to improve cultivar coefficient and for sensitivity
analysis of model. Small increase or decrease in genotypic coefficient was done
(when needed). Among the inputs required for DSSAT simulation, the detailed
physical and hydraulic properties of soil are needed. This model is not programmed
with auto validation and calibration. To validate the model for local conditions of
any locality, changes are made in its parameters. Various new files are generated for
different management zones to precise agriculture using DSSAT. Newly generated
modules include weather module, crop module, soil module, and soil–plant atmo-
sphere module to get simulation results from DSSAT. Similarly, a number of genetic
coefficients are also incorporated to parameterize DSSAT including vernalization
sensitivity coefficient (PIV), thermal time from the onset of linear fill to maturity
(P5), photoperiod sensitivity coefficient (PID). Subsequently, comparison of
simulations with observed results evaluates model’s worth and appropriateness for
precise prediction and area (Huntingford et al. 2003).

13.3.3 Statistical Analysis

Analysis of variance (ANOVA) was performed to test the significant differences
between means of various parameters for two varieties at two locations for the
2017–2018 growing seasons using Statistics 8.1. The ANOVA was performed to
find all the possible interactions of variety and locations. Collected data was statisti-
cally analyzed and used to parameterize DSSAT model to run simulating long-term
daily climatic data (1985–2018) of above said locations.
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13.4 Results and Discussion

13.4.1 Germination Test

Three varieties of chickpea (Balkasar, Thal 2006, and Vanhar) were taken for this
purpose. All these varieties are preferably grown in rainfed areas of the country. Five
seeds of individual variety were taken in each petri dish. Seeds were presoaked in
water for 1 hour in order to boost imbibitions. These varieties were screened on the
basis of germination percentage; Thal 2006 and Balkasar showed 100% germination
whereas Vanhar variety was screened due to its seeds failing to germinate, as shown
in Fig. 13.1. Selected varieties were thereafter sown at the both locations, i.e,. Fateh
Jang and URF Koont, Chakwal Road, Rawalpindi.

13.4.2 Crop Data

13.4.2.1 Days to Anthesis
Days to anthesis were calculated as days from sowing when 50% of crop plants
initiated flowering in the respective plots. For sample purpose, 5 plants were taken at
random from individual plot..

Results showed that variety V1 Thal 2006 reached the stage of 50% flowering
with the mean of 88 days at University Research Farm, Koont, Rawalpindi, with the
standard error of 1.0. The same variety shifted to anthesis with the mean of
91.67 days at Bijwal Farm, Fateh Jang, with standard error of 1.442, as presented
in Table 13.1.

Whereas the variety Balkasar switched to flowering stage with the mean of
94 days from sowing at URF, Koont, Rawalpindi, with the standard error of
1.414. This variety showed the anthesis stage with the mean of 104.33 days and
standard error of 1.442, as shown in Fig. 13.2. Results also proved the significant

Fig. 13.1 Germination test
comparison of three varieties
Balkasar, Vanhar, and
Thal 2006
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relationship for varieties at both locations. However, this result was in accordance
with (Roberts et al. 1985) who also reported that flowering stage is dependent on
photoperiod time of chickpea rather than location of growing area.

13.4.2.2 Days to Maturity
Days to maturity were calculated as days when 50% of the plants started pod
development from sowing. For representation of variation, 5 plants were taken at
random from each plot. Observation showed that once flowering is induced, then
plant is self-capable for pod development and seed setting in respective pods. Crops
that belonged to legume family showed numerous flowers but only a little percentage
was able to become pod and finally the seed setting. Due to its indeterminate nature,
chickpea has some extent of simultaneous development for pod and seed. Results
confirmed that Thal 2006 at Koont, Rawalpindi, showed an average of 175.67 for
days to maturity with the standard error of 2.53 whereas the same variety at Fateh
Jang showed the average of 181.67 for days to maturity with the standard error of
2.34 (Table 13.2). On the other hand, chickpea variety Balkasar showed an average
of 178.33 days for days to maturity with the standard error of 2.714 at URF Koont,
Rawalpindi (Fig. 13.3). The same variety showed an average of 184 days for days to
maturity at Fateh Jang with standard error of 2.645. Results showed significant

Fig. 13.2 Days taken to anthesis for chickpea varieties Thal 2006 and Balkasar at Koont and Fateh
Jang with means followed by the same letters do not differ significantly at 5% level of significance

Table 13.1 Days taken
to anthesis for chickpea
varieties Thal 2006 and
Balkasar at Koont and
Fateh Jang

Locations Cultivars Days to anthesis

Koont V1 88 a

V2 94 ab

Fateh Jang V1 91.7 b

V2 104.3 a
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relationship of varieties at both locations for days to maturity and (Monpara and
Kalariya 2009) also reported the similar results.

13.5 Yield and Yield Parameters

13.5.1 Leaf Area Index

Leaf area index (LAI) was calculated from destructive plant samples during
harvesting by computing leaf area of respective sample plant and its ground area.
LAI shows the growth pattern of the crop throughout its life cycle and is considered
as an important parameter in agronomic crops. As crop grows and shifts its physio-
logical stages, it tends to increase because of increase in all growth parameters as
well as leaf area of the plant. As number of leaves increases as well as leaf growth,
LAI increases. However, its decreasing trend has been observed for the harvest
stage. It may occur due to falling off leaves as a result of physiological maturity.
Results showed that Thal variety at Koont and Fateh Jang showed an average LAI of
1.17 and 1.11 with the standard error of 0.217 and 0.194, respectively, as shown in
Table 13.3. Balkasar variety of chickpea showed an average LAI of 1.14 and 1.08 at
Koont and Fateh Jang with the standard error of 0.179 and 0.158 as presented in

Table 13.2 Days taken
to maturity for chickpea
varieties Thal 2006 and
Balkasar at Koont and
Fateh Jang

Locations Cultivars Days to maturity

Koont V1 175.7 b

V2 178.3 a

Fateh Jang V1 181.7 b

V2 184 a

Fig. 13.3 Days taken to maturity for chickpea varieties Thal 2006 and Balkasar at Koont and Fateh
Jang with means followed by the same letters do not differ significantly at 5% level of significance
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Fig. 13.4. Results showed significant relationship of leaf area index for both varieties
at Koont and Fateh Jang and are in confirmation with the findings of Singh (2005)
which has reported similar result for leaf area index of chickpea.

13.5.2 Crop Growth Rate (CGR) (gm22 day21)

CGR was calculated by taking the fresh and oven-dry weight of sample plants at
respective time interval per unit ground. Crop growth rate is affected by several
climatic factors that play the crucial role for determining its value. It also represents
the agronomic parameters, i.e., dry matter yield for per unit area. It initiated its lower
value and reached at its maximum at certain level and then decreased at later stages
of the crop (Azimi et al. 2015). It is an important parameter in this regard that it
shows the net activity of photosynthesis, canopy cover, and respiration as a whole
(Alam and Haider 2006). Results showed an average value of CGR, for Thal 2006
variety at Koont and Fateh Jang, 0.133 and 0.1 with the standard error of 0.1945 and
0.1626, respectively, as given in Table 13.4. And as given in Fig. 13.5, Balkasar
showed an average value of CGR, at Koont and Fateh Jang, 0.103 and 0.07 with the
standard error of 0.201 and 0.179, respectively. The decline in the value CGR at the

Table 13.3 Leaf area
index of both chickpea
varieties Thal 2006 and
Balkasar at Koont and
Fateh Jang at harvest

Locations Cultivars Leaf area index

Koont V1 1.2 a

V2 1.1 ab

Fateh Jang V1 1.1 a

V2 1.0 ab

Fig. 13.4 Leaf area index of both chickpea varieties Thal 2006 and Balkasar at Koont and Fateh
Jang at harvest with means followed by the same letters do not differ significantly at 5% level of
significance
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time of harvest is due to decrease in LAI as well as falling off leaves. Results were
significant and in accordance with the research findings of Kibe et al. (2006).

13.5.3 Number of Branches Per Plant Start

Numbers of branches from five randomly selected plants from each plot were
counted and then average was recorded (Table 13.5). Branching is an essential
parameter in legumes as it is responsible for yield due to pod and grain setting
eventually. The sum of branching number also determines the total number of leaves
which in return gives an estimation of photosynthetic area in total. Results showed
an average value of number of branches per plant for Thal 2006 as 5 and 3.33 with
the standard error of 01 and 0.75 at Koont and Fateh Jang. Whereas, the average

Table 13.4 Crop growth
rate of both chickpea
varieties Thal 2006 and
Balkasar at Koont and
Fateh Jang at harvest

Locations Cultivars CGR

Koont V1 0.133333 a

V2 0.103333 ab

Fateh Jang V1 0.1 a

V2 0.073333 b

Fig. 13.5 Crop growth rate of both chickpea varieties Thal 2006 and Balkasar at Koont and Fateh
Jang at harvest with means followed by the same letters do not differ significantly at 5% level of
significance

Table 13.5 Number of
branches per plant of both
chickpea varieties Thal
2006 and Balkasar at
Koont and Fateh Jang

Locations Cultivars No. of branches/plant

Koont V1 5 a

V2 4.7 ab

Fateh Jang V1 3.3 a

V2 3 ab
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value of number of branches per plant for chickpea variety Balkasar at Koont,
Rawalpindi, and Fateh Jang is 4.66 and 3 with standard error of 0.7 and
01 (Fig. 13.6). Results are significant because branching is affected by plant popula-
tion and planting density, similar results have been reported by Shamsi (2009).

13.5.4 Number of Pods Per Plant

At the time of crop harvest, the pods of five plants selected at random from each plot
are counted and average value is taken per plant (Table 13.6). In family of legumes,
number of pods per plant has a vital role in determining the yield of seed. It is then
dependent on non-aborted sand fertile seeds per pod. Damaged and shriveled seeds
are of no use when it comes to economic purpose and number of pods per plant also
decreases due to increase in seeding density. Results depicted that variety Thal 2006
showed an average of 30.66 and 19.33 with the standard error of 2.265and 1.442 at
Koont and Fateh Jang. However, variety Balkasar showed average number of pods
per plant as 28.33 and 19.33 with the standard error of 2.346 and 1.519 at field areas
of Koont, Rawalpindi, and Fateh Jang (Fig. 13.7). Results showed significant

Fig. 13.6 Number of branches per plant of both chickpea varieties Thal 2006 and Balkasar at
Koont and Fateh Jang with means followed by the same letters do not differ significantly at 5% level
of significance

Table 13.6 Number of
pods per plant for both
chickpea varieties Thal
2006 and Balkasar at
Koont and Fateh Jang

Locations Cultivars No. of pods/plant

Koont V1 28.7 a

V2 27.3 ab

Fateh Jang V1 19 a

V2 16.3 ab
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difference for both varieties at respective locations and this may be due to varietal
differences which is coined in research finding of Frade and Valenciano (2005).

13.5.5 Number of Grains Per Pod

The pods of five plants selected at random from each plot were threshed manually,
grains were counted, and average value was recorded (Table 13.7). However, in
legumes there is lot of variation in pod development per plant and seeds or grains per
pod in legume family. Variation is also observed for the number of grains per pod as
many of them fail to develop. From experiment it is observed that in desi type, like
Thal 2006 and Balkasar, only one seed per pod is present at most, two seeds are also
present, however, three seeds per pod are also there under optimum conditions for
crop growth and development. Results for Thal 2006 showed an average value of
02 and 1.33 with standard error of 01 and 0.75 at Koont and Fateh Jang. Balkasar
showed an average value of 02 and 1.33 with the standard error of 0.1 and 0.76 at
Koont and Fateh Jang (Fig. 13.8). Results are significant because seed rate is an
important influencing factor which was merely same at both locations and due to
more genetic factor for regulating this plant trait rather than ecological or managerial
factors. However, similar results have been reported by Togay et al. (2008).

Fig. 13.7 Number of pods per plant for both chickpea varieties at Koont and Fateh Jang with
means followed by the same letters does not differ significantly at 5% level of significance

Table 13.7 Number of
grains per pod for both
chickpea varieties at
Koont and Fateh Jang

Locations Cultivars No. of grains/pod

Koont V1 1.7 a

V2 1.3 ab

Fateh Jang V1 1.3 a

V2 1 ab
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13.5.6 100-Grain Weight (g)

Weight of 100 grains was recorded by weighing a sample of 100 grains from each
plot on an electric balance. Along with several other factors, 100-grain weight is of
the prime importance. At Koont, both Thal 2006 and Balkasar showed maximum
100-grain weight, i.e., on average of 26.46 and 23.14 with the standard error of 1.365
and 0.805 at Koont (Table 13.8). However, it is relatively low for Balkasar and Thal
2006 with an average of 23.14 and 18.01 with the standard error of 1.963 and
2.364 at Fateh Jang (Fig. 13.9). Results are significant for both varieties and the
location and in accordance with Walley et al. (2005).

13.5.7 Plant Height at Maturity (cm)

Plant height was obtained by measuring height of five plants at random from each
plot at the time of maturity. According to results, Thal 2006 showed an average plant
height of 50.33 with standard error of 2.04 at Koont, Rawalpindi, whereas the same
variety at Fateh Jang showed an average of 51.33 with the standard error of 1.58 as
presented in Table 13.9. Whereas, Balkasar variety showed an average plant height
of 50.3 with the standard error of 1.58 at Koont and an average of 49.66 with the

Fig. 13.8 Number of grains per pod for both chickpea varieties at Koont and Fateh Jang with
means followed by the same letters do not differ significantly at 5% level of significance

Table 13.8 100-grain
weight (g) of Thal 2006
and Balkasar at Koont
and Fateh Jang

Locations Cultivars 100 grain weight (g)

Koont V1 26.5 a

V2 23.1 ab

Fateh Jang V1 20.3 b

V2 18.0 ab
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standard error of 2.65 at Fateh Jang as shown in Fig. 13.10. Results obtained were
significant and shows different trend due to genetic factor are in accordance with
Rasul et al. (2012).

13.5.8 Biological Yield (kg ha21)

Biological yield was recorded by harvesting one m2 area per plot and it was
converted to get final yield in kg ha�1. It is the yield which is in totality for all dry
matter produced as a result of different biochemical and physiological processes.
The biological yield obtained for Thal 2006 variety at Koont, Rawalpindi, and Fateh
Jang with an average of 5926.66 and 6901.66 kg ha�1 with the standard error of
35.26 and 22.22 is given in Table 13.10.Whereas, results showed that Balkasar
variety produced an average biological yield of 6183.33 and 6552.33 kg ha�1with
the standard error of 28.76 and 31.58 at Koont and Fateh Jang, respectively, as
shown in Fig. 13.11. Results obtained were significant for both varieties at both
locations and variation in biological yield may be due to the varietal potential at both
sites, thus results are in accordance with Khan et al. (2010).

Fig. 13.9 Hundred grain weight of Thal 2006 and Balkasar at Koont and Fateh Jang with means
followed by the same letters do not differ significantly at 5% level of significance

Table 13.9 Plant height
(cm) of Thal 2006 and
Balkasar at Koont and
Fateh Jang

Locations Cultivars Plant height (cm)

Koont V1 50.1 a

V2 50.3 ab

Fateh Jang V1 51.3 a

V2 49.7 ab
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13.5.9 Grain Yield (kg ha21)

Grain yield was recorded by harvesting a one m2 area per plot, converted to get final
yield in kg ha�1. It is a consequence of several physiological and phenological
developments in the plant throughout its lifecycle. Results showed an average grain
yield of Thal 2006 at Koont, Rawalpindi, and Fateh Jang as 1573.33 and
1449.66 kg ha�1with the standard error of 11.76 and 17.37 as given in
Table 13.11. Chickpea variety Balkasar showed an average grain yield of
1483.33 at Koont, Rawalpindi, with the standard error of 7.53. However, the same
variety showed an average grain yield of 1294.66 with standard error of 20.44 at
Fateh Jang. Higher grain yield at Koont, Rawalpindi, for both varieties may be due to
the suitable dry conditions at the grain filling stage of the crop (Fig. 13.12). Results
were significant for both varieties at Koont, Rawalpindi and Fateh Jang and are in
accordance with Valimohamadi et al. (2009).

13.5.10 Harvest Index

Harvest index (HI) is an extent of the physiological potential of the crop under
suitable climatic conditions. HI is the capability of a crop plant to convert its

Fig. 13.10 Plant height of Thal 2006 and Balkasar at Koont and Fateh Jang with means followed
by the same letters does not differ significantly at 5% level of significance

Table 13.10 Biological
yield kg ha�1 of Thal
2006 and Balkasar at
Koont and Fateh Jang

Locations Cultivars Biological yield

Koont V1 5926.7 a

V2 6183.3 a

Fateh Jang V1 6901.7 a

V2 6552.3 a
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Fig. 13.11 Biological yield of Thal 2006 and Balkasar at Koont and Fateh Jang with means
followed by the same letters does not differ significantly at 5% level of significance

Table 13.11 Grain yield
kg ha�1 of Thal 2006 and
Balkasar at Koont and
Fateh Jang

Locations Cultivars Grain yield

Koont V1 1573.3 a

V2 1483.3 ab

Fateh Jang V1 1449.7 a

V2 1294.7 ab

Fig. 13.12 Grain yield kg ha�1 of Thal 2006 and Balkasar at Koont and Fateh Jang with means
followed by the same letter does not differ significantly at 5% level of significance
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produce, i.e., in the form of dry matter preferably into the economic yield. Results
showed average values of HI of Thal 2006 variety at Koont, Rawalpindi, and Fateh
Jang, i.e., 0.269 and 0.210 with the standard error of 0.175 and 0.204 as mentioned
in Table 13.12. The average values of harvest index for Balkasar variety at Koont,
Rawalpindi, and Fateh Jang are 0.242 and 0.194 with the standard error of 0.182 and
0.180 as given in Fig. 13.13. The relatively high value of HI for both varieties at
Koont was due to more number of grains at this site. Results were significant for Thal
2006 and Balkasar at Koont, Rawalpindi, and Fateh Jang and thus in accordance
with Qureshi et al. (2004).

13.6 Simulation Outcomes

13.6.1 Days to Anthesis

Simulated days to anthesis at both locations were closely associated with observed
data for different locations and climatic conditions during chickpea growing season
of 2017–2018, as presented in Table 13.13. At Koont, Rawalpindi, higher observed
value of 94 days for variety Balkasar while minimum of 88 days for Thal 2006 were

Table 13.12 Harvest
index of Thal 2006 and
Balkasar at Koont and
Fateh Jang

Locations Cultivars Harvest index

Koont V1 0.23a

V2 0.2ab

Fateh Jang V1 0.21a

V2 0.19ab

Fig. 13.13 Harvest index of Thal 2006 and Balkasar at Koont and Fateh Jang with means followed
by the same letter do not differ significantly at 5% level of significance
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recorded. While at Fateh Jang the higher observed value of 104.3 days of Balkasar
variety while minimum of 91.67 days for Thal 2006 were calculated.

In a same way, the predicted days were recorded at both locations, i.e., Fateh Jang
and Koont, Rawalpindi, and varieties Thal 2006 and Balkasar. Maximum of 93 days
were reported for Balkasar variety and minimum of 87 days for Thal 2006 at Koont,
Rawalpindi. Whereas, maximum of104 days for Balkasar and minimum of 91 days
were reported at Fateh Jang. Validation skill scores (RMSE and d-index) were used
for comparison of model performance which were (0.96), (0.97), and (0.98),
respectively.

13.6.2 Days to Maturity

Predicted days to maturity at both locations were closely associated with observed
data for different locations and climatic conditions during chickpea growing season
of 2017–2018 as presented in Table 13.14. At Koont, Rawalpindi, higher observed
value of 178.3 days for variety Balkasar while minimum of 175.7 days for Thal 2006
were recorded. While at Fateh Jang the higher observed value of 184 days of
Balkasar variety while minimum of 181.7 days for Thal 2006 were calculated.

In a same way the predicted days were recorded at both locations, i.e., Fateh Jang
and Koont, Rawalpindi, and varieties Thal 2006 and Balkasar. Maximum of
177 days were reported for Balkasar variety and minimum of 174 days for Thal
2006 at Koont, Rawalpindi. Whereas, maximum of 183 days for Balkasar variety
and minimum of 180 days were reported at Fateh Jang location. Validation skill
scores (RMSE and d-index) were used for comparison of model performance which
were (0.96), (0.97), and (0.98), respectively.

Table 13.13 Observed and simulated days to anthesis under varying locations and varieties

Locations Cultivars Observed Simulated RMSE d-index

Koont Thal 2006 88 87 2.3 0.97

Balkasar 94 93 3.0 0.96

Fateh Jang Thal 2006 91.7 91 2.0 0.98

Balkasar 104.3 104 2.1 0.97

Table 13.14 Observed and simulated days to maturity under varying locations and varieties

Locations Cultivars Observed Simulated RMSE d-index

Koont Thal 2006 175.7 174 4.8 0.97

Balkasar 178.3 177 4.0 0.98

Fateh Jang Thal 2006 181.7 180 3.5 0.97

Balkasar 184 183 3.3 0.96
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13.6.3 Above-Ground Biomass (kg ha21)

Simulated and observed value of above-ground mass has close association for
different locations and varieties during growing season of chickpea of 2017–2018
and is given in Table 13.15. The maximum observed value for biological yield is
6183.3 kg ha�1for Balkasar variety of chickpea and minimum value recorded for
Thal 2006 is 5926.7 kg ha�1 at location Koont, Rawalpindi. Whereas at location
Fateh Jang, the highest value for biological yield of 6901.7 kg ha�1 is observed for
Thal 2006 variety and minimum of 6552.3 kg ha�1 for Balkasar variety at Koont,
Rawalpindi.

Meanwhile, model simulation showed lowest simulated value of 5900 kg ha�1

for Thal 2006 and highest simulated value of 6100 kg ha�1 at Koont. Whereas, the
highest simulated value of 6900 kg ha�1) for Thal 2006 and minimum value of
6550 kg ha�1) at Fateh Jang were recorded. Statistic indices values for evaluation of
CROP-GRO chickpea RMSE and d-index which were (0.97) and (0.98), respec-
tively. Our modeling approach thus consists of a simple quantitative description of
climatic effect on chickpea growth and its different developmental stages. The model
efficiently simulated above-ground biomass with respect to different varieties and
locations.

13.6.4 Grain Yield (kg ha21)

Simulated and observed data for grain yield of chickpea growing season 2017–18
have close association for different locations and varieties and are presented in
Table 13.16. The maximum observed value for grain yield is 1573.3 kg ha�1) for
Thal 2006 variety of chickpea and minimum value recorded for Balkasar is

Table 13.15 Observed and simulated above-ground mass (kg ha�1) under varying locations and
varieties

Locations Cultivars Observed Simulated RMSE d-index

Koont Thal 2006 5926.7 5900 5.27 0.98

Balkasar 6183.3 6100 6.1 0.97

Fateh Jang Thal 2006 6901.7 6900 6.9183 0.97

Balkasar 6552.3 6550 5.4 0.98

Table 13.16 Observed and simulated above grain yield (kg ha�1) under varying locations and
varieties

Locations Cultivars Observed Simulated RMSE d-index

Koont Thal 2006 1573.3 1500 5.27 0.98

Balkasar 1483.3 1486 4.6 0.95

Fateh Jang Thal 2006 1449.7 1400 4.9 0.97

Balkasar 1294.7 1296 3.8 0.97
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1483.3 kg ha�1 at location Koont, Rawalpindi. Whereas at location Fateh Jang, the
highest value for grain yields of 1449.7 kg ha�1) is observed for Thal 2006 variety
and minimum of 1294.7 kg ha�1) for Balkasar variety at Koont, Rawalpindi.

Meanwhile, model simulation showed lowest simulated value (1486) for Balkasar
variety and highest simulated value of 1500 kg ha�1 at Koont. Whereas, the highest
simulated value of 1400 kg ha�1) for Thal 2006 and minimum value of 1296 kg ha�1

at Fateh Jang were recorded for variety Balkasar. The comparison of model perfor-
mance was measured by using validation skill scores, RMSE, and d-index which
were (0.95), (0.97), and (0.98), respectively.
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Potato Modeling 14
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Abstract

Potato (Solanum tuberosum) is the most significant food crop next to rice and
wheat. Climate change could exert critical influences on supply of food; conse-
quently, key challenge for modern agriculture is to develop approaches to handle
its harmful impacts for confirming food security by 2050 as well as afterward.
Climate variability in the form of higher temperature, rainfall variability, and
increased frequency of drought have shown significant impact on potato produc-
tion. Thus, it is essential to design adaptation strategies that can mitigate influence
of climate change for long-term basis. Different process-based models such as
Decision Support System for Agrotechnology Transfer (DSSAT), Agricultural
Production Systems Simulator (APSIM), CropSyst (CropSyst VB–Simpotato),
and STICS (Simulateur mulTIdisciplinaire pour les Cultures Standard) have
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shown great potential to develop sustainable agronomic practices as well as
virtual potato cultivars to have good potato crop for future.

Keywords

Potato · Climate change · Higher temperature · Rainfall variability and increased
frequency of drought · Process-based models

14.1 Introduction

Potato is an important crop in the world after rice and wheat with an annual
production of 330 MT (FAO 2017). Major changes are going on in the world potato
sector, and until early 1990s, most of the world potato was produced and consumed
in Europe, North America, and former Russia. However, after 2005, most of the
world potato is produced by developing countries with China at the first place and
India at the third place. Almost a third of all potatoes are harvested in these two
places (Fig. 14.1). Average share of potatoes production (1994–2018) by regions has
been shown in Fig. 14.2. This crop is the source of income besides food security for
developing countries (Lutaladio and Castaidi 2009), while burgeoning population is

Fig. 14.1 Global scenarios of potato production and consumption. (Source: FAO; http://www.fao.
org/potato-2008/en/world/)
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increasing at alarming rates compared to other regions across the world (Lutz and
Samir 2010). This crop is consumed as vegetable and used for food purposes. Its
productivity is dependent on cultivar, management practice, and environmental
condition (Dalla Costa et al. 1997; Miglietta et al. 1998; Kooman et al. 1996a, b).
High temperature diminishes potato tuberization while injuries due to frost have also
been reported for this crop (Hijmans 2003). Increased yield was predicted for
England and Wales (Davies et al. 1996), Scotland (Peiris et al. 1996), and Finland
due to higher temperature and longer growing season while an overall decreased
yield was predicted for USA (Rosenzweig et al. 1996). Increased frequency of
drought is another issue, which affects potato yield significantly. Costa et al.
(1997) reported greatest reductions in photosynthesis, total biomass and yield
when drought was imposed during tuber initiation. Similarly, they concluded
that earliest stress resulted in the lowest water use effeciency and nitrogen uptake.
Increasing atmospheric CO2 concentration, increased daily mean temperature, and
increased seasonal variability in rainfall are projected by IPCC (2007) worldwide
during the twenty-first century. Variability in rainfall is a major concern for rain-fed
potato where management practices are already major concern due to limited water
availability. Seasonal solar radiation levels can also affect potato growth by poten-
tially inducing drought. Hence, it is vital to understand the effect of short-term
“cyclic” water-stress on potato growth besides elevated CO2.

14.2 Phenological Development of Potato

The description of potato plant is shown in Fig. 14.3. Phenological development of
potato is controlled by temperature (Kooman and Haverkort 1995), which will
ultimately change the crop growth, development, yield, and quality (van Oort
et al. 2012). It grows best at about 20 �C. It is fundamentally a “cool weather
crop,” as temperature being the key limiting factor for productivity; tuber growth
is inhibited at temperatures lower than 10 �C (50 �F) and exceeding 30 �C (86 �F),

Fig. 14.2 Production share of potatoes by region (average 1994–2018)
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Fig. 14.3 Description of the potato plant
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whereas optimal productivity is attained when daily mean temperature is in the range
of 18–20 �C (64–68 �F). Due to this reason, it is planted in early spring in temperate
regions while late winter in warmer areas and sown in cooler months in hot-tropical-
climate. In some subtropical highlands, mild temperature and higher solar radiation
permit growers to produce potatoes all over the year and produce tubers within
90 days of planting. High temperature during growing season causes changes in
potatoes resulting in severe decrease in productivity (Rykaczewska 2015). Earlier
work reported that the development of haulm is high at 20–25 �C while optimum
array for tuberization and tuber development is 15–20 �C. The phenological stages
of potato have been presented in Fig. 14.4.

Fig. 14.4 Phenological stages of potato. (Source: Hack et al. 2001)
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Inhibition in tuberization and reduction in photoassimilate partitioning of tuber
were studied by Lafta and Lorenzen (1995). Wahid et al. (2007) concluded that
transitory or constant high temperature causes an array of morpho-anatomical,
physiological, and biochemical changes in plants which affect plant growth, devel-
opment, and yield reduction. A rising temperature leads to higher transpiration in
plants which in turn increase their water demand. In several areas, drier potato
sowing causes water stress, resulting in reduced yield. This effect will be further
intensified by variations in rainfall distribution. In numerous countries, mainly in
tropics and subtropics, productivity declines up to 20–30%. Night-time temperature
has critical effect on deposition of starch in potato tubers. Ideal temperature range is
15–18 �C, and the temperature above 22 �C harshly hampers tuber growth. By
contrast, climate change influence on potato productivity is predictable to be favor-
able in farming zones at high altitudes. In several zones, climatic situations for potato
sowing are improving because of increasing temperature. In certain regions, it will
be possible to produce potatoes as winter crop. Moreover, increase in potato sowing
at high altitudes is also risky. Higher-altitude croplands are often located on steepy
slopes, where sowing of potatoes could aggravate degradation of soil because of
high tillage intensity. Adverse effect of heat stress can be mitigated by developing
thermotolerant-potato varieties which is possible by understanding crop response to
high temperature. Therefore, the main objective of this chapter is to quantify the
influence of climatic factors like temperature, water stress on potato phenology,
growth, yield, and quality on spatiotemporal scale. Hitherto, there is no such study
available in which quantitative impact of heat, drought stress at diverse phenological
stages and phases of growth, yield, and quality was conducted using remote sensing
and modeling approaches.

14.3 Nutritive Values of Potato

Owing to its nutrition values, potato is a balanced food and is an important food crop
in Pakistan as well as around the globe. Potato being cultivated across globe belongs
to one species Solanum tuberosum, whereas it has four documented species besides
200 wild relatives. Around 5000 potato cultivars are sown in Andes. Potatoes
chemical composition is effected by several elements, such as area of production,
cultivar, climate and soil, husbandry practices, preparation, and cooking. Even
though fundamental importance of potato being staple diet, limited is known regard-
ing the nutrient composition of several potato cultivars. Depending on the cultivar,
potato can be a valued source of minerals, such as potassium, magnesium, and
phosphorus, and dietary antioxidants. Details of nutritional level of potato post
boiling and peeling of the skin prior consumption are presented in Fig. 14.5.

388 M. Ahmed et al.



14.4 Potato Production and Climate Change

Potato production can generate more economic return. This plays a significant part in
food security as it can end hunger. In Pakistan, 97% increase in area under potato
cultivation reported since its independence, showing how many growers are inter-
ested to sow this crop. Similarly, mean yield ha�1 has also been improved from 9 to
24 tonnes, and now Pakistan ranks at 20th place in the world (FAOSTAT 2017).
Pakistan is self-sufficient in potato production, but due to climate change events
more losses have been observed in recent years (Ahmed 2020). Climate change is
now reality, and agriculture sector is one which is most vulnerable to it. Pakistan
economy and its food security are largely linked with agriculture sector which is
under heavy pressure due to high population, urbanization, and poor infrastructure
(sowing to marketing). The climate change provides additional pressure which is
difficult to sustain (Peins et al. 1996). According to the Climate Risk Index, Pakistan
is the seventh most vulnerable country to climate change. Disease and pest pressure
on potato productivity will increase because of climate change. Late blight is
expected to spread to zones that have before been safe from disease. Similarly, in
certain areas aphids will increase in number due to diverse seasons as it provide
favorable climatic conditions. Since aphids acts as virus vectors thus causes risks in
the production of seed. Currently, seed crop is grown at higher altitudes prior to
seasonal occurrence of aphids for keeping it virus free. Higher production of potato
in Pakistan is due to use of modern technologies and utilization of new seed
varieties. However, to have sustainable yield in the context of climate change, it is

Fig. 14.5 Nutritional value of potato
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necessary to have adaptation measures such as impact study analysis of climate
variables on potato crop productivity and use of cultivars which can bear abiotic
(high temperature and drought) and biotic stresses (late blight by Phytophthora
infestans). The option can also be for early-maturing potatoes during short rainy
seasons. Furthermore, it also requires modification in existing management practices
(e.g., use of mulching, sustainable water use (drip irrigation), mixing varieties and
intercropping, fertilizer rate, sowing time, access to microcredits, microinsurance,
and climate information). In recent years, delay in harvesting of potato crop in
Punjab was due to climate change resulting in increase in price. Similarly, cultivation
in autumn beginning in September was delayed due to high temperature and rainfall
variability. White and red potatoes are grown mainly in Pakistan. In Punjab, potato is
mainly grown in Sahiwal, Okara, Dibalpur, Burewala, Arifwala, Kasur, Sialkot,
Sheikhupura, Lahore, and Gujranwala. These areas contribute to 83% of potato
production, but today these areas are under the negative impact of another climatic
event called smog. Dir, Nowshera, and Mansehra from the KPK contribute to 10%
production. Killa Saifullah, Kalat, and Pishin from Balochistan contribute 6%, and
Hyderabad and Karachi from Sindh contribute 1% in total production of potato. In
Pakistan, potatoes are grown in three seasons:. Spring (January–February (Sowing)
and April–May (Harvesting)); Summer (March–May (Sowing) and August–October
(Harvesting)); and Autumn (September–October (Sowing) and January–February
(Harvesting)). The share of potato crop in annual production by spring, summer and
autumn is 10%, 15%, and 75% respectively. Biggest shortage of potato has been
seen in the start of March due to less production from spring season and poor post-
harvest handling such as storage and transportation, which affects the quality of
produce. Also, in spring, produce is reduced due to rapid multiplication of virus
vector besides other bacterial and fungal diseases. Therefore, we need to control
pests and diseases by adopting proper management practices and developing resis-
tant varieties through modeling approaches.

Climate variability has also shown impacts on potato quality which is also
affected by various factors such as maturity level of crop, preharvest conditions of
crop, handling and harvest conditions, health status of crop such as biochemical
changes, pests and disease incidence, and preparation and management of storage
environment. Good storage practices cannot enhance the quality of crop if health is
compromised during preharvest conditions. Quality of tubers is affected when
immature tubers are harvested, soil conditions are very wet or dry, and weather is
very warm (Pinhero et al. 2009). Certain glycol-alkaloids and secondary metabolites,
i.e., α-chaconine and α-solanine, found in potato are reported to be dangerous for
human health (Romanucci et al. 2018). The most common potato disease worldwide
is late blight caused by a water mould, Phytophthora infestans, that destroys leaves,
stems, and tubers. Bacterial wilt is caused by the bacterial pathogen, which leads to
severe losses in tropical, subtropical, and temperate regions, while potato blackleg is
also a bacterial infection, which causes tubers to rot in the ground and during storage.
Viruses can cut yields by 50%, and they are disseminated in tubers. Early blight
caused by bacteria results in 20–50% yield losses (Van Der Waals et al. 2001;
Leiminger and Hausladen 2011). Low-water supply decreases the fresh and dry
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tuber yield (El-Abedin et al. 2017). Dry rot is economically affecting the potato
produce under storage conditions from 6% to 25% up to 60% in some cases
(Stevenson et al. 2001). Similarly, certain species of Aphids are affecting the
production of potatoes (Pelletier and Michaud 1995; FAO 2016). Aphids are the
main source of transfer of virus-related disease. It transfers virus from one place to
another and spreads diseases on large scale. Meanwhile, long-term availability of
potatoes depends upon its storage, but it is limited by sprouting of potatoes.
Sprouting is the major cause of potato losses during storage. So, it is necessary to
maintain endodormancy within potatoes so that sprouting will be low (Eshel and
Tepel-Bamnolker 2012). High temperature has remarkable negative impact on the
tuber yield, i.e., tuber fresh weighs less than 80 g. Less tuber weight is associated
with reduction in total tuber yield and size. Rate of tuber bulking determines total
tuber yield of potato (Mihovilovich et al. 2014). Increased temperature is favorable
for temperate regions but can cause problems for tropical growing potatoes (Lizana
et al. 2017). Excess fertilizer causes the rapid growth of potatoes resulting in hollow
tuber formation with empty cavities. Potato psyllid is a serious pest for Solanaceae
crops (Jackson et al. 2009). Due to its eating habit, this pest causes significant
decrease in crop yield and quality (Munyaneza and Henne 2013). It causes spreading
of bacteria which causes zebra chip in potato crop (Crosslin et al. 2010). There are
several diseases which are caused by pests such as Colorado potato beetle
(Leptinotarsa decemlineata), Potato tuber moth (Phthorimaea operculella),
Leafminer fly (Liriomyza huidobrensis), and Cyst nematodes (Globodera pallida
and G. rostochiensis). Therefore, modeling concepts should be applied to study
impacts of abiotic (temperature and water) and biotic stresses (diseases and pest) on
potato crop production.

14.5 Potato Modeling Across Globe Under Different Scenarios

The APSIM potato model was developed using plant modeling framework (PMF)
(Brown et al. 2011, 2014) (Figs. 14.6 and 14.7). APSIM model, as presented in
Table 14.1, simulates the development of crop through different developmental
stages and uses thermal time approach. Thermal time target and the progression
toward peeping can be calculated by using following equations:

Progression ¼ Phenology½ �:Thermal Time

Peeping to emergence (sprouting phase):

Target ¼ Sowing depth� Shoot rateþ Shoot Lag
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Shoot rate ¼ 1:35
Degree day

mm

� �

Shoot lag ¼ 72 Degree dayð Þ
Sowing depth ¼ in mm from manager

Further detail about the growth and development of potato used by APSIM is
available in the work of Brown et al. (2018).

The SUBSTOR-potato model is a cropping system model of decision support
systems for agrotechnology transfer (Jones et al. 2003; Hoogenboom et al. 2019).
Ritchie et al. (1995) provide a detailed description of SUBSTOR-potato model.
This model can be requested from DSSAT portal (www. DSSAT.net). Relative
temperature function for tuber initiation (RTFFTI) in SUBSTOR-potato model
uses following equations:

RTFFTI ¼ 0; Tempearture � 4ð Þ

RTFFTI ¼ 1� 1
36

� �
10� Temperatureð Þ2; Temperature > 4 and Temperature � 10ð Þ

RTFFTI ¼ 1; Temperature > 10 and Temperature � 10ð Þ

Fig. 14.6 APSIM plant basic structure (e.g., oat (left) and lucerne (right) configuration files).
(Source: Brown et al. 2014 with permission from Elsevier)
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Fig. 14.7 Plant modeling framework of APSIM. (Source: Brown et al. 2014 with permission from
Elsevier)
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RTFFTI ¼ 1; Temperature > 10 and Temperature � Critical temperatureð Þ

RTFFTI ¼ 1� 1
64

� �
Temperature� Critical Temperatureð Þ2;

Temperature > Critical Temperature and Temperature � Critical Temperatureþ 8ð Þ
Relative day length function for tuber initiation (RDLFFTI) can be modeled by

using following equation:

RDLFFTI ¼ 1� P2ð Þ þ 0:00694� P2� 24� PHPERð Þ2

RDLFFTI is function of day length in hours (PHPER) and sensitivity to day
length (P2). RDLFFTI ¼ 1 when photoperiod is less than 12 h.

Biomass accumulation after tuber initiation and partitioning could be calculated
by using following equations:

PCARB ¼ RUE� PAR
Plants

1� Exp �0:55� LAIð Þð Þ � PCO2

Here

PCARB ¼ function of RUE (g MJ�1)
PAR ¼ photosynthetically active radiation (PAR, MJ m�2)
LAI ¼ leaf area index (dimensionless)

Maximum tuber growth (TIND), sink strength (DTII), and carbon demand of
tubers after tuber initiation (DEVEFF) are calculated by following equations:

Maximum tuber growth TINDð Þ ¼ DTIIaverage
1

NFAC

� �
DEVEFF;NFAC > 1

Maximum tuber growth TINDð Þ ¼ DTIIaverage � DEVEFF; NFAC > 1

Maximum tuber growth TINDð Þ ¼ RTFFTI; if no stress

Table 14.1 List of stages and phases used in the simulation of crop phenological development

Phase number Phase name Initial stage Initial stage

1 Dormant Planting Peeping

2 Sprouting Peeping Emergence

3 Vegetative Emergence Tuber initiation

4 Early tuber Tuber initiation Final leaf

5 Late tuber Final leaf Full senescence

6 Senesced Full senescence Maturity

7 Maturity Maturity Eternity

Source: APSRU, APSIM; Brown et al. (2018)
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Maximum tuber growth TINDð Þ ¼ RTFFTIþ 0:5
� 1� min SWFAC,NSTRES, 1ð Þð Þ

DEVEFF ¼ min XSTAGE� 2ð Þ � 10� PD, 1ð Þ
XSTAGE ¼ 2:0þ CUMRTFVINEð Þ=100

Here

DTIIavg ¼ three-day moving average of daily values of sink strength (DTII)
DEVEFF ¼ carbon demand of tubers after tuber initiation
XSTAGE ¼ Progression through each phenological stage as a function of the

cumulative leaf thermal time (CUMRTFVINE)
PD ¼ index that suppresses tuber growth (PD ¼ 0 or 1)
NFAC ¼ nitrogen deficiency factor (NFAC)

SUBSTOR model simulates potential tuber growth (PTUBGR, g plant�1 day�1)
as a function of potential tuber growth rate (G3), relative temperature factor for root
growth (RTFSOIL), and plant density.

PTUBGR ¼ G3� PCO2 � RTFSOIL
Plants

GROTUB Actual tuber growthð Þ ¼ PTUBGR� min TURFAC,AGEFAC, 1ð Þ
� TIND

PLAG Actual leaf expansionð Þ ¼ G2� RTFVINE
Plants

� min TURFAC,AGEFAC, 1ð Þ

Leaf growth GROLFð Þ ¼ Actual leaf expansion PLAGð Þ
Leaf weight ratio LALWRð Þ

Stem growth GROSTMð Þ ¼ GROLF� 0:75

Root growth GRORTð Þ ¼ GROLFþ GROSTMð Þ � 0:2

SUBSTOR-potato model converts tuber dry weight to tuber fresh weight assum-
ing dry matter contents of 20%. Performance of the SUBSTOR-potato model across
contrasting growing conditions was conducted by Raymundo et al. (2017). CropSyst
VB–Simpotato model was used for the evaluation of potato production system in
Pacific Northwest of the USA by Alva et al. (2004). This model is used to predict fate
and transport of N under different nitrogen and water management options. The
Simpotato model was presented by Hodges et al. (1992) using standards of IBSNAT
(International Benchmarks Sites Network for Agrotechnology Transfer) project.
LINTUL-POTATO-DSS is another important robust model (Haverkort et al. 2015).
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STICS model was calibrated and evaluated by Morissette et al. (2016) to deter-
mine the cultivar-specific critical N concentration dilution curves and to quantify
gain in model performance with cultivar-specific N concentration curves rather than
a generic curve. Nitrate leaching was evaluated by Jégo et al. (2008) using STICS
crop models in the field of potato and sugar beet crop. This model firstly evaluated
using field data and then analyzed the impacts of different practices on nitrate
leaching. Results showed that excessive irrigation in potato field resulted in higher
nitrate leaching compared to sugarbeet as it has high N uptake capacity. Virtual
experiments further suggested that N fertilization should be adjusted based on
(1) season (2) crop in field (3) irrigation water, and (4) other factors precisely needed
for potato crops.

Precision agriculture technologies, soil maps, and meteorological stations provide
minimum data set, but optimal nutrients requirements are possible by the use of
multilevel modeling as proposed by Parent et al. (2017). Mitscherlich equation was
used to elaborate a multilevel N fertilizer response model for potato. According to
Mitscherlich equation, rate of yield response reduces as soil nutrient level along with
nutrient addition increases. Following equation is proposed by Rajsic and Weersink
(2008):

Yield ¼ Asymptote� 1� e�Rate� EnvironmentþDoseð Þ
� �

Here yield ¼ crop production per unit area and dose ¼ fertilizer amount per
unit area.

Mitscherlich parameters have been shown in Fig. 14.8. Application of different
models and strategies on the potato crop improvements have been presented in
Table 14.2.

Fig. 14.8 Mitscherlich
parameters. (Source: Parent
et al. 2017)
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Table 14.2 Model applications in tube research

S. No Model applications References

1. Application of APSIM-potato model Tang et al. (2020)

2. DSSAT model to manage nitrogen in potato rotations with cover
crops

Geisseler and
Wilson (2020)

3. Soil and climate data aggregation on potato yield and irrigation
water requirement using APSIM

Ojeda et al. (2020)

4. SUBSTOR-potato model to design deficit irrigation strategies Montoya et al.
(2020)

5. Quantification of the canopy cover dynamics in potato Khan et al. (2019)

6. Agronomic options for better potato production Tang et al. (2019)

7. Mulching-induced variations in tuber productivity and NUE in
potato in China

Wang et al. (2019)

8. Deficit irrigation strategies using MOPECO model Martínez-Romero
et al. (2019)

9. Protection of potatoes from adverse weather conditions through
appropriate mitigation strategies and by the use of cropping
system model (CSM)-SUBSTOR-potato

Woli and
Hoogenboom
(2018)

10. Optimizing N fertilizer levels besides time of application in
potatoes under seepage irrigation

Rens et al. (2018)

11. FAO dual Kc approach to assess potato transpiration Paredes et al.
(2018)

12. Application of CropSyst model to simulate potato crop Montoya et al.
(2018)

13. Change in potato phenology Tryjanowski et al.
(2017)

14. AquaCrop to simulate potato yield Razzaghi et al.
(2017)

15. AquaCrop model application for irrigation management in
potato

Montoya et al.
(2016)

16. Irrigation scheduling using AquaCrop Linker et al. (2016)

17. Root system architecture and abiotic stress tolerance Khan et al. (2016)

18. Breeding strategies of table potato Eriksson et al.
(2016)

19. Effect of high temperature on potato Rykaczewska
(2015)

20. Benefits of controlled release urea on potato Gao et al. (2015)

21. Multivariate analysis between potato and treatments Šrek et al. (2010)

22. Yield response of potato to nitrogen Shillito et al. (2009)

23. Modeling tuber crops Singh et al. (1998)

24. Climate change and potato production Rosenzweig et al.
(1996)

25. Temperature effect on potato growth and carbohydrate
metabolism

Lafta and Lorenzen
(1995)

26. Virtual potato crop modeling Raymundo et al.
(2014)
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Application of Generalized Additive Model
for Rainfall Forecasting in Rainfed Pothwar,
Pakistan

15

Mukhtar Ahmed, Fayyaz-ul-Hassan, Shakeel Ahmad, Rifat Hayat,
and Muhammad Ali Raza

Abstract

Climatic variations affect growers of dry regions, and so the agricultural manage-
ment techniques require modification according to the timing and amount of
precipitation for the optimization of yield and economic output for a specified
season and location. Farm manager preparedness depending on past practices can
be enhanced by long-range skilled forecasting of rainfall. The well-known modes
of interannual fluctuations affecting the Indian subcontinent are the Indian Ocean
Dipole (IOD) and El-Niño Southern Oscillation (ENSO). Dry regions of Pakistan,
i.e., Pothwar, are facing a number of key challenges in the prediction of irregular
rain. Modeling skewed, zero, nonlinear, and non-stationary data are a few of the
main challenges. To deal with this, a probabilistic statistical model was used in
three of the dry areas of Pothwar to predict monsoon and wheat-growing season.
To find out the prospects of rainfall, occurring in the system, the model utilizes
logistic regression through generalized additive models (GAMs). Our study
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exploits climatic predictors (Pacific and the Indian Ocean SSTs demonstrating the
status of the IOD and the ENSO) affecting rainfall fluctuations on the Indian
subcontinent for their effectiveness in predicting seasonal rainfall (three rainfall
intervals and the monsoon rains throughout the wheat-growing period). The
outcome demonstrated that the observed area had the amount and fluctuation of
rainfall determined by SSTs, so predictions can be carried out by intellect to
overpass the gaps among average and potential wheat yield with a change in
management practices, i.e., appropriate time of sowing and use of suitable
genotypes. In addition, the forecasting ability score, i.e., R2, RMSE (root-mean-
square error), BSS (Brier skill score), S% (skill score S), LEPS (linear error in
probability space), NSE (Nash-Sutcliffe model efficiency coefficient), and ROC
(receiver operating characteristics, p-value), assessed validation of model for
rainfall prediction to verify the effectiveness of GAM and to formulate contrast
among varying validation abilities to do cross-validation of rainfall prediction.
Likewise, the forecast systems present substantial benefits in enhancing general
operational management when used in agriculture production across the whole
value chain.

Keywords

Forecasting · GAMs · SSTs · ENSO · IOD · Management

15.1 Introduction

The most important climate element for rainfed agriculture is rainfall, and it has a
great impact on the socioeconomic development of the region. Rainfall in rainfed
regions of Pakistan show great variations across space and time. This might be
because of complex topography and a number of different factors which also include
global warming (GW). GW is among the most significant global environmental
challenges, and it has strong impacts on food security, natural resources, rainfall, and
droughts (Ahmed 2020; Ahmed and Stockle 2016; Klein Tank et al. 2006; Mustafa
2011; Stocker et al. 2013). Catastrophic impacts of extreme weather events have
already taken global attention, and it has been now the fact that the intensity and
frequency of these events have been increased significantly (Liu et al. 2005).
Countries like Pakistan are more prone to negative impacts of climate change as
compared to the developed countries (IPCC 2014). Changing pattern of rainfall has
significant effects on agricultural production. Monsoon is the main rainfall pattern in
the rainfed regions of Pakistan, and it has been observed that the pattern of monsoon
is changed (Turner and Annamalai 2012). Monsoon begins its journey from the
south of India around the end of May when the cross-equatorial low-level jet is
present along the coast of Somalia into the near-equatorial Arabian Sea (Ding and
Sikka 2006). Large-scale monsoon current with interannually fluctuation proceeds
west-northwestward, and central Pakistan is the finishing point during the middle of
July. Although, monsoon distribution is generally between June and September, the
substantial spatiotemporal variation is observed in the region. This significant
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variability could be because of sea surface temperature (SST) beside orographic
influence. Meanwhile, a low-pressure system is another factor which brings signifi-
cant rain over the Indo-Pak subcontinent. Therefore, SST and pressure system are
the one which brings rainfall variability over the subcontinent, and this variability is
annual as well as seasonal.

Pothwar Plateau is the chief rainfed area of Pakistan, surrounded on the east by
the Jhelum river, on the west by the Indus river, on the south by the Salt Range, and
on the north by the Kala Chitta Range and the Margalla Hills. The mean height of
Kala Chitta Range is 450–900 meters (3000 ft) and extends for about 72 kilometers.
The Pothwar Plateau of Pakistan is an important agricultural, economic, and cultural
arid region that extends between latitudes 32� 100 and 34� 90 N and longitudes 71�

100 to 73� 100 E. It covers an area of 1.82 million ha, and geography ranges from even
to slightly undulating, locally broken by low hill ranges and gullies. The bedrock
mainly consists of loess, narrow strips of river alluvium, residual mantle on
sandstones and shale bedrocks, residual mantle on sandstones and shale bedrocks,
and piedmont alluvium near the foot of mountains.

Rainfall variability is the key aspect determining crop production and threat
related to the environment under the rainfed area of Pakistan. Likewise, when
operational seasonal forecasting systems are used in practical farming system man-
agement, some factors are considered important, i.e., pre-sowing soil water contents,
soil type, planting dates, temperature, soil fertility, rainfall intensity, and timeliness
of rainfall (Meinke and Stone 2005). Rainfall is the only available source of water;
therefore, the people in rainfed regions of Pakistan mainly depend on it. If the rainfall
fails, agriculture of the area can be harshly disturbed. Accurate prediction of rainfall
quantum and onset for a few days up to a crop season can create a distinction
between agricultural success and failure. Government action and public response
also need precise rainfall forecasts with sufficient lead times. Likewise, excess
hardship to the people in the region can be brought by prolonged droughts and
floods. These may result in life loss and property and deep economic trouble for the
people and the government.

Researcher in the past has depicted a significant relationship with rainfall
variability and global circulation system components (van Ogtrop et al. 2014). The
most prominent component, according to Walker, was the Southern Oscillation
(SO), which was further confirmed by Bjerknes as El Niño. The term El Niño is
linked to the warming of the eastern equatorial Pacific, and NINO3, which indicates
the sea surface temperature (SST) anomaly in the NINO3 region (90 W–150 W, 5S–
5N) of the eastern equatorial Pacific, is commonly used as an index of El Niño. The
Southern Oscillation is a seesawing of atmospheric mass and hence the sea level
pressure (SLP), between the western and eastern Pacific. It is most frequently
indexed by the Southern Oscillation Index (SOI), a normalized SLP difference
between Darwin, Australia, and Tahiti. However, IOD is the dipole structure of
SST which is the variation in SST between the tropical western Indian Ocean (50E –

70E, 10S – 10 N) and the tropical south-eastern Indian Ocean (90E – 110E, 10S –

equator).
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The aim of this study is to identify rainfall drivers for the rainfed area of Pothwar,
which can be used in statistical forecasting models. The objectives of the study
include (1) to identify climatic drivers of rainfall variability for three locations in
Pothwar, Pakistan; (2) to evaluate relationships between these drivers of climate
variability and growing season rainfall; and (3) to explore options for using knowl-
edge on climatic drivers in seasonal climate forecasting.

15.2 Materials and Methods

15.2.1 Study Area

The Pothwar Plateau of Pakistan covers an area of 1.82 million ha and extends
between 32�10’N–34�9’N and 71�100E–73�100E. The SST data from the Niño1 + 2
(Niño1.2), Niño3, Niño3.4, and Niño4 region were taken from National Oceanic and
Atmospheric Administration (NOAA), USA http://www.cpc.ncep.noaa.gov/data/
(Wang et al. 1999; Trenberth and Stepaniak 2001), while IOD data was obtained
from Frontier Research Centre for Global Change, Japan http://www.jamstec.go.jp/
frsgc/research/d1/iod/ (Caroline et al. 2011). Similarly, the rainfall data
(1961–2009) for the rainfed area of Pothwar, i.e., Islamabad, Chakwal, and
Talagang, Pakistan, was obtained from the meteorology department of Pakistan.

15.2.2 Models

Modeling rain with a zero-adjusted distribution of the type is equal to modeling zero
and non-zero data discretely:

f y; θ, πð Þ ¼ 1� πð Þ if y ¼ 0

πfT y, θð Þ if y > 0

�
ð15:1Þ

where π, fT(y, θ), and the prospect of the happening of non-zero rainfall is the
distribution of the non-zero rainfall. So, initially, the happening of monthly rainfall
was modeled. Binomial distribution was utilized because the result is binary
(Hyndman and Grunwald 2000). As a next step, non-zero rainfall intensities
(volumes) are modeled. The generalized linear model (GLM) can be initially
detailed for the binomial model of the occurrence of flow as follows:

g πð Þ ¼ log
π

1� π

� �
¼ x0β ð15:2Þ

where π is the prospect of the happening of non-zero rainfall, x0is a vector of
covariates, β is a vector of coefficients forx, and g(π) is the logit link functionx.
Generalized additive model for location, scale, and shape (GAMLSS) was specified

406 M. Ahmed et al.

http://www.cpc.ncep.noaa.gov/data/
http://www.jamstec.go.jp/frsgc/research/d1/iod/
http://www.jamstec.go.jp/frsgc/research/d1/iod/


for contrast as follows (because GAMLSS is an extension of GLM (Rigby and
Stasinopoulos 2001)):

g πð Þ ¼ log
π

1� π

� �
¼ x0β þ

XJ
j¼1

s j w j

� � ð15:3Þ

where in Eq. 15.2, x0β is a combination of the linear estimator, sj for j ¼ 1, 2, . . .. . .,
J is smoothing terms, and wj for j ¼ 1, 2, . . .. . ., J is the covariate. GAMLSS with
added smoothing terms is very useful; for example, nonlinear covariate impacts in
otherwise noisy data sets are identified (Hastie and Tibshirani 1986). In this study,
penalized B-splines are supported by the smoothing (Eilers and Marx 1996). The
penalized maximum likelihood in the gamlss package is used for automatic selection
of the degree of smoothing (Rigby and Stasinopoulos 2005). Within the open-source
program R, gamlss function in the gamlss package was used for the application of
the GAMLSS models (R Development Core Team 2008; Stasinopoulos et al. 2009).
A simple linear regression model was firstly used in order to build a relationship
between rainfall and climatic drivers. Data sets with a lag period of 2, 6, and
12 months were used to develop line regression equations:

Y ¼ β0 þ β1X1 þ β2X2 þ � � � þ βmXm ð15:4Þ
where Y denotes the probability of occurrence of rainfall; β0, β1, β2,. . .βm are the
constants; and X1, X2,. . .Xm are the different climatic drivers. For checking whether
the resulted rains from the line regression equations were significance or not, first,
the coefficients of multiple correlations are figured out, and then the F-test is applied.
Seasonal variations in the data are explained with the inclusion of additional
harmonic covariates like synthetic variables (sine and cosine) (Hyndman and
Grunwald 2000):

sine ¼ sin
2πSm
12

� �

cosine ¼ cos
2πSm
12

� � ð15:5Þ

where Sm is m (mod 12) and m is the month. A penalized B-spline fitted with these
harmonic covariates supplemented flexibility, so higher-order harmonics were not
needed. Significance of these covariates indicates strong seasonal drift in the rainfall
and therefore captures seasonal climatic rain. Now the linear regression model
equation becomes

Y ¼ β0 þ sineþ cosineþ NINO1:2þ NINO3þ NINO4þ NINO3:4
þ IOD ð15:6Þ
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15.3 Results and Discussions

The annual variability in rainfall for the rainfed area of Pothwar, i.e., Islamabad,
revealed that in the certain year it could reach to the peak value of 1746 mm (1981),
while in another year it might go to a minimum level, i.e., 532 (1994) (Fig. 15.1).
Similarly, for Chakwal medium rainfall area of Pothwar, long-term rainfall
variability depicted that the maximum rainfall is recorded during 1997 (1221 mm),
while lowest value is noted in 1979 (225 mm) (Fig. 15.2). However, the lowest
rainfall area of Pothwar, i.e., Talagang, depicted rainfall variability with annual
maximum value in 1997 (520 mm) while the minimum value in 1979 (121)
(Fig.15.3). This long-timescale rainfall variability in Pothwar areas may be because
of different climatic drivers like ENSO (El Niño Southern Oscillation Index),
Madden-Julian oscillation (MJO) and Indian Ocean Dipole (IOD).

In the rainfed “barani” areas of Pakistan, rainfall variability is the main driver for
fluctuations in agricultural productivity. These areas cover 24.4% of the total arable
land; 14% of Pakistan’s population depends on rainfed agriculture. In general, the
rainfall pattern among the seasons in Pakistan was aggravated, implying the
increased frequency of rainfall during summer and the decrease of rainfall during
winter. The prediction of rainfall on the spatiotemporal pattern in rainfed areas of

Fig. 15.1 Time series of rainfall at Islamabad (1961–2010)
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Fig. 15.2 Time series of rainfall at Chakwal (1961–2010)

Fig. 15.3 Time series of rainfall at Talagang (1961–2010)
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Pakistan can provide useful information for decision-making in the management
of the wheat-based rainfed farming system. There are many factors which in
combined form contribute to the difficulty of farming in Pothwar and application
of agricultural innovations. The major factor is the year-to-year variability in rainfall
which significantly adds to the risk of farming operations. Therefore, the long-lead
forecast of precipitation could develop planning to diminish the hostile impacts
of rainfall variability and to take benefit of good conditions (Ahmed 2011).

SSTs (sea surface temperatures) in the Pacific and Indian Oceans play a
significant role in the rainfall variability of the summer monsoon. Similarly,
rainfall during the rainfed wheat-growing season can have a significant relation-
ship with SSTs. The correlation of ENSO with Indian monsoon rainfall reported
significantly highest (at 99% significance) except for the years of 1983 and 1997,
which showed that ENSO phenomenon was used to predict rainfall of Indian
subcontinent. Therefore, it is essential to use the knowledge of ENSO to develop
a rainfall forecasting model to utilize monsoon and growing season moisture
effectively. Similarly, the SOI, which is an index of air pressure between the
western and eastern tropical Pacific, has an important influence on rainfall in
many regions of the world particularly monsoonal regions in relation to the onset
and end of monsoon and the amount of rainfall likely to be received during the
season. A frequently occurring cycle of Southern Oscillation Index reflecting the
air pressure between Darwin and Tahiti was utilized for climatic forecasting,
particularly rainfall up to a couple of years. It has an average cycle of 4 years,
but strong negative and positive phases of SOI could occur at 3–6 years interval in
terms of El Niño and La Niña actions.

The long-term rainfall data (1961–2010) of Chakwal, Talagang, and Islamabad
was studied using APSIM and R model. The leading purpose of this study was to
analyze the connection between SSTs and Southern Oscillation Index (SOI) phases
and how these climatic drivers change climatic pattern under rainfed conditions of
Pothwar. This resulted in exposing a positive connection between the rainfall
variations and July SOI phases during October–November (the sowing time of
wheat). Based on the long-term rainfall data (1961–2010), the study showed that
the Islamabad, Chakwal, and Talagang have 44, 40, and 35% and 35, 34, and 33%
prospect of exceeding median precipitation near zero and constantly negative SOI
phases, respectively, during July. Likewise, the forecasting outcomes by R showed
that prediction of monsoon (JAS), wheat grain filling period (FMA), wheat early
growth (NDJ), and total wheat-growing season precipitation using covariates like a
dry spell, IOD of different months, NINO1.2, NINO3, NINO3.4, and NINO4 have
shown significant signals. The skill scores like RMSE (root-mean-square error), BSS
(Brier skill score), S% (skill score S), NSE (Nash-Sutcliffe model efficiency coeffi-
cient), and ROC (receiver operating characteristics for forecasting above and below-
median rainfall) have shown suitability of using SSTs to forecast rainfall
(Table 15.1). The rainfall forecast for NDJ, FMA, and NDJFMA by considering
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SST of August and September at Islamabad revealed a strong close association with
observed and predicted rainfall (Figs. 15.4, 15.5, and 15.6).

Acknowledgment The authors are thankful to the Higher Education Commission for the financial
support to complete this study.

Fig. 15.4 Rainfall forecast
for NDJ period at Islamabad
using SST of August and
September

Fig. 15.5 Rainfall forecast
for FMA period at Islamabad
using SST of August and
September
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