GeoSharding—A Machine ®
Learning-Based Sharding Protocol

updates

Hardik Ruparel, Shreyashree Chiplunkar, Shalin Shah, Madhav Goradia,
and Mahesh Shirole

Abstract Sharding is one of the most prominent concepts which involves the
division of the network into shards for concurrent processing of transactions. Differ-
ent sharding protocols are being implemented in blockchains to enhance its scala-
bility. The existing blockchain systems create shards using proof-of-work consensus
protocol. This research aims at developing a machine learning-based sharding process
that uses the nodes’ geographical locations—Ilatitudes and longitudes. IP addresses
of the nodes are mapped to geographical coordinates, and these coordinates are then
divided into shards using a suitable clustering algorithm. The nodes in the shards are
geographically closer, thereby reducing the propagation delay in the network during
intra-shard communication. GeoSharding has been tested to be significantly faster
as compared to PoW-based sharding. This optimizes the network sharding process,
thus escalating the scalability to a new level.

Keywords Blockchain + Sharding - Clustering * Proof of work - Machine learning

H. Ruparel () - S. Chiplunkar - S. Shah - M. Goradia - M. Shirole
CE & IT Department, Veermata Jijabai Technological Institute, Mumbai, India
e-mail: hruparel_b15@it.vjti.ac.in

S. Chiplunkar
e-mail: suchiplunkar_b15@it.vjti.ac.in

S. Shah
e-mail: spshah_b15@it.vjti.ac.in

M. Goradia
e-mail: gmbipin_b15@it.vjti.ac.in

M. Shirole
e-mail: mrshirole @it.vjti.ac.in

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 105
Nature Singapore Pte Ltd. 2020

D. Patel et al. (eds.), IC-BCT 2019, Blockchain Technologies,
https://doi.org/10.1007/978-981-15-4542-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4542-9_10&domain=pdf
mailto:hruparel_b15@it.vjti.ac.in
mailto:suchiplunkar_b15@it.vjti.ac.in
mailto:spshah_b15@it.vjti.ac.in
mailto:gmbipin_b15@it.vjti.ac.in
mailto:mrshirole@it.vjti.ac.in
https://doi.org/10.1007/978-981-15-4542-9_10

106 H. Ruparel et al.

1 Introduction

Blockchain is an immutable and a shared ledger that enables the process of recording
values known as transactions and tracking assets in a business network. Virtually
anything of value can be recorded, tracked and traded on a blockchain network,
reducing risk and cutting costs for all involved [1]. Being decentralized in nature,
a blockchain is highly secure as no single user can alter or remove an entry in
the blockchain since it would require changing all the blocks, which is realistically
impossible.

However, one of the most pivotal problems in the current blockchain architecture
is scalability. Today’s representative blockchain such as bitcoin [2] takes 10min or
longer to confirm transactions and achieves a throughput of 7 Tx/s. In comparison, the
average throughput of the current centralized systems is around 2000 and 56,000 Tx/s
during holidays. For a wide-scale adoption of blockchain, this issue needs to be
addressed as soon as possible [3].

Effective throughput in the overlay network is defined as the percentage of nodes
that receive the propagated blocks within an average block interval period. 10% of
the nodes in the network would be unable to keep up if the transaction rate exceeds
the 90% effective throughput, potentially resulting in a denial of service to users and
reducing the network’s effective mining power [3].

. block size
X % effective throughput = - (1)
X % propagation delay

The formulain Eq. 1 is crucial for understanding why reparameterization like increas-
ing the block size and decreasing the latency provides limited benefits. The bitcoin
community has put forth various proposals to modify the parameters like block size
and block interval that could make the system scalable. Two guidelines should be
followed to ensure that at least 90% of the nodes in the network have sufficient
throughput:

e Throughput limit. Given today’s 10 min average block interval, the block size
should not exceed 4 MB. Maximum throughput of at most 27 Tx/s is obtained at
4 MB block size.

e Latency limit. If full utilization of the network’s bandwidth is to be achieved, the
block interval should not be smaller than 12s [3].

Hence, a completely new and scalable architecture is needed to be developed
to increase the transaction rate of blockchains. As per our understanding, one can
achieve scalability in five planes like network, consensus, storage, view and side
plane. In our approach, we aim at achieving scalability in the network plane using
geographical sharding. This paper is organized as follows: Sect. 2 discusses the basic
concepts used in the paper. Section 3 discusses the proposed system. The results of
the experiment and comparisons with the existing systems are presented in Sect. 4.
Finally, Sect.5 concludes the paper.

GeoSharding—A Machine Learning-Based Sharding Protocol 107

2 Basic Concepts

2.1 Sharding

Sharding is the division of the network into independent groups of nodes called
shards for concurrent processing of transactions. For sharding blockchain systems,
the nodes will only maintain a portion of the data and not the entire information [4].
However, each node does not load the information on the entire blockchain, thus
helping in scalability. In blockchain, sharding can be done at different levels like
network level, transaction level and computational level.

e Network sharding. Network sharding is a technique that allows the network to
be segregated into smaller groups of nodes called shards.

e Transaction sharding. Whenever a transaction reaches the network, it is assigned
to a specific shard. The assignment of a transaction to a particular shard is based
on a few bits of the sending address of the transaction. This prevents the double-
spending problem as transactions sent by a user are assigned to a particular shard
only.

e Computation sharding. The sharding of computational resources in the
blockchain network via an overlay above the consensus process is called com-
putational sharding. Computations can be performed efficiently with some shards
acting as mappers and the rest as reducers for a map-reduce task.

2.2 Clustering

In machine learning, clustering is the process of combining objects based on their
attributes and aggregating them according to their similarities. There are many clus-
tering techniques like distance-based, density-based, interval or statistical-based. In
our research, we use distance as the similarity measure for creating clusters. In the
case of blockchain, network sharding is done for nodes, where nodes in a cluster are
closer to each other than the nodes in another cluster.

Various distance measures like Euclidean, Squared Euclidean, Manhattan, Corre-

lation, Haversine,, etc., can be used for measuring the distance between data points.
However, we require a formula that measures the distance between locations on the
Earth’s surface because Earth is a globe. So, we use Haversine distance, which is
suitable for spherical shapes.
Haversine Distance. The Haversine formula helps in calculating the shortest distance
between any two points on a spherical surface using their latitudes and longitudes
measured along the surface. This formula is given in Eq.2, and it is important in
navigation [5].

108 H. Ruparel et al.

Table 1 Comparison between k-means and DBSCAN

Parameters K-means DBSCAN

Number of clusters k Depends on the density of the
data points

Size of clusters Similar-sized Differs across clusters

Shape of clusters Prefers spherical clusters Handles skewed or randomly

shaped clusters

d = 2r arcsin \/Sinz (@) + cos(¢1) cos(¢2) sin® <—)L2 ; M) 2)

where d—the distance between the two points (along a great circle of the sphere),
r—the radius of the sphere, ¢ 1, p2—the latitude of points 1 and 2, respectively, and
A1, A2—the longitude of points 1 and 2, respectively.

2.3 Comparison of Clustering Algorithms

An appropriate clustering algorithm needs to be chosen for efficient formation of
clusters. Since clustering algorithm is used for network sharding, the parameters
such as distance function and number of clusters are chosen accordingly. Different
clustering algorithms that can be used are k-means, mean-shift, DBSCAN,
expectation—maximization (EM), agglomerative, hierarchical, etc. The two cluster-
ing algorithms suitable to our motive of clustering GPS points are:

e K-means. K-means clustering [6] classifies a given dataset into k number of clus-
ters, where k is specified in advance. The clusters are then represented as points,
and all the data points are associated with the nearest clusters. These clusters are
then recomputed and adjusted until a desired result is reached.

e DBSCAN. DBSCAN [6] is another approach that makes an assumption that a
cluster is a connected region with relatively dense points. DBSCAN algorithm
requires two parameters: the maximum distance (eps) and the minimum number
of points (minPts) in the given region which are required to form a cluster (Table 1).

Since the benefits offered by DBSCAN clustering algorithm are not relevant to
our results and also the number of clusters cannot be specified beforehand, we choose
k-means as the algorithm for clustering GPS points.

GeoSharding—A Machine Learning-Based Sharding Protocol 109

2.4 Similarity Measure in Leader Election

Various measures can be used for calculating the similarity between two strings, out
of which Hamming and Levenshtein distance are most suitable in this context:

e Hamming distance. The number of places at which the corresponding characters
in two equal length strings are different

e Levenshtein distance. The minimum number of single-character edits (insertions,
deletions or substitutions) required to change one string into the other.

Hamming distance calculates similarity much faster than Levenshtein distance,
but it has some limitations. This can be explained using an example: Consider the
strings “123457, “51234” and “67890”. The Hamming distance between the first
and the second string is 5 and that between the first and the third string is also 5. On
the other hand, the Levenshtein distance between the first and the second string is 2
and that between the first and the third string is 5. It can be seen that the first two
strings are similar, but the Hamming distance fails to determine this. Also, comparing
the similarity values obtained from both the distance measures, we have found that
Hamming gives a very narrow range of values, whereas Levenshtein gives a far
wider range of values. Considering Hamming, similarity measure will no longer be
a distinguishing factor in leader election. Hence, we choose Levenshtein distance.

3 Proposed System

Our proposed system aims at achieving scalability and improving efficiency in the
network plane of the blockchain architecture. There are existing systems that imple-
ment sharding for achieving scalability. However, these systems are not very efficient
due to various factors. Some of the factors are: (a) time taken to create a shard and
thus higher downtime of the network in the event of shard recreation, (b) propagation
delay in intra-shard communication and (c) higher computational resources required
in the existing systems. Thus, we aim to improve the efficiency by introducing the
concept of geographical sharding for the network plane.

3.1 Parameters Considered for Analysis

The following parameters are used for the analysis of our proposed system:

e Propagation delay. In computer networks, propagation delay is the amount of
time it takes for the head of the signal to travel from the sender to the receiver. It
can be computed as the ratio between the link length and the propagation speed
over the specific medium [7].

110 H. Ruparel et al.

e Computational resources. A computational resource is a resource used by some
computational models in the solution of computational problems [8]. PoW is a
task, which requires huge computational resources.

e Shard creation time. Shard creation time is defined as the time taken for dividing
the network into shards. Our research aims at reducing shard creation time.

e Delay in joining of new nodes. New nodes cannot join the network at any time.
They have to wait for the shard reformation epoch and perform PoW. If they could
not compute PoW within a specific time, they have to wait for the next epoch.
Our research aims at including all such nodes during the next epoch itself and not
delay it further.

e Network downtime. Downtime refers to a period of time during which a
computer system, a server or a network is shut off or unavailable for use. There
are various reasons for downtime, and in blockchain, one of these reasons is the
shard reformation phase.

3.2 Geographical Mapping

The first step in implementing GeoSharding is mapping the Internet protocol (IP)
addresses of the nodes to locations on the Earth’s surface. Various APIs are available
that allow us to do IP lookup and return the details in XML format. The details of
all the IP addresses are stored by regional Internet registries. In the response file, we
obtain the latitudes and longitudes which will be used in the Haversine formula to
calculate the distance between two nodes.

3.3 Leader Election

To increase the throughput of the blockchain system, a leader is elected from each
shard at every epoch [9]. Every node within a shard during a leader election epoch
calculates the target value, which is the hash of its shard name and the current block
number. Every node then calculates the hash of its address which includes the IP
address and its port number. The similarity between these two strings of hashes
forms a factor in deciding the leader of the shard [10]. The similarity between these
two strings of hashes is calculated using Levenshtein distance. The more similar the
hash of the node’s address and the hash of the shard name and block number, the
more are the chances of that node becoming the leader.

Once the distance is calculated, it is broadcasted to every node within the shard
[11]. The distances received are also verified by the receiving nodes. All nodes have
an array list of ages depicting the time since every node has become a leader. The node
which has become a leader recently has a lower age value. Every node then calculates
the cumulative scores based on the ages and the distances received from other nodes.
To give a fair chance to the nodes which are not elected as a leader for a long time,

GeoSharding—A Machine Learning-Based Sharding Protocol 111

the age can be given a higher weight than the distance, like 60% weightage to the
age factor and 40% weightage to the distance factor. This cumulative score is called
as the leader competence score. The node which has the maximum score becomes
the leader for that epoch. The address of the elected leader is then broadcasted to
every other node within the shard. The age of the leader node is decreased, and the
ages of other nodes within the shard are increased. After network sharding, every
node has the shard information in the form of a structure. The structure of the shard is:

Struct Shard contains

shardName string //mame of the shard in string format
shardlist[] Address //addresses of all the nodes within the shard
agelist[| float64 /lages of all the nodes within the shard

end

Algorithm 1 Leader Election Algorithm

1: function ELECT(shard, currentBlockNumber, myAddress)
Input: shard - a structure that every node receives during network sharding. currentBlockNum-
ber- an integer stating the current block number in the blockchain. myAddress - the address of
the node executing the program
Output: Leader of the shard

. A < Hash(shard.shardName, currentBlockNumber)
: B < Hash(myAddress)
. distance < Levenshtein distance (A, B)
: Broadcast distance to the nodes in shard.shardlist
. Verify the distances received from other nodes
: Compute the competence score of each node to become the leader using distance and age of the
node from the shard.agelist
8: Broadcast the leader
9: if leader = myAddress then
Broadcast “I am the leader”
10: Decrement the age of the leader node and increment the ages of all other nodes

~N N AW

4 Results

The result analysis is completely based on the assumption that proof of work for
establishing mining identities takes approximately 10 min. The proposed sharding
technique is applied to the GeoLite2 database which contains over 3.3 million entries.
The objective function which is used to optimize the clusters is composed of the
Haversine distance function. The Ethereum and bitcoin network have around 25,000
and 7000 reachable nodes, respectively. So, to analyze the results of sharding, we
consider alarger network size, and the database is sampled randomly to choose 33,645
records for clustering. The results written in the following section are obtained by
the implementation of k-means [6, 12] in GoLang [13], and the clustering algorithm

112 H. Ruparel et al.

Fig. 1 Geographical sharding produced using k-means clustering algorithm for k = 3

has been executed 10 times to reduce the variations in the result. This entire process
of training and forming seven clusters took an average of 0.84434s.

Figure 1 shows a snapshot of the proposed method for creating shards. These
shards are created using the k-means clustering algorithm, where the value of k=3.
The nodes in each shard are geographically closer than the nodes in other shards.

4.1 Dataset Description

GeoLite2 City database provided by the MaxMind Developers [14] was used for
the implementation of the concept. This dataset contains a total of 3.366332 million
records and 10 columns viz:

network (IP in string), geoname_id (integer), registered_country_geoname_id
(integer), represented_country_geoname_id (integer), is_anonymous_proxy
(bo-olean), is_satellite_provider (boolean), postal_code (string), latitude
(decimal), longitude (decimal), accuracy_radius (integer). The attributes used
in formation of clusters are network, latitude and longitude.

Preprocessing and Sampling. The database is first preprocessed to handle miss-
ing values. The dataset contains some records with missing latitude and longitude
values. Since the number of such records is only 19, these records are ignored. 33,645
records were chosen randomly without replacement from the remaining records and
then supplied as an input to the clustering algorithm.

GeoSharding—A Machine Learning-Based Sharding Protocol 113

Table 2 Time taken for running clustering algorithm on 33,645 records

#Clusters Total time (s) Average time per clustering (s)
3 2.5391 0.2539

5 4.0836 0.40836

7 8.4434 0.84434

10 13.9184 1.39184

15 26.8803 2.68803
Fig. 2 Output snippet for C:\Users\Hp\Desktop\Sharding>go run clustering.go -k 15
geographical sharding Number of records after sampling: 33645

Total records in data set: 3366332
Time elapsed: 3.0184119s

C:\Users\Hp\Desktop\Sharding»>go run clustering.go -k 1@
Number of records after sampling: 33645

Total records in data set: 3366332

Time elapsed: 1.3414136s

C:\Users\Hp\Desktop\Sharding>go run clustering.go -k 7
Number of records after sampling: 33645

Total records in data set: 3366332

Time elapsed: 958.4384ms

C:\Users\Hp\Desktop\Sharding>go run clustering.go -k S
Number of records after sampling: 33645

Total records in data set: 3366332

Time elapsed: 500.2538ms

C:\Users\Hp\Desktop\Sharding>go run clustering.go -k 3
Number of records after sampling: 33645

Total records in data set: 3366332

Time elapsed: 332.1319ms

4.2 Speed Analysis

The speed of the proposed system is measured by the time taken to form the clusters.
Figure 2 shows the time taken for clustering when the number of clusters specified
is 15, 10, 7, 5 and 3. This program was run 10 times, and the average time taken for
clustering using specified number of clusters is shown below in Table 2. The table
shows that the average time taken for creating 15 shards in a network of 33,645 nodes
is 2.68803 s, which is considerably faster than the general PoW-based method since
the method requires every node to solve PoW and listen to PoW results of other
slower nodes for at least 600s.

4.3 Scalability of the Proposed System

A simple and most efficient way to check the scalability is by increasing the sample
size of the dataset, which is fed to the clustering algorithm. The results in Table 3
show the time taken to form 10 shards for different sizes of the dataset.

114 H. Ruparel et al.

Table 3 Time taken for running clustering algorithm on different sizes of dataset

#Nodes (Sample size) Time taken for shard creation (s)
3367 0.0746991

33,645 1.6607684

3,36,487 9.3331801

33,064,864 226.1304

Considering the current Ethereum network size, even if we increase its size 13 times to
0.336 million nodes, the time it takes for creating 10 shards is as little as 9.3331801 s,
which is at most 1.5% of the time taken for PoW-based techniques [15]. For the
network size of 3.3 million nodes, it takes 226.1304 s to form 10 shards, which still
saves at least 70% of the time utilized for shards formation in PoW-based techniques.
Thus, even if a network of such a huge size is reached, the time taken by GeoSharding
to form shards will be at most 30% of the time taken for PoW-based techniques, which
is a significant advantage in making the system faster and scalable.

4.4 Efficiency and Security

The quality of clusters determines the efficiency of the clustering algorithm. Figure 1
shows that the clustering algorithm has created discrete clusters and divided the nodes
into shards efficiently. This map is developed with the help of Google My Maps [16]
which enables you to visualize the points on the world map. Each point on the map
is an IP address of a node at that location. A csv file containing longitude, latitude
and a cluster id of the points is given as an input.

All the nodes run the clustering algorithm, and the shard that each node belongs
to is decided in consensus by all the nodes. Since it is considered that at least 2/3rd of
the nodes in network are honest, a node will always be assigned to the correct shard,
thereby making the system secure. This process of sharding is repeated every 20
hours; hence, this sharding approach will significantly decrease the downtime of the
network. Every new node that joins the network has to wait for the shard reformation
epoch.

4.5 Leader Election

The leader election algorithm needs to be run once every leader epoch. This algorithm
is proposed in Sect.3.3. Below is an output snippet of leader election run for three
epochs. A leader is chosen such that every node is given a fair chance. Figure3
shows the addresses of the nodes in the shard and the similarity distances computed

GeoSharding—A Machine Learning-Based Sharding Protocol 115

C:\Users\Hp\Desktop>go run IdSet.go

New Leader Epoch

Electing Leader

Similarity score is: map[127.9.8.1 B@86:1@ 127.9.9.1 8887:11 127.9.9.1 8859:10 127.0.0.1 3081:9 127.9.0.1 8882:7 127.8.0.1
8@B83:8 127.0.0.1 8084:10 127.8.0.1 8085:11]

Age: map[127.8.8.1 8865:1 127.8.8.1 8886:1 127.9.9.1 8887:1 127.0.0.1 Se6e:1 127.9.8.1 8881:1 127.8.9.1 8082:1 127.0.0.1 8
883:1 127.9.8.1 8884:1)

Leader Competence Score: map[127.8.8.1 8888:4.6 127.8.8.1 8881:4.2 127.8.8.1 8882:3.4 127.9.8.1 8883:3.8 127.9.8.1 5984:4,
6 127.8.9.1 8885:5 127.9.9.1 B086:4.6 127.9.9.1 8887:5]

Leader is 127.9.9.1 B@8s

New Leader Epoch

Electing Leader

Similarity score is: map[127.9.9.1 8886:1@ 127.8.9.1 8887:9 127.€.8.1 560:9 127.8.8.1 8881:8 127.0.8.1 B882:7 127.8.8.1 8

883:19 127.8.0.1 8e84:11 127.0.9.1 8e85:18]

Age: map[127.8.8.1 B@81:1.1 127.8.8.1 8882:1.1 127.8.8.1 $883:1.1 127.8.0.1 8884:1.1 127.8.8.1 BEB5:8.5 127.8.8.1 8886:1.1
127.9.6.1 8687:1.1 127.9.0.1 888e:1.
Leader Competence Score: map[127.8.8.
2:3.46 127.0.0.1 BeB3:4.66 127.8.9.1
Leader is 127.8.8.1 B@s4

1
1 8886:4.66 127.8.8.1 8887:4.26 127.0.9.1 £080:4.26 127.6.8.1 8881:3.86 127.8.8.1 868
BBB4:5.86 127.8.8.1 8885:4.3)

New Leader Epoch

Electing Leader

Similarity score is: map[127.9.8.1 8885:18 127.9.9.1 8886:10 127.0.9.1 8887:8 127.9.0.1 8068:8 127.9.8.1 8681:9 127.0.0.1
8882:7 127.8.8.1 8863:9 127.8.8.1 8884:18]

Age: map[127.8.9.1 B886:1.2 127.8.8.1 B8E7:1.2 127.8.8.1 B8888:1.2 127.9.8.1 8881:1.2 127.8.8.1 B8882:1.2 127.8.8.1 B883:1.2
127.8.0.1 8084:8.5 127.9.8.1 80885:0.6]

Leader Competence Score: map[127.8.9.1 80808:3.92 127.9.0.1 8081:4.32 127.9.9.1 B082:3.52 127.9.9.1 B083:4.32 127.0.0.1 388
4:4.3 127.8.0.1 8085:4.36 127.9.9.1 8086:4.72 127.9.9.1 B087:3.92]

Leader is 127.8.8.1 8885

Fig. 3 Output snippet of leader election for three leader epochs

by them. This distance is the Levenshtein distance which is explained in Sect.3.3.
Also, the corresponding current ages of the nodes are shown. Leader competence
score is calculated for every node using the ages and the similarity distances as shown
in Eq. 3:

Leader_competence_score = 0.4 x similarity_distance + 0.6 x age (3)

The factors 0.4 and 0.6 assure that every node is given a fair chance to become a
leader. The node with the highest competence score is elected as the leader. Further,
the age of the elected leader is decremented to a value of 0.5, and the ages of other
nodes are incremented by 0.1 so that other nodes have a greater chance to become
the leader in the next epoch.

4.6 Comparison with the Existing Solutions

Elastico [15] uniformly partitions the mining network (securely) into smaller
committees (shards), each of which processes a disjoint set of transactions.
Communication in Elastico takes place between the nodes in the shards and the
directory committee. Elastico was the first one to propose the idea of network and
transaction sharding. However, the problem of scalability cannot be solved alone
by these sharding techniques as the intra-shard communication is still cumbersome
since the nodes in one shard might be located at different locations, thus leading
to propagation delay. Our proposed system solves this problem by using clustering

116 H. Ruparel et al.

Table 4 Comparison of performance parameters with related systems [15, 17, 18]

Parameters Proposed system Elastico [15] Zilliqa[17, 18]
Propagation delay Low High High
Consumption of Low High High
computational
resources
Shard creation time Very low High High
Network downtime Very low Moderate Moderate
Joining of new nodes | At shard reformation | At shard reformation | At Shard Reformation
epoch epoch if PoW is solved | Epoch if PoW is
or else at next epoch | solved or else at next
epoch

algorithms to geographically cluster nodes into shards and process transactions in
parallel, thus reducing the propagation delay.

Zilliga [17, 18] uses proof of work to form shards. The nodes are sorted accord-
ing to the nonce values obtained from the PoW results, shards are created and the
results are communicated. This is a very time-consuming process causing a greater
downtime of the network during shard formation epoch. Our system uses k-means
for sharding which results in faster creation of shards.

Table 4 shows the comparison of our proposed system with the existing systems.
The proposed system is analyzed to provide the following benefits as compared to
the existing scalable architectures:

Propagation Delay. In the existing blockchain systems with sharding, all nodes
perform proof of work and are divided into shards based on the PoW result. This
results in shards that consist of randomly located nodes.

In GeoSharding, the nodes in a particular shard are closer to each other than
the nodes in other shards, as shown in Fig. 1. Hence, the propagation delay during
intra-shard communication is less in GeoSharding as compared to the existing
sharded systems.

Computational Resources. Proof of work is a task which requires huge
computational resources. However, GeoSharding has very moderate system require-
ments, and the clustering program can be run by any node. This would result in an
increase in the mining power and hence the efficiency of the system.

Shard Creation Time. Proof of work is a time-consuming process. However,
GeoSharding creates shards in a very short time since it uses a clustering algorithm
like k-means, and hence, the shard setup phase is optimized. Shard reformation occurs
every 20h.

Joining of New Nodes. All nodes willing to join the network are assigned to specific
shards based on the clustering algorithm, whereas in the existing systems, if a new
node fails to compute PoW in a specific time, it is denied to join the network in that
epoch.

GeoSharding—A Machine Learning-Based Sharding Protocol 117

Reduction in Downtime of the Network. The downtime of the proposed system is
significantly less in comparison with other systems since the shard creation phase is
optimized to obtain better results.

5 Conclusion

GeoSharding is a scalable and efficient algorithm for clustering nodes based on
the latitude and the longitude values. Proof-of-work-based sharding technique first
requires a considerable amount of time to solve PoW for establishing mining
identities. It requires additional time to broadcast the network sharding result of
all the nodes and reaches a consensus on these shard lists. This paper proposed
sharding the network on the basis of k-means algorithm which is fast, scalable and
accurate in creating shards. GeoSharding accelerates this process of sharding the
network, considerably faster than PoW-based sharding. Also, the number of mes-
sages communicated with each peer node is 2/3rd of the messages communicated
in PoW-based sharding. For every shard reformation epoch, the time taken to form
shards in the worst case will still be better than the time taken for PoW-based network
sharding, thereby improving the overall throughput of the architecture.

References

1. Gupta M.: Blockchain for Dummies. 2nd IBM Limited edn. John Wiley & Sons, Inc, Hoboken,
NJ (2018)
2. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System
3. Croman, K., Decker, C., Eyal, 1., Gencer, A., Juels, A., Kosba, A., Miller, A., Saxena, P., Shi,
E., Sirer, E., Song, D., Wattenhofer, R.: On Scaling Decentralized Blockchains (A Position
Paper)
4. Sharding in Blockchain, https://medium.com/edchain/what-is-sharding-in-blockchain-
8afd9ed4cffO
Haversine Formula, https://en.wikipedia.org/wiki/Haversine_formula
6. Ganeshan D.: GPS Clustering and Analytics, http://web.cs.wpi.edu/~emmanuel/courses/
cs528/F17/slides/papers/deepak_ganesan_GPS_clustering.pdf
7. Propagation Delay, https://en.wikipedia.org/wiki/Propagation_delay
Computational Resources, https://en.wikipedia.org/wiki/Computational_resource
9. Eyal, I, Gencer, A., Sirer, E., Renesse, R.: Bitcoin-NG: A Scalable Blockchain Protocol. In:
Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implemen-
tation, Santa Clara, CA, USA (2016)
10. Obeidat, A., Gubarev, V.: Leader Election in Peer-to-Peer Systems
11. Perlin/noise-Library, https://github.com/perlin-network/noise
12. K-means implementation in Go, https://github.com/MathieuMailhos/gomeans
13. The Go Programming Language, https://tour.golang.org
14. GeolP2 City Dataset,https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-
databases/
15. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.. A Secure Sharding
Protocol For Open Blockchains

e

o

https://medium.com/edchain/what-is-sharding-in-blockchain-8afd9ed4cff0
https://medium.com/edchain/what-is-sharding-in-blockchain-8afd9ed4cff0
https://en.wikipedia.org/wiki/Haversine_formula
http://web.cs.wpi.edu/~emmanuel/courses/cs528/F17/slides/papers/deepak_ganesan_GPS_clustering.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs528/F17/slides/papers/deepak_ganesan_GPS_clustering.pdf
https://en.wikipedia.org/wiki/Propagation_delay
https://en.wikipedia.org/wiki/Computational_resource
https://github.com/perlin-network/noise
https://github.com/MathieuMailhos/gomeans
https://tour.golang.org
https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-databases/
https://dev.maxmind.com/geoip/geoip2/geoip2-city-country-csv-databases/

118 H. Ruparel et al.

16. Google MyMaps, https://www.google.com/mymaps

17. The Zilliga Team: The Zilliga Project: A Secure, Scalable Blockchain Platform. Version 1.0
(May 2018)

18. The Zilliga Team (Aug. 2017) The ZILLIQA Technical Whitepaper. Version 1

https://www.google.com/mymaps

	 GeoSharding—A Machine Learning-Based Sharding Protocol
	1 Introduction
	2 Basic Concepts
	2.1 Sharding
	2.2 Clustering
	2.3 Comparison of Clustering Algorithms
	2.4 Similarity Measure in Leader Election

	3 Proposed System
	3.1 Parameters Considered for Analysis
	3.2 Geographical Mapping
	3.3 Leader Election

	4 Results
	4.1 Dataset Description
	4.2 Speed Analysis
	4.3 Scalability of the Proposed System
	4.4 Efficiency and Security
	4.5 Leader Election
	4.6 Comparison with the Existing Solutions

	5 Conclusion
	References

