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Abstract. Wave characteristics such as significant wave height, peak
period and main direction have an important effect on all aspects of ship
operations. Yet, estimation of these characteristics in real time in an
accurate, robust and efficient manner poses a significant challenge. Cur-
rent approaches include using wave buoys, wave radars, weather forecasts
and regression based on ship motion statistics. External sources are not
always available or reliable, and wave radars are expensive. Statistics
based methods work reasonably well for wave height, but fail to estimate
peak period and relative wave direction.

In this study the attention is focused on estimating the wave charac-
teristics from ship motions using artificial neural networks. The inputs
to the neural networks were the time histories of 6-DOF ship motions,
and the outputs were the wave characteristics. Using time series instead
of statistics preserves phase differences between signals. Especially when
estimating the relative wave direction, these phase differences encode
essential features. Therefore, the problem was treated as multivariate
time series regression.

Two different data sources were used with neural networks: in-service
measurement data and numerical simulation data. In-service measure-
ment data was collected from a frigate type vessel for a period of two
years. The numerical simulation data was produced by using a time-
domain seakeeping and manoeuvring software.

In this paper, we present methods to successfully implement neural
networks for real time estimation of local wave characteristics. The paper
will include details about the measurement data, numerical simulations,
the networks architectures and their performances on the measurement
and simulation data.

Keywords: Wave characteristics · 6-DOF ship motions · Multivariate
time series regression · Machine learning

1 Introduction

Sea state information is important for operational decisions or advice on all
activities at sea. Personal and environmental safety require correct interpreta-
tions of the actual conditions. Efficiency suffers from incorrect interpretations
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as well. In the longer run, having statistics on encountered conditions helps in
designing structures and ships. This results in higher levels of safety and more
realistic lifetime expectations. Hence, many methods have been proposed in the
past few decades to infer sea state information from indirect measurements.

Traditionally, sea state characteristics are measured using wave buoys or
satellite data. These methods result in a rough estimation, limited by the dis-
tance from the buoys and the resolution of the satellite data. Occasionally the
sea state is monitored using a wave radar. Although this gives reliable results,
it is not used very often because of the high costs.

An alternative is to use the motions of the vessel itself to infer sea state
information. Methods have been developed by Tannuri [1] and Iseki [2] match-
ing the measured motion spectrum with a predicted spectrum. The matching
spectrum is found either by Bayesian optimization or an iterative method. Both
approaches use estimated response functions as mapping from sea state to ship
motions. This idea has been further optimized by Nielsen [3] to include sailing
vessels and more efficient sea state estimation [4].

In this study 6-DOF ship motion data is used to build a parameterized model
for direct sea state estimation. No knowledge of the ship is used to build the
model. Instead, a parameterized machine learning model is trained using time
series data of the ship motions together with the known sea state in a supervised
learning setup. Being able to capture time series data in this way allows the use
of local phase differences in the motion signals for the sea state estimation. In
this study it is shown that specific neural network structures can be used to do
so and that the resulting models perform well in a wide variety of sea states.

Such a data driven method can be used when sufficient data of good quality is
available for training. For numerical simulation data, this might not be an issue,
but for measurement data it can be a prohibitive factor. This issue limits the
applicability of a data driven method in two ways. First of all, such data is scarce.
Not only are the ship motions needed, but also measured sea states are required.
Secondly, since the model is trained for the ship the measured data came from,
its performance on another ship might deteriorate. However, generalization over
multiple ship geometries was investigated in [5] using simulated data, and very
good results were obtained.

The ideal solution would only use simulated data, removing the need for
any measured data, other than for validating the method. This aspect is also
investigated in this study. Although the proposed method does not work well
enough for this, further investigation shows that the features that are used from
the simulated data are compatible with the features present in the measured
data. From this, some promising future work is proposed.

2 Machine Learning

In this study, neural networks were used to infer sea state information from the
6-DOF ship motions. Both simulated and measured data were used to train the
neural networks. The data was recorded in the time domain, which captures
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local phase differences, as opposed to frequency domain data. This way, datasets
were built with ship motion time series and the corresponding sea state. Details
about the datasets can be found in Sect. 3.

Some neural networks, especially Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN), are useful for time series regression. Specific
neural network structures were designed for the problem at hand. Detailed dis-
cussion on motivation and designs can be found in [6]. The next few sections
briefly describe two networks used in this study.

2.1 Multivariate LSTM-CNN (MLSTM-CNN)

MLSTM-CNN network was mainly adopted from [7]. It consists of a fully con-
volutional block and a Long Short-Term Memory (LSTM) block as shown in
Fig. 1. The depth of the LSTM layer is 16 with a dropout rate of 0.25. The first
convolution layer has 128 filters of size 6×12. The second and third convolution
layers have 192 and 128 filters of size 1×1, respectively. The dense layer has 128
nodes and the dropout rate is 0.25.

Fig. 1. The architecture of the MLSTM-CNN network.

2.2 Sliding Puzzle Network

The Sliding Puzzle Network is designed to respond to individual features, with-
out temporal relations between them. This is achieved by selecting patches at
random locations from an input sample that have the same length as the filters
in the network. Position independence is achieved by reducing filter activations
to statistics, in this case mean, minimum and maximum. The diagram of this
network is shown in Fig. 2.

The network uses 64 filters in the temporal direction, with size 1×25, followed
by 128 filters that combine the 6 channels, with size 6 × 1. The dense layer has
30 nodes and no dropout is used.
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Fig. 2. The Sliding Puzzle network. Note that two convolutional layers are used instead
of one. The first convolutional layer only works in the time direction, the second com-
bines the 6 channels. The receptive field of this combination is the same as the receptive
field of a single convolution with combined dimensions. The number of trainable weights
is less though, which leads to better generalization.

3 Data Sources and Treatment

Two types of data were used, namely simulated data and measured data. The
details of the two datasets are explained in the next three sections.

3.1 Setup of the Numerical Simulations

Numerical simulations were carried out in 6-DOF with a time-domain seakeep-
ing and manoeuvring tool called FREDYN v16.1.1 [8,9]. A strip theory based
seakeeping tool in the frequency domain named SHIPMO v17.2.2 was used as
a preprocessor to calculate added mass and damping coefficients and diffrac-
tion forces. The time step size was 0.25 s, and the fourth-order Runge-Kutta
time integration scheme was used. The ship was controlled in heading mode;
the autopilot maintained the heading of the vessel rather than its track. The
simulations were carried out at a ship speed of 15 kn for a duration of 600 s. A
frigate-type naval vessel was used as the geometry. The vessel was the same as
the one on board of which the in-service measurement data was collected.

Ten thousand simulations were carried out for a wide range of significant
wave height (Hs), peak period (Tp) and main direction (Dp). Hs, Tp and Dp
were uniformly distributed over the ranges of [0.5m, 10.5m], [6.5 s, 15.5 s] and
[0◦, 360◦), respectively. Latin hypercube sampling (LHS) was then used to sample
10000 points from this 3D input domain. Figure 3 shows the result from LHS.
The waves were realized using Jonswap spectrum with γ = 3.3, and the spectrum
was discretized using 80 Fourier components.
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Fig. 3. Latin hypercube sampling (LHS) with 10000 points for the uniformly dis-
tributed Hs, Tp and Dp.

3.2 Treatment of the Numerical Simulation Results

The results of the numerical simulations were first investigated. Any simulation
where capsizing occurred was ignored. The surge, sway and yaw motions were
filtered to be divided in a wave-frequent (WF) and a low-frequent (LF) part.

The input to the neural networks was a multivariate time series X ∈ �6×d×1,
where 6 refers to the 6-DOF motions and d is the length of the motion signals.
The value of d was obtained as a result of a study where the effect of the duration
and the sampling rate of the motion signals on the performance of the neural
networks was examined. In the end, d was chosen to be 200, and the resulting
signal duration was 2.5 min. One sample was extracted from each simulation
resulting in a total sample size of 10000.

3.3 Treatment of the In-service Measurement Data

The in-service measurement data was collected for a period of two years on board
a frigate-type naval vessel. The 6-DOF motions at the center of gravity of the ship
were measured using accelerometers, and the wave characteristics were measured
via a wave scanning radar mounted on the ship. The data was saved as 30 min
long pieces. The sampling rate of the ship motions was 20 Hz, and the sampling
rate of the ship speed was 1 Hz. The wave scanning radar provided two-minute
data files which were used to derive statistical parameters, such as Hs, Tp and
Dp. The accuracy of peak period and directionality of the wave was generally
good. However, because the radar was mounted on a moving platform the wave
height was not very accurate. In order to compensate this inaccuracy, a wave
data fusion approach was executed to improve the wave height assessment [10].
The in-service measurement data required preprocessing and was unbalanced;
Fig. 4 shows the histograms of Hs, Tp and Dp, where the unbalanced nature
of the data can be clearly observed. More information about how the measured
data was prepared for training is provided in [6]. Furthermore, the ground truth,
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Fig. 4. Histogram of the wave characteristics from the in-service measurement data.

i.e. wave characteristics, contained contributions from wind and swell seas and
possibly other sources such as currents.

Similar to the numerical simulation results discussed in Sect. 3.2, the input
to the neural networks was a multivariate time series X ∈ �6×d×1 where d
was chosen to be 200, and the resulting signal duration was 2.5 min. In total,
20120 samples were extracted from the in-service measurement data. Figures 5
and 6 illustrate the mean and standard deviation of each sample for 6-DOF ship
motions, while Fig. 7 illustrates the Hs, Tp, Dp and ship speed (Vs) for each
sample. Note that the samples were chronologically ordered in the sense that
the sample with the index value of n was collected later than the sample with
index n − 1, and earlier than the sample with index n + 1.

4 Results

4.1 Training Methodology

We have trained our networks with stochastic gradient descent (SGD) [11] utiliz-
ing the Keras library [12] with the TensorFlow-GPU backend [13] and PlaidML
[14] running on a NVidia GeForce GTX 1080 with 2560 CUDA cores and 8 GB
memory. The processor was the Intel Xeon CPU E5-1630 v4 with 3.7 GHz. In
SGD, we used a momentum of 0.9 with a decay of 0. The loss function was the
mean squared error (MSE). Learning rates of 0.06 and 0.03 were used with the
simulated and measured data, respectively.

For each neural network, a hyperparameter tuning study was carried out
to optimize the performance and efficiency of the networks. The hyperparam-
eters included both network architecture parameters and training parameters,
such as learning rates. Since the architecture of the networks were different, the
hyperparameter tuning study varied between the networks in required effort.

The results are reported as the average (or combined in some cases) of the 5-
fold cross-validation. In a cross-validation study, the original data is partitioned
into a training set to train the model, and a validation set to evaluate it. In
5-fold cross-validation, the original data is partitioned into 5 equal size pieces.
From the 5 pieces, a single piece is retained as the validation data to evaluate the
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Fig. 5. Mean of the ship motions of each sample from the in-service measurement data.
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Fig. 6. Standard deviation of the ship motions of each sample from the in-service
measurement data.
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Fig. 7. Hs, Tp, Dp and Vs of each sample from the in-service measurement data.

model, and the remaining 4 pieces are used as training data. The cross-validation
process is then repeated 5 times (the folds), which allows each of the 5 pieces
being used exactly once as the validation data. The 5 results from the folds can
then be averaged (or otherwise combined) to produce a single estimation. The
advantage of this method is that all samples in the original data are used for
both training and validation, and each sample is used for validation exactly once.

4.2 Evaluation Metrics

The results are reported as the 95% error level. This means that 95% of the
predictions errors is less than or equal to this value. Additionally, mean and
standard deviation of the prediction error are provided.
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4.3 Results from the In-service Measurement Data

The 5-fold cross-validation with the measurement data was carried out in two
fashions:

• Chronological: The original data was first ordered chronologically. Without
shuffling, the 5-fold cross-validation procedure was then followed.

• Shuffled: The original data was shuffled first, and afterwards the 5-fold cross
validation was carried out.

Figure 8 shows the convergence of the training and validation losses from the
two neural networks for Dp. These losses are presented as the average and spread of
5-fold cross validation. The histograms in Fig. 9 show how the validation errors for
Dp are distributed. It can be seen that the errors are distributed symmetrically, and
the neural networks show better performance for the shuffled data. Figures 10 and
11 show the scatter plots of truth and prediction values on the shuffled and chrono-
logical measured data, respectively. Figure 12 illustrates the validation error of Dp
with respect to Hs and Tp on the shuffled measured data using MLSTM-CNN. It
can be seen that the validation error of Dp does not have any bias with respect to
Hs or Tp. Similar observations were made for the validation errors of Hs and Tp
as well. Table 1 lists the results for the evaluation metrics from the two networks
applied on the shuffled and chronological measured data.

(a) MLSTM-CNN on the shuffled data (b) Sliding Puzzle on the shuffled data

(c) MLSTM-CNN on the chronological
data

(d) Sliding Puzzle on the chronological
data

Fig. 8. Training and validation losses from the two networks on the shuffled and chrono-
logical measured data for Dp. Note the much larger spread in validation losses for the
chronological data.
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Table 1. Results from the two neural networks applied to the shuffled and chronological
measured data.

Train./Valid.

data

Wave

characteristic

95% level val. Mean of val. error Std of val. error Network name

Shuffled Dp [deg] 24.86 −0.05 13.59 MLSTM-CNN

21.67 −0.20 11.71 Sliding puzzle

Hs [m] 0.41 0.0 0.20 MLSTM-CNN

0.39 0.0 0.19 Sliding puzzle

Tp [s] 1.01 0.0 0.50 MLSTM-CNN

0.95 0.0 0.46 Sliding puzzle

Chronological Dp [deg] 37.46 −0.68 19.99 MLSTM-CNN

38.29 0.53 19.35 Sliding puzzle

Hs [m] 0.51 0.0 0.27 MLSTM-CNN

0.51 0.0 0.27 Sliding puzzle

Tp [s] 1.40 0.01 0.68 MLSTM-CNN

1.48 0.01 0.69 Sliding puzzle

(a) MLSTM-CNN on the shuffled data (b) Sliding Puzzle on the shuffled data

(c) MLSTM-CNN on the chronological
data

(d) Sliding Puzzle on the chronological
data

Fig. 9. Histograms of the validation errors from the two networks on the shuffled and
chronological measured data for Dp.
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Fig. 10. Truth and prediction values for Dp, Hs and Tp from the two networks on the
shuffled measured data.
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Fig. 11. Truth and prediction values for Dp, Hs and Tp from the two networks on the
chronological measured data.
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Fig. 12. Validation error of Dp versus Hs and Tp on the shuffled measured data using
MLSTM-CNN.

The results show that the machine learning approach works, that there are
some differences in performance between the two networks and that the way the
data is used to train and evaluate the performance has quite some impact on
the results.

To fully evaluate the results, these aspects will be discussed in the next three
sections, together with a comparison to state of the art methods for sea state
estimation.

Comparison to Spectral Sea State Estimation from Ship Motions
The model driven spectral methods use known response functions for mapping
between sea state and ship motions. Although this approach works well for simu-
lated data, it has some difficulty to find the relative wave direction for measured
data. Our best methods seem to compare well to the sea trial results reported
in [4,15].

The main difference is the need for data. While the model driven method
could work for any ship in any condition, the performance of our data driven
method depends heavily on the availability of good quality measured data. How-
ever, this dependency may change in the future. Neural networks have the capa-
bility of generalization, meaning that, for this problem, data coming from multi-
ple different ships can be used to train a general network that can be used with
ships that were not in the training set. This idea is explored in [5] for simulated
data.

Neural Network Structures
MLSTM-CNN and Sliding Puzzle perform similarly on both datasets. Even
though MLSTM-CNN adds complexity in a parallel track, the global average
pooling greatly reduces the complexity of the convolutional part. Furthermore,
the parallel track supplies a different view on the data, counteracting overfitting
on features as well. The Sliding Puzzle network also deliberately reduces the
complexity by limiting the convolutional stage and collapsing filter results by
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different forms of global pooling. This way both methods use a natural form of
regularization, fitting the properties of the data1.

Chronology of the Data
The measured data was collected over two years, in which the ship encountered
many different sea states. Within the data set, the wave characteristics are esti-
mated accurately though the performance for Tp is worse than for Hs and Dp.
However, it is important to know how good the predictions will be when new
data is seen. Since no samples have been duplicated, there is no contamination
of the validation sets. Still there is a problem.

Keeping the data ordered chronologically before splitting into a training and
validation set shows rather different validation results. Since this is a clear mea-
sure of the expected performance on new, unseen data, the previous case must
have had some sort of contamination. Since we are using time series data for
regression, we enter a realm in which the rules are different. Since the conditions
the ship sailed in gradually change over time, the situation we have here is best
described by a simple analogy. Suppose a network needs to be trained to classify
different breeds of cats in images. The data set that is given contains an equal
number of images for each breed, grouped per breed. If the network is trained
on at least some images for every breed, it will be able to accurately classify any
image from the validation set. If some breeds were absent in the training set,
performance on the validation set will deteriorate. This will happen if the vali-
dation set consists of consecutive samples from the original chronological set. A
common solution is to shuffle the dataset before splitting. Similarly, if we do not
shuffle the ship motion/sea state dataset before splitting, some weather patterns
will not be present in the training set, as they simply only occurred at specific
times.

In a classification problem, the dataset is supposed to contain all classes. In
our regression problem, with a dataset that grows over time, we do not have that
guarantee. So, splitting before shuffling gives an estimate of the performance on
new data. If the performance is significantly worse than for the shuffled set, the
data set is not complete yet, turning this into an important measure. The score
on the shuffled set is still a good indication of the possible performance on a
complete set.

4.4 Results from the Numerical Simulations

Scatter plots of the truth and prediction values from the two networks are shown
in Fig. 13, and the results for the evaluation metrics are listed in Table 2. The two
networks exhibit an almost uniform performance in terms of prediction accuracy
over the entire range of Hs, Tp and Dp. Between the two, MLSTM-CNN performs
better for Dp, while Sliding Puzzle performs better for Tp. The networks perform

1 Designing neural networks to general properties of the data is different from data
snooping, as no sample knowledge is used, just knowledge about the way the data
is acquired.
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similarly for Hs. Similar to the performance on the measured data, the scatter
around the truth values is larger for Tp compared to Hs and Dp.

Table 2. Results from the two neural networks applied to the simulation data.

Train./Valid.

data

Wave

characteristic

95% level val. Mean of val. error Std of val. error Network name

Simulation Dp [deg] 1.86 0.02 0.98 MLSTM-CNN

3.63 0.0 1.90 Sliding puzzle

Hs [m] 0.51 0.0 0.24 MLSTM-CNN

0.58 −0.01 0.27 Sliding puzzle

Tp [s] 1.06 −0.02 0.51 MLSTM-CNN

0.74 0.0 0.36 Sliding puzzle

4.5 Reusing the Models Trained on Simulated Data
for the Measured Data

In this section, results are presented from the two networks that were trained
on the simulated data and subsequently reused on the in-service measurement
data. Two approaches were adopted when reusing the models on the measured
data:

– Transfer learning: Here, the decoder layers (the last two dense layers in the
networks) of the trained models were further trained on the in-service mea-
surement data. Note that apart from the decoders, the learned parameters
of all the other layers were not changed. Transfer learning allows using the
learned features of the model trained on the simulated data, and repurposing
these features to a second target model to be trained on the in-service mea-
surement data. If the learned features are general in the sense that they are
suitable on both data sets, then this approach is expected to work properly.

– Direct application: Here, the models trained on the simulated data were
directly applied on the in-service measurement data without changing any
parameter of the model.

Figures 14 and 15 illustrate the results from the two networks when the direct
application and transfer learning approaches are adopted, respectively. Table 3
lists the results for the evaluation metrics. It can be observed that the trans-
fer learning approach results in a considerably better performance with both
networks compared to the direct application approach. This indicates that the
features learned by the filters on the simulated data can be indeed used with
the measured data if they are decoded correctly. Between the neural networks,
Sliding Puzzle performs less worse than the MLSTM-CNN with the direct appli-
cation approach, while MLSTM-CNN performs better with the transfer learning
approach. The 95% levels of validation errors for Dp of 30.62◦, Hs of 0.42 m
and Tp of 1.13 s are acceptable results opening the door for further studies with
reusing the models trained on simulated data for the measured data.
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Fig. 13. Truth and prediction values for Dp, Hs and Tp from the two networks on the
simulation data.
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Fig. 14. Truth and prediction values for Dp, Hs and Tp from the two networks with
the direct application approach.
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Fig. 15. Truth and prediction values for Dp, Hs and Tp from the two networks with
the transfer learning approach.
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Table 3. Results from the two neural networks with the direct application and transfer
learning approaches.

Train./Valid.

data

Wave

characteristic

95% level val. Mean of val. error Std of val. error Network name

Direct application Dp [deg] 87.72 −4.91 40.46 MLSTM-CNN

62.83 −1.86 31.60 Sliding puzzle

Hs [m] 3.81 1.50 1.19 MLSTM-CNN

2.70 1.0 0.91 Sliding puzzle

Tp [s] 4.58 2.35 1.32 MLSTM-CNN

4.73 2.85 1.16 Sliding puzzle

Transfer learning Dp [deg] 30.62 −0.06 16.20 MLSTM-CNN

34.23 0.02 18.32 Sliding puzzle

Hs [m] 0.42 0.0 0.21 MLSTM-CNN

0.46 0.0 0.22 Sliding puzzle

Tp [s] 1.13 −0.01 0.57 MLSTM-CNN

1.37 0.0 0.66 Sliding puzzle

5 Conclusions

In this study, machine learning approaches were employed to estimate wave
characteristics from time histories of ship motions. For that purpose, both sim-
ulated and measured data were used to train the models. Two neural network
architectures were considered and their performances were compared. Further-
more, the networks trained on the simulated data were reused for the in-service
measurement data by adopting two approaches, direct application and transfer
learning. The performance of the neural networks with these approaches was
also investigated.

With the measurement data, the methods presented in this paper show good
results and compare well to established methods. By including convolutional
filters to encode the phase relations between the 6-DOF motions, the adopted
neural networks were capable to estimate the wave characteristics accurately
especially for the significant wave height and main direction. The data used
to achieve this does show some shortcomings though and does not cover the
full spectrum. More good quality data is needed to improve methods based on
measured data.

The way the data is used for training is crucial when evaluating method per-
formance. We have seen that there is quite a difference in performance between
using the data chronologically and shuffled. Even though shuffling is common
practise, it is to be used carefully when using data acquired over time. The
advice is to use both training strategies to get insight in both the possible per-
formance and the actual performance when applied to new data.

With the simulation data, the results indicate that the neural networks show
a very good performance in general. Similar to the results on the measured data,
the performance of the networks was better for Hs and Dp compared to Tp.
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Finally, the neural networks trained on the simulated data were reused on the
in-service measurement data. The results show that the learned features of the
models trained on the simulated data were indeed suitable for the measured data
as well. Especially when the transfer learning approach was adopted, the neural
networks were able to estimate the wave characteristics accurately. However, this
accuracy level was lower than the one obtained when the neural networks were
directly trained on the measured data itself.

Future work will include more complex numerical simulation studies with
short-crested waves and combined wind and swell sea spectrums. Model test
data will also be utilized for validation. Furthermore, the neural networks will be
trained to estimate the full directional spectrum of the waves (encoder-decoder
networks).
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