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Abstract

Monoclonal antibodies from human sources
are being increasingly recognized as valuable
options in many therapeutic areas. These
antibodies can show exquisite specificity and
high potency while maintaining a desirable
safety profile, having been matured and
tolerized within human patients. However,
the discovery of these antibodies presents
important challenges, since the B cells
encoding therapeutic antibodies can be rare in
a typical blood draw and are short-lived
ex vivo. Furthermore, the unique pairing of
VH and VL domains in each B cell contributes
to specificity and function; therefore,
maintaining antibody chain pairing presents a
throughput limitation. This work will review
the various approaches aimed at addressing
these challenges with an eye to next-genera-
tion methods for high-throughput discovery
from the human B-cell repertoire.
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18.1 Introduction

In the past few years, the use of monoclonal
antibodies has seen an explosion as therapeutics,
diagnostics, and tools in biomedical research.
This is because antibodies carry exquisite speci-
ficity to their respective target, persist in the body
for many weeks (particularly if endowed with
half-life extension technology) and can elicit
responses through multiple mechanisms of
action, particularly as relates to interactions with
their Fc domains. With several improvements in
R&D for antibody discovery and development,
the number of antibody therapeutics has dramati-
cally increased, with over 570 molecules in clini-
cal development and 12 new molecules approved
in 2018 alone [1]. The therapeutic use of mono-
clonal antibodies spans the breath of therapeutic
areas, including infectious disease, cancer, and
autoimmune disorders and increasingly ingenious
delivery methods, from inhaled to gene therapy,
are constantly improving the convenience of
administering these therapeutics such that we
expect their use to continue increasing with time.

Although monoclonal antibody research began
with mouse hybridoma technology [2] and many
approved antibodies are mouse-derived, the
immunogenicity issues that ensued have led to
an interest in antibody discovery from other
sources, particularly human. This review will
therefore focus on technologies that derive thera-
peutic antibodies from human sources, though it
is acknowledged that many of the next-generation
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B cell approaches could be applied to mouse or
any species for which we have antibody sequence
information.

18.2 Antibody Discovery from
Synthetic Libraries

Antibody specificity and activity are the result of
sequence evolution for a starting set of germline
immunoglobulin sequences. One approach to arti-
ficially simulate this evolution is through random
mutation of a human germline sequence using
error-prone PCR [3, 4] or specific mutation of
the complementarity determining regions (CDR)
using randomized primers [5, 6] and selecting
variants with desirable characteristics through
one of the display-based methods such as phage
display [7]. These approaches can screen through
libraries of massive diversity for binders, though
the size of most naïve libraries is often dwarfed by
the theoretical diversity of the introduced
mutations, making full coverage of the sequence
space impossible. The resulting antibody
candidates therefore tend to be partially evolved
sequences with mid-level affinities and modest
therapeutic efficacy. They can however serve as
a template for secondary evolution through more
targeted affinity maturation processes before final
therapeutic leads can be chosen.

18.3 Antibody Discovery from
Natural Repertoires

Another approach is to use the extraordinary
power of natural systems to evolve antibodies,
through immunizations of mice or other species,
including humans. Here, sequence evolution and
selection take place in germinal centers where the
antibody expressing B cells compete for limited
antigen binding and growth factors. Once
isolated, these antibodies can display very high-
affinity (often picomolar KD or lower) for their
cognate antigens and target a variety of epitopes,
including functional ones. Moreover, antibodies

evolved within humans may be better tolerated as
therapeutics, having edited out immunogenic
sequence variants during evolution. The vast
majority of antibodies on the market and in devel-
opment have been isolated from natural
repertoires, most notably in the infectious disease
areas, with many prominent reviews on the dis-
covery of neutralizing antibodies against HIV [8],
Influenza [9], Ebola [10], Zika [11], and many
more. While not as extensive, studying B cells
from cancer patients is a burgeoning field and
recent analyses of the B cell repertoires from
non-progressing cancer patients have led to the
identification of specific tumor-inhibiting
antibodies that have therapeutic potential [12–
14]. Similarly, antibody-mediated autoimmune
diseases are benefiting from the analysis and
screening of the patient B cell repertoire, includ-
ing in myasthenia gravis [15, 16], Celiac disease
[17, 18], multiple sclerosis [19] and rheumatoid
arthritis [20]. While the identification of patho-
genic antibodies in these diseases does not
directly represent a therapeutic option, the targets
they bind can point to potential avenues for valu-
able therapies that may emerge in the future.

18.4 Challenges and Opportunities

Despite many successes, recovering antigen-
specific antibody sequences from humans is chal-
lenging for reasons listed below and in response
to these there has been a steady evolution of
technologies to further improve and simplify the
process (Fig. 18.1). Each of these approaches
have successfully led to the identification of valu-
able antibodies, some seminal to studying of the
disease in question.

18.5 Antigen-Specific B Cells Can Be
Very Rare

B cells producing antibodies against any particu-
lar antigen tend to be rare in the blood of a healthy
or convalescent individual, amidst the vast
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number of cells encoding irrelevant antibodies.
Finding these cells using the standard practice of
depositing single B cells in each well of a micro-
titer plate therefore becomes very challenging. In
some cases, this problem can be circumvented by
immunizing the host and collecting blood when
antigen-specific B cells reach peak abundance
and indeed most discovery campaigns using sin-
gle B cell cloning have used this approach. Addi-
tionally, if therapeutically relevant domains can
be purified, these can be used not only for immu-
nization, but also selection of antigen-specific
memory B cells through FACS, for instance in
the identification of broadly neutralizing anti-HIV
antibodies of high therapeutic potential
[21]. However, in the absence of a specific
domain of interest, immunodominant antibodies
elicited through vaccination may not be against
epitopes with therapeutic potential, such as sites
that mediate neutralization or conserved sites use-
ful for cross-reactivity. Moreover, the availability
of a suitable immunogen, adjuvant and relevant
host can limit the diseases for which this approach
can be used.

18.6 B Cells Are Short-Lived Ex Vivo

Campaigns using primary B cells are significantly
time-bound, as the ex-vivo viability of primary B
cells is limited to 1–2 weeks, with antibody
expression waning prior to that, particularly if
grown in isolated cultures. Moreover, the

proportion of B cells actively secreting IgG
within the blood is very low, so methods need to
be in place to differentiate non-secreting cells
(i.e., memory B cells) in culture. One method
would be to perform RT-PCR on lysed single B
cells, followed by amplification of VH/VL

sequences, and reconstitution of the antibody in
recombinant format for screening. The approach
works well to find antibodies from immunized
donors where the proportion of antigen-specific
B cells is high but can be a laborious process if
most B cells express irrelevant antibodies [22–
24]. Several approaches have focused on
immortalizing B cells using viral infection [25–
27] or hybridoma generation [28], coupled with
cytokine stimulation for cells to secrete antibody
for screening. However, each of these steps
(immortalization, stimulation, fusion, single-cell
cloning) carry inherent inefficiencies and biases
that when put together may limit the number of
single B cells that can be screened. Successful
campaigns would also need large B cell
populations to be kept in culture for extended
periods with considerable manipulations.

18.7 Antibody Chain Pairing Is
Often Important for Function

Antibodies are heterodimeric proteins encoded
by uniquely mutated heavy and light chain
transcripts whose pairing is often necessary for
specificity and activity. Ideally this information

Fig. 18.1 (continued) combinatorial libraries using display technologies (A) or barcoded using unique molecular
identifiers (UMI) and sequenced using next-generation sequencing (NGS—B). Various analysis methods can be used
to identify dominant clonotypes which need to be paired and synthesized for screening. Individual members of each
clonotype can then be subsequently screened for improved function. To preserve the native VH/VL pairing, B cells are
deposited in microtiter plates through FACS cloning and isolation of individual VH/VL sequences (C) by reverse-
transcription (RT) and polymerase chain reaction (PCR), followed by recombinant expression and screening. B cells
can also be immortalized, stimulated and cultured to allow conditioned media to be screened (D). This can be
miniaturized using commercial platforms, either using nanoliter-sized chambers (e.g., AbCellera, Berkeley Lights—E)
or picoliter-sized water-in-oil emulsions (e.g., HiFiBiO—F) whereby single B cells can be screened without immortali-
zation, recovered and sequenced. If B cells are colocated with poly-dT beads, they can be lysed and cognate VH/VL

mRNA species paired for NGS. This can be done using microwells on chips (G) or using emulsions (10x Genomics—H).
The beads can also be re-emulsified to generate a linked product suitable for NGS (I). Finally, this linked amplicon can be
generated in-frame using beads (J) or directly in droplets (K) to create a natively paired library which can be enriched for
antigen specificity using display approaches, thereby combining the advantages of most of the above-mentioned
approaches. Donor image designed by Kjpargeter/Freepik (www.freepik.com)
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can be captured by sequestering individual B cells
in microtiter plates for extraction and cloning of
their V genes [23, 24, 29], with the limitation that
again only a fraction of the full B cell repertoire of
a typical blood draw (one to ten million cells) can
be covered. Conversely, it has been a common
approach to collect total RNA from a large pool
of lysed B cells, separately amplify heavy and
light chains, then pair them randomly to form a
library of exponentially larger complexity [30–
32]. In theory, the diversity of such immune
libraries is lower than that of the synthetic
libraries mentioned above and could be harnessed
using phage display to identify the originally
paired and functional sequence and this has been
shown with immunized mice with restricted
diversity [33]. However, in more diverse libraries,
for instance from healthy donors, recovering the
original pair is a challenge. Biases in expression
and VH/VL pairing preferences [34] can lead to the
selection to nonnatural solutions and require sec-
ondary optimization screens, for instance using
light chain shuffling.

Another approach is to sequence the B cell
repertoire and synthesize candidate antibodies
for screening, for instance after hierarchical clus-
tering of sequences to identify phylogenetic
lineages. The application of next-generation
sequencing (NGS) has been well described for
the characterization of the antibody repertoire,
particularly regarding separately prepared heavy
and light chain libraries obtained from mRNA
isolated from thousands to millions of B cells
[35–37]. A recent NGS analysis of the antibody
repertoires from ten individuals revealed that their
repertoires were largely unique and that the over-
all diversity of antibody sequences in the human
population is extremely large, on the order of 1012

unique paired VH/VL sequences [37]. While the
amplification of B cell mRNA using 50 RACE
provides an unbiased representation of the
expressed repertoire for sequencing, current
NGS length limitations make assembling such a
fragment from paired-end sequencing a chal-
lenge. As a result, libraries are often made using
multiplex V-gene specific primers to remove the
50 untranslated region and leader sequences and

reduce amplicon size [38] which can introduce
bias. Additionally, given that antibodies undergo
somatic hypermutation, a significant challenge in
the field was to determine if a given mutation was
due to natural antibody diversification or a result
of PCR and/or sequencing-related artifacts. This
issue has been elegantly solved through the addi-
tion of unique molecular identifier (UMI)
barcodes, where the initial template cDNA can
be ligated to a unique tag that is also sequenced to
enable error correction at the analysis stage
[39, 40]. Using these methods, a population of B
cells can be profiled to identify phylogenetic
lineages [41] that indicate the maturation of spe-
cific clonotypes as evidence of antigen specificity.
However, given that maturation at the heavy and
light chains occur independently, it is not possible
to accurately predict chain pairing based on NGS
data and heuristics need to be used to down-select
panels of heavy and light chain sequences to
synthesize and combinatorially pair for functional
testing. Again, in cases where subjects are
immunized and B cells harvested at optimal
times, this approach can be quite effective, as
the most abundant heavy and light chain
clonotypes may represent the original pairs. How-
ever, for cases involving the identification of
antigen-specific antibodies from healthy donors
or patients with chronic diseases such as cancer,
the selection of antibody function from sequence
information alone is likely to be incomplete.

18.8 Next-Generation Microfluidic
Technologies

Though successful in many instances, these two
broad approaches (display versus B cell cloning/
sequencing) suffer from conflicting issues. On the
one hand, display-based systems can screen
through vast synthetic or combinatorial libraries
to identify antigen-specific antibodies of mid to
low quality. Conversely, B cell discovery
platforms start from B cell pools encoding poten-
tially high-quality antibodies but lack the screen-
ing power to identify antigen-specific antibodies,
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especially if the B cells encoding them are rare.
Over the past 5 years a range of new technologies
have emerged promising to solve this tradeoff by
miniaturizing the vessel into which B cells are
sequestered. Several growing companies
(AbCellera, Berkeley Lights, and HiFiBiO) have
been successful in directly screening antibody
secreting cells within these vessels for binding
or even functional activity then exporting
antigen-specific B cells into defined locations for
V gene capture. Alternatively, several approaches
described below have detailed using droplet
microfluidics to capture the natively paired reper-
toire from B cells into a format suitable for next-
generation sequencing technology. Finally, the
repertoire can be captured via microfluidics in
an expressible format to display and/or screen as
recombinant protein, effectively combining the
benefits of natural antibody evolution with the
screening power of display-based approaches.

18.9 Paired Ig Sequencing

In 2013, DeKosky and colleagues devised a
method to have B cells deposited within
microwells on a microfabricated chip along with
magnetic beads conjugated to poly-dT
oligonucleotides [42]. The chip could be sealed
with lysis reagents such that the cognate heavy
and light mRNA strands would be recovered and
linked in a format suitable for next-generation
sequencing. The repertoire from 68,000 B cells
could be captured in a single run, an improvement
in throughput of one order of magnitude over
traditional 96-well formats. In a follow-up
paper, the group expanded the method to have
the B cells and magnetic beads encapsulated into
water-in-oil droplets, further raising the through-
put to one million B cells per run [43]. This falls
within the range of B cells obtained from a typical
blood draw and enabled the first comprehensive
evaluations of the paired antibody repertoire for
therapeutic antibodies. As with the single chain
NGS studies however, it is a challenge to deter-
mine antigen reactivity from antibody sequence
alone. An elegant addition to this method

therefore has been to overlay paired sequencing
data from circulating B cells with proteomic
sequence analysis of serum antibodies
immunoprecipitated with antigen [44, 45]. Using
immunized donors, the authors were able to iden-
tify potent neutralizing antibodies targeting influ-
enza and HIV. The advent of 10x Genomics now
provides a commercial option for obtaining
paired immunoglobulin sequences from primary
B cells, albeit from a smaller number of cells
(approximately 10,000 cells) and this system has
recently been used to sequence B cells from
immunized mice to identify antigen-specific
antibodies [46].

18.10 Native Library Screening

A natural evolution of these technologies has led
to the combination of miniaturizing B cell capture
into microfluidic emulsions with paired immuno-
globulin capture into a format that can be
expressed. Recently, three independent groups
have reported in short succession microfluidic
methods to capture the repertoire from millions
of B cells and rapidly screen them for antigen-
specific antibodies.

Adler and colleagues at GigaGen devised an
approach to co-encapsulate one to two million B
cells in a co-flow setup with poly-dT magnetic
beads suspended in lysis/binding buffer [47]. Fol-
lowing bead capture of the mRNA, the emulsions
are broken and recovered beads re-emulsified
with RT-PCR buffer and a cocktail of primers to
generated linked heavy-light amplicons in scFv
format. The authors then expressed this library of
natively paired scFv amplicons on the surface of
yeast and used multiple rounds of fluorescence-
activated cell sorting (FACS) to enrich for yeast
cells displaying antibodies specific to influenza A
and pneumococcal polysaccharide antigens. A
subset of recovered scFv-s confirmed to be
antigen-specific and functional when expressed
in IgG format, and based on NGS analysis, they
were estimated to be present at 0.001% of the
starting library diversity. The approach was also
validated with immunized mice (having a higher
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proportion of antigen-specific B cells) for the
isolation of antibodies blocking checkpoint
inhibitors [48].

Wang and coworkers also reported a similar
two-step emulsification strategy to generate a
natively paired Fab library, a more aggregation
resistant antibody fragment with biophysical
properties closer aligned with IgG, that was also
displayed the library on the surface of yeast
[49]. They used this method to construct libraries
from immunized or convalescent patients and
panned them over successive rounds to isolate
functional antibodies specific to Ebola, HIV, and
influenza antigens.

Finally, our group has developed a method of
capturing the native repertoire from millions of B
cells into natively paired scFv fragments
displayed on the surface of phage [50]. Here, B
cells are not co-encapsulated with magnetic beads
but rather with a highly optimized reaction mix
that performs sequential reactions for B cell lysis,
amplification of VH and VL segments and their
pairing by overlap-extension PCR, all within the
same droplets. This streamlines the process and
obviates the need to handle beads, where captured
mRNA species can exchange. The approach was
used to rapidly identify very rare and cross-
reactive antibodies targeting influenza
hemagglutinin.

18.11 Future Directions

Since all three native screening methods use
emulsions for amplification of template, this
may have an added benefit of normalizing for
mRNA expression levels within individual B
cells, as the limiting reagents within droplets
should saturate with enough cycles of PCR. It
would be interesting to see if this bears out in
future studies using NGS analysis. On the other
hand, since these methods require priming at spe-
cific regions to be in-frame (i.e., the start of
framework 1 and the end of framework 4), the
multiplex primer sets may not be ideally suited to
perform as well as other amplification methods
(i.e., 50 RACE) and would benefit from continued
development. While not extensively mentioned in

this text, these new methods have the potential for
screening natively paired repertoires from other
species simply by changing primer sets. This has
been demonstrated with immunized mice [48],
though other species such as rat, rabbit, and
even nonhuman primates could provide B cells
from which valuable antibodies can be derived.

The success of antibody therapeutics has led to
increasing numbers of molecules in clinical trials
and as approved medicines and this trend is
expected to continue. Fueling this growth is a
continued evolution of methods for mining new
therapeutic antibodies, both through synthetic and
natural repertoires. We can expect that the
technologies of the future will continue to harness
the natural antibody repertoire with increasing
throughput, breadth, speed, and fidelity to reliably
generate therapeutic candidates against a continu-
ally expanding list of targets.
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