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Abstract

Lung carcinoma is the most frequently
diagnosed malignant neoplasms and mainly
consists of small-cell lung carcinoma (SCLC)
and non-small-cell lung carcinoma (NSCLC).
Large number of lung carcinoma patients have
poor outcomes due to the late diagnosis and the
limited therapeutic options. Previous attempts
have proved that the evolution of lung carcinoma

is a multistep molecular aberration which vari-
ous genetic or epigenetic alterations may be take
part in. Among these molecular aberrations, the
inactivation of tumor suppressor gene has been
widely observed in all types of carcinoma
including lung carcinoma. As a vital inactivated
mechanism, DNA methylation of tumor sup-
pressor gene is frequently found in lung cancer.
To gain exhaustive comprehension of the carci-
nogenesis of lung carcinoma, we summarize our
current knowledge on DNA methylation of
RASSF1 (RAS-Association Domain Family 1)
and its clinical significance in lung carcinoma.
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LATS1
and
LATS2

Large tumor suppressor 1 and 2

MST1
and
MST2

Mammalian sterile 20-like kinase
1 and 2

LOH Heterozygosity

8.1 Introduction

Lung carcinoma is the leading cause of cancer-
related death, with an estimated 388,000 deaths in
Europe in 2018 [1, 2]. Based upon the data of
smoking prevalence from the population-based
Adult Health Survey in 2003, the estimated lung
cancer mortality was 15.0 and 7.1 per 100,000
among men and women in 2018 [1], respectively.
In China, the incidence of lung carcinoma is also
high, with the highest mortality rate as compared
with other countries [2]. The uptake of tobacco
among males and exposure to unventilated
cooking fumes among females are the predomi-
nant non-genetic risk factors for lung carcinoma
[3–7]. The 5-year survival rate of lung carcinoma
is very low, especially in Eastern Asia, due to the
large proportion of lung carcinoma patients pres-
ent with advanced metastatic tumors when
diagnosed [8, 9].

Lung carcinoma mainly consists of small-cell
lung carcinoma (SCLC) as the most aggressive
lung carcinoma accounted for about 25% of bron-
chogenic carcinomas and non-small-cell lung car-
cinoma (NSCLC) as the most common lung
carcinoma subtype for approximately 85% of
lung cancer cases [10, 11]. The major histological
subtypes of NSCLC are represented by lung ade-
nocarcinoma, squamous cell carcinoma, and large
cell carcinoma [12], of which the resection is
performed in the early stage and chemo-
combination in the late stage, with the mean
5-year survival of 15%. The large number of
lung cancer patients have poor outcomes due to
the late diagnosis, acquired multidrug resistance,
and complex mechanisms [13]. This chapter aims
at exploring the comprehensive mechanisms on

the carcinogenesis of lung cancer by furthermore
understanding DNA methylation of
RAS-Association Domain Family 1 (RASSF1)
and its clinical significance in lung carcinoma.
We pay more specific attention on the potential
mechanisms and new specific molecular markers
of lung cancer, especially DNA methylation of
tumor suppressor genes and inactivated genes in
the development of lung carcinoma.

8.2 The RASSF1 Gene

RASSF1 is one of the key tumor-suppressor
genes allocated in chromosome 3p21.3 and
spans about 11,151 bp [14, 10]. RASSF1
promotes apoptosis, microtubule stability and
polymerization, and mitotic progression
[15]. The protein encoded by RASSF1 can par-
ticipate in RAS-related cellular signal pathways
and regulate oncogenesis, cell proliferation, dif-
ferentiation, and apoptosis in a wide variety of
cancer types [16]. Eight transcripts, i.e.,
RASSF1A, B, C, D, E, F, G, and H, are generated
by RASSF1 gene and contain a Ras-Association
(RA) domain in the carboxyterminal segments,
except for RASSF1F-H which is similar to the
RAS effector proteins, Raf1. Raf1 is associated
with Ras-GTP to activate Ras proteins, suppress
cell growth, and promote proapoptotic effects.

RASSF1A and RASSF1C are two predomi-
nant common isoforms and encode an
ATM-kinase phosphorylation site and a
conserved carboxyterminal SARAH
(Sav/RASSF/Hpo) domain as a key component
of the Hippo signaling pathway, except for the
RA domain. RASSF1A has a diacylglycerol/
phorbol ester-binding (DAG) domain containing
a central zinc finger which is also known as the
protein kinase C conserved domain (C1 domain).
RASSF1C variant is shorter than RASSF1A and
lacks the amino terminal C1 domain. RASSF1D
and E have the RA, SARAH, C1 domains and
ATM-kinase phosphorylation site similar to
RASSF1A in structure. RASSF1B contains one
RA and SARAH domain, respectively. Isoforms
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F/G and H have a C1 domain and an ATM-kinase
phosphorylation site, respectively (Fig. 8.1).

RASSF1C appears to share many of the
biological characteristics of RASSF1A. On basis
of the similar structure to Ras effector, RASSF1
gene regulates cell proliferation, differentiation,
and apoptosis. RASSF1A functions as a negative
regulator of cell proliferation by blocking the cell
cycle progression at the level of G1/S-phase [17]
and has the dual role in the coordination of p53
and p73 responses [18], while RASSF1C exhibits
growth inhibitory potency [19], although there is
little known on functions of other variants.
RASSF1B, D, and E are found poorly expressed
in hemopoietic, cardiac, and pancreatic cells,
respectively. RASSF1F, E, D, and G share the
same promoter region with RASSF1A, although
the biological significance remains unclear.

RASSF2, RASSF3, NORE1, and RASSF6
were identified as the homolog of RASSF1,
which share similar Ras-association domain with
RASSF1. These genes have SARAH domain and
code multiple transcripts. RASSF2 shares a lower
homology (29% identity) with RASSF1, while
acting as a tumor suppressor gene and undergoing
promoter methylation at high frequency similar to
RASSF1 [20]. The inactivation of RASSF2 may
be associated with tumor progression [20], and
RASSF3 suppresses tumor formation through
interacting with MDM2 and inducing NSCLC
cell apoptosis [21]. NORE1 shares about 50%
sequence identities with RASSF1 and has similar
pattern of mRNA transcript expression and func-
tion as a tumor-suppressor gene [22–
24]. RASSF6 is found frequently suppressed in
several human cancers [20, 25–27].
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Fig. 8.1 (a) Schematic map of RASSF1 locus. Black
boxes indicate exons and open boxes indicate untranslated
regions, respectively. Two CpG islands are shown by
black lines. The transcription start sites of isoform A and
isoform C are indicated with black arrows. (b) The domain

structures of polypeptides encoded by RASSF1. C1,
DAG/diacylglycerol binding domain (black) putative
ATM kinase phosphorylation consensus sequence motif
(blue) RA, Ras-association domain (brown) and SARAH,
Sav/RASSF/Hpo interaction domain (red)
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8.3 Inactivation of RASSF1A by
DNA Methylation in Lung
Carcinoma

The genomic mutational landscape provided
evidences that genetic alterations taken part in
the tumorigenesis of lung cancer. The epigenetic
regulation provides a novel insight in the progres-
sion and evolution of lung cancer [28, 29]. Of the
epigenetic modifications, DNA methylation
mainly occurs in C-G dinucleotide-rich regions,
also named CpG islands [30], where the methyl
group is added by DNA methyltransferase at the
5-position cytosine and erased by demethylase.
DNA methylation mainly occurs at the cytosine‑-
phosphate‑guanine (CpG) island which locates in
promoter region of a gene and regulates the
expression of gene, which plays a vital role in
genomic imprint erasure, instability of chromatin
structure, and X-chromosome inactivation. The
aberrant DNA methylation interacts with gene
expression in the early stage of human cancers
and dynamically during lung carcinogenesis. A
lot of methylated genes have been identified in
lung carcinoma, including RASSF1, major tumor
suppressor 1, fragile histidine triad,
methylguanine-DNA methyltransferase, and
adenomatosis polyposis coli tumor suppressor.

The loss of heterozygosity (LOH) is the most
frequent event during lung tumorigenesis [31],
while rarely attributed to somatic mutations,
except for one frame-shift and missense mutation
identified in nasopharyngeal carcinomas
[32]. RASSF1 is inactivated frequently by the
hypermethylation of the promoter CpG island in
cancers [33–37]. RASSF1 methylation was origi-
nally reported in lung cancer and then shown as
the common event in cancers [33, 38]. RASSF1A
was methylation-inactivated in SCLC, while aber-
rant methylation of the RASSF1C CpG island
promoter was not observed in lung cancer [33].

8.4 Signaling Pathway Involving
RASSF1 in Lung Cancer

Among signaling pathways, RASSF1A
contributes to the carcinogenesis of lung cancer
mainly through Hippo signaling pathways. The
Hippo pathway (i.e., Salvador-Warts-Hippo path-
way) in a kinase cascade regulates the organ size
through regulating cell proliferation, differentia-
tion, and apoptosis [39–41]. The core
components of the pathway encompass the mam-
malian sterile 20-like kinase 1 and 2 (MST1 and
MST2) and the large tumor suppressor 1 and
2 (LATS1 and LATS2), and cooperate with the
adaptor/scaffold proteins, Salvador homolog
1 (hSAV1), and MOB kinase activator 1A and
1B (hMOB1). The downstream effectors of
Hippo pathway are two WW domain-containing
transcriptional coactivators TAZ and its paralog
YAP. Mst1/2 phosphorylates hSAV1 and forms
the activated Mst1/2-hSAV1 complex which
cooperates with hMOB1 and activates LATS1/2.
After then LATS1/2 phosphorylates YAP/TAZ
which is prevented from entering to the nucleus.
Then the complex with transcriptional enhancer
factors (TEADs) is formed and the expression of
anti-apoptotic and pro-proliferative genes are
activated [42–44].

During DNA damage, RASSF1A activated by
ATM can induce apoptosis through the interac-
tion of Hippo pathway with MST1/MST2 via the
C-terminus to prevent the autophosphorylation of
those protein kinases [18, 44, 45]. The
components of the Hippo pathway are intimately
involved in lung morphogenesis and
tumorigenesis [46–48]. The abnormal expression
of those components is associated with the clini-
cal classification, poor differentiation, metastasis,
and poor prognosis and survival in lung cancer
[47, 49–52]. The DNA methylation of promoter
results in the inactivation of RASSF1A,
RASSF1A-MST1/MST2 complex, and dysfunc-
tion of the Hippo pathway. RASSF1A can
enhance the transcription of proapoptotic genes
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through the formation of a complex with YAP
and p73 in the nucleus (Fig. 8.2).

RASSF1A may contribute to the carcinogene-
sis of lung cancer through microtubules and bind-
ing of Cdc20 via an N-terminal region. Cdc20
cannot bind with APC and fail to form the com-
plex Cdc20-APC for the spindle assembly check-
point during mitosis [53]. RASSF1A is required
for stabilizing the microtubule. RASSF1A
controls the motility and invasion of lung cancer
cells through the modulation of tubulin dynamics
[54, 55]. The promoter hypermethylation of
RASSF1A activates premature APC, following
by accelerated cell division, mitotic spindle
abnormalities, and chromosome misalignment
[53] (Fig. 8.2). The exogenous expression of

RASSF1A modulates levels of cyclin D1 and
induces cell cycle arrest in lung carcinoma cells
[17]. RASSF1A inhibits lung cancer cell growth
through reducing the phosphorylation of JNK
[56] (Fig. 8.2).

8.5 Clinical Significance of RASSF1
in Lung Carcinoma

RASSF1 methylation in cancer may serve an
important role in clinical utilities, especially in
lung cancer. For example, the aberrant RASSF1A
methylation may be an ideal biomarker for early
diagnostic and prognostic due to the
non-invasive, high sensitivity, and high

E4F

L

Fig. 8.2 A summary of RASSF1A pathways in
cancergenesis of lung cancer. RASSF1A regulates cell
apoptosis through its interactions with the connector
enhancer of KSR (CNK1), the proapoptotic kinase
MST1, and the modulator of apoptosis-1 (MAP-1). The
CNK1–MST1 complex is also thought to play important

role in cell proliferation. RASSF1A can regulate the
microtubule network by recruiting effectors of the
microtubule-associated protein 1B (MAP1B), C19ORF5,
and the Cdc20. RASSF1A also induced G1 and S-phase
cell cycle arrest through inhibiting the transcription factor
p120E4F (RASSF1A was enhanced by p120E4F) and JNK
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specificity characteristics. It is questionable
whether RASSF1A methylation can be a power-
ful marker for patient prognosis at early stage of
lung cancer. RASSF1A exhibited lung cancer-
specific methylation pattern, with the
hypermethylation level up to 100% in SCLC
and 63% in NSCLC [57, 58]. RASSF1A methyl-
ation can be detected in body fluids including
blood, urine, sputum, and bronchial alveolar
lavages [56–59]. For example, RASSF1A meth-
ylation is observed in the blood of patients with
NSCLC [59]. The RASSF1A methylation of
bronchial aspirates was 21% in patients with
lung cancer and smoking and 1% in patients
with lung cancer alone, respectively. The methyl-
ation level of RASSF1A was associated with the
number of cigarette packs and smoking years
during the lifetime of patients with lung cancer
[60]. The RASSF1 methylation of bronchial
washings was found to have diagnostic sensitivity
[61], which has the great potential to screen risk
populations of patients with lung cancer. DNA
methylation of RASSF1A is correlated with poor
clinicopathological characteristics in nearly all
solid tumors [62], which also includes lung can-
cer. RASSF1 promoter methylation was found in
poorly differentiated tumors [63–65], associated
with tumor grades, stages, and survival. For
example, RASSF1A methylation was associated
with patient survival time in lung adenocarci-
noma [66]. Decreased survival time was observed
in NSCLC patients with RASSF1A methylation,
irrespective of whether patients have received
adjuvant radio therapy or surgical treatment
[58, 64, 67, 68]. On basis of those evidence,
RASSF1 and isoforms as disease biomarkers
should be furthermore evaluated, since disease
biomarkers are expected to have the clear speci-
ficity for disease per se, disease stage, phase,
severity, duration, or response to therapy [69–
76]. Several natural compounds can regulate
DNMT activity or expression to re-activate
RASSF1A [77]. Peperomin E, as a natural bioac-
tive secolignan polyphenol extracted from the
plant peperomia dindygulensis, could demethyl-
ate RASSF1A and upregulate the expression of
RASSF1A by reducing the level of DNMT1 in
lung cancer cells [78].

8.6 Conclusion

Epigenetics changes especially DNA methylation
has been proved to take part in the carcinogenesis
of cancers. The DNA methylation of the tumor
suppressor genes may be exploitable for the bio-
logic and clinical significance of cancers. Overall,
as the common tumor suppressor gene of lung
cancer, evidence have suggested the DNA meth-
ylation of RASSF1 can be an essential potential
clinic diagnostic or prognostic marker and may
provide new therapeutic strategies for future suc-
cessful treatment of lung cancer. It will be very
interesting to further explore how to develop
non-invasive, rapid and less cost detection
methods for DNA methylation and to confirm
the reliability and sensitivity of DNA
methylation.
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