
Issuing and Verifying University
Certificates on Blockchain

Dhiren Patel, Balakarthikeyan Rajan, Yogesh Mangnaik, Jatin Jain,
Vasu Mistry , and Pearl Patel

Abstract In this paper, we propose a decentralized approach toward issuance of
institute degree and their verification system using blockchain technology. Keeping
the encrypted record on a public blockchain, using Oracles, we provide a framework
for quick verification of the degrees. The system introduces the concept of generating
a single root hash for all the degree-encrypted hashes to avoid excessive on-chain
data storage. The system also explains the different smart contract workflow required
to implement the idea along with the use of ERC223 token to monetize the Oracle
service.

Keywords Blockchain · Merkle Tree · Smart contract · Verification

1 Introduction

Traditional security has been ensured through access and control with an institution
in the center which may exploit and misuse trust of clients and users. Blockchain is
a technology which decentralizes the access and control mechanism thus avoiding
central points of trust. Blockchain is able to provide a tamper evident system to
ensure data security.

In this paper, we present a system of issuing and verifying degree certificates by
university/institute using blockchain and show by using Oracles, a way to decrypt
the encrypted certificates on the blockchain thus allowing a method to monetize the
entire system. Use of decentralized blockchain and smart contract will improve the

D. Patel · B. Rajan (B) · Y. Mangnaik · J. Jain
Veermata Jijabai Technological Institute, Mumbai 400019, India
e-mail: bkybala9@gmail.com

V. Mistry
Independent Researcher, Mumbai, India
e-mail: vasu5235@gmail.com

P. Patel
Vidyalankar Institute of Technology, Mumbai 400307, India

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2020
D. Patel et al. (eds.), IC-BCT 2019, Blockchain Technologies,
https://doi.org/10.1007/978-981-15-4542-9_8

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4542-9_8&domain=pdf
http://orcid.org/0000-0002-2841-5318
mailto:bkybala9@gmail.com
mailto:vasu5235@gmail.com
https://doi.org/10.1007/978-981-15-4542-9_8


80 D. Patel et al.

entire process of issuance and verification of degree certificates both on performance
(time) and security (tamper proof).

Rest of this paper is organized as follows: Sect. 2 discusses basic improvements
existing in certificate issuance system. In Sect. 3, we present a workflow for such
system on blockchain. Section 4 discusses verification system for issued certificate.
Section 5 discusses implementation architecture, with conclusions and references at
the end.

2 Motivation and Background

2.1 Existing Degree Certificate Issuing and Verification
Procedure

The existing system for certification issuance for the graduates and its validation is
a long and cumbersome process. This paper was motivated by analyzing the current
scenario in typical university/institution and is an attempt to apply blockchain tech-
nology for improving the current workflow. Most universities/institutes offer hard
copies of degree certificates to their graduates. This makes verification during back-
ground checks cumbersome and typically requires the institute to check the copies
and send back a signed copy attesting that these certificates are valid. A typical work-
flow is depicted in Fig. 1. Institutes also generally charge somemoney to process such
verification requests and on an average, this process might take one to three weeks.
To alleviate this problem, we propose a decentralized solution using blockchain tech-
nology to allow verification of such certificate data. This also means that now student
certificates are uploaded onto the blockchain network. This gives the added benefit
that students can now supply their certificates or educational record for verification
without the use of any hard copy. Such verification can be done seamlessly via smart
contracts which will also charge a small fee for verification. The smart contract pro-
vides a secure way to verify whether the given submitted certificate is genuine or not
and collects some fees in the form of tokens as payment for this service.

2.2 Blockchain

Blockchains are distributed digital ledgers of cryptographically signed transactions
that are grouped into blocks. Each block is linked to the previous one after validation
and consensus of all participating nodes. As new blocks are added, older blocks
become more difficult to modify. New blocks are replicated across all copies of the
ledger in the network, and any conflicts are resolved automatically using established
rules [1].



Issuing and Verifying University … 81

Fig. 1 Typical workflow for degree certificate verification in university/institute

At their most basic level, blockchain enables a community of users to record
transactions in a ledger that is public to that community, such that no transaction can
be changed once published. A block is an individual unit of a blockchain, composed
of a collection of transactions and a block header. A block header keeps a collection
of metadata about the block that contains a hash-value of its parent in the blockchain,
and a hash of the aforementioned metadata and the data of the block itself [2].

A public blockchain network is completely open and anyone can join and par-
ticipate in the network. The network typically has an incentivizing mechanism to
encourage more participants to join the network. Ethereum is a turing complete
programmable public blockchain platform [3].

2.3 Ethereum Public Blockchain

Ethereum is an open blockchain platform that lets anyone build and use decentral-
ized applications that run on blockchain technology. Ethereum is a programmable
blockchain. Rather than giving users a set of predefined operations (e.g., bitcoin
transactions), Ethereum allows users to create their own operations of any com-
plexity they wish. In this way, It serves the purpose for many different types of
decentralized blockchain applications, including but not limited to cryptocurren-
cies. Ethereum Virtual Machine (“EVM”) can execute code of arbitrary algorithmic



82 D. Patel et al.

complexity. In computer science terms, Ethereum is “Turing complete.” Developers
can create applications that run on the EVM using friendly programming languages
modelled on existing languages like JavaScript and Python [4].

A contract is a collection of code (its functions) and data (its state) that resides
at a specific address on the Ethereum blockchain. Contract accounts are able to pass
messages between themselves as well as doing practically turing complete compu-
tation. Contracts live on the blockchain in an Ethereum-specific binary format called
Ethereum Virtual Machine (EVM) bytecode, and contracts are typically written in
some high-level language such as Solidity and then compiled into bytecode to be
uploaded on the blockchain.

2.4 Merkle Trees and Merkle Proofs

A tree constructed by hashing paired data (the leaves), then pairing and hashing the
results until a single hash remains, the Merkle Root. Merkle Tree is a tree in which
every leaf node is labelled with the hash of a data block and every non-leaf node is
labelled with the cryptographic hash of the labels of its child nodes. Hash trees allow
efficient and secure verification of the contents of large data structures. Hash trees
are a generalization of hash lists and hash chains. Demonstrating that a leaf node is a
part of a given binary hash tree requires computing a number of hashes proportional
to the logarithm of the number of leaf nodes of the tree (Fig. 2).

Merkle Proofs are established by hashing a hash’s corresponding hash together
and climbing up the tree until you obtain the root hash which is or can be publicly

Fig. 2 Merkle Tree



Issuing and Verifying University … 83

known. Given that one-way hashes are intended to be collision free and deterministic,
no two plaintext hashes are the same [5].

Assuming such a hash-function which we shall call as H, then

Hash 1 = H (Certificate 1)

Hash 2 = H (Certificate 2)

Then Hash 12 = H (Hash 1 | Hash 2)
⇒ Hash12 = H (H (Certificate1) | H (Certificate 2))

Merkle Proofs are used to decide upon the following factors:

• If the data belongs to the Merkle Tree.
• To concisely prove the validity of data being part of a data set without storing the

whole data set.
• To ensure the validity of a certain data set being inclusive in a larger data set

without revealing either the complete data set or its subset.

2.5 Oracle

An oracle is an agent that finds and verifies real-world occurrences and submits this
information to the blockchain to be used by smart contracts.

Oraclize service allows smart contracts to connect and obtain results fromdifferent
services like IPFS, WolframAlpha.

• oraclize_query(“IPFS”, “<file-hash>”) will retrieve the contents stored on the
IPFS network

• oraclize_query(“WolframAlpha”, “flip a coin”) will return either “heads” or
“tails” to the smart contract [6].

Oracle allows smart contracts to interact with the outside world using APIs.
Oracalize.it [6] is a service and library for Soliditywhich providesOracle services.

Oracles attest for the proof of incoming information from outside a blockchain. The
oracle can be thought of as a gatewaywhich provides secure communication between
a blockchain and the rest of the Internet.

Today, most universities/institutes issue paper certificates to students who have
passed their offered courses. Issuing paper certificates involves a properly designed
process to ensure certificates are not temperable and are not illegally duplicated. Also
one has to ensure an easy way to identify and attest to the validity of a certificate.
That is, we need to authenticate and validate certificates. Many digital courses allow
online validation of issued certificates to check their genuineness. The cost for this
in terms of infrastructure and facilitation is passed onto students. Companies also
spend time and money themselves or third-party agencies to verify authenticity of
students joining them and the validity of their degrees. The system proposed in this



84 D. Patel et al.

paper aims to address the problems by making these certificates available on a public
blockchain and writing appropriate smart contract codes to publish and verify these
certificates. The verification process can be built in such a way that a small fee would
be needed to be paid by the requester to assess the genuineness of the certificate. The
certificate now can be just given as a small string to the holder (a hashed certificate)
rather than a pdf document. This would make the verification process transparent,
trustable, and faster.

One such system has already been implemented by the Massachusetts Institute of
Technology [8]. The existing system allows verification code to be run independently
by any party and provides a sample code and system to be based on. In this paper,
we explore the creation of such a system where verification process and certificate
issuance are delegated to a smart contract on the Ethereum network and an Oracle
service. This allows institutes greater control on the process and can design their own
verification algorithms, and also enables institutes to charge fees as in the former
system for verification requests. We also try to achieve this with minimal input from
the side of the requester and the student. Since the system using encrypted hashes to
construct the Merkle Tree, an Oracle service is used to get the encrypted hash. Thus,
this system now ensures that there is a fee charged to the requester for the verification
by the use of encrypted hashes and decrypting them using oracles

3 Workflow for Degree Certificate Issuance System
on Blockchain

3.1 Digitizing the Certificates

Certificates need to be stored in a convenient digital format. In this case, we shall
create a simple JSON schema to represent the certificate.

The following is a representative schema for the certificate

.certificate {
full_name: String,
institute: String,
cgpa: Double,
student_id: String,
batch: Int
hash: SHA256
proof: List of SHA256
}

The hash field here is populated as a SHA256 of full_name, institute, cgpa, stu-
dent_id, and batch only. Let us call a subset of the above fields as aminimal certificate.
The following minimal certificate is then hashed to get hash H. The H is re-hashed
with the private key of the institute to get an encrypted hash E. This procedure shall



Issuing and Verifying University … 85

now be repeated for every certificate making up a batch. For example, all certificates
for the Batch of 2017 shall be generated and for each certificate, the hash E shall be
computed as described above. After this, a Merkle Tree is generated for the entire
batch and its Merkle Root M is found out in the next steps. The proof field includes
the Merkle Path of these encrypted hashes which will be used as a check to see
whether the certificate has been included by the Merkle Root or not.

3.2 Generating Certificate Blocks

Once the Encrypted Hashes E for every certificate is known, each of them can be
directly put on to the blockchain. But this will involve a lot of excess computation
and costs, each transaction costs gas fees and thus, one/the institute would end up
spending a lot ofmoney due to the fact that there aremany certificates to be published.
To overcome this, we use all of these encrypted hashes to create the Merkle Tree.
The root of this tree called M, is known as Merkle Root and it is representative of
the elements which made up this root. Specifically, Merkle Paths allow us to create
a Merkle Proof where in knowing the Merkle Root, the corresponding Merkle Path
to a leaf and the data of the leaf, we can verify whether the leaf was part of this
root or not. Thus, we can securely say that the hash (i.e., whether the certifcate) was
part of the root or not. Thus, now our transaction is reduced to only one, which is a
single transaction containing the Merkle Root can be published. We shall now add
this Merkle Path to the proof field of our digital certificate. Once every certificate
has its proof field added, we can email this to each candidate. This ends the process
from the side of the institute.

3.3 Publishing the Certificates on the Blockchain

The Merkle Root generated will now be added to the blockchain. To enable this we
call a function on our smart contract with this Merkle Root as the data. The contract
will accept this transaction and fire an event; tagging this transaction if and only if the
caller is the contract deployer which in this case will be the university/institute. This
published transaction will be mined by one of the miners on the ethereum network
and included in some block that will be added to the blockchain. As the time goes
on, more blocks will be mined and included in the blockchain. As more blocks are
appended to the block containing the published transaction, the harder it is to change
it. There is a certain number of blocks after which the transaction is considered to be
immutable. Every block appended is considered to be a verification for the previous
blocks.



86 D. Patel et al.

4 Verification of Issued Certificates

We shall provide a simple smart contract function which shall return a Boolean value
true or false depending on the status of the verification. The verification process
follows the following steps. Before submitting the hash for verification to the smart
contract, we run a small client-side check to ensure that the hash field in the certificate
matches the hash of the certificate. The contract will receive only the payment tokens,
certificate hash field, and the Merkle Proof field.

1. The smart contract first finds the transaction associated with this batch, since
every batch had a different Merkle Root.

2. The smart contract verifies the Merkle Root transaction’s issuer’s identity. It
checks if the transaction containing the Merkle Root was signed by the private
key of the institute/university.

3. The contract requests the Oracle service for the encrypted hash for the certificate
hash given as input.

4. Next, the contract builds theMerkle Root using the path info and checks whether
this generated Merkle Root is same as the one in the transaction. This finally
ensures that the certificate was part of the Merkle Root (Figs. 3, 4, 5 and 6).

Fig. 3 Data flow diagram showing issuance of the certificate by the institute/university



Issuing and Verifying University … 87

Fig. 4 Sequence diagram showing issuance of the certificate by the institute/university

Fig. 5 Data flow diagram showing verification of the certificate by company



88 D. Patel et al.

Fig. 6 Sequence diagram showing verification of the certificate by company

5 Implementation Architecture

5.1 Smart Contracts

The deployment will include smart contracts to facilitate publication of the certificate
to the blockchain and also the verification of published certificates. The publish func-
tion would take the signed transaction with the Merkle Root and record it publically.
This function canbe only called by the contract deployer that is the institute/university
can only publish the certificates. A mapping will be recorded between each batch
and the transaction containing its Merkle Root allowing easy access to that year’s
certificates.

The second function verify, shall be accessible to any verifier and accepts as fees
a set of predefined tokens to carry out the verification. It shall return only a Boolean
Yes/No and an optionalmessage detailing failure if needed. This function shall accept
the given certificate which shall contain the hash and the Merkle Proof to validate
the authenticity of the certificate. It performs tasks as outlined in the verification
steps. The tokens for the same can be pulled out of the client (verification request
submitter) Metamask [9] wallet.



Issuing and Verifying University … 89

5.2 Server-Side Deployment

This is the only code which shall be maintained on the server by the institute. This
code contains the service which is responsible for loading the form which the end-
user will utilize for the verification process. It can also contain additional code to
collect statistics and other data.

5.3 Payment Gateway

To monetize the process of verification of certificates, tokens are accepted by the
smart contract before disclosing the results of such validation as payment. To gener-
ate these tokens, we shall deploy using the institute address ERC223 tokens [8]. A
payment gateway shall accept money (real currency in INR) and instruct our deploy-
ment of the ERC223 tokens smart contract to issue equivalent tokens to the recipient
address. This shall be a transaction called by the institute to the recipient. The tokens
shall be reflected in the recipients Metamask wallet [7].

5.4 Oracle Service

Wewould need to implement an Oracle service which listens for an event and returns
the corresponding encrypted hash for the given Hash. This service can be imple-
mented using Oracalize.it [6]. The Oracle will prevent the requester from directly
knowing the encrypted hash (Fig. 7).

The architecture is implemented in a way so as to allow the university/institute to
maintain control over the process of verification and monetize it in a way it deems to
be fit. It is also made in a way to store least amount of information at the institute’s
end. It also minimizes processing at the servers maintained by the institute. Thus,
the architecture ensures that minimal trust is put on the issuing university/institute
and allow for a decentralized verification of certificates.

6 Conclusions

With the rising increase of educational certificate fraud andmisuse, it becomes imper-
ative to design an easy to use trustless, decentralized validation system to verify
authenticity of certificates and to make student digital certificates tamper proof in
nature. We have looked at an interesting use case and implemented a solution on
the Ethereum public blockchain to ensure tamper-proof certificate issuance and to
verify their authenticity. This also reduces time and efforts spent by the institute in



90 D. Patel et al.

Fig. 7 Implementation architecture diagram for certificate issuance and verification system

verification of their certificates while still allowing them to monetize the system.
The system also ensures that minimal trust is needed on the institute/university for
verification of the issued certificates.

References

1. Yaga D, Mell P, Roby N, Scarfone K (2018) Blockchain technology overview. Draft NISTIR
8202, NIST, US

2. Wurster S et al (2017) Specification on Blockchain Technology. ISO/TC 307, Tokyo
3. Ethereum Project. https://www.ethereum.org/
4. Becker G (2008) Merkle signature schemes, Merkle trees and their cryptanalysis. Ruhr-

University Bochum, Technical Report
5. Oraclize-blockchain oracle service, enabling data-rich smart contracts. http://www.oraclize.it/
6. Digital Certificates Project. http://certificates.media.mit.edu/
7. MetaMask Ethereum Browser Extension. https://metamask.io/

https://www.ethereum.org/
http://www.oraclize.it/
http://certificates.media.mit.edu/
https://metamask.io/


Issuing and Verifying University … 91

8. Ethereum: ERC223 token standard—Issue#223—ethereum/EIPs. https://github.com/ethereum/
EIPs/issues/223

9. Cheng JC, Lee NY, Chi C, Chen YH (2018) Blockchain and smart contract for digital certificate.
2018 IEEE International Conference on Applied System Invention (ICASI). https://doi.org/10.
1109/icasi.2018.8394455

https://github.com/ethereum/EIPs/issues/223
https://doi.org/10.1109/icasi.2018.8394455

	 Issuing and Verifying University Certificates on Blockchain
	1 Introduction
	2 Motivation and Background
	2.1 Existing Degree Certificate Issuing and Verification Procedure
	2.2 Blockchain
	2.3 Ethereum Public Blockchain
	2.4 Merkle Trees and Merkle Proofs
	2.5 Oracle

	3 Workflow for Degree Certificate Issuance System on Blockchain
	3.1 Digitizing the Certificates
	3.2 Generating Certificate Blocks
	3.3 Publishing the Certificates on the Blockchain

	4 Verification of Issued Certificates
	5 Implementation Architecture
	5.1 Smart Contracts
	5.2 Server-Side Deployment
	5.3 Payment Gateway
	5.4 Oracle Service

	6 Conclusions
	References




