
Chapter 1
Applicability of Vermifiltration
for Wastewater Treatment and Recycling
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Abstract With the rapid population growth and wastewater generation due to
anthropogenic activities, availability of freshwater is decreasing annually. Untreated
wastewater discharged from the municipal and industrial sectors reaches to the local
surface water bodies and degrades water quality. Conventional wastewater treatment
systems possessing high carbon footprint require mechanistic operations and need to
be made affordable with ease of operation. To overcome the impediments associated
with the conventional treatment systems, vermifiltration technique employing earth-
worms in a filter bed has emerged as an alternative for wastewater treatment and
recycling. Further, the potential of macrophyte has also been explored by integrating
with the vermifiltration system for wastewater treatment. This chapter presents the
applicability of vermifiltration technique with various filter design configurations
and mechanisms involved for the treatment and recycling of both sewage and
industrial effluents. Further, the influence of different operational parameters like
hydraulic retention time (HRT), organic loading rate (OLR), hydraulic loading rate
(HLR), filter media bed design, earthworm density and flow mode on organic,
nutrient and pathogen removals from domestic and industrial wastewater is
discussed concisely. Moreover, future perspectives have been provided towards
the improvement of the efficacy of the vermifiltration system for wastewater treat-
ment and recycling.
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1.1 Introduction

Increase in global population, urbanization and industrialization has resulted in
environmental pollution and degradation including diminished water quality
(Verma et al. 2012). Disposal of untreated sewage and industrial effluents into the
surface water bodies leads to water pollution (Goel 2006). Wastewater carrying
organics like biochemical oxygen demand (BOD), chemical oxygen demand (COD)
and nutrients like nitrogen and phosphorus results in the problems like depletion of
dissolved oxygen (DO) and eutrophication (Metcalf et al. 1991; Zheng et al. 2013).
In addition, exposure to the water contaminated by the release of pathogens from
sewage into the surface water leads to water-borne diseases (Reddy and Smith 1987).
Thus, deterioration of river ecology along with the loss of freshwater sources creates
an unhealthy environment for humans (Wang et al. 2012). Furthermore, the per
capita available water is becoming less with an increase in the population pertaining
to the limitation of freshwater sources (Pimentel et al. 2004). Therefore, it becomes
necessary to reuse wastewater generated from households and other places after
giving a certain level of treatment. Owing to the water scarcity and water pollution
due to anthropogenic activities, there is an urgent need to treat and reuse the treated
effluent in industrial, agricultural and non-potable purposes.

For wastewater treatment, anaerobic and aerobic processes are being used world-
wide (Speece 1983). In the anaerobic process, microbes convert organic matters into
methane and carbon dioxide, whereas in the aerobic process, aerobic microbes
convert organic matters into biomass and carbon dioxide (Metcalf et al. 1991).
The anaerobic process is effective for high COD wastewater, requires less energy,
and produces less sludge in comparison to aerobic process. However, it has been
documented that the aerobic process is comparatively better than the anaerobic
process in terms of acclimatizing the variation in pH, temperature and organic
loading rates (OLR) (Degremont 1991). Further, the aerobic process requires less
time to restart and can work between a range of temperature from 25 to 35 �C as
compared to the optimum temperature for the anaerobic process is 30 �C (Singh et al.
2019b). However, both conventional wastewater treatment techniques required high
capital cost, recurring expenditures, skilled manpower, more time to restart after
complete shutdown and mechanized and energy-intensive operations (Noumsi et al.
2005). In addition, the sludge generated from conventional processes requires further
treatment before getting disposed into the environment. Other than the biological
treatment process, physical and chemical processes are also being used in some part
of the world (Adin and Asano 1998). However, physical and chemical processes are
not efficient organic and nutrient removal from wastewater (Ra et al. 2000). Thus, in
the present scenario, an economical and sustainable process is required to treat
wastewater with less capital and operation and maintenance cost and ease of
operation process.

Integration of earthworms in wastewater filtration process has evolved as an
eco-friendly and economical alternative to conventional wastewater process, collec-
tively known as vermifiltration (Tomar and Suthar 2011). Wastewater passing
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through the initial layer, where the organic matter is converted into humus by
earthworm, is followed by the filtration through filter media which supports micro-
organism’s growth and subsequently secondary treatment occurs. Recent studies
have shown that the vermifiltration technique can emerge as a suitable and sustain-
able alternative for wastewater treatment and recycling. Thus, the chapter presents an
overview of the vermifiltration technique with various filter design configurations,
applicability and performance evaluation of the technique for the treatment and
recycling of sewage and industrial effluents, explaining the mechanisms involved.
Additionally, the performance of an integrated macrophyte-vermifiltration system
for wastewater treatment and recycling has also been presented. Further, the effects
of different filter design and operational parameters on the system performance have
been summarized. Moreover, future research perspectives have been provided
towards the improvement of the efficacy of the system for wastewater treatment
and recycling.

1.2 Overview of Vermifiltration Technique

Vermifiltration system comprises an earthworm active zone along with filter media
bed which supports microbial community for domestic and industrial wastewater
treatment. The species of earthworms employed in vermifiltration include Eisenia
fetida, Lumbricus rubellus, Eudrilus eugeniae and Eisenia andrei with filter bed
consisting of soil, compost and cow dung which are available for pollutant degra-
dation in earthworm active zone (Singh et al. 2019b; Xing et al. 2011). In filter media
design, different materials like sand, gravel, cobblestone and quartz sand are com-
monly used (Singh et al. 2019b). In vermifiltration system, wastewater is firstly
passed through earthworm active zone followed by filter media bed. Depending on
the wastewater flow direction, vermifiltration system, in general, can be of two types:
horizontal flow system (HFS) and vertical flow system (VFS). In HFS, wastewater
flows horizontally through the bed while in VFS wastewater is fed vertically through
the bed as shown in Figs. 1.1 and 1.2, respectively. A hybrid system combining both
horizontal and vertical flow systems in the sequence is used for the treatment of
wastewater. The flow of wastewater in the hybrid system is either from a horizontal

Influent

Effluent

Worm active zone Sand + Gravel 

Fig. 1.1 Schematic of a typical horizontal flow vermifiltration system
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system followed by a vertical one or vice-versa as schematically presented in
Fig. 1.3a, b, respectively.

Nowadays, researchers are focusing on the integrated macrophyte-vermifiltration
system to improve the wastewater treatment efficiency. In macrophyte-assisted
vermifiltration system, the concept of wetlands using different plant species like
Canna indica, Phragmites australis, Typha angustifolia, Saccharum spontaneum,
Cyperus rotundus, etc. is integrated with vermifiltration system for wastewater
treatment (Chen et al. 2016; Nuengjamnong et al. 2011; Samal et al. 2017a;
Tomar and Suthar 2011; Wang et al. 2010b). Removal from wastewater takes
place when macrophyte uptakes significant amount of nutrients for their growth. A
macrophyte-assisted vermifiltration system has been schematically shown in
Fig. 1.4. The root or rhizospheric zone of plants helps to provide a favourable

Influent

Worm active zone 

Sand + Gravel

Effluent

Fig. 1.2 Schematic of a typical vertical flow vermifiltration system

(a)

(b)

Influent

Worm active zone 

Sand + Gravel

Effluent

Worm active zone Sand + Gravel 

Worm active zone 

Sand + Gravel

Effluent

Influent

Worm active zone Sand + Gravel 

Fig. 1.3 Schematic of hybrid vermifiltration systems based on the wastewater flow direction: (a)
VFS followed by HFS and (b) HFS followed by VFS
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environment for the growth of the diverse microbial community to degrade organic
contaminants (Bezbaruah and Zhang 2005). Further, researchers have found that
macrophyte transfers oxygen from the atmosphere to the rhizosphere which is
further consumed by the microbial community (Bezbaruah and Zhang 2005; Brix
1994). Increased oxygen is responsible for maintaining aerobic condition for the
microbes as well as for earthworms which is useful to accelerate the degradation of
organic contaminants.

1.3 Performance Evaluation of Vermifiltration System

1.3.1 Applicability of Vermifiltration for Sewage Treatment

It has been reported that the vermifiltration technique is an efficient and eco-friendly
process to treat wastewater originating from households (Kumar et al. 2016; Li et al.
2009). Vermifiltration technique has been applied to domestic wastewater treatment
and has shown a significant reduction of COD and NH3

+-N (Sinha et al. 2008; Wang
et al. 2010a; Xing et al. 2011). Applicability of vermifiltration technique with
associated process parameters for wastewater treatment is summarized in
Table 1.1. Earthworms consume retained suspended particles in the filter during
ingestion and significantly reduce BOD by more than 90% and COD in the range of
80–90% and a significant reduction in nutrients concentration (Li et al. 2009; Wang
et al. 2011). According to Kumar et al. (2016), application of vermifiltration
employing earthworm species Eisenia fetida and Eudrilus eugeniae to treat waste-
water generated from domestic activities has shown the reduction of about 88% and
70% BOD, 78% and 67% TSS and 75% and 66% TDS, respectively, whereas a
laboratory-scale study has revealed the removal of contaminants like BOD5, COD
and TSS from domestic wastewater in the range of 55–66%, 47–65% and 57–78%,
respectively (Xing et al. 2010). The earthworm species Eisenia fetida is one of the
most common species employed to treat domestic wastewater (Gunadi et al. 2002;
Hughes et al. 2009; Sinha et al. 2008). In another study on domestic wastewater
treatment, employing Eisenia fetida as an earthworm species has shown removal of

Worm active zone 

Sand + Gravel

Effluent

Influent
Macrophyte

Fig. 1.4 Schematic of a macrophyte-assisted vermifiltration system
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78% BOD5, 68% COD and 90% TSS (Liu et al. 2013). A study has been conducted
by Zhao et al. (2014) to treat synthetic wastewater through macrophyte-assisted
vermifiltration using different combinations of vertical sub-surface flow constructed
wetlands platned with macrophyte Acorus calamus and earthworm Eisenia fetida.
Results of the study revealed the removal of up to 87% COD, 86% total nitrogen
(TN) and 83% total phosphorus (TP).

Nitrogen removal from wastewater is mainly responsible for the nitrifiers and
denitrifiers microbes present in the earthworm’s intestinal guts (Ihssen et al. 2003).
Earthworms are able to aerate the system through its borrowing action which
enhances the nitrification process and creates a favourable microenvironment for
the growth of aerobic nitrobacteria (Samal et al. 2017a). Wang et al. (2010b) have
combined macrophyte Phragmites australis and earthworm species Eisenia fetida to
treat domestic sewage with an OLR of approximately 192 g/m2/d and hydraulic
loading rate (HLR) of 1 m3/m2/d, and the results showed an average reduction of
about 90% COD, 93% SS and 92% NH4

+-N. Wang et al. (2013) reported 63–66%
removal efficiency of TN and 72–78% removal of NH3

�N from synthetic domestic
wastewater. Liu et al. (2013) also reported about 92% NH4

+-N removal from
domestic wastewater. Further, the removal of phosphorus depends upon the sorption
capacity, surface area and size of vermifilter bed material along with chemical
reaction like ligand exchange reaction, complexation and precipitation (Samal
et al. 2017a). Vermifiltration system combined with macrophytes Perionyx
sansibaricus and Cyperus rotundus reported the reduction of wastewater pollutants
like COD, total suspended solids (TSS), total dissolved solids (TDS) and NO3

� by
more than 85% (Tomar and Suthar 2011). Wang et al. (2013) reported 80–82%
removal of TP using bedding material which consists of cobblestone, detritus, silver
sand and earthworm bed while removal of 87% of TP using cobblestone, soil and
sawdust. Furlong et al. (2014) obtained a removal efficiency of TP in the range of
56–59% in human faeces.

The most crucial parameter in the sewage treatment from the human health point
of view is pathogen removal. In this context, a comprehensive review of available
literature by Swati and Hait (2018) underscores that earthworms are capable of
pathogen reduction from various wastes. Arora et al. (2014) reported around 99%
removal of Escherichia coli (E. coli), total coliform (TC), faecal coliform (FC) and
faecal streptococci (FS) from synthetic wastewater spiked with sewage in a
vermifiltration system. Further, Kumar et al. (2016) have treated domestic wastewa-
ter with vermifiltration and achieved a reduction of FC by 99%. An experimental run
of 365 days of vermifiltration showed the reduction of COD by more than 87 and
99% thermotolerant coliforms using domestic wastewater (Furlong et al. 2014).

1.3.2 Applicability of Vermifiltration for Industrial Effluents

Initially limited to the treatment of the domestic wastewater, the vermifiltration
technique has gradually evolved to be studied for the treatment of the industrial
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effluents. However, very few studies (Table 1.1) are being carried out on the
vermifiltration of industrial wastewater because of the sensitive nature of earth-
worms towards parameters like pH, heavy metals, pesticides and salinity. Regardless
of this, vermifiltration applied to industrial effluent from the food and beverage
sector has shown encouraging pollutant removal efficiency and can pave way for
application for many other industrial effluents that have low or no toxicity (Singh
et al. 2019a). Additionally, vermifiltration system has been applied to other indus-
trial effluents, such as petroleum industry and pharmaceutical industry (Dhadse et al.
2010; Sinha et al. 2012). Sinha et al. (2007) have successfully applied vermiltration
system to treat effluent from dairy industries which mainly consist of organics like
proteins, carbohydrates and fats. According to the study, earthworm species Eisenia
fetida has resulted in the removal of about 99% BOD5 and COD in the range of
80–90%. It also leads to the removal of TDS and TSS in the range of 90–92% and
90–95%, respectively. Another study conducted by Sinha et al. (2012) on petroleum
industry wastewater has shown 99% removal of C10–C14, C15–C28 and C26–C36.
Further, cheese whey waste has been treated by using vermifiltration and achieved
about 76% BOD, 82% COD and 77% TSS removal efficiency (Merlin and Cottin
2009). Ghatnekar et al. (2010) reported the removal of COD and BOD by 89 and
90%, respectively, from gelatine industry wastewater employing earthworm species
Lumbricus rubellus. Dhadse et al. (2010) studied application of vermifiltration on
herbal pharmaceutical effluents using earthworm Eudrilus eugeniae at different
organic loading rates (OLR) of 0.8, 1.6, 2.4 and 3.2 kg COD/m3/d with 3.2 kg
COD/m3/d as the optimum with COD and BOD removal efficiencies in the range of
85–94% and 90–96%, respectively. Macrophyte-assisted vermifiltration was applied
to treat synthetic dairy wastewater by employing macrophyte species Canna indica
and reported removal of BOD, COD, TSS, TDS and TN by 81%, 76%, 85%, 23%
and 43%, respectively (Samal et al. 2017b).

1.4 Mechanisms of Vermifiltration Technique

Vermifiltration technique works in combination of earthworms and microbes. Evolv-
ing from the basic system, macrophyte-assisted vermifiltration has emerged as an
eco-friendly alternative for wastewater treatment and recycling. In order to unravel
the treatment mechanisms, the roles of various layers and components of a typical
macrophyte-assisted vermifiltration system have been schematically presented in
Fig. 1.5. The solids retained on the filter bed are consumed by the earthworms and
converted into the humus (Sinha et al. 2008; Singh et al. 2017). A microbial layer
formed on the filter bed also contributes to the degradation of the contaminants
retained on the filter bed. Generally, vermifiltration system consists of components,
i.e. earthworms and filter bed. Filter bed supports the earthworm growth by provid-
ing food source by sorption mechanism from the wastewater, and a microbial layer is
formed because of low porosity (Liu et al. 2013; Singh et al. 2017; Wang et al.
2010a, b). Further, the earthworm active zone is also known as aerobic zone while
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filter bed is called anoxic zone in vermifiltration (Samal et al. 2018a). Oxygen level
is increased in filter bed by the borrowing action of earthworms. Further, the increase
in the surface area of soil particles with an increase in vermibed porosity to retain
more organic pollutants and suspended solids facilitates further decomposition by
earthworms (Jiang et al. 2016; Sinha et al. 2008; Singh et al. 2018). Earthworms
process wastes by actions like ingestion, grinding, digestion and excretion, and these
actions have several physical, chemical and biological effects on the internal eco-
system of earthworm active zone (Singh et al. 2017). The ingestion and grinding
actions by earthworm result in conversion of feed waste material into small particles
(2–4 microns) followed by the digestion due to symbiotic action of microbes and
enzymes in intestine (Kumar et al. 2015; Sinha et al. 2010; Singh et al. 2017; Wang
et al. 2011). Numerous enzymes like protease, lipase, amylase, cellulase and
chitinase are secreted in the gizzard and intestine of the earthworms which lead to
biochemical conversion of the cellulosic and the proteinaceous materials present in
the wastewater (Sinha et al. 2010). Since earthworm gut hosts diverse microbial
communities, ingested food materials are excreted as vermicast into the soil with
nutrients. Microbes present in the biofilm for their population growth further degrade
nutrients retained on it, and the nutrients present in the vermicast (Sinha et al. 2008).
Earthworms secrete mucus (slimy fluid) from their body which is composed of
various metabolites to keep their body surface humid, which also helps in absorbing
oxygen (Singh et al. 2017). Earthworms are able to convert large organic matter into
complex amorphous solids which contains phenolic compounds and this process is
called ‘humification’. These humic substances present in vermibed help in metal
adsorption and contain those organic compounds which have complex molecular
structure as aromatic rings, carbonyl groups, phenolic and alcoholic hydroxyl. This

Earthworms + soil 

Coarse gravel

Fine gravel

Sand

Macrophyte:
• Microbial growth
• Filter bed stabilization
• Plant exudates and toxins for pathogen

removal
• Nutrients removal
• Improved soil hydraulic conductivity

Earthworm:
• Organic matter degradation
• Digestion of pathogens
• Mineralization and absorption of

nutrients
• Excretion of digested wastes

(vermicasts): Nutrients and microbial
rich and pathogen free

Sand:

• Retention of solids
Fine gravel:
• Supporting layer
• Forms biofilm

Coarse gravel:
• Supporting layer
• Acts as filtration unit

Fig. 1.5 Schematic representation of the role of different layers and components in macrophyte-
assisted vermifiltration system
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molecular structure binds with different metal ions and thereby helps in metal
removal (Singh et al. 2017).

In addition, significant pathogen reduction by the vermifiltration technique has
been reported (Samal et al. 2017a). Earthworms have the capacity to cull the
pathogens present in the ingested materials (Sinha et al. 2010). The pathogen
reduction in vermifiltration is caused mainly because of the enzymatic and microbial
activities (Alberts et al. 2002; Hartenstein 1978; Monroy et al. 2008, 2009; Swati and
Hait 2018). In addition, inhibition in humates in the guts of earthworms is respon-
sible for the pathogen removal (Brown and Mitchell 1981; Hartenstein 1978).

1.5 Future Perspectives

The potential of vermifiltration to treat domestic as well as industrial wastewater is
well documented. An insight of vermifiltration based on the experimental results,
design configurations and treatment mechanism has been provided. Vermifiltration
integrated with macrophyte is an emerging technique for the wastewater treatment.
Most of the studies have demonstrated vertical vermifilter at laboratory-scale level
only for synthetic wastewater treatment. For this purpose, vermifiltration studies
with real sewage and industrial effluents will be useful to assess the organic, nutrient
and pathogen removal efficiency. However, research is warranted to explore the
different vermifiltration system design configuration for wastewater treatment. Var-
ious process parameters such as earthworm stocking density, flow rate, hydraulic
retention time (HRT), OLR and filter bed configuration need to be optimized for
scaling-up the process. In addition, most of the studies have employed epigeic
earthworm species Eisenia fetida only. In this context, it is pertinent to explore the
various other earthworm species as pure and mixed cultures as diverse earthworm
species co-exist in nature. Studies are required to be conducted to explore the effect
of symbiotic relationships or mixed earthworm species on the removal of contam-
inants from wastewater.

1.6 Conclusions

The applicability of vermifiltration technique for the treatment of both sewage and
industrial effluents along with the treatment mechanisms involved has been exten-
sively discussed. Additionally, the potential of macrophytes has also been discussed
in an integrated vermifiltration system for wastewater treatment. Further, the influ-
ence of different filter design and operational parameters on the system performance
has been presented. The combined effect of earthworm active zone and filter media
in the vermifiltration system has been reported for the effective removal of pollutants
from the wastewater. Maximum organic and nutrient removal efficiencies of 99%
BOD, 96% COD, 86% nitrogen and 83% phosphorus have been reported in the
vermifiltration of wastewater. Pathogen removal of 90–99% for FC and 99% for TC,
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faecal streptococci and E. coli by the vermifiltration technique has also been
reported. Further, the nutrient removal in an integrated macrophyte-vermifiltration
system is mainly because of uptake by macrophytes for their growth. Removal of
pollutant is highly selective on the components of vermifilter like filter media
composition, earthworm species and macrophyte employed in the process. More-
over, it is necessary to assess vermifiltration system for wastewater treatment
employing mixed cultures as diverse earthworm species co-exist in nature. The
effect of various process parameters like HLR, OLR and earthworm density during
vermifiltration is not quite clear. Extensive research is warranted to optimize differ-
ent process parameters along with an optimized vermifilter design for efficient
wastewater treatment and recycling.
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