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Abstract Contrast of images which are captured in poor weather (i.e., hazy, foggy,
rainy and cloudy) degrades due to optical and physical properties of light and
atmospheric particles. This degradation lessens the performance of computer vision
assisted systems. The weight of degradation at a pixel depends upon depth of the
pixel from camera. Therefore, accurate depth estimation of a pixel is essential to
improve quality of image. This paper presents color attenuation prior-based depth
approximation model to approximate depth of a pixel from the camera using a sin-
gle degraded image. The proposed method observed that the depth of a pixel from
the camera is directly proportional to the difference of the saturation from the sum
of brightness and hue. Visual quality and quantitative metrics are used to compare
results of the proposed method with prominent existing methods in literature.

Keywords Fog · Haze · Atmospheric light · Atmospheric scattering ·
Transmission

1 Introduction

Performance of surveillance systems, object recognition in outdoor systems, intelli-
gent transportation systems, trafficmonitoring using outdoor vision systems is highly
interrupted by poor weather. Computer vision assisted systems work effectively only
if input is noiseless. Image captured in mediocre weather degrades due to absorption
and scattering of light by the particles present in atmosphere (such as fog, haze, and
smoke), which fade color and contrast of the captured image. Camera receives sum
of reflected light and scattered light as radiance of a pixel [2]. It is observed that
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amount of scattered light is more than absorbed light [28]. Thus, removal of fog
or haze (dehazing) is highly essential. Main task of dehazing is to improve qual-
ity of degraded image using atmospheric scattering model [2, 21]. The quantity of
degradation at a scene point depends upon depth of the scene point from camera. [2].

Histogram equalization and contrast stretching are generally used to enhance
degraded images earlier. However, these methods focus on improvement of bright-
ness and contrast, whichmake thesemethods unable to produce ideal dehazed images
[4, 5, 19].

Methods in [2, 22, 23, 29] are based on atmospheric scatteringmodel and generate
quality results. However, the performance of these methods depends upon filtering
approach. Due to inappropriate filtering or inexact depth estimation, these methods
do not restore degraded edges.

It is observed that the depth of a pixel from the camera is directly proportional to
the difference of the saturation from the sum of brightness and hue. Therefore, an
enhanced model to approximate depth of each pixel is proposed. Original edges are
preserved, and degraded edges are restored by the proposed method. Visual quality
of results which are obtained by the proposed method is validated qualitatively and
quantitatively.

Work in literature is presented in Sect. 2. Introduction to atmospheric scattering
model and problem formulation is presented in Sect. 3. Mathematical foundation of
the proposed work is discussed in Sect. 4. In Sect. 5, the proposed work is modeled
mathematically. The process to restore original clear day image from hazy image is
given in Sect. 6. Result analysis based on visual quality and quantitative metrics is
discussed in Sect. 7. In Sect. 8, conclusion is presented.

2 Related Work

Concentration of haze changeswith unknowndepth of each scene point, whichmakes
dehazing a tiring task. Objective of dehazing is to recover unknown scene depth using
degraded image. Dehazing is mainly classified into three categories based on type of
input; (1) extra information based [14, 20], (2) multiple images based [11–13, 17,
18], and (3) single image based [1, 2, 21, 22, 29].

Extra information-based methods need some additional input like cues of depth,
which are obtained through different camera positioning [14, 20]. Due to extra need,
thesemethods are not good for real-time applications.Multiple image-basedmethods
[17, 18] require more than one image of a scene, which are taken at varying degree of
polarization.However, thesemethods need extra hardware,which increases hardware
cost and other expenses.

Thus, single image-based methods [1, 2, 21, 22, 29] have been proposed, which
solves problem of dehazing by putting many constraints. Performance of these meth-
ods depends upon strong assumptions and priors. In [21], a method tomaximize local
contrast is proposed, which is based on an observation that haze free images have
more contrast than hazy images. However, this method produces blocky artifacts due
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to window-based filtering. In [1], it is assumed that transmission and local surface
shading are not correlated. However, method in [1] performs poorly in dense haze.

A most prominent work is proposed in [2]. In [2], it has been observed that one
of the color channel of outdoor haze free images has very low intensity in non-
sky region, which is used to estimate transmission. However, this method performs
incorrectly in the presence of sky region, or an object brighter than atmospheric light.

More fast method is presented in [29], which estimates scene depth to recover
scene transmission. This method is fast and handles sky regions to certain extent.
However, it loses a few edges and does not recover degraded edges in certain hazy
conditions due to inaccurate estimated depth.

3 Problem Formulation

Color and contrast of images change due to scattering of light reflected from scene
point by atmospheric particles. Type, size, orientation, and distribution of particles
decide severity of scattering [10]. Figure1 shows the process of image formation
in outdoor environment. A light beam reflected from surface of an object is attenu-
ated due to atmospheric scattering. Camera receives fraction of non-attenuated light
(direct attenuation) and attenuated light (airlight), which is described by atmospheric
scattering model [10, 13]. Mathematical expression of atmospheric scattering model
is given in Eq.1.

I2(y) = I1(y) ∗ Tr(y)
︸ ︷︷ ︸

Direct Attenuation

+Ar ∗ (1 − Tr(y))
︸ ︷︷ ︸

Airlight

(1)

where y is position (usually coordinate) of a scene point, intensity of degraded image
at position y is I2(y), intensity of original clear day image at position y is I1(y), Ar
is atmospheric light, transmission at position y is represented by Tr(y), and given by
Eq.2.

Tr(y) = e−γDep(y) (2)

Fig. 1 Image formation based on optical model
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where scattering coefficient is γ , Dep(y) is depth of a pixel at position y from camera.
If atmosphere contains homogeneous and little particles in size, then γ and Ar will
be constants. Approximation of I1(y), Tr(y), and A from single degraded image
I2(y) is the main goal of dehazing. If Dep(y) is known, then Tr(y) can be obtained
using Eq.2. Obtained Tr(y) can recover image I1(y) using Eq.1.

4 Mathematical Foundation of the Proposed Model

Information about depth of a scene point is not contained in single image. Thus,
dehazing is challenging due to unknown depth. To restore clear day image, depth
recovery is essential. The proposed work is influenced by color attenuation prior
[29] to approximate depth. According to [29], the depth of a pixel increases with
increased difference of saturation and brightness at same pixel. The results produced
by [29] are good; however, this method loses existing edges due to lack of accuracy
in depth estimation. This inspired the proposed work to introduce an enhanced depth
approximation model. Method in [29] works in HSV color space which can be best
described by following transformation equations [7].

H(y) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

1
6 ∗

(

g′(y)−b′(y)
δ(y)

)

, if r ′(y) = MAX(y)

1
6 ∗

(

2 + b′(y)−r ′(y)
δ(y)

)

, if g′(y) = MAX(y)

1
6 ∗

(

4 + r ′(y)−g′(y)
δ(y)

)

, if b′(y) = MAX(y)

(3)

S(y) = δ(y)

MAX(y)
, V (y) = MAX(y) (4)

MAX(y) = max(r ′(y), g′(y), b′(y)), MI N (y) = min(r ′(y), g′(y), b′(y))

where [r ′(y), g′(y), b′(y)] are normalize triplets representing r, g, b color intensities
of input image at location y, and δ(y) = MAX(y) − MIN(y). Saturation, brightness,
and hue of input image at location y are represented by S(y), V (y), and H(y),
respectively.

Equation1 represents that original clear day image I1(y) is degraded due to, (1)
multiplicative reduced transmission Tr(y) and (2) additive airlight Ar(1 − Tr(y)). It
is proved that the transmissionTr(y) depends upon depth Dep(y) of each scene point.
Thus, the degradation increases with depth. Therefore, additive airlight increases
with depth due to which MAX (y) and MIN(y) start approaching to airlight. At long
distance, transmission will be zero and airlight will be maximum. Therefore, Tr(y)
and MIN(y) will be almost same. Thus, δ(y) will decrease with depth and can be
expressed as a function of depth Dep(y) as shown in Fig. 2
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Fig. 2 δ(y) as function of
depth Dep(y)

Figure2 shows δ(y) as a function of depth Dep(y). Two solid lines represent
values of MIN(y) and MAX(y) at varying level of depth Dep(y). Difference of
MAX(y) and MIN(y) is the value of δ(y) and represented by dashed lines. It can be
observed that increased airlight causes increase in MAX(y) and MIN(y) intensity.
However, at very long distance MAX(y) and MIN(y) will be almost equal due to
reduced transmission and increased airlight. Thus, δ(y) decreases with depth which
causes saturation S(y) to decrease and brightness V (y) to increase. Therefore, [29]
considered difference of brightness and saturation as a function of depth.

However, it can be observed from Eq.3 that hue H(y) increases with depth due
to reduction in δ(y). This implies that hue H(y) and brightness V (y) are positively
correlated with depth while saturation S(y) is negatively correlated.

Consider objects which are not too close to camera and not too far from camera.
For these objects, maximum difference of V (y) − S(y)will be one, which is not true
estimation of depth by [29]. Thus, difference of brightness and saturation is unable
to estimate true depth. However, the value of H(y) + V (y) − S(y) will be more for
same objects. Therefore, the model in [29] and the proposed model are combined to
estimate the scene depth more accurately. This combination can be best represented
by a combination of hue, brightness, and saturation as:

depth(y)α(hue(y) + brightness(y) − saturation(y)) (5)

5 Mathematical Modeling

Mathematical model of the proposed enhanced depth approximation model is
described as:

D(y) = (c1 + c2B(y) + c3H(y) − c4S(y))/α + ε(y) (6)
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where D(y) is depth, B(y) is brightness, H(y) is hue, S(y) is saturation, c1, c2, c3
and c4 are linear coefficients, α is used to normalization constant and ε(y) is random
image to represent random error of the model.

5.1 Computation of Linear Coefficients

Linear coefficients are computed with an objective to improve structural similarity
index (ssim), which measures variance of mixed effect of contrast, structure and
luminance of two images [16, 26].

ssim( j, k) = l( j, k) ∗ c( j, k) ∗ s( j, k) (7)

where l( j, k) is luminance, c( j, k) is contrast, s( j, k) defines structure of two images
j and k. Formulas to compute the value of l( j, k), c( j, k), and s( j, k) are defined as:

l( j, k) = 2μjμk + C1

μj
2 + μk

2 + C1
, c( j, k) = 2σjσk + C2

σj
2 + σk

2 + C2
s( j, k) = σjk + C3

σjσk + C3
(8)

where μj , μk are local mean of images j and k, respectively, σj , σk are standard
deviations of images j and k, respectively, σjk is cross covariance. The value of
ssim( j, k) = 1 is possible, if and only if l( j, k) = 1, c( j, k) = 1, and s( j, k) = 1.
Thus equating l( j, k) = 1, c( j, k) = 1, and s( j, k) = 1.

(μj − μk)
2 = 0, (σj − σk)

2 = 0, σjσk = σjk (9)

It can be inferred from Eq.9 that ssim between two images will be high if squared
difference of those images is low. Thus, linear coefficients are computed such that
squared difference(error) is minimized. Therefore, ordinary least square estimation
(OLS) is used to compute linear coefficients. Generalized regression for Eq.6 can be
expressed as:

Di (y) =
(c1

α
+ c2

α
Bi (y) + c3

α
Hi (y) − c4

α
Si (y)

)

+ εi (y) (10)

where Di (y) dependent variable of regression and represents random depth of
i th sample. Brightness, hue, and saturation of i th sample are represented by
Bi (y), Hi (y), and Si (y), respectively. Random error of i th sample is εi (y).

It is assumed that the random error εi (y) is based on normal distribution with σ 2

variance. If c1
α
, c2
α
, c3
α
and c4

α
are replaced by β0, β1, β2 and β3, respectively in Eq.10,

then
Di (y) = (β0 + β1Bi (y) + β2Hi (y) − β3Si (y)) + εi (y) (11)
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where βi ≤ 1 for (i = 0, 1, 2, 3). Using Eq.11, the sum of square of errors s is given
by following equation.

s =
num
∑

k=1

(Di (y) − (β0 + β1Bi (y) + β2Hi (y) − β3Si (y)))
2 (12)

where num are number of samples used in OLS. The following equations are derived
by equating partial differentiation of Eq.12 to zero (i.e., ∂s

∂β0
= 0, ∂s

∂β1
= 0, ∂s

∂β2
= 0

and ∂s
∂β3

= 0).

num
∑

k=1

Di (y) = numβ0 + β1

num
∑

k=1

Bi (y) + β2

num
∑

k=1

Hi (y) − β3

num
∑

k=1

Si (y) (13)

num
∑

k=1

Di (y) ∗ Bi (y) = β0

num
∑

k=1

Bi (y) + β1

num
∑

k=1

Bi (y)
2

+β2

num
∑

k=1

Hi (y) ∗ B(y) − β3

num
∑

k=1

Si (y) ∗ Bi (y) (14)

num
∑

k=1

Di (y) ∗ Hi (y) = β0

num
∑

k=1

Hi (y) + β1

num
∑

k=1

Bi (y) ∗ Hi (y)

+β2

num
∑

k=1

Hi (y)
2 − β3

num
∑

k=1

Si (y) ∗ Hi (y) (15)

num
∑

k=1

Di (y) ∗ Si (y) = β0

num
∑

k=1

Si (y) + β1

num
∑

k=1

Bi (y) ∗ Si (y)

+β2

num
∑

k=1

Hi (y) ∗ Si (y) − β3

num
∑

k=1

Si (y)
2 (16)

Solution of Eqs. 13, 14, 15, and 16 gives values of β0, β1, β2 and β3. Linear
coefficients c1, c2, c3 and c4 can be obtained if α is known. As discussed that α is
used to normalize depth. Thus, it can be obtained as:

α =
{

1 i f d(y) ≤ 1

dmax otherwise
(17)

where dmax is maximum of scene depth D(y).
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5.2 Data Preparation for Regression Analysis Using
Ordinary Least Square Estimation Method

Ground truth of the depth is unavailable due to constraint of nature (Depth of an
object in a scene may change over time). Thus, 200 images captured in fine weather
of outdoor scenes (mountains, animals, trees, etc.) are used to prepare sample space.
For each sample image, depthDi (y) is obtained randomlyusingGaussiandistribution
with parameters μ = 0, σ 2 = 0.5. Experiments have been conducted to select value
of σ 2 to bring proper diversity in the depth map. It is found that σ 2 = 0.5 is sufficient
to bring proper diversity. Atmospheric light Ar is randomly obtained using uniform
standard distribution. Hazy images with respect to each clear day image are prepared
using Eq.2. Curve of Eq.11 is fitted on this sample space using Eqs. 13, 14, 15, and
16. This curve fitting gives values of linear coefficients (c1 = 0.0122, c2 = 0.9592,
c3 = 0.9839, and c4 = 0.7743).

6 Properties of the Enhanced Depth Approximation Model
and Scene Restoration

6.1 Edge Preserving Property

Existing edges are preserved and degraded edges are recovered by enhanced depth
approximation model. Gradient of Eq.6 will be as in Eq.18 [9].

	D(y) = c2	B(y) + c3	H(y) − c4	S(y) + 	ε (18)

where 	ε = 0 according to principle of OLS Eq.18 proves that gradients of D(y)
depend upon gradient of B(y), H(y), and S(y), which indicates presence of edge in
D(y) if and only if there is an edge in B(y), or H(y), or S(y). Figure3 shows effect
of hue on color attenuation prior. It can be noticed fromFig. 3f, g that edges preserved
by the proposed model are more accurate. Peak signal-to-noise ratio(psnr ) obtained
by the proposed model proves its accuracy.

6.2 White Regions Handling

Due to additive airlight, amount of whiteness increases in degraded image. Thus,
differentiation of real white objects from atmospheric light becomes difficult. The
proposed method may approximate wrong transmission in the presence of white
objects in the scene. Presence of white objects results in increased brightness, low
saturation, and moderate hue.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Hazy image (a),Ground truth of clear day image (b), Edges inFig. 3a (c), Edges inFig. 3b (d),
Approximated depth using method in [29] (e), Edges in Fig. 3e (psnr = 62.85) (f), Approximated
depth obtained by the proposed method (g), Edges in Fig. 3f (psnr = 63.71) (h)

In [2, 29], the problem of white region is solved by assuming that pixels are
locally at same depth. Minimum filter is used by these methods to refine depth map
locally. However, minimumfilters results in loss of existing edges as shown in Fig. 3f.
Therefore, median filter is used by the proposed method, which solves problem of
white object upto a level and preserve existing edges. Thus, the refined transmission
is expressed as:

Tr (y) = medxεωr (y)Tr(x) (19)

where Tr (y) is refined transmission, ωr(y) is window of size y × y, and Tr(x) is
approximated transmission. To reduce blocking artifacts which are introduced due
to window-based operation, refined depth map is further smoothed using guided
filter [3].

6.3 Restoration of I1( y)

Atmospheric light Ac in each c color channel is estimated usingmethod of [2], where
cε(R,G, B). The proposed method further takes minimum of atmospheric light of
each color channel as global atmospheric light, which is given by Eq.20.

Ar = min
cε(R,G,B)

(Ac) (20)

where min is a function to compute minimum of given values, Ar is global atmo-
spheric light. Equation6 is used to approximate scene depth D(y), transmission is
obtained using Eq.2 and refined using Eq.19. Once Ar and Tr(y) are obtained then
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Eq.1 can be used to restore image I1(y). The value of γ is critical in restoration of
I1(y). Low value of γ generates residual haze and its high value increases dehazing
level, which darkens the dehazed image. Thus, the proper value of γ is vital for
restoration. The proposed work considered γ = 1.

7 Experimental Analysis

TheMATLAB version R2014a is used to implement the proposed method. Waterloo
IVC dehazed image data set(WID) [6] is used to verify effectiveness of the proposed
method. This data set consists of 25 hazy images of outdoor scenes. Results obtained
by the proposed method are compared with method in [2, 8, 22, 23, 25, 29].

7.1 Qualitative Evaluation

Figure4 shows comparison of the results based on visual quality. Figure4b shows
that method of [2] generates artifacts near depth discontinuities and color distortion
in sky region. Figure4c shows the results obtained in [23]. It can be observed from
Fig. 4c that results are dark due to overestimation of transmission. Results obtained in
[8] are promising as shown in Fig. 4d. However, method of [8] is time consuming due
to regularization. Method of [22] obtains better results, which are shown in Fig. 4e.
However, this method produces wrong results in dense haze. Method of [29] is fast.
However, this method wrongly estimates depth in the presence of white object as
shown in Fig. 4f. Method in [25] is fast in comparison with other methods. However,
results obtained by method in [25] are not visually pleasant as shown in Fig. 4g. The

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4 Comparison of visual quality Hazy image (a), [2] (b), [23] (c), [8] (d), [22] (e), [29] (f),
[25] (g), and proposed method (h)
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(a) Hazy Image (b) γ = 1 (c) γ = 1.2 (d) γ = 1.5

Fig. 5 Effect of varying γ on restored images. Hazy image (a), are restored images (b–d)

proposed method obtains better visual results as shown in Fig. 4h. It restores natural
colors in sky region as well as in non-sky region.

Furthermore, Fig. 5 shows the effect of varyingγ on restored images. Image shown
in Fig. 5a is restored with varying values of γ = [1, 1.2, 1.5] using the proposed
method. Restored images are shown in Fig. 5b–d. It can be observed that darkness
of restored images increases with increased value of γ . Thus, adaptive γ is essential
for accurate dehazing.

7.2 Quantitative Evaluation

The proposed method is validated using quantitative metrics to measure strength
on the basis of restored edges, structure, and texture. Metrics e and r are computed,
which quantifies the strength of the proposed method to restore and preserve edges
[24, 27] using WID data set. Increasing values of e and r indicate improved quality
of results.

Obtained values of metrics e and r for images shown in Fig. 6 are given in Tables
1 and 2. The proposed method performs well in comparison with method in [2, 8,
22, 23, 29] on the basis of obtained values of e and r .

(a) (b) (c) (d) (e) (f)

Fig. 6 Images used to compute parameters e and r as given in Tables1 and 2, respectively



690 S. Raikwar and S. Tapaswi

Table 1 Comparison on the basis of e of images shown in Fig. 6 [15]

e [23] [2] [22] [29] Proposed
method

(a) 1.11 0.47 0.51 0.62 1.52

(b) 0.30 0.10 0.80 0.13 0.19

(c) 4.47 3.15 2.88 2.74 3.12

(d) 0.99 2.12 2.73 1.58 1.87

(e) 1.55 2.08 2.33 1.01 2.28

(f) 0.79 0.72 0.75 0.95 1.74

Avg. 1.53 1.44 1.55 1.18 1.79

Table 2 Comparison on the basis of r of images shown in Fig. 6 [15]

r [23] [2] [22] [29] Proposed
method

(a) 1.79 1.08 1.15 1.47 1.48

(b) 1.41 0.95 0.96 1.14 1.15

(c) 2.46 1.84 1.50 1.82 3.98

(d) 1.58 3.11 3.76 2.53 4.44

(e) 2.27 2.83 3.01 2.23 3.34

(f) 1.93 1.50 1.50 2.50 2.10

Avg. 1.91 1.89 1.98 1.95 2.75

8 Conclusions

An enhanced depth approximation model has been proposed. The proposed depth
approximationmodel is based on an observation that depth of a pixel from the camera
is directly proportional to the difference of the saturation from sum of brightness and
hue. Transmission obtained by the proposed method is further refined using local
median filtering, which helps in preserving existing edges. Accuracy of the proposed
model is proved on the basis of visual quantity and qualitative metrics. However, the
proposed method is based on homogeneous scattering of light. Thus, this issues will
be part of future work.
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