
Cryptocurrency Token: An Overview

Mahesh Shirole, Maneesh Darisi, and Sunil Bhirud

Abstract With the advent of blockchain, the trustless transactions between
cross-border parties becomes easy. The profusion of eclectic tokens coming into
the cryptocurrency world, one primary requirement is to enable robust and secure
exchange between different varieties of tokens. With the rise of ICOs into the cryp-
tocurrency market, the funding of research-based projects has become meteoric in
nature. The dearth of knowledge about these different varieties of tokens is blocking
amateur developers to unlock the true potential of the blockchain technology. There
are myriad tokens, which are either fungible or non-fungible tokens that are used to
represent different types of assets and research projects. This paper mainly focuses to
provide an overview of tokens and comparative analysis for token standards available
in the present cryptocurrency world.

Keywords Blockchain · Cryptocurrencies · Token · ICO

1 Introduction

Cryptocurrencies are digital currencies that are still in their embryonic stage and have
been gaining a lot of attention worldwide. Cryptocurrency is neither government-
issued nor government-regulated currency. Cryptocurrency can be used as a medium
of exchange and to perform monetary transactions, in the same way as the print-
able currency/bills can be used. Although the number of blockchain use cases is
augmenting as the time progresses, the lack of understanding of this new technology
and tokens is restricting the use of cryptocurrencies widely. The first ever cryptocur-

M. Shirole · M. Darisi (B) · S. Bhirud
CE & IT Department, Veermata Jijabai Technological Institute, Mumbai 400019, India
e-mail: mdarisi_b15@it.vjti.ac.in

M. Shirole
e-mail: mrshirole@it.vjti.ac.in

S. Bhirud
e-mail: sgbhirud@ce.vjti.ac.in

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Singapore Pte Ltd. 2020
D. Patel et al. (eds.), IC-BCT 2019, Blockchain Technologies,
https://doi.org/10.1007/978-981-15-4542-9_12

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4542-9_12&domain=pdf
mailto:mdarisi_b15@it.vjti.ac.in
mailto:mrshirole@it.vjti.ac.in
mailto:sgbhirud@ce.vjti.ac.in
https://doi.org/10.1007/978-981-15-4542-9_12

134 M. Shirole et al.

rency bitcoin [13] was created by Satoshi Nakamoto introduced in the year 2009.
Subsequently, the development of blockchain technology has lead to the emergence
of Ethereum [1]. Ever since advent of these cryptocurrencies in the market, it has
attracted several potent investors. Roughly, there are about 2116 cryptocurrencies
in the cryptoworld and keep augmenting regularly. These cryptocurrencies have a
market capital of $119,068,338,608 [9] by the end of 2018. They have changed the
way how cross-border transactions take place.

Initial coin offering (ICO) is the means of crowdfunding and thus leads to the
creation of a new cryptocurrency. ICOs sell tokens/coins to the different stakehold-
ers in exchange of legal tender or cryptocurrencies. It uses several cryptocurrency
protocols to a create token on the top of the existing blockchain. ICOs have expo-
nentially increased in the last two years with launch of ERC20 open standard token
protocol. In last year 2018, total 686 new ICOs are launched, with a peak of 144 in
May, raising total of $21,498,711,596 fund [2].

DApps used to define their own token standard and implementation for their
private currency. With the launch of ERC20 token standard describing the rules and
standards for cryptocurrency tokens, all the DApps and start-ups are using ERC20
token standard. It helped to uniformly understand tokens, its format and a way to
interact with tokens. As of January 16, 2019, a total of 162,906 total token contracts
are found on Etherscan [9].

In this paper, token standards are explored on different aspects such as standard,
attack vectors, use cases of the attacks, improvements to ERC20 standard and other
secure token proposals. This paper is organized as follows: Sect. 2 discusses the
cryptocurrency tokens. Section3 discusses token attacks and their possible solutions.
A brief comparison of tokens is given in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Cryptocurrency Tokens

Cryptocurrencies can be classified based on their: (a) usage: fungible and non-
fungible, (b) type of implementation: currency token (payment), utility token and
security token. Fungibility is one of the essential characteristics of the currency. It
can be used to represent anything that is interchangeable in the real world. Fungible
tokens possess currency-like properties rather than unique and valuable assets. These
tokens are interchangeable, uniform across platforms and are divisible into smaller
units. All fungible tokens are based on ERC20 standard. Non-fungible tokens enable
people and organizations to think beyond the cryptocurrencies, such as IDs and
certificates. Non-fungible tokens are uniquely identifiable during trade, i.e., inter-
action and circulation. These tokens are non-interchangeable, unique in nature and
non-divisible into smaller units. ERC721 standard is also used for non-fungible
tokens on Ethereum blockchain.

Inherently, every currency token is associated with its own unique blockchain.
Blockchain platforms serve as amedium for payment of goods and services. Currency
tokens are used to performmonetary transactions using digital currencies rather than

Cryptocurrency Token: An Overview 135

fiat currencies. Bitcoin and ether are paragons of cryptocurrencies and have their
own blockchain platform.

2.1 Utility Tokens

Utility tokens are digital assets, which are built to support the structure of investor’s
payment mechanism. Utility tokens are handled using DApps. The proliferation
of these tokens is enabling blockchain to affect various spectrums of the industry.
Utility tokens are provided by businesses; the holder of the utility token gets access
to different functions provided by businesses for trading tokens. Most of the tokens
available on the blockchain are utility tokens.
ERC20. ERC20 is an open standard protocol that defines the software interface
to implement tokens in Ethereum ecosystem. With ERC20 token standard protocol
specification, all ICO developers now implement their own code with same method
names and their arguments. Thus, improving the interoperability of different tokens
implemented by different developers. This reduced the complexity of implementation
of tokens, uniform interface and increased the rate of liquidity of the different tokens.
ERC20 token standard interface includes six methods: totalSupply, balanceO f ,
trans f er , trans f er From, approve and allowance and two events: Trans f er and
Approval. In short, the standard facilitates to share, transfer, exchange and trade
tokens seamlessly through cryptoworld.
ERC223. ERC223 [6] has suggested an improvement to ERC20 token standard.
ERC20 suffers token losses due to trans f er function in the contract, which does not
support token receiving and handling mechanism. The total loss estimated as on 27
Dec 2017 is $3,000,000 [9]. ERC223 token standard is backward compatible with
ERC20 as it uses same interface. However, it requires contracts to implement the
tokenFall Back function.

f unction tokenFallback(address _ f rom, uint _value, bytes _data)

ERC223 is applicable to new contracts rather than old deployed contracts.
ERC777. ERC777 [8] token standard allows a newway to interactwith contractswith
the help of ERC820. ERC777 is backward compatible with earlier token standards
and thus mitigates the problem of ERC223 to modify the contract. ERC777 takes
support of ERC820 standard, which is a contract registry that will verify whether a
contract is token compatible or not. In case if ERC777 token contract is not registered
or compatible, then the transaction will raise an exception, thus preventing loss of
tokens. The only problem with ERC777 is that it uses a central registry for smart
contracts lookup.
ERC721. ERC721 [7] is a token standard that defines an interface to allow non-
fungible tokens to bemanaged, owned and traded by a smart contract. It defines func-
tions: name, symbol, totalSupply, balanceO f , ownerO f , approve,
takeOwnership, tokenO f Owner By Index , trans f er and tokenMetadata. It

136 M. Shirole et al.

defines two events: Trans f er and Approval. The takeOwnership and trans f er
functions define how the contract will handle token ownership and how ownership
can be transferred. The function tokenMetadata makes token non-fungible by its
unique set of attributes. ERC721 does not mandate implementation of a token meta-
data or restrict addition of extra functions.

2.2 Security Tokens

Security tokens need to follow myriad federation rules and regulations; hence, they
are complex. They are the type of assets, which assure positive ROI on their holding.
Such returns are guaranteedby the platform itself or the company,whichhad launched
the security token.A security token sharesmanyof the characteristics of both fungible
and non-fungible tokens.
ERC1400. ERC1400 [3] is a simple restricted token standard developed for
corporate governance and banking considering securities laws. It is fully open source
ensuring security, quality and interoperability of tokens. ERC1400 tokens are par-
tially fungible. One ERC1400 token issued by one entity may not be exchangeable
with another, because these tokens have different properties and a group of owners.
ERC1400 is an umbrella standard that incorporates ERC1594 [5] (core function-
ality), ERC1410 [4] (partially fungible tokens), ERC1643 (document management)
and ERC1644 (controller token operation) with some additional constraints to ensure
these standards interoperate in a consistent manner.
R-Token. R-token [12] is a permissioned token allowing token transfer to occur
only if they are approved by an on-chain regulator service. R-tokens extends
ERC-20 tokens for regulated securities. Regulator services can be configured to
meet security regulations such as KYC policies and anti-money laundering.

3 Token Attacks

Blockchain is immutable; hence, the contracts which are deployed on blockchain
are immutable. Majority of contracts are written in solidity language; therefore, one
must understand what are the common attacks in solidity. These attacks have caused
huge losses due to loopholes in the contracts.

3.1 Approve Attack

Although 90% of the tokens present in the crypto world are compliant with the
ERC20 standards, one of the significant flaws in its interface is in the definition of the
approve and trans f er From methods. Thesemethods can be exploited to withdraw

Cryptocurrency Token: An Overview 137

Fig. 1 Illustration of approve transfer attack using sequence diagram

tokens more than given allowance if approvals are given in succession. Approve
function permits the given address to withdraw token amount from message sender
token balance up to the specified value in single or multiple withdraws. Consider
a scenario wherein there are two parties/accounts A and B, where account B also
controls account C. It is assumed that all accounts initial balance is 1000 ether and
the balance of account A is greater than or equal to X + Y ether, i.e., 200+300 in
Fig. 1. The illustration of the attack vector use case scenario is as follows referring
Fig. 1.
STEP 1. Account A gives approval of X ether from his wallet to account B.
STEP 2. Account A decides to change the amount of approval from X ether to Y
ether for account B and sends Y as the argument in the Approve function.
STEP 3. Account B notices A’s second transaction and before it gets mined, B sends
the allowance of X ether that it had approved from A to C using trans f er From
function with high gas value to prioritize transfer.
STEP 4. If B’s trans f er From call gets executed before A’s approve transaction,
then B will get the ability to transfer another Y tokens to C.
STEP5.A’s attempt to change the allowance from X toY has leadB to transfer X + Y
to C, whereas A never wanted to transfer X + Y tokens to B. Solution. A simple
change to the present interface may assist in making the ERC20 less error prone.
Convert the approve function to a three-argument function from a two-argument
function to prevent the above attack.

function approve(address spenderAddresss, uint256 currentValueOfAllowance,
uint256 ChangedValueOfAllowanceValue) returns (bool success)

138 M. Shirole et al.

If current allowance for spender Address is equal to currentV alueO f Allowance,
then overwrite it with ChangedValueO f AllowanceValue and return true, other-
wise return false. Accordingly, events Trans f er and Approve can be changed.

3.2 Overflow Exploit Attack

The classical arithmetic integer overflow problem can be exploited to transfer large
amount of tokens. This bug was noticed by PeckShield on April 22nd 2018. He found
fallacious transaction which involved two large BEC token transactions. The reason
was arithmetic overflow in statements like
balances[msg.sender]+ = msg.value;
Solution. OpenZeppelin [11] library has provided a transparent solution to counter
this attackvector.OpenZeppelin has provided a solidityfile knownas Sa f eMath.sol,
which provides several checks to avoid any overflow during basic arithmetic
operations.

3.3 Reentrancy Attack

A non-recursive function of a contract should not enter in the same function before
termination of the function. In reentrancy attack, an attacker tries to reenter the
calling function of a contract with the fallback mechanism in solidity. In Ethereum,
call function is used to transfer a value/data or to execute a function of same con-
tract or another contract. The call function starts code execution of function and
spends available gas for execution. It makes code vulnerable to reentrancy attack.
As there is no gas limit for the call function, the fallback function in call func-
tion can run as long as it exhausts all gas allocated for that function or balance of
the account. To understand this attack, consider example as discussed in [10]. Con-
sider a wallet contract, named Vulnerable, shown in the following code in Fig. 2.
Its statementmsg.sender.call.value(x)()will cause reentrancy attack, as it invokes
themessage.sender ′s fallback function in order to send his balance of ‘x’ wei to the
sender. Amalicious user contract namedMalicious is as shown in the code in Fig. 2,
where the contract address is initialized with _owner and another address is vulner-
able wallet’s address. When the malicious user withdraws balance fromVulnerable

Cryptocurrency Token: An Overview 139

Fig. 2 A sample code to illustrate reenterancy attack

wallet using Malicious contract, then wallet calls users contract fallback function
and in turn calls fallback function which executes wi thdrawFund function of the
wallet contract repeatedly until it fails due to gas limit or balance.
Solution. To mitigate reenterancy attack avoid using call function. The trans f er()
and send() are safe against reentrancy attack since they limit code execution to 2300
gas units.

4 Utility Tokens Comparison

In this section, a comparative analysis of the utility tokens is presented based on
fungibility, backward compatibility, token sale delegation and contract registration.
The comparative analysis is shown in Table1.

Fallacious transactions to anonymous addresses can result in the loss of ether;
this issue is resolved by ERC223 (assembly code), ERC777 and ERC721 using a
centralized registry ERC 820. ERC777 and ERC721 are backward compatible with
the ERC20 standard and thus provide a easy mechanism for upgrading the presently
deployed contracts. The major aim of using upgraded token standard is to avoid
the loopholes in the present contract and to abate the present gas consumption rate.
Except ERC721, other token standards are fungible.

Table 1 Comparison of utility tokens

ERC20 ERC223 ERC777 ERC721

Fungible Yes Yes Yes No

Verify contract
address

No Yes Yes Yes

Back
compatibility
with ERC20

– No Yes Yes

Delegate token
sale

Yes Yes Yes Yes

Usage ERC820
for contract
registration

No No Yes Yes

140 M. Shirole et al.

5 Conclusion

Sharp increase in the number of ICOs in the last two years had lead to the stan-
dardization of tokens. Cryptocurrency tokens are evolving and growing community
effort to set interoperable standards. This paper discusses a list of representative
token standards, their possible attacks and possible solution for the same. Possible
loss due to faulty and incompatible token implementations can be decreased using
appropriate mechanisms as discussed in this paper.

References

1. Buterin V (2013) Ethereum white paper: a next generation smart contract & decentralized
application platform. https://doi.org/10.5663/aps.v1i1.10138

2. Coinschedule: https://www.coinschedule.com/stats.html. Last accessed Jan 2019
3. ERC1400: https://github.com/ethereum/eips/issues/1400
4. ERC1410: https://github.com/ethereum/eips/issues/1410
5. ERC1594: https://github.com/ethereum/eips/issues/1594
6. ERC223: https://github.com/ethereum/eips/issues/223
7. ERC721: Non-fungible token standard. https://github.com/ethereum/EIPs/blob/master/EIPS/

eip-721
8. ERC777: https://eips.ethereum.org/eips/eip-777
9. Etherscan: Ethereum Blockchain Explorer. https://etherscan.io/
10. Li X, Jiang P, Chen T, Luo X, Wen Q (2017) A survey on the security of blockchain systems.

https://doi.org/10.1016/j.future.2017.08.020
11. OpenZeppelin: https://github.com/openzeppelin/openzeppelin-solidity (2018)
12. Remeika, B., Amano, A., Sacks, D.: The Regulated Token (R-Token) Standard (2018).

10.1007/BF02162388
13. Satoshi, N.: Bitcoin: A Peer-to-Peer Electronic cash system. Bitcoin (2008)

https://doi.org/10.5663/aps.v1i1.10138
https://www.coinschedule.com/stats.html
https://github.com/ethereum/eips/issues/1400
https://github.com/ethereum/eips/issues/1410
https://github.com/ethereum/eips/issues/1594
https://github.com/ethereum/eips/issues/223
https://github.com/ethereum/EIPs/blob/master/EIPS /eip-721
https://github.com/ethereum/EIPs/blob/master/EIPS /eip-721
https://doi.org/10.1016/j.future.2017.08.020

	 Cryptocurrency Token: An Overview
	1 Introduction
	2 Cryptocurrency Tokens
	2.1 Utility Tokens
	2.2 Security Tokens

	3 Token Attacks
	3.1 Approve Attack
	3.2 Overflow Exploit Attack
	3.3 Reentrancy Attack

	4 Utility Tokens Comparison
	5 Conclusion
	References

