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Abstract The proliferation of blockchain technology into the wide spectrum of
industries has been stymied by its inability to scale. With the augmenting popularity
of blockchains, scalability of blockchain is hindering it from attaining the mete-
oric transaction rate present in the existing solutions like MasterCard and VISA.
Presently, the scalability solutions of blockchains use several off-chain and on-chain
mechanisms. This paper proposes an on-chain solution backed by big data technolo-
gies. We aim to provide a real-time scalable transaction processing by using big data
framework to overcome the roadblocks of scalability. Our framework has horizon-
tal and vertical scaling to augment the sluggish blockchain transaction rate using
sharding frameworks of big data.

Keywords Blockchain scalability · Big data · Sharding · MapReduce

1 Introduction

Blockchain is a sequential agglomerationof an immutable data structure called blocks
that includes the set of valid transactions which is transparent to every member of
the chain and has entities like miners who perform consensus and deploy blocks on
the chain facilitating the security from single point of failure.
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A blockchain is a tuple (G, B) where G is a genesis state and B = [β1, β2, β3…] is an
ordered list of blocks. A blockchain is valid if every β ∈ B is valid, and so G + β0 + β1 +
···= σ f is a valid state. A block β is a package containing a list of transactions T, a reference
to a parent block and auxiliary verification data. A block is valid in the context of a state σ

if:

• The block’s transaction list is valid in the context of σ

• Some other conditions, generally determined by the consensus algorithm (e.g. proof of
work), are met. Buterin [1]

It has been a decade ever since blockchain has come into this technologyworld but
has still failed to throw light on some burning issues like scalability, interoperability,
governance, etc. Scalability in the context of blockchains is dependent on security
and capacity limitation of public blockchains protocol which demands:

• Every transaction on the blockchain must be processed by every single node on
the blockchain.

• Every operation like payment and deployment of a smart contract must be
replicated by all the full nodes.

This makes the public blockchain autonomous and reliable and eliminates the
need for dependence on any counterparty. But the above protocol depreciates the
throughput of the blockchain drastically. The proof–of-work (PoW) [2] protocol
puts the constraint onto the blockchain that the blockchain throughput is equal to the
processing capability of the individual nodes only. We require blockchains to scale
to the global user database and at the same time ensure as much decentralization as
possible.

Presently, the scalability solutions of blockchain are divided into two main
categories:

1. On-chain solutions: modifying the underlying blockchain infrastructure.
2. Off-chain solutions: develop additional infrastructure that connects to the

blockchain.

Ethereum [3] projects relating to on-chain solutions focus on the changing of
the present consensus algorithm from proof of work [2] and to proof of stake [4]
(PoS) and implement sharding on to the blockchain infrastructure. Ethereum projects
relating to off-chain solutions which focus on implementing state channels, lightning
network called Raiden [5], a new concept layer to scale smart contracts called plasma
[6], and Truebit [7] to process complex computations off the chain. Scalability of
blockchain systems is heavily affected by three factors—decentralization, scalability
and security.

Due to its operating nature, colossal amount of data is generated, and to deal with
it, big data provides the tools which are highly scalable and powerful for executing
distributed parallel computations on the data.

MapReduce [8] is a stalwart and robust framework that provides a distributed and
parallel environment for scalable and fault-tolerant computations of batch jobs. In the
mapper phase, the data is divided into shards and has a <key, value> format which is
given to reducer for its aggregation and giving the overall output of the job. Scalability
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is ensured as the mappers and reducers execute across the cluster parallelly in a
distributed manner. The concurrency and task allocations are performed intrinsically
and securely by MapReduce.

Hadoop [9] provides inherently the benefits which are required for the blockchain
to scale. Hadoop works best in a cluster by using low-cost commodity hardware
and is buttressed by the parallelism provided by MapReduce. Hadoop at its core is
majorly made up of HDFS and MapReduce. HDFS filesystem provides fault toler-
ance and security which is required while computation of transactions taking place in
the Hadoop ecosystem. HDFS by itself supports several cryptomechanisms to secure
data using encryptions and authentication frameworks. Thus, by utilizing low-cost
commodity hardware and being able to run these scalableHadoop ecosystems, decen-
tralization can be achieved, while scalability of transactions is possible by using the
MapReduce framework. Knox [10] and Ranger [11] intrinsically provide security
when parallel computations take place in the Hadoop environment. We aim to break
the trilemma by using ecosystem to counter the scalability problem of the blockchain.

We aim to integrate big data technologies on to the blockchain architecture to
improve the present blockchain transaction rate. We propose the architectural and
technological changes required in the network and consensus layer to scale the present
blockchain architecture.

Rest of the paper is organized as follows: Sect. 2 discusses related work in the field
of blockchain scalability, and Sect. 3 describes the proposed solutionwith conclusion
and references at the end.

2 Related Work

Practically, it has been proven that proof of work is sluggish time and resource
consuming. Therefore, a new wave of consensus algorithms aims to overthrow proof
of work. Delegated proof of stake, Byzantine fault-tolerant [12] variants, etc., aim
to obtain only the consensus of only a representative group of entities rather than
the entire network. These systems abate the decentralization aspect of blockchain in
order to increase scalability.

Polkadot [13] and Cosmos [14] aim to build a network infrastructure which
to resolves interoperability issues among heterogeneous blockchains. Polkadot has
developed a relay chain and several parachains for provisioning interoperability and
scalability, but Polkadot is not envisaged to support the deployment of customized
complex blockchains smart contracts. Cosmos is an Internet of blockchains scalabil-
ity network that achieves scalability by using high performance, secure tendermint
[15] consensus core which provides a transaction rate up to 10000 tx per second.
Cosmos implements a intrinsic star topology to connect heterogeneous independent
blockchains(zones) using a central hub. Polkadot and Cosmos are not envisaged to
support the deployment of customized complex blockchains smart contracts.

Zilliqa [16] andMerklix tree [17] envision to implement sharding onto the existing
blockchain platforms. The Merklix tree aims to increase the torpid transaction of
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bitcoin using sharding. Zilliqa and Merklix tree compromise on security aspect of
the blockchain.

Cardano [18] is an innovative project which not only addresses scalability and
interoperability issues of blockchain but also aspires to improve the governance of
the existing blockchain system.

3 Proposed Solution

Our solution solves one of the most difficult conundrums hindering the proliferation
of blockchain technology in the industry by using big data. We address the prob-
lem of scalability while not compromising on decentralization using the existing
Hadoop scalable tools. Our solution implements transaction and network sharding
to ameliorate the torpid blockchain rate.

Since we are using MapReduce, all the inputs to MapReduce framework should
be in a <key, value> pair format.

According to Fig. 1, the MapReduce workflow consists of the:

• Mapper phase
• Reducer phase
• Final Consensus phase.

There are two input pools to our framework which are

1. Transaction pool
2. Miner pool.

Fig. 1 Detailed implementation workflow architecture of the mapper and the reducer phase
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Step 1: To bifurcate the miner pool into ‘n’ shards (according to Eq. 1) using
random sampling rather than applying geographic sharding. The major disadvan-
tage of geographic sharding is the fact that the miners bifurcated based on their
geographic locations reducing the decentralization of blockchain systems. If the
shards are created based on location, then the mining pool of a certain location
can have the authority over the internal consensus of that shard. It is better to
randomly sample the miners based on their quantity into n shard, thus avoiding
the concentration of authority and increasing the security of the system. But this
leads to the issue network propagation delay among the miners in the shard. All
the new miners added to the mining pool are taken to pre-computed shards after
each epoch.
Step 2: The transaction pool is divided into ‘k’ shards (according to Eq. 1). Two
types of sharding can be applied on the transaction pool 1. state-based sharding
and 2. transaction-based sharding. Our framework is presently using transaction-
based sharding and the lambda architecture to dynamically update the transaction
pools [19, 20]. The batch layer creates batch views of the transactions that have
entered the transaction pool and sends it to the service layer for further processing.
Speedup layer produces real-time views and sends them to the transaction-miner
mapper directly along with the batch views, thus reducing latency time. All the
batch views are updated after each epoch.
Step 3: The transaction-miner mapper maps the k%n transaction shards to the n
miner shards.
Step 4: In the reducer phase, the miners in each miner shard must come to consen-
sus upon the k%n transaction shards and have to propose a block. At the end of
the reducer phase, each reducer would have proposed a block which had received
the consensus from the miners present in its shard.
Step 5: In the final consensus phase, we aim to use Byzantine fault-tolerance
algorithms/proof of stake algorithms in order to obtain the consensus of all the
shards on the blocks proposed by the reducer phase.

The consensus algorithmwe apply in the final consensus phase and reducer has an
heavy impact on the performance and throughput transaction rate which we obtain
at the end All the intershard and intrashard communication are handled by Apache
Kafka [21] using the publisher subscriber models.

3.1 Actors of Solution

In the rest of the solution, we will use these actors:

– Miner
Miners validate new transactions and propose new blocks and record them on the
global ledger and receive an incentive when they solve the complex mathematical
problem.
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– Leader
Leader chooses ‘h’ members from each shard to form a validation group.

– Validator
These are miners are subset of global miner list who validate blocks proposed by
each shard which are added to the global ledger.

3.2 Updation of Transaction Pool

Lambda architecture can be used for efficient and real-time batch processing of
transaction pool. It mainly consists of these three layers: batch layer, service layer,
speedup layer.

Speedup Layer
This layer is primarily used to provide low latency updates. Speedup layer uses
an incremental computation approach rather than a batch computation approach.
Speedup layer relies on the fact that the transaction data stored is transient and
modicum in nature. Processing data on a smaller scale provides greater design flexi-
bility. Speedup allows complex computations to take place on these real-time views.
Speedup layer aims to provide low latency updates to the batch views. Therefore, all
the real-time views are directly supplied to the transaction-miner mapper.

There two major functions of the speedup layer:

• Storing the real-time views.
• Processing the input data stream so as to update the real-time transaction views.

Batch Layer
The batch layer is used to store the immutable growing transactional pool. The batch
layer is responsible for creating real-time batch views for the service layer to process
the blockchain transactions. The batch layer needs to be able to do two things:

• Store an immutable, constantly growing transactional pool.
• Create and continuously update batch views for the service layer.

The serial processing of transactions results in low scalability; thus, we aim
to do batch processing and process these blockchain transfers using MapReduce.
MapReduce is best done using batch processing paradigm.

Service Layer
Service layer is used to process the batch views that it receives from the service and
speed layer. When new batch views are available, the serving layer automatically
swaps in so that more up-to-date results are published on to the blockchain. The
service layer is distributed among several machines to improve horizontal scalability
using distributed frameworks. The major concerns of the service layer are ensuring
low latencies and high throughput by using distributed frameworks.
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3.3 Implementation Workflow

Referring Fig. 1.

– Mapper Phase

Step 1: Miner Mapper

Working: Miner mapper is used to bifurcating the available blockchain miners
into n shards.
Input: Each miner is assigned a unique number and M_id indicates the miner id.
Output: M_id indicates the miner id and S_id for shard id.

Step 2: Transaction Mapper

Working: Bifurcate the blockchain transactions into k shards.
Input: All transactions in the transaction pool are referenced using two tuples <
tx_id, tx > where tx_id denotes unique transaction ID and tx indicates transaction
parameters of blockchain.
Output: The transaction mapper outputs a two-tuple output < tx, S_id > .

The accumulated transactions are divided into k splits, and the transaction mapper
outputs a key as transaction and S_id the shard id to which the transaction belongs.

Step 3: Transaction-Miner Mapper

Working: ‘k%n’ transaction shards aremapped to eachminer shard. If (k = n), then
one-one mapping will take place between miner shards and transaction shards.
Input: ‘k’ transaction shards and n miner shards.
Output: The transaction-miner mapper outputs a two tuple <S_id, <List(txns),
List(Miners) � S_id which indicates miner-transaction shard, List(txns) indi-
cates the list of transaction shards in a miner-transaction shard and List(Miners)
indicates the list of miner shards in miner-transaction shard.

Step 4: Reducer Phase

Working: used to apply consensus(aggregation) on the individual mappers. The
number of reducers is decided using Eq. (2).
Input: Receives two-tuple <S_id, <List(Txns), List(Miners) � List(txns) indi-
cates the list of transaction shards in a miner-transaction shard list(miners) which
indicates the list of miner shards in miner-transaction shard.
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Output: Miner transaction shards apply consensus algorithms on the transaction
shards and propose new blocks. The output of this layer is a two tuple <Bi, S_id>
where ‘Bi’ represents the block proposed by shard i.

Algorithm- 

Procedure reducer (List (<S_id, <List(Txns), 
List(Miners)>>) returns list (<Block Bi, S_id, 
List(Miners)>)
Foreach shard i <-0 to i<-n-1 with step=1 do
Step 1: miners m shard i CreateBlock(List(Txns))
Step 2: miner m shard i ProposesBlock(List(Txns))

returns Bi

Step 3: d<- miners m shard i perform
consensusAlgorithm(Block Bi) 
If(d==false) then
DiscardBlock(Block Bi) 

End Foreach

Step 5: Final Consensus Phase
Working (Referring Fig. 2).

The consensus algorithms used in this phase are Byzantine Fault Tolerance Algo-
rithm and its variants (based on the criteria mentioned in Table 1). Byzantine fault

Fig. 2 Detailed implementation workflow architecture of the final consensus phase
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tolerance algorithms provide better throughput compared to PoW and other consen-
sus algorithms when there are limited number of participants participating in the
consensus phase. The cost of participation in Byzantine fault tolerance and variants
consensus is less compared to PoW and PoS, thus enabling lucid addition of nodes
into the consensus phase. In BFT and its variants, only a part of the miners par-
ticipate in the consensus rather than the whole, thus reaching faster consensus and
ameliorating the validation of unconfirmed transactions in the transaction pool. They
provide faster consensus in limited number of nodes compared to other consensus
models. From the list(miners) which we receive from the reducer phase. We select a
leader from the global miner list who samples h miners from each shard and form a
group of h*n. This group formed needs to perform the final consensus on the blocks
B0 to Bn-1. All the members of the group that has been formed can communicate
with each other asynchronously using Apache Kafka’s publisher subscriber model
and can exchange data between each other seamlessly. Blocks which are of the form
<Bi, <S_id1, S_id2, … � indicate that they have received consensus from all the
validators, and the block is committed to the main blockchain.

Algorithm- 

STEP1: Randomly select a leader globalList(Miners)
STEP2: The leader elected has to elect h miners v shardi

using randomly to form a group of h*n members known as 
validators Set V
STEP3: Foreach Block i <-0 to i<-n-1 with step =1 do

STEP3.1: di<- validators  Vi perform
consensusAlgorithm(Block Bi) 

END FOREACH
STEP4: Foreach Block i <-0 to i<-n-1 with step =1 do

If (di==true) then
commit the blocks Bi which are of the form 
<Bi, <S_id1, S_id2, S_id3..., S_idn> to the 

mainchain.
Else
DiscardBlock(Block Bi) 

END Foreach
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3.4 Estimating the Optimal Values of Mappers and Reducers

There are several parameters in MapReduce that need to configure to get better
performance than the baseline performance that MapReduce provides. Tuning of
hyperparameters is necessary to get optimal performance [19].

Determine the Number of Mappers

M = (P − I ) ∗ K (1)

• ‘M’ denotes the number of mappers.
• ‘P’ denotes the number of physical cores.
• ‘I’ denotes the number of reserved cores.
• ‘K’ denotes the CPU hyperthreading factor which ranges from [0.95 to 1.75].

Upper limit on the number of mappers isM = F/B.

where F = input file size supplied to the cluster
B = block size that is used by the cluster.

Determine the Number of Reducers

R = K ∗ (number of nodes ∗ mapred.reduce.parallel.copies) (2)

• ‘K’ denotes the CPU hyperthreading factor which ranges from [0.95 to 1.75].
• ‘Mapred.reduce.parallel.copies’ is the maximum number of reducers that can

execute in parallel.
• ‘R’ denotes the number of reducers.

The upper and lower limits on the number of reducers should be in the range [C/2,
2 * C] wherein C denotes the number of CPU cores. Apply 2/3 mapper technique
which states that the number of reducers should be 2/3 that of the number of mappers
estimated.

These formulas above have been used to determine the values in our proposed
blockchain solution. These starting values obtained by these formulas act as a starting
point to bifurcate the mining and transaction pool of our blockchain solution. These
parameters help to determine the processing power required to run this architecture,
and these hyper parameters can be fine-tuned over time.
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3.5 Comparative Analysis Among Consensus Algorithms

This section provides a comparative analysis between consensus algorithms based
on the criteria mentioned in Table 1 [22]

In our solution, the type of consensus algorithm in the intershard and intrashard
consensus phase affects the performanceof our system.BFTs are apt for permissioned
blockchains, whereas the rest are good for public chains. There is a clear trade-off
between scalability of consensus algorithms and time consumed for reaching con-
sensus. Hence, BFTs are less scalable compared to the rest. Apart from PoW, PoS
and Dpos, all the other consensus algorithms have the capability to revert the trans-
action from the confirmed block. Transaction finality is immediate in BFTs, whereas
the others have probabilistic finality. By reducing the participation of peer nodes in
consensus, we can certainly boost the transaction rate in a blockchain architecture.

Using the above parameters, we choose in the consensus algorithms for step 4
and step 5.

3.6 Performance Analysis Between the Proposed Solution
and Existing Solutions

• Block Commit Time: required average time to commit the block to the main chain
since it was created. Our solution aims to optimize this time by sharding the
transaction pool compared to other solution by using Hadoop lambda architecture
(Table 2).

• Transaction Confirmation Time: average time needed for a transaction to be con-
firmed into a mined block. Our solution uses faster consensus mechanism at
intershard and intrashard consensus layers compared to other solutions.

• Mempool Size: Our framework can handle differential Mempool loads with the
help of the lambda architecture compared to the other existing solutions.

Table 2 Comparative analysis between the proposed solution and existing solutions using
performance metrics

Criteria Proposed solution Zilliqa and similar

Block commit time Low Moderate

Transaction confirmation time (depends on
consensus)

Low to moderate Moderate

Mempool size High Moderate

Network down time Low Low to moderate

Intershard communication Moderate Low

Transaction throughput (TPS) High High
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• Network Down Time: Recovery of nodes in our solution is possible due high
availability and replication features of Hadoop which are lacking in Zilliqa.

• Intershard Communication: Intershard communication in our solution is easy
compared to other solutions because of Apache Kafka which provides seamless
interaction among the shards which is hindrance to other solutions.

4 Conclusion

We have looked at an interesting way of how we can leverage big data concepts to
resolve the scalability concern in distributed ledgers. For the past decade, the amount
of reliance of user and application generated data have increased manifold. Big data
technology has enabled us to scale at par with the increase in demand. Blockchain
is now being viewed as a potential technology of the future, replacing the current
centralized architectures.

In this paper, by focusing on the scalability aspect in blockchain, we have
addressed one of the potential points of hindrance for one of the most important tech-
nologies of the future. The framework aims to integrate the well-established big data
sharding frameworks with blockchain to ameliorate the scalability of blockchains.
The paper proposed an initial overview of our research in the blockchain field and a
framework with native big data sharding framework calledMapReduce and aims to
use an integrated MapReduce framework like Apache Spark for future work.

We aspire to integrate the present big data solutions with the present blockchain
solutions.
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