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Financial Innovations and Blockchain
Applications: New Digital Paradigms
in Global Cybersociety

Lukáš Pichl, Cheoljun Eom, Enrico Scalas, and Taisei Kaizoji

Abstract Cryptocurrencies—digital assets—are discussed from the viewpoint of
the medium of exchange and the store of value with a focus on Bitcoin. The issue
of trust towards the unit of accounts is viewed in the perspective of historical events
including fiat currency reforms in the past all over the world. It is argued that a
major test of the present global financial system and its emerging new technology
alternatives has not occurred yet. The notion of intrinsic value of currency is strongly
attached to the stability of the social and economic system, which landscape will
be probably drastically altered in the next few decades due to the rise of artificial
intelligence. The chapters in this book which are focusing on the current aspects of
financial innovations also point out the possible directions and dilemmas the future
may bring us.

Keywords Money · Cryptoasset · Cryptocurrency · Blockchain · Currency
reform · Financial crisis · Time series prediction ·Machine learning
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1 Introduction

The origins of numeracy, the ability to count and work with numbers, are historically
documented by archeological findings of tally sticks (Ifrah 2000). Scientific progress
has always transformed the society—in the example of the tally, where the number
of objects is represented by the (count of) notches on the tally stick—not only the
tally served as a number representation object, it often had the transaction function
of being convertible in the counted object. This has been especially the case when
the tally was endorsed by a high-ranking member of the society. The material form
of money, as is well known, is therefore tightly related to the current level of science
and technology and goes hand in hand with trust. In our example of the tally stick
money precursor, it is the trust that at a later point of time the tally can be converted
to the underlying object (store of value) or would be accepted as a means of payment
instead of the physical delivery of the represented goods. One feature of money the
individual tally stick does not necessarily have is however the general unit of accounts
property—the universal application of the same counting unit, i.e. the emergence of
money in the modern sense of the word as a mediator of all economic transactions
(see, e.g. Weatherford 1998).

The requirement for mediating all economic transactions can be met by using a
highly marketable asset, which first naturally appeared in the form of grain or live-
stock, before it was substituted with precious metals. The latter step would not be
possible without social hierarchy in which the objects of desire were set by the upper
class that controlled the community and the use of its technology. About three thou-
sand years ago in China, bronze models replicating cowrie shells appeared as money
(Kerr 2013). In the Iron Age, coins minted from precious metals that represented the
notion of economic value appeared in the ancient Mediterranean area (Pavlek et al.
2019), where system of a commodity-based legal tender has prevailed through the
medieval times. Our discussion this far was based on the history of numeracy and its
relation to money; however, numeracy goes hand in hand with literacy. Promissory
notes to deliver money, based on trust and the legal system framework, have first
been documented in China during the Han dynasty (von Klaproth 1823), and first
precursors of paper money appeared as early as in the seventh century during the
Tang dynasty (Pickering 1844). This abstraction of financial value from the under-
lying value of coin metal asset decoupled the trust in the economic system from
the asset value of the legal tender—money went even more abstract and modern
currencies were born. Still, the promissory note feature of paper money by the obli-
gation to convert banknotes to gold on demand persisted in the world for quite a
long time—convertibility of US dollar to gold was officially terminated by the US
President Richard Nixon as late as in 1971 (cf. Zoeller and Bandelj 2019). Instead,
the national motto “In GodWe Trust” on the US dollar banknotes illustrates the truth
of the incomplete human control framework and the uncertain future that has been a
part of money notion since its inception.
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Whom is it therefore that we trust considering the store of value function of fiat
currencies? A mainstream answer would perhaps emphasize the role of the gov-
ernment and the role of the central bank in each country; in today’s interconnected
world, a true cyberworld of computerized financial system, perhaps also a rising
global financial order. In the gold standard world, it was the Bretton Woods system
at global scale; at present, various institutions influence the dynamics of the inter-
twined competing world financial system, such as the International Monetary Fund,
the World Bank, but also European Central Bank, Asian Infrastructure Investment
Bank, and others, based on the region and viewpoint.

What does money mean today? Here is the quotation of Petr Sýkora, co-founder
of the charitable foundation Good Angel in the Czech Republic (Petka 2013):

Money today is just stored as the ones and zeros in a computer system. It does not have to
be there tomorrow…

Let us take Czechoslovakia as a historical example how a sudden currency reform
can ruin personal savings—there is an infamous quotation by a local spokesman of
communist party in the city of Pilsen (May 29, 1953) (Ule 1965)

Our currency is firm. Trust the party, Comrades. The rumors about a reform have no
justification…

followed the next day by the official public announcement of currency reform on
May 30th, 1953, which largely deprived the population of cash and bank savings
and resulted in local rebellions against the regime. The conversion rates of the old
currency to the new one varied from1:5 to 1:50, based on the amount; the government
also realized abankruptcy as the obligation fromall government bonds to their holders
was cancelled.

Since currency reforms feature nonlinear conversion between the old and new
currency based on the deposited amount leading to arbitrary relocation of financial
resources (Krishna and Leukhina 2019), they are popular with totalitarian regimes
such as the one during the socialist regime period in Czechoslovakia. Similar loss
of savings occurred in Russia during the currency reform of the summer 1993
which wiped out the value of savings of general population using a combination
of conversion restrictions with high rate of inflation (cf. Desai 2005).

The global financial crisis of 2008 has resulted in trillion dollar losses all over the
world, be it in the house value and related personal mortgage bankruptcies when the
US housing bubble burst; or the evaporated retirement savings of US citizens; the
extreme losses of European Banks that naively propelled the sub-prime mortgage
financial derivative prices; in brief the whole world sank into an aftermath, a recovery
from which has been particularly long and painful in Europe (cf. Farmer 2012).

The above-mentioned currency reforms and financial crises serve us here to claim
that the probability of major disruption in the time value of fiat currencies, even if
it were to be once in a lifetime—is not negligible. Times of hyperinflation, such as
the current one in Venezuela, attest to the loss of public trust in the official currency,
and the need for an alternative solution—be it a foreign currency, a commodity, or,
as we discuss in the next section—perhaps even a cryptocurrency.
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2 Algorithmic Innovations in Digital Finance

Money in the world moves to the cyberspace by getting digital form. The conse-
quences of such a change include detailed expenditure and revenue traces in databases
of financial institutions, and the shift towards the cashless society, a trend especially
pronounced in Scandinavian countries such as Sweden, where cards andmobile apps
in smartphones are by far the most common means of payment. Proposals for citizen
accounts directly with the central bank are also popular as discussed in the following.

2.1 Fiat Currencies—Pros and Cons

When a fiat currency goes completely digital, which has not yet occurred in the world
nevertheless, the central financial institution gains the technical means to cut each
individual off the economic system. They also gain the full financial record of indi-
vidual behavior. Information has become the most valued commodity of our times
and its possession results in power. This asymmetric relation of an individual and
the financial institution may be convenient when privacy is protected, and general
security measures function but turns to a disaster in cases of successful cyberattacks.
It is in the very nature of the trusted bookkeeping party that digital money cannot be
proved completely secure. Technically, redistribution of financial wealth can easily
be implemented by altering the financial records according to any algorithm deemed
as legal, be it for instance (nonlinear) negative interest rates to fight deflation in the
form of instantaneous currency reforms using central bank digital currency (Bind-
seil 2019). As the sophistication of the digital financial systems increases, the risks
associated with the malfunction of the centralized financial system gradually deepen.

2.2 Cryptocurrencies—Pros and Cons

The year 2008 is not only known for the Great Recession; it is the year when a
breaking article entitled “Bitcoin: A Peer-to-Peer Electronic Cash System” pub-
lished under the name of Satoshi Nakamoto appeared (Nakamoto 2008). The work
solved the double spending problem of digital money—how to guarantee that digi-
tal money is not spent several times—by publishing the ever-growing entire record
of all transactions protected by encryption in the form of blockchain. According to
Nakamoto, “The network timestamps transactions by hashing them into an ongoing
chain of hash-based proof-of-work, forming a record that cannot be changed without
redoing the proof-of-work”. Incentive to maintain the cryptographic integrity of the
blockchain is given by rewarding the creator of the new block with a fixed amount
of Bitcoin (mining process) or by using transaction fees. As long as the majority
of the computational nodes participates in the blockchain consensus mechanism,
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the system is robust to attackers possibly attempting to alter the blockchain records
(Nakamoto 2008). The distinguishing features of Bitcoin as cryptocurrency are the
lack of any regulatory financial institution, fixed supply of coins, and availability of
the complete record of all transactions among (in principle anonymous) addresses.

Bitcoin has found its place in the alternative financial system and remains the
leading cryptocurrency. As of January 26, 2020, the price of Bitcoin in USD is about
8367 and the market capitalization is 152 billion USD, out of 230 billion for the
entire cryptocurrency market with thousands of altcoins (Coinmarketcap 2020). The
major reservation against Bitcoin and cryptocurrencies based on the same concept
is that they do not have any underlying economic value unlike from fiat currencies.
In other words, the lack of trust in the financial system of fiat currencies which are
prone to political etc. interventions should not necessarily imply trust in such an
ad hoc built digital asset. The highly fluctuating values of Bitcoin prices over time
and various cryptocurrency exchanges attest to the fact that Bitcoin intrinsic value
is not in the goods and services available in an economy for which it would be a
legal tender. To date, the decentralized nature of Bitcoin has yet to gain its broader
acceptance among the public. Cryptocurrencies also face the environmental problem
of enormous power consumption for the hash calculations that bear a substantial
carbon footprint. The criticisms as well as expectations can be summarized in the
following two quotations on Bitcoin (CNBC 2018, 2019).

Bitcoin has no unique value at all.

—Warren Buffet

There will be one online equivalent to gold, and the one you’d bet on would be the biggest.

—Peter Thiele

This book treats various aspects of cryptocurrency markets, ranging from effi-
ciency, proportion of informed traders, arbitrage opportunities in short- and long-
time span, predictability with machine learning algorithms, causality in the cryp-
tocurrency exchange rate time series, etc. We purposefully leave the issue of the
social acceptance of Bitcoin and cryptocurrencies in general open to the future.

2.3 Time Series Analysis of Fiat Currencies and Crypto
Assets

In order to analyze dynamics of asset prices, including digital assets, the available
theoretical models typically rely either on statistics (econometric algorithms, cf.
(Martin et al. 2012), such as the GARCH model of volatility (Bollerslev 1986)) or
more recently booming methods of machine learning in data science. These algo-
rithms, such as the Elman Recurrent Neural Network in the past (Elman 1990), or
more recently Long Short-TermMemoryNetwork (LSTM) (Hochreiter and Schmid-
huber 1997) and its derivatives are motivated from the developments in the field of
Natural Language Processing (cf. Sagheer and Kotb 2019). Predictions beyond the
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level of random coin tossing can then be used in algorithmic trading, for instance for
dynamic portfolio management. A recent hot topic, focused on the spatial structure
of the underlying economic subjects, such as banks or firms, is network science (cf.
Barabási 2016), which builds on the network structure models and algorithms for
sets of objects connected by edges. Such a formalism allows to study the propagation
of initial network shocks, or estimate parametric features distinguishing the behavior
of various groups in the economic models. The next section provides examples of
such approaches in the following chapters of this book.

3 Financial Technologies and Cryptocurrency Markets

In the first part of the book, there are four chapters related to general financial topics,
such as portfolio selection, asset price prediction, and network structure of default
risk among financial institutions.

Jun Sakazaki and Naoki Makimoto in Chapter “Financial Contagion Through
Asset Price and InterbankNetworks” study propagation of shocks caused for instance
by regulatory effects throughdifferent topologies of network structures. Theyvary the
composition of banks’ portfolio and observe its effects upon outbreaks and spreads
of a financial contagion.

AdeolaOyenubi inChapter “Optimal Portfolios onMean-DiversificationEfficient
Frontiers” uses genetic algorithm, an evolutionary computing method, for obtaining
mean-variance efficient frontiers and portfolios that optimize the trade-off between
returns and risk measures.

Ken Matsumoto and Naoki Makimoto in Chapter “Time Series Prediction with
LSTM Networks and Its Application to Equity Investment” use the Long and Short-
Term Memory algorithm from among the recent recurrent neural network meth-
ods to conduct an empirical stock return prediction study for TOPIX Core 30 with
applications to portfolio selection problem.

MasatoHisakado andTakuyaKaneko inChapter “AResponseFunction ofMerton
Model and Kinetic Ising Model” consider the contagious defaults of banks created
by a network structure based on lending and borrowing relations. In their mathe-
matical description built on a model originating from physics they show that the
thermodynamic notion of temperature can be attributed to asset volatility.

The second part of the book contains eight chapters related to crypto-assets, and
Bitcoin in particular, focusing on features ranging from security and major player
identification through the analysis of crypto-asset forks, cointegration models of
crypto-currency time series, triangular arbitrage, estimates of proportion of informed
traders, and other advanced topics.

Naoyuki Iwashita in Chapter “Bitcoin’s Deviations from Satoshi’s World” exam-
ines the reasons why Bitcoin has not yet become a major means of payment, focus-
ing on the security issues, and making the point of the difficulty that that ordinary
investors cannot manage their secret keys in a secure way.
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Yoshi Fujiwara and Rubaiyat Islam in Chapter “Hodge Decomposition of Bitcoin
Money Flow” study howmoney flows among users of Bitcoin based on an algorithm
that partially identifies anonymous users from addresses, and construct a dynamic
directed graph of Bitcoin transaction flow. Graph theory then serves them as a tool
understand the dynamics on the complex network of Bitcoin transactions, including
some indirect consequences on Bitcoin price in the exchange markets.

TakeshiYoshihara et al. inChapter “TimeSeriesAnalysis ofRelationshipsAmong
Crypto-asset Exchange Rates” investigate market efficiency (Fama 1970, 1991) in
crypto-asset exchange rates through the application of several kinds of unit root tests
and the Johansen procedure. They also elucidate the causal relation between the
cryptocurrency exchange rates and the foreign exchange rates.

ZhengNan and Taisei Kaizoji in Chapter “TheOptimal Foreign Exchange Futures
Hedge on theBitcoinExchangeRate:AnApplication to theU.S.Dollar and theEuro”
propose the use of FX futures to hedge the risk of currency exchanges based on the
bitcoin exchange rate. The time-dependent optimal hedge ratio for the resulting
portfolio is calculated from the conditional covariance matrix of the two returns.

Lukáš Pichl et al. in Chapter “Time Series Analysis of Ether Cryptocurrency
Prices: Efficiency, Predictability, and Arbitrage on Exchange Rates” compute the
Hurst exponent for Ether(eum) related time series, explore the predictability margin
of daily returns with Support Vector Machine based techniques, and compute the
triangular arbitrage characteristics between Ether and fiat currency pairs selected
from among USD, JPY, GBP, EUR, CNY, and CAD.

Ping Chen Tsai and Shou Huang Dai in Chapter “Estimating the Proportion of
InformedTraders inBTC-USDMarketUsingSpread andRange” identify a proxy—a
spread-to-range ratio—for the unobserved proportion of informed traders in amarket
based on the classic Glosten-Milgrommodel. They show that for a USD-BTCmarket
the proportion of the informed traders can be as high as 6%.

Vasily Derbentsev et al. in Chapter “Forecasting of Cryptocurrencies Prices Using
Machine Learning” use the machine learning algorithms of Binary Auto Regressive
Trees, Random Forests, and Artificial Neural Network for short-term prediction of
three crypto-assets with major capitalization.

Walter Bazán-Palomino in Chapter “Bitcoin and Its Offspring: A Volatility Risk
Approach” examines the risk-return relationship between the return on Bitcoin and
the returns on its forks (Litecoin, Bitcoin Cash, Bitcoin Gold, Bitcoin Diamond, and
Bitcoin Private). He provides the evidence that there is a transmission of the risk
from Bitcoin forks to Bitcoin.

4 Summary and Outlook

In this book, we have collected a number of articles from finance with a focus on the
recently trending topic of crypto-currencies or crypto-assets. We believe these are of
broad general readership interest. The future will show whether crypto-assets are a
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viable option to fiat currencies, or rather an obscure portfolio diversification comple-
ment, or even a dead-end outcry of blockchain technology. Nevertheless, given the
excitement, tensions and controversies that recently accompanied the announcement
of planned introduction of the Facebook’s Libra digital currency or the project of
digital yuan in China, we feel the time is ripe for further substantial breakthrough
brought by information technology-based innovations in finance.
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Financial Contagion through Asset Price
and Interbank Networks

Jun Sakazaki and Naoki Makimoto

Abstract In a financial network where mark-to-market accounting rules apply,
the sale of assets enforced by behavioral constraints such as minimum capital
requirements can induce an amplification effect of additional asset sales that fur-
ther depresses the market price. This paper explores these contagious processes
through simulation exercises under some different sets of network structures. We
introduce a complete graph, clusters and core periphery while varying the compo-
sition of banks’ portfolios and observing their effects on outbreaks and the spread
of a financial contagion. This paper also investigates ex ante conditions that could
prevent a contagion and examines some ex post measures that could restrain the
propagation of a contagion. Securing a certain level of liquidity in a financial sys-
tem that includes large-scale banks can be an effective ex ante regulatory measure.
Additionally, certain ex post operations, such as a price-supporting purchase of risky
assets and/or a capital injection into a bank, could be effective countermeasures to
prevent the contagion from spreading under some limited conditions.

Keywords Behavioral constraints of financial institutions · Mark-to mark
accounting rules · Deleverage · Liquidity · Interbank network structure

1 Introduction

The 2007 to 2008 financial crisis (the crisis) exerted a negative influence on the
global economy through far-reaching propagation of investment losses. Funds that
had circulated globally during the time of credit expansion in the early 2000s dras-
tically counterrotated with the eruption of the crisis and elicited the propagation of
negative externalities throughout the world. In describing the crisis, Brunnermeier
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and Pedersen (2009) introduce a model that links an asset’s market liquidity (i.e., the
easewithwhich it is traded) and funding liquidity (i.e., the easewithwhich traders can
obtain funding). Brunnermeier (2009) notes that the mechanisms that explain why
liquidity can suddenly evaporate function through the interaction between market
liquidity and funding liquidity.

To understand financial contagion through asset price, Adrian and Shin (2009)
explain that in a financial system where balance sheets are continuously marked
to market, asset price changes immediately appear as changes in net worth. These
changes elicit responses from financial intermediaries who adjust the size of their
balance sheets particularly in cases where the financial intermediaries are subject
to behavioral constraints such as minimum capital requirements. In terms of the
influence of the accounting system on the contagion, Eboli (2010) notes that for
any network and any shock, the flow of losses generated with the mark-to-market
rule is greater than the losses generated by accounting at historical cost. The author
indicates that a financial network is more exposed to default contagion, both in terms
of scope and threshold of contagion, under themarking-to-market accounting regime
than with the historical cost regime.

Regarding contagion through network structure, Watts (2002) notes that the
threshold rules of global cascades have local dependencies that is, the effect that
a single infected neighbor will have on a given node depends critically on the state
of the node’s other neighbors, and the threshold is the corresponding fraction of the
neighborhood. Additionally, the cascade conditions are induced from the degrees
of the vulnerable vertices. Eisenberg and Noe (2001) indicate that one of the most
pervasive aspects of the contemporary financial environment is the rich network of
interconnections among firms, where the value of firms is dependent on the payoffs
they receive from their claims on other firms. The author describes this feature of
financial systems as cyclical interdependencies and shows, via a fixed-point argu-
ment, that there always exists a “clearing payment vector” that clears the obligations
in the clearing system under mild regularity conditions.

Acemoglu et al. (2015) introduce an economy composed of financial institutions
that lasts for three periods and examine the extent of financial contagion as a function
of the interbank liability structure. The authors investigate the robustness of financial
networks and provide the results including the fact that as the magnitude or the
number of negative shocks crosses certain thresholds, the types of financial networks
that are fragile against contagions change drastically. Fricke and Lux (2014) consider
an interbank network as directed and valued linkage among banks. Using overnight
interbank transaction data for the Italian interbank market from January 1999 to
December 2010, the authors investigate the market situation before and after the
global financial crisis and show that the core-periphery structure may well be a
new “stylized fact” of modern interbank networks. Elliott et al. (2014) consider
that financial contagions can propagate through cross-holdings of shares, debt, or
other liabilities and investigate the influence by introducing the notion of integration
(mutual holdings of equities) and diversification (the extent of the holding). The
authors also consider contagion through asset holdings and price by simulation.
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Cifuentes et al. (2005) extend Eisenberg and Noe (2001) and combine the discus-
sions on contagion through interbank networks and asset prices as described above.
Considering the effectual validity of the model of Cifuentes et al. (2005), this paper
extends the model and examines some realistic factors that might contribute either
to the occurrence or the arrest of contagion. First, we explore contagious processes
under some different sets of network structures such as a complete graph, clusters,
and a core periphery through simulation exercises while attempting to quantify the
implication of the contagion and to examine some factors that might assume sig-
nificant importance concerning a contagion outbreak. Second, we investigate some
countermeasures to prevent a contagion from spreading, such as a price-supporting
purchase of risky assets in the market and a capital injection to a bank. We exam-
ine the validity of these measures quantitatively. The results show that the form of
outbreaks and contagion processes differ depending on the network structure, and
it is suggested that the location and linkages of large-scaled nodes within the net-
work assume some importance concerning the occurrence of contagion. Some ex
ante regulatory measures, such as securing a certain level of liquidity in a financial
system including the asset holdings of large-scale banks, can be effective in prevent-
ing contagion. Similarly, ex post measures such as a price-supporting purchase of
risky assets in the market and capital injection to a bank can be effective ex post
countermeasures to containing contagion.

This paper is organized as follows. Section2 illustrates the model. Section3
describes the algorithm and simulation. In Sect. 4, we analyze the effect that inter-
bank networks have on financial contagion. Section5 discusses the effectiveness of
countermeasures for contagion. Finally, Sect. 6 concludes the paper.

2 Model

Our model is based on that of Cifuentes et al. (2005) with some modifications. We
assume N linked financial intermediaries (for simplicity, here considered as banks)
and their balance sheets. Each bank has a balance sheet described in Table1 and
forms an interbank network with mutual financial relationships each other (here
considered as an N × N debts and credits matrix). On the liability side, bank i has
deposit liability denoted by di . The interbank liability of bank i to bank j is denoted
by Li j with Lii = 0. The total liability of bank i is then xi = ∑N

j=1 Li j .
On the asset side, bank i’s endowment of risky assets is given by ei . The price p

of the risky asset is determined in equilibrium as described in Sect. 2.2. Bank i also
has liquid asset holdings given by ci . Liquid assets have a constant price of 1. Let
πi j = Li j/xi . Interbank claims are of equal seniority, so that if the market value falls
short of the notional liability, the bank’s payments are proportional to the notional
liability. Then, the payment by j to i is given by x jπ j i where x j is the market value of
bank j’s interbank liabilities. This can be different from the notional value because
the debtor may be unable to repay these liabilities in full. Accordingly, the total
payment received by bank i from all other banks is

∑N
j=1 x jπ j i .
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In the interbank network, the ability to clear the debt of the respective banks is
interdependently determined according to the simultaneous equation below.

xi = min

⎧
⎨

⎩
xi + di , pei + ci +

N∑

j=1

x jπ j i

⎫
⎬

⎭
, i = 1, . . . , N . (1)

As shown in Eisenberg and Noe (2001), a unique clearing vector x is determined as
fixed point of (1) under suitable conditions on the liability matrix L = (Li j ).

2.1 Minimum Capital Requirements

Assets held by banks attract a regulatory minimum capital ratio, which stipulates that
the ratio of the bank’s equity value to the mark-to-market value of its assets must be
above a pre-specified ratio r∗. This constraint is given by

pei + ci + Ai + ∑N
j=1 x jπ j i − (xi + di )

pei + ci + ∑N
j=1 x jπ j i

≥ r∗ (2)

where Ai denotes the units of cash received as the proceeds of both risky and liquid
assets sales. In Cifuentes et al. (2005), it is assumed that the assets are sold for cash,
and cash does not constitute a risky asset under the minimum capital requirements.
In the simulation process, cash is consecutively accumulated in balance sheets as the
proceeds of the asset sales and thus affects the respective banks’ capital adequacy
status. In this paper, we, therefore, explicitly incorporate the process of cash accu-
mulation in the algorithm. When a bank finds itself violating this constraint, it must
sell some of its assets to reduce the size of its balance sheet. That is, bank i sells si
units of risky assets and ti units of liquid assets to satisfy

pei + ci + Ai + ∑N
j=1 x jπ j i − (xi + di )

p(ei − si ) + (ci − ti ) + ∑N
j=1 x jπ j i

≥ r∗. (3)

Table 1 Balance sheet
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As in Cifuentes et al. (2005), we assume that bank i first sells liquid assets, and in the
case where bank i cannot achieve r∗ with the sale of liquid assets only, it is forced
to additionally sell risky assets in the amount required to satisfy (3).

2.2 Equilibrium Price

By rearranging the minimum capital requirements (2) together with the condition
that si > 0 only if ti = ci , the sale si can be written as a function of p:

si (p) = min

⎧
⎨

⎩
ei ,

xi + di − (1 − r∗)
(∑N

j=1 x jπ j i + pei
)

− ci − Ai

r∗ p

⎫
⎬

⎭
. (4)

Hence, s(p) = ∑N
i=1 si (p) is the aggregate sale of the risky assets given price p.

To satisfy the minimum capital requirements, bank i sells the risky assets at the
amount of si (p) × p at the price level p, thus, si (p) is a decreasing function of p.
Accordingly, the aggregate supply function s(p) is also decreasing in p.

The inverse demand curve for the risky asset is assumed to be of exponential form

p = d−1

(
N∑

i=1

si

)

= e
−α

(
D+∑N

i=1 si
)

(5)

where α > 0 is a positive constant and D is the accumulated number of risky assets
sold after the initial shock. We impose the condition whereby when the price of the
risky asset is its highest price no bank is required to sell its risky assets. Accordingly,
we have s(1) = d(1) = 0 and there is at least one equilibrium price at p = 1. This
is the price where no exogenous shock exists. If banks are forced to sell risky assets,
the amount of units to sell exceeds the demand so that the price is decreased from 1
and the new equilibrium price p∗ < 1 is formed at the intersection s(p∗) = d(p∗).
Since the two curves are both convex, we must ascertain whether the equilibrium
price is determined uniquely or not in the following simulation experiments. Let
p = d(

∑N
i=1 ei ) be the floor price of the risky asset when all of the risky assets are

sold in the market. In our experiments, we choose α to satisfy the prescribed p.

2.3 Contraction of an Interbank Debts and Credits Matrix

In the case where bank i becomes insolvent, the bank is forced to exit from the
interbank network. As a result, the interbank assets are assumed to be redirected or
redistributed at face value proportionally among the holders of the bank’s liabilities
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in the model. This process is materialized as a stepwise contraction process of the
interbank debts and credits matrix L.

3 Simulation

Given the level of the minimum capital ratio r∗, the algorithm checks the capital
adequacy ratio of each bank; that is, whether it satisfies condition (2) or not. Fail-
ure to comply with this requirement triggers a resizing of the bank’s balance sheet
and possibly the liquidation of the bank. If the bank violates the minimum capital
requirements and needs to liquidate assets, depending upon the size of its equity
capital, the bank can resize its balance sheet by scaling down the size of its assets to
a new level consistent with the actual level of equity capital available. Alternatively,
if this is not possible, the bank is liquidated. Accordingly, the bank will assume one
of the following four statuses depending upon its condition and whether it satisfies
the minimum capital requirements or falls insolvent.

• status = 0: insolvent (minimum capital requirements cannot be satisfied or the
bank already has excessive liability).

• status = 1: minimum capital requirements are satisfied if all the liquid assets and
certain units of risky assets are sold.

• status = 2: minimum capital requirements are satisfied if certain units of liquid
assets are sold.

• status = 3: minimum capital requirements are satisfied without any action taken.

After a bank experiences an initial shock, the statuses of all the banks are judged
according to the flow below.

1. Initial shock.
2. Judgment of the status (status = 0/1/2/3).
3. Loop until all the banks are s = 0 or all the surviving banks are status = 3:

(1) if any status = 0 exists (liquidation routine)

• All holdings of liquid and risky assets are sold.
• Interbank debts and assets are divided proportionally and redistributed,

and the interbank liability network is contracted.
• The equilibrium price is calculated.
• Mark-to-market the surviving banks’ asset holdings.

else if any status = 1 exists (resizing routine 1)

• All liquid asset holdings and the amount of risky assets necessary to
achieve minimum capital requirements are sold.

• The equilibrium price is calculated.
• Mark to market the surviving banks’ asset holdings.

else if any status = 2 exists (resizing routine 2)
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• The amount of liquid assets necessary to achieveminimum capital require-
ments are sold.

end
(2) Judgment of status

In the case where the numbers of the banks with status = 0 is greater than one, the
liquidation routine is applied to only one bank per loop. Hereinafter, one loop is
called one round. In the simulation, we set the liquidity ratio and the initial shock.
Each represents amarket conditionwhere the contagion breaks out and spreads along
with the shock that triggered the contagion. The liquidity ratio (hereinafter, LR) is
c/(c + e) of each bank’s risk (e) and liquid (c) asset holdings. Thus, c/(c + e) of the
aggregated amount represents the LR of the whole financial system in this model.
The initial shock (hereinafter, IS) is an idiosyncratic loss on the liquid asset holdings
(c) of a bank.1 The size of IS is hereinafter represented as a percentage of the initially
shocked bank’s equity capital. In the simulation, we vary the level of LR gradually
and observe the occurrence of the contagion at the respective LR level. The IS level
is either varied or fixed depending on the purpose of the experiments, but in most of
the cases unless indicated otherwise, we fix IS as 100% to measure the influence of
LR. In the experiments in Sects. 4 and 5, we set the minimum capital requirement
r∗ = 7%. Additionally, the initial price of risky asset is 1, and the floor price of the
risky asset is set at p = 0.6.

4 Network Structure and Contagion

While varying the composition of banks’ portfolios, the effects on the outbreaks and
the spread of the financial contagion are observed. The processes and consequences
of the contagion are measured by the number of insolvent banks, equilibrium price,
and the capital adequacy ratios of the respective banks. Cifuentes et al. (2005) ana-
lyzed the case where all banks are homogeneous, that is, they all have identical
balance sheets at the outset, and an interbank network constitutes a complete graph.
To investigate the effect of the difference in network structures on risk contagion, we
examine other types of networks such as clusters and a core periphery with differ-
ently sized nodes as described in Fig. 1. A complete graph expresses the base case
where every bank has a direct financial relationship with each other. Clusters are
composed of two large banks and several smaller banks in the respective clusters
while only the two large banks constitute a sole direct linkage between the clusters.
A core-periphery structure has been adopted from the models of Imakubo (2009)
and Imakubo and Soejima (2010) that describes real international finance networks

1The liquid assets here can possibly be considered amoneymarket fund (MMF).MMFs are basically
traded at their notional values, but in cases where the prices of the investment objects, for example,
bonds values decrease, the value of the MMF can go under per. Such a case occurred in Japan in
2001 when the price of the bond issued by ENRON Corporation sharply declined.
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Identical (CG-I) Large and Small (CG-LS)
(a) Complete Graphs

Identical (CL-I) Large and Small (CL-LS)
(b) Clusters

(c) Core periphery (CP)

Fig. 1 Configuration of interbank networks

at the time immediately prior to the 2007 to 2008 crisis. According to the studies,
this is the structure that (i) has a two-tier structure of a core and periphery, (ii) nearly
all nodes in its core are linked to every other node in what is close to a complete
network, (iii) the core serves as a hub for the periphery, and (iv) the periphery has
clustering. In this section, we identify each of these networks using an abbreviated
notation described in Fig. 1 such as CG-I for complete Graph with identical nodes.

In Fig. 1, each node shows the size of a bank’s balance sheet, and each link shows
the financial relationships (lending and borrowing) between two banks. To represent
the network of the financial relationship, we set up a debts and credits matrix L
for the simulation. To form the matrix, we set the size of the balance sheet of each
bank and the proportion of the difference in size between the large and small banks,
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Table 2 Balance sheets of small (left) and large (right) banks

ei + ci 70 di 63

xi 30
∑

j �=i x jπ j i 30 Net worth 7

ei + ci 700 di 630

xi 300
∑

j �=i x jπ j i 300 Net worth 70

if applicable, considering the degrees of respective nodes. This assures the utmost
consistency2 of thematrixwith the characteristic structure of the respective networks.

4.1 The Difference Between the Complete Graph and
Clusters

The first set of examinations is the comparison between a complete graph and clusters
in terms of the LR level where the first full-scale (all banks go insolvent) contagion
breaks out. To assure the comparability of the difference, we compare the two types of
networks with identical balance sheets among the banks in the respective networks;
that is, the comparison between CG-I and CL-I and between CG-LS and CL-LS. In
the case of CL-I, because of the difference in the degree of hub nodes and peripheral
nodes, we set the balance sheets with the utmost identity. As for the CG-LS and
CL-LS, the size of a large bank’s balance sheet is 10 times as much as that of a small
bank,3 as shown in Table2. IS is given for bank number 1 for CG-I in Fig. 1. For
the debts and credits matrix L of CG-LS, we set the financial relationship between
the large nodes as the largest of 236 with each other considering the prominent size
of their balance sheets. The second largest is the relationship between the large and
small nodes which accounts for eight, and the smallest is between the small banks of
which there are two. In the case of CL-LS again, the financial relationship between
the large nodes are the largest of 240, and the second largest is 15 between the large
and the small, lastly five is between the smallest.

Figure2 depicts the number of insolvent banks as the LR changes. As LR is
reduced by 10 percentage points from 90%, in case of CG-I in the left panel, full-
scale contagion breaks out at LR = 30%, and all banks go insolvent in the case of
CL-I, a slightly higher LR = 40%. On the other hand, in the case of CG-LS in the
right panel of Fig. 2, in case that IS is given on a large node, the first contagion
breaks out at an LR as high as 90%, which spreads to all the small nodes except the
other large node and spreads to the entire network at LR = 60%. The robustness of

2In case of CL-1, the difference in the degree of nodes in a network makes it impracticable to set
an entirely identical balance sheet among the corresponding nodes. In this case, we set the balance
sheet as identical as utmost.
3As the difference in total asset size between the mega financial groups and the regional financial
groups in Japan is around this range or larger, we believe the assumption here is not considerably
unrealistic.
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CG-I

(a)

(b)

(c)

and CL-I CG-LS and CL-LS

Fig. 2 a Number of insolvent banks. b Extent of contagion (Initially shocked are shown in (⇐)
and insolvent banks are shown in red circles) . c Status transitions in each round (initially shocked
node is shown by (⇐) and color of each circle represents status of the node) and price change by
the sale of risky asset
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a complete graph is commonly recognized as indicated by Allen and Gale (2007).
From the result, under the coexistence of large and small nodes, such characteristics
were not particularly observed. In the case of CL-LS, in case that IS is given on a
large node, the first contagion breaks out at LR = 90%, the same level as CG-LS,
but the extent of the contagion differs. In case of CL-LS, five nodes go insolvent
at LR = 90%, but contagion exists within the same cluster of the initially shocked
large node, while CG-LS contagion spreads to all the small banks in the network
(Fig. 2b). The result indicates the possibility that the location of a large node could
matter for the robustness of the network against contagion.

On the contrary, when IS is given to a small node, the LR level where a full-scale
contagion is observed for the first time is much lower. In the case that IS is given
to a small node number 5, a full scale contagion breaks out for the first time at LR
= 40% with IS = 70% in CL-LS (Fig. 2c). However, it is the sale of risky assets by
large nodes that plays a critical role in eventually triggering a full-scale contagion. In
Fig. 2c, the sale of risky assets at round 7, of which 83.3% are made by large nodes
(number 1 and 6), triggers a sharp decline in price, thus cause the full-scale contaign.

Additionally, the LR level at which the first full-scale contagion breaks out in the
two panels in (Fig. 2a) shows a significant difference between the left and right panels.
While the left panel shows robust-yet-fragile characteristics in terms of networks’
LRwith identical nodes, the right panel shows that the LR level of the first full-scaled
contagion outbreak is much higher. Considering the prominent difference in the size
of the large bank’s balance sheet in CG-LS and CL-LS, under the financial system
composed of the coexistence of mega-sized and small-sized institutions, the result
here suggests that to maintain a certain level of liquidity in the financial system can
be an effective ex ante regulatory measure to prevent contagion.

4.2 Core periphery

As explained in Sect. 4, core periphery is adopted from the studies of Imakubo (2009)
and Imakubo and Soejima (2010), where the authors conjecture the core periphery
structure by analyzing the linkages among the respective regions through the distribu-
tion of the degree of links and clustering coefficient. Here, we set up the composition
and the proportion of balance sheets by calculating the least common multiple of the
degrees of respective nodes; that is, 2, 3, 4, 6, and 7 degree. We allocate the least
common multiple 42 among the interbank asset (and liability) holdings of the large
nodes in the core domain while the units distributed to the nodes in the peripheral
domain are mostly proportional. Lastly the fraction is adjusted at node number 8.
Table3 shows the result and we form the matrixL accordingly.4 Here, we implement

4Imakubo (2009) defines the degree of nodes as indegreewhen calculating the clustering coefficient.
Here, we calculate the clustering coefficient by defining the sum of indegree and outdegree as the
degree of nodes as we assume that all banks are mutually lending and borrowing in the financial
system.
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Table 3 Balance sheets of core-periphery networks

No. 1–4

ei + ci 98 di 88.2

xi 42
∑

j �=i x jπ j i 42 Net worth 9.8

No. 5, 6, 9, 10

ei + ci 4.67 di 4.2

xi 2
∑

j �=i x jπ j i 2 Net worth 0.47

No. 7

ei + ci 7 di 6.3

xi 3
∑

j �=i x jπ j i 3 Net worth 0.7

No. 8

ei + ci 11.67 di 10.5

xi 5
∑

j �=i x jπ j i 5 Net worth 1.17

three different experiments giving IS for three different nodes: numbers 1, 3, and 8.
Number 1 is the hub in the core domain while number 3 is the non-hub, and number
8 is a peripheral node.

Figure3a shows the number of insolvent banks at various levels of LR. As we
can see, the LR level of the full-scale contagion outbreak is mostly proportional
to the location and size of the initially shocked nodes. Status transitions at each
round in the cases that IS is given to number 1 (a hub in the core domain) and to
number 3 (a non-hub in the core domain) respectively are shown in Fig. 3b. These
status transitions describe the cases of number 1 and number 3 at LR = 60% level in
Fig. 3a. For a comparsion, insolvent banks remain denoted in Fig. 3b in red circles
even after being forced out of the network. In the case that IS is given to number 1, a
full-scale contagion propagates throughout the network at around 9. On the contrary,
in the case that IS is given to number 3, no contagion breaks out. Again, this indicates
importance of the location of a large node in the network.

4.3 Overall Description of Results

We implemented the same simulation in other types of networks while varying the
composition of the banks’ portfolios and the size of the initial shock. We measured
the liquidity ratio and the size of the initial shock givenwhere the full-scale contagion
breaks out. The overall results are given in Table4.

Table4 shows that in cases where the large nodes are initially shocked, full-scale
contagion (all 10 banks become insolvent) breaks out at comparatively high levels
of LR (e.g. complete graph L/S with shock on a large node = 90%, clusters L/S with
shock on a large hub node = 70%, core periphery with shock on a large hub node
= 60%). On the contrary, in cases where the initial shock is given to small and/or
peripheral nodes, the full contagion breaks out only at the lower LR levels of 20%
or less (e.g., complete L/S with shock on a small node = 20%, core periphery with
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(a)

(b)

Fig. 3 a Number of insolvent banks in the core and periphery network. The initial shock is given
for numbers 1, 3, and 8. b Status transitions in each round (initially shocked node is shown by (⇐)
and color of each circle represents status of the node)

shock on a small hub node = 10%), and no contagion occurs in the case of core
periphery shocked on a small peripheral node.

Additionally, we compared the extent of contagion at each level of LR while
the initial shock is fixed at 100% for the sake of simplicity. In Fig. 4, no full-scale
contagionbreaks out at allwhile only three cases (in shadowedboxes) out of 11 showa
contagion.Within these three cases, two are partial contagions (the contagion spreads
only within the same cluster of initially shocked nodes). In these cases, one large
node is initially shocked, and in all the other cases no single contagion is observed
regardless of the position or size of a node where the initial shock is given. On the
contrary, at the extremely low LR of 10% (Fig. 5), a full-scale contagion appears in
as many as 10 cases except for a single case where the initial shock is given on a
small peripheral node (shown in a shadowed box).

The figures show that as long as liquidity is maintained abundantly in the financial
system, the robustness of the financial networks is assured as no full-scale contagion
is observed. Although some partial contagions are observed, the occurrence of those
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Table 4 Levels of LR where the first full-scale contagion breaks out

LR (%) Network structure types

90 Complete L/S (shock on a large node)

80 n.a.

70 Cluster L/S (shock on a large hub node)

60 Core periphery (shock on a large hub node)

50 Core periphery (shock on a large non hub
node)

40 Cluster L/S (shock on a small peripheral node),
cluster identical (shock on a peripheral node)

30 Complete identical, cluster identical (shock on
a hub node)

20 Complete L/S (shock on a small node), core
periphery (shock on a small hub node)

10 n.a.

No contagion Core periphery (shock on a peripheral node)

Fig. 4 The arrows show the nodes where the initial shocks were given, and the shadowed circles
show the nodes that became insolvent

Fig. 5 Same as the above
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contagions are limited to cases where a fatal shock (in this case, 100% of net worth)
is given to a large node, particularly a hub (Fig. 4).

On the other hand, in a system with extremely limited liquidity, the difference in
network structures including the position and size of nodes has less relevance to the
extent of a contagion as full-scale contagion propagates in almost all cases (Fig. 5).

One possible interpretation for the phenomenon is that the effect of an asset price
decrease caused by the forced sales by banks in the system described in Sects. 2
and 3 surpasses the potential robustness embedded in a network structure under the
condition of limited liquidity in the system, and this construction is intuitively under-
standable. To this extent, our observation suggests that a major path of a contagion
may as well depending on market conditions in this case, particularly in terms of
liquidity.

5 Effectiveness of Countermeasures against Contagion

According to the observations in Sect. 4.3, in cases where the liquidity in a market is
abundant (=higher LR), the extent of a contagion differs depending on the network
structure and the position of a large node matters. In this regard, the observations
suggest that to maintain a sufficient level of liquidity in respective banks’ balance
sheets can be an effective ex ante measure to prevent a full-scale contagion from
occuring.

On the other hand, cases where risk asset holdings on banks’ balance sheets are
large, in other words when the risk appetite of market participants is elevated, the
asset price effect promotes the propagation of a contagion regardless of the difference
in network structures. A negative spiral effect of forced sale abruptly appears in the
financial system as a whole and can lead to a full-scale contagion. What, then, are
the possible ex post countermeasures5 against a contagion that is ready to break out?

We examine the effectiveness of some virtual remedial actions taken by gov-
ernments or financial supervisory authorities to prevent financial contagion from
propagating, such as price-supporting purchase of risky assets in the market and
capital injection into a bank.

5.1 A Price-Supporting Purchase in the Market

The process of a price-supporting purchase and its effects are described as follows.

5Ex post countermeasures here are measures to be taken to prevent the possible occurrence of a
contagion in response to the fact that an initial shock has been given to a certain bank.
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Table 5 Balance sheets of complete graph (identical nodes, large and small nodes) and core periph-
ery for 20 banks

Large nodes

ei + ci 70 di 63

xi 30
∑

j �=i x jπ j i 30 Net worth 7

Small nodes/Identical nodes

ei + ci 7 di 6.3

xi 3
∑

j �=i x jπ j i 3 Net worth 0.7

5.1.1 The Process of a Price-Supporting Purchase

Let pn−1 be a price of the risky assets at the termination of Round n − 1. If it is the
case that any sales of assets are implemented at Round n, the number of units sold
is denoted as fn and the equilibrium price is p̂n < pn . If we set Qn as the amount
of funds disposable for the price-supporting purchase at Round n, the price increase
per unit of the risky assets at the full disposal of Qn for the purchase is calculated
by Qn/ fn . Here, we set the price cap at pn−1 as we consider that an unrealistically
excessive price increase should be excluded. Thus, the price-supporting purchase is
implemented with the upper limit of pn−1 at the price level of

pn = min

{

pn−1, p̂n + Qn

fn

}

. (6)

As the amount of funds necessary for the supporting purchase is denoted by
(pn − p̂n) fn , the total amount of funds disposable for the purchase at the follow-
ing round is depicted as Qn+1 = Qn − (pn − p̂n) fn . The price-supporting purchase
is consecutively implemented at every round where the risky assets are sold to the
extent that Qn = 0 is achieved, except at the round where no risky assets are sold as
the withdrawal procedure of the failed bank from the network is implemented.

We selected three types of networks from Sect. 4; complete graph with identical
nodes, complete graph with large and small nodes, and core periphery. Additionally,
we extended the size of the networks to 20 nodes to add reality to the simulations to
some extent.

For the complete graph with large and small nodes again, each of two large nodes
(numbers 1 and 11) has interbank assets (and liabilities) of 30, and all the small
nodes have interbank assets of three (Table5). Each of the two large nodes has a
financial relationship of 18.3 with each other and has financial relationships of 0.65
with all the small banks while all the small banks have financial relationships of 0.1
with each other. For the complete graph with identical nodes, we adopted the same
balance sheet as the small nodes above and every node has a financial relationship
with each other of 19/3. For the core periphery, each node within the same domain
(either core or periphery) has a mutually identical balance sheet. Accordingly, the
composition of the matrix L is comparatively simple. A large node has interbank
assets (and liabilities) of 30, and has a financial relationship of eight with three other
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large nodes and a relationship of 1.5 with four small nodes within its own cluster.
The small nodes have a relationships of 1.5 with one small node and with one large
node in its own cluster.

5.1.2 Effects of the Price-Supporting Purchase

To quantify the effectiveness of the price-supporting purchase, we measured the
number of insolvent banks at the termination of each simulation. The common initial
shock of IS = 100% is given for node number 1 shown in Fig. 6, which is one of the
large nodes in the case of the complete graph with large and small nodes and one
of the large hub nodes in the case of the core periphery. While setting the amount
of disposable funds to purchase the risky assets in three different amounts of 10,
50, and 100, we examined the effects of the purchase implemented at various levels
of LR from 90 to 10% and observed the effectiveness of the operation, particularly
at lower levels of liquidity. We executed two sets of the simulation to examine the
differences in effectiveness in terms of purchase timing. In Case one, the purchase
starts from Round 1, and the purchase commences from Round 2 in Case two.

Figure7 shows that the early commencement of the purchase at Round 1 has
remarkable effects in restraining a contagion from spreading to the entire network
regardless the network configuration. Without the supporting purchase (Q0 = 0),
full-scale contagion breaks out at various levels from LR 90% (complete graph with
L/S nodes6) to LR 20% (Complete graph with identical nodes). On the contrary, the
supporting purchase with the smallest fund Q0 = 10 restrains the contagion from
spreading in every case; that is, the sole insolvent bank is only the initially shocked
bank in the case of complete graph with identical nodes and core periphery while in
the case of complete graph with large and small nodes, the initially shocked banks
also escape insolvency. The operation shows its effectiveness even at the lowest level
of LR 10%.

On the other hand, the purchase starting in Round 2 has somewhat different
consequences. Even with larger amount of purchasing fund of 50 or 100, full-scale
contagion cannot be prevented in the cases of complete graph with large and small
nodes and core periphery. Figure8 shows the comparison of the number of insolvent
banks in cases with a purchasing fund of Q0 = 10, 50, and 100. In every network
structure, the purchase with fund size Q0 = 10 shows results completely identical
to Q0 = 0, which means the supporting purchase is ineffectual. Q0 = 50 is valid
in the case of complete graph with identical nodes, but in cases of complete graph
with large and small nodes and core periphery, even Q0 = 100 is not valid to prevent
contagion.

6In simulation settings here, the initial shock IS = 100% to the large node in the complete graph
with L/S is fatal to the whole system. Thus, the price-supporting purchase is not effective regardless
of the LR level or the size of the fund. We adopted the marginal IS level where the supporting
purchase is effective; that is, IS = 70% in this case.
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Fig. 6 Configuration of interbank networks (20 banks) and location of intially shocked nodes (⇐)

Figure9 shows the transition of the price of the risky assets (Upper-left), the
number of risky assets sold (upper-right), and the net support amount (lower) at the
fixed purchasing fund at Q0 = 10 to examine the effects of purchasing timing and
the influence of LR. Here, we examine the case of core periphery with regard to (i)
purchase at Round 1 under LR = 10%, (ii) purchase at Round 2 under LR = 60%
and (iii) purchase at Round 2 under LR = 50%. The net support amount represents
(pn − p̂n) fn in Sect. 5.1.1. We see that the early purchase at Round 1 is valid at the
extremely low LR = 10% (lower panel) as it can support the price level at 1 (upper-
left panel) while the purchase at Round 2 is only valid at LR = 60%, (lower panel).
At LR = 50%, the supporting purchase is ineffectual (all of 20 banks go insolvent).
The results suggest that initiating a supporting purchase in the early stages of a crisis
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Complete graph identical (IS = 100%) Complete graph L/S shock on large node
(IS = 70%)

Core peripery shock on large hub node
(IS = 100%)

Fig. 7 Number of insolvent banks and LR in case of purchase in round 1

Complete graph identical (IS = 100%) Complete graph L/S shock on large node
(IS = 70%)

Core peripery shock on large hub node
(IS = 100%)

Fig. 8 Number of insolvent banks and LR in case of purchase in round 2 (fig DD case 2)
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Fig. 9 Price transition, number of units sold, net support and number of insolvent banks in case of
Q0 = 10

could considerably improve the effectiveness of the countermeasure in preventing a
contagion, and it could be an effective ex post measure to restrain contagion.

5.2 Capital Injection into a Target Bank

We also examined the effectiveness of a capital injection as a countermeasure against
a contagion. The same set of networks and parameters are used as in Sect. 5.1. The
nodes receiving the initial shock are shown with arrows aside, and the nodes where
funds are injected are shown as shadowed circles in Fig. 10.Wemeasure the effective-
ness of a capital injection by counting the number of insolvent banks after injecting
the funds to enlarge the net worth of the injected node to reach twice, five times, and
10 times its original size. We inject the funds in the cases where the first full-scale
contagions are observed in terms of LR at the level of IS = 100%. The cash injected
is registered as a liquid asset on the balance sheet of the injected bank as we consider
it is unlikely that the capital injected bank would immediately invest the funds in
risky assets.

The results for capital injection are distinctive. The successful cases are limited
to those where the node where the capital is injected is identical to the node initially
shocked. All the other cases of capital injection failed regardless of the size of injec-
tion.7 We can interpret this in the following way; (i) the amount of injected capital
is limited (even 10 times the original net worth of a bank is comparatively small
compared to the entire asset holdings in the system) and (ii) the limited capital is not
used to purchase risky assets (see the balance sheet registration described above);
thus, there is no price lifting effect. Figure11 shows the injection failure cases except
for the nodes that were initially shocked. Even in the case that IS is much lower than

7In some cases of large capital injections (e.g., five or 10 times as much as the net worth), the
injected bank can survive until all the other banks are insolvent. But in the simulation here, we
define such cases as insolvent for the injected bank also. If all the other banks are insolvent, the
entire financial relationships of the bank have also ceased to exist, and we consider the entire system
extinct.
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Fig. 10 Location of initially shocked nodes (⇐) and capital-injected nodes (shadow)

Fig. 11 Capital injection failure cases

100 % (in Fig. 11, IS = 40% at LR = 50% which is the threshold level for a full scale
contagion), we see a sharp decrease in the price which leads a substantial decline in
the captial adequency ratio of the banks.
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Table 6 Capital injection success cases

LR for the first
full contagion
(%)

Network structure IS
(%)

Injected
capital

Percentage
of initial net
worth

90 Complete L/S (shock on a large node) 100 2.591 37.0

50 Core periphery (shock on a large node) 100 4.546 65.0

20 Complete identical 100 0.413 59.0

10 Core periphery (shock on a small
peripheral)

100 0.293 41.9

10 Core periphery (shock on a small
peripheral)

40 0.014 2.0

10 Complete L/S (shock on a small node) 100 0.425 60.6

10 Complete L/S (shock on a small node) 60 0.004 0.6

10 Core periphery (shock on a large hub node) 100 6.508 93.0

The success cases are shown inTable6.We see that the full-scale contagion caused
by an initial shock to small nodes does break out, if the case occurs under lower LR
levels. In those cases, a capital injection into small banks can save the entire system
from contagion. The percentage of injected capital to the bank’s original net worth
is comparatively high, but the absolute amount necessary for the injection is much
smaller compared to cases where injection were administered to larger banks under
similar liquidity conditions (see LR = 10% in Table6).8 Some argue the legitimacy
of spending tax money to bail out troubled mega financial institutions at times of
financial crisis, but our observation suggests the possibility that even under lower
liquidity (the risk appetite is elevated in the case here), a comparatively small capital
injection to a small bank could prevent a collapse of the entire financial system. If
that is the case, the countermeasure is socially meaningful.

6 Conclusion

The path of a contagion may vary depending on market conditions, particularly in
terms of liquidity. When liquidity is abundant in a market, the form of the outbreak

8At each LR level, if the injection could be implemented at a smaller IS; that is, before the entire
market condition had worsened to the level of an initial shock of IS = 100%, the amount of pur-
chasing fund necessary to prevent a full-scale contagion could be much more limited. Examples
are in Table6 at LR = 10%. Here, at IS = 40% for core periphery shock on a small peripheral
and at IS = 60% for complete L/S shock on a small node, the first full-size contagion breaks out
at LR = 10%. If the injection at these IS levels is implemented, the amount of fund necessary to
prevent a full-scale contagion could be much smaller at 0.0014 and 0.004, compared to the cases
of where IS = 100% (the amount of fund necessary is 0.293 and 0.425, respectively). We consider
that recognizing the early warning signs is important despite its difficulties.
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and the process of the contagion differ depending on the network structure, and the
location and linkages of large-scale banks have critical significance. On the other
hand, when the risky asset holding in banks’ balance sheets are large, in other words
the risk appetite ofmarket participants is elevated, the asset price effect could promote
the propagation of a contagion, and the difference in network structures including
the position and size of nodes has less relevance to the extent of a contagion.

Thus, maintaining a sufficient level of liquidity in financial institutions’ balance
sheets can be an effective ex ante measure to prevent a contagion. For ex post coun-
termeasures, the results here suggest that to initiate a price-supporting purchase at
the early stages of the crisis could be effective in restraining a contagion.When lower
liquidity exists in the market, a limited capital injection into a shocked small bank
could protect the entire financial system by preventing a full-scale contagion.
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Optimal Portfolios
on Mean-Diversification Efficient
Frontiers

Adeola Oyenubi

Abstract Recent research has seen increasing use of risk/diversification based
approach to portfolio optimization. Under the risk-based approach, returns are
ignored, and a diversification or risk measure is optimized in portfolio construc-
tion. This approach has been criticized for lacking a clearly defined objective like the
trade-off between returns and risk in theMarkowitz’sMean-variance set up. Optimiz-
ing risk/diversification alone is a single objective optimization approach to portfolio
construction. This is in contrast to the usual bi-objective optimization that yields the
portfolio that optimizes the trade-off between return and risk. In this paper, we note
that portfolios that optimize the trade-off between returns and diversification mea-
sures exist (i.e. portfolios that replace variance with other risk measures). In theory,
these mean-diversification optimal portfolios should dominate risk-based portfolio
on a risk-adjusted basis. Using genetic algorithm,mean-diversification efficient fron-
tiers are drawn for various diversification measures and portfolios that optimize the
trade-off between returns and the diversification measures are identified. We argue
that these portfolios are better candidates to be compared with the portfolio that is
constructed to be mean-variance optimal since they sensitive to returns. Our results
suggest that mean-diversification optimal portfolios are useful alternatives in terms
of risk-reward trade-off based on their in-sample and out-of-sample performance.
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1 Introduction

There has been a proliferation of portfolio construction approaches that focus on risk
and/or diversification reduction. Lee (2011) refer to these portfolios as risk-based
portfolios. One feature of the risk-based approach is that it excludes returns fore-
cast and use only risk forecast in portfolio optimization. However, the performance
measure used with the resulting portfolio is often based on risk-adjusted returns
(e.g. Sharpe ratio). Furthermore, risk-based portfolios have been shown to outper-
form portfolios that are constructed to be mean-variance optimal on a risk-adjusted
basis. The rationale behind this approach to portfolio construction is that risk-based
portfolios provide better diversification than the conventional mean-variance optimal
portfolio.

However, Lee (2011) argued that the objective function ex-ante, and the perfor-
mance evaluation ex-post, of risk-based portfolios, are inconsistent. This is a valid
point since one should not expect a portfolio constructed to minimize risk to out-
perform a portfolio constructed to optimize the trade-off between risk and returns on
a risk-adjusted basis. This, however, has been the practice in the literature (see the
discussion in Lee (2011)). In terms of portfolios on efficient frontiers, a risk-based
portfolio is a solution on the mean-diversification frontier that places zero weight on
returns (much like the minimum variance portfolio in the mean-variance space). The
implication of this is that the mean-variance optimal portfolio should be compared
with mean-diversification optimal portfolios while risk-based portfolios should be
compared with the minimum variance portfolio. This correct matching of portfo-
lio construction objective, ex-ante, and portfolio evaluation metric ex-post is more
appropriate.

This paper seats at the intersection of Lee (2011) and Tsao and Liu (2006). Lee
(2011) criticized risk-based portfolios for lacking a clearly defined objective. On the
other hand, Tsao and Liu (2006) show that it is possible to incorporate a risk measure
where traditional optimization technique (such as the delta method) is not applicable.
The authors use value-at-risk (VaR) as a risk measure in portfolio selection, and
recover themean-VaR frontier using a heuristic approach. The reason for the heuristic
approach is that the objective function that trades-off returns for VaR cannot be
presented as a quadratic form (Tsao andLiu2006).Wenote that this is also the case for
most of the diversification measures that are used to construct risk-based portfolios.
Based on the approach in Tsao and Liu (2006), one way to answer Lee (2011)’s
criticism is to incorporate returns into the optimization of risk-based portfolios.
This way, portfolios that optimally trades-off returns for these risk measures will be
recovered.

In this study, we consider portfolios that are mean-diversification optimal. We
use various diversification measures to draw mean-diversification efficient fron-
tiers, and on these frontiers, optimal portfolios (i.e. portfolios that optimally trades-
off returns for gains in diversification) are identified. In theory and by definition,
mean-diversification optimal portfolios should dominate the portfolio that opti-
mizes the corresponding diversification measure alone on a return-diversification
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adjusted basis. We examine the in-sample and out-of-sample performance of risk-
based portfolios relative to mean-diversification optimal portfolios. Unsurprisingly,
our empirical result follows the theoretical prediction; on a risk-adjusted basis mean-
diversification optimal portfolios dominate risk-based portfolios in-sample. How-
ever, out-of-sample performance show that any portfolio strategy can out-perform
another one irrespective of its objective function.

Our main point is that irrespective of how risk is measured, risk-based portfolios
should be compared with other risk-based portfolios. Furthermore, portfolios that
trades-off risk for returns should be comparedwith other portfolios that utilize similar
trade-off. Given the position of these portfolios on the efficient frontier, this is the
only justifiable and theoretically coherent comparison that can be made. While this
does not rule out the possibility of a risk-based portfolio dominating a risk-return
optimal portfolio out-of-sample, this should be seen as an exception and note a rule.

We acknowledge up front that the method used in this study (Genetic algorithm)
may not be the most ideal method to get precise results. However, the fact that the
objective function associated with some of the risk measures considered cannot be
presented as a quadratic form and may have discontinuities in the objective function
spacemeans that we have to use amethod that can handle these characteristics. Using
a heuristic method also allow the results to be comparable across risk measures. We
have taken steps to mitigate the effect of the heuristic method on our results, and we
believe that our main points remains valid despite this limitation.

The rest of the paper is organized as follows. Section 1.1 describes the theoretical
framework, Sects. 2 and 3 review the literature on Evolutionary Algorithms and
Diversificationmeasures. Section 4 presents our result for the mean-variance frontier
while Sect. 5 present results for the mean-diversification frontiers. In Sects. 6 and
7 we compare the performance of various portfolios using Treynor and Information
ratio measures (in-sample). We also compare the performance of the portfolios (out-
of-sample). Section 8 concludes.

1.1 Bi-objective Optimization and the Efficient Frontier

Scherer (2011) noted thatminimization of risk on its own ismeaningless; risk needs to
be traded-off against returns. Even though it is unlikely, onemay choose to optimize a
single objective (risk/diversification in this case) rather than consider a bi-objective
optimization given a particular set of preferences. It is, however, problematic (at
least from a theoretical standpoint) to expect a risk-based portfolio to outperform the
return-risk optimal portfolio on a risk-adjusted basis.

In the mean-variance (MV) framework, one can decide how much risk is to
be traded-off for returns. Candidate portfolios like the minimum variance portfo-
lio (MVP) and the mean-variance optimal portfolio (MVO) are members of the
efficient frontier that satisfy some condition that may be of interest to an investor.
Instead of minimizing variance, other risk-based approaches attempt to optimize
some diversification measure directly. In this case, the diversification measure is the
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objective function to be optimized. When a risk-based approach is used in portfo-
lio optimization, the result is the portfolio that optimizes that objective function as
against an entire set of solutions referred to as the efficiency frontier in a bi-objective
optimization problem.

For example, the Most Diversified Portfolio (MDP) (Choueifaty and Coignard
2008) optimizes diversification as measured by Diversification Ratio (DR), Max-
imum Diversification index (MDI) maximizes the Portfolio diversification Index
(PDI) (see Diyarbakirlioglu and Satman (2013) and Rudin and Morgan (2006)).
Similar to the minimum variance portfolio, portfolios that optimize a diversification
measure will be on a mean-diversification efficient frontier. However, the portfolio
will be the solution that places zero weight on returns. The question of interest here
is: if returns is incorporated in the construction of these risk-based portfolios so that
we have the full mean-diversification efficient frontier, what difference will it make?
To be more precise what will be the answer to the following questions in light of Lee
(2011)’s criticism of risk-based approaches

(i) What would a Mean-Diversification efficient frontier of various diversification
measures look like?

(ii) If it is possible to draw such frontiers, are there other potentially attractive
options in terms of return-diversification trade-off other than the portfolio that
ignores returns?1

Obviously, the answer to the first question will depend on the diversification mea-
sure used to construct the mean-diversification frontier. Since there is no universally
accepted way of defining diversification (Meucci 2009), this paper explores selected
diversification measures to answer the proposed questions. To implement this, a
heuristic approach namely the Non-Dominated Sorting Genetic Algorithm (NSGA
II) (Deb et al. 2002) is used. This optimizationmethod is based on theMulti-Objective
Evolutionary Algorithm (MOEA). We choose this approach because of our interest
in the entire Pareto front and the fact that optimizing some diversification measures
require optimizing a function that is non-convex or/and has discontinuity in the
objective function space.

In terms of the second question, similar to the optimal portfolio on the mean-
variance frontier (that optimizes the Sharpe ratio) interest is in the portfolio that yields
the highest return-diversification trade-off. We argue that portfolios that are optimal
in the mean-diversification space are better candidate portfolio to be compared with
portfolios that are constructed to be mean-variance optimal. This is in contrast to
the practice in the literature which Lee (2011) criticized. By construction, mean-
diversified portfolios should dominate risk-based portfolios on a risk-adjusted basis.

1In other words, will there be alternatives that are more mean-diversification efficient than the
portfolio that ignores returns.
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2 Evolutionary Algorithm and Portfolio Optimization

An evolutionary algorithm (EA) is a class of metaheuristic that relies on emulating
Darwinian’s theory (i.e. “survival of the fittest” approach). Formulation of a multi-
objective EA can be written as

min �F(�x) = {f1(�x), f2(�x), . . . fk(�x)}
Subject to

gi(�x) ≤ 0 and hi(�x) = 0 (1)

where �x = [x1, x2, . . . xn]T is a vector of decision variables for example portfolio
weights in a portfolio optimization problem, fi : Rn → R, i = 1 . . . k are objective
functions, for example summary measures of asset returns that we wish to optimize
(e.g. mean and variance). gi, hi are constraints (Ponsich et al. 2013). One way to find
the solution to this problem is to aggregate the objective functions i.e.

F = β1f1(�x) + β2f2(�x) + · · · + βk fk(�x)
Subject to

gi(�x) ≤ 0 and hi(�x) = 0 (2)

F is a single objective function that represent the k objectives and βi are weights that
depicts the trade-off between the objectives. Note that these weights are subjective in
that they depend on the preference of the decision maker.2 This aggregated objective
can be solved using a Single Objective Evolutionary Algorithm (SOEA), this results
in one solution to the optimization problem. It is however possible to get a set of Pareto
optimal results, each corresponding to a different weighting (i.e. different sets of βis).
Therefore, in these types of problems, one may extend the result by uncovering a
set of solutions representing the best possible trade-offs between the objectives as
against identifying one point on the optimal solution space (Ponsich et al. 2013). For
example, the portfolio that optimizes the Sharpe ratio is the one that yields the best
trade-off between two objectives i.e. mean and variance. The entire solution set is
referred to as the Pareto front. Being aware of the entire spectrum of solutions can be
useful in that it helps decision makers to pick the solution that fits their preference.
This argument is applied to diversification based optimization problems and this
paper explores other solutions that may be of interest in the return-diversification
efficient space.

While one could run multiple SOEA with different weights each time, it is pre-
ferred to use the Multi-Objective Evolutionary Algorithm (MOEA) approach to
uncover the Pareto front. With this approach, the entire Pareto front is uncovered
in one run.

2This is the usual language in the evolutionary algorithm literature. In this case the decision maker
is the investor or portfolio manager.
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An example of how portfolio optimization can be described as a single or mul-
tiple objective optimization problem is the case of Markowitz (1952) portfolio
optimization. The problem is set up in the following way

min
ni

{
w′Rw

}

max
ni

{
w′µ

}

Subject to
p∑

i=1

wi = 1 (3)

Herewi is theweight of asset i, p is the number of assets i.e. i = 1, 2 . . . p,R represents
the variance-covariance matrix and µ is the vector of returns. In the language of
evolutionary algorithm, this problem is a bi-objective optimization problem with
conflicting3 decision criteria (Lin and Liu 2008). The resulting frontier gives the
best risk (as measured by variance) to reward (as measured by returns) trade-off for
every level of risk. In other words, each solution represents a particular weighting
of risk against returns. In this context, the weighting reflects the risk profile of the
decision maker. One such weighting is the minimum variance portfolio that places
all its weight on variance (the risk measure) thereby ignoring the return objective.

Equation 3 above can be written as Eq. 4 below. In this formulation, the efficient
frontier can be recovered by changing the value of λ (risk preference of the decision
maker).

max
wi

{
λw′µ − w′Rw

}
(4)

Portfolio theory predicts that all decision-makers should seek to hold the portfolio
that maximizes the Sharpe ratio irrespective of their risk preference i.e.

max
wi

{
rp − r

σp

}
(5)

where r is the return on a risk free asset, rp = w′µ is the portfolio’s expected return and
σp = √

w′�w is the portfolio’s standard deviation (Sharpe 1966). In this framework,
risk preference is only important when deciding the weight that should be allocated
to the risky portfolio as against the risk free asset. However, the prediction that
favours the portfolio that maximizes Sharpe ratio has been challenged. For example,
Clarke et al. (2006) found that the minimum variance portfolio (which optimizes
variance alone) outperform the Market portfolio (which is a proxy for the portfolio
that maximizes the Sharpe ratio) in their sample of 1000 largest capital stocks in the

3Conflicting in the sense that increase in expected return (which is desirable) inadvertently leads to
increase in variance (which is undesirable).
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U.S. from 1986 to 2005. The result of Clarke et al. (2006) suggests that there might
be reasons or conditions under which some decision makers may prefer this single
objective optimal point to the portfolio that maximizes the Sharpe ratio.

Asmentioned earlier the optimizationmethod used in this study is a metaheuristic
one. Unlike an exact method like quadratic programming (QP), genetic algorithm
(GA) converges to a near optimal solution to the problem (Kalayci et al. 2017). Fur-
thermore, heuristic methods are often sensitive to parameters. The implication of this
is that it might be tricky to use these methods for actual portfolio construction. This
approach is however useful in this case because when portfolio variance is replaced
with some of the riskmeasures considered in this study, the objective function is such
that the weight of stocks in the portfolio is endogenous and analytical solution to
the optimization problem does not exist. Therefore, the heuristic method allows for
credible comparison of portfolios across frontiers (mean-diversification and mean-
variance efficient frontiers).4 This removes the possibility that the methodology will
influence the results. To mitigate the effect of sensitivity to parameters, we use a set
of parameters that approximate QP’s mean-variance efficient frontier. Therefore, the
imperfection of the heuristic method is mitigated since all portfolios are sketched
with the same method and the same set of parameters.

A genetic algorithm starts by postulating a population of random solutions (in
our case optimal portfolio weights). The weights in each individual solution are
referred to as the gene. These solutions are assessed based on a fitness or objec-
tive function and ranked in order of their desirability. To form a new generation of
solutions, the existing population undergoes stochastic transformation using genetic
operators such as crossover and mutation. Crossover combine solutions from the
old population to form new solutions (offsprings) while mutation randomly changes
genes in existing solutions to form new solutions. This process of creating a new
generation from the old one is repeated until the algorithm converges to a solution
that meets certain criteria (e.g. number of iterations) or cannot be improved further.
Another important component of the algorithm is Elitism, this means some of the
best (non-dominated) solution in the current population are allowed to go into the
next generation as they are. These genetic operations tend to improve average fitness
of each successive generation. For more details on the genetic algorithm as it relates
to portfolio optimization see Kalayci et al. (2017)

3 Diversification Measures

This section gives a brief description of the diversification measures used in this
study and their merits and demerits.

4As noted earlier, in addition, optimization of some of the diversification measures considered in
this study requires a method that can handle non-convexity and/or discontinuity in the objective
function space.
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The first measure is the diversification ratio (DR). DR quantifies diversification
by measuring the “distance” between two volatility measures of the same portfolio,
namely, volatility in aworldwhere diversification is assumednot to exist andvolatility
in a world where there is diversification (Lee 2011). It is given by

DR =
∑p

i=1 wiσi√
w′Rw

(6)

where σi is the standard deviation of asset i and the other parameters are as defined
earlier. Although this measure is straightforward to construct, it is not without flaw.
Meucci (2009) pointed out that theDR is a differential diversificationmeasure and not
one that measures diversification in absolute terms. The measure is bounded below
by 1, and it is unbounded from above. Higher values reflect better diversification.
Finally, DR = √

p if all assets are perfectly uncorrelated.
The secondmeasure is the PDI. PDI evaluates the effective number of independent

variation components in a portfolio. Introduced by Rudin and Morgan (2006), PDI
attach weights to the principal components of a portfolio’s returns in the following
way;

PDI = 2
p∑

k=1

kWi − 1

Wi = λi∑p
k=1 λi

(7)

where p is the number of assets in the portfolio andWi are the ordered and normalized
covariance or correlation eigenvalues (λi). Diyarbakirlioglu and Satman (2013) noted
that maximizing PDI to achieve better diversification is similar to maximizing R2

in econometrics. PDI is a monotonically non-decreasing function of the number of
stocks. Thismay create a problemwhenPDI is the criterion for optimizing a portfolio.
A portfolio P1 may be preferred to a portfolio P2 if P1 has more stocks (or assets).
However, this becomes a problem when the marginal effect of the stocks in P1 that
are not in P2 on diversification is minimal. To deal with the sensitivity to the number
of stocks, Diyarbakirlioglu and Satman (2013) introduced an upper limit such that
the problem is that of selecting a subset of assets from a given number of assets i.e.
portfolios are indexed by the maximum number of stocks allowed.5 Like DR the
higher the value of PDI the higher the level of diversification in the portfolio.

We also consider Information complexity of the covariance matrix (ICOMP), this
measure was proposed by Oyenubi (2010, 2016) and it is given by

ICOMP = p

2
log

[
tr(R)

p

]
− 1

2
log|R| (8)

5For example, in a universe of 20 stocks one may preselect 10 as the highest number of stocks
allowed in a portfolio. The portfolio can then be optimized by selecting the portfolio with the
maximum PDI out of all possible portfolios that have 10 stocks or less.
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where |R| and tr(R) denote the determinant and trace of the variance-covariance
matrix of returns. ICOMP can be thought of as a measure of return correlation con-
centration (Oyenubi 2016). Unlike PDI that quantifies the number of independent
factors in a portfolio, ICOMP quantifies the level of dependency or variation redun-
dancy among the returns of assets that make up a portfolio. The value of ICOMP
reduces as the level of diversification increases. Similar to PDI, ICOMP is a non-
decreasing function of the number of stocks, therefore; it is sensitive to the number
of stocks.

The last measure considered is based on the trade-off between ICOMP and PDI.
Oyenubi (2016) use this approach to estimate the optimum number of stocks in a
given universe of stocks. The idea is that both ICOMP and PDI are sensitive to
the number of stocks, but the direction of this sensitivity is opposed to each other.
PDI tend to include stocks whose marginal contribution to diversification may be
minimal to optimize diversification while ICOMP tends to pick the portfolio with
the smallest size to achieve the same objective. One way to mitigate the sensitivity
of both measures to the number of stocks is to consider the trade-off between PDI
and ICOMP i.e. construct a portfolio that maximizes (the absolute value of) the
difference between PDI and ICOMP i.e. |PDI-ICOMP|. The portfolio that maximizes
this difference should have the optimum number of stocks for the universe under
consideration because marginal ICOMP equals marginal PDI. This means that the
number of independent sources of variation (measured by PDI) cannot be improved
without incurring heavier cost in terms of the complexity of the portfolio (measured
by ICOMP). This way the choice of the number of stocks is data-driven. In this study,
we use this trade-off as another diversification measure.

4 Mean-Variance GA and QP Efficient Frontiers

We use weekly returns data of 80 randomly selected stocks from S&P 500. The data
spans January 2005 to November 2013 (Details of the stocks in the universe are
presented in the appendix6).

To mitigate the problem of sensitivity to parameters we follow Tsao and Liu
(2006) by using genetic algorithm to sketch the mean-variance efficient frontier that
replicates the result produced by quadratic programming. This exercise is used to
narrow down reasonable parameters that can be used when variance is replaced with
the proposed diversification measures. The result of the mean-variance frontier is
shown in Fig. 1. The result agrees with the one in Tsao and Liu (2006), the mean-
variance frontier drawn using the NSGA II algorithm (blue in Fig. 1) is able to
approximate the mean-variance Pareto front (red in Fig. 1) drawn using quadratic
programming.

On the graph, the position of the portfolio that optimizes the Sharpe ratio (labelled
“OPTIMAL”) and the portfolio that minimizes variance (labelled “MVP”) are very

6The R code to reproduce the result is also available on request.



44 A. Oyenubi

Fig. 1 Mean-variance efficient frontiers (blue NSGA II, red QP). “OPTIMAL” is the location of
the portfolio that optimizes the Sharpe ratio. MVP is the portfolio that places zero weight on returns
i.e. the minimum variance portfolio

similar under the quadratic programming and the Genetic Algorithm methods.7

Sharpe ratio for the MV frontier is calculated using Eq. 5 where we set r = 0.007
(this represent the average discount rate for the United States for the period covered
by the data i.e. 2015–20138).

It is clear that these two sets of portfolios have similar expected returns and
variance under the two methods. Figures 12 and 13 in the appendix show the weights
allocated to the stocks for the optimal and the minimum variance portfolios while
Figs. 14 and 15 shows the cumulative returns and the drawdown for the portfolios.
These graphs show that the performance of the OPTIMAL and MVP portfolios are
very similar under the two approches so that one can conclude that the choice of
method does not matter. The conclusion here is that the NSGA II approach provides
a good approximation for the result under the QP optimization.9

For the mean-diversification frontiers, we use Shape-like ratios depending on
how the diversification measure quantifies diversification. High values of ICOMP
means lower diversification so for ICOMP we replace σp with ICOMPp (where
ICOMPp is the covariance-complexity of the portfolio) in Eq. (5). In the case of the
othermeasures, higher valuesmeans better diversification. Therefore, the Sharpe-like
ratios are constructed by replacing σp in Eq. (5) with the inverse of the diversification

7In Sect. 6 we compare these portfolios.
8The information used for the calculation is available at “https://fred.stlouisfed.org/series/
INTDSRUSM193N”.
9In the case of the optimal portfolio, the same stocks were picked by both optimization methods.
Furthermore, the weight allocated to each stock is approximately equal. For the minimum variance
portfolio there are 3 stocks that have weights under the QP approach but have no weight under
NSGA II. However the weight allocated to these 3 stocks are very small. This is probably due to
the threshold parameter (details in Sect. 5) used under the NSGA II approach.

https://fred.stlouisfed.org/series/INTDSRUSM193N
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measure.This effectivelymeans that the optimal portfolio is the onewhere the product
of the excess return and the diversification value is maximized.

The NSGA II algorithm is implemented with the R package “nsga2R” (Tsou and
Lee 2013). The main programme uses fast non-dominated sorting, and a crowding
distance approach to maintain the diversity of solutions. The programme also uses
tournament selection and binary crossover.

4.1 Details of the Algorithm and Parameters

The parameters used in Fig. 1 are as follows, the population size is 300, tournament
size is 4, number of iterations or generations is 500. The crossover probability is 0.02,
and mutation probability is 0.2 (these parameters are needed to operationalize the
genetic operators mentioned in Sect. 2 see Tsou and Lee (2013) for details on these
parameters). Mutation and crossover distribution indices are set to 5. Since these
parameters work well to approximate the mean-variance efficient frontier produced
by the quadratic programming in Fig. 1, the same set of parameters is used for the
mean-diversification frontiers.

This study follows Tsao and Liu (2006) in setting up the NSGA II algorithm.
For the initiation of random solutions, random numbers, {υi, i = 1, 2, . . . p} from
a uniform distribution U {0, 1} are simulated. Portfolio weights {wi, i = 1, 2, . . . p}
are obtained by normalizing υi i.e. wi = υi/

∑
υi, the weights therefore satisfy∑

i wi = 1. To make sure that each portfolio contains at least 2 assets we implement
a general restriction (across all frontiers) that guarantees this.

Tsao and Liu (2006) use a threshold parameter D to set an upper limit for the
weights allocated to each stock. In other words, if υi > D then υi is replaced with
zero. Tsao and Liu (2006) reported that threshold set at 0.1 help the NSGA II to
approximate the efficiency frontier generated by quadratic programming. We did not
encounter this problem, in this study, the NSGAII algorithm (as implemented in the
R package) performs reasonably well without the ceiling constraint on weights. We
however implement a different threshold to guard against having small weights on
every stock. Therefore, in this study, a floor constraint is used to eliminate small
weights.10 When υi < D then υi is replaced with zero, where D = 0.01. After the
floor constraint is imposed the weights are re-normalized so that

∑
i wi = 1. This

device also allows for the possibility that some stocks have zero weight in the optimal
portfolio. Apart from the floor constraint, the rest of our algorithm is similar to the
one described in Tsao and Liu (2006).

Kirchner and Zunckel (2011) noted that PDI does not deal with weights attached
to assets and Oyenubi (2016) noted that the same is true for ICOMP. This makes
it difficult to use these measures in portfolio construction. For example, Crezée
and Swinkels (2010) use PDI to pick stocks in portfolios that are equally weighted

10This did not affect our result in any significant way, the only impact was instead of having very
small weight for some stocks these stocks are allocated zero weight in the portfolio.
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(perhaps because in an equally weighted portfolio weights can be ignored). To deal
with this problem, Kirchner and Zunckel (2011) suggested that weights could be
incorporated with these measures by considering weighted returns. This will require
using the covariance matrix of the fractional contributions of stocks. This suggestion
is implemented in the following way to construct portfolios that optimizes PDI and
ICOMP.

Let

V =
⎡

⎢
⎣

σ11 · · · σ1p
...

. . .
...

σp1 · · · σpp

⎤

⎥
⎦

be a p × p covariance matrix of stock returns. Then V (w) the covariance matrix of
the weighted returns can be written as

V (w) =
⎡

⎢
⎣

w2
1σ11 · · · w1wpσ1p
...

. . .
...

wpw1σp1 · · · w2
pσpp

⎤

⎥
⎦

Note that the portfolio variance is given by

σ 2(w) = l′V (w)l

where l is a p × 1 vector of ones. This means that11

σ 2(w) = w′Vw

Therefore, one can set V (w) = R in Eq. (8) to compute ICOMP. Furthermore,
the eigenvalues of V (w) can be used in Eq. (7) to compute the PDI measure. This
way the weights used to calculate PDI and ICOMP does not have to be uniformly
distributed as in Crezée and Swinkels (2010).

5 Mean Diversification Efficient Frontiers

In this section, the results of the mean-diversification frontiers are discussed. Fig-
ures 2, 3, 4, 5, 6 and7 show the efficient frontiers.Asmentioned earlier, the parameters
used for the mean-variance frontier in Fig. 1 are used for the mean-diversification
frontiers. Unlike the mean-variance frontier where in general increase in returns

11Similar calculations can be found in “A critical review of Correlation-based measures of portfolio
diversification” http://www.northinfo.com/documents/616.pdf. Randy O’Toole is the author of the
document.

http://www.northinfo.com/documents/616.pdf
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Fig. 2 Mean-ICOMP
frontier for 10 stocks

Fig. 3 Mean-ICOMP
frontier for 40 stocks

Fig. 4 Mean-ICOMP
frontier for 80 stocks.
ICOMP is the covariance
complexity of weighted
covariance matrix.
“OPTIMAL” is the location
of the portfolio that
optimizes the trade-off
between ICOMP and
expected returns. “MCP” is
the portfolio that places zero
weight on returns i.e.
minimizes ICOMP
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Fig. 5 Mean-PDI efficient frontier. “PDI” measures the portfolio diversification index of the
weighted covariancematrix. “OPTIMAL” is the location of the portfolio that optimizes the trade-off
between PDI and expected returns. “Max PDI” is the portfolio that places zero weight on returns

Fig. 6 Mean-DR efficient frontier. “DR” is the diversification ratio of portfolios. “OPTIMAL” is
the location of the portfolio that optimizes the trade-off between DR and expected returns. “Max
DR” is the portfolio that places zero weight on returns

on the efficient frontier is associated with an increase in variance (the measure of
risk), the relationship between returns and diversification measures is in the opposite
direction. The general pattern on the different frontiers (ICOMP, PDI, DR, and |PDI-
ICOMP|) is that higher return (desirable) is associated with lower diversification (not
desirable) as one would expect.
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Fig. 7 Mean-|PDI-ICOMP| efficient frontier. “|PDI-ICOMP|” is the difference between PDI and
ICOMP of portfolios. “OPTIMAL” is the location of the portfolio that optimizes the trade-off
between “|PDI-ICOMP|” and expected returns. “Max |PDI-ICOMP|” is the portfolio that places
zero weight on returns

Figures 2, 3 and 4 show the mean-ICOMP efficient frontiers. We have three
separate frontiers for this measure to show the effect of the sensitivity of ICOMP
to the number of stocks. Figures 2, 3 and 4 show the frontier when the minimum
number of stocks allowed is 10, 40 and 80 respectively (i.e. the general constraint
of at least 2 stock is changed to 10, 40 and 80 respectively for Figs. 2, 3 and 4). As
mentioned earlier, because portfolios that optimize ICOMP always tend to be the
one with the smallest size, for each of the frontiers, all the portfolios on the efficient
front contain the same number of stocks and this number is equal to the minimum
number of stocks allowed in the NSGA II algorithm. Therefore this is somewhat a
stock picking exercise with a restriction on the number of stocks allowed.

This is because under ICOMP portfolio with the lowest covariance complexity
is always the most diversified because complexity is sensitive to the number of
stocks. Therefore, portfolios with two stocks always dominate other portfolios when
the optimization is not constrained. To mitigate this effect the minimum number of
stocks is restricted in the optimization.

The first thing to note is that as the minimum number of stocks increase (from 10
to 80) the maximum expected return on the frontier decreases (from approximately
0.011 to 0.007) and the maximum complexity increases from (800 to 2500). This
agrees with the statement made earlier i.e. there is a negative relationship between
diversification and expected returns.

In terms of Lee’s criticism of optimizing diversificationmeasure alone, the figures
show the position of the optimal complexity portfolio (OPTIMAL) and theminimum
complexity portfolio (MCP). The former minimizes the Sharpe-like ratio for this
frontier i.e. the ratio of excess returns to ICOMP while the latter minimizes ICOMP
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only. The MCP is the solution to the single optimization problem that places zero
weight on returns. In terms of the trade-off between expected returns and ICOMP,
the “OPTIMAL” portfolio on the mean-ICOMP frontier dominates the MCP on a
mean-diversification adjusted basis by construction. It is clear from the figures that
irrespective of the number of stocks these two portfolios are very different.

Since the portfolio that optimizes the trade-off between returns and ICOMP exists,
a comparison between the optimal portfolio on the mean-ICOMP frontier and the
portfolio that optimizes the Sharpe ratio will be more consistent than the comparison
between the minimum complexity portfolio and the portfolio that optimizes the
Sharpe ratio. This is because optimal portfolio on both frontiers are constructed to be
risk-return efficient. On the other hand, one can compare the minimum complexity
portfolio with the minimum variance portfolio since they have the same objective
i.e. to minimize risk/diversification. This result, therefore, supports Lee’s criticism.

Figure 5 shows the mean-PDI frontier. Although this measure is also sensitive to
the number of stocks, its sensitivity is not as strong as that of ICOMP. Therefore,
the general restriction of a minimum of 2 stocks works well for this measure. One
possible explanation for this is that while ICOMP tries to optimize diversification
by selecting the minimum number of stocks given their correlations, optimizing PDI
often entail selecting the highest number of stocks possible for each return level.
Therefore, for each return level, the portfolio that maximizes PDI need not be the
one with the largest size since marginal PDI decreases with the number of stocks
(Rudin and Morgan 2006; Oyenubi 2016).

In terms of Lee (2010)’s criticism, the portfolio that optimizes PDI alone (Max
PDI) is also different from the one that optimizes the trade-off between PDI and
returns. Again, this result suggests that there is a viable option that does not place all
its weight on PDI (when one is interested in diversification-adjusted returns) and this
option is a better candidate to compare with the mean-variance optimal portfolio.

Figure 6 shows the mean-DR efficient frontier. Just like the other diversification
measures. The portfolio that optimizes the diversification measure is not optimal
when the trade-off between the mean and the DR is considered.

Lastly, following Oyenubi (2016), the trade-off between PDI and ICOMP is used
as a diversification measure. The rationale for this measure is that it helps mitigate
the sensitivity of ICOMP (and PDI to some extent) to the size of the portfolio. PDI
acts such that to increase the diversification of a portfolio more stocks are needed (i.e.
adding stocks is a way to increase the number of independent sources of variation).
However, the marginal contribution of the last stock added may be so small that it
does not justify the addition. Contrasting PDI with ICOMP will guarantee that the
last stock is added only if its benefit in terms of improvement in diversification is
more than its cost in terms of its marginal complexity. This creates a data-driven
mechanism that selects portfolio in such a way that the sensitivity of these measures
to the number of stocks is curtailed.

Diversification increase as the difference between PDI and ICOMP increases.
Figure 7 shows the result; again, the portfolio that optimizes the diversification mea-
sure alone is different from the one that optimizes the trade-off between expected
returns and the diversification measure.
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In summary, all the results agree. There are portfolios that place some weight
on return while optimizing the diversification measures. In theory, these mean-
diversification optimal portfolios are more efficient and more comparable with the
portfolio that optimizes the Sharpe ratio than risk-based portfolios that ignore returns.
Furthermore, while onemay struggle to understandwhy an investor will want to opti-
mize risk or diversification alone the mean-diversification optimal portfolio offers
a better option i.e. it has a clearly defined objective of maximizing returns while
minimizing lack of diversification.

6 In-Sample Comparison of Portfolios

By construction mean-diversification optimal portfolios should dominate the risk-
based portfolios on their respective frontiers. Figures 8, 9, 10 and 11 supports this
expectation. Figures 8, 9, 10 and 11 show the cumulative returns and the drawdown
for the optimal mean-diversification portfolios and the portfolio that optimizes the
diversification measure.

In all cases, the result shows that portfolios that optimize the trade-off between
returns and diversification have better returns and recover quicker from the 2008/2009
financial market crises than the corresponding portfolio that optimizes diversification
alone. Although in comparison to the other portfolios, the portfolio that optimizes
the DR perform better, the DR portfolio’s return is much closer to the return of the
portfolio that optimizes the trade-off between DR and returns (especially before the
crises) and the drawdown result suggests that this portfolio also recovered well from
the 2008/2009 crash.

Fig. 8 Complexity (ICOMP) portfolios
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Fig. 9 PDI portfolios. OPT_COMPLEXITY_returns and OPT_PDI_returns represent the opti-
mal mean-ICOMP and mean-PDI portfolio respectively. MIN_COMPLEXITY_returns and
MAX_PDI_returns represent the portfolio that minimizes ICOMP and the portfolio that maximizes
PDI respectively

Fig. 10 DR portfolios

This result is expected, the risk-based portfolios place zero weight on returns
so it is not surprising that their performance in terms of returns is lower than the
performance of the corresponding return-diversification optimal portfolio. On the
other hand, one would expect the risk-based measure to perform better in terms of
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Fig. 11 PDI-ICOMP portfolios. OPT_DR_returns and OPT_ICOMPPDI_returns represent
the optimal mean-DR and mean-|PDI-ICOMP| portfolio respectively. MAX_DR_returns and
MAX_ICOMPPDI_returns represent the portfolio that maximizes DR and |PDI-ICOMP| respec-
tively

minimizing risk alone, however, the drawdown in Figs. 8, 9, 10 and 11 suggests that
during crises period risk-based portfolios take longer to recover.

To properly compare the portfolios (especially the mean-variance optimal portfo-
lio with the mean-diversification optimal portfolios) we use a use Treynor ratio and
Information ratio. These measures are given by

TRi = α̂i

β̂i

IRi = α̂i

α̂(εi)

where TRi and IRi represent the Treynor and Information ratio of portfolio i respec-
tively. α̂i (Jensen’s alpha) is the abnormal excess return of portfolio i, β̂i is the beta
of portfolio i (a measure of systemic risk) and σ̂ (εi) is the standard deviation of port-
folio i’s residual returns (a measure of specific risk). The motivation for choosing
these performance measures is that they will be less bias than the sharpe ratio or any
other measure that utilize one of the risk measures that has been used to sketch the
efficient frontiers. These measures also allow for the comparison of the portfolios
with reference to two components of risk i.e. systemic and specific risks.

Table 1 shows the results. We start by noting that across panels A (optimal portfo-
lios) and B (risk-based portfolios) in Table 1, all the portfolios that trade-off returns
for risk/diversification (Panel A) outperform corresponding portfolios that optimize
diversification/risk alone. This is consistent with the results in Figs. 8, 9, 10 and 11.
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For the risk-based measures, the portfolios that optimize other risk/diversification
measures perform better than the one that optimizes variance (i.e. the minimum vari-
ance portfolio). Lastly, for the optimal portfolios, themean-variance optimal portfolio
dominates the mean-diversification optimal portfolios when using the Treynor mea-
sure and the portfolio that optimizes the trade-off between complexity and returns
(with a minimum of 40 stocks) performs better when the performance is based on the
information ratio.12 In other words, when systemic risk is the biggest threat mean-
variance optimal portfolio performs better but when specific risk is the main concern
optimal complexity portfolio with 40 stocks performs better than other portfolios.
Which suggests that different diversification measures focus on different aspects of
risks.

We also report the Jensen’s alpha for all the portfolios, the implied estimate of β̂i

and σ̂ (εi) based on the value of α̂i suggests that the portfolioswith lower performance
(as measured by Treynor and Information ratio) does have better risk properties i.e.
lower systemic or/and specific risk. However, the portfolio with better performance
have excess returns that more than compensate for their higher risk.

This result is instructive when it comes to understanding the relationship between
mean-diversification optimal portfolios and risk-based portfolios. The former per-
forms better than the latter because its excess return compensates better for its level
of risk than the excess return of the former. This goes to the heart of Lee (2011)’s
criticism of risk-based portfolio construction. Without a clearly defined objective
like the trade-off between returns and the diversification measure, there is no way of
knowing that the mean-diversification optimal portfolio offers a better risk-reward
trade-off. Our result suggests that by incorporating returns into the optimization of
the new risk measures, the resulting portfolio becomes riskier but the excess return
is such that the higher risk is better compensated (we note that this is at least true for
the data we used, confirming this for other periods and data is a question for future
research).

If in-sample, optimal portfolios on mean-diversification frontiers outperforms
risk-based portfolios on a risk-adjusted basis, then it is more reasonable (theoreti-
cally) for one to expect them to repeat the same performance out of sample. This
expectation is at least more reasonable than the alternative of expecting a risk-based
portfolio to outperform the mean-variance optimal portfolio on a risk-adjusted basis.
This suggests that the body of research that has focused on showing that risk-based
portfolio outperforms the mean-variance portfolio may have better justification if
it was comparing mean-diversification optimal portfolios with the mean-variance
optimal portfolio. Note that while it is not impossible for a risk-based portfolio to
outperform a portfolio that is constructed to be risk-reward optimal this should be
an exception and not the rule.

Apart from this main point, there are other points we wish to highlight. Portfolios
that are based on the complexity measure tend to perform well when they are con-
strained (i.e. when there is a lower limit to the number of stocks). Across the rows of

12In other words the order of dominance is mean-variance or mean-complexity optimal portfolio,
other mean-diversified optimal portfolios, risk-based portfolios and minimum variance portfolio.
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Table 1 complexity portfolio tend to be the best or second best (i.e. the complexity
portfolio with 40 or 5 stocks). We explore this option for the complexity measure
because it is highly sensitive to the number of stocks. However, these results confirm
the idea that portfolio diversification depends not only on the correlation structure
of the stocks but also the number of stocks (Oyenubi 2016). Clearly curtailing the
number of stocks for the complexity measure improves its performance. Perhaps this
effect exists for other diversification measures like the PDI (which is also known to
be sensitive to the number of stocks).

The number of stocks reported in Table 1 suggests that different diversification
measures chose different number of stocks to optimize their objective (in the presence
or absenceof returns).Apart from the caseswhere thenumber of stocks is constrained,
risk-based portfolios (Panel B) tend to select more stocks than optimal risk-reward
portfolios (Panel A). The point here is that in portfolio optimization the choice of the
number of stocks is important. However, this choice is often implicitly determined
by the objective function. This means that flaws in the way the objective function
react to the number of stocks will affect the performance.

7 Out-of-Sample Performance

It is known that the mean-variance optimal portfolio does not perform well out-
of-sample, one reason for this is that mean-variance efficient portfolio weights can
be extremely sensitive to changes in returns (Best and Grauer 1991; Hurley and
Brimberg 2015). The literature also suggests that portfolios that optimizing risk alone
can somehow outperform the mean-variance optimal portfolio on a risk-adjusted
basis. Given the result in this paper, it will be interesting to compare the performance
of mean-diversification optimal portfolios with the mean-variance optimal portfolios
out of sample. Since these portfolios place some weight on returns, the expectation
is that they should have better risk-adjusted returns.

To do this, we divide the total period in our data (i.e. 2005–2013) into two periods.
The first period is from “2005-01-10” to “2011-01-03” (313 weeks) while the second
period is from “2011-01-10” to “2013-11-25” (151 weeks). The various portfolios
discussed so far are re-estimated using the first period’s data to obtain the optimal
portfolio weights for each portfolio. These portfolio weights are then applied at the
beginning of the second period and the portfolios are allowed to grow over the second
period (note that thismeans there is no rebalancing). The performance of the different
portfolios are compared at the end of the second period, For the comparison we use
the ratio of returns to the standard deviation of the portfolios i.e. risk adjusted return
(note however that we did not use the risk free rate as in Sharpe ratio). The result is
shown in Table 2, the first row show the result of an equally weighted portfolio as a
baseline.

For the optimal portfolios, the mean-variance optimal portfolio has the worst
performance. This should not be surprising since themean-variance optimal portfolio
is optimized to be optimal in-sample and there is no guarantee that that performance
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Table 2 Out-of-sample performance of Risk adjusted return of portfolios

Equal NSGA
MV

OCP PDI |PDI-ICOMP| DR

Optimal portfolios

Returns 0.004331 0.007024 0.004929 0.006325 0.006048 0.004899

SD 0.02455 0.052406 0.030792 0.035095 0.032846 0.026497

Return
risk ratio

0.176421 0.134039 0.160068 0.180234 0.184133 0.184882

Risk-based portfolio

Returns 0.004331 0.004282 0.00418 0.004205 0.004175 0.004906

SD 0.02455 0.018522 0.023972 0.023878 0.023878 0.024322

Return
risk ratio

0.176421 0.231194 0.174372 0.176085 0.174867 0.201699

will be repeated out-of-sample (note that this also applies to all the other portfolios).
The implication here is that the optimal mean-variance portfolio performsworse than
all the mean-diversification optimal portfolios. However, we note that this need not
be the case for every period or and every universe of stocks. The point here is that
under the right conditions incorporating returns in the optimization of diversification
measures can be useful. Lastly, the equally weighted portfolio perform better than
the mean-variance optimal and the mean-complexity optimal portfolios.

Furthermore, the result also show that the minimum variance portfolio also out-
perform the mean-variance optimal portfolio out-of-sample, this is similar to the
results reported by DeMiguel et al. (2009). For the risk-based portfolios, the mini-
mum variance portfolio has better return-risk ratio than other portfolios. In second
place is the portfolio that maximizes DR followed by the equally weighted portfolio.
Again it is hard to predict which portfolio will perform better out-of-sample.

This underscores the point of Lee (2011), any portfolio strategy can outperform
another one (out-of-sample) under the right set of conditions. All portfolio strategies
can be thought of as a special cases of the mean-variance optimal framework, for
example when all assets have equal returns, volatility and correlation the equally
weighted portfolio is equivalent to the mean-variance optimal portfolio. Lee (2011)
also show that when expected returns of all assets are identical theminimum variance
portfolio is equivalent to the mean-variance optimal portfolio.

In conclusion these results show that there is value in incorporating returns when
optimizing diversification measures. As shown in Table 2 such return-diversification
optimal portfolio can outperform themean-variance optimal portfolio out-of-sample.
We also note that the result suggests that risk-based portfolios can outperform port-
folios that trade-off returns for risk or diversification measures (i.e. compare each
return-risk optimal portfolio in Table 2 with the corresponding risk-based portfolio).
While this is the case for this sample, like Lee (2011) there is no guarantee that this
performance can be repeated on a different data set.
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8 Conclusion

Studies have compared the performance of risk based portfolios with the mean-
variance optimal portfolio. As noted by Lee (2011) irrespective of the result of this
comparison there is no theory that predicts ex-ante that a risk based portfolio will
outperform the optimal portfolio on the mean-variance frontier. Lee (2011) criticized
risk and or diversification based approaches to portfolio optimization for not having
a clearly defined objective like the Sharpe ratio. In other words, risk/diversification
approach involves single objective optimization rather than trading off one objective
for the other to find the optimal portfolio.

In this paper, we incorporate return as a second objective to be optimized with
diversification. We explore optimization on mean-diversification space for selected
diversificationmeasures and identify portfolios that aremean-diversification optimal.
Our result suggests that while incorporating returns is costly in terms of higher level
of risk relative to risk-based portfolios, the higher risk is well compensated for in the
optimal mean-diversification portfolio (in-sample). We argue that while this result
may not be applicable out of sample or with dataset from other periods, without
exploring the whole frontier it will be naïve to assert that a risk-based portfolio is
the optimal choice. In addition, we argue that portfolios that trade-off diversification
for returns are more justifiable (theoretically) as competitors to the mean-variance
optimal portfolio, unlike portfolios that place zero weight on return. Our out-of-
sample result confirm that it is hard to predict the performance of different portfolio
strategies but it also shows that incorporating returns in the optimization of risk based
portfolios can be valuable.

The main contribution of this paper is at the intersection of Lee (2011) who
criticized risk based approaches and Tsao (2010) who use an heuristic method to
estimate the mean value-at-risk frontier. We show that by using the method of Tsao
(2010) one can empirically shed some light on the criticism in Lee (2011). In this
study we find that Lee (2011)’s criticism is justified.
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Appendix 1

Symbol Company Symbol Company

1 AAPL Apple Inc. 43 KLAC KLA-Tencor Corp.

2 ADBE Adobe Systems 44 LBTYA Liberty Global Plc.

3 ADI Analog Devices 45 LLTC Linear Technology Corp.

4 ADP Automatic Data Processing
Inc.

46 MAT Mattel Inc.

5 ADSK Autodesk Inc. 47 MCHP Microchip Technology

6 AKAM Akamai Technologies Inc. 48 MDLZ Mondelez International, Inc.

7 ALTR Altera Corp. 49 MNST Monster Beverage
Corporation

8 ALXN Alexion Pharmaceuticals,
Inc.

50 MSFT Microsoft Corp.

9 AMAT Applied Materials 51 MU Micron Technology

10 AMGN Amgen 52 MXIM Maxim Integrated Products,
Inc.

11 AMZN Amazon Corp. 53 MYL Mylan Inc.

12 ATVI Activision Blizzard, Inc. 54 NFLX Netflix, Inc.

13 BRCM Broadcom Corporation 55 NTAP NetApp

14 CA CA, Inc. 56 NUAN Nuance Communications,
Inc.

15 CELG Celgene Corp. 57 NVDA Nvidia Corporation

16 CERN Cerner Corporation 58 ORLY O’Reilly Auto Parts

17 CHKP Check Point Software
Technologies Ltd.

59 PAYX Paychex Inc.

18 CHRW C. H. Robinson Worldwide 60 PCAR PACCAR Inc.

19 CMCSA Comcast Corp. 61 PCLN The Priceline Group Inc.

20 COST Costco Co. 62 QCOM QUALCOMM Inc.

21 CSCO Cisco Systems 63 REGN Regeneron Pharmaceuticals,
Inc.

22 CTSH Cognizant Technology
Solutions

64 ROST Ross Stores Inc.

23 CTXS Citrix Systems 65 SBAC SBA Communications Corp.

24 DLTR Dollar Tree, Inc. 66 SBUX Starbucks Corp.

25 DTV DIRECTV Group Inc. 67 SHLD Sears Holdings Corporation

26 EBAY eBay Inc. 68 SIAL Sigma-Aldrich

27 EQIX Equinix, Inc. 69 SIRI Sirius XM Holdings Inc.

28 ESRX Express Scripts 70 SNDK SanDisk Corporation

29 EXPD Expeditors Int’l 71 SPLS Staples Inc.

(continued)
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(continued)

Symbol Company Symbol Company

30 FAST Fastenal Co. 72 SRCL Stericycle Inc.

31 FFIV F5 Networks, Inc. 73 STX Seagate Technology Public
Limited Company

32 FISV FIserv Inc. 74 SYMC Symantec Corp.

33 FOSL Fossil Group, Inc. 75 TXN Texas Instruments

34 FOXA Twenty-First Century Fox,
Inc.

76 VOD Vodafone Group Plc.

35 GILD Gilead Sciences 77 VRTX Vertex Pharmaceuticals
Incorporated

36 GMCR Keurig Green Mountain, Inc. 78 WDC Western Digital

37 GOLD Randgold Resources Limited 79 WFM Whole Foods Market, Inc.

38 GOOG Google Inc. 80 WYNN Wynn Resorts Ltd.

39 GRMN Garmin Ltd.

40 HSIC Henry Schein, Inc.

41 INTU Intuit Inc.

42 ISRG Intuitive Surgical Inc.

Data downloaded using “get.hist.quote” command in R, spans Oct 10, 2005, to Nov 25, 2013

Appendix 2

See Figs. 12, 13, 14, 15, 16 and 17.

Fig. 12 Weight of stocks in
the minimum variance
portfolio under QP (red)
NSGAII (blue)

Fig. 13 Weight of stocks in
the optimal mean-variance
optimal portfolio under QP
(red) NSGAII (blue)
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Fig. 14 Cumulative returns and drawdown of minimum variance portfolios (QP and NSGA2).
MVP_QP_returns is the cumulative return for the minimum variance portfolio under quadratic
programming while MVP_NSGA2_returns is the cumulative returns for the minimum variance
portfolio under the genetic algorithm method

Fig. 15 Cumulative returns and drawdown of mean variance optimal portfolios (QP and NSGA2).
OP_QP_returns is the cumulative returns for the mean variance optimal portfolio under quadratic
programming while OP_NSGA2_returns is the cumulative returns for the mean variance optimal
portfolio under the genetic algorithm method

Fig. 16 Weight of stocks in
the optimal PDI portfolio
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Fig. 17 Weight of stocks in
the optimal COMPLEXITY
portfolio with 5 stocks
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Time Series Prediction with LSTM
Networks and Its Application to Equity
Investment

Ken Matsumoto and Naoki Makimoto

Abstract Forecasting financial time series has been traditional and important theme
for market analysis and investment strategy. However, it is not easy to capture the
statistical characteristics of the data due to high noise level and volatile features.
On the other hand, technological innovation by artificial intelligence is progress-
ing rapidly in various fields. Especially, long short-term memory (LSTM) has been
widely used in natural language processing and speech recognition. In this paper, we
study prediction performance of LSTM by comparing it with other machine learning
models such as logistics regression and support vector machine. The characteristics
of these models were first investigated by applying them to predict different types
of simulated time series data. We then conducted an empirical study to predict stock
returns in TOPIX Core 30 with application to portfolio selection problem. Overall,
LSTM showed favorable performance than other methods, which is consistent with
Fischer and Krauss (Eur J Oper Res 270(2):654–669, 2018) for S&P500 data.

Keywords Time series model · Stock return prediction · Portfolio selection ·
LSTM networks · TOPIX Core30

1 Introduction

It is an important issue to accurately forecast returns of stocks or other financial assets
from the viewpoints of both market analysis and investment. Traditional approaches
based on the econometric time series analysis such as autoregressive (AR) model
usually assumes linear relation between past and future returns. Although these basic
models have been extended to describe the stylized facts observed in the market such
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as volatility clustering and regime switching, the predictability of time series models
are still limited mainly due to the weak linear dependence of return data.

On the other hand, predictions using machine learning and artificial intelligence
models have attracted considerable attention in recent years. For example, recurrent
neural network (RNN) (Robinson 1994; Bengio et al. 2013) contributes greatly to the
improvement of recognition accuracy by effectively capturing the features of sound
waves andword strings. In addition, long short-termmemory (LSTM), one kind of the
RNNwith feedback links, was proposed to resolve the drawback of RNNby retaining
time related information for longer time period (Olah 2015; Palangi et al. 2016).
LSTM and other deep learning-based models drastically improved the accuracy of
the prediction in the field of, for example, natural language processing (Sutskever
et al. 2014) and speech recognition (Hinton et al. 2012). In contrast to the traditional
time series models that assume linear relationship, these models are able to flexibly
represent nonlinear relation between input and output. In this regard, an application
of these models is expected to improve forecasting accuracy if the past returns have
nonlinear effect on future returns.

The main purpose of this paper is to confirm prediction capability of LSTM and
other machine learning models for two types of time series data. At first, we use the
simulation data sampled from AR and AR with volatility clustering to understand
the characteristics of each model and evaluate predictability. The second set of data
is daily returns of TOPIX Core 30, the Japanese stock market, for which we check
the predictability of positive/negative return. We also evaluate the performance of
the portfolio constructed based on model predictions.

This paper is organized as follows. Section2 gives a brief overview of previous
researches on financial time series analysis which is classified into two categories:
econometric approach and artificial intelligence approach. In Sect. 3, we examine
LSTM and other models to predict simulated data from AR and AR + GARCH
process and compare the accuracy. In Sect. 4, we conduct empirical application to
stock return data of TOPIX Core 30. An application to portfolio selection problem
is also discussed. Finally, Sect. 5 summarizes and concludes the paper.

2 Related Literatures

There are a huge number of literatures on the time series analysis of financial data
and its application to investment strategy. The most widely used model is autoregres-
sive integrated moving average (ARIMA) that is utilized for analyses based on the
econometric theory. On the other hand, recent technology innovations enhance devel-
opment of other types of analysis such as machine learning and artificial intelligence.
In this section, we briefly summarize the literatures related to those approaches.
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2.1 Econometric Approach

ARIMAmodel is an integrated process of ARMAmodel that decomposes time series
data into AR and MA terms. Since AR model has a natural structure that the future
data is more affected by the recent data than the past, AR and related models have
been deeply studied in the econometric analyses of time series data. These models
are generalized to some directions. A VARIMA model is developed for analyzing
multi-variate time series data. Another direction of extension is to develop time series
models that are able to describe stylized facts observed in financial markets such as
volatility clustering or regime switch.

ARCH (Engle 1982) and GARCH (Bollerslev 1986) models are developed to
represent volatility clustering. Another type of model that describes fluctuation of
volatility is a stochastic volatility model by Heston (1993) where the volatility is
modeled by a AR process. These models explicitly include dependent structure of
the variance of error terms so that, once the level of volatility jumps up, high level of
volatility continues for some time. Many empirical studies have shown that GARCH
and stochastic volatility models well capture the structure of market volatility.

The regime switching model is a times series model where a set of model parame-
ters changes when the underlying state changes. The underlying state is called regime
and represents, for example, business cycle or market circumstances. For example,
Ang andBekaert (2002) have proposed a two-regime switchingmodel to describe the
relation between asset correlation and volatility that the correlation between returns
on international assets tends to increase as the market becomes more volatile.

To construct an investment strategy based on econometric approach, we first select
a time series model such as AR or AR + GARCH, forecast the return and risk of
assets based on the model, then make an investment decision. For example, Komatsu
and Makimoto (2015) proposed a regime switching factor model to predict asset
returns and derived optimal investment strategy for a mean-variance based utility
function. Also, their empirical studies show that 2 and 3 regime models exhibit
superior performance of the portfolio over the single regime model.

2.2 Machine Learning and Artificial Intelligence Approach

Recently, an increasing number of literatures apply machine learning and artificial
intelligence approach to financial time series. Moritz and Zimmermann (2014) con-
ducted an empirical analysis of U.S. stock returns from the Center for Research in
Security Prices (CRSP). A random forestmodel is trained to predict the return of each
stock, and a quantile trading strategy is developed based on tree-based conditional
portfolio sorts. Takeuchi and Lee (2013) also analyzed CRSP data and proposed
an enhanced momentum strategy by stacked autoencoders constructed from some
restricted Boltzmann machine (RBM). The RBM performs feature abstraction from
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input feature vectors, then the encoder is employed as a classifier to calculate the
probability for each stock to outperform the cross-sectional median return.

Zhang (2003) proposed a hybrid model combining the statistical model with the
artificial intelligence model. An ARIMA model is fitted to the time series data, and
the residuals are then fitted with neural networks instead of the widely-used volatility
fluctuation model. The result shows that the hybrid model has higher accuracy than
the ARIMA model or the neural network alone.

Most relevant literatures to this paper are researches by Fischer and Krauss (2018)
and Krauss et al. (2017) where LSTM together with some other machine learning
models such as gradient boosting tree are applied to S&P500 data to predict the
probability of each stock to out/underperform the cross-sectional median. One key
finding there is that LSTM exhibits higher accuracy of prediction than the other
machine learning models. Also, LSTM shows superior performance of the quantile
portfolio constructed from model predictions.

Although machine learning and related models have been widely recognized in
finance, there is little consensus on which model is effective for predicting financial
time series. In particular, research on the application of LSTM in finance is still lim-
ited because of a high degree of difficulty in model construction and hyperparameter
tuning. In this research, we therefore verify the effectiveness of LSTM and other
models through simulational study as well as empirical analysis of financial time
series.

3 Simulation Study for Comparison of Prediction Models

In general, the stock return series has a lowsignal-to-noise ratio.Thismakes it difficult
to properly evaluate the performance of prediction models through empirical studies
using actual stock return data. In this section, we therefore conduct a simulation
study where LSTM and some other machine learning models are used to predict
time series data generated from AR and AR + GARCH models to compare their
performances.

3.1 Experimental Time Series Data

To compare prediction models, we generate 6 sets of time series data with different
statistical characteristics. Here and in what follows, let Rt denote the return data at
time t. Then, 3 sets of simulated return data are generated from AR(p) model

Rt = c +
p∑

i=1

φiRt−i + εt, εt ∼ WN (0, 12) (1)
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Table 1 Parameters for simulation data. For AR(5) model, c is set to either 0 or positive values to
adjust given ratio of positive labels

Time series c φ1 φ2 φ3 φ4 φ5 α β ω

AR(1) 0 0.8

AR(3) 0 0.3 −0.4 0.2

AR(5) 0/c 0.2 −0.2 −0.2 0.2 0.4

AR(1) + GARCH(1, 1) 0 0.8 0.0 0.0 1.0

AR(1) + GARCH(1, 1) 0 0.8 0.2 0.2 0.6

AR(1) + GARCH(1, 1) 0 0.8 0.4 0.4 0.2

where c is a constant term, φi’s are autoregressive coefficients, and εt is a white noise
with mean 0 and variance 12.

Although AR(p) is a standard model for financial time series, observed data in
financial markets often exhibits volatility clustering that is not described by AR(p)
model. To simulate such characteristic of financial data, the remaining 3 sets are
generated from AR(1) + GARCH(1, 1) model given as

Rt = φRt−1 + ut (2)

ut =
√
htvt, vt ∼ IN (0, 12) (3)

ht = ω + βht−1 + αu2t−1 (4)

where vt independently follows standard normal distribution. As can be seen in (4),
α + β represents the degree of volatility clustering. That is, the volatility clustering
is more persistent when α + β is close to 1.

Table1 summarizes the parameters of AR(p) and AR(1) + GARCH(1, 1) used to
generate simulation data.

In AR(p) model, we choose p = 1, 3, 5. Compared with φ1 = 0.8 in AR(1), we
choose smaller coefficients in AR(3) and AR(5). In general, smaller coefficients
make predictionmore difficult inAR(p)models since signal-to-noise ratio decreases.
In GARCH models, the time stationary mean of ht is given by ω/(1 − (α + β)).
The parameters in Table1 are so chosen that ω/(1 − (α + β)) = 1 for all GARCH
models.

3.2 Learning Models

In addition to the LSTM model, we evaluate and compare the prediction capability
of the following 4 standard machine learning models. For more detailed description,
implementation, and framework, see scikit-learn (Pedregosa et al. 2011) for
machine learning models, and keras (Chollet et al. 2015) for deep learning models.
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• Regularized logistic regression (LOG)
As most basic but robust model, we prepared the LOG which has regularized
method that linearly combines the L1 and L2 penalties (Friedman et al. 2010).
The LOG serves as a baseline, so that we can derive the advantage of the more
complex and computationally intensive LSTM networks.

• Random forest (RAF)
The RAF is composed of deep decorrelated decision trees built on different boot-
strap samples (Breiman 2001). Since various types of weak learners can be com-
bined to perform diverse learning, it is possible to create a strong estimator that
has high performance and is less prone to overfitting.

• Gradient boosting decision tree (GBT)
The GBT has boosting method for converting weak learners, i.e. decision trees
into one that achieves arbitrarily high accuracy (Friedman 2002). The boosting
works by sequentially applying weak learners to repeatedly re-weighted versions
of samples.

• Support vector machine (SVM)
The SVM has a solid theoretical background, an intuitive geometrical interpreta-
tion, and several properties that link the development of kernel space and convex
optimization (Cortes and Vapnik 1995). The algorithm outputs an optimal sepa-
rating hyperplane which categorizes new examples.

For each simulation data, we generate the feature vector (input data) and the
response variable (output data). Let the cumulative return CRt, m over m periods be

CRt,m =
m−1∑

i=0

Rt−i = Rt + Rt−1 + Rt−2 + · · · + Rt−(m−1) (5)

For predictingRt+1 of AR(p), we input a feature vector {CRt,1,CRt,2, . . . ,CRt,p} into
each learning model. This means that each model has enough information since the
conditional distribution of Rt+1 is completely determined from those data in AR(p)
model.

Next, we prepare a binary true label as the output data for classification. The true
label is the sign of one point ahead return Rt+1 defined by

Bt+1 =
{
0 (Rt+1 < 0)
1 (Rt+1 ≥ 0)

(6)

When c = 0, the ratio of positive label (Bt+1 = 1) is 50% in both AR(p) and AR
+ GARCH models. To see this, note that the time stationary mean of the process is
given by

m = c

1 − ∑p
i=1 φi

(7)

which equals 0 when c = 0, and that error terms εt or ut are normally distributed
with mean 0. If c �= 0, the ratio of positive label deviates from 50% which could
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affect the prediction capability of each model. We therefore analyze the cases with
the ratio of positive label 60 and 70% in AR(5) model where c is adjusted to achieve
those ratios.

The prediction capability of each learning model is evaluated by comparing the
probability of label 0/1 predicted by each model with the true probability calculated
as follows. At time t − 1, we observe the data RS up to s ≤ t − 1. Given those data,
Rt is normally distributed with the mean

∑p
i=1 φiRt−i, the variance 1 for AR(p) and

ht−1 for AR(1) + GARCH(1, 1). Therefore, the true probability of Rt > 0 is given
by

P

(
c +

p∑

i=1

φiRt−i + εt > 0

)
= �

(
c + ∑p

i=1 φiRt−i

σ

)
(8)

where �( ) denotes the standard normal distribution function and the standard devi-
ation σ = 1 for AR(p) or σ = √

ht for AR(1) + GARCH(1, 1).
We set the sample size of each simulation dataset to 2000. the datasets are then

divided into three subsets: training, validation, and test data. In order to minimize
information leakage, the latest 20% of the time series is used as the test data. The
remaining 80% of the data is divided into training and validation data by stratified
extractionmethod.Given a hyperparameter group of a certain combination, themodel
parameters are estimated from training data. Then, the evaluation is performed using
validation data. For hyperparameter turning, we adopt Bayesian optimization, which
has become mainstream in recent years (Bergstra 2013).

3.3 Results and Discussions

Figure1 shows the results of predicted probabilities that serve as criteria for label
classification. The horizontal axis of each figure shows the theoretical value obtained
fromEq. (8), and the vertical axis shows the predicted probability by themodel. These
histograms are shown outside the scatter plot (top and right, respectively).

When focusing on the predicted and theoretical probabilities of LOG, we find
that the slope is almost 1 and the error is small. This is a natural consequence
since an AR model is expressed as a linear sum of past data and LOG is a logit
transformation of a linear combination of past data. SVM and LSTM are almost
the same as LOG. In contrast, the scatter plot of RAF widely spreads along the
regression line. Furthermore, the slope decreases for higher probability. The predicted
probabilities of GBT is distributed similar to RAF, except that the possible range is
not 0 to 1, but the distribution is concentrated at 0.2 or 0.8.

Next, Fig. 2 shows the scatter plots for AR + GARCH data where the results for
α + β = 0, 0.4, 0.8 are shown from the top. The predicted probabilities of LOG,
SVM, and LSTM are in good agreement with the theoretical value, and their shapes
are almost equal. On the other hand, the predicted probabilities of RAF and GBT are
different from the theoretical values, similar to the results of the AR process.
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Fig. 1 Comparison of predicted probabilities and theoretical values of each model for AR(p) data.
The horizontal/vertical axis shows the theoretical/predicted probabilities with their histograms.
AR(1), AR(3), and AR(5) are shown from the left to right. LOG, RAF, GBT, SVM, and LSTM are
shown from the top to bottom
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Fig. 2 Comparison of predicted probabilities and theoretical values of each model for AR(1) +
GARCH(1, 1) data. The horizontal/vertical axis shows the theoretical/predicted probabilities with
their histograms. α + β = 0, 0.4, 0.8 are shown from the left to right. LOG, RAF, GBT, SVM, and
LSTM are shown from the top to bottom
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Fig. 3 Comparison of predicted probabilities and theoretical values of each model of AR(5) data.
The horizontal/vertical axis shows the theoretical/predicted probabilities with their histograms. The
ratios of positive label 50, 60, and 70% are shown from the left to right. LOG, RAF, GBT, SVM,
and LSTM are shown from the top to bottom
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Based on the experimental results, we discuss the characteristics of each model.
The LOG has the fewest hyperparameters and thus robust as expected. Since the pre-
dicted probability and the theoretical value are in good agreement, it is notable that the
probability can be directly interpreted as the predictability of the model. In contrast,
the RAF and the GBT showed poor results. The discrepancy between the predicted
probability and the theoretical value may be caused by the use of a decision tree as a
weak learner. It is difficult to measure the predictability by the predicted probability,
so that some probability calibration process would be required. The result of SVM
represents stable performance as well as LOG. However, LOG is an identification
model, whereas SVM is an identification function. For this reason, the SVM itself
could not calculate the predicted probability. Therefore, in scikit-learn frame-
work (Pedregosa et al. 2011), the calibrated probabilitywas generated by Platt scaling
for the case of binary classification (Platt et al. 1999). The LSTM achieved almost
the same performance as LOG and SVM. Since LSTM is an identification model
similar to LOG, the predicted probability could be interpreted as the predictability.

Finally, we consider the case when the ratio of positive label changes from 50% in
AR(5) model. Figure3 shows the scatter plots of 5 models for the ratios of positive
label 50, 60 and 70%. As the ratio of positive label increases, the histogram of
theoretical values is steadily biased. In LOG and SVM model, the measured values
and the theoretical values are in good agreement, so that those models are robust
against imbalanced data. As with previous results, RAF and SVM perform poorly.
The slope of LSTM gradually decreases as the ratio of positive label increases. The
predicted probabilities are distributed approximately from 0.2 to 1 and are more
biased than the theoretical distribution. This bias is peculiar to LSTMmodel and the
label ratio is likely to have an impact on the prediction capability.

The evaluation of machine learning models is often discussed by comparing true
labels with predicted labels such as accuracy. However, paying attention to predicted
probabilities, therewere significant differences in the shape of the distribution and the
variation. In addition, such a variety of the probabilities is compatiblewith stacking of
ensemble learning. In fact, Krauss et al. (2017) shows an improvement in prediction
accuracy by stacking various models.

4 Stock Return Prediction and Its Application to Portfolio
Selection

In this section, we apply LSTM and other machine learning models discussed in
Sect. 3 to stock return prediction in the Japanese market. In addition, we discuss the
performance of the portfolio selection. based on the prediction models.
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4.1 Data and Prediction Models

As an empirical analysis, we focused on the daily returns of 30 constituent stocks in
the TOPIX Core30 (Japan Exchange Group 2017). The TOPIX Core30 is one of the
“TOPIX new index series” and consists of 30 stocks with particularly high market
capitalization and liquidity among all stocks in the first section of the Tokyo Stock
Exchange. We use the daily log-return of the constituent stocks as of October 2017.
Note that the constituents of TOPIX Core30 are reviewed once a year in order to
better reflect the current market situation. The length of the data is approximately
2150days from January 2009 to December 2017.

Let Ps
t and PTPX

t be the time t price of stock s and TOPIX index respectively,
and define daily log-returns by Rs

t = ln(Ps
t /P

s
t−1) and RTPX

t = ln(PTPX
t /PTPX

t−1 ). We
also denote the cumulative returns in the past m days by CRs

t,m = ln(Ps
t /P

s
t−m) and

CRTPX
t,m = ln(PTPX

t /PTPX
t−m ).

For the purpose of stock return prediction, we employ LSTM, LOG, RAF, GBT
and SVM that have already been examined for simulation data in Sect. 3. Two cumu-
lative daily returns CRs

t,m and CRTPX
t,m within the past year (240days) are selected

as feature vectors. Krauss et al. (2017) pointed out importance of the cumulative
returns and suggested that not only the most recent daily returns but also returns
in the longer intervals such as 40, 60, and 240days could contribute to improve
return predictability. We therefore construct the feature vectors by (CRs

t,m,CRTPX
t,m )

for m ∈ {1, 2, . . . , 9, 10, 20, 40, 60, 120, 240} with the total number of timestamps
is 15.

Since our main objective here is to outperform the TOPIX, we denote an excess
return of stock s by

yst = Rs
t − RTPX

t (9)

The target positive/negative label for binary classification is then defined by

Bs
t =

{
0 (yst < 0)
1 (yst ≥ 0)

(10)

The data preprocessing and the optimization procedure for hyperparameter tuning
conforms to Sect. 3.2.

4.2 Evaluation of Stock Return Prediction

At time t, each model makes 1-day ahead predicted probability of positive label

p̂st+1 = P(Bs
t = 1) (11)
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based on the available feature vectors (CRs
t,m,CRTPX

t,m ) for m ∈ {1, . . . , 10, . . . , 240}
as explained above. The prediction of positive/negative label is then defined by

B̂s
t+1 =

{
0 (̂pst+1 < 0.5)
1 (̂pst+1 ≥ 0.5)

(12)

The predictability of each model is evaluated from the three viewpoints: prediction
capability, predicted probability, and return/risk.

4.2.1 Evaluation of Prediction Capability

The accuracy, F1 score, and Area Under the ROC Curve (AUC) are adopted for
evaluating model predictability. The F1 score is interpreted as a weighted average
of the precision and the recall. Assuming that predicting a positive label is equally
important to that of a negative label, we calculate two F1 scores, then adopt their
weighted average by the number of true instances for each label. TheAUC is a typical
metric for particularly binary classification problem at various thresholds settings.
Since the Receiver Operating Characteristic (ROC) is a probability curve, the AUC
represents degree or measure of separability.

Table2 summarizes the mean and standard deviation of accuracy, F1 score, and
AUC of the 30 stocks, and Figs. 4, 5 and 6 show the violin plot of their distribution. In
those results, LSTM achieves the highest accuracy while LOG is the lowest, which
is different from the simulation study in Sect. 3 where both LSTM and LOG show
favorable accuracy. We also observe that accuracy of LSTM and GBT is rather stable
over 30 stocks as the level of the standard deviation is low. In contrast, F1 scores of
RAF and SVM are relatively low and widely spread. Since F1 score indicates the
coincidence of positive label between data and prediction, prediction of RAF and
SVM has some bias to one side.

The difference of AUC among all models is smaller than accuracy and F1 score. In
fact, both RAF and SVM achieve AUC comparable to other models in spite of their
poor F1 scores. It is also noted that the value of AUC depends on the classification
threshold that is set to 0.5 in our analysis, i.e., B̂s

t+1 is determined from whether p̂st+1
is greater than or equal to 0.5. This means that AUC could be improved by changing
the classification threshold from 0.5.

Table 2 Comparison of prediction capability. The mean (standard deviation) of 30 stocks is dis-
played for accuracy, F1 score, and AUC

LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

Accuracy 50.7 (2.9) 51.5 (3.3) 51.7 (2.3) 51.6 (2.4) 53.4 (2.3)

F1 score 49.8 (3.1) 44.6 (6.5) 49.4 (3.4) 43.7 (7.4) 50.8 (4.2)

AUC 51.4 (3.5) 51.0 (2.7) 51.6 (3.1) 50.8 (3.3) 52.8 (3.4)
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4.2.2 Evaluation of Predicted Probability

This subsection is concerned with positive predicted label B̂s
t and probability p̂st .

For each stock, we define positive ratio of the true label Bs
t and predicted label

B̂s
t respectively by

bs = 1

T

T∑

t=1

Bs
t , b̂s = 1

T

T∑

t=1

B̂s
t (13)

where T denotes the data length. Table3 summarizes the mean of bs (1st row) and
b̂s (2nd row) over the 30 stocks, with the standard deviation in parenthesis. We also
calculate the mean and standard deviation of the predicted probability p̂st by

μ̂s
p = 1

T

T∑

t=1

p̂st , σ̂ s
p =

√
1

T − 1

∑T

t=1
(̂pst − μs)2 (14)

The 3rd row of Table3 displays the mean (standard deviation) of μ̂s
p over the 30

stocks, while the 4th row is the mean (standard deviation) of σ̂ s
p . Figures7, 8 and 9

respectively show the violin plot of b̂s, μ̂s
p and σ̂ s

p .

While the standard deviation of b is 2.2%, the standard deviation of b̂ is obviously
large, especially in RAF and SVM. When b̂s is greatly biased to 0/1, it means that,
the predicted return of a certain stock s would be almost negative/positive. The
effectiveness of such a biasedmodelwould be debatable. For example, if the accuracy
is at a very high level of approximately 70%, the model is valuable even though there

Fig. 4 Comparison of
accuracy. Each violin plot
represents the distribution of
stock s accuracy
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Fig. 5 Comparison of F1
score. Each violin plot
represents the distribution of
stock s F1 score

Fig. 6 Comparison of
AUC. Each violin plot
represents the distribution of
stock s AUC
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Fig. 7 Comparison of
positive ratio of predicted
label. Each violin plot
represents the distribution of
b̂s

are some biased predictions. On the other hand, if the accuracy is at approximately
52% as in this study, it is difficult to objectively show the effectiveness of the biased
prediction model.

From Figs. 8 and 9 of the predicted probability, five machine learning models
can be divided into two groups. The first group is GBT and SVM whose predicted
probabilities over the 30 stocks concentrate on rather narrow range. Furthermore, we
see that themean and the variance are slightly small. This suggests that themodels are
unlikely to output an extremely-biased predicted probability such as approximately
0 or 100%, and tend to be a conservative prediction. The 2nd group consists of LOG,
RAF, and LSTM that have relatively large variances of both mean and standard
deviation of predicted probabilities.

As a common trend of all models, the support of the predicted probability distri-
bution is narrow, that is contrary to the results from the simulation data in Sect. 3.

Table 3 Comparison of true/predicted label and predicted probability. The mean (standard devia-
tion) of 30 stocks is displayed for positive ratio of the true label (b), positive ratio of the predicted
label (̂b), the mean (μ̂p) and standard deviation (̂σp) of the predicted probability

LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

b 48.9 (2.2) 48.9 (2.2) % 48.9 (2.2) 48.9 (2.2) 48.9 (2.2)

b̂ 55.7 (12.2) 49.3 (34.7) 41.2 (18.9) 37.1 (33.8) 39.5 (19.9)

μ̂p 50.7 (2.1) 49.2 (3.7) 49.9 (0.9) 48.6 (1.7) 48.5 (2.5)

σ̂p 6.3 (3.4) 10.8 (3.8) 1.8 (1.1) 1.7 (1.2) 4.5 (1.9)
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Fig. 8 Comparison of
positive predicted probability
(mean). Each violin plot
represents the distribution of
μ̂s
p

Fig. 9 Comparison of
positive predicted probability
(standard deviation). Each
violin plot represents the
distribution of σ̂ s

p

There is a possibility that the non-linearity, signal-to-noise ratio, and positive ratio
of true label would cause this difference.
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4.2.3 Return of Investment Based on Prediction

In this subsection, we apply the prediction of the model to investment decision of
individual stocks. Suppose that an investor takes a long (short) position at time t
if the predicted label is positive (negative), i.e., B̂s

t+1 = 1 (= 0). A realized return
under this strategy is

ŷst+1 =
{−yst+1 (̂Bs

t+1 = 0)
yst+1 (̂Bs

t+1 = 1)
(15)

We denote the mean and standard deviation of ŷst+1 over the interval as μ̂s
y and σ̂ s

y ,
respectively. The risk-adjusted return is then given by

ŷsadj = μ̂s
y

σ̂ s
y

(16)

Table4 summarizes the mean (standard deviation) of μ̂s
y and ŷsadj over the 30

stocks, and Figs. 10 and 11 show their violin plots. We see that LSTM in which few
stocks earn minus returns, exhibits favorable return and risk-adjusted return. In fact,
both returns of LSTM are over twice that of the other models. Looking at the variance
of the return and risk-adjusted return, RAF is slightly larger. Performance in terms
of return and risk characteristics as well as accuracy is good in the order of LOG,
RAF, LSTM. This order of performance is consistent with the result of Fischer and
Krauss (2018).

4.3 Application to Portfolio Selection Problem

In this subsection, we apply the predicted positive probability to portfolio selection
problem and evaluate its performance to check the usefulness of LSTM and other
models for investment strategy.

Table 4 Comparison of return and risk. The mean (standard deviation) of 30 stocks is displayed
for return and risk-adjusted return

LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

μ̂y 0.021 (0.076) 0.028 (0.095) 0.028 (0.072) 0.014 (0.070) 0.082 (0.067)

ŷadj 0.015 (0.056) 0.019 (0.067) 0.019 (0.050) 0.015 (0.044) 0.057 (0.049)
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4.3.1 Construction of Prediction-Based Portfolio

Based on the prediction of each classification model, we construct a portfolio in
the following way. At time t, all 30 stocks are ranked in the descending order of
1-day ahead positive probability p̂st+1. From the definition of p̂st+1, the first (last,
respectively) stock has the highest (lowest) probability that the stock outperforms
TOPIX at t + 1. For k = 1, 2, . . . , 5, portfolio k is then defined by taking long
positions of the first 3k stocks and short positions of the last 3k stock. For example,
Portfolio 1 consists of long positions of the first 3 stocks and short positions of the
last 3 stocks. The other 24 stocks are not traded in Portfolio 1. On the other hand,
Portfolio 5 trades all 30 stocks with long/short positions of the first/last 15 stocks
each.

The sizes of long and short positions of each stock are set to be equal so that the
portfolio becomes dollar neutral. To focus on the performance of the portfolio itself,
we do not consider any transaction cost and commissions related to trading.

4.3.2 Performance of the Portfolios

We evaluate the performance of the portfolio for each classification model. They
are compared from the perspective of accuracy, return, and risk-adjusted return. The
accuracy of each portfolio is defined as the percentage of positive daily returns.
Table5 and Fig. 12 show the accuracy for k = 1, 2, . . . , 5.

Fig. 10 Comparison of
return. Each violin plot
represents the distribution of
μ̂s
y
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Fig. 11 Comparison of
risk-adjusted return. Each
violin plot represents the
distribution of ŷsadj

For k = 1, we see that the accuracy of all models except SVM is improved com-
paredwith the case of individual stock (see Table2). On the other hand, as k increases,
the degree of accuracy improvement varies depending on the models. Namely, the
accuracy of SVM improves, but the others do not change and decrease slightly. The
differences between these models deserve more than a passing notice.

Next, the mean and standard deviation of portfolio returns are shown in Table6,
Figs. 13 and 14. Compared with individual stock returns, there is no significant dif-
ference. However, the standard deviation is the smallest at k = 5 in any model,
indicating the diversification effect of the portfolio. This phenomenon has also been
confirmed in the empirical analysis of S&P500 (Fischer andKrauss 2018) and greatly
contributed to the risk-adjusted return (Table7 and Fig. 15). It is notable that LSTM
outperforms other machine learning models irrespective of the size of k.

Our results suggest that the portfolio selection based on the predicted probability
is more effective than individual stock trading. However, this simple and transparent

Table 5 Accuracy of each quantile portfolio of LOG, RAF, GBT, SVM, and LSTM

k LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

1 54.7 54.4 53.5 51.2 58.4

2 53.5 56.1 52.6 54.1 56.1

3 52.6 57.0 50.9 55.2 61.0

4 52.6 52.0 53.5 56.7 58.1

5 52.0 52.6 52.0 56.1 58.4
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Table 6 Mean and standard deviation of return for LOG,RAF,GBT, SVM, andLSTM, respectively

k LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

1 0.039 (0.752) 0.076 (0.709) 0.063 (0.702) 0.012 (0.681) 0.087 (0.627)

2 0.035 (0.532) 0.063 (0.498) 0.032 (0.482) 0.039 (0.538) 0.071 (0.468)

3 0.018 (0.448) 0.039 (0.405) 0.022 (0.376) 0.030 (0.475) 0.074 (0.379)

4 0.013 (0.377) 0.027 (0.342) 0.021 (0.312) 0.036 (0.435) 0.064 (0.348)

5 0.025 (0.326) 0.024 (0.305) 0.021 (0.268) 0.020 (0.378) 0.058 (0.301)

Table 7 Risk-adjusted return of each quantile portfolio for LOG, RAF, GBT, SVM, and LSTM,
respectively

k LOG (%) RAF (%) GBT (%) SVM (%) LSTM (%)

1 0.052 0.108 0.090 0.017 0.138

2 0.065 0.127 0.067 0.072 0.152

3 0.041 0.096 0.060 0.064 0.195

4 0.035 0.080 0.067 0.083 0.185

5 0.078 0.078 0.077 0.054 0.194

portfolio strategy is not aimed at reducing risk or pursuing returns, i.e., any opti-
mization process is not carried out. Altogether, there is still potential for enhancing
the edge of portfolio strategy by any machine learning model as well as the LSTM
networks.

Fig. 12 Comparison of
accuracy
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Fig. 13 Comparison of
return (mean)

Fig. 14 Comparison of
return (standard deviation)

5 Concluding Remarks

In this paper, we examined the predictability for time series data using machine
learning and artificial intelligence approach as an alternative to statistical models. In
particular, we focused on LSTM and compared its performance with such machine
learning models as LOG, RAF, GBT, and SVM.

The model characteristics were first investigated by applying those models to
predict several types of simulated datawith different statistical characteristics. LSTM
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Fig. 15 Comparison of
risk-adjusted return

as well as LOG and SVM showed favorable performances in terms of accuracy, F1
score andAUC, though the prediction capability of LSTMdeteriorates to some extent
when the ratio of positive data deviates from 50%.

From the empirical study to predict positive/negative sign of TOPIXCore 30 stock
returns, LSTM showed better performance of risk-adjusted return than other mod-
els. We also confirmed the effectiveness of the market neutral portfolio constructed
from model predictions as simple quantile portfolios using the predicted probability
showed higher risk-adjusted returns than individual stocks. These observations are
consistent with those in Fischer and Krauss (2018) for S&P500 returns.

In this paper, we only use past return data as input to each model since statistical
time series model for return prediction basically uses only historical data. To further
improve the accuracy of prediction, it would be useful to add other information such
as news or analysts’ report on each stock. In this regard, LSTM has advantages over
time series models as it accepts various types of input data other than numeric data.
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A Response Function of Merton Model
and Kinetic Ising Model

Masato Hisakado and Takuya Kaneko

Abstract We study contagious defaults of banks by applying a voting model. The
network of banks are created by the relation, lending and borrowing among banks.We
introduce the response function from Merton model. Using this response function
we calculate the probability of default (PD) which includes not only changes of
asset values but also the effects of connected banks’ defaults using the mean field
approximation. If we approximate the normal distribution which Merton model uses
by tanh function, we can obtain the kinetic Ising model which represents phase
transition. The asset volatility plays the role of temperature. In the low temperature
limit, the model becomes the threshold model. We calculate PD which shows the
effect of the situations around the bank as the additional PD using the self consistent
equation.

Keywords Network · Credit risk management · Default probability · Contagion

1 Introduction

Human beings estimate public perception by observing the actions of other individu-
als, followingwhich they exercise a choice similar to that of others. This phenomenon
is also considered as social learning or imitation and studied several fields (Galam
1990). It is usually sensible to do what other people are doing. Hence, collective
herding behavior is assumed to be the result of a rational choice according to public
perception. In ordinary situations this is the correct strategy and sometimes erro-
neous decisions like the beauty contest of Keynes (1936). As a macro phenomenon,
large social movement is the absence of central control or public communications.
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A well-known example of erroneous decisions is the bank run on the Toyokawa
Credit Union in 1973. The incident was caused by a false rumor, the process of
which was analyzed in detail by Ito et al. (1974a, b). These phenomenon is known
as an example of information cascade (Bikhchandani et al. 1992).

Herding behavior is represented as the response function. Threshold rules have
been derived for a variety of relevant theoretical scenarios as the influence response
function. Some empirical and experimental evidence has confirmed the assumptions
that individuals follow threshold rules when making decisions in the presence of
social influence. This rule posits that individuals will switch between two choices
only when a sufficient number of other persons have adopted the choice. We have
studied the voting model including herders. The model was introduced to explain
the information cascade. We refer to herders such as the threshold rule as digital
herders (Hisakado et al. 2011). From their experiments, they observed that human
beings exhibit behavior between that of digital and analog herders (Mori et al. 2012;
Hisakado etal. 2012). Analog herders vote for each candidate with probabilities that
are proportional to candidates’ votes (Hisakado et.al 2010). The analog herder has
weaker herding power than the digital herder.

Bank defaults are contagious. The failure of single bank can be spread through
financial networks.Over the past years after great recession in 2008,many researchers
in various fields have been addressing the question to how to prevent financial conta-
gion. Some of them studied especially inter-bank networks where banks lend to and
borrow from each other with the threshold rule (Watts 2002; Gai et al. 2010; Caceioli
et al. 2018). On randomly connected networks, a small fraction of initial activated
when the network is not too sparse or too dense, a phase transition can be found. It
is called the cascade window. The noise is only first fraction and the models are the
deterministic model. The model with noise which do not have the cascade window
was studied in (Young 2011).

The relations between borrowers and lenders play important role in the contagions.
The behavior of banks is similar to the herder. The situation affects the status of
the banks and the persons. The relation is represented by the response function in
our voting model. We extend the voting model and use Merton model as a response
function to apply to the contagious defaults. In this casewe can introduce the network
between the banks and the change of the asset price naturally. The latter is presented
by the correlations of assets (Hisakdo et al. 2015). We show the relation to kinetic
Ising model which represent the phase transition and the asset volatility plays the
role of temperature (Kitsukawa et al. 2006; Hisakado et al. 2015).

The remainder of this paper is organized as follows. In Sect. 2, we introduce our
voting model and mathematically define the herders. In Sect. 3, we construct the
response function using Merton model. In Sect. 4, we show the relation to kinetic
Isingmodel. In Sect. 5we calculate the probability of default affected by the situations
around the bank. Finally, the conclusions are presented in the last section.
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2 Model

Here we consider a voting model. We model the voting behavior of two candidates,
C−1 and C1, at time t, and C−1 and C1 have c−1(t) and c1(t) votes, respectively.
In each time step, one voter votes for one candidate, which means that the voting
is sequential. Hence, at time t, the t-th voter votes, after which the total number of
votes is t. Voters are allowed to see r previous votes for each candidate; thus, they
are aware of public perception. Here r is a constant number.

A voter’s vote is based on the number of previous r votes. We call these voters
herders. Here the voter refers to the latest r votes. In this paper we consider the
network, the lattice case only (Hisakado et al. 2016). Therefore, at time t, r previous
votes are the number of votes forC−1 andC1,which is represented by cr−1(t) and c

r
1(t),

respectively. Hence, cr−1(t) + cr1(t) = r holds. If r > t, voters can see t previous votes
for each candidate. In the limit r → ∞, voters can see all previous votes. We define
the number of all previous votes forC−1 andC1 as c∞−1(t) ≡ c−1(t) and c∞

1 (t) ≡ c1(t).
Here we specify r to be constant. We define c(t)r1/r = 1 − c(t)r−1/r = Z(t).

A herder’s behavior is defined by a response function. We will lead the response
function in next section using Merton model. In the voting model the response func-
tion is defined by the function F(Z). We have considered the several symmetric
function, digital herder F(Z) = θ(Z − 1/2) where θ is the Heaviside function, ana-
log herder F(Z) = Z , and tanh type herder tanh(Z − 1/2). In this paper we consider
the asymmetric function for the response function.

3 A Response Function of Merton Model

3.1 Balance Sheet

We constructed the voter’s model in previous section. Here we apply the model to
the contagion of defaults. The voters correspond to the banks. The bank’s state is
decided by around banks. C−1(C1) is the status default (non-default) instead of the
candidate for the voting model. The banks decide their status sequentially as the
voters.

Here we lead the response function for banks using the balance sheet. On the asset
side, bank i holds external risk assets, ai, inter-bank assets, li, and safe assets, bi. On
the liability side, there are deposits, di, inter-bank liabilities, l̄i, and net worth, Si. The
balance condition of the bank is Ai = ai + li + bi = Di + Si = di + l̄i + Si. Here we
introduce the asset value Ai, and debt value Di. Here these are present values, not
book values.

Banks are connected each other by the relation, lending and borrowing among the
banks. The existence of the relation is expressed as the arrow, from the borrower to
the lender. The amount of bank j’s borrowings from bank i is expressed as δij. There
are relations li = ∑

j δij and l̄i = ∑
j δji.
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Fig. 1 The balance sheets of the banks. If the bank A is default because of the asset loss, the
inter-bank liability from the bank B will be lost and the bank B be will be default contagiously

The solvency condition of bank i is

Ai = ai + li + bi > Di = di + l̄i. (1)

It means that present value of the bank is larger the liability. If the present value of
the bank is negative, excess debt, the status of the bank becomes default. We show
the balance sheets of the banks and the contagion of defaults in Fig. 1.

3.2 Merton Model

In this subsection we introduce the Merton model to calculate the probability of
default (PD). We consider that stock price (market capitalization) is described as
follows

dSt = μSStdt + σSStdWt . (2)

St is the stock price, which corresponds to the present net-worth at time t,μS is trend,
and σS is the volatility of stock price. Wt is the Brownian motion. We omit the index
of the firm i. Equation (2) means the returns of stock price is log-normal distribution
(Osborne 1959).

We consider the time series of whole balance sheet. The balance condition at
time t is
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At = Dt + St, (3)

where At is asset,Dt is debt, and St is market capitalization at time t. Here we assume
that the price of debt does not change, Dt = D0. The initial condition of the balance
sheet is A0 = S0 + D0.

Using Eq. (2), we can obtain the stochastic differential equation for the asset At .

dAt = μAAtdt + σAAtdWt, (4)

where μA is the trend of asst, σAis the volatility of asset.
The default condition is At < D0, as the solvency condition Eq. (1). Here we

consider the default probability in the term T . We can obtain the probability of
default of this bank at time T ,

P(AT < D0) = N

⎛

⎝
lnD0 −

(
lnA0 +

(
μA − σA

2

2

))
T

σA

√
T

⎞

⎠

= 1 − N(DD0) = N(−DD0).

(5)

N(x) is the cumulative normal distribution1 and DD is

DD0 =
− lnD0 + lnA0 +

(
μA − σA

2

2

)
T

σA

√
T

. (6)

As DD0 which becomes larger, the probability of default Eq. (5) decreases. Hence,
DD0 is “Distance to Default”. We can observe μE and σE in the market stock price.
The relation between μA and μE is

μA = E0

A0
μE +

(

1 − E0

A0

)

μD, (7)

where μD is the expected debt growth rate. The relation between σE and σA is

σE = A0N(d)

E0
σA, (8)

where

d =
− lnD0 + lnA0 +

(
μA + σA

2

2

)
T

σA

√
T

. (9)

Using Eqs. (8) and (9) we can estimate σA and μA.

1N(x) :=
x∫

−∞
φ(ξ)dξ , φ(ξ) = 1

2 e
− 1

2 ξ2 .
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3.3 A Response Function with Inter-bank Liabilities

In this subsectionwe extend the previous subsection and calculate a response function
which we use in the voting model from Merton model (Merton 1974). When the
borrower j is default, the lender’s inter-bank assets δij(1 − R) are lost. Here we
assume the recovery rate R is constant. DD in the condition that some borrowers
defaulted, becomes,

DD(s) =
− lnD0 + ln

[
A0 − ∑

j=default(1 − R)δij

]
+

(
μA − σA

2

2

)
T

σA

√
T

. (10)

We assume all inter bank assets are equal δ and the number connected banks is r.
The total present value of the inter-bank assets is l = δr = ∑

j δij and the number of
the borrowers is r. In the voting model r is the number of referred voters.

We can rewrite

DD(s) =
− lnD0 + ln

[
A0 − s(1−R)l

r

]
+

(
μA − σA

2

2

)
T

σA

√
T

. (11)

DD(0) > 0 by the solvency condition, but as s increases DD might be negative.
Here we change the valuable from s to Z , where Z = s/r : 0 ≤ Z ≤ 1.

DD(Z) =
− lnD0 + ln [A0 − (1 − R)lZ] +

(
μA − σA

2

2

)
T

σA

√
T

, (12)

and
�(Z) = N(−DD(s)) = N(−DD(Z)). (13)

Equation (13) is the response function which included the status around the bank.
When there is no default which the bank lent, DD is

DD(0) =
− lnD0 + lnA0 +

(
μA − σA

2

2

)
T

σA

√
T

, (14)

which is stand alone one which corresponds to Eq. (6).
Equation(13) takes several shapes. If we set σA → 0, the response function

becomes steep and the Heaviside function. In the extreme case the response function
becomes the threshold model. In this case the contagious defaults risk is stronger
than the risk of the change of the asset values. The threshold is �(A − D)/δ� where
�x� are floor function. The model becomes threshold model in Watts model (Watts
2002). For example, D/A = 0.9, δ/A = 0.2, σA = 0.01, �(i) becomes digital. If
one of the borrowers is default, the default probability becomes 1, �(0) = 0 and
�(i) = 1, i ≥ 1.
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We consider the sensitivity analysis to confirm the effects of parameters. When
the asset volatility change σA → σA + ΔσA and σA 
 ΔσA, the change of DD is

ΔDD(Z) = −
(

T + DD(Z)

σA

)

ΔσA ∼ −
(

T + DD(1/2)

σA

)

ΔσA. (15)

If the volatility of asset increases, the decrease of DD does not depends on Z . Here
we assume l � A0. It is the parallel shift of DD.

When we consider the change of the inter-bank liability l → l + Δl and Δl � l,

ΔDD(Z) = − (1 − R)ZΔl

(A0 − (1 − R)lZσA)
√
T

∼ − (1 − R)ZΔl

A0

√
T

. (16)

If the inter bank-liability increases, the decrease of DD is proportional to Z . As Z
becomes large, the change of DD becomes large. It is the increasing of steepness of
DD about Z .

4 Dynamics of the Model

The state of firms is denoted by the vector σ = (σ1, . . . , σr+1) with σj = ±1. σ =
1(σ = −1) means the default(non-default). The i-th agents state at time t is σi(t).
Total number of agents is (r + 1). We consider the case where the updated agents
is chosen by the rules. The ordering of update is from σ1 to σr+1. After the update
of σr+1, we update σ1 and so on. We repeat this process. Hereafter, we define the
updated state of the firm σj after n th time as σ

(n)
j . The initial condition is σ

(0)
j = 0.

All banks are not default. Time t is the number of updated banks.
The update of a bank is described by response function, Eq. (13). At time t, the

bank decides a state by the response function. The bank is connected with other
banks by the relations, borrower and lenders. The bank has r borrowers and decides
the state of the bank using the state of connected borrowers states. It means all banks
are connected by the response function Eq. (13). Here we assume the balance sheets
of all banks are the same for the simplicity.

The transition can be written

σj = 1 → −1 : wj(σ ) = �(−DDj),

σj = −1 → 1 : Fjwj(σ ) = 1 − �(DDj) = �(DDj), (17)

where �(−DDj) is Eq. (13). Here we approximated normal distribution by logistic
function,
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�(−DDj) ∼ 1

1 + eλ0DDj

=
− lnD0 + ln

[
A0 − (1−R)l

2

]
+ ln

[

1 − (1−R)l( sr − 1
2 )

A0− (1−R)l
2

]

+
(
μA − σA

2

2

)
T

σA
√
T

,

∼ 1

1 + 1−p1/2
p1/2

exp
(
− (1−R)lλ0

(A0−(1−R)l/2)σA
√
T

(s− r
2 )

r

) ,

= 1

1 + 1−p1/2
p1/2

exp
(
− (1−R)lλ0

2(A0−(1−R)l/2)σA
√
T

(ĉ1−ĉ−1)
r

) ,

= 1

2

[

1 + tanh

{
(1 − R)lλ0

4(A0 − (1 − R)l/2)σA
√
T

(ĉ1 − ĉ−1)

r
+ 1

2
log

p1/2
1 − p1/2

}]

,

(18)

where

p1/2 = 1

1 + eDD(1/2)
, (19)

and λ0 ∼ 1.6. Here we use the approximation log(1 − x) ∼ −x when x � 1 and
A0 
 l. We have changed the variables from s to ĉ1 and ĉ−1. ĉ−1(ĉ1) is the number
of defaults (non-defaults).

The transition can be written

σj = 1 → −1 :
wj(σ ) = 1

2

[

1 − tanh

{
(1 − R)lλ0

4(A0 − (1 − R)l/2)σA
√
T

(ĉ1 − ĉ−1)

r
+ 1

2
log

p1/2
1 − p1/2

}]

,

σj = −1 → 1 :
Fjwj(σ ) = 1

2

[

1 + tanh

{
(1 − R)lλ0

4(A0 − (1 − R)l/2)σA
√
T

(ĉ1 − ĉ−1)

r
+ 1

2
log

p1/2
1 − p1/2

}]

.

(20)

The process is nothing but the kinetic Ising model. (see Appendix A) The last
term log p1/2/(1 − p1/2) corresponds to the outer field. The correspondence to the
parameter for Ising model is

(1 − R)lλ0

4(A0 − (1 − R)l/2)σA

√
T

= βJ . (21)

The condition of no outer field is DD(1/2) = 0. We can obtain the condition

A0 − (1 − R)l
1

2
= D0exp

{

−
(

μA − σA
2

2

)

T

}

. (22)

σA, volatility of asset, corresponds to the temperature in Ising model. When μA ∼ 0
and σ 2

A ∼ 0, the condition of the symmetric is A0 − D0 = E0 = (1 − R)l/2 which is
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discussed in (Watts 2002; Gai et al. 2010) where l/E0 is the threshold. These model
are the low temperature limit of our model.

The mean field equation is

tanh

{
(1 − R)lλ0Ẑ

4(A0 − (1 − R)l/2)σA

√
T

+ 1

2
log

p 1
2

1 − p 1
2

}

= Ẑ, (23)

where Ẑ = 2Z − 1. The critical condition of the symmetric case is

σAc = (1 − R)lλ0

4(A0 − (1 − R)l/2)
√
T

. (24)

5 Additional Default Probability

In the ordinal case the default probability (PD) of the bank is calculated�(−DDi(0))
which is stand alone PD. It corresponds to that there is no default in the banks which
the bank i lent to. PD depends on the situation of the bank i. If the some of the banks
which the bank i lent to are defaults, PD of bank i increases. We calculate the non
conditional PD as P̄ = ∫

�(DD(Z))dμ(Z) where μ(Z) is the measure of Z .
The difference to the stand alone PD, which is PD excluded the effects of the

other banks, is defined as the additional PD (Kaneko et al. 2019),

ΔP = P̄ − �(−DD(0)). (25)

We calculate the additional PD using the mean field approximation,

P̄ = Z = �(−DD(Z)). (26)

We show the mean field equation in Fig. 2. If there is only solution of the mean
field equation, the intersection is the equilibrium solution in Fig. 2a, b. Hence, the
intersection becomes the equilibrium PD, P̄. The distribution of Z is μ = δZ1 , where
Z1 = P̄ and δx is the delta function. We can obtain the additional PD, ΔP = Z1 −
�(−DD(0)).

On the other hand, in Fig. 2c there is three solutions, both ends intersections are the
solutions. The mid solution is not stable. The distribution of Z is μ = αδZ1 + βδZ2 ,
where Z1 and Z2 corresponds to the two stable solutions.We can obtain the additional
PD, ΔP = αZ1 + βZ2 − �(−DD(0)).

In Fig. 3 we show the image of the two solutions case using the image of the
physical potential. The ball comes from the left side, and there is no default in the
initial condition. The solution oscillates between the two stable solutions Z1 and Z2
where Z1 < Z2. When the outer field is the left (right) direction, the potential of the
low (high) PD equilibrium Z1 (Z2) is deeper than the high (low) PD equilibrium in
Fig. 3a, b.
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Fig. 2 The mean field equation and the solution of the equilibrium. a Is small additional PD
case, D0/A0 = 0.91, l/A0 = 0.1, σA = 0.07, b is large additional PD case D0/A0 = 0.91, l/A0 =
0.2, σA = 0.07 and c is the two solutions case D0/A0 = 0.91, l/A0 = 0.2, σA = 0.05

Fig. 3 Illustration of the equilibriumPDwhen there are two solutions, using the analogy of physical
potential. The ball comes from the left side

When there is no outer field, symmetric case, one of the solution of Eq. (26) is
Z = 1/2. When d�(−DD(Z)/dZ > 1, there is three solutions. On the other hand,
when d�(−DD(Z)/dZ < 1, there is one solution. There is the phase transition in
the limit r → ∞ as Ising model. The condition of the critical asset volatility σAc is

σAc = �′(0)l(1 − R)

(A − (1 − R)l/2)
√
T

. (27)

It is consistentwith the critical condition of the Isingmodel Eq. (24), because�′(0) ∼
λ0/4.
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6 Concluding Remarks

We considered contagious defaults of banks and applied a voting model to them.
The network of the firms are created by the relation, lending and borrowing. We
introduced the response function from Merton model. Using this response function
we calculate the PDwhich includes not only the changes of the asset value but also the
effects of other banks’ defaults. The temperature corresponds to the asset volatility.
When the asset volatility is small, the contingent default is effective for banks. On
the other hand, the asset volatility is large, the change of asset price is effective.

In this paper we use the mean field approximation to calculate the PD. In gen-
eral we have to do numerical simulations. If we use the random number including
the correlations, we can simulate the correlation of the asset prices which several
banks have.

Merton model uses the cumulative normal distribution. If we approximate the
normal distribution by tanh function, we can obtain the kinetic Ising model. If there
is no outer field, symmetric case, there is the phase transition.We show the additional
PDwhich corresponds to the effects of the situations of the bank using the mean field
approximation.

Appendix A Ising Model

Here we consider the infinite range model. It is one of the most popular model in
statistical physics which explains phase transition. In the model spins interact all
other spins. Hamiltonian is

H (σ ) = − J

r + 1

∑

i>j

σiσj − h
r+1∑

i=1

σi, (28)

where (r + 1) is the number of spins,σi is the spin has the value±1, J is the parameter
of interaction, and h is the outer field. Here we define average of spins, as an order
parameter, m = 1/(r + 1)

∑
σi which represents the phase transition.

In large r → ∞ limit the self consistent equation is

m = tanh β(Jm + h), (29)

where β = 1/kBT̂ . kB is Bolzman constant and T̂ is temperature.When infinite range
model, we can obtain the strict solution form the self consistent equation Eq. (29).
When the symmetric case, under the transition temperature T̂c, in the low temperature
range there are two solutions. The critical point is decided by the equation βcJ = 1.
One of the solution is selected in the two stable solution. On the other hand, above T̂c,
in the high temperature range, there are only one solution. This is the phase transition
of Ising model. When there is the outer field h, the model becomes the asymmetric
model and there is no phase transition.
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Bitcoin’s Deviations from Satoshi’s World

Naoyuki Iwashita

Abstract After several years of the proposal and implementation of Bitcoin by
Satoshi Nakamoto, people in the world were enthusiastic about crypto-assets. How-
ever, the market prices of crypto-assets are too unstable to use as a payment method.
After many cyber-attack incidents, the confidence in the security of crypto-asset
exchanges has also been compromised. Satoshi proposed Bitcoin to realize anony-
mous payment to protect individual privacy. Actual crypto-assets have changed from
the original concept. The main reason for this deviation was the reality that ordinary
investors cannot manage their secret keys securely. In this chapter, the reasons for
this deviation are investigated.

Keywords Bitcoin · Crypto-asset · Cyber-attack · Decentralization · Secret key

1 Introduction

Bitcoin gained much attention from the public after a massive rise in 2017. After the
crash in 2018, the market prices of crypto-assets have been unstable (Chart 1). How-
ever, blockchain technology derived fromBitcoin has attracted attention as a leading-
edge technology of the next generation, and various pilot projects are in progress.
Nevertheless, until now, the case of a large-scale implementation of blockchain tech-
nology accepted by society is almost exclusively an example of crypto-assets (virtual
currency) centered on Bitcoin.
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Chart 1 Price of Bitcoin. Source of data coinmarketcap.com

Crypto-assets attracted people as a target of a speculative bubble, and it was traded
having a financial value of several hundreds of billion dollars at peak time, millions
of users participated in this new market.1

However, the development of Bitcoin is not just a rosy success story. Earlier
investors gained economic benefits by increasing the value of Bitcoin that they pur-
chased at a very low price. However, such a rise came from the fact that Bitcoin
was capable of international, anonymous transactions beyond the financial regula-
tion suitable for money laundering and procurement of terrorist funds. And it brought
confusion to the global financial order.

Besides, for investors after 2017, when the market price rose, a very large value
of crypto-assets was lost by cyber-attacks to many crypto-asset exchanges, and the
market price declined. From the viewpoint of information security technology, these
experiences of crypto-assets made us aware of how difficult it is for non-experts to
securely manage secret keys for digital signature, which is the heart of the security.

Bitcoin employed a new technology called PoW (Proof of Work), as a means to
increase the security of transactions even if there was no trusted third party. It was
the core of the success of Bitcoin. However, it was a double-edged sword. With the
soaring price of Bitcoin, PoW or “mining Bitcoin” was considered to be a high-profit
business. As a result, excessive capital investment in the mining business has lead
to the distortion of global resource allocation. It caused side effects such as global
environmental problems getting worse.

Satoshi Nakamoto was the inventor of Bitcoin and one of the initial core develop-
ers. He designed Bitcoin as electronic cash that allows unfamiliar people to exchange

1Counting users of crypto-assets is a controversial issue. According to the report of Chainalysis
(2018), the Bitcoin blockchain consists of 460 million addresses as of December 2018. Still, only
27 million addresses actually hold Bitcoin, and there is no information on how these addresses link
to actual Bitcoin holders. In 2017, Japanese regulation required crypto-asset exchanges in Japan to
perform a strict KYC to every customer in Japan. Japan Virtual Currency Exchange Association
(JVCEA) aggregated reported numbers of customers of all registered exchanges and disclosed that
there are 3.5 million actual crypto-asset holders in Japan (JVCEA 2018).

http://coinmarketcap.com
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monetary values anonymously on the Internet. However, Bitcoin had departed from
the world that Satoshi would have dreamed of. And it could not realize the original
concept. How did the deviation occur?

Will it return to the original?
This chapter focuses on the development of Bitcoin and other crypto-assets that

have become social phenomena to society and deals with its impact on society.

2 Prerequisite of Bitcoin

There is no evidence that the person “Satoshi Nakamoto” exists. It is even unknown
whether it is the name of a specific individual or not, and its identity is enveloped
in mystery. However, let’s keep that mystery aside. As you can see in his paper
(Nakamoto 2008), it is hard to believe that the author envisioned Bitcoin as the
present.

The title of his paper was “Bitcoin: A Peer-to-Peer Electronic Cash System.” The
concept of electronic cash was to realize a new payment and remittance method
which protects privacy by using digital data on the Internet, just like cash provides
the anonymity of the transaction in the face-to-face environment. There were various
proposals since the 1980s (Chaum 1982; Okamoto and Ohta 1989). The research has
been handed down to date as an application of cryptographic technology. Various
electronic payment methods have been proposed and used in many countries around
the world, and electronic money has become widespread in many countries.

However, such practical electronic money is often regulated by the authorities
as a debt of the issuer. There was no anonymity of the transaction at all. That was
far from ideal for Satoshi. He proposed a Bitcoin as an electronic payment method
with the prerequisite that there is no reliable third-party mediation, and anonymous
transactions are possible.

From the viewpoint of information technology, the Bitcoin is only a combination
of two known projects. One is Surety.com’s electronic notary service (Haber and
Stornetta 1991, 1997; Bayer et al. 1993), the other is hashcash (Back 2002). Bitcoin
was born by adopting the method of making data tampering difficult by using the
hash function link from the former and incorporating the idea of PoW from the
latter. Bitcoin was an electronic “cash” because it can anonymously remittable on
the Internet without a third-party mediating.

I will not explain the mechanism in detail here, but the important thing is that
there is no organization like the Bitcoin issuing company. Bitcoin is based on com-
puter resources provided by individuals or companies who agree with its spirit or
intend to profit from it. There is neither an explicit contract nor an institution, and
there is only the code (computer program). The code can also be freely rewritten
while voluntarily gathered engineers review each other. The code causes significant
economic consequences (e.g., price fluctuation of crypto-assets and settlement of
contentious leadership battle). From the beginning of the Internet, it was predicted
that a “world dominated by the code” will realize. However, it was enough to surprise
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people that such a world began to realize in the form of a hundreds-of-billion dollar
of crypto-assets earlier than anticipated.

3 Bitcoin at the Dawn

On January 3, 2009, the first block of Bitcoin blockchain was generated from the first
code written by Satoshi himself. In the early days of Bitcoin seemed to move in the
direction Satoshi is envisaging. Only some geeks were interested in Bitcoin. They
agreed with the purpose of Bitcoin, provided computing resources of their PCs, and
supported the transaction of Bitcoin by mining it. They generated secret and public
keys of the digital signature required for the transaction of Bitcoin by themselves.
Each user securely kept his secret key to his responsibility.

Some of the Bitcoin came to be exchanged for the legal tender currency, an
exchange price was established, but the price was still low. The primary usage of
Bitcoin was the settlement of transactions on the Internet, and it was often used for
underground transactions such as narcotics and weapons sales. Participants were
limited to geeks even around 2012 when transactions expanded to some extent, and
the exchange price was around 1 BTC= $10. You can find a lively description of how
Bitcoin was used those days in an article of “Silk Road” (Bearman 2015), which was
an infamous underground website. There is a symbolic expression “a digital instan-
tiation of the libertarian ideal” in the article. For libertarians who hate government
intervention and claim self-determination rights, the appearance of Bitcoin would
seem to realize an ideal society. It was such a world that Satoshi must have dreamed
of.

4 Deviations from Satoshi’s World

4.1 First Deviation: Entry of Amateur Investors

However, this idyllic period soon passed, and in 2013, the market of Bitcoin began to
change dramatically. At the Cyprus crisis, the demand for Bitcoin increased instead
of the international remittance via banks, which trading stopped, and themarket price
rose tenfold.

Media coverage over Bitcoin was heating up, and many amateur investors rushed
to buyBitcoin. The crypto-asset exchanges became commonplace to buyBitcoin. The
crypto-asset exchanges have two tasks. The first is to exchange legal tender currency
to crypto-assets, and second is to keep crypto-assets for their customers. Instead of
intractable digital signature technology, amateur investors can use ordinary ID and
password to authenticate their trade request to the exchanges. This is an unavoidable
treatment because amateur investors cannot securely manage and operate their secret
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keys to generate a digital signature. However, this procedure was the first deviation
from Satoshi’s world.

If both sell-side and buy-side investors are clients of the same crypto-asset
exchange, they can make the trade of crypto-asset without blockchain. The set-
tlement can be done within the relational database of the crypto-asset exchange. This
kind of transaction is called “off-chain” instead of traditional “on-chain” because the
transaction is not written on the blockchain (Table 1). Today, 95% of crypto-asset
transactions are said to be off-chain.

Table 1 Pros/cons of on-chain and off-chain transaction (Iwashita 2019a, b)

Type On-chain transaction Off-chain transaction

Summary Transaction method that has been used
since the dawn of Bitcoin. A digital
signature is generated with a secret key
managed by the user himself, and a
transaction record including his own
address is recorded on the blockchain

Transaction method whose settlement
completes within the RDB of a
crypto-asset exchange. Users
authenticate with ID and password,
instead of a secret key

User type • Geeks who have been using Bitcoin
from its dawn,

• Users who want anonymous
transactions,

• Users who remit or pay across
borders,

• Inter-exchange transactions, Mining
companies

• Individual investors who are
laypersons about crypto-asset
transactions,

• Customers of crypto-asset exchanges

Pros • Transactions recorded on the
blockchain are immutable

• Transactions can be almost
anonymous

• Even if there are troubles in the
exchange, the crypto-assets recorded
on the blockchain are safe

• Nontechnical investors can make
transactions with simple
authentication such as passwords, and
their crypto-assets are at no risk of
loss or leakage of secret keys

Cons • Each user needs to be technologically
skilled in managing his secret key of
the digital signature securely

• Loss or unauthorized use of user’s
secret key would result in the total
loss of his crypto-assets

• Risk of losing crypto-assets if a
cyber-attack damages an exchange
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4.2 Second Deviation: Cyberattack to the Crypto-Asset
Exchange

After 2013, many crypto-asset exchange ventures were established, and they began
to keep crypto-assets from amateur investors. Due to the soaring price of crypto-
assets, the amount of value retained at exchanges increased rapidly. In such circum-
stances, some crypto-asset exchanges became victims of cyber-attacks. The crypto-
asset exchange is quite a new business. The exchanges are all venture companies,
and unfortunately, the level of risk management was not high enough. Crypto-asset
exchanges around the world were targets of cybercrime (Table 2).

From the viewpoint of attackers, systems of crypto-asset exchanges are built
on the cloud, and many are remotely operated, including secret keys. Suppose an
attacker targeted a crypto-asset exchange and succeeded in stealing information. The
attacker could illegally use the secret key to transfer vast amounts of crypto-assets
in the exchange to their accounts. Once transferred, the attacker can abbreviate the
characteristics of crypto-assets and remit them anonymously. In that sense, targeting
the system of crypto-asset exchange was very rational for attackers.

When a switching company receives a cyber-attack, crypto-assets kept from cus-
tomers are leaked illegally. In particular, in Japan, large-scale illegal outflow incidents
occurred one after another. In 2018, CoinCheck received 58 billion-yen, Tech Bureau
was damaged by 7-billion-yen theft. Since both companies compensated for losses to
customers, they did not lead to consumer damage, but the attacker was not identified,

Table 2 Major cyber-attack incidents to crypto-asset exchanges (Iwashita 2019a, b)

Attacked
exchange

Nationality Month/year Estimated loss ($
in millions)

Stolen
crypto-assets

Mt.GOX(1) Japan June, 2011 9 –

Bitfloor U.S. September, 2012 0.25 24,000 BTC

Mt.GOX(2) Japan February, 2014 480 850,000 BTC

Poloniex U.S. March, 2014 0.55 –

BitStamp U.K. January, 2015 5 19,000 BTC

Bitfinex Hong Kong August, 2016 66 119,756 BTC

CoinCheck Japan January, 2018 530 526,300,010
XEM

BitGrail Italia February, 2018 170 1,700 XRB

Coinrail Korea June, 2018 40 NXPS, ATC,
NPER

Bithumb Korea June, 2018 31 XRP?

Zaif Japan September, 2018 62 BTC, MONA,
BCH

Cryptopia New Zeeland January, 2019 3 ETH?
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and the leaked cipher assets were not regained. It would not have been included in
Satoshi’s assumption that such a crime would go wrong.

Let’s take a closer look at the CoinCheck incident that occurred in January 2018.
In this case, the domestic biggest exchange CoinCheck keeps crypto-asset NEM
equivalent to 58 billion yen in fair value from 260,000 customers, but an attacker
stole the full amount. The company compensated for the loss by compensating the
customer but forced to suspend its business for an extended period and was to be
ordered by the Financial Services Agency twice.

The inspection by the Financial Services Agency revealed that the coin check
company’s system was wholly inadequate as a position to keep customers’ assets.
CoinCheck managed 266,000 NEMs with only one account. A single encryption
key merely protected procedures for transferring crypto-assets from that account.
The device stored the secret key was always connected to the Internet. Because this
cryptographic keymanagement was risky, the cyber-attack was received, the key was
illegally used, and the NEM was remitted (Table 3).

In Table 3, the address “NC3…” is the address of CoinCheck. At this address,
NEM, which worth 58 billion yen deposited by customers, was kept. On the other
hand, the perpetrators prepared the address “NC4…” The first 10 XEMwas remitted
at 0:02 am on January 26, then 523,000,000 XEM was remitted in less than 20 min.
After that, the perpetrators remitted them to several different addresses. Eventually,

Table 3 NEM transactions in CoinCheck incident

Date/Time Amount(XEM) From: To:
2018/1/26 8:26 800,000
2018/1/26 4:33 1,000,000
2018/1/26 3:35 1,500,000
2018/1/26 3:29 92,250,000
2018/1/26 3:28 100,000,000
2018/1/26 3:18 100,000,000
2018/1/26 3:14 100,000,000
2018/1/26 3:02 750,000
2018/1/26 3:00 50,000,000
2018/1/26 2:58 50,000,000
2018/1/26 2:57 30,000,000
2018/1/26 0:21 3,000,000
2018/1/26 0:10 20,000,000
2018/1/26 0:09 100,000,000
2018/1/26 0:08 100,000,000
2018/1/26 0:07 100,000,000
2018/1/26 0:06 100,000,000
2018/1/26 0:04 100,000,000
2018/1/26 0:02 10

Source Extracted by the author from the public data in the NEM’s blockchain information
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these crypto-assets were laundered and taken somewhere. To date, the perpetrators
have been unknown, and no clues have been found to link them.

According to the inspection conducted by the Financial Services Agency, which
was carried out as a result of the incident this time, severe problems in organiza-
tion management were pointed out by most crypto-asset exchanges in Japan, and a
business improvement order was issued.

Oneof the puzzling things in theCoinCheck incident is that everybody can confirm
that the crypto-assets were transferred to the perpetrator’s address. Still, nobody, even
the judiciary, can recover them back. If it had been a bank deposit, it could have been
seized by the authorities and finally returned to the victim when the stolen money
was found in some bank account.

Since the very beginning of Bitcoin’s popularity, it has been noted that there is a
unique idea behind it. It is a policy that never places a trusted central agency, a concept
called “trustless.” Bitcoins are considered to have made it possible for international
use by easily crossing the walls of the border due to differences in law and political
systems because of these characteristics.

On the other hand, the conventional system inwhich a reliable central organization
is located is called the world of “trust.” Since we live in a world built on the premise
of reliable central institutions such as governments, central banks, and courts, the
world of trustless seems very special and precarious. However, Bitcoin’s existence
has been recognized, and trust and trustless have continued to coexist.

For example, geek users who are directly connected as Bitcoin nodes live in a
world of “trustless.” But amateur users who can’t connect themselves to the nodes
deposit Bitcoin on crypto-asset exchanges and rely on them to trade Bitcoin. In this
case, for such users, the exchange is the trusted third party. And the structure of the
trust exists there (Chart 2).

The leaked NEM was stolen and money laundered in a world of “trustless.”
There is no reliable central organization, and no one, including the government, can
arbitrarily rewrite information to resume the normal situation. This incident shows
that the “trustless” concept of crypto-asset is a double-edged sword.

Chart 2 The structure of the “trust” within the structure of “trustless”
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4.3 Third Deviation: Development of Dedicated Mining
Companies

Bitcoin mining equipment evolution and the development of dedicated mining com-
panies ignited the third deviation from Satoshi’s world. What Satoshi assumed was
that many Bitcoin users provide their own PCs to participate in the mining compe-
tition, and lucky people succeed in generating blocks and receive mining rewards.
However, miners aiming to win the mining competition changed the rule of the
game. They invented new application-specific integrated circuits (ASICs) to calcu-
late SHA-256, andmany sophisticatedBitcoinminingmachines evolved. Themining
competition of Bitcoin was dominated by a few dedicatedmining companies. Also, it
would have been unexpected for Satoshi that mining consumed much electric power
and worsened the global environmental problem.

Bitcoin mining is a process of linking time series of data using hash functions to
create a chain of data that is difficult to rewrite. People can use Bitcoin as a way to
exchange some value because it was difficult to tamper with data even on the Internet.
This technology could be used for electronic cash, but it could also be used for other
purposes.

Let’s take a closer look at how Bitcoin’s data links are constructed when miners
mine them.Whenminers are trying to generate the new block of the chain, they begin
by verifying Bitcoin transactions that have not yet been approved. It monitors the
trading environment for Bitcoin, including whether the digital signatures used in the
transactions are legitimate and if the balance of Bitcoin after the transaction is not
negative. Then, a hash value is generated by combining two transactions judged to
have no problem, and the hash values are combined to generate a hash value. Repeat
these tournament table-like tasks to calculate the Root Hash Value. The workload so
far is not so heavy.

A new hash value is created by combining (1) the hash value from the previous
block, (2) the Root Hash Value obtained above procedure, and (3) a random number
called the nonce. If the hash value satisfies the conditions (For example, if the first
20 bits are 0) determined at that time, the mining is successful. Minor can receive
12. 5 BTC reward and mining fees.2

However, in fact, things do not go so well. Since all bits of the generated hash
value is randomly set, it can be considered that the possibility that every bit becomes
0 is 1/2. Therefore, this condition is satisfied only with the probability of (1/2)20.
This is only a probability of about 0.0001% (1/1,048,576). Then, the miner changes
the nonce slightly and try to calculate the hash value once again. Then the hash value
is totally different, but the probability that it satisfies the condition is also about
0.0001%. If there were only one miner in the world, to have a 50% probability of
finding a hash value that satisfies this condition, he needs to repeat about 720,000
trials. This iswhy they need vast calculation power. For this reason,miners all over the
world set up mining machines with many ASICs specialized only for SHA-256 hash

2The reward is programmed to decline to 6.25BTC inmid-May2020. This event is called “Halving.”
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function calculation at mining plants, seek rewards and mining fees, and compete
with each other for every 10 min.

Miner can earn a reward if they can find the hash value to satisfy the condition even
amoment earlier than their competitors. Thus, eachminor increases its computational
power to search faster. As a result, when the overall computing power increases, the
earliest minor can find the hash value within less than 10 min. In that case, Bitcoin
has a built-in mechanism that makes it difficult to find the hash value. Instead of the
first 20 digits, the number of digits that should be 0 increases to 21 and 22. This
keeps competitive mining block generation at an average of 10 min.

These mining machines consume a lot of electric power. The surge in Bitcoin
prices in 2017 resulted in a sharp increase in power consumption. A large amount of
money was invested in the mining industry, which produced mining machines that
affected the silicon cycle of the semiconductor industry.

Digiconomist, a site that has been pointing out the problem, estimates that the
amount of electricity used for mining increased from October 2017, and continued
to increase until June 2018 despite a crash in the price of crypto-assets. As a result, the
annual conversion of power consumption reached approximately 70 TWh (terawatt
hour) (Chart 3). Comparing with the power consumption by country, this estimation
is closest to Austria, which uses about 70 TWh of electricity per year. The energy
spent searching for matching hash values doesn’t produce anything useful; it’s just
wasted. A rise in the price of Bitcoin means additional waste. This is one of the
serious problems with Bitcoin.

Moreover, since the mining machine, once manufactured, is a device specialized
in the high-speed calculation of a hash function, it cannot be used for other purposes.
As a result, themining ability continues to be enhanced, and the search speed for hash
values increases and the difficulty level accordingly becomes difficult, even when
the market prices and mining fees drop sharply. This is why mining capacity and

Chart 3 Bitcoin energy consumption trend. Data source Cambridge Bitcoin electricity consump-
tion index https://www.cbeci.org/

https://www.cbeci.org/
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power consumption did not decline despite a decline in the dollar value of mining
reward in 2018.

However, as the earnings environment for miners deteriorated further following
the market decline in November 2018, some companies withdrew from mining.
Major miners are said to have moved to close unprofitable mining plants. As a result,
the estimated power consumption was reduced to about 40 TWh. At current Bitcoin
levels, power consumption is unlikely to surge for the time being. According to the
pessimistic scenario assumed by Digiconomist.net some time ago, the Bitcoin power
consumption was expected to exceed 120 TWh by the end of 2018. This prediction
turned out to be in the direction desired by mankind.

Then, in the spring of 2019, the price of Bitcoin soared to $13,750 in June 2019.
The rise in global electricity consumption is beginning to rise again as miners that
had temporarily suspended operations resume operations.

It’s hard to say how the market should move since some people benefit and others
lose from the rise and fall of crypto assets. However, if the market overheats and
miners start to waste resources, it will be a disadvantage for all mankind in the form
of global environmental problems. In this sense, the excessive rise seen in late 2017
is undesirable. There needs to be a shared understanding that such a situation should
be avoided in the future.

4.4 Fourth Deviation: Altcoin Appreciation and 51% Attack

The fact that a large number of Bitcoin-like altcoins were issued and their market
capitalization surpassed that of Bitcoin was also a major deviation from Satoshi’s
world. It is well known that Satoshi predicted a 51% attack on Bitcoin, but he also
said that it was possible in theory but unrealistic. That’s because even if someone had
51% of power to compute hashes, he would”t act to undermine the value of Bitcoin.
This logic is correct if Bitcoin is the only crypto-asset in the world, but it is not valid
in a world where large and small crypto-assets coexist. As a result, damage from the
51% attack actually appeared. This must have been another unexpected incident for
Satoshi.

InMay 2018, a crypto-asset calledMonacoinwas attacked, causing about 100,000
dollars in damage to a Russian operator. Over the next two weeks or so, crypto-assets
like Bitcoin Gold, Verge, and ZenCash were reportedly attacked similarly, causing
losses of some crypto-asset exchanges.

The attackmethods are slightly different, but basically, an attacker involvesmining
the blockchain with a huge amount of hash calculation power, generating a fork of the
chain that is profitable for them, andmaking newly developed fork to the mainstream
of the chain (Chart 4). Variations of the 51% attacks are assumed to occur when the
attacker’s side hash calculation ability was rich.

Theoretically, the existence of such an attack was pointed out, and the details of
the attackmethod and the necessary hash calculation capability were estimated. Still,
it was considered to be very expensive and unlikely to be realized. However, in this



112 N. Iwashita

Chart 4 51% attack

place, the damage has occurred one after another. The targetswere “non-mainstream”
crypto-assets, except for major crypto-assets such as Bitcoin, Ethereum, and Ripple.

Why did these attacks come real? One reason is that non-mainstream crypto-
assets have become highly valuable. When you look at the share of the total market
capitalization of crypto-assets over a long period, until 2016, Bitcoin accounted for
around 90%, and other crypto-assets (altcoins) were of little value. But in 2017,
Altcoin’s share has soared to 40%.

These altcoins were originally mined by a small number of miners and used
relatively little hashing power. Although the difficulty level has been adjusted as
prices have risen, there has been a large discrepancy in the computational power
of Bitcoin and other mainstream crypto-assets. The attacker took advantage of this
disparity in computing power. One of the main reasons for the series of attacks was
that the prices of altcoins rose sharply in 2017, increasing the profits gained by the
attackers, while the gap in computing power remained.

The designers of these altcoins, many of which mimic Bitcoin, have selected the
hash function different from SHA-256 to differentiate them from Bitcoin. If they
chose the same hash function as Bitcoin, it would be easy for a Bitcoin miner to
monopolize mining rewards due to its massive hash calculation capabilities, and
the blockchains of altcoins could be selfishly manipulated. For this reason, non-
mainstream crypto-assets had used hash functions that have characteristics that make
them difficult for Bitcoin miners to mine.

However, the number of crypto-assets increased, and various entities participated
in mining. Furthermore, it became possible to buy and sell the hash capability. For
example, at www.nicehash.com, people can trade hashing capability to mine over
the Internet. When the hash capability becomes commoditized, and attackers can
freely select a hash capability to buy, it becomes impossible to prevent attacks by
the traditional strategy that the non-mainstream altcoins have adopted so far. If there
is a significant gap in hash capability, the computing resources used for mainstream
crypto-assets can be diverted to non-mainstream mining. Instead of investing in the
hardware itself, attackers can anonymously purchase hashing capabilities for time
lending.

Of course, the attack itself is considered a criminal act, but there are no laws
against it nor a law enforcement agency. Many non-mainstream crypto-assets soared

http://www.nicehash.com
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in the wake of the big market in late 2017. They have not been thoroughly tested in
terms of security and attack readiness.

4.5 Fifth Deviation: Bitcoin Scalability Problem

The Bitcoin is mined after executing the transaction and takes about 10 min to verify.
However, from 2016 to 2017, troubles that settlements are not verified for hours are
sometimes increased. Blocks that store transaction contents are generated once every
ten minutes on average. Still, since the block size has an upper limit (1 MB), as the
number of transactions increases, it cannot be stored, and the overflowing transactions
are no longer validated. The maximum number of transactions per day was about
400,000. The commission paid for theminer to get the deal approved, which had been
almost free until then, had soared. Such a problem is called the scalability problem
of Bitcoins.

There were two proposals to solve the problem. Plan A: Deleting redundant sig-
nature data in the block, introducing a method called SegWit. Plan B: Raising the
upper limit value of the block size.On the other hand,Bitcoin core-developers insisted
plan A, and large-scale miners insisted plan B. The campaign of both camps was not
buried.

In July 2017, the core developer attracted attention as the day of division August
1, 2017, set to the deadline to introduce plan A. Observations of a sharp drop in the
market spread. If SegWit forced without an agreement, there would be two branches
of Bitcoins supported by both sides. There was no solution to such a situation. There
was a risk that the user suffered a loss.

However, just before the deadline comes, as a compromise between plan A and
B, a policy of “SegWit adopts immediately, block size expansion will be discussed
again in November again” is proposed, and both sides compromised.

As a result, although initially concerned divisions were avoided, some of the
miners expressed creating a new folk of the Bitcoin to create new crypto-assets, and
another division occurred. The price of Bitcoin was evaluated as having survived the
troubles of the disintegrated but safely, but it was to rise further.

After that, the block size expansion planned for November was postponed because
it is not ready, but the soaring market price and busy trading continued even though it
is not ready. In particular, at the end of 2017, the market price of Bitcoins temporarily
rose to $20,000, and the number of transactions for speculative purposes increased
sharply. As a result, the scalability problem became more serious, and at the end of
2017, the fee paid on the day was more than 2 billion yen in total on some days.

However, the decline of the Bitcoins price in 2018 calmed frequent transactions,
and the scalability problem naturally disappeared. The block size of the Bitcoin is
not stuck to the upper limit, and the trade fees are almost zero. Nonetheless, the
fundamental problem was not solved, but if the volume of transactions expanded
again, there is a high possibility that the problem will reoccur. On these dangerous
infrastructures, trading for speculative purposes is a market of crypto-assets.
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4.6 Sixth Fourth Deviation: A Stable-Coin Tether
and the Rise of Bitcoin Price

Several new factors have affected the price of crypto-assets since the market rose in
2017. This is also the sixth deviation from Satoshi’s assumption.

The market capitalization of crypto-assets over the past three years has peaked
two times, at the end of 2017 and in mid-2019 (Chart 1). The previous surge in 2017
was caused by the global rise in ICO or Initial Coin Offering, which led to a rise in the
price of the underlying Ethereum, which then spread to other altcoins. By contrast,
Ethereum and other Altcoins failed to recover from their 2018 slump, while Bitcoin
recovered from its 2018 crash and took the lead in the rally in 2019. Although prices
declined slightly from autumn 2019 to the end of the year, they have remained at
a higher level than at the beginning of the year, indicating that Bitcoin is the only
winner.

Various factors have been pointed out as to why Bitcoin soared again in 2019,
but the prevailing view is that the massive issuance of stable coins “Tether (USDT),”
which had been driving the market rise since the second half of 2017, triggered
the current market rise. Tether is a crypto-asset issued by Tether Co, an affiliate
of Bitfinex, a major Hong Kong crypto-asset exchange company. Since about 2018,
Tether has become the payment method used by the crypto-asset exchange in place of
dollars, and its daily transaction value is the largest among all crypto-assets, including
Bitcoin.

In April 2019, the New York State Attorney General announced that she had
received a court order banning the transfer of funds from Tether to Bitfinex following
an investigation into Bitfinex’s misuse of its underlying assets to cover its losses. In
defiance of the attorney general’s announcement, Bitfinex pushed for more Tethers,
and its issuance doubled from $2 billion in April to more than $4 billion in July. It
was at the same time that the price of Bitcoin soared. There is some speculation that
Bitfinex has used the money from its Tether issuance to boost the Bitcoin market.
Since July, Tether issuance has leveled off, and Bitcoin fell again toward the end of
2019.

5 Conclusion

Only around 2009–2012, Satoshi’s Bitcoin technology was shining, when the ini-
tially assumed assumptions were satisfied. Although the price of Bitcoin has risen
dramatically since then, the use of electronic cash, which Satoshi had envisioned,
didn’t realize. In the early days, people expected Bitcoin as a low-cost international
remittance service, but now it is not suitable for remittance because fluctuation in
market price is intense. If transactions for speculative purposes overflow the upper
limit and settlement is delayed. It cannot be convenient for the use of electronic cash.
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These deviations were inevitable. Early stakeholders of Bitcoins welcomed the
appreciation of price andwere not very aggressive in negotiations to raise the systemic
upper limit of transactions. Other crypto-assets made by imitating the success of
Bitcoins are also almost the same purpose. As a result, the crypto-asset lacked the
function as a currency and became a speculative target. As this perception was shared
among people, G20 and other international organizations have decided to change the
name of virtual currency to crypto-asset.

There are proposals to repair current Bitcoin somehow and use it as a means of
payment in the future, but such repair is difficult, and even if technically feasible, it
would be almost impossible for parties concerned to agree on a drastic repair. If you
need an electronic cash system for use on the Internet, it’s much more practical to
start from scratch. In considering the future of Bitcoins and crypto-assets, we need
to accept actual situations being traded as speculative products. We need to impose
regulations from the viewpoint of prohibiting unauthorized use, such as money laun-
dering and consumer protection. Consumer education to prevent misconduct seems
to be very important. Information sharing among government agencies to prevent
cyber-crime is also important.

The current crypto-assets are incomplete applications because they dump private
key management to users. As a practical matter, it is difficult for ordinary users to
manage secret keys securely. If so, general users need to trust someone to manage
keys and assets. In other words, the catchphrases, such as “decentralization” and
“trustless,” which the advocate of Bitcoin raised as the ideal, were only an illusion.
The current crypto-asset has become a mechanism for the exchange trader to take
full responsibility, and if it is, then there is no decentralization nor trustless at all.

It is difficult for ordinary users to judgewhether a crypto-asset exchange is reliable
or not. In the framework of the current Japanese crypto-asset exchanger regulation
system, the registered exchanges are required to conduct risk management in the
same manner as banks and other financial institutions. This regulation would also be
useful for people who seek a reliable operator.

After all, it seems not always easy or desirable to actually build a world dominated
by code that Satoshi would have dreamed of. Ultimately, it is the government of each
country that protects the life and property of the citizens from the risks of money
laundering and cyber-attacks, The lessons learned from past crypto-asset incidents
show that it is safer for economic transactions larger than a certain scale to be checked
and backed in some form of the government. The question is how to reconcile the
relationship between this reality and the protection of privacy from the government.
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Hodge Decomposition of Bitcoin Money
Flow

Yoshi Fujiwara and Rubaiyat Islam

Abstract How money flows among users of Bitcoin is an interesting question in
order to understand the dynamics on the complex network ofBitcoin transactions, and
also how the transactions are related to the price in the exchange market indirectly.
We employ the data of blockchain in the Bitcoin from 2013 to 2018 (compiled by a
Hungary research group), utilize a simple algorithm to partially identify anonymous
users from addresses, and construct snapshots of temporarily changing network with
the users as nodes and the transactions as directed links. In order to understand how
users are located in the entire flow, in particular upstream and downstream, we use
the so-called Hodge decomposition (or Helmholtz-Hodge-Kodaira decomposition).
In addition, we examine the so-called “bow-tie” structure of the binary network
disregarding flow to find how the users in the upstream/downstream peripheries (the
so-called IN/OUT) are located away from the core of strongly connected component
(SCC). We compare the Hodge potential of each node with such a location in the
bow-tie structure, and also with the net demand/supply of each node measured from
the money flow, to find a significant correlation among the potential, the topological
position, and the net demand/supply. We also decompose the flow of each link into
potential flow and circular flow to find that circulation of the flow is quite significant.
We shall discuss about possible implication of these findings.

Keywords Bow-tie structure · Hodge decomposition · Bitcoin · Cryptoasset ·
Complex network

1 Introduction

Money is essentially a ledger to record transactions between creditors and debtors
(Martin 2014). Flowofmoney anddetermination of value or price of currency are fun-
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damental to the economic activities based on money. It has been a formidable task to
study such a flow of money due to the lacking of available data. Cryptocurrency, now
called cryptoasset, based on the blockchain technology of non-centralized ledgers
(see Antonopoulos 2017 for example), provides an exhaustive record of transactions
in the ledger; a quite unique opportunity to study how money flows among users.

It would be interesting to study the structure and its temporal change of a complex
network comprising the users as nodes and the money flow as links, because such
dynamics is quite possibly related to the users’ behaviors during normal and abnormal
periods of the cryptoasset’s market value. Even if we focus on such studies in the
framework of complex network, there are a considerable amount of literature (see
Reid and Harrigan 2013; Ober et al. 2013; Ron and Shamir 2013; Kondor et al.
2014a, b; Alvarez-Pereira et al. 2014; Baumann et al. 2014; Fleder et al. 2015; Maesa
et al. 2016; Lischke andFabian 2016;Akcora et al. 2017;Bartoletti et al. 2017;Cachin
et al. 2017; Cazabet et al. 2017; Maesa et al. 2017; Ranshous et al. 2017 for example,
and references therein).

In this manuscript, we address a specific question of how to identify and quantify
the upstream, downstream, or core in the entire money flow. We employ the data of
blockchain in the Bitcoin, compiled by a Hungary research group, with addresses
converted to users by a well-known algorithm. We shall examined the so-called
“bow-tie” structure of the binary network disregarding flow to find how the users
in the upstream/downstream peripheries are located away from the core of strongly
connected component. On the other hand, we use a combinatorial method of Hodge
decomposition, or Helmholtz-Hodge-Kodaira decomposition, to quantify how indi-
vidual user is located in the upstream and downstream portions of the network by
calculating the user’s Hodge “potential”. We also decompose the flow of each link
into potential flow and circular flow to find that circulation of the flow is quite sig-
nificant.

In Sect. 2, we describe the data of daily aggregation and the construction of
networkwith basic statistics. Then, in Sect. 3, we give themethod of bow-tie structure
based on the connectivity of the network and show a result for its snapshot. In Sect. 4,
we explain the Hodge decomposition with an illustration, and show results for the
Hodge potential and others with implications. Two appendices refer to a proof of
uniqueness of the potential and to a relevance to de Rham cohomology.

2 Data

A Hungary research group’s ELTE Bitcoin Project website and resources
(Hungary research group 2020) is used as a comprehensive dataset. The dataset
contains all Bitcoin transactions in the first 508,241 blocks, namely from the gen-
esis block approximately up to 9 February 2018. See also (Kondor et al. 2014a, b)
for the details. What is important for our analysis of temporally changing networks
of money flow among users, addresses recorded in the blockchain of Bitcoin are
identified as users under the criterion that multiple input addresses in a transaction
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are regarded as a user. The dataset employs such a criterion (see the original paper
Reid and Harrigan 2013 for details) as a minimum but necessary identification in
the anonymous system of blockchain, being aware of more sophisticated estimation
(see Androulaki et al. 2013; Juháaz et al. 2018 for example and references therein).
In addition, the “miners” were deleted from the data.

Let us denote by G = (V, E) the graph or network composed of a set of vertices
or nodes as users, E , and of a set of edges or links as flow of money, E . The network
changes in time. We shall use the notation of Gt = (Vt , Et ) to denote the snapshot at
time t . Time-scale with which one observe the temporal change of the network can
be arbitrary depending on the research interest. Here we focus on the daily snapshots
for possible comparison with the price of cryptoasset in exchange markets. For this
purpose, transactions or money flow from user i to j that took place in each day
were aggregated into a single link i → j with total amount of flow fi j > 0. Finally,
self-loops were discarded from E .

We select a particular period of time from July 1 to December 31, 2017, which
corresponds to the active period of transactions after the revisions of laws concerning

Fig. 1 Temporal change of the number of users/links for the period from July 1 to December 31
in the year 2017, a users, b links. In both plots, the filled dots represent Saturdays and Sundays
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payment services in several countries, most notably after the revision of Payment
Services Act in Japan (April 1, 2017) and the authorized “virtual currency exchange
service” as a consequence of the revised regulation.

Figure1 shows the temporal change of the number of users in Vt and that of the
number of links in Et during the period. The number of users increases with a typical
size 0.4M (million), and the number of links is typically 0.6M with an increasing

Fig. 2 Cumulative distribution functions (CDF) for a user’s degree (in, out, and total), b user’s
flow (in the unit of Bitcoin, BTC). Both of the plots are for the date of October 10, 2017
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number.1 In the following, let us randomly select a particular date of October 10,
2017 in order to focus on the topology of and the money flow on a daily snapshot
of the temporally changing network with a claim that properties to be shown are
quantitatively the same as other snapshots. We shall omit the subscript t for brevity.
The number of nodes, denoted by |V |, is |V | = 380,792, while the number of links
is |E | = 551,917.

Figure2 gives the distributions for the degrees and flows in the network. Figure2a
is the cumulative distribution function (CDF) for the in-degree, out-degree, and total
degree, i.e. how many links are in-coming into, out-going from each user, and the
sum of them, respectively. The degree distributions have heavy tails; there are users
with a huge number of links, like 103 or even larger transactions in a day. Figure2b is
the CDF for the amount of flow for in-coming into, out-going from each user, and the
total sum of them. The flow distributions are also heavy-tailed; there are users with
more than 103 BTC. The currency exchange market had the price on the date like
4700 USD per BTC, those daily transactions had considerable market values. Those
“big players” can be considered to be exchange markets and financial institutions
(see Islam et al. 2020 for more analysis of identification).

3 Bow-Tie Structure

Flow ofmoney on our networkG = (V, E) has a flow from upstream to downstream,
so to speak, as well as a circulation among users. In this section, we shall identify
the location of users V in the upstream, downstream and the core of the network by
focusing on the connectivity E alone, that is, ignoring how much money is flowing
along the links. For this purpose, we shall use the well-known analysis of “bow-tie”
structure (Broder et al. 2000).

Decompose G into weakly connected components (WCC), i.e. connected com-
ponents when regarded as an undirected graph. We found that there exists a giant
WCC (GWCC) with |V | = 349,635 and |E | = 529,313, while there are more than
a thousand tiny components with a median size |V | = 3. Let us focus on the giant
WCC (GWCC) in what follows. The GWCC can be decomposed into the parts that
are defined as follows:

GWCC Giant weakly connected component: the largest connected component when
viewed as an undirected graph. An undirected path exists for an arbitrary
pair of firms in the component.

GSCC Giant strongly connected component: the largest connected component
when viewed as a directed graph. A directed path exists for an arbitrary
pair of firms in the component.

1It is interesting to observe that the users and links in the weekends are relatively smaller in com-
parison with weekdays (see the filled dots in Fig. 1a, b). Such a weekly pattern was found and is
discussed in (Islam et al. 2019, 2020). The pattern is likely related to the activities of big players
such as currency exchange markets and financial institutions with less activity in weekends.
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IN The firms from which the GSCC is reached via a directed path.
OUT The firms that are reachable from the GSCC via a directed path.
TE “Tendrils”; the rest of the GWCC

It follows from the definitions that

GWCC = GSCC + IN + OUT + TE (1)

One can apply graph-search algorithms such as depth-first search and breadth-first
search to do the above decomposition (see Cormen et al. 2001 for example). Figure3
is an illustration. Figure3a is an example of network, and its decomposition (1) is
given in Fig. 3b. The whole of GSCC, IN and OUT looks like a bow-tie, frequently
observed in many social and economic networks.

Nowwe apply the analysis of bow-tie structure to our data. The result is depicted in
Fig. 4. In (1), GWCC is decomposed into GSCC (17.5%), IN (29.4%), OUT (23.9%),
and TE (29.1%) with percentages in parentheses being the fraction in terms of the
number of users contained in each part. GSCC is relatively small, but is present as a
core, presumably circulating money mutually among users. IN is the largest portion
supplying money to the core from the upstream, while OUT is demanding in the
downstream side.

In addition, we calculated the shortest distance from each user to the GSCC. If the
user is located in IN, the distance measures how many minimum steps are necessary
to go from the user to the GSCC along the directed links. If the user is in OUT, it
is the minimum number of steps from the GSCC to arrive at the user. If the shortest
distance is long, it means that the user is located in a remote place in the upstream
or downstream. In most social and economic networks, such distances are not very
long. For example, a study on the supplier-customer links or the production network
at nationwide scale in Japan, comprising of a million firms as nodes, shows that such
distances are typically very small like 4 steps so that the diameter (the maximum

Fig. 3 Example of bow-tie structure
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distance between all the pairs of nodes) is quite small, namely and example of the
so-called “six-degree of separation” (see Chakraborty et al. 2018 for a recent study
on a production network). In contrast, the money flow of Bitcoin has surprisingly
long distances as shown in Fig. 4. Actually, the maximum shortest distance for the
upstream side of IN is 58, while that for OUT is 85; the bow-tie has an elongated
shape! We do not pursue this interesting property further, but can guess that it comes
from unique way users were added to the system as suppliers and customers in a
decentralized formation of the network.

We have uncovered the bow-tie structure and have located upstream, downstream
users in the network with shortest distances from the core of GSCC. This was,
however, obtained by merely examining the connectivity of the network, which is
different from the money flow. Directed but binary relationship between pairs of
users is not sufficient in order to locate users in the entire flow. It would be necessary
to take into account the amount of flow, because the distributions for degree and flow
have heavy tails as shown in Sect. 2 implying the possible big roles of users with
large amounts of money flow. Let us turn our attention to an analysis of flow on the
network.

4 Hodge Decomposition

A Helmholtz-Hodge-Kodaira decomposition, or a Hodge decomposition for short,
is a combinatorial method to decompose flow on a network into circulation and

Fig. 4 Bow-tie structure for the network of money flow in the largest weakly connected component
(data: October 10, 2017). At the “core” is located the giant strongly connected component (GSCC),
which is connected to the IN and OUT component by in-going links into and outgoing links from
the SCC, namely “upstream” and “downstream” (see the main text for definitions). The other parts
of nodes are called tendrils. The percentage in each portion is the ratio of the number of nodes to
the total number |V | = 349,635. Also shown are the maximum distances from SCC to IN, and from
SCC to OUT
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gradient flow. Original idea dates back to the so-called Helmholtz theorem in vector
analysis, which states that under an appropriate condition any vector field can be
uniquely represented by the sum of an irrotational or rotation(curl)-free vector field
and a solenoidal or divergence-free vector field. The theorem can be generalized
from Euclidean space to graph and other entity as shown by Hodge, Kodaira and
others.

In the context of graph, the readers can refer to (Jiang et al. 2008, 2011; Johnson
2013). For recent applications to neural network and economic network, see (Miura
and Aoki 2015; Kichikawa et al. 2018) and references therein for example.

For our purpose, the Hodge decomposition can quantify individual user’s “poten-
tial” to locate the user in upstream and downstream of the entire flow of money, and
can decompose individual link’s flow into circulation and gradient flow, as we shall
see.

4.1 Method

Let us recapitulate the method briefly.
Consider a directed network with an adjacency matrix Ai j , i.e.

Ai j =
{
1 if there is a directed link from node i to node j,

0 otherwise.
(2)

Denote the number of nodes by N . By assumption, Aii = 0, i.e. we do not include
self-loops. Represent the flow on the network as

Bi j =
{
fi j if there is a flow from node i to node j,

0 otherwise ,
(3)

where it is assumed that the flow is always positive:

fi j > 0. (4)

Note that there can be possibly a pair of nodes such that Ai j = A ji = 1 and fi j , f ji >

0.
Now let us define a “net flow” Fi j by

Fi j = Bi j − Bji , (5)

and a “net weight” wi j by
wi j = Ai j + A ji . (6)

Note that wi j is symmetric:
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wi j = wji , (7)

and non-negative in the sense that

wi j ≥ 0, (8)

for any pair of i and j . It should be mentioned that (6) is simply a convention to take
into account the effect of mutual links between i and j ; one could multiply (6) by a
half or an arbitrary positive weight, which actually has little change to the result for
a large network.

The Hodge decomposition is given by

Fi j = wi j (φi − φ j ) + F (loop)
i j , (9)

where φi is called a Hodge potential of node i , and F (loop)
i j is divergence-free by

definition, namely ∑
j

F (loop)
i j = 0, (10)

for i = 1, . . . , N . The original flow Fi j is decomposed into gradient flow, wi j (φi −
φ j ), and circular flow, F (loop)

i j .
From (9) and (10), given Fi j and wi j , one has simultaneous linear equations to

determine φi : ∑
j

Li jφ j =
∑
j

Fi j , (11)

for i = 1, . . . , N . Here
Li j = δi j

∑
k

wik − wi j , (12)

and δi j is Kronecker delta:

δi j =
{
1 if i = j,

0 otherwise .
(13)

Obviously, from the symmetry (7), Li j is symmetric:

Li j = L ji . (14)

Note that simultaneous linear equations (11) are not independent of each other.
In fact, the summation over i gives zero. This corresponds to the fact that there is a
freedom to change the origin of potential arbitrarily. Let us use the convention in the
following that the average is zero:
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Fig. 5 Example of Hodge decomposition. Original flow among three nodes (left). The flow is
decomposed into gradient flow (middle) and circular flow (right). In the gradient flow, each node’s
Hodge potential φi is shown. Note that φi − φ j gives each gradient flow from node i to j . On the
other hand, the circular flow has vanishing divergence

∑
i

φi = 0. (15)

It is not difficult to prove that if the network is weakly connected, i.e. connected
when regarded as an undirected graph, the potential can be determined uniquely up to
the choice of the origin of the potential. See Appendix 1 for the proof.

Figure5 is an illustration of the Hodge decomposition. The adjacency matrix is

||Ai j || =
⎡
⎣ 0 1 1

0 0 0
0 1 0

⎤
⎦ . (16)

fi j and Bi j take the same form as (16) for this example. Then (11) reads

⎡
⎣ 2 −1 −1

−1 2 −1
−1 −1 2

⎤
⎦

⎡
⎣φ1

φ2

φ3

⎤
⎦ =

⎡
⎣ 2

−2
0

⎤
⎦ . (17)

The solution for the Hodge potentials satisfying the constraint (15) is obtained by

φ1 = 2/3, φ2 = −2/3, φ3 = 0. (18)

According to the potential, the nodes 1, 2 and 3 can be located from upstream to
downstream in this order. Each of the original flow is decomposed into the gradient
flow and the circular flow. Note that the former is rotation-free or irrotational, while
the latter is divergence-free or solenoidal.

In Appendix 2, we briefly describe another way to look at the Hodge decomposi-
tion from amathematical viewpoint of simplicial complex and deRham cohomology.
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Fig. 6 Probability distribution function (PDF) for the Hodge potential calculated for the network
of money flow (data: October 10, 2017). Tendrils in the bow-tie structure are removed from the
network. Average of potential is set to zero. Note that the PDF has skewness toward positive

4.2 Result

Let us first take a look at the distribution for the Hodge potential of individual user.
Figure6 shows the probability distribution function for φi of users. The calculation
was done for the GWCCwith all the tendrils removed from the network, so compris-
ing of GSCC, IN, and OUT so as to see how φi depends on the user i’s location in the
upstream and downstream in the network. Note that the distribution has skewness
toward positive showing that relatively large number of users has positive values of
potential, while a small number of users has negative values of potential with rel-
atively large absolute value, because phii ’s satisfy (15). It would be an interesting
issue to quantify the skewness to compare it with the level of demand or supply
by examining daily price change in the currency exchange markets, although it is
beyond the present manuscript.

We then proceed to examine how individual user’s Hodge potential and location
in the bow-tie structure, in particular the position of upstream and downstream, are
related to one another. Figure7 is a scatter plot for each user’s Hodge potential
(horizontal) and the user’s shortest distance from the core or GSCC. If the user is in
the GSCC, the distance is defined to be zero. If the user is in the upstream or IN, her
potential is mostly positive, while the potential is mostly negative for the downstream
orOUTusers.Note, however, that the potential can tell usmore information thanwhat
the bow-tie structure can do. For example, even if the user is in the core, the potential
of the user takes a certain range of values from positive and negative (horizontally
scattered points along the line corresponding to the distance 0).
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Fig. 7 Individual user’s Hodge potential (horizontal axis) and her shortest distance (vertical) from
or to the “core” or the GSCC (see Fig. 4) in a scatter plot (data: October 10, 2017). The shortest
distance is defined to be 0 if the user is located in the GSCC; otherwise it is defined as indicated. If
the user is located in the upstream or “IN”, its potential is mostly positive; for the downstream or
“OUT”, it is mostly negative. Note, however, Hodge potential tells more than what the topological
information of bow-tie structure can show

Fig. 8 Each user’s Hodge potential (horizontal axis) and her net flow (vertical) in a scatter plot
(data: October 10, 2017). The net flow is defined to be the amount of in-comingmoneyminus that of
out-going money from the user; it is positive when the user is demanding, while it is negative when
supplying. There is obviously a correlation between the value of potential and demanding/supplying
property of the user, while one can see fine structures in the scatter plot



Hodge Decomposition of Bitcoin Money Flow 129

On the other hand, the demand/supply by each user i can be measured by the net
flow:

net flow of user i =
∑
j

f j i −
∑
k

fik, (19)

where the first term on the right-hand side is the total amount of in-coming money
into the user i , and the second term is the total of out-going money from i . If the
user has more demand than supply, (19) is positive, while it is negative for the user
with relatively more supply. One can expect that the net demand is likely to be
negative (supplying) for the users with larger Hodge potential; and vice versa for
the demanding users. Figure8 is a scatter plot of individual user’s Hodge potential
(horizontal) and the net flow (vertical). It is obvious that there is a correlation between
the value of potential and demanding/supplying property of the user. Moreover,
one can observe interesting structures such as several diagonal alignments of users,
which presumably correspond to some topologically non-trivial fine structures of
connectivity and flow among users.

Fig. 9 Each link’s original flow is decomposed into gradient flow (horizontal) and circular flow
(vertical) according to the Hodge decomposition (data: October 10, 2017). See Fig. 5 for an illus-
tration. While there are links without circular flow (scattered along the horizontal line), one can
see that many links have both of gradient and circular flows with comparable magnitude (scattered
along the diagonal line)
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Finally, the Hodge decomposition (9) allows us to decompose the flow of indi-
vidual link into a gradient flow, or the difference between the potentials at the head
and tail of the link, and a circular flow. It would be interesting to see such decom-
positions in order to see how money is simply circulating among users. Figure9
is a scatter plot of individual link with its gradient flow (horizontal) and circular
flow (vertical). A horizontal alignment of points (circulation = 0) is a group of links
with vanishing circular flow, implying that those links do not play any role as the
circulation of money flow, but simply as the flow from upstream to downstream.
A vertical alignment of points (gradient flow = 0) corresponds to the links that are
circulating money, presumably in the core of the network. Interestingly, there is a
diagonal alignment of points that are the links with comparable amount of gradient
flow and circular flow. These links can be considered to have the largest share among
all the links, although we will study in a future work.

5 Summary

We studied the daily transactions of cryptoasset of Bitcoin among users by using the
Hungary research group’s dataset based on away of identifying users from addresses.
The daily transactions comprise a directed and weighted graph or network with users
as nodes and money flow as links. We employed two methods in order to study
how money flows in the entire network. The first method is the so-called bowt-
tie structure analysis, based merely on the connectivity or topology without taking
into account of weights. As a result, one can identify individual user’s location in
the upstream/downstream or the core of the network. The second method is the
Hodge decomposition that enables one to decompose the flow into a gradient flow
and a circular flow in a unique way. The gradient flow is essentially a difference
of potentials at the head and tail of the link. The resulting Hodge potential can
measure the location of individual users in the entire flow of network. We examined
the relationship between the bow-tie structure and the Hodge potential, studied how
the potential is related to each user’s net flow or demand/supply, and performed
quantification of circular flow in the system. It would be an interesting issue in the
future to investigate how theflow is related to the currency exchangemarket dynamics
of price/volume.
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Appendix 1: Proof of the Uniqueness of Hodge Potential

Consider a directed network with an adjacency matrix Ai j given by (2). Denote the
number of nodes by N . Represent the flow on the network as (3). Then define Fi j or
“net flow” by (5), and wi j or “net weight” by (6). The Hodge decomposition is given
by (9), where φi is the Hodge potential. The potential can be obtained by solving
(11), where Li j is defined by (12).

We use such a notation that L is a matrix whose (i, j) element is Li j ; φ is a vector
whose i component is φi .

In this appendix, we shall prove that for a weakly connected network, i.e. con-
nected when regarded as an undirected network, the Hodge potential for each node
is uniquely determined up to addition of a constant.

Let us consider the eigenvalues and eigenvectors of L:

Lv(a) = λa v(a), (20)

for a = 1, . . . , N . Because L is symmetric, we have the following consequences:

• eigenvalues, λa , are real;
• eigenvectors form an orthonormal set of bases:

∑
i

v(a)
i v(b)

i = δab, (21)

for any pair of a and b;
• eigenvectors form a complete set of bases:

∑
a

v(a)
i v(a)

j = δi j , (22)

for any pair of i and j .

We assume, without loss of generality, that the indices, a, are ordered such that
the eigenvalues are in the ascending order of values:

λ1 ≤ λ2 ≤ · · · ≤ λN (23)

One of the eigenvalues is zero with its corresponding eigenvector being a multiple
of v = 1, as one can easily confirm.2 Due to the existence of this eigenvector, the
linear equation (11) has a solution φ only up to the addition of a multiple of the trivial
eigenvector 1. In other words, one can choose the origin of potential in an arbitrary
way.

Now we show that the other eigenvalues are all positive, that is

21 is the vector with all the components equal to 1.
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0 = λ1 < λ2 ≤ · · · ≤ λN (24)

The solution of the linear equation (11), therefore, is uniquely determined up to the
addition of a multiple of the trivial eigenvector.

For an arbitrary function f , which is not a zero vector, consider a quadratic form,
f tL f . One can easily show that

f tL f =
∑
i, j

Li j fi f j =
∑
i, j

(δi j
∑
k

wik − wi j ) fi f j

=
∑
i, j

wi j ( f
2
i − fi f j )

= 1

2

∑
i, j

wi j (2 f
2
i − 2 fi f j )

= 1

2

∑
i, j

wi j ( fi − f j )
2 ≥ 0 (25)

In the last line, we used the symmetry (7). The inequality follows from the non-
negativity (8).

If the equality holds in (25), it follows that for any i and j such that wi j > 0,
fi = f j . Because the network is weakly connected, this means that fi is constant for
all the nodes. Conversely, if fi is constant, the equality holds in (25).

If one considers the case fi = v(k)
i for a fixed k, one has

f tL f = λk (26)

Because the inequality (25) holds for any f , it follows that λk ≥ 0 for any k. But we
have shown above that the equality holds in (25) if and only if f = 1, i.e. the trivial
eigenvector, we have λk > 0 for k = 2, . . . , N . This proves (24).

Appendix 2: Simplicial Complex and de Rham Cohomology

It would be interesting to see that Hodge decomposition is related to what is known
as de Rham cohomology if the network under consideration, or in general, a graph is
regarded as simplicial complex. Let us recapitulate it in this appendix (see Johnson
2013 for a lucid introduction).

Consider a graph G = (V, E) with V a set of nodes and E as a set of edges. A
directed graph can be regarded as a “flow” on an undirected graph, as we shall see,
so let us assume that G is undirected with a possibly positive, zero, or negative value
associated with each edge. Let the total number of nodes be n. Suppose that the nodes
are indexed by 1, . . . , n.
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Fig. 10 A simple example
of graph comprising 5 nodes.
Note that by definition in this
appendix, the direction of
edges is define as i → j so
that the index of node is
increasing, that is, i < j .
Value associated with each
edge represents “flow”. The
edge 2 → 4 has a negative
flow of −1, which means that
there is a flow of +1 from the
node 4 to 2, by the definition

k-simplex �k in G: a fully connected subgraph of G with (k + 1) nodes. A node
is a 0-simplex: an edge is a 1-simplex: an triangle is a 2-simplex. In general, G can
be uniquely expressed by a collection of �k , the so-called a simplicial complex.

Figure10 is a simple example with n = 6 (taken from Miura and Aoki 2015).

�0 : 1, 2, 3, 4, 5, 6 (27)

�1 : 12, 23, 24, 34, 35 (28)

�2 : 234 (29)

�k−1 can be expressed by a sequence i1 . . . ik where i p is a node’s index. The
triangle (234) can also be designated as (324). We adopt the notation i1 . . . ik for an
index sequence that may or may not be in ascending order, whereas i1 . . . ik means
i1 < · · · < ik .

Vector spaces, Vk :

Vk =
⎧⎨
⎩

∑
i1...ik+1∈�k

ai1...ik+1
(i1 . . . ik+1) with ai1...ik+1

∈ R

⎫⎬
⎭ (30)

We introduce a calculus

( j1 . . . jk) =
{

+(i1 . . . ik) if j1 . . . jk is an even permutation of i1 . . . ik
−(i1 . . . ik) if j1 . . . jk is an odd permutation of i1 . . . ik

(31)

For the example in Fig. 10, α ∈ V1 can be represented by

α = a12(12) + a23(23) + a24(24) + a34(34) + a35(35) (32)
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�1 can be regarded as a natural basis of V1.
Figure10 is a “flow network”; each edge has a flow indicated by a value on it.

The flow can be regarded as a vector ω ∈ V1:

ω = (12) + (23) − (24) + (34) + (35) (33)

One can introduce an inner product in which the natural bases form a complete
set of orthonormal bases. For example, the inner product between (32) and β =
b12(12) + · · · + b35(35) is

〈α, β〉 = a12b12 + a23b23 + a24b24 + a34b34 + a35b35 (34)

Linear operator δk : Vk → Vk+1

δk(i1 . . . ik) =
∑

( j i1...ik+1)∈�k+1

( j i1 . . . ik+1) (35)

For the example in Fig. 10,

δ0(1) = −(12) (36)

δ0(2) = (12) − (23) − (24) (37)

δ0(3) = (23) − (34) − (35) (38)

δ0(4) = (24) + (34) (39)

δ0(5) = (35) (40)

δ1(12) = 0 (41)

δ1(23) = (234) (42)

δ1(24) = −(234) (43)

δ1(34) = (234) (44)

δ1(35) = 0 (45)

δ2(234) = 0 (46)

For the flow (33), we have
δ1(ω) = 3(234) (47)

Note that the coefficient 3 of (234) is a rotation or curl in the triangle (234).
Define a linear operator δ∗

k : Vk+1 → Vk

For β ∈ Vk+1, δ∗
k (β) is defined by

〈α, δ∗
k (β)〉 = 〈δk(α), β〉 (48)

for all α ∈ Vk . One can prove that
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δ∗
k (i1 . . . ik+2) =

k+2∑
q=1

(−1)1(i1 . . . îq . . . ik+2) (49)

where îq denotes the index iq is removed from the sequence i1 . . . ik+2.
For the example in Fig. 10,

δ∗
0(12) = (2) − (1) (50)

δ∗
0(23) = (3) − (2) (51)

δ∗
0(24) = (4) − (2) (52)

δ∗
0(34) = (4) − (3) (53)

δ∗
0(35) = (5) − (3) (54)

δ∗
1(234) = (34) − (24) + (23) (55)

Define subspaces Gk and Sk of Vk :

Gk = Image(δk−1) = {α ∈ Vk : Some β ∈ Vk−1 exists s.t. δk−1(β) = α} (56)

Sk = Image(δ∗
k ) = {α ∈ Vk : Some β ∈ Vk+1 exists s.t. δ

∗
k (β) = α} (57)

One can prove what follows.

1. For any α ∈ Vk , δk+1(δk(α)) = 0. For any β ∈ Vk+1, δ∗
k−1(δ

∗
k (β)) = 0.

2. Gk and Sk are orthogonal subspaces of Vk .
3. Define a subspace

Hk = (Gk ⊕ Sk)
⊥ (58)

Then we have Vk = Gk ⊕ Sk ⊕ Hk

4. G⊥
k = Kernel(δ∗

k−1) and S⊥
k = Kernel(δk)

5. Sk = δ∗
k−1(Gk+1) and Gk = δk−1(Sk−1)

6. Any ω ∈ Vk has a unique decomposition

ω = ωg + ωs + ωh (59)

where

ωg ∈ Gk = δk−1(Vk−1) (60)

ωs ∈ Sk = δ∗
k (Vk+1) (61)

ωh ∈ Hk = Kernel(δ∗
k−1) ∩ Kernel(δk) (62)

This is called Hodge decomposition (Jiang et al. 2008).
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Time Series Analysis of Relationships
Among Crypto-asset Exchange Rates

Takeshi Yoshihara, Tomoo Inoue, and Taisei Kaizoji

Abstract There are several previous empirical analyses for Bitcoin pricing; how-
ever, only a few pieces of research can be found in terms of the relationships among
major crypto assets, such as Ethereum, and Ripple. Here, we apply a method pro-
posed by Nan and Kaizoji (Int Rev Fin Anal 64:273–281, 2019), which calculates
an indirect exchange rate to consider the possibility of a cointegrating relationship
between a crypto-asset exchange rate and a direct FX spot rate.We investigatemarket
efficiency in crypto-asset exchange rates through the application of several kinds of
unit root tests and the Johansen procedure. The results suggest that the weak form of
market efficiency does not seem to hold for all pairs; however, one of the prerequi-
sites for semi-strong form of market efficiency holds for several pairs. Additionally,
we focus on the dynamic relationships by applying the impulse response function
for a four-variable VECM. Remarkably, the Bitcoin exchange rate can slightly affect
the EUR/USD spot rate.

Keywords Crypto asset · Efficient market hypothesis · Cointegration · Impulse
response function

1 Introduction

In recent years, crypto assets (or cryptocurrencies) have becomemore integrated into
the world economy. Transactions in crypto-asset markets are done using a decen-
tralized online platform called “blockchain,” and its well-designed cryptographic
system is at the underlying technology. As the market capitalization of crypto assets
expands, increasing numbers of researchers in economics and finance have recently
started paying attention to the issues related to crypto-asset markets. For instance,
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the problem of whether or not crypto assets can become a currency is a point of
contention in economics and finance research.

There are several studies on Bitcoin and its efficiency in econometrics. On the
one hand, Cheah and Fry (2015) suggested that the price instability of Bitcoin was
a speculative bubble. Corbet et al. (2018) reported that there were periods of bubble
behavior in Bitcoin and Ethereum pricing. On the other hand, Urquhart (2016) inves-
tigated themarket efficiency of Bitcoin and suggested that themarkets would become
more efficient. Nadarajah and Chu (2017) showed that a power transformationmodel
of Bitcoin returns might be weakly efficient. Tiwari et al. (2018) analyzed Bitcoin
price data by using robust long-range dependence estimators, and reported that the
market was efficient. Nan and Kaizoji (2019) compared Bitcoin with EUR/USD
spot, future, and forward rates, and concluded that weak and semi-strong efficiency
of Bitcoin held in the long term.

Following these empirical investigations, we focus on the efficiency of Bitcoin,
Ethereum, and Ripple by Nan and Kaizoji’s methodology that compares exchange
rates in the real markets to indirect crypto-asset exchange rates (CER). Its equation
is given by

CER = CRP_EUR

CRP_USD

where CRP_EUR and CRP_USD are the crypto-asset prices in Euros and U.S. Dol-
lars, respectively. The aim of this method is not only to eliminate the influence of
the exponential growth of crypto-asset markets, but also to compare those markets
with FX markets (See Figs. 1 and 2).

The rest of this paper is structured as follows. In the second chapter, we present
the theoretical backgrounds of this research. In the third chapter, we show the results
of empirical study and describe some implications for our findings. Conclusions are
provided in the last chapter.

2 Data and Methodology

2.1 Efficient Market Hypothesis

The efficient market hypothesis proposed by Fama (1970) assumed that a price in
the market was always fully reflective of all available information. When we con-
sider how information availability is defined, market efficiency can be classified into
three forms: weak, semi-strong, and strong forms. Weak-form efficiency considers
historical price data to be all the available information; semi-strong-form efficiency
includes not only historical price data but also publicly available new information;
strong-form efficiency requires all the investors in the market to access not only
public but private information related to pricing. This paper focuses only on the
weak and semi-strong forms because Fama (1991) admitted that the strong form was
impossible in the real world. In a general efficiency test, a dependent variable of one
spot rate is examined toward an explanatory variable of a forward rate. However,



Time Series Analysis of Relationships … 141

Fig. 1 Historical price data of Bitcoin, Ethereum, and Ripple in USD

we compare the crypto-asset exchange rates, which are considered to function as a
kind of spot rates, with the EUR/USD spot rate, since our aim is not only to test the
efficiency of Bitcoin but also to compare it with that of Ethereum and Ripple.

2.2 Unit Root Tests

For testing the hypothesis ofweak-form efficiency on the four exchange rates, we first
check whether or not the process has a unit root using the Augmented Dickey-Fuller
(ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), and Zivot-Andrews (ZA) tests.
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Fig. 2 Historical price data of the three crypto-asset exchange rates and the FX spot rate of
EUR/USD

As noted by Said and Dickey (1984), in the ADF test proposed by Dickey and
Fuller (1979) there are three specifications for modeling; (a) one with constant and
trend, (b) one with constant, and (c) one with neither. For example, when we consider
the crypto-asset exchange rates, CERt , as an AR (ρ) process, the three specifications
can be written as

(a) CERt = ρ1CERt−1 + ρ2CERt−2 + · · · + ρpCERt−p + εt
(b) CERt = α + δt + ρ1CERt−1 + ρ2CERt−2 + · · · + ρpCERt−p + εt
(c) CERt = α + ρ1CERt−1 + ρ2CERt−2 + · · · + ρpCERt−p + εt

whereα denotes the constant term, δ denotes the drift term, and εt denotes a stationary
error. For these cases, the null and alternative hypotheses of the ADF test are

H0 :
p∑

s=1

ρs − 1 = 0

H1 :
p∑

s=1

ρs − 1 < 0.
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In terms of hypothesis testing, it is not recommended to do the t-test as the distri-
bution does not necessarily follow the Student’s t-distribution if the data has a unit
root (Dickey and Fuller 1979).MacKinnon (1996) proposed to utilize a τ distribution
and its statistics instead of the Student’s t-distribution and t-value. We follow this
methodology in the unit root tests.

Second, the KPSS test also checks whether the process has a unit root; however,
this tests the null hypothesis of stationarity against a unit root (Kwiatkowski et al.
1992). There are two specifications to test stationarity;

(d) CERt = α + rt + εt
(e) CERt = α + δt + rt + εt

where α denotes the constant term, rt denotes the random walk, δ denotes the drift
term, εt denotes stationary error, andut is iid

(
0, σ 2

u

)
. The set of the null and alternative

hypotheses is contradictory to those of the ADF;

H0 : σ 2
u = 0

[
the series is stationary

]

H1 : σ 2
u > 0 [the series has a unit root].

The last approach for checking a unit root is the Zivot and Andrews (1992) test.
This method allows us to test the existence of a unit root with a structural break. All
three models of this test are considered to be “trend and drift” specification as with
the model (c) of the ADF. Consider AR (1) processes,

(f) CERt = α + θDUt + δt + ρCERt−1 +
k∑

j=1
	cjCERt−j + εt

(g) CERt = α + δt + γDTt + ρCERt−1 +
k∑

j=1
	cjCERt−j + εt

(h) CERt = α + θDUt + δt + γDTt + ρCERt−1 +
k∑

j=1
	cjCERt−j + εt

(
DUt =

{
1 if t > bp
0 otherwise

, DTt =
{
t − bp if t > bp
0 otherwise

)

whereDUt is a dummyvariable for amean shift, andDTt is that for a trend shift occur-
ring on a breakpoint day bp. θ and γ are corresponding coefficients for each dummy
variable. The term

∑k
j=1 	cjCERt−j is to eliminate nuisance-parameter dependen-

cies. In the case of an AR (p) process, the null and alternative hypotheses of this test
are

H0 :
p∑

s=1

ρs − 1 = 0

H1 :
p∑

s=1

ρs − 1 < 0.



144 T. Yoshihara et al.

If the results suggest that a process has a unit root in these three tests, it implies
that the process behaves like a random walk, and this is one of the prerequisites for
the weak-form market efficiency.

2.3 Johansen Test for Cointegration

Johansen (1988, 1991) and Johansen and Juselius (1990) introduced a procedure for
hypothesis testing of cointegration among two or more variables whose process had
a unit root. Additionally, a cointegrating vector and its coefficients of the model can
be obtained through this procedure.

In the multivariate time series analysis, the AR process is generalized to a vector
autoregressive (VAR) process. For simplicity, consider a bivariate VAR (1) model,

yt = γ + �yt−1 + εt (1)

where yt is (vt,wt)
′, � is a 2×2 matrix, γ is a constant term which is a 2×1 vector,

and εt is a vector of residuals that are W.N .(Σ). Equation (1) also can be written as
the combination of two AR (1) processes:

{
vt = γ1 + Π11vt−1 + Π12wt−1 + ε1t

wt = γ2 + Π21vt−1 + Π22wt−1 + ε2t
,

(
ε1t

ε2t

)
∼ W.N .(Σ)

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,

(
ε1t

ε2t

)
∼ W.N .(�)

The n-variable VAR (ρ) model can be represented as

yt = γ + �1yt−1 + · · · + �pyt−p + εt (2)

where γ denotes a n×1 vector of the constant term, and�i denotes a n×n vector of
the coefficient matrix. Suppose E

(
yt

) = μ, the equation μ = γ +�1μ+· · ·+�pμ

can be obtained. Andwhere�(i) = 1−�1i−· · ·−�pip is defined, the equation γ =(
1 − �1 − · · · − �p

)
μ = �(1)μ is obtained. Therefore, we can get the following

equation converted from the Eq. (1):

	yt = −�(1)
(
yt−1 − μ

) +
p−1∑

h=1

�h	yt−h + εt .

This equation is called a vector error correction model (VECM), which represents
that the term −�(1) corrects the divergence from the long-term average yt−1 − μ.

As this paper mainly focuses on two-variable relationships, we consider, for sim-
plicity, a bivariate VAR (ρ) model to explain how the VECM works. Consider the
VAR (ρ) model:
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yt = γ + �1yt−1 + · · · + �pyt−p + εt,

and which can be converted to

	yt = γ + �yt−1 + �1	yt−1 + · · · + �p−1	yt−p+1 + εt (3)

where

� = �1 + · · · + �p − 1

�g = −(�g+1 + · · · + �p) (g = 1, 2, . . . p − 2)

�p−1 = −�p.

Because the original VAR model has two variables, there are three possibilities
of how many ranks of � exist in the Eq. (3):

(i) If the rank of � is zero, the two processes follow a random walk model;
(ii) If the rank is two, the two processes are stationary;
(iii) If the rank is one, the two variables have one common stochastic trend.

� is a 2 × 2 matrix because the sum of 2 × 2 matrices, �1 + · · · + �p, is also
a 2 × 2 matrix. Therefore, there are two eigenvalues λ1 and λ2 (0 ≤ λ2 ≤ λ1 ≤ 1)
for the matrix �. Utilizing the two eigenvalues, we can specify the rank of �.
This estimation can be examined using two cointegration tests; a trace test and a
maximum-eigenvalue test (Osterwald-Lenum 1992; MacKinnon et al. 1999). Let us
denote the rank of � by r. We do the trace test twice to check whether the two
processes have one cointegration. The first trace test assumes the hypotheses as

H0.1 : r = 0

H1.1 : r ≥ 1,

the second trace test assumes that

H0.2 : r = 1

H1.2 : r ≥ 2.

On the other hand, the first maximum-eigenvalue test assumes the hypotheses as

H0.3 : r = 0

H1.3 : r = 1,

the second maximum-eigenvalue test assumes that
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H0.4 : r ≤ 1

H1.4 : r = 2.

When H0.1 is rejected and H0.2 is not rejected, the result suggests that the rank of
� is one in the trace tests. Additionally, when H0.3 is rejected and H0.4 is not, the
result suggests that the rank is one in the maximum-eigenvalue tests. If the two tests
show different results, the result of the trace test is generally prioritized, because it is
known that the test produces more robust results than the maximum-eigenvalue test
(Lütkepohl et al. 2001). In addition, if there is one cointegration, it is indicative of
the existence of a single common stochastic trend between the variables. This means
that the markets are not weak-form efficient because the price is influenced by not
only the historical price data but also other information. However, the possibility still
exists that they are efficient in terms of the semi-strong form because that includes
not only historical price data but also current open information.

The 2 × 2 matrix � can be represented as

� =
(

α1β1 α1β2

α2β1 α2β2

)
= α′β

where α′ = (α1, α2), and β = (β1, β2). As we also have to consider an intercept in
the model, we include the term β0, and define the new 2 × 3 matrix � as

� =
(

α1β1 α1β2 α1β0

α2β1 α2β2 α2β0

)
= α′β.

As yt is (vt,wt)
′, the VECM can be represented by

	vt = α1(β1vt−1 + β2wt−1 + β0) +
p∑

i=1

(
γ11,i	vt−i + γ21,i	wt−i

) + ε1t (4)

	wt = α2(β1vt−1 + β2wt−1 + β0) +
p∑

i=1

(
γ21,i	vt−i + γ22,i	wt−i

) + ε2t (5)

where vt and wt are non-stationary but β1vt−1 + β2wt−1 + β0 is stationary.
β1vt−1 + β2wt−1 + β0 represents the relationship of one cointegration, and it refers
to a relationship of long-term equilibrium between the two variables. Additionally,
β = (β1, β2, β0) represents a cointegrating vector; α1 and α2 represent coefficients
of the speed of adjustment.

After checking whether the processes have one cointegration or not, Nan and
Kaizoji (2019) tried to clarify the long-term relationship between an FX rate and the
Bitcoin exchange rate by focusing on the estimated coefficients, α̂ and β̂. We follow
this procedure to check whether the relationship between variables is a perfect linear
correlation and whether one variable is weakly exogenous in the bivariate system.
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We define H2.1, H2.2, and H2.3 for restrictions on β̂; H3.1 and H3.2 for those on α̂ as

H2.1 : β̂1 = −β̂2

H2.2 : β̂0 = 0

H2.3 : β̂1 = −β̂2, β̂0 = 0

H3.1 : α̂1 = 0

H3.2 : α̂2 = 0.

Additionally, we restrict both α̂ and β̂ in H4 as

H4 : β̂1 = −β̂2, β̂0 = 0, α̂1 = 0.

Also, it should be noted that H4 represents H2.3 ∩H3.1. Based on the Eqs. (4) and
(5), we can obtain an equation which represents the relationship between the two
variables with the coefficients assumed in H4:

(
	vt
	wt

)
=

(
0
α̂2

)
(vt−1 − wt−1) +

p∑

i=1

(
γ1,i	vt−i + γ2,i	wt−i

) + εt .

Here, Nan and Kaizoji (2019) tested whether the Bitcoin exchange rate was
semi-strongly efficient by the Johansen cointegration tests with forward rates. They
considered a VECM

	BXt = α1(β1BXt−1 + β2FWt−1 + β0)

+
p∑

i=1

(
γ11,i	BXt−i + γ21,i	FXt−i

) + ε1t

	FWt = α2(β1BXt−1 + β2FWt−1 + β0)

+
p∑

i=1

(
γ12,i	BXt−i + γ22,i	FXt−i

) + ε2t

whereBXt was the Bitcoin exchange rate, andFWt was the direct forward rate. In this
test, the existence of a cointegration supports semi-strong efficiency in the markets.
Nan and Kaizoji found the existence of semi-strong form of market efficiency in
some pairs. However, it should be noted that this study assumes that BXt behaves
like the direct spot rate

BXt = SPTt + r (r : risk premium). (6)

We assess the adequacy of this assumption by extending it not only for Bitcoin but
for Ethereum and Ripple. If the assumption is applicable, it more likely supports the
existence of the semi-strong form of market efficiency in the crypto-asset markets.
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2.4 Dynamic Relationships Among the Four Exchange Rates

We also consider a VAR model including all four exchange rates to look at the
dynamic relationships among them. First, we convert the four-variable VAR to a
VECM, and check the rank of the VECM by following the Johansen procedure.
Second, we analyze the dynamic relationships among the four variables by applying
the impulse response functions (IRF) for the VECM.

The IRFcan analyze quantitative effects among the variableswhen aone-standard-
deviation shock for one of the endogenous variables occurs. According to Hamilton
(1994), in the n-variate VARmodel, Eq. (2), the variance-covariance matrix� of the
disturbance term εt is a positive definite matrix; therefore, it can be written as

� = ADA′

where A is a lower triangular matrix whose diagonal components are equal to 1, and
D is a diagonal matrix. Here, the orthogonalized disturbance term ut can be defined
as

ut = A−1εt,

and the impulse response function for a one-unit shock can be computed as

IRFl,m(k) = ∂yl,t+k/∂umt (k = 1, 2, 3, . . .).

The IRF for a one-standard-deviation can be obtained if the disturbance term is
decomposed by the Cholesky factorization instead of LU decomposition.

2.5 Data and Software

Crypto-asset data, BTC_USD, BTC_EUR, ETH_USD, ETH_EUR, XRP_USD, and
XRP_EUR, in this paper were close1 price from Yahoo! Finance. The EUR/USD
spot rate data was close price from the Bank of England.2 All statistical analyses
proceeded with R (R Core Team 2019).

1Latest data in the Coordinated Universal Time (UTC) time range.
2To eliminate the influence of arbitrage opportunity, we use crypto-asset and FX data in the same
time zone.



Time Series Analysis of Relationships … 149

3 Empirical Results

3.1 Unit Root Tests on the Four Exchange Rates

The time-series data of the four exchange rates were examined to determine whether
each process had a unit root. First, we tested the original time series by the ADF
and KPSS tests. Appropriate lag lengths for the four processes were selected by
Schwartz Information Criterion (SIC) (Schwartz 1978) for the ADF test, and those
for the KPSS test were selected as seven by a predetermined mathematical method
proposed by Kwiatkowski et al. (1992).

Table 4 shows the result for the four series. According to the hypothesis testing,
H0 could not be rejected in terms of all the test statistics. It was suggested that all
four series had a unit root. Second, the ADF and KPSS tests were also held on the
first-difference series. Table 5 shows the result for the four first-difference series.
According to the hypothesis testing, H1 was rejected in terms of all the test statistics
on the 1% level of significance. It was suggested that all four first-difference series
did not have a unit root. These two results of hypothesis testing indicated that all
the original series, BTCt , ETHt , XRPt , and SPTt , each had a unit root. The result
of the ZA test is shown in Table 5. It was suggested that, even if we considered a
structural break in the four processes, each time series had a unit root at the 1% level
of significance.

3.2 Cointegration Tests on the Six Pairs

In the section of cointegration tests,wefirst selected an appropriate lag length for each
serial pair. We used four information criteria: Akaike Information Criterion (Akaike
1974), SIC, Hannan-Quinn Criterion (Hannan and Quinn 1979), and Akaike’s Final
Prediction Error (Akaike 1969). Table 5 shows four lags selected for each pair by
these information criteria. In the latter part, we used SIC for lag selection; the lag
lengths for the pairs (SPTt,BTCt), (SPTt,ETHt), and (BTCt,ETHt)were selected as
two; those of (SPTt,XRPt), (BTCt,XRPt), and (ETHt,XRPt) were selected as three.

Second, we calculated the two eigenvalues λ̂1 and λ̂2. Using the selected lag
lengths, we examined the six pairs by the two cointegration tests. We checked the
four null hypotheses for all the pairs and obtained test statistics: λ̂trace and λ̂eigen.
Table 6 shows the results of the hypothesis testing of cointegration for the six pairs.

For all the pairs, the hypothesis r = 0 was rejected at the 1% significance level
and the hypothesis r ≤ 1 could not be rejected in the two tests. This means that the
two variables appear to have one cointegrating relationship. It should be noted this
is one of the prerequisites for the semi-strong form of market efficiency.
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3.3 Estimation of the Coefficients

From Eqs. (4) and (5), we can obtain an equation

(
	vt
	wt

)
=

(
α1
α2

)
(
β1vt−1 + β2wt−1 + β0

) +
p∑

i=1

(
γ1,i	vt−i + γ2,i	wt−i

) + εt (7)

that represents the VECM for the two variables. Using Eq. (7) with the estimated
values, we can understand how the change of one variable at the current time t
declines by a deviation from an equilibrium at the previous time t − 1. In Eq. (7),(

α1

α2

)
is the speed-of-adjustment coefficients, (β1vt−1 + β2wt−1 + β0) is the lagged

deviation, and

(
α1

α2

)
(β1vt−1 + β2wt−1 + β0) represents the error correction term.

Let us denote the estimates of (α1, α2) by α̂, and those of (β1, β2, β0) by β̂
∗
. Table 8

describes the values of α̂ and β̂
∗
.

For the pair (	SPTt,	BTCt), the error correction term is

(−0.102
0.221

)
(SPTt−1 − 1.002BTCt−1 + 0.001).

	SPTt declines by 10.2% from the equilibrium of the previous-period devia-
tion; furthermore, 	BTCt increases by 22.1%. These changes seem to correct the
imbalance.

For the second pair (	SPTt,	ETHt), the error correction term is

(−0.063
0.241

)
(SPTt−1 − 1.038ETHt−1 + 0.007).

	SPTt declines by 6.3% from the equilibrium of the previous-period deviation,
while 	ETHt increases by 24.1%. These changes seem to correct the imbalance.

For the third pair (	SPTt,	XRPt), the error correction term is

(−0.035
0.426

)
(SPTt−1 − 1.027XRPt−1 + 0.006).

	SPTt declines by 3.5% from the equilibrium of the previous-period devia-
tion; additionally, 	XRPt increases by 42.6%. These changes appear to reduce the
imbalance.

For the fourth pair (	BTCt,	ETHt), the error correction term is

(−0.020
0.276

)
(BTCt−1 − 1.036ETHt−1 + 0.006).
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	BTCt declines by 2.0% from the equilibrium of the previous-period deviation,
while 	ETHt increases by 27.6%. These changes appear to reduce the imbalance.

For the fifth pair (	BTCt,	XRPt), the error correction term is

(
0.027
0.528

)
(BTCt−1 − 1.026XRPt−1 + 0.005).

	BTCt increases by 2.7% from the equilibrium of the previous-period deviation;
and	XRPt increases by 52.8%.Both variables seem to increase; however, the overall
changes are to correct the imbalance, as the estimated coefficient α̂1 is relatively
small. Here, the hypothesis testing of the weak exogeneity need to be considered in
the latter section.

For the last pair (	ETHt,	XRPt), the error correction term is

(−0.022
0.547

)
(ETHt−1 − 0.994XRPt−1 − 0.001).

	ETHt declines by 2.2% from the equilibrium of the previous-period deviation,
while 	XRPt increases by 54.7%. These changes appear to correct the imbalance.

Further, if β̂2 is close to −1, and β̂0 is close to zero, where β̂1 is normalized to
1, all six pairs appear to be at long-term equilibria, because β1vt = −β2wt + β0.
Table 8 shows that all six β̂2 seem to be close to −1, and all six β̂0 seem to be close
to zero.

As all six pairs appeared to have one cointegration for each, hypotheses for the esti-
mated parameters were tested to check whether the six relationships were perfectly
linear and whether weak exogeneity existed. We examined the null hypotheses of
linear restrictions,H2.1,H2.2,H2.3,H3.1,H3.2, andH4, against the alternative hypoth-
esis H1 that assumed r = 1. The method for this hypothesis testing is a likelihood
ratio χ2 test. In this test, the null hypothesis is rejected if a test statistic is greater
than a predetermined critical value.

3.4 Inference on the Parameters

Table 7 summarizes the result of hypothesis testing for the estimated coefficients of
the pair (	SPTt,	BTCt). The null hypotheses, H2.1, H2.2, and H2.3, could not be
rejected. This illustrates that the assumption of no risk premium and agents’ rational
use of open information will hold in the long term. Using the coefficients assumed
in H2.3, we obtain

(−0.102
0.218

)
(SPTt−1 − BTCt−1).
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This indicates that	SPTt declines by 10.2% from the equilibrium of the previous-
period deviation, while 	BTCt increases by 21.8%.

Table 8 summarizes the result for the pair (	SPTt,	ETHt). It indicates that H2.1

could not be rejected at 1% significance level. Using the coefficients assumed inH2.1,
we obtain

(−0.067
0.235

)
(SPTt−1 − ETHt−1 + 0.002).

This indicates that 	SPTt declines by 6.7% from the equilibrium of the previous-
period deviation, while 	ETHt increases by 23.5%.

Table 9 summarizes the result for the pair (	SPTt,	XRPt). H2.1 could not be
rejected at 5% significance level. Using the coefficients assumed in H2.1, we obtain

(−0.037
0.429

)
(SPTt−1 − XRPt−1 + 0.002).

This indicates that 	SPTt declines by 3.7% from the equilibrium of the previous-
period deviation, while 	XRP increases by 42.9%.

Table 10 summarizes the result for the pair (	BTCt,	ETHt). H3.1 could not be
rejected at 5% significance level. The acceptance of H3.1 refers to weak exogeneity
of BTCt . Using the coefficients assumed in H3.1, we obtain

(
0

0.294

)
(BTCt−1 − 1.037ETHt−1 + 0.007).

This indicates that, while	BTCt remains steady,	ETHt increases by 29.4% from
the equilibrium of the previous-period deviation. Therefore, the change of 	ETHt

corrects the imbalance.
Table 11 summarizes the result for the pair (	BTCt,	XRPt).H2.1 andH3.1 could

not be rejected at 1% significance level. Using the coefficients assumed in H3.1, we
obtain

(
0

0.507

)
(BTCt−1 − 1.024XRPt−1 + 0.005).

This indicates that, while	BTCt remains steady,	XRPt increases by 50.7% from
the equilibrium of the previous-period deviation. Therefore, the change of 	XRPt

corrects the imbalance.
Table 12 summarizes the result for the pair (	ETHt,	XRPt).All the null hypothe-

ses excluding H3.2 could not be rejected. The acceptance of H4 indicates that the
assumption of no risk premium and agents’ rational use of open information will
hold in the long term, and that ETHt is weakly exogeneous. Using the coefficients
assumed in H4, we obtain



Time Series Analysis of Relationships … 153

(
0

0.558

)
(ETHt−1 − XRPt−1).

This indicates that, while 	ETHt remains steady, 	XRPt increases by 55.8 from
the equilibrium of the previous-period deviation. Therefore, the change of 	XRPt

corrects the imbalance.
Overall, perfect linear correlation was found in the four pairs; (	SPTt,	BTCt),

(	SPTt,	BTCt), (	SPTt,	BTCt), and (	ETHt,	XRPt). This supports the ade-
quacy of the assumption of Eq. (6) and it is the evidence that the crypto-asset markets
are efficient in terms of the semi-strong form. The existence of risk premium was
found in the two pairs; (	SPTt,	ETHt), and (	SPTt,	XRPt) under the condi-
tion of perfect linear relationships. It indicates that traders are risk-loving in the
Ethereum and Ripple markets. Additionally, for the three pairs; (	BTCt,	ETHt),
(	BTCt,	XRPt), and (	ETHt,	XRPt), we found weak exogeneity of 	BTCt ,
	BTCt , and 	ETHt , respectively.

3.5 Analysis of the Dynamic Relationships Among the Four
Variables

3.5.1 Cointegration Test for the Four-Variable VECM

The result of the cointegration test for the four-variable VECM is shown in Table 14.
It is suggested that the rank of the VECM is three by both trace and maximum
eigenvalue tests. This supports that the four variables have three cointegrations, and
it is indicative of the semi-strong efficiency.

3.5.2 Impulse Response Functions Among the Four Exchange Rates

In an analysis by the orthogonal IRF, we must determine the order of the variables.
In general, the order of variables of financial markets is determined by the order
of their market-open time. However, we cannot set the order by that method, since
the crypto-asset markets are open 24 h and all year around. In this analysis, the
order of the four variables was determined by considering their market capitalization
and the weak exogeneity in the six pairwise VECMs. The order of their market
capitalizations was 	SPTt → 	BTCt → 	ETHt → 	XRPt , as of November 25,
2019. This order was also supported by the consideration of the weak exogeneity.
For example, 	BTCt , 	BTCt , and 	ETHt seemed weakly exogeneous in each pair;
(	BTCt,	ETHt), (	BTCt,	XRPt), and (	ETHt,	XRPt). This suggests that the
order among the three crypto assets is 	BTCt → 	ETHt → 	XRPt . Taking these
two ordering methods into account, we determined the order 	SPTt → 	BTCt →
	ETHt → 	XRPt as the appropriate one for the following IRF.
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Figure 3 shows the results of the IRF by 1,000 runs of bootstrapping. For the
unexpected one-standard-deviation shock of 	SPTt , 	SPTt itself was affected per-
manently. Other variables, 	BTCt , 	ETHt , and 	XRPt , were gradually affected in
a week, and the effect remained permanently. For the shock of 	BTCt , it is remark-
able that 	SPTt was slightly affected in a day and its effect remained permanently.
	BTCt , 	ETHt , and 	XRPt were affected immediately, and the effect gradually
declined; however, it remained at some degree in two weeks. For the 	ETHt shock,

Fig. 3 Results of the impulse response function of the four-variable VECM.
Note The dashed lines show a 95% confidence band
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	SPTt and 	BTCt did not seem affected; on the other hand, 	ETHt , and 	XRPt

were affected immediately, and the effect diminished in two weeks. For the 	XRPt

shock, other variables, 	SPTt , 	BTCt , and 	ETHt did not seem to be affected. It
only affected 	XRPt itself, and the effect diminished in four days.

4 Conclusion

Based on the results of the unit root tests, we found that the current change of all
four exchange rates was not dependent of historical price data. This is indicative of
the weak form of market efficiency for the four processes. Second, we found one
cointegrating relationship for each pair; cointegration is a prerequisite of the semi-
strong form of market efficiency. Third, restrictions on the speed-of-adjustment and
long-term-equilibrium coefficients were examined for each VECM. In terms of weak
exogeneity, the results showed that one variable was weakly exogenous in the three
pairs; (	BTCt,	ETHt), (	BTCt,	XRPt), and (	ETHt,	XRPt). We also found
perfect linear correlations in the four pairs; (	SPTt,	BTCt), (	SPTt,	ETHt),
(	SPTt,	XRPt), and (	ETHt,	XRPt). This implies that these four pairs are semi-
strongly efficient. Further, for the two pairs (	SPTt,	BTCt) and (	ETHt,	XRPt),
the long-term equilibria seem to exist without premium. Finally, we examined the
dynamic relationships through the analysis of the IRF. As expected, the results sug-
gested that	SPTt affected all three crypto-asset exchange rates. Additionally, it was
notable that the price shock of	BTCt slightly affected	SPTt within a day, whereas,
that of 	ETHt and 	XRPt did not.

In conclusion, the existence of the semi-strong form of market efficiency was
suggested in the Bitcoin, Ethereum, and Ripple markets. On the other hand, Bitcoin
seems more influential than Ethereum and Ripple; the unexpected price shock of
Bitcoin exchange rate can slightly affect the EUR/USD spot rate.

Acknowledgements This work was supported by JSPS KAKENHI Grant Number 17K01270,
20K01752 and NOMURA Foundation.

Appendix

See Figs. 1, 2 and 3; Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14.
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Table 2 Results of the ADF and KPSS tests on the original series

Variables ADF KPSS

Lag lengths Test statistics Lag length Test statistics

SPTt 1 −1.914 7 2.710***

BTCt 2 −2.250 7 2.722***

ETHt 2 −2.403 7 2.706***

XRPt 3 −2.132 7 2.780***

Note *** denotes significance at 1% level. We consider the constant model specifications, (b) and (d), for the
two tests, because the estimate of a trend term is small and insignificant when we examine the four processes as
the trend model in the ADF tests

Table 3 Results of the ADF and KPSS tests on the first-difference series

Variables ADF KPSS

Lag lengths Test statistics Lag lengths Test statistics

SPTt 1 −24.313*** 7 0.352

BTCt 1 −28.164*** 7 0.231

ETHt 1 −30.350*** 7 0.150

XRPt 2 −27.670*** 7 0.143

Note *** denotes significance at 1% level. We consider the constant model specifications, (b) and (d), for the
two tests

Table 4 Result of the ZA tests

Variables Lag lengths Test statistics Dates of Break point

SPTt 1 −3.88 15-04-2017

BTCt 1 −4.83** 13-05-2017

ETHt 2 −4.43 13-05-2017

XRPt 5 −4.37 14-05-2017

Note ** denotes significance at 5% level. We consider the break-in-intercept model specification (f) for this test,
because we do not consider the four processes as the trend model in the ADF and KPSS tests. Therefore, we
eliminate the influence of a trend term when finding a date of the break point in this test

Table 5 Results of lag selections using information criteria

Variables N AIC SIC HQ FPE

(SPTt ,BTCt) 1062 3 2 3 3

(SPTt ,ETHt) 1062 3 2 3 3

(SPTt ,XRPt) 1062 9 3 3 9

(BTCt ,ETHt) 1062 8 2 5 8

(BTCt ,XRPt) 1062 10 3 9 10

(ETHt ,XRPt) 1062 10 3 10 10

(SPTt ,BTCt ,ETHt ,XRPt) 1062 10 2 3 10

Note The maximum lag length is predetermined as ten when we select an appropriate lag length by each
information criterion
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Table 6 Results of Johansen cointegrating tests for the six pairs

Vectors Lag lengths Eigenvalues Hypotheses Statistics

λ̂1 and λ̂2 H0 and H1 λ̂trace λ̂eigen

(	SPTt , 	BTCt) 2 0.085 r = 0 140.18*** 137.16***

0.003 r ≤ 1 3.01 3.01

(	SPTt , 	ETHt) 2 0.080 r = 0 134.50*** 131.28***

0.003 r ≤ 1 3.22 3.22

(	SPTt , 	XRPt) 3 0.119 r = 0 197.28*** 194.53***

0.003 r ≤ 1 2.75 2.75

(	BTCt , 	ETHt) 2 0.106 r = 0 123.99*** 118.53***

0.005 r ≤ 1 5.47 5.47

(	BTCt , 	XRPt) 3 0.139 r = 0 163.77*** 158.99***

0.004 r ≤ 1 4.77 4.77

(	ETHt , 	XRPt) 3 0.149 r = 0 176.75*** 171.28***

0.005 r ≤ 1 5.47 5.47

Note *** denotes significance at 1% level

Table 7 Results of the cointegrating vectors β̂ and the speed-of-adjustment coefficients α of the
six pairs

Pairs yt Eigenvalues

λ̂1 β̂1 β̂2 β̂0 α̂1

(	SPTt , 	BTCt) 0.121 1 −1.002 0.001 −0.121 0.221

(	SPTt , 	ETHt) 0.116 1 −1.038 0.007 −0.063 0.241

(	SPTt , 	XRPt) 0.168 1 −1.027 0.006 −0.035 0.426

(	BTCt , 	ETHt) 0.106 1 −1.036 0.006 −0.020 0.276

(	BTCt , 	XRPt) 0.139 1 −1.026 0.005 0.027 0.528

(	ETHt , 	XRPt) 0.149 1 −0.994 −0.001 −0.022 0.547

Table 8 Inferences on α̂ and β̂ of (	SPTt,	BTCt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

0.03 0.27 1.49 45.4 59.62 48.06

Degree of
freedom

1 1 2 1 1 2

p-value 0.87 0.60 0.48 0.00 0.00 0.00

β̂1 1 1 1 1 1 1 1

β̂2 −1.002 −1 −0.996 −1 −1.017 −0.984 −1

β̂0 0.001 0.001 0 0 0.003 −0.002 0

α̂1 −0.102 −0.103 −0.104 −0.102 0 −0.134 0

α̂2 0.221 0.221 0.220 0.218 0.265 0 0.266
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Table 9 Inferences on α̂ and β̂ of (	SPTt,	ETHt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

5.06 9.28 14.21 25.48 79.25 41.51

Degree of
freedom

1 1 2 1 1 2

p-value 0.02 0.00 0.00 0.00 0.00 0.00

β̂1 1 1 1 1 1 1 1

β̂2 −1.038 −1 −0.989 −1 −1.053 −1.003 −1

β̂0 0.007 0.002 0 0 0.009 0.002 0

α̂1 −0.063 −0.067 −0.067 −0.064 0 −0.092 0

α̂2 0.241 0.235 0.228 0.218 0.268 0 0.249

Table 10 Inferences on α̂ and β̂ of (	SPTt,	XRPt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

2.88 6.67 13.11 10.38 165.88 24.63

Degree of
freedom

1 1 2 1 1 2

p-value 0.09 0.01 0.00 0.00 0.00 0.00

β̂1 1 1 1 1 1 1 1

β̂2 −1.027 −1 −0.989 −1 −1.033 −0.967 −1

β̂0 0.006 0.002 0 0 0.007 −0.003 0

α̂1 −0.035 −0.037 −0.038 −0.036 0 −0.063 0

α̂2 0.426 0.429 0.425 0.408 0.441 0 0.425
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Table 11 Inferences on α̂ and β̂ of (	BTCt,	ETHt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

10.98 16.57 20.70 0.27 35.84 22.28

Degree of
freedom

1 1 2 1 1 2

p-value 0.00 0.00 0.00 0.60 0.00 0.00

β̂1 1 1 1 1 1 1 1

β̂2 −1.036 −1 −0.993 −1 −1.037 −1.020 −1

β̂0 0.006 0.002 0 0 0.007 0.004 0

α̂1 −0.020 −0.046 −0.051 −0.046 0 −0.215 0

α̂2 0.276 0.235 0.219 0.212 0.294 0 0.255

Table 12 Inferences on α̂ and β̂ of (	BTCt,	XRPt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

4.23 7.86 12.22 0.92 127.07 12.49

Degree of
freedom

1 1 2 1 1 2

p-value 0.04 0.01 0.00 0.34 0.00 0.00

β̂1 1 1 1 1 1 1 1

β̂2 −1.026 −1 −0.992 −1 −1.024 −0.973 −1

β̂0 0.005 0.002 0 0 0.005 −0.003 0

α̂1 0.027 0.017 0.013 0.014 0 −0.142 0

α̂2 0.528 0.521 0.511 0.494 0.507 0 0.482
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Table 13 Inferences on α̂ and β̂ of (	ETHt,	XRPt)

H1 H2.1 H2.2 H2.3 H3.1 H3.2 H4

Restrictions on
β̂

– β̂1 = −β̂2 β̂0 = 0 β̂1 = −β̂2,

β̂0 = 0

– – β̂1 = −β̂2,

β̂0 = 0,

Restrictions on
α̂

– – – – α̂1 = 0 α̂2 = 0 α̂1 = 0

LR test
statistics

0.26 0.22 0.26 0.40 122.75 0.58

Degree of
freedom

1 1 2 1 1 2

p-value 0.61 0.64 0.88 0.53 0.00 0.75

β̂1 1 1 1 1 1 1 1

β̂2 −0.994 −1 −0.999 −1 −0.995 −0.953 −1

β̂0 −0.001 0.000 0 0 −0.001 −0.007 0

α̂1 −0.022 −0.019 −0.019 −0.019 0 −0.221 0

α̂2 0.547 0.546 0.546 0.545 0.561 0 0.558

Table 14 Results of the Johansen cointegrating test for (	SPTt,	BTCt,	ETHt,	XRPt)

yt Lag length Eigen values Ranks Statistics

λ̂1, λ̂2, λ̂3, λ̂4 λ̂trace λ̂eigen

(SPTt ,BTCt ,ETHt ,XRPt) 2 0.228 r = 0 537.03*** 274.79***

0.123 r ≤ 1 262.25*** 139.18***

0.107 r ≤ 2 123.07*** 120.01***

0.003 r ≤ 3 3.06 3.06

Note *** denotes significance at 1% level
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The Optimal Foreign Exchange Futures
Hedge on the Bitcoin Exchange Rate:
An Application to the U.S. Dollar
and the Euro

Zheng Nan and Taisei Kaizoji

Abstract This study proposes utilizing FX futures to hedge the risk of currency
exchanges based on the bitcoin exchange rate. The time-dependent optimal hedge
ratio for the resulting portfolio can be calculated from the conditional covariance
matrix of the two returns. To model the conditional joint density, a VECM plus
DCC-GARCHmodel is suggested due to the existence of co-integration between the
bitcoin exchange rate and FX futures. Comparisons suggest that this framework is
superior to the commonly used naïve and conventional hedging strategies in several
important aspects.

Keywords Bitcoin · Bitcoin exchange rate · FX futures · Optimal hedge ratio ·
VECM · DCC GARCH

1 Introduction

Bitcoin is the first cryptocurrency to be widely used in a decentralized peer-to-peer
network. The marketization of bitcoin and its popularity have turned the bitcoin
into a unique investment traded with a number of currencies in worldwide bitcoin
markets (Briere et al. 2013). In these markets, one currency can be exchanged for
another using bitcoin as the medium. From this perspective, bitcoin markets have
become a new form of foreign exchange market. Nan and Kaizoji (2019b) have
investigated the weak- and semi-strong form bitcoin market efficiency in terms of
the U.S. dollar and Euro. Their work finds that the bitcoin markets present a long-run
equilibrium relationship with the FX exchange rate of USD/EUR but mean-reverting
short-run deviations happen all the time. In the Ethereum markets, similar results
regarding the market equilibrium and its adjustment dynamics have been found by
Pichl et al. (2020). These short-run deviations from the long-run market equilibrium
could bring profitable chances for arbitraging. Hence, bitcoin-based foreign currency
trading appears to be competitive against the direct investment in bitcoins in risk
management and hedging due to plenty of finance tools existing in the FX markets.
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This study proposes an effective arbitraging strategy in bitcoin markets whereby
the user engages in currency trading rather than holding the bitcoin and hedging
the trading risk with foreign exchange (FX) futures contracts. The price between
two currencies trading in a bitcoin market is defined as the bitcoin exchange rate.
Hedging the risk of currency tradingbasedon thebitcoin exchange rate has substantial
practical importance. The purpose is to find the optimal hedge ratio; that is, the ratio
that would minimize risk and maximize user utility. Importantly, it is better for the
optimal hedge ratio to be time-varying so that when the market goes up, a smaller
hedge ratio will not discourage speculators from accepting the risk premium, and
when the market goes down, a larger hedge ratio will offer greater compensation due
to the profitability of short futures (Cecchetti et al. 1988).

Currency trading in bitcoin markets is assumed to follow the process C1−> BTC
−>C2,whereC1andC2denote the two currencies being traded, andBTCdenotes the
bitcoin. Several advantages related to bitcoin transactions, such as freedom, low trad-
ing cost and instantaneity, make this trading strategy attractive. Moreover, since the
two successive transactions in the process are assumed to be accomplished quickly,
the risk exposure to holding bitcoins is minimized (Cheah and Fry 2015).

The price of C1 in C2 in a bitcoin market, defined as the bitcoin exchange rate of
C2/C1 (Nan and Kaizoji 2017), is given by

BXC2/C1 = C2/BTC

C1/BTC
= (C2/C1)BX (1)

where BXC2/C1 denotes the bitcoin exchange rate of C2/C1; C1/BTC and C2/BTC
denote the respective prices of bitcoin in C1 or C2; and the BX subscript in
(C2/C1)BX is used to distinguish the bitcoin exchange rate from the FX exchange
rate.

Naturally, since the bitcoin exchange rate represents the “cross rate” between C1
and C2 over the base currency, bitcoin and currency trading can be implemented
from any direction. A European speculator, for instance, may think that the USD has
been depreciated in the bitcoin market and believes the situation will change soon, or
perhaps in a month. Consequently, he trades his EURs for USDs through the bitcoin
exchange rate, (USD/EUR)BX . To hedge the risk of his investment, the speculator
uses an FX 3-month futures contract to purchase b EURs. Suppose the speculator
has a one-unit fixed long position in the bitcoin market and a −b-unit fixed short
position in the futures market. The return of the portfolio, X , is given by

X = RBX − bRFU (2)

whereRBX denotes the return of the bitcoin exchange rate of USD/EUR,RFU denotes
the return of the relative futures, and b is the hedge ratio.

There are several approaches to selecting the magnitude of b. The naïve hedge
ratio assumes that b = 1. The conventional hedge ratio is obtained by regressing the
return of the asset being hedged (here, the bitcoin exchange rate) on the return of the
FX futures:
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RBX ,t = a + bRFU ,t + εt (3)

where RBX ,t and RFU ,t denote the time series of the two returns, respectively, and a is
the intercept and b is the coefficient calculated using Ordinary Least Squares (OLS),
which minimizes the sum of squared errors.

The optimal hedge ratio is the ratio that minimizes risk and maximizes the user’s
utility. The process of identifying the optimal hedge ratio can be illustrated as follows:

One measure of risk is variance. The variance of portfolio X returns is given by

V ar(X ) = V ar(RBX ) + b2V ar(RFU ) − 2bCov(RBX , RFU ) (4)

where Cov(·) denotes the covariance operator. Optimization involves setting the
derivative of (4) with respect to b equal to zero. The risk-minimizing hedge ratio can
then be calculated as

b′ = Cov(RBX , RFU )

V ar(RFU )
; (5)

Meanwhile, if the speculator has a mean-variance expected utility function,
denoted EU (·), Kroner and Sultan (1993), given by

EU (X ) = E(X ) − γ V ar(X ) (6)

where γ > 0 denotes the user’s degree of risk aversion, then the maximization of
(6) with respect to b is shown as

max
b

EU (X ) =max
b

{
E(RBX ) − bE(RFU) − γ

[
V ar(RBX ) + b2V ar(RFU )

− 2bCov(RBX , RFU )]}. (7)

Note that the maximization here is equivalent to the minimization of the variance
of the portfolio in (3). Let the derivative of (6) with respect b be set equal to zero and
the utility-maximizing hedge ratio be given by

b′′ = 2γ Cov(RBX , RFU ) − E(RFU )

2γ V ar(RFU )
. (8)

If the futures rate follows a martingale where E(RFU ) = 0, (5) is equal to (8), we
get

b∗ = b′ = b′′ = Cov(RBX , RFU )

V ar(RFU )
(9)

where b∗ denotes the optimal hedge ratio, featuring bothminimum risk andmaximum
mean-variance expected utility.
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The naïve hedge ratio is intuitively simple, but this fully hedged position faces
the problem of ex-ante selection and over hedging (Cecchetti et al. 1988). The OLS-
based conventional hedge ratio is easy to compute and straightforward to understand,
i.e., the squared errors involve unconditional variances; specifically, OLS minimizes
the unconditional variances over the sample period. This model, however, can be
criticized on three grounds (Engle and Granger 1987; Kroner and Sultan 1993): (i)
using the unconditional variance implies that the speculator holds his/her portfolio
over the entire sample period; (ii) the constant variance indicates a time-invariant
risk, so that the hedged position remains unchanged according to that risk; and (iii)
there is model misspecification when there exists co-integration between the bitcoin
exchange rate and the FX futures rate and the variables are over-differenced in (3),
where RBX ,t = �BXt = BXt − BXt−1 and RFU ,t = �FUt = FUt − FUt−1, and FUt

denotes the time series of the futures rate. The daily USD/EUR bitcoin exchange rate
has previously been found to be co-integrated with the corresponding FX futures rate
(Nan and Kaizoji 2019b).

The present paper demonstrates an FX futures hedge on the bitcoin exchange
rate and calculates the optimal hedge ratio to effectively address the aforemen-
tioned problems with the naïve and conventional hedge ratios. A bivariate Dynamic
Conditional Correlation Generalized Autoregressive Conditional Heteroskedastic
(DCC-GARCH) model (Engle 2002) was implemented to compute the time-varying
variance-covariance matrix containing the conditional variance and the conditional
covariance series of the two returns—RBX ,t and RFU ,t . To address the model mis-
specification resulting from the presence of co-integration, an error correcting term
(ECT) is incorporated according to Kroner and Sultan’s (1993) suggestion; in the
bivariate environment, the model becomes a two-dimensional vector error correction
model (VECM) working to capture the conditional mean of the joint distribution of
the two returns. Estimated together, the VECM plus bivariate GARCH model pro-
vides a description of the time-varying conditional joint distribution. Hence, a time-
dependent hedge ratio can be calculated from the estimated variance-covariance
matrix by invoking (9). Moreover, a time-dependent correlation series is produced
by this model. Based on these findings, the proposed model is superior to the naïve
and conventionalmethods in terms of both riskmanagement and utility enhancement.
[Note: All analyses were conducted in R (R Core Team 2018)].

The remainder of the paper is organized as follows: Sect. 2 describes the data and
illustrates the methodology; Sect. 3 gives empirical results; and Sect. 4 concludes
the paper.

2 Methodology

Knowledge of the distribution of returns is highly important in forming optimal hedg-
ing and trading strategies, as financial returns are usually found to have leptokurtic
or fat-tailed distributions (Baillie andMyers 1991). It has been pointed out that these
non-normal distributions are the result of weak dependence in the return series and
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that the GARCH framework (Engle 1982; Bollerslev 1986) with Student’s t distri-
bution works well for capturing time-varying conditional variances and the excess
kurtosis in the unconditional distribution of returns. In addition, the autocorrelation
structure of returns needs to be accounted for by the model. Therefore, a model
combining an Autoregressive Moving Average (ARMA) component and a univari-
ate GARCH component is employed for both the bitcoin exchange rates and futures
series.

The universal representation of the ARMA (1, 1) plus GARCH (1, 1) model is
given by

Rt = a0 + a1Rt−1 + εt + b1εt−1 (10)

εt|�t−1 ∼ std(0, ht, v) (11)

ht = ω + αε2t−1 + βht−1 (12)

where Rt denotes the return of either the bitcoin exchange rate or the futures; εt|�t−1

indicates that the current innovation in (10) is conditioned on the one-period-ahead
information set �t−1; std(0, ht, v) denotes a Student’s t density function with mean
zero, conditional variance ht and degrees of freedom v; and ht denotes the time-
dependent conditional variance. Equation (10) accounts for the autoregressive struc-
ture of the return series; (11) emphasizes that the innovation has time-dependent
variances and that the leptokurtosis in its unconditional density should be described
as a Student’s t density function, with parameter v accounting for its shape; (12)
is used to represent time-varying heteroskedasticity (Baillie and Myers 1991). The
three equations can be estimated simultaneously by maximizing the log-likelihood
using the augmented Lagrange method in the ‘rugarch’ package in R (Ghalanos
2018).

The next step is to measure the joint conditional distribution of the bitcoin
exchange rate and the futures using a bivariate GARCH model. The framework
for the bivariate case is similar to the univariate case in (10)–(12), with the vector of
series being substituted for the series.

The model in (10) is replaced by a vector autoregressive (VAR) model with the
series in first-order differences. This specification becomes problematic if there exists
co-integration between the series in level, as it involves over-differencing (Baillie and
Myers 1991; Kroner and Sultan 1993). Indeed, the USD/EUR bitcoin exchange rate
and the USD/EUR FX futures, each possessing a unit root, have been previously
found to be co-integrated, i.e., they are in long-run equilibrium and any deviations
from the equilibriumare adjusted by the error correctionmechanism (Nan andKaizoji
2019b). Therefore, the VAR model needs to incorporate an error correcting term
(ECT) to ensure that the long-run equilibrium is maintained in the bivariate system
(Kroner and Sultan 1993), which becomes the bivariate vector error correctionmodel
(VECM) (Engle and Granger 1987) as shown in (13) and (14). The joint distribution
of innovations is assumed to follow multivariate normal density in (11b).
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As for the bivariateGARCHmodel, there are several options, including theBEKK
model (Engle and Kroner 1995) and the GJR model (Glosten et al. 1993). The
BEKK model is simple to apply, but it is difficult to find a financial interpretation
of the coefficient matrices. The GJR model is more appropriate for an asymmetric
distribution, and because trading on the bitcoin exchange rate can start from any
direction (or currency), the leverage effect is not a substantial problem. We propose
to apply the dynamic conditional correlation (DCC-) GARCH model (Engle and
Sheppard 2001; Engle 2002) to capture the variance-covariance matrix. This model
contains two parametric parts: one for the conditional GARCH effect and the other
for the time-dependent correlations. It can be estimated with a two-step method
starting from the univariate GARCH model for each return, then estimating them as
a whole based on likelihood functions. This means that computations can be easily
made and that the method can be readily extended to a large portfolio. Although the
method is nonlinear, the meaning of the estimated coefficients is straightforward:
one set of estimates is for the univariate GARCH environment and the other is for
the time-dependent correlations (Engle 2002).

The framework is as follows:

(i) VECM

RBX ,t = a0B + a1B(BXt−1 + b1FUt−1 + b0) +
p∑

i=1

ciBRBX ,t−i + eBX ,t (13)

RFU ,t = a0F + a1F (BXt−1 + b1FUt−1 + b0) +
p∑

i=1

ciF RFU ,t−i + eFU ,t (14)

where RBX ,t = �BXt = BXt − BXt−1 and RFU ,t = �FUt = FUt − FUt−1 are the
returns of the bitcoin exchange rate and FX futures, respectively. Let b = (1, b1, b0)

′,
where vector b denotes the cointegrating vector that causes the variable vector, say,
yt = (BXt, FUt, 1)

′, to become stationary (or to be in long-run equilibrium). Hence
b′yt−1 represents the one-period-before deviation from the equilibrium. Let a =
(a1B, a1F )

′
, where vector a denotes the speed-of-adjustment coefficients indicating

which return will respond to a discrepancy at what speed and from which direction.
The product ab′yt−1 represents the error correction term (ECT) (Granger 1986). We
can rewrite (13) and (14) in the matrix

Rt = a0 + ab′yt−1 +
p∑

i=1

ciRt−i + et (15)

where rt denotes the return vector.
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(ii) Probability density assumptions

et|�t−1 ∼ MN (0, Ht) (16)

where MN denotes the multivariate normal density function with mean zero and
conditional variance-covariance matrix Ht . For the elements in vector et , each eBX ,t

and eFU ,t follows Student’s t density as specified in (11).

(iii) DCC-GARCH (Engle and Sheppard 2001; Engle 2002)

Ht ≡ DtPtDt (17)

D2
t = diag(ω) + diag(α)ete

′
t + diag(β)D2

t−1 (18)

εt = D−1
t et (19)

Qt = Q̄
(
u′ − 	 − 


) + 	εt−1ε
′
t−1 + 
Qt−1 (20)

Pt = diag
(

Q1/2
t

)−1
Qtdiag

(
Q1/2

t

)−1
(21)

Equation (17) shows that the conditional variance-covariance matrix can be
decomposed into DtPtDt where Pt is the time-dependent conditional correlation
matrix with unities on its diagonals, and Dt is the diagonal matrix of time-varying
standard deviations from the univariate GARCHmodels described in (18). The oper-
ator diag(·) creates a diagonal matrix from a vector. Vector εt in (19) is the standard-
ized innovations in (15). Equation (20) gives the dynamic structure of the conditional
correlationmatrix using a proxy processQt,where u is a vector of unities and Q̄ is the
unconditional correlation matrix of the standardized innovations in (19). This spec-
ification assumes that Qt is integrated and has an exponential smoothing structure.
Ding and Engle (2001) shows that restrictions on

(
u′ − 	 − 


)
, 	 and 
 can make

Qt positive semi-definite or positive definite. The conditional correlation matrix Pt

is then exacted by rescaling Qt as shown in (21). In the sample case where the uni-
variate GARCH (1, 1) model is used for parameterizing the time varying conditional
correlation, vector 	 and 
 become scalar ϕ and ψ .

Under the multivariate normal density in (17), the log-likelihood function for this
estimator is given by

LL = −1

2

T∑

t=1

(
N log(2π) + log|Ht| + e′

tH
−1
t et

)
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= −1

2

T∑

t=1

(
N log(2π) + log|DtPtDt| + e′

tD
−1
t P−1

t D−1
t et

)

= −1

2

T∑

t=1

(
N log(2π) + 2 log|Dt| + log|Pt| + ε

′
tP

−1
t εt

)
(22)

where (17) and (19) have been invoked and N is the number of assets.
We can add and subtract ε′

tεt in (22) and decompose (22) into two parts (volatility
and correlation):

LLV (θ) = −1

2

T∑

t=1

(
N log(2π) + log|Dt|2 + ε′

tεt
)

= −1

2

T∑

t=1

(
N log(2π) + log|Dt|2 + e′

tD
−2
t et

)

= −1

2

T∑

t=1

N∑

i=1

(

log(2π) + log
(
hi,t

) + e2i,t
hi,t

)

(23)

where LLV is the log-likelihood function for the volatility part and θ denotes the
parameters associated with Dt in (18). Equation (23) shows that LLV is the sum
of the individual GARCH likelihoods in (12), which will be jointly maximized by
separately maximizing each of them (Engle 2002).

The correlation part log-likelihood function, denoted as LLC , is given by

LLC(θ, ϕ) = −1

2

T∑

t=1

(
log|Pt| + ε′

tP
−1
t εt − ε

prime
t εt

)
(24)

where ϕ denotes the parameters associated with Qt in (21).
Hence, the log-likelihood function in (22) is the sum of the volatility part and the

correlation part:

LL(θ, ϕ) = LLV (θ) + LLC(θ, ϕ) (25)

which can be maximized using a two-step approach—first finding the estimates of θ ,
then passing the values of θ̂ to LLC(θ, ϕ) and maximizing the function with respect
to ϕ. This two-step approach can be fitted into the GMM framework to produce a
consistent solution as long as the maximum function in the second step is continuous
in the neighborhood of the true parameters (Newey and McFadden 1994; Engle
2002).
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3 Empirical Results

Before employing the VECM + DCC-GARCH model, we first produce a statistical
summary of the prices and changes in prices of both the bitcoin and the FX futures
included in the study. We then apply the univariate GARCH model to the respective
returns. Finally, comparisons of the various hedging strategies are made in order
evaluate the effectiveness of our optimal hedge.

3.1 Data and Statistic Summary

The daily-basis data set is composed of two bitcoin index series—the USD/BTC
series and the EUR/BTC series—and one USD/EUR futures series covering the
period from May 1, 2014 to November 21, 2017, as provided by Bloomberg. The
USD/EURbitcoin exchange ratewas constructed by invoking (1). The future contract
is for the March quarterly cycle (March, June, September, December) listed on the
ChicagoMercantile Exchange.After using timestamps tomatch the bitcoin exchange
rate with the futures series, there were 894 observations in each of the series. Using
natural logarithmic transformations, we represent the USD/EUR bitcoin exchange
rate as BXt (the subscript representing currencies is omitted for brevity) and the
futures as FUt . Their returns are approximated by taking the first-order differences
of the logarithmic rates: RBX ,t = �BXt = BXt − BXt−1 and RFU ,t = �FUt =
FUt − FUt−1 (see Fig. 1).

Table 1 gives the relevant summary statistics. As indicated, the two returns have
an equal sample mean; however, the returns of the bitcoin exchange rate show a
much greater deviation from the mean than the returns of the FX futures, indicating
a much greater risk. Looking at the minimum and maximum values suggests a daily

Fig. 1 The logarithmic returns of the USD/EUR bitcoin exchange rate (BX) and FX futures rate
(FU)
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Table 1 Summary statistics

Variables Obvs. Mean Median Min Max S.D. Skewness kurtosis

BXt 894 0.136 0.115 0.012 0.333 0.072 1.189 3.533

FUt 894 0.138 0.117 0.042 0.332 0.071 1.184 3.464

RBX ,t 893 −0.0002 −0.0005 −0.0643 0.0546 0.0082 0.033 9.299

RFU ,t 893 −0.0002 −0.0001 −0.0209 0.0328 0.0057 0.205 2.248

Note BXt denotes the USD/EUR bitcoin exchange rate series and FUt denotes the FX futures rate
series. RBX ,t = �BXt = BXt − BXt−1 and RFU ,t = �FUt = FUt − FUt−1
All series are in natural logarithms (Period: May 1, 2014–November 21, 2017). The kurtosis column
gives the excess kurtosis

loss and gain over the sample period for the bitcoin exchange rate of −6.43% and
5.46%, respectively. In contrast, the corresponding FX futures values were −2.09%
and 3.28%, respectively. In addition, the unconditional standard deviation of the
bitcoin exchange rate returns was larger than that of the FX futures returns. The
skewness of the bitcoin exchange rate returns is slightly positive, indicating the
absence of a leverage effect. Both returns present excess kurtosis in their probability
density, which implies the existence of the GARCH effect and the appropriateness
of Student’s t density function (Baillie and Myers 1991).

Results from the Ljung-Box test on both return series with 20 lags show that serial
autocorrelation exists in the returns of the bitcoin exchange rate but not in the returns
of the FX futures. As an autoregressivemodel with a first and fifth lag [AR (1, 5)] was
plausible for capturing this autocorrelation structure, the residual of the AR (1, 5) can
be used in the univariate GARCH model. On the other hand, the returns of the FX
futures can be used directly in the univariate GARCH model, as no autocorrelation
was found. Jarque-Bera tests tended to reject the null hypothesis of normality for
both sets of returns.

3.2 Univariate GARCH Models

The framework for the univariate GARCHmodel is the ARMA (1, 1)+GARCH (1,
1) model suggested in (10), (11), and (12). Some fine-tuning adjustments have been
made to accommodate the autocorrelation structure, such as AR (1, 5) + GARCH
(1, 1) for the returns of the bitcoin exchange rate and Mean + GARCH (1, 1) for the
returns of the FX futures. The framework is estimated using maximum likelihood
estimation; standard errors and robust standard errors are also calculated using this
method. Estimation results and model diagnoses are listed in Table 2.

A comparison of the ARMA (1, 1)+GARCH (1, 1) and AR (1, 5)+GARCH (1,
1)models suggests thatAR (1, 5) ismore appropriate formodeling the autocorrelation
structure of the mean of the bitcoin exchange rate returns. Although ARMA (1, 1)
might be considered something of a universal model for this purpose, the a1 and b1
coefficients for the AR andMA terms here tend not to be significantly different from
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Table 2 Estimation of univariate GARCH models for returns of the bitcoin exchange rate and the
FX futures

RBX ,t RFU ,t

Model ARMA (1, 1) AR (1, 5) ARMA (1, 1) Mean

a0 −0.0003
(0.0002), (0.0002)

−0.0003
(0.0001), (0.0001)

−0.0003*
(0.0001), (0.0002)

−0.0003*
(0.0002), (0.0002)

a1 0.0152
(0.1968), (0.1680)

−0.1401***
(0.0363), (0.0365)

0.2828
(0.5204), (0.4118)

a5 −0.0534*
(0.0296), (0.0322)

b1 −0.1589
(0.1932), (0.1638)

−0.3269
(0.5120), (0.4064)

ω 0.0000***
(0.0000), (0.0000)

0.0000***
(0.0000), (0.0000)

0.0000
(0.0000), (0.0000)

0.0000
(0.0000), (0.0000)

α 0.2626***
(0.0644), (0.0675)

0.2596***
(0.0616), (0.0620)

0.0542***
(0.0090), (0.0849)

0.0542***
(0.0092), (0.086)

β 0.4678***
(0.0857), (0.0926)

0.4803***
(0.0847), (0.0866)

0.9447***
(0.0074), (0.0726)

0.9447***
(0.0076)

v 4.8826***
(0.7939), (0.8684)

4.8346***
(0.7721), (0.8545)

5.4823***
(0.8717), (2.9958)

5.6193***
(0.8879), (3.0336)

LL 3163.2480 3164.3040 3419.7660 3418.7740

AIC −7.0689 −7.0712 −7.6434 −7.6456

Q(9) 7.8840* 13.141 (Q(24)) 3.8527 2.1965 (Q(5))

Q2(9) 0.9689 0.9321 2.7844 2.7631

LM (7) 0.3511 0.3482 2.0387 2.0212

Note The ARMA (1, 1)+GARCH (1, 1) framework is specified as Rt = a0+a1Rt−1+εt +b1εt−1,

εt |�t−1 ∼ std(0, ht, v) , and ht = ω + αε2t−1 + βht−1, where Rt denotes one of the RBX ,t and

RFU ,t . Only the ARMA part was modified according to the autocorrelation structure of the return
and the GARCH (1, 1) part remains unchanged. a5 denotes the coefficient of the fifth lag of Rt
LL denotes the Log-Likelihood; AIC is the Akaike Information Criterion; Q(9) is the Weighted
Ljung-Box statistic for ninth-order autocorrelation in the standardized residuals, and Q(5) and

Q(24) indicate the fifth-order and 24th-order correlation;Q2(9) is theWeighted Ljung-Box statistic
for ninth-order serial correlation in the squared standardized residuals; and LM (7) is the Engle’s

Lagrange Multiplier test on the seventh-order squared innovations (ε2t )
The standard errors and the robust standard errors are listed in parentheses beneath each of the
estimates
*significant at 10%, **significant at 5%, and ***significant at 1%

zero. Moreover, the Q(9) statistic, which examines ninth-order serial correlation in
the residuals of the ARMA (1, 1) model, is significant at the 6.36% level, indicating
a weak autocorrelation in the residuals. On the other hand, the AR (1, 5) + GARCH
(1, 1) model has significant coefficients a1 and a5 and a higher log-likelihood, and
thus appears to provide better explanation. Coefficients α and β for the AR (1, 5)
+ GARCH (1, 1) model show the dynamic structure of the volatility of the bitcoin
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exchange rate returns, and their sum of roughly 0.7399 is indicative of the mean-
reverting feature of this volatility. Furthermore, Q2(9) and LM (7) tests indicate the
absence of any GARCH effect in the model’s standardized residuals.

For the FX futures returns, the mean + GARCH (1, 1) is competitive with the
ARMA (1, 1) + GARCH (1, 1) model where RFU ,t = a0 + εt . The 0.9989 sum of
α and β appears to suggest an integrated process for the volatility of the FX futures
returns. Diagnostic tests tend to support the appropriateness of this framework.

Finally, our results imply that the assumption of Student’s t density, rather than
normal density, is appropriate for highly significant values of v.

3.3 Multivariate GARCH Model

The DCC-GARCH framework is used for modelling the conditional joint density of
the returns of both the bitcoin exchange rate and the FX futures. Results are presented
in Table 3.

In the VECM model, coefficients b0 and b1 are obtained by OLS regression:
BXt = b

′
0 + b

′
1FUt + ε

′
t , with b0 = −b

′
0andb1 = −b

′
1. The lag length is determined

by the Akaike Information Criterion (AIC) through an unrestricted VAR model of
BXt and FUt . Term (BXt−1 − 1.004FUt−1 + 0.0024) indicates a historical deviation
from the long-run equilibrium in which BXt and FUt meander together in the same
proportion, with a constant difference equal to 0.0024 (the risk premium). The values
of coefficients a1B and a1F indicate that the current return of the bitcoin exchange rate
appears to decrease by 40.68—eliminate the historical deviation, while the current
return of the FX future tends to decrease 2.26% to enlarge the discrepancy. However,
because the speed of the changes in the bitcoin rate is much faster than the speed of
the changes in the FX futures, the deviation can be finally adjusted. The values of
a0B and a0F suggest that both returns have a slightly negative sample mean.

After the VECM filtration of the unconditional mean, autoregression in the first
moment, and the error correcting term, the volatility part of the DCC-GARCHmodel
shows themean-reverting pattern of the volatility of the bitcoin exchange rate returns,
with αB +βB = 0.8076, and the integrated pattern of the volatility of the FX futures
returns, with αF + βF = 0.9985. The estimated shape coefficients of Student’s
t density suggest that vB = 4.8828 and vF = 5.6665. Generally, the values of the
estimated coefficients from the DCC-GARCHmodel were quite similar to the results
of the univariate GARCH models; the differences come from the VECM filtration,
i.e., because of the error correction mechanism, the volatility of the returns of the
bitcoin exchange rate becomes less persistent and involves faster mean-reverting
patterns.

The conditional proxy process Qt appears to be persistent, as well, according to
the magnitudes of ϕ and ψ , with ϕ + ψ = 0.9835. Thus the conditional correlation
matrix Pt can be extracted by rescaling Qt shown in (21). The diagonal of Pt is filled
with unities, while the off-diagonal values are the conditional correlations between
the two returns filtered by the VECM (see Fig. 2).



The Optimal Foreign Exchange Futures Hedge on the Bitcoin … 175

Table 3 Estimation of the bivariate VECM plus DCC-GARCH model

VECM Bivariate GARCH (1, 1) Conditional correlation

b0 0.0024 ωB 0.0000***
(0.0000)

ϕ 0.0763***
(0.0328)

b1 −1.0040 ωF 0.0000
(0.0000)

ψ 0.9072***
(0.0470)

lags 4 αB 0.1291***
(0.0160)

a0B −0.0002 αF 0.0528***
(0.0073)

LL 6747.5220

a0F −0.0002 βB 0.6785***
(0.0317)

AIC −15.0430

a1B −0.4068 βF 0.9457***
(0.0087)

a1F −0.0227 vB 4.8828***
(o.6579)

vF 5.6665***
(1.0251)

Note In the VECM model given by RBX ,t = a0B + a1B(BXt−1 + b1FUt−1 + b0) +
∑p

i=1 ciBRBX ,t−i + eBX ,t and RFU ,t = a0F + a1F (BXt−1 + b1FUt−1 + b0) + ∑p
i=1 ciF RFU ,t−i +

eFU ,t , where coefficients b0 and b1 are obtained by the OLS regression BXt = b0 + b1FUt + εt .
The lag length is determined by the Akaike Information Criterion (AIC) through the unrestricted
VAR model of BXt and FUt

The bivariate GARCH (1, 1) component is specified asD2
t = diag(ω)+diag(a)ete′

t +diag(β)D2
t−1.

Subscript B denotes that the coefficient concerns the returns of the bitcoin exchange rate, while
subscript F concerns the returns of the FX futures. Each univariate GARCH (1, 1) model is assumed
to follow Student’s t density, so that vB and vF are shape coefficients representing the respective
degrees of freedom for the distribution

The conditional correlation is modelled by Qt = Q̄(1 − ϕ − ψ) + ϕεt−1ε
′
t−1 + ψQt−1

LL denotes Log-Likelihood,and AIC denotes the Akaike Information Criterion for the framework
***significant at 1%

The conditional variance-covariance matrix Ht is then constructed by invoking
(17), with the conditional variances of the returns of the bitcoin exchange rate and the
returns of the FX futures in the diagonal, denoted hbb,t and hff ,t , and the conditional
covariances in the off-diagonal, denoted hbf ,t . As plotted in Fig. 3, the graph of
hbb,t shows mean-reverting and volatility clustering features, while the graph of
hff ,t appears to show a random walk process. The conditional covariance remains
generally positive except for the dramatic negative spike that occurred on 3 March
2017.

According to Eq. (9), the conditional optimal hedge ratio b∗
t can be obtained

by taking the ratio of the conditional covariance to the conditional variance of the
returns of the FX futures. The plot of b∗

t (see Fig. 4) shows a time-varying pattern,
moving up and down around the red dashed line, which represents the conventional
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Fig. 2 The conditional correlation (corr.bf) between the return of the bitcoin exchange rate and the
return of the FX futures (Note The red dashed line is the unconditional correlation between the two
returns)

Fig. 3 The conditional variance of the return of the bitcoin exchange rate
(
hbb,t

)
, the conditional

variance of the FX futures
(
hff ,t

)
and the conditional covariance

(
hbf ,t

)

variance-minimized hedge ratio calculated by the OLS method (bc = 0.6589). As
shown, the values of b∗

t , range from −1.77 to 1.54; they are positive for the most
part, but become negative around March 2017.

3.4 Hedging Strategy Comparison

We can compare the conditional optimal hedging strategy based on the VECM +
DCC-GARCH model to the naïve and conventional strategies.
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Fig. 4 The conditional optimal hedge ratio
(
b∗

t

)
. (Note The red dashed line is the conventional

variance-minimized hedge ratio given by the OLS method)

Table 4 The log-likelihood and the Akaike Information Criterion for the different models nested
in the VECM + DCC-GARCH model

The conventional hedging
model

The VECM hedging model The conditional optimal
hedging model

LL 6580.797 6676.798 6747.522

AIC −14.557 −14.893 −15.043

Note LL denotes Log-Likelihood and AIC denotes the Akaike Information Criterion

3.4.1 Model Log-Likelihood

One of the conveniences of the VECM + DCC-GARCH model is that within the
model are nested other hedging strategies that can be implemented by imposing
restrictions on specific coefficients of the model. For example, imposing αB = αF =
βB = βF = υB = υF = 0 gives the VECM model used to capture co-integration in
the first moment where the variance is assumed to be constant. Imposing αB = αF =
βB = βF = υB = υF = a1B = a1F = ciB = ciF = 0 gives the conventional hedging
model. The results in Table 4 show that the conditional optimal hedging model has
the highest log-likelihood and the lowest AIC score as compared to the other two
models.

3.4.2 Unconditional Variances of Portfolios

By invoking Eq. (2), the portfolios are formed according to the various values of
b. With XN = RBX ,t − RFU ,t denoting the portfolio based on naïve hedging, where
b = 1; and XC = RBX ,t − bCRFU ,t denoting the portfolio based on conventional
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Table 5 Comparison of portfolios based on the naïve, conventional and conditional optimal hedge
ratios

Portfolios XN = RBX ,t − RFU ,t XC =
RBX ,t − bCRFU ,t

XO =
RBX ,t − b∗

t RFU ,t

Variances 5.7277E−05 5.3491E−05 5.3024E−05

Historical VaR (1%) −0.0215 −0.0199 −0.0190

Historical VaR
(0.5%)

−0.0250 −0.0250 −0.0238

Gaussian VaR (1%) −0.0176 −0.0171 −0.0169

Gaussian VaR (0.5%) −0.0195 −0.0189 −0.0188

Modified VaR (1%) −0.0525 −0.0509 −0.0487

Modified VaR (0.5%) −0.0773 −0.0751 −0.0712

Mean-variance
utilities

−0.2046 −0.1911 −0.1246
(C = 0.0005) (2)
−0.1223
(C = 0.0001) (10)
−0.1221
(C = 0.00005) (22)

Note XN , XC and XO denote the portfolios based on the naïve hedge ratio, the conventional hedge
ratio and the conditional optimal hedge ratio, respectively. Modified VaR concerns the Cornish-
Fisher estimate of VaR. Constant C denotes the percentage losses in returns as the transaction cost;
the number in the parentheses following C is the number of rebalances

hedging, where bC = 0.6589; and XO = RBX ,t − b∗
t RFU ,t denoting the portfolio

based on the conditional optimal hedge, where b∗
t is obtained from the VECM +

DCC-GARCH model, the results in the first row of Table 5 show that portfolio XO

had the smallest unconditional variances during the sample period.

3.4.3 Value-at-Risk (VaR)

The 1 and 0.5% VaRs are calculated to estimate the negative values of the returns.
Estimates are made using three analytic methods, producing a historical estimate, a
Gaussian estimate, and a Cornish-Fisher (modified) estimate, which is more appro-
priate in cases involving a skewed and/or leptokurtic density of returns. The results
from row 2 to row 7 in Table 5 indicate that risks are reduced in the distribution tail
when the portfolio is based on the conditional optimal hedge ratio.

3.4.4 User Utility

For brevity, the mean-variance utility can be reduced to the variance component[−Nγ V ar(X )
]
, where N is the number of observations. In this expression, the

smaller the variance, the greater is the user’s utility. It we let Un denote this type of
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user utility for the portfolio based on the naïve hedge ratio, we get UN = −4×893×
0.000057277 = −0.2046, where N = 893 and γ = 4. For the conventional hedging
portfolio, user utility UC is calculated as UC = −4×893×0.00005391 = −0.1911.
For the conditional optimal hedging portfolio, we follow the method proposed by
Kroner and Sultan (1993) to construct a conditional user utility using the conditional
variances obtained from the VECM+DCCGARCHmodel and consider transaction
costs. The idea is that when the utility gained from changes in the variances is
insufficient to offset the transaction cost, the user remains in his previous position;
when the gain is greater than the cost, the user rebalances. The scenario is expressed
by

− C − γ
(
hbb,t+1 − 2b∗

t+1hbf ,t+1 + b∗2
t+1hff ,t+1

)

> −γ
(
hbb,t+1 − 2b∗

t hbf ,t+1 + b∗2
t hff ,t+1

)
(26)

where hbb,t+1 − 2b∗
t+1hbf ,t+1 + b∗2

t+1hff ,t+1 is the conditional variance of the optimal
hedging portfolio at time t + 1 and C denotes the percentage return that the user
pays as a cost of the transaction. Only if inequality (26) holds does the user rebalance
his/her position. The mean-variance utility is calculated by summing each individual
utility. The results (see Table 5) show that if C = 0.0005 (meaning the transaction
cost is $5 per $1000), the utility is equal to −0.1246, and the number of rebalances
is 2. When C decreases to 0.0001, the utility is equal to −0.1223 and the user needs
to rebalance 22 times during the sample period. Nevertheless, the conditional mean-
variance utility is nearly 40% greater than the utility of the other two methods that
use constant hedging strategies.

4 Conclusion

This study investigated the effect of using the conditional optimal hedge ratio to con-
struct portfolios consisting of theUSD/EURbitcoin exchange rate and theUSD/EUR
FX futures rate.

The optimal hedge ratio is the ratio that minimizes variance and maximizes user
utility; it can often be obtained from the conditional variance-covariance matrix of
the joint density of the two assets. The investigation began by addressing the uni-
variate autoregressive structure and volatility of the return series. The AR (1, 5)
+ GARCH (1, 1) model was suggested for modelling the time-dependent density
of the bitcoin exchange rate returns, while the Mean + GARCH (1, 1) model was
suggested for modelling the density of the FX futures returns. The volatility of the
bitcoin exchange rate returns has a mean-reverting feature, while the volatility of
the FX futures returns appears to be integrated. In addition, the Student’s t den-
sity function appears appropriate for describing both sets of returns according to
a statistical test based on the log-likelihood ratio. The DCC-GARCH model was
used to capture the time-varying joint density of the two assets. However, due to
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the existence of co-integration between the USD/EUR bitcoin exchange rate and
the USD/EUR futures, the VECM term needs to be incorporated in order to avoid
the over-differencing problem in model specification. The conditional optimal hedge
ratio was calculated using this VECM + DCC-GARCH framework. In addition to
the conditional variance-covariancematrix, a time-dependent conditional correlation
series was obtained as a byproduct.

A comparison of the portfolios based on the naïve, conventional and conditional
optimal hedge ratios showed that the conditional optimal hedging portfolio is superior
to the other two portfolios in a number of aspects: maximum log-likelihood formodel
estimation, minimum unconditional variance of the portfolio, minimum Value-at-
Risk of the portfolio, and maximum mean-variance utility.

The Bitcoin-based U.S. dollar and Euro trading strategy is effective regarding risk
management and hedging, but this strategy is not satisfactory for its continuity—the
user who bought Euros and sold dollars at the bitcoin markets must wait for the
reverse market to change her Euros back into dollars. In a sense, the triangular
arbitrage between the bitcoin and FX markets (Nan and Kaizoji 2019a; Pichl et al.
2020) tends to be more realistic. Obviously, many considerations of the trading
strategies deserve the further effort.
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Time Series Analysis of Ether
Cryptocurrency Prices: Efficiency,
Predictability, and Arbitrage
on Exchange Rates

Lukáš Pichl, Zheng Nan, and Taisei Kaizoji

Abstract The Ether cryptocurrency, based on the blockchain of the Ethereum
project for smart contracts, has long had the 2nd market capitalization, next to the
Bitcoin. Despite its importance and the innovative features of the entire Ethereum
ledger ecosystem, Ether has attracted far less attention than Bitcoin in terms of the
time series analysis. This work provides an analysis of the R/SHurst Exponent for the
Ether time series in order to test to what extent the price dynamics may be predictable
by deterministic methods including machine learning. Daily log returns, volatility
time series, and transaction count sequences are analyzed. Support Vector Machine
algorithm is used for testing the marginal predictability level. Ether-mediated tri-
angular arbitrage between six major fiat currencies is also studied—we provide the
distributions of the logarithmic rate of arbitrage transaction return for the 15 currency
pair combinations. We also study the cointegration process of Ether-exchange rates
with the foreign exchange rates that are the cause and driving force of the adjustment
process towards dynamic market equilibrium eliminating arbitrage windows. The
efficiency of the Ether market is found to increase with time.

Keywords Ether · ETH · Ethereum · Hurst exponent · Triangular arbitrage ·
Volatility · Ether exchange rates · Time series prediction

1 Introduction

SinceBitcoinwas released as the first open source distributed cryptocurrency in 2009,
it has been followed by a number of altcoins, derivatives of the original encrypted
distributed ledger concept, and other block-chain based cryptocurrencies emerged,
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such as Ethereum. As of the writing of this article (January 16, 2020), the market
capitalization of all cryptocurrencies is about 237 USD billion, with the share of
Bitcoin in USD 158 billion, followed by Ethereum (USD 18 billion; Coinmarketcap
2020). Standard economics treats cryptocurrencies as digital assets with no intrinsic
value; the extent of market capitalization of the entire cryptocurrency enterprise is
therefore remarkable for such a marginal project. The main valuation is still largely
speculative, due to betting on the cryptocurrencies’ chance of becoming a major
means of payment with the potential of gradually disrupting the national currency
systems. It is somewhat ironical that cryptocurrencies, this far with no intrinsic
economic value in behind whatsoever, gained popularity in the years after the 2008
financial crisis, which showed that also financial products and the monetary supply
can be created out of nothing by policies of central banks known as quantitative
easing leading to such extremes as the negative interest rates.

According to the Ethereum project, “Ethereum is a decentralized platform that
runs smart contracts”. The system rules out the possibilities of inaccessibility, cen-
sorship, fraud (provided certain security precaution measures observed on the user
side) or any regulatory interference. Ether is a digital asset built on top of Ethereum
blockchain used as a form of payment within the Ethereum ecosystem. It is the
second major cryptocurrency as mentioned above, which can be obtained at cryp-
tocurrency exchanges in return for fiat currencies or gained through mining process
that insures the integrity of the ever-growing encrypted distributed transaction ledger.
The economic incentive for the mining process for Ether varies considering the cur-
rent mining difficulty, hash rate, hardware and electrical power cost parameters. The
mining profitability varies according to the cryptocurrency; e.g. in case of Bitcoin,
CNBC spread the news that the Bitcoin mining was no longer profitable with the
prices that were current on March 15, 2018.

The Ethereum project brought substantial innovations to cryptocurrencies, such
as the Turing-complete scripting ability or much shorter block time (15 s) compared
to Bitcoin (10 min). Ethereum is often used as the platform for initial coin offerings
(ICOs). Ether currency has gradually gained mass popularity, and in 2017 its price in
USD has increased by a 90-fold factor. At present, Ether has a market capitalization
of about 18 billion US dollars.

Whether cryptocurrencies will find a stable role in the global financial system or
turn out to be one of the largest Ponzi scheme events is still an open question since
their adoption as regular means of payment for goods and services is still marginal;
in this work we handle Ether as a digital asset traded in numerous fiat currencies in
a market featuring many extreme events such as bubbles and crashes. The efficient
market hypothesis by Fama applied to Ether should rule out arbitrage opportunities.
In this work, we will explore the statistical characteristics of the time series of Ether
prices to find out to what extend a deterministic prediction based on the past data is
possible, and quantify the degree of market efficiency.
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1.1 Statistical Properties

In this paper, we study the property of Ether time series, using the logarithmic return
of ETHUSD prices, the intraday volatility measure (derived as the ratio of maximum
andminimum prices in the trading period), and the transaction count measure. For all
these three time series we compute the Hurst exponent by the classical R/S method
and using 2 variants of Detrended Fluctuation Analysis (DFA). Despite the limited
size of the moving window of 256 days, we argue below that the R/S values are
appropriate rather than the DFA estimates, in contrary to similar studies applied not
to Ether, but to Bitcoin (Bariviera et al. 2017).

The central question addressed in this article is whether the Ether USD market
is efficient (Fama 1970 and Fama 1991), and to what extent we can predict the log
returns, intraday volatility time series, and the log returns of the transaction count
time series. To that aim, we first compute Hurst exponents, 0 <= H <= 1, for each
of the series. For H close to 0.5, we have unpredictable Brownian motion dynamics;
for H well below 0.5 we have anti-persistent, mean reverting dynamics, whereas
for H well above 0.5 the dynamics is persistent, with clusters of bearish and bullish
behavior. Once the Hurst exponent is known, we try to classify the trend of each time
series by using two methods: Support Vector Regression (SVR), which in facts fits
the magnitudes of the time series, and Support Vector Machine (SVM), which is a
binary classifier trained on the binary class of −1 (negative return) and +1 (positive
return). Extremely rare cases of 0 return (no change in the market) are excluded from
the analysis. It indeed turns up that the time series of intraday volatility differences
can be predicted to the largest extent in accord with their value of Hurst exponent.We
also apply a simple mean reverting strategy (next day trend prediction is the opposite
of today’s trend sign) which performs well in the anti-persistent regime of H � 0.5.
To our knowledge, none of such analysis has been applied to Ether cryptocurrency
yet.

1.2 Triangular Arbitrage

It will be shown in what follows that based on the particular currency pairs, arbitrage
windows for Ether-based transactions range from negligible (USDEUR) to substan-
tial (JPYCNY). Nevertheless, a long-term disparity cannot exist between major mar-
kets even though the cryptocurrency trade volumes still compare to a minor volume
fraction at the FX markets. It is therefore plausible to investigate how the long-term
trend of FX foreign exchange rates integrates into the dynamics of Ether-derived
exchange rate time series. In what follows, we adopt the following notation: ETH
stands for Ether; CR1CR2 represents the exchange rate of 1 unit of CR1 intoCR1CR2
units of CR2, ECR1CR2 is defined as ETHCR2/ETHCR1, and rate variables printed
in the lower case denote the natural logarithms, e.g. ethusd = log (ETHUSD). We
may also use FX for CR1CR2 to shorten the notation provided the context is clear.
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2 Summary of the Contribution

Compared to Bitcoin, Ether has received relatively low attention in cryptocurrency
research thus far. This study reports in the first part the classical R/S Hurst exponent
values for the time period from 8 July 2015 to 9 March 2018 using moving windows
with the time lag length of 256 days. The daily results oscillate near values of 0.5,
indicating Brownian motion dynamics, but are substantially lower, if de-trended
fluctuation analysis is applied, which would correspond to anti-persistent character
of the time series. Support vector regression and a binary support vector classifier are
applied to the time series of Ether logarithmic returns, Ether intraday volatility series,
and Ether transaction count log return time series. The latter data are further used
to represent an information criterion of Ether popularity in an attempt to enhance
the performance of the Support Vector techniques. It is shown that a simple reverse
prediction for next-day trend is accurate by 51% for daily log return, by 64% for
volatility time series, andby56%for transaction count time series. TheSV-techniques
are not found to exceed these margins.

In the second part, we focus on Ether efficiency from the viewpoint of arbitrage
opportunities across markets trading Ether in various fiat currencies. Using daily
closing values for ETH prices in the last 2 years (2017/01/01–2019/02/26) we pro-
vide triangular arbitrage log profit rate distributions for conversion transactions of the
type CR1-ETH-CR2-CR1, where CR1 and CR2 are arbitrary fiat currencies drawn
from among CAD, CNY, BGP, EUR, JPY and USD. Co-integration between the
15 Ether-derived exchanged rates and the actual FX time series is estimated by the
VECM model using the Engle-Granger and Johansen methods. One-way Granger
causality is found in which the daily foreign-exchange rate changes drive the subse-
quent adjustments of Ether-derived exchange rate. Cointegration vector parameters
and coefficients for the error correction term (ECT) are provided. In addition, coin-
tegration with the error correction term expressed as the plain difference of the two
time series is studied by the Engle Granger method. Standard deviation values of log-
arithmic profit rate in triangular arbitrage are found to vary from 1.0% (USDEUR)
to 9.0% (JPYCNY). The efficiency of the Ether market increases with time.

3 Literature Review

The scientific literature on cryptocurrencies has become abundant just recently, and
most of it deals with Bitcoin. As of present, we are not aware of any article that
would report Ether’s Hurst exponents or predict Ether-related time series by means
of machine learning.

The blockchain technology underlying cryptocurrency design is summarized in
the work of Huckle et al. (2016). In a recent research work, Gkillas and Katsiampa
(2018) have studied the behavior of returns of five major cryptocurrencies using
extreme value analysis, finding out that Ether is in the middle of the risk region. In
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a statistical study by Phillip et al. (2018) diverse stylized facts such as long memory
and heteroscedasticity have been explored for 224 different cryptocurrencies, which
are found to “exhibit leverage effects and Student-error distributions”. Bariviera et al.
(2017) studied the statistical features and long-range dependence of Bitcoin returns,
focusing on the behavior of the Hurst exponent computed in sliding windows, show-
ing that it has a similar behavior at different time scales. We closely follow this
work on the methodological side, applying the Hurst exponent estimation to Ether
instead of Bitcoin. Alabi (2017) studies the applicability of Metcalf’s law to cryp-
tocurrency networks and finds that the network’s value is related to the exponential
of the root of its active users. Ciaian et al. (2018) study the Bitcoin and Altcoin mar-
ket relations on several time scales, finding out substantial interdependence between
Bitcoin and Altcoin markets, which is more pronounced in the short-term run rel-
ative to the long time scales. Corbet et al. (2018) study, in the time and frequency
domains, the relationships between popular cryptocurrencies and a variety of other
financial assets, revealing the evidence of relative isolation of cryptocurrency assets
from the economic assets, which may be used in favor of cryptocurrencies, if apply-
ing the portfolio diversification argument. Hayes (2017) offers an interesting insight
into the valuation of Bitcoin using the cost of production. In an article by Phillip
et al. (2018), diverse stylized facts of cryptocurrencies are studied; it is found that
Ethereum has a smaller kurtosis than Bitcoin, a fact which is ascribed to the ease of
Ether transactions compared to Bitcoin. Remaining available literature on cryptocur-
rencies focuses solely on Bitcoin or excludes Ether and thus will not be reviewed
here.

4 Theoretical Method

First, we briefly outline the original procedure to estimate the Hurst exponent follow-
ing closely (Bariviera et al. 2017). We also start with the sequence of continuously
compounded returns, {r1, …, rt} with mean r̄t and standard deviation st , defining the
R/S values at time t as

(R/S)t = 1

st

[
max
1≤t′≤t

t′∑
t′′=1

(rt′′ − r̄t) − min
1≤t′≤t

t′∑
t′′=1

(rt′′ − r̄t)

]
(1)

which, according to Hurst (1951), obey the following statistical distribution,

(R/S)t =
[
t

2

]H

(2)

whereH is the value of theHurst exponent. Peng et al. (1995) developed themethodof
theDe-trended FluctuationAnalysis (DFA) that is claimed to avoid the possible effect
of spurious detection of long termdependence, resulting thus typically in lower values
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of DFA-estimated Hurst exponent H. Since there remain some controversies on the
use of DFA (Bryce and Sprague 2012), in particular “(1) it introduces uncontrolled
bias; (2) is computationally more expensive than the unbiased estimator; and (3)
cannot provide generic or useful protection against nonstationaries,” we will not
generally adopt nor describe the DFA method. Primarily for the sake of magnitude
comparison, Fig. 2 provides the Hurst exponent estimates in moving windows of
length of 256 days for the ETHUSD time series (see Fig. 1), computed by the R/S
method above along with 2 implementations of the DFA method in R: function dfa
in package nonlinearTseries and function DFA in package fractal. We can see that
for the period of the 1st year in the ETHUSD dataset covering the time interval
of 8 July 2015–9 March 2018, the DFA techniques tend to decrease the values of
H; then the trend reverses. Since there are also substantial differences between the
implementations, we do not consider the DFA technique reliable for the present
dataset in view of the discussion by Bryce and Sprague (2012).

In order to predict the future behavior of rt+1 given the past values of ri up to rt, we
use the following procedures. First, a simple anti-persistent strategy (motivated by
low values of DFA based estimate for Hurst exponent of ETHUSD time series, or the
lower values of R/S estimate for the remaining two time series of intraday volatility
and transaction count series), we test the assumption that the sign of rt+1 is opposite
to the sign of rt. If the values of H are very much below 0.5, anti-persistent dynamics
may indeed take the form of such oscillations. This is of course a toy-model check.
Next, we apply the Support Vector based algorithms of machine learning, namely
the binary classifier for the sign of the logarithmic return (daily trend: up or down)
by means of SVM, or the continuous version trying to fit the magnitude of the
logarithmic return with the continuous regression technique of SVR.

Fig. 1 Time series of ETH over a period of 946 days, starting 8 July 2015. The first panel indicates
the log return of the daily close price, the second differences in intraday volatility, and the third
panel shows the logarithmic return of the daily count of Ether transactions from (data retrieved
https://coinmarketcap.com/currencies/ethereum/historical-data/ and https://etherscan.io/chart/tx)

https://coinmarketcap.com/currencies/ethereum/historical-data/
https://etherscan.io/chart/tx
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Fig. 2 Hurst exponent estimated for the log returns of ETHUSD time series by 3 different methods
(see text for details)

The implementation of the SV-based techniques is based on the R package kernlab
(Karatzoglou et al. 2004).We use past data in a moving window of the size of 10 days
as the dimension of the input space. In addition, it is found that the inclusion of
the returns on the transaction count time series improves the prediction accuracy,
therefore it is added as an extra predictor. 60% of the data is used for training, 10%
of the data for validation of model parameters (which includes manual screening for
the reasonable value of miss-classification penalty C), and remaining 30% is used
for testing. Radial basis functions with automatic parameter selection are applied in
order to represent the nonlinear boundary between the+1 and−1 classes. A detailed
description of SV-techniques can e.g. be found in the book by the inventor of these
methods (Vapnik 2000). SVR results are transferred to the binary results by taking the
sign of the predicted logarithmic return. Standard information measures are applied
for the evaluation of the results.

To evaluate the applicability of the above approaches, we use accuracy, precision,
recall and F-measure. Since the value of the F-measure may depend on the initial
setting for the positive category (+1 or−1), we evaluate the F-measure in both cases,
and combine it together by the same relation that is used in F-measure definition, i.e.
(F = 2F1F2/(F1 + F2)).

In case of the Ethereum mediated triangular arbitrage, we proceed as follows.
All cryptocurrency data used for analysis are retrieved from Yahoo finance database.
Foreign exchange rates are taken from the Pacific Exchange Rate service. Cryp-
tocurrency prices are obtained as daily time series for each date between 2017/1/1
and 2019/2/26 for fiat currencies of USD, JPY, EUR, GBP, CNY and CAD. The 15
exchange rates correspond to the combination pairs among the 6 currencies.

For the sake of triangular arbitrage analysis, we assume the following multiple
conversion transactions: CR1-ETH-CR2-CR1. The rates for each of the three steps
are ETHCR1 (buy ETH), CR2ETH (sell ETH), CR1CR2 (convert CR2 back to CR1).
Thus the logarithmic return of the transaction chain reads
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Table 1 Prediction results (F-measure) for the 3 time series by several methods

Method/data series ETHUSD log return
(%)

Intraday volatility (%) Transaction count (%)

Reverse trend 51.5 63.7 55.7

SV binary classifier 51.9 56.3 52.3

SV regression sign 50.5 58.4 53.8

r = log

(
ETHCR1

ETHCR2
/CR2CR1

)
= log(EFX /FX ) = efx − fx (3)

We remark that r(CR1CR2) = −r(CR2CR1). The distribution of r-values is
computed for the relevant time series and summarized in Table 1.

The cointegration of the time series of order 1 with lag 1 (unit root non-stationary
processes where efx + βfx stands for the error term proxy between the two time
series) is modeled by the following equations,

�efxt = α + σ�efxt−1 + ω�fxt−1 + γ (efxt−1 + βfxt−1) + ε1

�fxt = α′ + σ ′�efxt−1 + ω′�fxt−1 + γ ′(efxt−1 + βfxt−1) + ε2 (4)

where the coefficients beta and gamma are estimated by the method of maximum
likelihood by Johansen (1998) and Johansen and Juselius (1990). Next, we set β =
−1 and estimate the remaining coefficients by the method of Engle and Granger
(1987) for comparison. All coefficients are statistically significant at the 1% level.
Index 1 is used for the method of direct error correction term computed as efxt−1 −
fxt−1. Adjustment to long-term equilibrium is represented by negative values of
the coefficient γ . Figure 4 shows the r-distribution for JPYCNY currency pair. The
secondary peak at negative values corresponds to over-pricing episodes of Ether
in Japan compared to China which has taken place during 2017 (the trend largely
reversed in 2018, though).

5 Results and Discussions

Table 1 summarizes the reverse trend toy model and the SV-techniques results for
the time series of (1) log return of ETHUSD prices on daily sampling grid, (2) daily
differences of intraday volatility computed as the logarithm of the intradayHigh/Low
ratio, and (3) log return of the ETH daily transaction count. Figure 3 provides the
moving window based estimates of the Hurst exponent for each of the three time
series using the original R/S estimates. By comparing Table 1 and Fig. 3, it can be
seen that the ETHUSD time series are near the Brownian motion regime, the market
is near to efficient, and the F-measure of the success of the prediction is very close
to the statistical limit of equal odds ratio of 50%. For the remaining two time series,
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Fig. 3 Results for the Hurst exponent using the classical R/S method of estimation

the Hurst exponent by R/S method (and the more the DFA estimates, not shown in
the paper) suggest anti-persistent dynamics with H substantially below the value of
0.5, especially for the volatility time series. Consequently, deterministic mode can be
observed and predicted, which is consistent especially with the higher values of the
F-measure in the 2nd numerical column for the intraday volatility time series. It can
also be seen in Table 1 that the “Reverse trend” strategy is surprisingly successful,
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and presents an upper bound for the present application of the Support Vector based
methods. Sincewe areworkingwith non-linear kernels in highly-dimensional spaces,
even for the modest data set of the present size, it is difficult to find the optimal
values of the parameters. It remains a task for the future work to find which machine
learning algorithms would perform the best. However, the present results conform to
a reasonable degree of Ethereum market efficiency, and probably may not be easily
improved.

The standard R/S estimate of the Hurst exponent for the Ether time series is
relatively close to the value of 0.5 within the entire period studied (2015–2018) thus
supporting the martingale behavior of the pricing process, market efficiency, and
resulting in a very limited applicability of machine learning methods, including the
support vector based algorithms, for trend and future value prediction. De-trended
fluctuation analysis based estimates of Hurst exponent would result in anti-persistent
dynamics for the first half of the time period studied, inverting then to the persistent
dynamics in the latter half. The differences from the R/S estimates are substantial;
however, since there is still a controversy on the use of DFA for Hurst exponent
estimation, and because the deterministic dynamics is not confirmed by the Support
Vector prediction results, we opt to provide theR/S estimates ofHurst exponent as the
main result of the present work. In addition, Ether intraday volatility time series and
transaction count time series to a lesser extent indicate anti-persistent dynamics and
can be estimated to a significant degree of 58–63%of trend prediction accuracy based
on the particular method. Future work may provide more efficient implementation
of the machine learning techniques; however, the present results are in reasonable
accord with the dynamical regime classified by the Hurst exponent.

Using the methods described in the previous section, we have estimated the r-
distributions of logarithmic profit rate from triangular arbitrage transactions for all 15
currency pairs with results shown in Table 1. Sample distribution for themost volatile
currency pair is also provided in Fig. 4.All analysiswas performed inR (RCoreTeam
2018). The results provide insight into the validity of the EfficientMarket Hypothesis
and the mechanism of establishing the long-term balance relation between the Ether-
based exchange rates and the foreign exchange rates. For the currency of Ether, such

Fig. 4 Distribution of triangular transaction loss/profit rates r for JPYCNY (daily data basis)
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results have not been obtained yet. The Ether-related literature is relatively scarce,
most of it dating up to less than 2 years ago. For instance, the altcoin markets have
been studied in the short-term and long-term run by Ciaian et al. (2018); the relation
of cryptocurrencies to other financial assets has been examined by Corbet et al.
(2018). Extreme value theory was applied to cryptocurrencies including Ether by
Gkillas and Katsiampa (2018) who ranked Ether in the middle of the risk-ranking
list of 5 digital currencies. Phillip et al. (2018) found that “being easier to transact,
Ethereum has a smaller kurtosis than Bitcoin”.

Our results in Table 2 show that ETH in the past 2 years exhibits substantial vari-
ation among exchange rates to the 6 fiat currencies considered in this work. On one
hand, the relation of the USD and EUR exchanges is quite efficient, with the mean
and median of the r-distribution close to 0, and standard deviation of only 1.0%. On
the other side of the scale there are currency pairs that involve CNY with standard
deviation ranging between 6 and 9%. This is more than what is found for Bitcoin-
mediated exchange rates. The r-distributions show considerable skews and kurtosis
corresponding to side peaks of far-from-equilibrium events. The cointegration esti-
mates are also the closest to the efficient market hypothesis for the case of USDEUR
currency pair.

6 Conclusion

The standard R/S estimate of the Hurst exponent for the Ether time series is relatively
close to the value of 0.5 within the entire period studied (2015–2018) thus supporting
the martingale behavior of the pricing process, market efficiency, and resulting in a
very limited applicability of machine learning methods, including the support vec-
tor based algorithms, for trend and future value prediction. De-trended fluctuation
analysis-based estimates of Hurst exponent would result in anti-persistent dynamics
for the first half of the time period studied, inverting then to the persistent dynamics
in the latter half. The differences from the R/S estimates are substantial; however,
since there is still a controversy on the use of DFA for Hurst exponent estimation,
and because the deterministic dynamics is not confirmed by the Support Vector pre-
diction results, we opt to provide the R/S estimates of Hurst exponent as one of the
main results of the present work. In addition, Ether intraday volatility time series
and transaction count time series to a lesser extent indicate anti-persistent dynamics
and can be estimated to a significant degree of 58–63% of trend prediction accuracy
based on the method. Future work may provide more efficient implementation of the
machine learning techniques; however, the present results are in reasonable accord
with the dynamical regime classified by the Hurst exponent.

We have also provided a novel view on the efficiency of the Ether exchanges to
several fiat currencies. It was found that whereas the USDEUR pair is close to the
efficient market hypothesis with a fast adjustment mechanism for deviations from
the equilibrium, other currency pairs involving CNY are integrated to a lesser degree.
The cointegration results improve for more recent subsets of the time series, showing
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that a gradual transition to a higher degree of market efficiency occurs recently in the
Ether market. The two methods examined in this work provide similar results; the
adjustment coefficient is consistently somewhat smaller in magnitude when the error
correction term is represented as the difference of the ether-based exchange rate from
the foreign exchange rate by fixing β = −1. Comparison of the ratios between the
two exchange rates, i.e. deviations of exp(r) from 1, indicate that the Ether market
efficiency increases in time, despite the recent bubble burst in all cryptocurrency
markets.
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Estimating the Proportion of Informed
Traders in BTC-USD Market Using
Spread and Range

Ping Chen Tsai and Shou Huang Dai

Abstract The proportion of informed traders in financial markets is seen as a mea-
sure for the degree of information asymmetry and has been used to explain the
existence of Bid-Ask spread. We identify a proxy—a spread-to-range ratio—for the
unobserved proportion of informed traders in a market from the classic Glosten-
Milgrom (1985) model. It can be shown that this ratio is the minimum of the propor-
tion of informed traders, and the respective dynamics of spread and rangemotivate the
conditional modelling of the ratio. Empirical results are given for the BTC-USD data
over an 1186-day period, which indicate that the estimated proportion of informed
traders can be as high as 6% in the cryptocurrency market.

Keywords Bid-Ask spread · Information asymmetry · Informed trading · Range

1 Introduction

Over the past few years, crypto-currencies have arisen as a popular investment tool
and the focus of research as well. Conventional theory and methods for financial
assets have been studied to see if they also hold for the cryptocurrency market1.
In this study the focus is on the degree of information asymmetry as captured by
the proportion of informed traders in cryptocurrency market. Specifically, we work
under the classic Glosten-Milgrom (1985) framework and consider the estimation of
the proportion of informed traders for Bitcoin.

1For example,Momtaz (2019) evaluates the pricing and performance of cryptocurrencymarket, and
Tiwari et al. (2019) compare GARCH and Stochastic Volatility model for the dynamics of Bitcoin
and Litecoin.
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The Glosten-Milgrom (1985) model explains the existence of Bid-Ask spread by
assuming that there are two types of traders in amarket: the informed and uninformed
or liquidity traders. The assumptions made in this model are pragmatic: there is one
asset traded in the economy, whose value can only go up to a high level V with
some probability π or down to a low level V with probability (1 − π). Under these
assumptions and a no-arbitrage condition for market makers, the Glosten-Milgrom
(1985) model derives simple solutions to the Bid and Ask price for the asset. In this
chapter, we first show that the Bid-Ask spread can be obtained as a linear function of
price range

(
V − V

)
. The ratio of spread-to-range is then considered a proxy for the

unobserved proportion of informed traders. This is one of the contributions made by
this chapter to the existing literature.

A conditional modelling approach for the dynamics of the spread-to-range ratio
is done following Chou (2005) and Brandt and Jones (2006). Specifically, Chou
(2005) gives the conditional autoregressive range (CARR) model and Brandt and
Jones (2006) estimate an EGARCH model for log-range data. We adapt the CARR
model for the spread-to-range ratio with an exponential and a Weibull distribution.
We also specify a conditional autoregressive model for the log-ratio (CARLR). The
modelling of log-ratio is also supported by the empirical properties of spread and
range data, which has close-to-normal distributions after a log-transformation.

Our empirical results are obtained for BTC-USDprice data over the sample period
Sept 01, 2016–Nov 30, 2019, a total of 1186 trading days. We choose this sample
period as BTC-USD saw a dramatic change in its price level. Estimation results
suggest that a CARR(1, 1) model withWeibull distribution significantly outperforms
its counterpart with exponential distribution. On the other hand, the CARLR model
fits the log-ratio data very well as is evidenced by the small values of standard errors
of the model parameters. We also consider a CARLR(2, 2) model versus CARLR(1,
1) model; the former can further capture the strong self-dependence in the log-ratio
with two extra parameters. We plot the estimated spread-to-range ratio as proxy of
proportion of informed traders in BTC-USD market. Over the sample period, the
ratio can be as high as 6% in the beginning of sample period but remains at less than
1% afterwards. This result suggests to model the proportion of informed traders with
an alternative two-state approach.

The chapter is organized as follows. In Sect. 2 we review the Glosten-Milgrom
model and derive the linear relationship between Bid-Ask spread and price range(
V − V

)
. We then consider the CARR model of Chou (2005) for the spread-to-

range ratio. In Sect. 3 we provide summary statistics of BTC-USD spread and range
data. Section 4 gives the estimation results, and the CARLR model for log-ratio.
Section 5 concludes.

2 Model Specification

We begin with the classic Glosten-Milgrom (1985) model for the Bid and Ask prices
of a single asset in an economy with informed and uninformed traders:
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Bid = π(1 − μ)V + (1 − π)(1 + μ)V

1 − (2π − 1)μ

Ask = π(1 + μ)V + (1 − π)(1 − μ)V

1 + (2π − 1)μ

where π is the probability that the asset’s price will increase to a higher level V ,
and (1 − π) is the probability that it declines to V . A detailed derivation of the Bid
and Ask formula is given in Koch (2007). The proportion of informed traders in the
market is given by μ, and the rest (1 − μ) is the proportion of uninformed traders.
By definition, the condition must hold μ � 1 − μ which implies μ � 0.5.

The spread S = Ask − Bid of Glosten-Milgrom (1985) del can be shown to have
a linear relationship with the range of asset price

(
V − V

)
. First, when holding μ

constant, we have the following conditions:

⎧
⎨

⎩

π = 0
π = 0.5
π = 1

⇒
⎧
⎨

⎩

S = 0
S = μ

(
V − V

)

S = 0

When π = 0.5, the result S = μ
(
V − V

)
has an intuitive interpretation. From the

market maker’s perspective, the expected loss in dealing with an informed trader is:

μ

(
V + V

2
− V

)

+ μ

(

−V + V

2
+ V

)

= μ
(
V − V

)

where V+V
2 is the equilibrium price. To breakeven, the market maker needs to set a

Bid-Ask spread with 100% probability to offset the expected loss from trading with
an informed trader. Hence we have S = μ

(
V − V

)
. This process may also be seen

as a hedging activity by the market maker.
For other values of π , it can be assumed that S is a function of π which must

satisfy the above conditions. One can consider a linear approximation:

{
S = 2μ

(
V − V

)
π, for π ≤ 0.5

S = 2μ
(
V − V

)
(1 − π), for π > 0.5

Alternatively, it is sensible to take μ
(
V − V

)
as the maximum of S at π = 0.5;

consequently the spread S as a function of π is of the form:

S = S(π) = 2μ
(
V − V

)(
π − π2

)
(1)

Thus, the Bid-Ask spread S in Glosten-Milgrom model is proportional to the range
of asset price

(
V − V

)
. The function in (1) is consistent with the well-known facts

in the literature: spread should increase with the degree of asymmetric information
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as captured by the proportion of informed traders μ, and it also increases with the
range of price

(
V − V

)
which is a proxy of volatility.

A parallel analysis can be done by holding the probability π constant; the spread
is then a function of μ:

⎧
⎨

⎩

μ = 0
μ = 0.5
μ = 1

⇒
⎧
⎨

⎩

S = 0
S = c1

(
V − V

)

S = (
V − V

)

where

0 < c1 = 8π2 − 8π

(2π + 1)(2π − 3)
≤ 0.5

As mentioned earlier, the proportion μ should be less than 50%, and thus the case
μ = 1 is only theoretically plausible. The spread S again has a linear relationshipwith
the price range

(
V − V

)
. This linear result also holds when the Glosten-Milgrom

model is extended to have a speculator as in Tsai and Tsai (2018)2.
In the literature, there have been many studies on the relationship between spread

and daily price range. For example, Corwin and Schultz (2012) andAbdi andRanaldo
(2017) propose to estimate spread using daily price range. In this study we utilize
the proportionality between spread and price range and consider the conditional
autoregressive range (CARR) model of Chou (2005):

Rt = λtεt, εt|It−1 ∼ f
(
1, σ 2

ε

)

λt = ω + αRt−1 + βλt−1 (2)

where Rt is the range of day t, λt is the conditional mean of Rt given information up
to day t and εt > 0 has a distribution f (·)with unit mean. The parameters ω, α and β

are all positive. Common choices for εt include Exponential distribution andWeibull
distribution. A stationary condition on λt is (α + β) < 1, which is obtained in the
vein of GARCH-type models. In Chou (2005), it is mentioned that some exogenous
variables can be added to the equation of λt :

λt = ω + αRt−1 + βλt−1 + γXt−1

In particular, the exogenous variables Xt−1 can be the trading volume on day (t − 1).
However, this will not be considered in the following analysis, but will left in future
research.

2It can be shown that when π = 0.5, S = [
μi + (2p − 1)μs

](
V − V

)
, where μi is the proportion

of informed traders, μs is the proportion of speculators and p is the probability of speculators in
making a correct investment decision.
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From the analysis on Glosten-Milgrom model, we confirm the linear relationship
between spread and price range. Therefore, if price range can be described by the
CARR model of Chou (2005), spread should evolve with a similar dynamics. One
can then specify a model for daily spread St , whose conditional mean has a recursive
form as in (2). In this study, however, the interest is on the proportion of informed
traders μ, which from the above analysis on Glosten-Milgrom model is related to
the ratio of spread-to-range:

μt ∝ Qt = St(
Vt − Vt

)

In this study, we will assume the spread-to-range ratio Qt is a proxy of μt , and
consider:

Qt = mtut, ut |It−1 ∼ g
(
1, σ 2

u

)

mt = ω + αQt−1 + βmt−1

Here we maintain the same notation for parameters ω, α and β. The ratio Qt can be
seen as the lower bound of μt , sinceμt has an inverse relationship with the quadratic
function

(
π − π2

)
in (1). Thus, μt has minimum Qt when π = 0.5. The ratio Qt

is by construction a small value, which is consistent with the natural property of
μt � 0.5.

3 Data

Our data in this study is the traded price, spread and range of Bitcoin (BTC-USD),
downloaded from the exchange Bitfinex and Yahoo Finance. The sample period is
from Sept 01, 2016 to Nov 30, 2019, a total of 1186 trading days. We choose this
period to avoid some data inconsistency between the two data sources. The spread
data provided by Bitfinex is given as the ratio:

Ask − Bid

Ask

Thus, the spread used in our analysis is obtained by multiplying the above ratio by
the traded price also provided by Bitfinex. The effect of this adjustment is an under-
estimation of Qt , or the proportion of informed traders. On the other hand, daily
range of BTC-USD is given by the daily High and Low prices from Yahoo Finance.
We provide the time-series plots of BTC-USD traded price, spread and range in
Figs. 1, 2 and 3. It can be seen that the price level of BTC-USD has experienced
a dramatic change over the sample period. The spread and range display a pattern
which corresponds to the price level. In particular, the range can be seen as a proxy
for volatility.
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Fig. 1 BTC-USD traded price, Sept 01, 2016–Nov 30, 2019
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Fig. 2 BTC-USD price spread, Sept 01, 2016–Nov 30, 2019
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Fig. 3 BTC-USD range, Sept 01, 2016–Nov 30, 2019

Summary statistics of BTC-USD are given in Table 1. The distributions of spread
and range are all skewed to the right, with skewness value being larger than 3.
Consequently, the Jarque-Bera test rejects a normal distribution at very small p value.
On the other hand, the two quantities display strong persistence, as can be seen by
the reported auto-correlation function (ACF) up to lag 5. Specifically, the spread of
BTC-USD shows a higher degree of persistence than the range, which can also be
observed by comparing Fig. 2 with Fig. 3.

In the right panel of Table 1, we report the summary statistics of ln(spread) and
ln(range) of BTC-USD. The log-transformation helps to make the distributions close
to Gaussian, as indicated by the values of skewness and kurtosis, which are close to
zero and three respectively. Nevertheless, the Jarque-Bera test still rejects a Gaussian
distribution for the two quantities at small p value, but the test statistics has decreased
significantly. The log-transformation also makes the ACF higher. This result is con-
sistent with the vast literature on log-volatilitymodels; in particular, Brandt and Jones
(2006) consider an EGARCH model for log-range data. This approach will also be
followed in the subsequent analysis on the spread-to-range ratio Qt in Sect. 4.2.
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Table 1 Summary statistics of BTC-USD data, Sept 01, 2016–Nov 30, 2019

Spread Range ln(Spread) ln(Range)

Mean 0.745 332.894 – 0.786 4.992

Median 0.410 191.060 – 0.892 5.253

Maximum 9.840 4110.400 2.287 8.321

Minimum 0.030 1.590 – 3.507 0.464

Standard deviation 0.914 458.70 0.968 1.480

Skewness 3.617 3.475 0.308 – 0.686

Kurtosis 23.187 20.256 2.485 3.245

Jarque-Bera 2272.4 1710.2 31.825 95.903

Probability <0.001 <0.001 <0.001 <0.001

ACF(1) 0.923 0.783 0.955 0.882

ACF(2) 0.897 0.715 0.930 0.856

ACF(3) 0.860 0.687 0.919 0.856

ACF(4) 0.845 0.655 0.912 0.855

ACF(5) 0.831 0.647 0.904 0.841

Ljung-Box (20) 1492.9 955.1 1738.3 1561.4

4 Results

4.1 Estimation of CARR Model

In this subsection we provide the estimation results of the CARR model of Chou
(2005) for the spread-to-range ratio Qt as a proxy for the proportion of informed
traders in the market. Given the daily values of Qt , the parameters of CARR model
can be obtained by maximizing the log-likelihood function:

L(θ |Q1,Q2, . . . ,QT ) = −
T∑

t=1

[
ln(mt) + Qt

mt

]

where θ = {ω, α, β} and the residual term ut|It−1 ∼ g is assumed to have an
exponential density with unit mean. More generally, the distribution g(·) can be
assumed to be a Weibull distribution with parameter ψ > 0:

g(Qt|mt ) =
(

ψ

Qt

)(
Qt�

(
1 + ψ−1

)

mt

)ψ

exp

⎛

⎝−
(
Qt�

(
1 + ψ−1

)

mt

)ψ
⎞

⎠,

where �(·) is the gamma function with �(1) = 1 and �(n) = (n − 1)! for n ∈ P.
When the parameter ψ = 1, the Weibull density reduces to the exponential density.
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The log-likelihood function for the Weibull distribution is:

L(θ |Q1, Q2, . . . , QT ) =
T∑

t=1

[

ln

(
ψ

Qt

)
+ ψ ln

(
Qt �

(
1 + ψ−1

)

mt

)

−
(
Qt �

(
1 + ψ−1

)

mt

)ψ
⎤

⎦,

with θ = {ω, α, β,ψ}. The two models are called ECARR and WCARR model in
Chou (2005).

In Table 2, we report the estimation results of ECARR(1, 1) and WCARR(1, 1)
model. The parameter ω is estimated at 0.0017% and 0.0003% respectively; both
models obtain α around 0.22 and β around 0.77. These values are consistent with the
very high ACF values in Table 1. Note that in WCARR(1, 1) model, (α + β) = 1,
which corresponds to an Integrated-GARCH situation. The ψ parameter of Weibull
distribution is estimated at 1.7683 with standard error 0.1566, indicating that ψ = 1
can be soundly rejected. The increase in log-likelihood value of WCARR model
relative to that of ECARR model confirms the significance of ψ . A likelihood ratio
(LR) test is obtained with very small p value.

In Fig. 4, we plot the estimated conditional spread-to-range ratio, mt , from
WCARR(1, 1) model (blue circle) over our sample period. It can be seen that the
estimated mt displays some variation in the first year of sample period, and can
be as high as 6%. After Sept 2017, however, the conditional spread-to-range ratio
remains at a very low level, mostly less than 1%, despite the BTC-USD price, spread
and range all experience large fluctuations after Sept 2017. The plot of mt therefore
suggests a change in state from a high mt state to a low mt state during the sample
period.

Table 2 Estimation of
ECARR and WCARR model

ECARR(1, 1) WCARR(1, 1)

ω 0.0017% 0.0003%

(0.0020%) (0.0232%)

α 0.2166 0.2230

(0.0474) (0.1565)

β 0.7805 0.7770

(0.0465) (0.0313)

ψ 1.7683

(0.1566)

Log-likelihood 5487.09 5776.37

Likelihood ratio test 578.56

Probability <0.001
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Fig. 4 Conditional spread-to-range ratio as proportion of informed traders, WCARR and CARLR
model

4.2 Estimation of Conditional Log-Ratio Model

The CARR model of Chou (2005) is designed for modelling the daily range of stock
price data, which is assumed to follow an exponential or a Weibull distribution.
The spread-to-range ratio Qt , which is assumed to be a proxy for the proportion of
informed traders in this study, however, may not share this distributional property.
An alternative approach is provided by Brandt and Jones (2006), who consider an
EGARCH model for the log-range data. This is also considered for Qt as follows:

ln(Qt) = ln(mt) + zt, zt|It−1 ∼ N
(
0, σ 2

z

)
,

ln(mt) = ω′ + α′ ln(Qt−1) + β ′ ln(mt−1).

In the first equation, we assume ln(Qt) has an innovation zt which is i.i.d. N
(
0, σ 2

z

)
.

This assumption is motivated by the close-to-normal distributions of ln(Spread) and
ln(Range) in Table 1. In the second equation, ln(mt) has a recursive specification and
the parameters are now denoted by ω′, α′ and β ′. This model is called Conditional
Autoregressive Log-Ratio (CARLR) model. It also has four parameters as in the
WCARR(1, 1) model.

The estimation result of CARLR(1, 1) model is reported in Table 3. In general,
the log-transformation improves the statistical properties ofmaximum log-likelihood
estimation, as the parameters of CARLR(1, 1) all have smaller standard errors than
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Table 3 Estimation of
CARLR model

CARLR(1, 1) CARLR(2, 2)

ω′ – 0.0338 – 0.0407

(0.0189) (0.0220)

α′
1 0.1866 0.2090

(0.0202) (0.0296)

α′
2 0.0000*

(0.0375)

β ′
1 0.8079 0.5478

(0.0211) (0.0112)

β ′
2 0.2367

(0.0312)

σz 0.5498 0.2305

(0.0109) (1.0000)

Log-likelihood 116.53 121.21

Likelihood ratio test 9.36

Probability <0.01

those of WCARR(1, 1) model. In particular, α′
1 is estimated at 0.1866 and β ′

1 at
0.8079, which indicate a very persistent ln(mt). To further explore the dependence of
ln(mt) on its past values, we also estimate a CARLR(2, 2) model. It can be seen that
most parameters in this model are still significant (except for α′

2 which is estimated
at boundary); the parameter σz also decreases from 0.5498 to 0.2305. A likelihood
ratio test has statistic 9.36, which is significant with p value smaller than 1%. In
Fig. 4, we plot the estimated conditional spread-to-range ratio as the red dashed line
from CARLR(2, 2) model. It can be seen that the red dashed line is mostly below the
blue circle. The two-state phenomenon is still prominent across the sample period.

From the above analysis, we can describe and estimate the spread-to-range ratio as
a proxy for the proportion of informed tradersμ in the cryptocurrency market. To the
best of our knowledge, this study is the first to consider the spread-to-range ratio and
relate it to the proportion of informed traders. This result, however, is based on the
assumption that there are only informed and uninformed traders in the market, and
the single asset’s value will either increase to V or decrease to V . Also, as mentioned
in Sect. 2, the spread-to-range ratio is the lower bound of μ. It is possible to give
a non-parametric estimate of probability π of price increase using trade directions
and trading volume, as in Lee and Ready (1991) and Ellis et al. (2000), to recover
the full distribution of μ.
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5 Conclusion

In this chapter, we are interested in estimating the proportion of informed traders
in the BTC-USD market. The informed traders are not directly observable and their
proportion is obtained by a proxy which is the spread-to-range ratio under the frame-
work of Glosten-Milgrom (1985) model. The spread-to-range ratio has an intuitive
interpretation from a market maker’s perspective when the asset’s value is equally
likely to increase and decrease, and the ratio is shown to be the lower bound of its
target the proportion of informed traders in the market. We estimate the temporal
dynamics of spread-to-range ratio using the CARR model of Chou (2005) and the
approach in Brandt and Jones (2006). The modelling approach is very general and
can be applied to other financial assets/markets.

Our empirical results suggest that the proportion of informed traders in BTC-USD
market changes over time, and can be as high as 6% in the first year of our sample
period. It then subsequently remains at less than 1% for the rest of the period. This
result is robust for both modelling approach. Informed trading can have an important
effect on a firm’s cost of capital (Easley and O’Hara 2004; Brennan et al. 2015).
Our study can be related to the work of Zhang et al. (2008) which investigates the
determinants of Bid and Ask prices. Moreover, our approach is a new attempt in
the probability of informed-trading (PIN) literature, which originates from Easley
(1996) and Easley et al. (2012). Finally, our empirical findings suggest a two-state
phenomenon for the proportion of informed traders in BTC-USDmarket; this finding
speaks to the hidden Markov model (HMM) approach of Yin and Zhao (2014) and
can serve as an auxiliary method in the HMM approach for informed-trading.

Acknowledgements We thank the organizers and participants of the 23rd WEHIA conference in
International Christian University, Tokyo, Japan.

Appendix

Figure 1 plots the daily price of BTC-USD over our sample period during Sept 01,
2016–Nov 30, 2019, a total of 1186 complete trading days. It can be seen that the
BTC-USD price has seen a dramatic increase from below $1000 up to more than
$18,000 in early 2018. The price then decreases to below $10,000 for most of the
time during 2018 and 2019.

Figure 2 plots the daily value of spread (Ask −Bid ) in BTC-USD price, given by
the exchange Bitfinex. The spread was given as a ratio in Bitfinex:

Ask − Bid

Ask
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We make a pragmatic adjustment and multiply this ratio by the traded BTC-USD
price also given by Bitfinex to recover the spread as the difference (Ask − Bid ).
This adjustment will cause a downward bias in the reported value of spread, and
subsequently a downward bias in our estimate of the proportion of informed traders
which is the spread-to-range ratio.

Figure 3 plots the daily value of BTC-USD price range over our sample period,
which is represented by

(
V − V

)
in the Glosten-Milgrom model. The range data

displays many large and sudden increases and is less persistent than the spread data.
This property can be confirmed by the values of auto-correlation function (ACF) of
spread and range in Table 1.

Figure 4 plots the estimated conditional spread-to-range ratio which is taken as
the proxy for the proportion of informed traders in BTC-USD market. The con-
ditional estimates are given by the Conditional Autoregressive Range model with
Weibull (WCARR) distribution of Chou (2005), in blue circle, and by the Condi-
tional Autoregressive Log-Ratio model (CARLR) adapted from Brandt and Jones
(2006), in red dashed line. It can be seen that before Sept, 2017, the estimated propor-
tion of informed traders are in general higher than the rest of sample period, and can
be as high as 6% by the WCARR model. The CARLR model gives lower estimated
values thanWCARRmodel. After Sept 2017, both models give estimated proportion
of informed traders below 1%.

Table 1 reports summary statistics of BTC-USD spread and range data over our
sample period. Both spread and range data have positive skewness and high kurtosis;
after a log-transformation, however, the distributions are close to normal, although a
Jarque-Bera test still rejects normality. The spread and range of BTC-USD are also
very persistent, with ACF value above 0.83 and 0.64 at lag 5. The log-transformation
makes the ACF value even higher.

Table 2 reports the maximum log-likelihood estimation of CARR model for the
spread-to-range ratio Qt of BTC-USD price:

Qt = mtut, ut |It−1 ∼ g
(
1, σ 2

u

)

mt = ω + αQt−1 + βmt−1

Themodel is termed ECARR andWCARRwhen the conditional distribution of ut
is an exponential or a Weibull distribution. The WCARR model reduces to ECARR
if the parameter ψ = 1, in which case σu = 1. The estimation result suggests that
ψ = 1 can be rejected by a t test or by a likelihood ratio test at very small p value.
The estimated values of α and β are consistent with the high ACF values of spread
and range in Table 1, with a measure of persistence (α + β) close to 1. The very
small estimated value of ω with relatively large standard error is a challenge to the
model estimation task.

Table 3 reports the maximum log-likelihood estimation of CARLR model for the
log of spread-to-range ratio lnQt of BTC-USD price:

ln(Qt) = ln(mt) + zt, zt|It−1 ∼ N
(
0, σ 2

z

)
,
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ln(mt) = ω′ + α′ ln(Qt−1) + β ′ ln(mt−1).

The conditional distribution of zt = ln(Qt) − ln(mt) is assumed to be normal, which
can be justified by the close-to-normal distributions of spread and range data in
Table 1. The parameters of CARLR(1, 1) model can be estimated with small standard
errors, indicating that the log-transformation help to improve the overall fit of the
model. The sum

(
α′
1 + β ′

1

)
is also very close to 1, whereas ω′ can be estimated with

significant value. We also estimate a CARLR(2, 2) model, which gives a smaller
standard deviation of standardized error σz.
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Forecasting of Cryptocurrency Prices
Using Machine Learning

Vasily Derbentsev, Andriy Matviychuk, and Vladimir N. Soloviev

Abstract Our study is devoted to the problems of the short-term forecasting cryp-
tocurrency time series using machine learning (ML) approach. Focus on studying of
the financial time series allows to analyze the methodological principles, including
the advantages and disadvantages of using ML algorithms. The 90-day time horizon
of the dynamics of the three most capitalized cryptocurrencies (Bitcoin, Ethereum,
Ripple) was estimated using the Binary Autoregressive Tree model (BART), Neu-
ral Networks (multilayer perceptron, MLP) and an ensemble of Classification and
Regression Trees models—Random Forest (RF). The advantange of the developed
models is that their application does not impose rigid restrictions on the statistical
properties of the studied cryptocurrencies time series, with only the past values of
the target variable being used as predictors. Comparative analysis of the predictive
ability of the constructed models showed that all the models adequately describe the
dynamics of the cryptocurrencies with the mean absolute persentage error (MAPE)
for the BART andMLPmodels averaging 3.5%, and for RFmodels within 5%. Since
for trading perspective it is of interest to predict the direction of a change in price or
trend, rather than its numerical value, the practical application of BART model was
also demonstrated in the forecasting of the direction of change in price for a 90-day
period. To this end, a model of binary classification was used in the methodology
for assessing the degree of attractiveness of cryptocurrencies as an innovative finan-
cial instrument. Conducted computer simulations have confirmed the feasibility of
using the machine learning methods and models for the short-term forecasting of
financial time series. Constructed models and their ensembles can be the basis for
the algorithms for automated trading systems for Internet trading.
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1 Introduction

Current stage of the global development has been characterized by the widespread
Information Technology (IT) innovation in all spheres of human activity, especially
in business and finance. Probably, today the question about the role and prospects
of widespread implementation of the blockchain technology and the first crypto-
graphic currency (cryptocurrency) Bitcoin, which was developed in 2009, is the
most controversial.

This problem is the focus of debate among leading economists, politicians and
businessmen, whose views are often diametrically opposite: from full support (“dig-
ital gold” of the twenty-first Century and the future of the world currency reserve
(Popper 2015; Vigna and Casey 2015)), to complete negation (“financial bubble”,
the biggest financial shady transaction (Krugman 2013; CNBC 2018)).

This controversy is not least due to the significant fluctuations in the exchange
rate of cryptocurrencies and legal uncertainty of the transactions with them in most
countries of the world, which led to significant risks of investment in these assets.

In this regard, the problem of developing adequate cryptocurrency prices forecast-
ing approach is relevant to the scientific community as well as to financial analysts,
investors and traders.

In order to make investment decisions in the crypto market, it is necessary to have
efficient tools of prices forecasting, profitability and risk assessment, at least for the
shortterm time horizon.

Analysis of recent theoretical and empirical studies shows that the price dynamics
of cryptocurrencies are influenced by many latent factors. These key factors (drivers)
have not been well understood and identified yet (Selmi et al. 2018; Cheah 2015;
Ciaian 2016; Catania and Grassi 2017). The vast majority of researchers are inclined
to believe that the fundamental factors do not have a significant influence on the
cryptocurrency rate. Instead their prices are determined by the demand-supply ratio.

In our recent studies, we used the methods of the complex systems theory and
demonstrated the possibility of constructing indicators of critical and crash phe-
nomena in the volatile stock and cryptocurrency markets (Derbentsev et al. 2019b;
Soloviev and Belinskij 2016, 2019; Soloviev et al. 2019a, b, c; Belinskyi et al.
2019). Our results show that cryptocurrency time series are characterized by com-
plex dynamics, extreme observations and a high degree of volatility. They are also
non-stationary, fractal and have non-Gaussian distributions (Belinskyi et al. 2019).
These results are consistent with several other empirical studies which applied the
statistical approach (Catania and Grassi 2017).



Forecasting of Cryptocurrency Prices Using Machine Learning 213

Therefore, the application of traditional forecasting methods based on the use of
casual models, built within a certain theoretical macroeconomic concept, or classical
time series models has proven to be ineffective.

In the last two decades the methods and algorithms of machine learning have been
applied to forecastingfinancial and economic time series (Flach 2012;Bontempi et al.
2013; Persio and Honchar 2018), and various automated trading systems—bots built
on these algorithms—began to be used for trading.

The main purpose of our research is to compare the prognostic properties for
the short-term prediction task of the cryptocurrency exchange rates of several ML
methods: the BART algorithm (Derbentsev et al. 2019a), Artificial Neural Networks
(ANN) and decision trees ensemble—RF.

The paper is structured as follows. Section 2 describes previous studies in these
fields. Section 3 presents ML approach in the context of financial time series fore-
casting. In this section we described the main aspects of applying BART, ANN and
RF to prediction of cryptocurrency prices.

Section 4 describes the datasets used to test and simulation the models. The
empirical results are reported in Sect. 5. In this section we presented the results of
the short-term predictions obtained with BART, ANN and RF models for the prices
of the three most capitalized cryptocurrencies (Bitcoin (BTC), Ethereum (ETH) and
Ripple (XRP)), and their price direction changes. And finally, we discuss results of
our study in Sect. 6.

2 Analysis of Previous Studies

Recently non-parametric methods within the Machine Learning (ML) and Deep
Learning (DL) paradigms have been widely used for predicting financial time series,
in particular, cryptocurrency prices dynamics (Varghade and Patel 2012; Boyacioglu
and Baykan 2011; Okasha 2014; Kumar 2006; Peng et al. 2018; McNally 2016).

In this area the primary focus has been on the use of such methods as ANNs of
different types and architectures, and Support Vector Machines (SVM). The appli-
cation of these methods has proven to be more efficient for the forecasting tasks for
both “traditional” (fiat currency, stock indices, commodities prices, etc.) (Varghade
and Patel 2012; Boyacioglu and Baykan 2011; Okasha 2014; Kumar 2006) and inno-
vative financial assets, including cryptocurrencies (Peng et al. 2018; McNally 2016;
Saxena and Sukumar 2018; Amjad and Shah 2016; Alessandretti et al. 2018).

Thus, examples of effective use of SVM in forecasting volatility of fiat- and
cryptocurrencies are given, in particular, by Peng et al. (2018).

Several studies (McNally 2016; Saxena and Sukumar 2018; Amjad and Shah
2016) presented the results of BTC exchange rate prediction by using ARIMAmod-
els, RF, Logistic Regressions (LR), Linear Discriminant Analysis approach (LDA)
and such ANN as Long Short-TermMemory (LSTM). According to obtained results,
the ML models proved to be more accurate in prediction both cryptocurrency prices,
and their volatility than times series models.
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Rebane and Karlsson (2018) presented a comparative analysis of the prognostic
properties of ARIMA with Recurrent Neural Networks (RNN) for such cryptocur-
rencies as Bitcoin, DASH, Ethereum, Litecoin (LTC), Siacoin (SC), Stellar (STR),
NEM (XEM), Monero (XMR) and Ripple (XRP). Their results also revealed better
predictive properties of ANN than ARIMA models.

Comparative performance ofMLalgorithms for forecasting cryptocurrency prices
has reported in the paper of Hitam and Ismail (2018). They tested ANNs, SVM and
Deep Learning (Boosted NN) for such coins as BTC, ETH, LTC, XEM, XRP and
XLM. Their results show that SVM has the best predictive accuracy in the terms of
the lowest value of Mean Percentage Error.

Yao et al. (2018) proposed to predict cryptocurrency price by using more a wider
dataset, which includes not only prices, but also market cap, volume, circulating and
maximum supply. Based on their results obtained on deep learning techniques (RNN
and LSTM) the prediction accuracy was within 59% (when using only prices) and
up to 75% (on an extended dataset).

Another powerful class ofMLmethods are the Classification and Regression Tree
(C&RT) and their ensembles proposedbyLeoBreiman and colleagues (Breiman et al.
1984; Breiman 2001). It should be noted that much less attention has been paid to
these algorithms in the field of modelling and forecasting financial times series (see,
for example (Varghade and Patel 2012; Kumar 2006)).

In our recentwork (Derbentsev et al. 2019a),we proposedBARTalgorithm,which
is a generalization of C&RTmodels for the case of scalar time series. The application
of BART to cryptocurrency exchange rate prediction task demonstrated that is was
more efficient than the ARIMA-ARFIMA time series models.

Nowadays combined classical econometric methods as well as methods of
machine learning (Albuquerque et al. 2018; Wang et al. 2018) and those which
take into consideration the spirit of social networks regarding the state and tendency
of cryptocurrency dynamics (Kennis 2018) are becoming more popular.

Another important aspect in the forecasting dynamics of financial time series is
prediction of the price changes direction. For this purpose Kumar (2006) tested such
ML classification models as LDA, LR, ANN, RF and SVM. His empirical results
suggests that the SVM and RF outperforms the other classification methods for the
prediction direction of the stock market movement.

Akyildirim et al. (2018) investigated predictability of the 12 cryptocurrencies on
the both daily and minute datasets by using the ML classification algorithms (SVM,
LR, ANN and RF) with the past price information and technical indicators as model
features. Their results showed that the direction of returns in the cryptocurrency
market can be predicted with averages accuracy around 55–60% with the daily or
minute observation.

In our previous works (Matviychuk 2006, 2011) we also solved the problem of
prediction of the price changes direction of financial time series. To this end we
applied the Fuzzy Logic tools were for formation of a knowledge base we used
rules of wave development from technical analysis and Elliott wave theory. And
also the task of pattern recognition in the structure of price curves and prediction
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of their further development we had dealt with usage of Counterpropagation Neural
Networks.

3 Methodology

3.1 Machine Learning Approach of Forecasting
Cryptocurrency Prices

Themain difference betweenMLand classicalmodeling is that theMachineLearning
algorithms interpret the data themselves, so there is no need to perform their initial
decomposition. Depending on the purpose of the analysis, these algorithms “build”
logic modeling based on the available data. This avoids the complex and lengthy
pre-model stage of statistical testing of various hypotheses.

The main purpose of our study is to determine the ability of ML methods to
effectively analyse the time series data of cryptocurrencies (both scalar and vector),
and to identify the patterns and time correlations that form the basis for the qualitative
forecasts.

An important characteristic ofML is that the methods used to search for templates
in the data do not imply a priori data structure, their statistical properties and the type
of relationships.

Within the ML paradigm, a number of powerful approaches, methods and algo-
rithms have been developed, such as ANNs, SVM, C&RT, RF Regression and Clas-
sification ensembles, Gradient Boosting (GBoost), Deep Neural Networks and Deep
Learning, Kernel methods, etc. (Flach 2012).

Among ML methods, neural networks of different architecture, particularly deep
networks, have gained the most popularity. Numerous empirical studies have shown
the effectiveness of the application of ANN to pattern recognition, image and voice
analysis, machine translation, etc. They are increasingly being used to analyse and
forecast financial time series, in particular cryptocurrency data.

Several studies (Boyacioglu and Baykan 2011; Hitam and Ismail 2018; Matviy-
chuk 2011) showed that ANNs have better predictive properties than time series
models and other ML algorithms for financial time series forecasting.

Another type of MLmodels is C&RT and their ensembles. Both ANN and C&RT
approaches have their own advantages and disadvantages. Their common advantages
are the following:

• they do not impose strict a priori assumptions about the input data;
• they have a high level of automation, because required mathematical tools are

built into majority data mining software;
• they are able to process data both quantitative (metric) and qualitative (categori-

cal).
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The common disadvantages of both ANN and C&RT are the overfitting problem,
and a large number of hyperparameters that require tuning. The overfitting leads to
significantly increasing forecast errors on new data.

As for ANNs, they are “Black Box” model which are characterized by the “opac-
ity” of the hypothesis function (a function that describes the relationship between
input and output). So ANNs don’t have enough explanatory power and they require
significant training time. In addition, choosing a network architecture, the number of
input neurons, hidden layers and activation functions is generally a non-trivial task.

The major weaknesses of the C&RT models are their lower accuracy compared
to ANNs (for the regression problems) and the ambiguity of choosing the best final
tree (for the prediction problem). But their advantage is visibility, perspicuity for
visualization and interpretation.

However, complex tree branches are also difficult to interpret in a meaningful
way, therefore, using them, we have to find a compromise between the complexity
of the tree and its accuracy. This problem is inherent in the vast majority of ML
algorithms.

TheRF algorithm consists of constructing an ensemble of simple classifiers (trees)
and obtaining an average estimate of the prediction of each of the trees that are built
on different subsets of features and randomly selected training subsamples of data.
This approach is less subject to overfitting, but is also poorly interpreted.

The input data for our analysis is a time series of values for a certain cryptocurrency
of length T, which we denote by Y = (Y1,Y2, . . . ,YT ). We will use supervised
learning, so training and test samples contain a set of examples. In our case this is
one-step ahead forecast Yt with known values of the target variable in p previous
time periods Yt−1,Yt−1, . . . ,Yt−p.

We state our hypothesis in the following form

Pr(Yt|Y1,Y2, . . . ,Yt−1, θ) = f
(
Yt|Yt−p,Yt−p+1, . . . ,Yt−1, θ

)
, p < t ≤ T , (1)

where f (·|·, θ)—is a family of conditional probability distributions, and θ—are
unknown model parameters.

The hypothesis function can be represented as

Y
∧

t = f̂
(
Yt−p,Yt−p+1, . . . ,Yt−1, θ

) + εt . (2)

Thereby we used only past values of the target variable as factors (features).
We investigated three different type of ML algorithms to predict cryptocur-

rency time series (short-term forecast) and compare their predictive properties: the
Binary Auto Regressive Tree, theMultilayer Perceptron, and the Random Forest tree
ensemble models.

It should be mentioned that when we applying ML methods, it is necessary to
solve the problem of Bias-Variance trade-off. This is the problem of simultaneously
minimizing two sources of error that prevent supervised learning algorithms from
generalizing beyond their training set:
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Fig. 1 Supervised machine learning prediction

• bias is error from erroneous assumptions in the learning algorithm, high bias
can cause an algorithm to miss the relevant relations between features and target
output (underfitting);

• variance is error from sensitivity to small fluctuations in the training set, high
variance can cause overfitting, i.e., modelling the random noise in the training
data, rather than the intended output.

Therefore, when adjusting the model parameters, we have to find a compromise
between the forecast error caused by its bias and the unstable parameter values (high
variance):

PE(Yt) = E

[(
Yt − f̂ (Yt)

)2
]

= Bias2
(
f̂
)

+ Var
(
f̂
)

+ σ 2, (3)

where PE(Yt)—the total forecast error at time t; E(·)—mathematical expectation
operator; Yt, f̂ (Yt)—the actual time series value and its predicted value; Bias(·)—
the average bias across all datasets; Var(·)—error variance, which generally depends
on the number of model parameters and their accuracy; σ 2—unavoidable error.

A general diagram of supervised ML prediction process is shown in Fig. 1.

3.2 Binary Auto Regressive Tree (BART)

Binary Auto Regressive Tree is a generalization of standard C&RTmodels, which is
adapted to time series prediction tasks. BART combines the classic C&RT algorithm
(Kumar 2006) and the ARIMA Box-Jenkins autoregressive models.

The target variable Yt in this algorithm depends on p the previous values of the
studied time series Yt−1,Yt−2, . . . ,Yt−p. BART allows dividing the phase space into
segments, with a subsequent development of a model for each, and a piecewise
regression function presented in an intuitive and visual way. In such a tree, the inner
nodes contain rules for splitting the space of explanatory variables; branches indicate
conditions and transition between nodes; and the leaves are local ARIMA models.
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When constructing BART a binary tree is constructed, therefore each node has
two child nodes (i.e., number of branches is 2). An autoregressive tree is constructed
sequentially (iteratively) and this process is described by the following algorithm
(Derbentsev et al. 2019a; Breiman et al. 1984).

Step 1. The first step is to determine the threshold for splitting the initial (root)
node, which is taken as the median Me (2-quantile Q50%) of the training series
(sample) and is calculated by the formula

Me(Y ) = Q50% = 0.5 ×
(
Ymin + Ymax

)
, (4)

The median of the time series is defined as the median of the distribution of the
realization of a random variable at time t. For a stationary time series (or time series
with a symmetric distribution), this value is independent of the observation time and
then the sample median is equal to mean, i.e. Me(Y ) = Y .

Therefore, an autoregressive estimation of the tree at the first step of splitting will
look like

f (Yt) = Me(Y )IR(Yt−1), (5)

where R is the dataset; IR(Yt−1)—an indicator function of space, in fact it is a set
of rules for getting variable Yt−1 into this space. So, in the first step, the dataset is
divide into two subsets by criterion (5).

Step 2. The second step is to divide the data space in the selected node obtained in
the first step into two parts. Some lag variable, for example, Yt−k , k ∈ (1, 2, . . . , p)
is selected and the left and right data subspaces Rleft,Rright are defined:

Rleft = {Yt−k ∈ R : Yt−k ≤ α},Rright = {Yt−k ∈ R : Yt−k > α}, p < t ≤ T . (6)

Then the regression estimation at the next step takes the form:

f (Yt) =
(

1

M

∑

I1

Y (i)
t−k

)

IRleft (Yt−k) +
(
1

N

∑

I2

Y (i)
t−k

)

IRright (Yt−k), (7)

where I1 =
{
i, Y (i)

t−k ∈ Rleft

}
, I2 =

{
i, Y (i)

t−k ∈ Rright

}
—sets of observation indices

(i) falling into the subspaces Rleft and Rright respectively; M, N are the number of
elements in these subspaces.

Estimation of the best split is equal to the smallest sum of squares

R
(
f̂
)

= 1

T

T∑

t=p+1

(
Yt − f̂

(
Yt−1,Yt−2, . . . ,Yt−p

))2
. (8)
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Step 3. For each untreated node, the best splitting is found. There are two argu-
ments defined for this: the variable Yt−k , k ∈ (1, 2, . . . , p) that will be splitting and
the threshold value α of this variable.

We used as a threshold quintile the corresponding empirical distribution of the
random variable Y (the value which random variable does not exceed with a certain
probability) and limited the potential splitting on seven values of each predictor
variable

α ∈ {Q10%,Q25%,Q40%,Q50%,Q60%,Q75%,Q90%}. (9)

Of the possible splitting options in this step, the “better” option is chosen by
the adopted rule. These procedures are similar to the C&RT algorithm (Breiman
et al. 1984). The difference is in the adopted rules, evaluation criteria and stop split-
ting. BART suggested an alternative criterion for selecting the best splitting based
on the entropy (called Entropy Information Gain, IGain), because this reduces the
complexity of the tree

IGain = H
∧

(M ,N ) − H
∧

(m, n), (10)

where H
∧

(M ,N ) is entropy of parent node, H
∧

(m, n) is average entropy of children
nodes.Thus, for each next splitting, algorithm selects node and lag variable (and,
accordingly, the threshold value) that provide the maximum entropy reduction given
by (10).

Step 4. In the next step it is necessary to evaluate the “value” of the tree, which
characterizes the relationship between the accuracy of the approximation and the
complexity (branching) of the constructed tree.

The value of the tree in BART is determined based on the early stop criterion. As
such criterion, we used the Extended Bayesian Information Criterion (EBIC), which
minimizes statistics:

EBIC = T · lnR
(
f̂
)

+ J · [ln(T ) + 2 ln(b)], (11)

where R(f̂ ) is the root mean square error (8); J—number of model settings; T—
number of samples in training set; b is the quantity that characterizes the complexity
of themodel space. It equals the product of the size of the tree (the number of branches
in the tree) by the number of lag variables p.

In expression (11), the first term is the maximum value of the logarithmic function
of the root mean square error, and the second is a penalty for the complexity of the
model.

Step 5. Splitting nodes continues as long as the value of statistics EBIC decreases.
If the selected splitting is effective at entropy gain (11), then it must be performed
and the algorithm proceeds to step 3 (to evaluate other nodes). Otherwise, the final
tree is selected and the BART algorithm is completed.
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Fig. 2 Example of building BART with 2 split variables (p = 2)

Because the final target of the algorithm is prediction, we proposed to build Box-
Jenkins ARIMA models on the each leaf nodes.

Fig. 2 shows a simple example of building BART with 2 split variables (p = 2),
with local AIMA models located on leaf nodes.

Each of these models approximate thier own phase sub-space factor variables.

3.3 Random Forest

The random forest algorithm is based on the construction of an ensemble of clas-
sification (regression) trees, each of which is constructed from sub-samples of the
original training sample using bagging (abbreviated from bootstrap aggregating)
(Breiman 2001). Bagging is a method of creating an ensemble of models based on
various random samples from the original dataset. Samples are uniformly replaced
and are called bootstrap samples (Flach 2012).

Bagging efficiency is achieved by training the basic algorithms in different sub-
sets. These sub-sets will be significantly different from each other, and their errors
are mutually compensated by “voting”, as well as anomalous observations and time
series jumps may not be included in some training sub-sets.

Bagging is especially useful in combination with tree models that are sensitive to
changes in training data. In the RF algorithm, bagging is combined with the method
of random subspaces: that is, each tree is built on different randomly selected subsets
of features—this process is called subspace sampling.

The random subspaces method reduces the correlation between trees and avoids
retraining because the basic algorithms are trained on different subsets of traits, which
are also randomly selected.
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As a result, the diversity of the ensemblewill be even greater, reducing the learning
time of each tree, which can be done in parallel. This ensemble is called a Random
Forest.

The RF is used for both classification and regression problems, and RF can also
be useful for selecting predictors and finding deviations in data analysis.

The predictionwithRFalgorithm is carried out by averaging the forecasts obtained
by each ensemble tree (or by “voting” the trees for classification problems). Unlike
individual trees, this algorithm is much less prone to overfitting and gives more
sensitive (flexible) boundary to decision making.

3.4 Neural Network

As an ANN model, we used the simplest and most common Multilayer Perceptron
architecture with one hidden layer of neurons, and an output layer containing only
one neuron—estimation of the forecast of the studied time series by one step (Fig. 3).

According to Kolmogorov’s theorem despite such a simple architecture, MLP can
describe complex patterns in the data and modeled unknown nonlinear function of
the time series with sufficient accuracy. This is achieved by using superposition of
nonlinear activation functions on the hidden and output layers of the network.

Network output values depend on input and hidden neurons, weights, and
activation functions

Y
∧

t+1 = g

(
k∑

i=1

wif (si) + b0

)

, (14)

1

2

p

1tY

2tY

ptY

1

2

k

k
tŶ
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р – number 
neurons

k – number 
neurons

Fig. 3 Multilayer perceptron
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where f (·), g(·) are activation functions of the hidden and output layer neurons
respectively;wi—weights of links between hidden layer neurons and the output of the
network; b0, bi—neurons bias of the output and hidden layers; si = ∑p

j=1 ωjiYt−j+1+
bi—sum of hidden layer neurons; ωij—weight of links between neurons of input and
hidden layers.

MLP training consists in computing synaptic weights, and Error (Cost) Function
(EF) is used to determine the difference between the target variable and the network
output. Finding the minimum EF was performed using the gradient descent method.

We used a back-propagation algorithm. According to it the value of the EF is
applied to the neurons of the hidden layer and the weights are adjusted. In the first
step the input vector Yn,Yn+1, . . . ,Yn+p, (n = 1, 2, . . . , t) propagates across the
network from layer to layer in the forward direction with the fixed scales. In the next,
reverse step, all synaptic weights are adjusted by the error correction rule.

4 Data

For numerical simulation of the short-term forecastingmodels (BART, RF andMLP)
of cryptocurrency prices we selected data of daily exchanges of the three most cap-
italized coins: Bitcoin, Ethereum and Ripple. Data set includes 1583 observations
for the period from August 1, 2015 to December 1, 2019 according to the Yahoo
Finance (2019).

We chose closing prices both in absolute value and in natural log, which allows
to stabilize the variability (variance) of the studied series (Fig. 4).

Fig. 4 Daily close prices of BTC, ETH and XRP (USD, log scale)
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The first 1392 observations were divided into 80 and 20% between the training
and test sets and were used to fit and train models and tuning their parameters, and
the last 90 observations were reserved to estimate the quality of the forecast.

5 Empirical Result

Because all three types of models useses only past observations of the time series, the
choice of the lag depth p is one of the main tasks for identifying them. According to
many empirical studies (Boyacioglu and Baykan 2011; Okasha 2014; Matviychuk
2011), for “traditional” financial assets (fiat currencies, stock indices, commodity
prices, etc.) that are traded for 5 days a week, there is a seasonal lag which is a
multiple of 5 if we use daily observations.

Cryptocurrencies are traded 24/7, that’s why it is expected a seasonal lag multiple
of 7 days exists. Correlation analysis confirmed our hypothesis: for all 3 cryptocur-
rencies there are statistically significant correlations on lags 7, 14, 21, besides there
are correlations on some other lags. Similar results were obtained in Catania and
Grassi (2017), Alessandretti et al. (2018).

We tested 3 classes of models (BART, RF, MLP) with different lag depth for each
cryptocurrency.

According to our hypothesis regarding lag depth for MLP models, we tested the
following architectures:

• 7 inputs and 4–12 hidden layer neurons;
• 14 inputs and 5–15 hidden layer neurons;
• 21 inputs and 6–21 hidden layer neurons.

The most common functions such as logistic, hyperbolic tan, exponential and
ReLu were selected as activation functions. Training MLP for each cryptocurrency
and different lag values (number of input neurons) was conducted over 100 epochs,
ofwhich the best 5 architectureswere selected for each case (in terms ofminimumPE
error (3) in the test sample and matching the model residuals to normal distribution).

The final prediction for each cryptocurrency was obtained as the prediction of the
ensemble of networks, that is, average of the best 5 corresponding MLP models.

For RF simulation we used the following parameter settings: total number of
trees—200, maximum tree depth—10, and number of predictors in each tree: 3, 5, 7
for RF-7, RF-14 and RF-21 models respectively.

For BART we chose two parameters: a maximum tree depth—15, a minimum
number of examples (observations) per node—20.

Figure 5 shows the graphs that characterize the quality of approximation of BART
models for training (a, c, e) and test (b, d, f) samples for 3 cryptocurrencies. The
graphs (a, c, e) show the dependence of the predicted values (vertical axis) on the
actual data (horizontal axis).

The short-term forecasts for each of the cryptocurrency were made for both abso-
lute values of prices and their logs. It should be noted that according to our results
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Fig. 5 Quality of approximation of BART models for training and test sets for BTC (a, b), ETH
(c, d) and XRP (e, f)

the prediction accuracy by the metrics (15) defined below for the logs of prices was
generally no better than for the absolute values.

This fact supports the argument that the ML algorithms (in particular, ANNs,
C&RT and their ensembles) are much less sensitive to the time series statistical
properties than classical statistical and econometric methods.

Figures 6, 7 and 8 show the final results of forecasting cryptocurrency prices for
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the 90-day time horizon, which was carried out using one-step forecasting technique
without adjusting models parameters.

Analysis of the graphs allows us to conclude that the models fit the real data
sufficiently well, taking into account the complex oscillating dynamic behavior of
the studied series: an increasing trend for BTC and a decreasing one for ETH and
XRP.

We can also observe that all models, despite the overall adequacy of the existing
trends in the cryptocurrency dynamics, show some delay relative to the real data.

For estimating prediction accuracy we used metrics ofMean Percentage Absolute
Error (MAPE) and Root Mean Square Error (RMSE):

MAPE = 1

n

n∑

i=1

∣
∣∣Yi − f̂ (Yi)

∣
∣∣

Yi
× 100%, RMSE =

√√√√1

n

n∑

i=1

(
Yi − f̂ (Yi)

)2
. (15)

It should be noted that RMSE can only be used to evaluate the quality of different
forecasts for one financial assets (time series). It provides information about the
magnitude of the error. But RMSE does not characterize this error in comparison to
the actual quote value.

In contrast, MAPE allows evaluating the forecasts performance of both individual
models and their ensembles for different assets and compare them with each other.
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Table 1 Out-of-sample accuracy performance results for different lags

BTC ETH XRP

MAPE, % RMSE MAPE, % RMSE MAPE, % RMSE

Lag p = 7

BART-7 3.71 535.2 3.39 11.74 3.07 0.0154

RF-7 7.11 971.9 7.44 21.8 3.94 0.0196

MLP-7 3.69 529.8 3.53 12.17 3.07 0.0153

Lag p = 14

BART-14 3.83 541.9 3.37 11.86 3.42 0.0167

RF-14 5.60 756.9 6.48 19.82 4.08 0.0203

MLP-14 3.95 559.1 3.51 12.16 3.41 0.0162

Lag p = 21

BART-21 3.94 558.5 3.69 12.55 3.83 0.0183

RF-21 5.54 739.3 4.52 14.55 3.92 0.0212

MLP-21 4.28 610.8 3.84 13.17 2.98 0.0151

In our evaluation of predictive accuracy, we made a forecast of the dynamics of
cryptocurrency prices over a 90-day horizon by using one-step forecasting technique.

The final out-of-sample accuracy results obtained from the BART, MLP and RF
are shown in Table 1.

The accuracy obtained from both BART and MLP are significantly higher for all
lags and cryptocurrencies than for the RF algorithm. The relatively low accuracy of
RF may be due to the fact that a much larger number of factors are required for its
effective implementation. It is worth noting that RF accuracy increases as the depth
of the lag increases. Accuracy can also be improved by building more trees in the
forest.

As for the comparison of theMLP and BART performance, the results in Figs. 6, 7
and 8 and Table 1 show similar accuracy of these models: the smallest error (MAPE)
for BTC was 3.69% (MLP), for ETH—3.37% (BART), for XRP—2.98% (MLP).

Somewhat unexpected, therewas a slight decrease in the accuracy of both theMLP
and BART (at least for BTC and ETH) with increasing lag depth. In our opinion, this
may be due to the overfitting problem.

From the trading point of view it is more valuable to predict the direction of price
or trend change, rather than its numerical value. Since all three types of models can
solve the classification problem we also performed prediction of the price change
direction of BTC, ETH and XRP from August 1, 2019 to December 1, 2019 (123
observations).

To investigate this problem, we made forecast for growth (class positive, P) and
falling (class negative, N) prices on the next day by using one-step forecasting
technique without adjusting the model parameters.

However, a certain observation was classified as positive, P or negative, N if the
price of the asset for that day increased (or decreased) by 1% or more, respectively.
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Table 2 Prediction accuracy of the prices change direction of individual cryptocurrencies for the
period 01/08/19–01/12/19

Actual BART MLP RF

Pred. Accur. % Pred. Accur. % Pred. Accur. %

BTC Rising, P 29 21 64 17 62 19 57

Falling, N 53 31 28 29

ETH Rising, P 41 29 62 25 59 27 59

Falling, N 49 27 24 26

XRP Rising, P 49 33 59 29 61 31 56

Falling, N 52 26 25 25

To measure forecasting performance, we used Accuracy metrics defined in (16)
below, which represents the proportion of correctly predicted values among all
predictions

Accuracy = TP + TN

P + N
, (16)

were TP and TN are the number of correctly predicted values of positive and negative
classes, respectively; P and N are the actual number of values for each class. Table
2 shows the summary of the estimation accuracy of our models by using this metric.

As shown in Table 2, the prediction accuracy of the BART and MLP are higher
for all time series than for the RF models. The average values of the Accuracy metric
by the BART model are 62%, MLP 61%, RF 57%.

Note that for all models the proportion of correctly predicted values of the positive
class (increase in price), turned out to be higher than the proportion of the correctly
predicted values of the decrease in price,whichmust be taken into account in practical
application of the models.

We can conclude based on the considered accuracy metrics defined in (15-16),
that the models of the short-term forecast of the cryptocurrency prices dynamics in
general have smaller errors than the “naive forecasts”. During the periods of slow
change, these models can be used to make a short-term forecasts for up to 30 days.

For traders with a longer investment horizon (90 days to a year) it is necessary
to take into account the dynamics of nonlinear trends, and in our opinion, it would
be advisable to use the models developed by us in combination with trend-cycles
models.
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6 Conclusion

The results of ourmodeling of short-termcryptocurrencydynamics and application of
these models to real life data demonstrated the effectiveness of using machine learn-
ing approach, in particular, models of neural networks, regression (autoregressive)
trees and their ensembles for forecasting tasks. Based on the results of the study, these
models allow making short-term forecast with sufficient accuracy: within 3–4%.

Results of the binary classification of the direction of price changes showed, that
BART and MLP models had an average accuracy of about 63% for the daily time
series observations, which was higher than for the “naive” model.

It should be noted that we used a minimal dataset—only lag values of the studied
series (closing prices). Forecast accuracy can be increased by using a more expanded
dataset: including open, maximum, minimum and average prices, trading volume,
etc. In addition, we can use a variety of indices, oscillators, in particular, moving
averages of different types and time periods, taking into account the trend dynamics.

In this work we have applied a simple model of Neural Network—the Multilayer
Perceptron with one hidden layer. Using networks with more complex architecture:
recurrent, self-organized, deep, etc. should also improve the predictive accuracy. In
summary, we note that the perspective approach for the financial time series fore-
casting is the construction of combined Classification and Regression Tree models
and Neural Networks.
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Bitcoin and Its Offspring: A Volatility
Risk Approach

Walter Bazán-Palomino

Abstract This study examines the relationship between the return on Bitcoin and
the returns on its forks (Litecoin, Bitcoin Cash, Bitcoin Gold, Bitcoin Diamond, and
Bitcoin Private). I obtain volatility series and time-varying correlation coefficients
(Bitcoin with each of its forks) based on both univariate and multivariate GARCH
models (EWMA, DCC, and BEKK). In terms of volatility, the gains of using a
multivariate volatility approach are not substantial. However, the three multivariate
volatility models offer a better estimation of the time-varying correlation. This study
provides evidence that the volatility of Bitcoin forks and the volatility of Bitcoin are
dynamically related, and there is a transmission of volatility risk from Bitcoin forks
to Bitcoin. The results suggest that Bitcoin and its forks behave as crypto-currencies
during bad times and as assets during good times. Also, formost of the sample period,
Bitcoin forks do not offer a hedge against Bitcoin risk.

Keywords Bitcoin · Fork · Volatility risk · Time-varying correlation

JEL Classification: C22 · C5 · F3 · G15

1 Introduction

Since the creation of Bitcoin in October 2008, by Satoshi Nakamoto,1 many new
crypto-currencies have been created on top of Bitcoin technology (protocol). The
proof-of-work is the Bitcoin consensus protocol which is open source, thus there is

1Satoshi Nakamoto is the nickname used by the person or persons who wrote Bitcoin white paper,
and created Bitcoin protocol.
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a natural incentive to copy this technology, or modify it and create a new peer-to-
peer network. The latter is known as a fork. Generally speaking, a fork is a change
in the set of rules of the original software (original blockchain) to develop a new
version of it (new blockchain). Similar to Narayanan et al. (2016) and Antonopoulos
(2017), I identify three main factors for a fork on the Bitcoin technology (details
will be discussed in the next section). The first factor is the block size to store
information. Bitcoin is a peer-to-peer decentralized and distributed public ledger,
and each block of this ledger contains a record of all Bitcoin transactions. As Bitcoin
became popular, the number of transactions increased and with it the problem of
storing this information in a block. The restriction of storing this information leads
us to the second factor: high transaction fees. The creator of any transaction has to
pay a fee to a miner2 in order to add her transaction into the block. Due to the fact that
the block size is fixed and the number of transactions has increased over time, the
creator of a transaction pays higher fees as an incentive for a miner to prioritize and
add her transaction into the block. The third factor is mining centralization. That is,
when a small number of miners or pool of miners control most of the computational
power to process Bitcoin transactions.

As a result, Bitcoin blockchain has become a slow, expensive, and centralized
payment system. To fix this problem, the Bitcoin community would need to adopt a
new approach to establishing agreement on what transactions are valid in the ledger.
As the Bitcoin technology stands at present, the only way to solve this problem is by
a fork.

Forks create price volatility and increase uncertainty in themarket, but their impli-
cations are not fully understood. This chapter tries to fill this gap by examining the
relationship between the return on Bitcoin and the returns on its forks. I select the
fivemajor Bitcoin forks based onmarket capitalization and data availability: Litecoin
(October 2011), Bitcoin Cash (August 2017), Bitcoin Gold (October 2017), Bitcoin
Diamond (November 2017), and Bitcoin Private (February 2018). I also aim to pro-
vide an understanding of the transmission of the volatility risk after a fork occurs.
The volatility risk transmission from a fork to Bitcoin could be direct through its
conditional variance or indirect through its conditional covariances.

To that end, I proceed in two stages. In the first stage, I obtain the time-varying
correlation based on univariate GARCHmodels. Earlier studies have used univariate
GARCH models to calculate the volatility but not the dynamic correlation among
virtual currency returns. Bouoiyour and Selmi (2015) compare two periods of Bit-
coin volatility by estimating EGARCH and TGARCH models, whereas Dyhrberg
(2016) uses an EGARCH to study the capabilities of Bitcoin in terms of risk man-
agement. Using several volatility models, Katsiampa (2017) makes a comparison
of GARCH specifications for modeling Bitcoin volatility, and Chu et al. (2017) use
twelve GARCH models to analyze the volatility of seven crypto-currencies; just to
name a few.

In the second stage, I consider a multivariate volatility approach by using Expo-
nentially Weighted Moving Average (EWMA), DCC-GARCH and BEKK-GARCH

2As discussed in the next section, a user is not necessarily a miner.
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models. The benefit of the BEKK-GARCH method is that it allows dependence
between the volatility series, something that cannot be done with univariate volatil-
ity models or with the other multivariate GARCH specifications (Bauwens et al.
2006). There are few studies which have used a multivariate GARCH methodology
to study simultaneously the variances and covariances of crypto-currency returns.
For instance, Bouri et al. (2017) employ aDCC-GARCH to claim that Bitcoin can act
as a hedge for equity indices, bonds, oil, and gold. Likewise, Corbet et al. (2018) were
among the first to measure the interrelation between the crypto-currency returns, but
they only study Bitcoin, Ripple, and Litecoin. Beneki et al. (2019) apply the BEKK-
GARCH methodology to investigate the volatility spillovers between Bitcoin and
Ethereum.

The data used are the daily closing prices for Bitcoin, Litecoin, Bitcoin Cash,
Bitcoin Gold, Bitcoin Diamond, and Bitcoin Private from April 28, 2013 (as the
earliest date available for the other Bitcoin forks) to August 31, 2019. I think that the
sample period is relevant because it includes the year 2017. During this year, Bitcoin
pushed the market into a bubble (Corbet et al. 2018; Beneki et al. 2019), with prices
reaching their peak in December 2017,3 followed by a sharp decrease. Also, three
Bitcoin forks (Bitcoin Cash, Bitcoin Gold, and Bitcoin Diamond) began to unfold in
August 2017.

In this research, I contribute to existing literature in threeways. First, after explain-
ing the economic factors behind Bitcoin forks, I find that (1) forks since 2017 were
driven by the excess demand for storing Bitcoin transactions in a block, the highest
transaction fees during the bubble period, and the fact that the block size hit the limit
of 1MB during the bubble period and remained around 0.9MB thereafter; and (2)
mining centralization evolved like a market entry dynamic game (huge investment
in hardware as a barrier to entry the market). Second, I estimate in a novel way the
time-varying correlation of each pair of crypto-currency returns (Bitcoin and each of
its forks) using univariate volatilitymodels, absent in previous literature. Third, I pro-
vide a robustness check of the estimated time-varying correlation by applying three
multivariate GARCHmodels to each pair of crypto-currency returns. This is the first
study to apply both univariate and multivariate volatility approaches to a particular
consensus protocol (proof-of-work) and its forks; to the best of my knowledge.

If the forks are sharing the same technology, we would expect substitutability
among crypto-currencies. My univariate and multivariate results show a negative
correlation for the last twomonths of 2017, indicating that there was a substitutability
among crypto-currencies during high risk times. However, the correlation became
positive for the rest of the sample, suggesting that they behavemore like stocks rather
than currencies.

3Bitcoin went from USD 998.33 on January 1, 2017, to USD 19,497.4 (maximum historical price)
on December 16, 2017. Over this year, Litecoin hit a record high price of USD 358.34 on December
18, 2017, representing a return of 7845.4% year-to-date. Bitcoin Cash started a precipitous rise
shortly after its launch in August 2017, increasing from about USD 300 to a peak of USD 3,923 on
December 20, 2017. Likewise, Bitcoin Gold was created in October 2017 and since then, its price
meteorically raised from USD 142.92 to USD 453.45 on December 20, 2017, being its maximum
level.
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Regarding the multivariate approach, all volatility models produce higher correla-
tions thanmy univariate results. Applying univariate volatilitymodels to calculate the
time-varying correlation between crypto-currency returns could lead to underestimat-
ing the mutual impact between Bitcoin and its forks. Also, the BEKK-GARCH(1, 1)
offers more accurate modeling of the time-varying volatility and correlation which
are of great importance for risk management and asset pricing. Since this method
allows dependence between the volatility risk of crypto-currency returns, we can
conclude that the volatilities of Bitcoin and each of its forks are dynamically related
and this relationship is strong. Therefore, Bitcoin forks do not offer a hedge for
Bitcoin risk.

The rest of the chapter is organized as follows. Section2 provides precise descrip-
tions of the Bitcoin network and the drivers behind Bitcoin forks. Section3 shows the
data and the univariate and multivariate volatility models I use to estimate both the
volatilities of return on Bitcoin and returns on its forks and the correlation between
them. I present the results and discuss the main findings in Sect. 4. Finally, Sect. 5
concludes my arguments.

2 The Bitcoin Network and the Drivers Behind Bitcoin
Forks

In this section, I describe what a blockchain is, how the Bitcoin consensus protocol
works, and the factors that caused and would cause Bitcoin forks.4

A blockchain is a public distributed ledger or a collection of transactions which
is maintained by a network of users or computers, called nodes. Each of the nodes
can store a copy of the blockchain, verify the authenticity of the blocks containing
the transactions, and propose a new block. Here I make a distinction between a user
and a miner. A user is a node or computer that can verify all transactions since the
beginning and can do it in the future. On the other hand, a miner is a user with an
additional feature, she can create a new block.

An important aspect of blockchain technology and, in particular, of Bitcoin is the
consensus protocol or consensus mechanism. The main idea behind the consensus
mechanism is how nodes agree to validate transactions and produce a new block of
information (a set of new transactions) which is added to the chain. At every point in
time, the majority of participants—51% of the users in most of the crypto-currency
networks—must agree about the ownership rights to the tokens or coins. Because of
network participants can remain anonymous, the consensus mechanism is the core
for the functionality of any virtual currency.

4The source of information was crypto-currencies white papers and websites, and other online
sources such aswww.coinmarketcap.com,www.cointelegraph.com,www.coindesk.com, andwww.
coinbase.com.

www.coinmarketcap.com
www.cointelegraph.com
www.coindesk.com
www.coinbase.com
www.coinbase.com
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Proof-of-work is the Bitcoin consensus algorithm for verifying transactions.
Under this protocol,5 miners compete against each other in a race for the right to
add a new block of information (transactions) to the chain. To do so, miners have to
solve a mathematical puzzle called the hash puzzle or hash algorithm. The winner
reports both the new block and the solution of the hash puzzle, getting as a reward
new Bitcoins and transaction fees included in the block. This process is also known
as mining, and in this way, new Bitcoins are added to the money supply. The role of
miners is crucial since they are responsible for securing and confirming transactions
by adding blocks of transaction information to the chain. Unlike fiat money, Bitcoin
does not depend on a central authority providing a clearinghouse service or a central
bank that controls the money supply.

In a general sense, Bitcoins are just created fromnowhere. The transactions in each
block are messages to transfer coins from one address to another. These transactions
are broadcast to the network, and the first miner who puts together new transactions
in a new block and solves a mathematical puzzle gets new Bitcoins and transaction
fees.

Having explained what Bitcoin is and how it works, let’s talk about the underlying
factors of Bitcoin forks. The first factor—and perhaps the most important—is the
block size to store information. From its inception, Bitcoin has a block size of 1MB,6

limiting the amount and frequency of transactions that the network can process. The
original consensus protocol allows 2–7 transactions per second and a block time of
10min. With its increasing popularity over time, given the current technology, it is
very difficult for Bitcoin to meet demand.

The excess of demand for Bitcoin technology leads us to the second cause of a
fork: high transaction fees. In order to have her transaction processed by a miner,
the creator of a transaction has to pay a transaction fee. In this way, miners are
compensated for the services they provide. Over the years, the number of users
sending transactions increased, but only a limited number of transactions could be
added to the chain. Therefore, there is congestion in the available block space and
there are pending transactions. If the creator of a transaction wants to move her
transaction to the top of the list, she has to pay a higher transaction fee to incentivize
the miner to do it. The creators of transactions know that to have priority, they have to
offer a high transaction fee to aminer. Consequently, the cost for getting a transaction
into the next Bitcoin block rises.

Panel (a) of Fig. 1 presents the Block Size which refers to data sent to legacy
nodes. The Block Size hit the limit of 1MB during March 2016–December 2017.
The following three months, it remained around 0.5MB and ever since the data
per block was above 0.9MB on average. Similarly, Panel (b) of Fig. 1 shows the

5Antonopoulos (2017) mentions that Bitcoin consensus is based on four processes: (a) independent
verification of each transaction by any node, (b) independent aggregation of Bitcoin transactions
into a new block by a miner, (c) independent verification of a new block by all users in the network,
and (d) independent selection of the chain with the highest proof-of-work (highest cumulative
computational power) by any node.
6The block size was arbitrarily set to 1MB and the reason was to prevent attack from hackers to
the network.
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Fig. 1 Factors behind a Bitcoin fork. Block size: data sent to legacy nodes. Mempool: number of
unconfirmed transactions that have been broadcast to the bitcoin network. Hash rate: he estimated
number of tera hashes per second (trillions of hashes per second) the Bitcoin network is perform-
ing. Bitcoin transaction fees: daily average fees in USD per transaction. Sources Block Size—
https://bitcoinvisuals.com, Mempool—https://www.blockchain.com, Transaction Fees—https://
bitcoinfees.info, and Hash Rate and Mining Difficulty—https://www.blockchain.com

Mempool ormemory pool which is the number of unconfirmed transactions that have
been broadcast to the Bitcoin network. In simple words, this is a measure of excess
demand for storing Bitcoin transactions in a block. Over the crypto-currency bubble
year, the mempool reached four main peaks: February (100,125), May (184,101),
November (161,450), and December (184,106).

This excess demand caused an adjustment in the hash algorithm. The Bitcoin
network adjusts the hash algorithm every 2016 blocks based on a target time of
10min per block. Valid blocks must have a hash below a preset target but if this
target is adjusted, it is more difficult to find a block below the new hash target. As
a result, more hash tries are needed to have the same probability of finding a block
which in turn brings more chances of mining profitability. Hash Rate is the estimated
number of tera hashes per second which means howmanymathematical calculations
aminer performs per second (Panel (c) of Fig. 1). This variable is ameasure ofmining
difficulty. Finally, as explained before, the congestion in a block leads to an increase
in the transaction fees (Panel (d) of Fig. 1). The daily average Bitcoin transaction fee
started to rise in February 2017 and reached its peak on December 21, 2017, 5days
after the highest Bitcoin price.

Before moving on to the next problem, centralization, it is necessary to talk a
little more about the consensus protocol. According to Narayanan et al. (2016), the
Bitcoin community achieves proof-of-work using hash puzzles, and the nodes which
propose a new block are selected based on their computing power. Bitcoin hash
puzzle is SHA-256 which is a cryptographic hash function used for mining. The

https://bitcoinvisuals.com
https://www.blockchain.com
https://bitcoinfees.info
https://bitcoinfees.info
https://www.blockchain.com
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Fig. 2 Mining pool centralization

hash function could be adjusted by the network in order to keep the average time
between successive blocks within 10min.

As Bitcoin has become mainstream, the hash puzzle has become more complex.
The increasing difficulty of the mathematical puzzle causes centralization.That is,
more transactions in the network lead to a more difficult hash puzzle, and a more
complicated puzzle leads to centralization because only a few miners can invest in
more powerful hardware and electricity. By doing so, a miner increases her probabil-
ity to be the next proposer of a block. As a result, small miners have left the market
and those that remain have worked together to increase their likelihood of finding
a block to offset their mining cost. They have congregated into mining pools, i.e.,
they pool their hashing power and split their rewards proportionally to the amount
of work they have done (Antonopoulos 2017).

Figure2 presents the biggest mining pools by the end of 2012 (left panel) and
by the end of 2018 (right panel). In December 2012, more than 50% of the miners
were unknown and small, and BTC Guild and SlushPool were the only miners with
more than 10% of the mining hash power. Six years later, the story is quite different.
Five miners—www.BTC.com (17.42%), AntPool (12.37%), SlushPool (10.79%),
ViaBTC (9.67%), and F2Pool (8.71%)—control 69.75% of the mining hash power.
Unknown (6.45%) and other (11%) miners only represent 17.45% of the mining
hash. In addition, the vast majority of miners who were active in 2012 are no longer
in 2018. Only SlushPool remains active with its market participation steady at around
10%. An implication of the mining centralization is the possibility that the biggest
fiveminers could cooperate to control the Bitcoin network influencing the transaction
fees, hash rate, and Bitcoin price. Along these lines, Hayes (2017) found that the level
of competition in the network of producers could explain the value of Bitcoin.

To save money on energy, miners moved to countries where the cost of energy
is cheaper.7 By the end of 2018, 81% of the network hash rate was concentrated in
China, followed by the Czech Republic (10%), Iceland (2%), Japan (2%), Georgia

7According to the Bitcoin Energy Consumption Index (https://digiconomist.net/bitcoin-energy-
consumption), the global energy consumption of all Bitcoin mining is equivalent to the power
usage of the Czech Republic.

www.BTC.com
https://digiconomist.net/bitcoin-energy-consumption
https://digiconomist.net/bitcoin-energy-consumption
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(2%), and Russia (1%). Regarding the top miners in the network, www.BTC.com,
Antpool, F2pool, ViaBTC, BTC.top, DPOOL, and 58COIN are located in China,
while Slushpool is in the Czech Republic.

In summary, the constant block size, the increasing transaction fees and the cen-
tralization of miners have caused disagreements among Bitcoin users. These dis-
agreements have fostered incentives to create alternative crypto-currencies. Thus,
we are at the forefront of a fork.

2.1 The Mining Game and Bitcoin Forks

Inevitably, a hard fork is the solution to Bitcoin protocol problems. For the purpose
of this chapter, I consider a hard fork to happen whenever there is a change in the
core Bitcoin protocol which causes two candidate blocks competing to form the
longest blockchain. In simple words, it is a change in the set of rules of the original
software (original blockchain) to develop a new version of it (new blockchain). Every
time there is a Bitcoin fork, the miners have to decide whether or not to continue
supporting the original blockchain. Under proof-of-work, if a miner wants to support
both the new and the original blockchain, she has to split her computational power
between the two.

As an economic principle, if Bitcoin miners are rational, they will act “honestly”
as long as the benefits exceed the costs. That is, if block rewards and transaction fees
are higher than electricity and hardware costs, broadly speaking, then it is beneficial
to be a miner. The behavior of each miner is a Nash Equilibrium and she will follow
the rules of this game—the consensus mechanism—as long as there is no incentive
to deviate from the equilibrium.

However, the incentives have changed over time. Note that a miner is like any
other firm in themarket, it has revenues and production costs and theminer’s primary
objective is to maximize profits. On the revenues side, the market value of the reward
is denominated in Bitcoins, and due to the enormous increase in Bitcoin price, the
reward does not seem to be a problem. On the cost side, there are a couple of
complications. First, the variable costs (electricity) and the fixed costs (computers)
are denominated in fiat money, for example, in U.S. Dollars. Thus, there is a balance
sheet effect in termsof the exchange rate betweenBitcoin and theU.S.Dollar. Second,
the computers are the fixed costs for a miner; it is like investing in a new factory.
But a miner’s level of investment depends on the investment of its competitors. If
a miner wants to stay in the market, i.e., wants to make profits, she has to invest
systematically in more computer power. This market environment is closely related
to market entry dynamic games, where the new player (new miner) desires to enter
and the incumbent (the existing miner) threatens the entrant with a huge investment
in a factory.

How does it evolve? If a miner has the most powerful computer in the network,
the rest of the users would complicate the mathematical puzzle and in this way, try
to keep even the probability to be the next proposer of a new block. This change

www.BTC.com
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in the parameters of the hash puzzle will demand more computational power. Like
in any other equilibrium, if a miner incurs losses, she will leave the market. On the
contrary, if a miner makes a lot of profits, then she could invest in more powerful
computers and therefore discourage new miners from entering the market. A natural
consequence is that the difficulty of the hash puzzle will increase (Panel (c) of Fig. 1),
but only the miners who can afford new computers will stay in the market.

At the beginning, the variable costs (energy) did not constitute any immediate
threat to current or new miners. Nevertheless, the electricity cost is not negligible
because more computational power leads to higher consumption of energy.

But the story does not end here. The blockchain industry is a capital-intensive
industry. After a while, miners who stay in the network can act strategically. Since
the capital investment is so high, the lead miners would expect to earn an attractive
return on their investment. If they produce (mining Bitcoin) at a low level, the Bitcoin
price and transaction fees stay high protecting their long-run competitive position.
Unfortunately, due to a lack of information, it is not possible to study the direct
connection between mining and Bitcoin price.8 Also, studying the determinants of
Bitcoin price is not within the scope of this document. I only present the economic
incentives that cause a fork.

Returning to the rules of the game, the consensus protocol must change in order
to correct the misallocation in the market. One way that can be done is if users agree
to change the rules such as changing the hash algorithm or increasing the block size.
The latter is more complicated than it seems and would not solve the problem of
centralization. Under proof-of-work, a bigger block means a higher computational
power, and, as discussed before, a higher computational powermeans better andmore
expensive mining hardware. Another way to fix the disequilibrium is to “copy” 9 the
Bitcoin technology to meet the demand, causing a fork.

Bitcoin (BTC) has experienced five major forks causing instability to the value
of crypto-currencies.

• Litecoin (LTC): In October 2011, a former Google engineer Charles Lee, created
a Bitcoin clone which is considered a fork. Litecoin is based on Bitcoin protocol
but differs in terms of the hashing algorithm (scrypt, instead of SHA-256), the
total number of coins, and the time to generate a block. At the time of writing this
document, according to CoinMarketCap and CoinBase, Litecoin reduced the time
to generate a block from 10 to 2.5min. The fork also lowered the transaction fees.

• Bitcoin Cash (BCH): On August 1, 2017, the Bitcoin network finally agreed to
update the protocol and increase the block size to 8MB. This network agreement
brought Bitcoin Cash (BCH) to life. According to Bitcoin website, the blockchain
forked at block 478,558 and all Bitcoin holders as of block 478,558 are also owners

8In this sense, Hayes (2017) made an attempt to try to link these factors and found that the cost of
mining influences the price of crypto-assets.
9In this context, copy means using almost the same consensus algorithm, but with slightly different
rules. If the blockchain community wants to switch from proof-of-work to other protocol, for
example, proof-of-stake, this is not considered as a fork. At least for the purpose of this research.
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of Bitcoin Cash. The new block size allows nodes in the BCH network to process
more transactions per second, and to reduce transaction fees.

• Bitcoin Gold (BTG): Jack Liao founded Bitcoin Gold on October 24, 2017. The
fork occurred at the block 419,406 and as in Bitcoin Cash, the owner of 1 BTC also
gets 1 BTG. As expected, Bitcoin Gold reaches consensus using proof-of-work,
but the main difference from the Bitcoin protocol is the hash algorithm (Equihash,
instead of SHA-256). The cause of this fork was centralization since the Bitcoin
community perceived mining to be under the control of a few mining pools.

• Bitcoin Diamond (BCD): On November 11, 2017, a fork of Bitcoin happened at
block 495,866 and as a result, Bitcoin Diamond was created. This fork seeks to
addmore transaction capacity to the network and lower transaction fees by slightly
changing the proof-of-work algorithm. It is not clear what the main difference in
the consensus algorithm is. Other differences are the algorithm of the transaction
signatures and the money supply (10 times more than BTC).

• Bitcoin Private (BTCP): Bitcoin Private is a special crypto-currency since it is a
fork from both ZClassic and Bitcoin. In fact, ZClassic itself is a fork of ZCash.
Officially, the fork took place at the blocks 511,346 for BTC and 272,991 for
ZClassic on February 28, 2018. Bitcoin Private was designed to decrease cen-
tralization by increasing the block size to 2MB and reducing the block time to
2.5min.

As a side note, I could have included Bitcoin SV (November 15, 2018) in the
sample, however, I was looking for crypto-currencies that had observations longer
than a year. In addition, the fork list is large and it is not known with certainty how
many coins have originated from Bitcoin technology. As of the time of writing this
document, according to CoinDesk and CoinMarketCap, there are at least ten more
forks: Bitcoin Atom, Bitcoin Scrypt, Bitcoin Uranium, Bitcoin Rhodium, Bitcoin
Energy, Copper Bitcoin, Super Bitcoin, BitCore, Bitcoin Zero, and Bitvolt.

To conclude this section, most people in the crypto-industry agree that the current
Bitcoin technology needs to be changed if the entire industry wants to overtake
traditional financial institutions. There is an active discussion about increasing the
block size and reducing transaction fees, in order to achieve real decentralization and
a faster payment system. As Bitcoin is designed, these modifications can be done
outside the underlying protocol, i.e., by a fork. But every time there is a fork, the price
volatility tends to spike inducing investors to readjust their portfolios. The purpose
of the next section is to present the volatility models I use to analyze whether the
return on Bitcoin and the return on its forks are related, and how the volatility risk is
transmitted among them.

3 The Data and Risk Models

The data set is from coinmarketcap.com which reports historical data for crypto-
currency prices since April 28, 2013. The data contain daily closing prices for
Bitcoin and Bitcoin forks: Bitcoin and Litecoin (April 2013–August 2019),
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Bitcoin Cash (August 2017–August 2019), Bitcoin Gold (October 2017–August
2019), BitcoinDiamond (November 2017–August 2019), andBitcoin Private (Febru-
ary 2018–August 2019).

3.1 Univariate Models

To estimate the volatility of crypto-returns, I use three univariateGeneralizedAutore-
gressive Conditional Heteroskedastic (GARCH) models. I start with the most stan-
dard framework in empirical finance, the GARCH model proposed by Bollerslev
(1986).According toHansen andLunden (2005),GARCH(1, 1)model performswell
in most of the cases and the other GARCH specifications do not provide a significant
gain in terms of goodness of fit. Nevertheless, I consider the exponential GARCH
(EGARCH) model of Nelson (1991), and the threshold GARCH (TGARCH) model
of Glosten et al. (1993) to capture a well-known feature of financial time series:
the leverage effect. The leverage effect stems from the fact that volatility tends to
respond asymmetrically to “bad news” (excess returns lower than expected) and to
“good news” (excess returns higher than expected). Hansen and Lunden (2005) argue
that the first order of any of the aforementioned GARCH specifications appears to
be adequate to model the volatility of time series.

Let rt be the logarithmic return on a crypto-currency. The conditional mean and
variance of rt given Ft−1 are μt = E(rt | Ft−1) and σ2

t = Var(rt | Ft−1) = E((rt −
μt )

2 | Ft−1), where Ft−1 denotes the information set available at time t − 1 and
typically consists of all linear functions of the past returns. Let at = rt − μt be the
residual of the mean equation or innovation at time t , and εt = at

σt
be the standardized

residuals which is an independent and identically distributed (i.i.d.) random variable
with mean 0 and variance 1.

To fix ideas, the equations for the conditional mean of rt and the different speci-
fications for modeling the volatility of rt given Ft−1, are presented below.

rt = μt + at (1)

σ2
t = ω + αa2t−1 + βσ2

t−1 (2)

ln(σ2
t ) = ω++α (|εt−1| − E(|εt−1|) + γεt−1 + β ln(σ2

t−1) (3)

σ2
t = ω + (α + γNt−1)a

2
t−1 + βσ2

t−1 (4)

where εt is an i.i.d. standard normal process, E(|εt |) = √
2/π, and ω, α, β, and γ are

constants. Equation (1) describes the conditional mean of rt which can be a constant
or an ARMAmodel. For most asset returns the serial correlation is weak and a simple
AR model might be enough (Zivot and Wang 2003).
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Equations (2), (3), and (4) refer to the structure of the volatility model under
GARCH(1, 1), EGARCH(1, 1) and TGARCH(1, 1) specifications, respectively. Note
the standard restrictions on the parameters: ω � 0, α � 0, β � 0 and α + β < 1; the
latter restriction implies that the variance is finite and not integrated. The benefit of
Eq. (3) is that there is no need for further non-negative restrictions for the parameters.
A positive at−1 contributes α(1 + γ) |εt−1| to the log volatility whereas a negative
value of at−1 increases the log volatility in α(1 − γ) |εt−1| due to a value of γ < 0 is
expected. Regarding Eq. (4), the coefficient γ has to be positive in order to capture
the leverage effect where Nt−i = 1 if at−i < 0, and Nt−i = 0 otherwise.

3.2 Multivariate Models

I consider an approach to multivariate volatility modeling using the Expone-
ntially Weighted Moving Average (EWMA), the BEKK-GARCH model of
Engel and Kroner (1995), and the DCC-GARCH model of Engel (2002). All the
models allow us to study the dynamic relationship between volatility processes of
multiple asset returns. Consider a k-dimensional return series {rt }

rt = μt + at (5)

where at = (a1t, . . . , akt )′ is the shock, or innovation, at time t . The mean equation
μt could follow a multivariate linear model like a VARMA(p, q) structure, or mul-
tivariate nonlinear models. As Tsay (2010) argues, it is enough to employ a simple
VARMA structure with exogenous variables.

The conditional covariance matrix of at given Ft−1 is a k × k positive-definite
matrix {�t }definedby�t = Cov(at | Ft−1). The shock can bewritten asat = �

1/2
t εt

where�
1/2
t is the square-rootmatrix of�t , and εt is a sequence of i.i.d. randomvector

such that E(εt ) = 0 and Cov(εt ) = Ik .
A simple multivariate volatility framework is the EWMA model. Let ât be the

residuals of the mean equation. The model for the conditional covariance matrix is

̂�t = λ̂�t−1 + (1 − λ)̂at−1â
′
t−1 (6)

where 0 < λ < 1 denotes the decaying rate or the persistent parameter. For a given
λ and initial estimate of covariance matrix (̂�0), ̂�t can be computed recursively.
A common choice of ̂�0 is the sample covariance matrix of ât which produces a
positive-definite volatility matrix (̂�t ) for all t . A major drawback with the EWMA
model is that it tends to reject the diagnostic tests in empirical applications.

The second multivariate volatility method is the BEKK-GARCH model which is
concerned with the dynamic evolution of �t . For a k-dimensional time series rt , the
BEKK-GARCH(1, 1) specification assumes the form

�t = A0A
′
0 + A1at−1a

′
t−1A

′
1 + B1�t−1B

′
1 (7)
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where A0 is a lower triangular matrix such that is A0A′
0 a posititve-definite matrix,

and A1 and B1 are k × k matrices. The main advantage of this approach is that it
allows dependence between the volatility series. In addition, the model solves the
problem of positive-definite constraint, i.e., it provides positive-definite volatility
matrix �t for all t . On the other side, the main disadvantage of this model is that
it contains too many parameters, k2 + [k(k + 1)/2]. Also, the parameters in A1 and
B1 do not have a direct interpretation.

Finally, the dynamic conditional correlation (DCC) model is built on the idea of
modeling the conditional variances and correlations instead of modeling �t . Let the
conditional correlations to be time-varying

ρt = D−1
t �t D

−1
t (8)

where Dt = diag
{

σ
1/2
11t , . . . ,σ

1/2
kkt

}

is the diagonal matrix of the k volatilities at time

t, and ρt is the correlation matrix with k(k − 1)/2 elements. To fit a DCC-GARCH
model, we first estimate individually each element of Dt (σi i t ) using any univariate
GARCH specification and form estimated standardized residuals, and then model
the pairwise conditional correlations between the standardized residuals.

In this regard, Engel (2002) proposes the following correlation structure

Qt = (1 − θ1 − θ2)Q + θ1Qt−1 + θ2εt−1ε
′
t−1 (9)

where Qt is the covariance matrix of standardized residuals, Q is the unconditional
covariancematrix of standardized residuals, and θ1 and θ2 are non-negative real num-
bers satisfying 0 < θ1 + θ2 < 1. The correlation matrix is defined as ρt = Jt Qt Jt ,

where Jt = diag
{

q−1/2
11t , . . . , q−1/2

kkt

}

is a normalization matrix and qiit denotes the

(i, i)th element of Qt . The parameters θ1 and θ2 describe the dynamic dependence
of the correlation matrix, and make the DCC model very parsimonious. But it is
hard to justify that all correlations evolve in the same manner regardless of the assets
involved (Bauwens et al. 2006).

4 Results

I investigate the interdependencies in risk-return between the return on Bitcoin and
the returns on its forks: Litecoin (LTC), Bitcoin Cash (BCH), Bitcoin Gold (BTG),
Bitcoin Diamond (BTD), and Bitcoin Private (BTCP). This set of five forks are
particularly interesting for examining the relationship between a specific consensus
protocol (Bitcoin proof-of-work) and its forks.

With the exception of BTCP, all other crypto-returns have aweak serial correlation
based on ACF and PACF. Also I estimate AR(p) model for each return series, and
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Table 1 The p-values of the Ljung-box test and the Lagrange multiplier test for detecting condi-
tional heteroscedasticity in crypto-currency returns

BTC LTC BCH BCD BTCP BTG

Ljung-box

Q(1) 0.602 0.085 0.442 0.894 0.978 0.442

Q(2) 0.253 0.038 0.497 0.246 0.999 0.682

Q(5) 0.183 0.007 0.558 0.146 0.368 0.036

Q(10) 0.004 0.000 0.519 0.023 0.474 0.071

Q(15) 0.027 0.000 0.503 0.030 0.132 0.219

Lagrange multiplier

LM(1) 0.000 0.000 0.000 0.000 0.000 0.000

LM(2) 0.000 0.000 0.000 0.000 0.000 0.000

LM(5) 0.000 0.000 0.000 0.000 0.000 0.000

LM(10) 0.000 0.000 0.000 0.000 0.000 0.000

LM(15) 0.000 0.000 0.000 0.000 0.000 0.000

Q(m) and LM(m) denote the Ljung-box test and the Lagrande multiplier test on the innovations of
crypto-currency returns at lag m, respectively

onlyBTCP andBTDneed anAR(1) specification.10 Themean equation indicates that
the lagged daily log returns of crypto-currencies are not relevant factors of current
log returns, at least lagged values greater than one period. This result is in line with
the empirical fact of a low serial correlation of asset returns (Zivot and Wang 2003).
Also, the first-order autoregressive process could be a sign of violation of the efficient
market hypothesis. By building a model for the conditional mean, I eliminate any
linear dependence. However, the returns on tokens can still be serially non-linear
dependent due to ARCH effects.

Table1 shows the Ljung-Box test results for the innovations of log returns. One
interesting finding is that the null hypothesis is rejected at 5% for lag values longer
than 10. Except for Litecoin, there is no serial correlation at very short intervals of
time. On the other hand, the LM test for ARCH effects reveals that the null hypothesis
is rejected for all the time series and at different lag values. Therefore, the squared
residuals are positively correlated even though the innovations themselves are not.

After testing for the presence ofARCHeffects, the next step is to specify a univari-
ate GARCHmodel for the crypto-returns. Table2 gives the results for GARCH(1, 1),
EGARCH(1, 1), and TGARCH(1, 1). The three estimated models are essentially the
same and produce a high persistence of the variance, especially for BTG, BTD and
BTCP. Based on the GARCH(1, 1), we can compute the half-life defined as the
number of days it takes for half of the expected reversion back towards the long-
run variance: BTC (25.32days), LTC (22days), BCH (4.39days), BTG (86.29days),
BTD (40.43days), andBTCP (692.8days). It is clear that BTCPhas a strong volatility
persistence.

10The results are available upon request.
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Table 2 Estimation results of GARCH-type models for crypto-currency returns

BTC LTC BCH BCD BTCP BTG

GARCH(1, 1)

Const (μ) 0.112* −0.072 −0.160 −0.371 −0.953** −0.394*

AR(1)(φ) – – – −0.110*** −0.0118 –

Const (ω) 0.538*** 1.054*** 7.268 1.280*** 0.898* 0.227***

ARCH(α) 0.111*** 0.084*** 0.100*** 0.057*** 0.069*** 0.021**

GARCH(β) 0.862*** 0.885*** 0.754*** 0.926*** 0.930*** 0.971***

LL −6289.97 −7068.24 −2572.63 −2291.8 −2090.72 −2162.81

AIC 5.435 6.107 6.701 7.122 7.776 6.410

EGARCH(1, 1)

Const (μ) 0.131* −0.024 −0.068 −0.330 −1.577*** −0.346

AR(1)(φ) – – – −0.103*** −0.019 –

Const (ω) 0.191*** 0.188*** 0.342*** 0.230*** 0.877* 0.009

ARCH(α) 0.250*** 0.174*** 0.138*** 0.245*** 0.195*** 0.039***

GARCH(β) 0.939*** 0.951*** 0.914*** 0.954*** 0.986*** 0.990***

Leverage(γ) −0.001 0.020*** 0.041*** 0.045*** −0.082*** 0.017***

LL −6276.14 −7071.43 −2573.31 −2286.71 −2083.19 −2163.79

AIC 5.424 6.111 6.704 7.110 7.752 6.4163

TGARCH(1, 1)

Const (μ) 0.122* 0.057 −0.122 −0.363 −1.164*** −0.381*

AR(1)(φ) – – – −0.108** −0.021 –

Const (ω) 0.530*** 1.054*** 5.463 1.395** 0.929* 0.063

ARCH(α) 0.117*** 0.090*** 0.100*** 0.066*** 0.023*** 0.02***

GARCH(β) 0.863*** 0.885*** 0.807*** 0.921*** 0.928*** 0.983***

Leverage(γ) −0.012 −0.014 −0.037 −0.010 0.097*** −0.017

LL −6289.72 −7067.72 −2571.98 −2291.72 −2081.29 −2161.42

AIC 5.536 6.108 6.702 7.124 7.745 6.410

(*) Represents the significance at the 10% level, (**) represents the significance at the 5% level,
and (***) represents the significance at the 1% level

From Table2, it can be noticed that the Akaike Information Criterion (AIC) is
minimized and the log-likelihood function is maximized under the TGARCH(1, 1)
model in most of the cases. Nevertheless, the difference in these information criteria
between the EGARCH(1, 1) and TGARCH(1, 1) models is marginal. Note that the
EGARCH(1, 1) produces a positive leverage parameter which is difficult to explain.
Also, the AR(1)-TGARCH(1, 1) specification better fits the volatility dynamics for
Bitcoin Diamond and Bitcoin Private. If we focus our attention only on Bitcoin (first
column of Table2), contrary to Bouoiyour and Selmi (2015) and Katsiampa (2017),
my estimates do not include an AR(1) coefficient in the mean equation.

If AIC and log-likelihood function are used in model selection, one selects the
TGARCH(1, 1) specification. The model checking confirms that the TGARCH(1, 1)
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Table 3 Model checking of TGARCH specifications—the p-values of Ljung-box and Lagrange
multiplier tests

BTC LTC BCH BCD BTCP BTG

Ljung-box

Q(1) 0.931 0.629 0.250 0.054 0.021 0.991

Q(5) 0.806 0.951 0.661 0.070 0.096 0.814

Q(10) 0.865 0.989 0.518 0.163 0.207 0.749

Lagrange multiplier

LM(1) 0.376 0.850 0.793 0.771 0.507 0.468

LM(5) 0.378 0.919 0.751 0.821 0.738 0.832

LM(10) 0.559 0.969 0.380 0.927 0.873 0.682

Q(m) and LM(m) denote the weighted Ljung-box test and the weighted ARCH LM test on stan-
dardized squared residuals at lag m, respectively

fits the data well and captures all ARCH effects. Table3 presents the p-value of the
Weighted Ljung-Box test and the Weighted ARCH LM test on standardized squared
residuals. Both tests fail to reject the null hypothesis at different lags.

Figure3 gives the fitted volatility series of the TGARCH(1, 1) model. From this
figure,we can see that there are no jumps in the volatility of any of the return series, the
volatility does not diverge to infinity, and the leverage effect is present. As expected,
the volatility was high from the beginning of 2017 until mid-2018. It seems that the
Bitcoin bubble in 2017 contributes significantly to the high volatility persistence of
Bitcoin forks. The only crypto-currency that exhibits higher volatility in the second
half of the sample (since November 2018) is Bitcoin Private.

Fig. 3 TGARCH(1, 1) daily volatility of returns on crypto-currencies
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Fig. 4 TGARCH(1, 1) daily correlation between return on bitcoin and returns on bitcoin forks

Once the volatilitymodel is selected, I carry out a time-varying correlation analysis
in order to get a better understanding of the sign and the strength of the dynamic
relationship between the return on Bitcoin and the returns on its forks (Fig. 4). The
correlation between Bitcoin and Litecoin exhibits an interesting pattern. For the
first part of the sample, the correlation was strong and positive. In fact, the highest
positive correlation was in December 2013. After that, it decreased steadily and
remained low until the beginning of the year 2017. During the bubble period, the
correlation between these returns strengthened, increasing from about 0 in March
2017, to 0.7 on February 2018. Subsequently, it went back to the pre-bubble levels.

Themost striking finding is related to Bitcoin Cash, themost popular Bitcoin fork.
For the second half of the year 2017, the correlation between Bitcoin and Bitcoin
Cash was negative, and they had a perfect negative correlation on December 21,
2017. Thereafter, the correlation stabilized around 0.2.

The results of the other three crypto-currency returns are remarkable too (Fig. 4).
To begin with, the correlation of Bitcoin Gold with Bitcoin presents an expected
dynamic. During the first two months after BTG’s inception in October 2017, the
statistical association between these two returns was negative. From that moment
on, the correlation oscillated between 0 and 0.2. The story of Bitcoin Diamond is
quite different. Its association with Bitcoin was unstable during the November 2017–
August 2018 period, sometimes positive and sometimes negative. Afterwards, the
correlation decreased to a low positive value. Finally, Bitcoin Privatewas not strongly
correlated with Bitcoin until April 2019. In the next month, the correlation plunged
to a negative value (−0.8), and two months later it reached its peak (1.0).

Turning now to the multivariate volatility approach, this paper uses the EWMA,
BEKK-GARCH(1, 1) and DCC-GARCH(1, 1) specifications to examine whether
these models produce results similar to those of the TGARCH(1, 1) model. Before
applying the multivariate method, it is necessary to check for the presence of con-
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Table 4 The p-values of the multivariate Ljung-box test and the multivariate Lagrange multiplier
test for detecting the conditional heteroscedasticity in a vector of two crypto-currency returns

BTC-LTC BTC-BCH BTC-BCD BTC-BTCP BTC-BTG

Ljung-box

Q(1) 0.000 0.000 0.000 0.000 0.000

Q(5) 0.000 0.000 0.000 0.000 0.000

Q(10) 0.000 0.000 0.000 0.000

Lagrange multiplier

LM(1) 0.000 0.000 0.000 0.000 0.000

LM(5) 0.000 0.000 0.000 0.000 0.000

LM(10) 0.000 0.000 0.000 0.000 0.000

Q(m) and LM(m) denote the weighted Ljung-box test and the weighted ARCH LM test on stan-
dardized squared residuals at lag m, respectively

ditional heteroscedasticity in the two dimensional time series. It should be noted
that each pair of returns has different number of observations. Thus, the tests are
carried out based on the return with fewer observations. Table4 displays the results
of four tests for detecting conditional heteroscedasticity in the bivariate innovations.
As we expect, the test statistics reject the null hypothesis confirming the presence of
conditional heteroscedasticity.

Figure5 provides time plots of the volatilities of the EWMA (blue line) and
BEKK-GARCH(1, 1) (black line)models.As expected, the estimated volatility series

Fig. 5 Multivariate daily volatility of returns on crypto-currencies. The blue line is the EWMA
estimated volatility and the black line is the BEKK-GARCH(1, 1) estimated volatility
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produced by the EWMA approach are smoother than the volatility series produced
by the BEKK model. Nevertheless, both time series share a similar pattern. What is
surprising is that the estimated volatilities of BTC, LTC, and BTCP produced by the
twomultivariatemethods are very close to the univariate results. On the other side, the
volatilities of BCH, BTG, and BCD produced by the multivariate models are slightly
higher than the volatilities of the TGARCH(1, 1) specification. It is important to bear
in mind that I used the standardized residuals of the TGARCH(1, 1) estimation to
fit the DCC-GARCH(1, 1) model. Thus, the DCC does not estimate the volatility
return.

Equally significantly, the parameter λ that governs the time dynamics of the
EWMA covariance matrix lies in the typical range commonly seen in practice.
The estimated lambda is around 0.97 and is statistically significant at the 1% level:
BTC-LTC (0.973), BTC-BCH (0.968), BTC-BTD (0.977), BTC-BTCP (0.970), and
BTC-BTG (0.975).

On the question of the time-varying correlation, the benefits of applying multi-
variate volatility models are significant. Figures 6, 7, and 8 present the results of the
estimated time-varying correlation by EWMA, BEKK, and DCC models, respec-
tively. Contrary to the univariate case, the multivariate volatility methods produce
high and positive correlations between the return on Bitcoin and the returns on its
forks, for most of the sample. These figures are revealing in three ways. First, Bit-
coin and its forks are negatively correlated during the bubble year. In particular,
LTC, BCH, BTG, and BTD are negatively correlated with Bitcoin during the last
two months of 2017, while the correlation of LTC with Bitcoin was negative in
March, August, November, and December of the same year. Second, due to the fact
that LTC is the only fork that happened before the bubble period, we can see that from
May 2013 to December 2013, the correlation decreased from a high to a low value,

Fig. 6 EWMA estimated correlations
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Fig. 7 BEKK-GARCH(1, 1) estimated correlations

Fig. 8 DCC-GARCH(1, 1) estimated correlations

and was even negative in September and October of the same year. Thus, the 2017
correlation resembles the 2013 correlation. Third, BTCP, is highly correlated with
Bitcoin, averaging 0.82 until November 2018, and 0.55 thereafter. The decreasing
correlation over time is apparent, contrary to the increasing estimated correlation by
the TGARCH(1, 1) model.

Finally, to check the adequacy of the fitted multivariate volatility models, this
study employs two portmanteau test statistics: themultivariate Ljung-Box test and the
multivariate LagrangeMultiplier (LM) test.11 As expected, the standardized residuals

11For further details, see Tse, Y.K. (2002). Residual-based diagnostics for conditional heteroscedas-
ticity models. The Econometrics Journal 5 (2), 358–374.
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Table 5 Model checking of the multivariate volatility models—The p-values of the multivariate
Ljung-box and the multivariate Lagrange multiplier tests

BTC-LTC BTC-BCH BTC-BCD BTC-BTCP BTC-BTG

EWMA

Q(5) 0.002 0.007 0.000 0.004 0.000

Q(10) 0.046 0.000 0.006 0.000 0.000

LM(5) 0.001 0.000 0.001 0.000 0.000

LM(10) 0.007 0.000 0.020 0.000 0.000

BEKK-GARCH(1, 1)

Q(5) 0.983 – – 0.000 –

Q(10) 0.995 – – 0.000 –

LM(5) 0.828 0.207 0.986 0.000 0.085

LM(10) 0.798 0.430 0.643 0.000 0.069

DCC-GARCH(1, 1)

Q(5) 0.534 0.003 0.497 0.488 0.000

Q(10) 0.621 0.080 0.841 0.011 0.000

LM(5) 0.338 0.001 0.329 0.633 0.050

LM(10) 0.436 0.001 0.644 0.432 0.084

Q(m) and LM(m) denote the weighted Ljung-box test and the weighted ARCH LM test on stan-
dardized squared residuals at lag m, respectively

of the EWMA model still have conditional heteroscedasticity, because both tests
reject the null hypothesis (Table5). Conversely, both statistics fail to reject the null
hypothesis of serial correlation for the BEKK and DCC specifications.

4.1 Discussion

The empirical analysis of univariate GARCHmodels for the return onBitcoin and the
returns on its forks offers a starting point to study the volatility risk in cryptocurrency
markets andhow this kindof risk is transmitted fromaBitcoin fork toBitcoin. In terms
of volatility, the gains of using a multivariate volatility approach are not substantial.
A closer inspection of Figs. 3 and 5 reveals that volatility changes are closely linked
across crypto-currencies.

However, the three multivariate volatility models offer a better estimation of the
time-varying correlation than the TGARCH(1, 1) results. All the models produce
higher correlation coefficients between Bitcoin and each of its forks, and the overall
pattern of the time-varying correlations based on the EWMA, BEKK, and DCC
specifications seem similar to each other. In particular, the BEKKmethod appears to
have stronger persistence in the time-varying relationship between crypto-currencies.

One of themost important findings that emerges from the time-varying correlation
analysis is the negative value during times of high risk (November 2017–December
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2017), but positive value in times of low risk (May 2018–July 2019). An implication
of this is the possibility that Bitcoin is not only the leader of the crypto-market but
also themost liquid token. In times of turmoil, investors prefer to invest in this crypto-
currency rather than in Bitcoin forks. But the positive value for most of the sample
suggests that Bitcoin and its forks behave like assets instead of currencies. Therefore,
it is not possible to reduce the volatility risk of Bitcoin by taking opposite positions
in one of its forks simultaneously. In other words, Bitcoin forks run on top of Bitcoin
protocol and these tokens share the same risk as Bitcoin and consequently, Bitcoin
forks donot provide benefits of diversification.Note thatLitecoin—acrypto-currency
that has been around longer than the other Bitcoin forks—is not more interconnected.

Another remarkable finding is that the 2017 bubblemademore persistent volatility
series, and this outcome is regardless of the method that was applied. Moreover, all
crypto-currencies display the highest volatility in December 2017. It is somewhat
surprising that the highest transaction fees, the highest BCHvolatility, and the perfect
negative correlation of BCHwith BTC took place onDecember 21, 2017; 5days after
the highest Bitcoin price, and 1day after the maximum Bitcoin Cash price.

Perhaps, Bitcoin Cash is the most popular and controversial Bitcoin fork. The
relevance of BCH lies not only in the perfect negative correlation with Bitcoin in
December 2017, but also in the shape of its volatility series in 2018. The BCH
volatility risk increased between July and December 2018, and it could be explained
by the Bitcoin SV fork. In early 2018, the Bitcoin Cash community was involved
in a big disagreement related to its block size. In May 2018, the block size was
increased from 8MB to 32MB. On August 16, 2018, a fork of BCH happened after
Jimmy Nguyen, the former CEO of nChain, proposed Bitcoin SV as a new chain. In
opposition, some members of the Bitcoin Cash community announced Bitcoin ABC
as the real blockchain, which was very similar to BCH. Finally, on November 15,
2018, BCH forked into Bitcoin SV and Bitcoin ABC. For a period, both blockchains
complete to take control of Bitcoin Cash. According to the Bitcoin Cash website,
Bitcoin ABC took over the Bitcoin Cash chain and Bitcoin SV is listed as its own
coin.

The relationship betweenBTCandLTCneeds special attention during two periods
of turmoil. The first period, October 2013-May 2014, was characterized by a high
volatility and a decreasing correlation. One factor that could explain these findings is
the collapse of Mt. Gox—the biggest Bitcoin exchange market—in February 2014.
During this month, Mt. Gox suspended services and filed for bankruptcy protection
from creditors, and twomonths later it liquidation proceedings. Likewise, the second
period—the 2017 bubble—exhibits a high volatility but a low and even negative
correlation. What is interesting is that the pattern of the time-varying correlation was
qualitatively the same during these two episodes of high volatility risk.

Regarding Bitcoin return, it is important to note that my findings are different
from Bouoiyour and Selmi (2015)’s and Katsiampa (2017)’s outcomes, because the
AR(1) coefficient of the mean equation is absent in my estimates. It could suggest
that, at the beginning, the crypto-market was Bitcoin and it was inefficient. But the
crypto-market is becoming more efficient over time (Urquhart 2016 and Bariviera
2017). In this line of reasoning, the sample period is relevant because I extend it until
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August 2019. While I include the 2017 bubble period, Bouoiyour and Selmi study
Bitcoin volatility until June 2015 and Katsiampa’s estimates are until July 2016.

Last but not least, I show that there is a serial dependence in the crypto-currency
returns.However, during themodeling process, removing serial dependence byfitting
an ARMA(p, q) model to the mean equation has hardly any effects on the estimated
time-varying correlation. As a matter of fact, the time-varying correlations before
and after fitting an AR(1) model for Bitcoin Diamond and Bitcoin Private are quali-
tatively the same. With respect to the volatility equation, any unusual volatility in the
innovation (at ) tends to persist, though not forever. The conditional variance tends to
revert to its long-term value, so that the process is stationary with a finite variance.

5 Conclusions

The present study was designed to investigate the relationship between the return on
Bitcoin and the returns on its forks. I provide evidence that the volatility of Bitcoin
forks and the volatility of Bitcoin are dynamically related, and there is a transmission
of the volatility risk from Bitcoin forks to Bitcoin. The BEKK-GARCH(1, 1) model
produces a more accurate estimation of both the volatility and correlation series.
In particular, the BEKK-GARCH(1, 1) results suggest that feedback between the
volatility series has to be considered in future research.

The fact that the time-varying correlation is negative in times of high risk but
positive in times of low risk has an important implication. Bitcoin and its forks behave
like currencies (there is substitution among tokens) during episodes of turmoil, but
behave like assets during calmer times. This shift from a negative to a positive
correlation could induce a readjustment in investors’ portfolio causing fluctuations
in Bitcoin fork prices.

The time horizon is not relevant for the statistical association between Bitcoin and
its forks because Litecoin is not more interconnected than the other forks. After the
bubble period, Bitcoin and its forks are strongly positive correlated indicating that
investors cannot reduce Bitcoin risk by taking opposite positions in Bitcoin forks.
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