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Abstract

DNA methylations, including global methyla-
tion pattern and specific gene methylation, are
associated with pathogenesis and progress of
pulmonary fibrosis. This chapter illustrates
alteration of DNA methylation in pulmonary
fibrosis as a predictive or prognostic factor.
Treatment with the DNA methylation
inhibitors will be an emerging anti-fibrosis
therapy, although we are still in the
pre-clinical stage of using epigenetic markers
as potential targets for biomarkers and thera-
peutic interventions.
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4.1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a serious
form of pulmonary fibrosis, with which patients
have the median survival time of about 2–3 years
[1]. IPF is also a type of chronic lung disease
characterized by a progressive scarring of the
lung parenchyma and irreversible decline in
lung function with hypoxemia and dyspnea. The
prevalence and mortality of pulmonary fibrosis
are on the rise with age, especially among people
over 50 years old [2]. The incidence of IPF in men
is higher than that in women and is more common
in smokers [3]. Even after smoking cessation, the
status of IPF cannot be improved. The pathogen-
esis of IPF is not completely clear and the clinical
manifestation of IPF is highly variable. However,
there are still some recognized potential risk
factors such as environmental exposure, micro-
bial agents, or gastroesophageal reflux. Recent
studies have shown that gene expression and epi-
genetic regulation, especially the DNA methyla-
tion regulation, play an important role in the
development of IPF [4–6].

DNA methylation is an inherited epigenetic
process, involving the covalent transfer of the
c-5 position of the DNA cytosine loop by the
catalysis of DNA methyltransferases (DNMTs)
[7]. The methylation alters gene function but
does not change the sequence. The majority of
DNA methylation occurs on the fifth carbon atom
of cytosines that precede a guanine nucleotide or
CpG sites [8]. DMA methylation is a dynamic
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and inheritable process. Methylation of CpG
island promoters prevents the binding of tran-
scription factors and results in gene silencing
and repression. On the contrary, hypo-
methylation and demethylation are associated
with upregulation of gene expression
[9]. DNMTs and methyl-binding proteins
(MBPs) are major enzymes to catalyze DNA
methylation [10], essential for transcriptional reg-
ulation and normal development and related to
genomic imprinting, repression of transposable
elements, X-chromosome inactivation, carcino-
genesis, and aging [7, 11].

Epigenetic changes are associated with numer-
ous diseases including cancers and pulmonary
fibrosis, where large hypomethylated blocks of
genomes and promoter hypermethylation of clas-
sic suppressor genes were found [8]. Studies on
DNA methylation analysis confirmed that DNA
methylation is common and important in pulmo-
nary fibrosis. And numerous specific genes
are involving in pathogenesis, such as Thy-1
(CD90), prostaglandin receptor 2 (PTGER2),
cyclo-oxygenase-2 (COX-2), p14ARF, or chemo-
kine IP-10 [12–16]. This chapter will focus on the
global genome methylation pattern and targeted
DNA methylation status in the pathogenesis of
lung fibrosis, and then discuss the potential
therapies of methylation inhibitors [17, 18].

4.2 Genome-Wide DNA
Methylation in IPF

Methodologies for methylation measurement
include next generation high throughput sequenc-
ing, whole genome bisulfite sequencing (WGBS),
microarray, methylated DNA immunoprecipita-
tion sequencing (Me DIP-Seq), bisulfite genomic
sequence (BGS), and methylation-specific PCR
(MSP). WGBS, Me DIP-Seq, microarray, and
BGS are widely used in genome-wide DNA
methylation analysis. For example, the human
CpG islands microarray and WGBS were used
to detect the alteration of the whole DNA
extracted from the lung tissues of patients with
or without IPF [15]. The extensive DNA methyl-
ation changes were found within CpG islands in

IPF lung samples, different from methylation
profiles of healthy, although partial methylated
areas have many similarities [15]. The DNA
methylation and RNA expression changed in
lung tissue from IPF using human methylation
chip and RNA hybridization chip. Altered DNA
methylation is consistent with the mRNA expres-
sion of many genes, indicating the importance of
DNA methylation in the pathogenesis of IPF
[8]. Unfortunately, it is hard to clarify the
alternations of DNA methylation within the indi-
vidual cell type and difference between cell types,
since most studies are based on the entire lung
tissue.

The genome-wide differences in DNA methyl-
ation were detected in fibroblasts isolated from
lung tissue of IPF patients, as compared with
patients with lung nodules [19]. The methylation
differences are mainly concentrated in genes
associated with cell proliferation, extracellular
matrix generation, potassium channel, and organ
organogenesis and corresponded with alteration
of gene expression at mRNA and protein
levels [19].

4.3 IPF Specificity of Thy-1 DNA
Methylation

Several specific genes were considered as
IPF-specific and their DNA hypermethylation is
consistent with the downregulated expression,
such as Thy-1, COX-2, PTGER2, p14ARF, and
chemokine IP-10 [13–16, 20, 21]. The reduction
in the expression of those genes can directly
induce the initiation of fibro-genesis, activation
of fibroblast proliferation, and resistance to apo-
ptosis [1]. Of those, Thy-1 cell surface antigen
(Thy-1) is also known as CD90, a 25–37 kDa
glycoprotein, localizing to lipid rafts and on the
external leaflet of the lipid bilayer [22]. The acti-
vation of Thy-1 promotes T cell activation and
affects multiple non-immunologic biological pro-
cesses, such as cellular adhesion, migration, cell
death, wound healing, neurite outgrowth, tumor
repression, and fibrosis. Thy-1 as a highly
conserved molecule has two membrane-bound
and soluble forms and the biological role of
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Thy-1 dependent upon cell type and tissue speci-
ficity [23]. Thy-1 is often used as a marker for cell
types and has a crucial effect on cell biology, of
which the dysregulation is related to fibrotic
diseases and malignancy [23]. Thy-1 located in
chromosome 9 in mice and chromosome 11q22.3
in human are both initially expressed in the form
of 161 a.a pro-form and have different post-
transcriptional modifications [24]. Two different
proteins encoded from the alleles differ only in
position 89, of which one is arginine and the other
is glycine. Thy-1 in human has only one allele for
thymine, and the first 19 a.a pro-form positions
the signal to targets the endoplasmic reticulum
(ER) [25]. Thy-1 has two isoforms in mice:
Thy-1.2 in Bal/c mice and Thy-1.1 in AKR mice
have a glutamine and an arginine at the position
89, respectively. Genetic characteristics of Thy-1
genes are similar among human, mouse, and rat
[26]. Human Thy-1 contains four exons, of which
exon 1 (Fig. 4.1a, b) produce two mRNA splicing
variants after transcription and exon 2 contains
the translation starting site, exon 3 encodes the
amino acids 7–106, and exon 4 is mainly respon-
sible for the C-terminal end and poly-A tail [27]
(Fig. 4.1).

Thy-1 participates in a number of signaling
cascades and acts as a universal signal modulator
in proliferation, survival, cell adhesion, and
cytokine/growth factor responses [23]. Thy-
1 undergoes signal transduction in
non-immunologic cells by integrins, growth
factors, cytokines, and protein tyrosine kinases.
The roles of those signaling cascades mainly
focus on cell proliferation, apoptosis, cellular
adhesion, and migration. Thy-1 interacts with
itself, adaptors, scaffolds, or signaling molecules,
such as reggies-1/2, Src family of C-terminal Src
kinase (Csk)-binding protein (CBP) and protein
tyrosine kinases (SFK), in the cell membrane of

several cell types to convey signals to the cell
interior. Thy-1 is an important component of pro-
tein complexes, to initiate cell signaling from rafts
(Fig. 4.2). In addition, Thy-1 interacts with other
receptors at the plasma membrane such as αVβ5
integrin in fibroblasts [28]. Thy-1(�) fibroblasts
move faster and migrate more efficiently in
wound healing than Thy-1(+) ones [28]. A mech-
anism to regulate fibroblast migration is involved
in SFK and Rho GTPase activation [27]. It is
proposed that Thy-1 expression regulates Src
and FAK kinase activation, as well as phosphor-
ylation of p190RhoGAP by increasing RhoA-
GTP levels, to stress fiber and focal adhesion
formation [29]. Decreased migration of Thy-1
(+) fibroblast subpopulations may occur as the
consequence of a complex Thy-1-triggered sig-
naling process, in addition to passive Thy-1-to-
matrix adhesion [27]. It implies Thy-1-dependent
roles in fibroblast-matrix adhesion and migration.

The loss of Thy-1 expression in lung
fibroblasts correlates with many aspects of the
fibrogenic phenotype including proliferation
[25]. The proliferated myofibroblasts in the fibro-
blast foci were found Thy-1 negative in IPF,
rather than in the normal fibroblasts [30]. Thy-1
can not only regulate the expression of myogenic
gene, promote myofibroblastic differentiation,
but also determine the survival of lung fibroblasts.
Yan Y. Sanders et al. [20] demonstrated that Thy
(�) fibroblasts proliferated in myofibroblastic
foci, inhibiting the myofibroblast differentiation
of fibroblasts, which was restored by DNA
methyltransferase inhibitors. The epigenetic
downregulation of Thy-1 occurred in cell trans-
formation and clinical malignant tumor
[20]. Rat lung fibroblasts without Thy-1 on the
surface, low expression of myogenic genes and
low protein levels of sarcomeric myosin, α-SMA,
and MyoD, had high responses to

Fig. 4.1 Thy-1 gene structure. Exons 1a and 1b encode two distinct alternative spliced mRNA; exon 3 for the mature
protein, and the 50-end of exon 4 for the trans-membrane sequence. Portions of the gene encoding for the mature Thy-1
protein are marked as light gray orthogons. Dark gray orthogons complete the exons
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pro-myofibroblastic stimuli including
TGF-β [30].

Loss of Thy-1 expression appears to be
associated with the differentiation of
myofibroblasts both in mouse bleomycin model
and IPF patients [31]. The relation between Thy-1
and myofibroblasts phenotype seems to be tissue-
specific and dependent. Loss of Thy-1 expression
also resulted in the hypermethylation of the Thy-1
promoter in IPF Samples and was restored
through demethylation, similar between human
and rat lung fibroblasts [20].

4.4 IPF Specificity of COX-2 DNA
Methylation

Cyclooxygenases (COXs) are a 67–72 kDa inte-
gral membrane protein, are located on the nuclear
membrane and the endoplasmic reticulum (ER),
and contain three isoforms [32]. COX-1 is
expressed constitutively like “housekeeping”
enzyme associated with homeostasis, COX-2 is
the inducible form and is upregulated in both
inflammation and cancer, and COX-3 is
expressed in spinal cord and brain although its
functions remain unclear [33]. Cyclooxygenase-
2 (COX-2) is referred to prostaglandin endoper-
oxide synthase (PTGS)I as a key enzyme that

catalyzes the conversion of arachidonic acid
(AA) to prostaglandins (PGs) [34]. COX-2 plays
a crucial role in some pathophysiological pro-
cesses, including angiogenesis, inflammation,
tumorigenesis, and tumor drug resistance, and
becomes a new target for cancer treatment
[35]. In solid tumors such as colorectal cancer,
prostate cancer, breast cancer, and most recently
hematological malignancies, COX-2 mainly
functions as a regulator of cell proliferation and
apoptosis [33]. The activation and overexpression
of COX-2 were found in tumor cells related to
tumor progression and aggressiveness
[36]. COX-2 expression could be induced by
anticancer chemoradiotherapy, resulting in drug
resistance [36]. The inhibition of COX-2 was
proposed as an attractive new strategy for cancer
treatment in patients [37]. Non-steroidal anti-
inflammatory drugs (NSAIDs), broad spectrum
COX-2-inhibitors, or COX-2-specific inhibitors
were found to have side-effects, such as
myocardial infarction [36]. The development of
new anti-COX-2 drugs with less side-effects
seems particularly urgent [34, 38].

COX-1 gene is located on chromosome
9 (9q32-9q33.3), nearly 40 kilobase (kb) pairs,
containing 11 exons and its mRNA is 2.8 kb.
COX-2 is located on chromosome 1 (1q25.2-
25.3), containing ten exons approximately

Cytoskeleton regulation

Fig. 4.2 Signaling induced by Thy-1. Thy-1 binds to its
ligand (R) and undergoes molecular clustering at the
plasma membrane. Thy-1 interacts with itself, with
adaptors, scaffolds, or signaling molecules, such as

reggies-1/2, Src family of C-terminal Src kinase (Csk)-
binding protein (CBP) and protein tyrosine kinases
(SFK), in the cell membrane of several cell types to con-
vey signals to the cell interior
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8.3 kb and transcript about 4.5 kb [39]. In
the flanking region of COX-2, there are 50 bps of
the regulation area of gene transcription,
containing a TATA box and a few putative
transcription-factor binding sites of NF-IL-6,
NF-κB, and a TGF-β response element, which
demonstrates a complex combination of
the factors associated with COX-2 gene regula-
tion [40]. Single nucleotide polymorphism (SNP)
in the gene promoter affects transcription of
COX-2 gene. The most frequently functional
polymorphisms of COX-2 gene, _765G>C
(rs20417) and _1195G>A (rs689466), are
correlated with inflammatory disorders, such as
chronic periodontitis [41], inflammatory bowel
diseases, and subclinical atherosclerosis
[41]. This is probably because those gene
polymorphisms may alter the function of COX-2
by regulation of COX-2 expression and affect the
synthesis of prostaglandins in the pathogenesis of
inflammatory diseases [42].

Prostaglandin E2 (PGE2), the major catalyzed
product of COX-2, plays a key role in the
tumorigenesis of colorectal cancer [43]. The
COX-2/PGE2-JAK2/STAT3 signaling pathway
may be the drug target for berberine to mediate
the effect on metastasis and invasiveness of can-
cer. The berberine reduced COX-2/PGE2 levels,
inhibited JAK2/STAT3 activation, decreased
expression of downstream target genes MMP-2/-
9, and caused less metastasis and invasiveness in
cancer [44] (Fig. 4.3). PGE2 is associated with
occurrence of malignant tumors and plays a ben-
eficial role in lung fibrotic diseases. This is par-
tially due to the function of PGE2 to limit the
proliferation of lung fibroblasts and to inhibit
myofibroblast differentiation, migration, and col-
lagen secretion. Figure 4.4 diagrams the homeo-
static and anti-fibrotic behavior of PGE2
signaling pathway in fibroblasts and lung epithe-
lial cells (AECs) [45].

The expression of COX-2 was downregulated
in IPF and upregulated in COPD as well as in IPF
and sclerosis [46, 47]. COX-2 downregulation
and reduced PGE2 production are related to
myofibroblasts in the development and progres-
sion of IPF [48]. The downregulation of COX-2
could reduce PGE2 and induce the continuous

proliferation of fibroblasts, which is considered
as a new viewpoint in the pathogenesis of IPF
[49]. Lung fibroblasts derived from IPF patients
were unable to induce PGE2 synthesis, even if
stimulated by proinflammatory cytokines and
LPS, probably due to the abnormal expression
of COX-2 [45, 50]. In patients with IPF, the
PGE2 level of bronchoalveolar lavage fluid was
significantly lower than that of normal
individuals, which is because PGE2 could reduce
the proliferation of fibroblast and collagen aggre-
gation by inhibiting COX-2-dominated synthesis
and promotion of degradation, beneficial for
inhibiting pulmonary fibrosis [51].

COX-2 was downregulated in lung tissue from
patients with IPF [15, 52]. By upregulation of
DNMT3a expression, PGE2 increases the gene-
specific DNA methylation of lung fibroblasts,
such as MGMT gene and IGFBP2 gene [53].

The transcriptional regulatory factor c8orf4 for
COX-2 was demethylated via 5-AZAdc, a DNA
methylation inhibitor to reverse decreased level of
COX-2 mRNA in a dose-dependent pattern
[15, 53]. C8orf4 regulates the expression of
COX-2 in lung fibroblasts by binding of the prox-
imal promoter by the hypermethylation of the
transcription regulator as an indirect epigenetic
mechanism to regulate COX-2 expression and
COX-2 derived PGE2 synthesis in pulmonary
fibrosis [15].

4.5 p14ARF and Function

The p14ARF protein as a tumor suppressor protein
is an alternate reading frame protein (ARF)
encoded by CDKN2A gene. ARF is a 14 kDa,
132 a.a protein named p14ARF in human, and a
19 kDa, 169 a.a protein named p19ARF in mice
[54]. P14ARF is a cell cycle regulation protein to
block the cell cycle in the G1 and G2 phases and
inhibit the growth of abnormal cells by activating
p53 indirectly [55]. p14ARF protein binds to and
interferes with the Mdm2 protein, a p53 negative-
regulator, and then stabilizes and activates p53
pathway [54, 56]. The role of p14ARF in carcino-
genesis was evidenced by the finding that
ARF-null mice have a high tendency to induce
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AA PGs

PGE2

PGE2

Cell Growth,
Invasion and metastasis

Fig. 4.3 COX-2/PGE2-JAK2/STAT3 signaling pathway.
PGE2, the main catalyzed product of COX-2 from
arachidonic acid, could bind to the EP receptor on the
cell membrane, thereby activating the JAK2, followed by

the phosphorylating of STAT3 in the Tyr705 site. Berber-
ine inhibits invasion and metastasis of colorectal cancer
cells via COX-2/PGE2 mediated JAK2/STAT3 signaling
pathway

Fig. 4.4 PGE2 signaling pathway in lung fibrosis.
Diagrams the homeostatic and anti-fibrotic behavior of

PGE2 signaling pathway in fibroblasts and lung epithelial
cells (AECs)
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tumors, e.g., carcinomas, gliomas, lymphomas,
and sarcomas, leading to death early in life [57].

The INK4a–ARF locus (CDKN2A in humans)
on chromosome 9p21 encodes two structure-
similar tumor suppressor proteins with different
functions, p14ARF (p19ARF in the mouse) and
p16INK4a to indirectly control the activities of
p53 and the retinoblastoma protein
(RB) transcription factor, respectively
[58]. p14ARF and INK4a mRNA consist of
3 exons of which exons 2 and 3 are the same
with two different exon 1 transcripts (α and β)
[59, 60]. Although p14ARF has an unrelated struc-
ture, it can also cause cell cycle arrest in G1 and
G2 phase [61]. P14ARF gene as a tumor suppres-
sor gene plays an important role in the progres-
sion and pathogenesis of tumor, since it is usually
mutated or deleted [62, 63].

The dysfunction of the p14ARF-Mdm2-p53
pathway, also known as p53 pathway, is one of
the most important signals of cancer pathogene-
sis. The p14ARF in the p53 pathway binds with
Mdm2 in the nucleolus, resulting in the inability
of Mdm2 to degrade p53 [64, 65] (Fig. 4.5). The
activity of Mdm2 can be inhibited by p14ARF, to
indirectly block the degradation of p53. When
p53 is activated, the consequences of the
ARF-p53 binding depend on the cell cycle state
[66]. P14ARF controls the expression of p53, and
then activated p53 secondarily regulates the

expression of p14ARF by negative feedback
[67]. Overexpression of p14ARF in the nucleus
contributes to the loss of shuttling ability of
Mdm2 and induces p53 mutations [68]. This path-
way is inactivated by p14ARF deletion, p53 muta-
tion, or amplification of Mdm2, which is complex
and interactive but common and important.

The p53/p14ARF signaling pathway is often
downregulated in patients with colorectal cancer,
and p14ARF is highly methylated in the early
stages of colorectal cancer [69]. The methylation
of p14ARF may have predictive value for early
colorectal cancer patients, but not as a prognostic
factor. The target drug for p14ARF demethylation
may be a new direction for the development of
new colorectal cancer drugs [69]. The p14ARF

gene can be inactivated in many cancers, due to
deletion, promoter hypermethylation, or
mutations [69]. In the evolution of oligoden-
drogliomas, the hypermethylation-resulted aber-
rant p14ARF expression and the deletions of
p14ARF/p16INK4a are associated with the pro-
gression to anaplastic oligodendroglioma
[70, 71]. Studies on the methylation status of the
p14ARF promoter suggested that p14ARF can be a
useful biomarker for the pathological TNM stage,
prognosis, and clinical outcome of cancer patients
[72]. Homozygous deletion of the p14ARF gene
loci was detected in multiple carcinomas and was
associated with tumorigenesis. DNA methylation

p53--Mdm2

Cell Membrane

Cytosol

p53

Mdm2-
P14ARF

Nucleolus

Oncoproteins

p53--Mdm2 Degradation of p53

Fig. 4.5 p14ARF-Mdm2-p53 pathway in breast cancer.
Mdm2 translocates from the nucleolus to the nucleoplasm

and binds to p53. The Mdm2-p53 complex then migrates
to the cytoplasm, resulting in the degradation of p53
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can regulate p14ARF mRNA levels, and the meth-
ylation status of p14ARF is related to the occur-
rence of primary liver cancer and TNM staging
[73]. The promoter methylation status of p14ARF

in fibroblasts isolated from IPF and normal lung
demonstrated that hypermethylated p14ARF

occurred in half of the IPF fibroblasts and was
correlated with the decreased expression of the
gene and protein as well as increased resistance to
apoptosis [16].

Hypermethylation and downregulated expres-
sion of PTGER2 also play an important role in the
development of IPF. Levels of DNA
hypermethylation were higher in fibroblasts
isolated from mice and human lungs with pulmo-
nary fibrosis, leading to a decrease in EP2 expres-
sion level and PGE2 resistance [14]. Therapies
with DNA methylation inhibitors (e.g., 5-Aza-2-
0-deoxycytidine and zebularine) reversed the
reduced mRNA and protein expression of EP2,
and restored PGE2 activities in fibrotic
fibroblasts. Those results indicate that DNA
hypermethylation play the decisive role in the
downregulation of PTGER2 expression and
subsequent PGE2 resistance. The enhancement
of Akt signal transduction may be a new mecha-
nism of the promotion of DNA hypermethylation
in the formation of lung fibrosis [14].

4.6 Conclusion and Prospective

DNAmethylation is one of mechanisms by which
the epigenetic regulation plays a crucial role in
lung fibrosis, cancer, and chronic diseases. Global
methylation pattern and specific gene methylation
status as an important regulatory factor contribute
to the development of pulmonary fibrosis. DNA
methylation of associated genes is associated with
the occurrence and progression of pulmonary
fibrosis and change the phenotype and destiny
of fibroblasts through the regulation of cell acti-
vation, differentiation, and balance of fibrotic and
anti-fibrotic gene expressions.

Methylation patterns and severities of the pro-
moter regions of Thy-1, COX-2, p14ARF, and
PTGER2 genes should be considered as disease-
specific biomarkers to predict the occurrence and

development of IPF. The intracellular
mechanisms and heterogeneity of DNA methyla-
tion in the regulation of signal pathway activities
should be investigated by single-cell DNA and
RNA sequencing [74–76]. The promoter methyl-
ation of the target genes can contribute to the
pathogenesis and development of pulmonary
fibrosis through multiple signal pathways, which
should be furthermore identified and validated
with advanced biotechnologies [77–81].
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