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Abstract

Hypermethylation can downregulate many
tumor suppressor gene expressions. Aplasia
Ras homologue member I (ARHI, DIRAS3) is
one of the maternally imprinted tumor
suppressors in the RAS superfamily. This chap-
ter overviewed the importance of ARHI methyl-
ation and expression phenomes in various types
of cancers, although the exact mechanisms

remain unclear. As an imprinted gene, aberrant
DNAmethylation of the paternal allele of ARHI
was identified as a primary inhibitor of ARHI
expression. The role of methylation in the CpG
islands of the ARHI promoter region vary
among ovarian cancers, breast cancers, hepato-
cellular carcinoma, colon cancers, pancreatic
cancer osteosarcoma, glial tumors, follicular
thyroid carcinoma, or lung cancers. The methyl-
ation of ARHI provides a new insight to under-
stand molecular mechanisms of tumorigenesis
and progression of cancers.
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10.1 Introduction

Aplasia Ras homologue member I (ARHI,
DIRAS3) is the first tumor suppressor gene
identified in the Ras superfamily [1] and allocated
in chromosome 1p31 where there is loss of het-
erozygosity. ARHI has a distinctive N terminal
extension for the suppression of tumor growth
and is one of 40 genes to be imprinted in the
human genome. ARHI is expressed in cells from
the paternal allele during the process of embry-
onic development [1]. The protein coding region
is located within exon 2 and encodes a
229-residue small GTP binding protein belonging
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to the Ras superfamily [2]. Three potential CpG
islands about 300 base pairs were found in the
promoter and exons of the ARHI gene (Fig. 10.1).
CpG island I, II, and III are located about 1 kb
upstream of the transcription initiation site, and in
the region of exon 2, respectively (Fig. 10.1b). Of
those, CpG island II spans the 50-up-stream
region of ARHI, including the transcription initi-
ation site and a portion of exon 1 (Fig. 10.1b) [3].

The imprinted gene ARHI undergoes the dys-
function with a “single hit” during carcinogenesis
by inactivating single functional allele [4]. ARHI
silencing in cancers can be caused by multiple
mechanisms, including LOH, DNA methylated,
histone deacetylation, histone methylation, and
transcriptional regulation. The acetylation and
methylation of chromatin lead to the
downregulation of ARHI expression and ability
to suppress tumor growth [4]. The histone
deacetylation and H3 lysine 9 methylation con-
tribute to the silence of ARHI by DNA

methylation-dependent pathway (Fig. 10.2) and
the binding of transcriptional repressors to recruit
relevant enzymes onto chromatin (Fig. 10.3).
Human oncogenesis may be due to the change of
DNA methylation. About 50% of human genes
have clusters of CpG islands in the 50-regulatory
sequences, of which the most are not methylated.
In human cancers, the aberrant methylation
includes hypomethylation, hypermethylation, and
increased DNA methyltransferase activity [5, 6].

Aberrant methylation of CpG islands acts as a
distinct molecular mechanism, leading to malig-
nant transformation and providing the epigenetic
equivalent of mutation/deletion during oncogene-
sis [7, 8]. Such DNA methylation is also
recognized as potential driver of carcinogenesis
[9]. CpG methylation lead to gene transcription
declining in the promoter region in ARHI genes
[10]. The downregulation of ARHI is found in
many types of cancer, including ovarian cancer,
hepatocellular carcinoma, and others [11]. This
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Fig. 10.1 Structure of the human ARHI gene. (a) Struc-
tural organization of the ARHI gene and schematic draw-
ing of the ARHI cDNA. The ARHI gene contains two
exons interrupted by large intron. The blocked and opened
boxes represent the coding and noncoding regions.
Shadowed boxes are CpG island regions. Restriction

enzyme sites are designated as: S Smal, K Kpnl, X Xbal,
H Hind III, E EcorI, N Ncol. (b) The GC content per
100 bp across the entire ARHI locus. (c) The G + C
content per 100 bp and CpG density per 100 bp for the
CpG island II spanning the region upstream of and
encompassing the entire exon1
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chapter aims at overviewing the correlation
between ARHI CpG methylation and the tumor
in the development of cancer.

10.2 ARHI and Ovarian Cancer

Of malignancies, the highest expression ARHI is
expressed in ovarian tissues [1]. The ARHI
expression was downregulated in ovarian tumor
tissues, as compared with the normal ovarian
tissues [12, 13]. The ARHI expression was

reduced in ovarian serous papillary carcinomas
[14] and ARHI protein consistently expressed in
epithelial cells of ovarian surface [4]. The levels
of ARHI expression were correlated with the
malignancy of tumors [14], of which ARHI was
reduced in 88% of ovarian cancer tissues. The
overexpression of ARHI can inhibit the prolifera-
tion of ovarian tumor cells and induced
autophagy and tumor dormancy and other
phenomena [15].

The ARHI expression is regulated by CpG
island methylation in the ARHI promoter region
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Fig. 10.2 Methylation-dependent model for the silencing
of the ARHI gene in cancer cell. (a) A transcriptionally
active CpG island promoter is depicted with positioned
nucleosomes, consisting of acetylated (CH) histone and
unmethylated CpG residue (white circle). Histone
acetyltransferase (HAT) creates an accessible chromatin
configuration that facilitates transcriptional activity. (b)

Silenced ARHI gene. Transcriptional repressor complex
including methyl-CpG binding domain (MBD) protein,
DNA methyltransferase (DNMT), histone deacetylase
(HDAC), and other repressors binds to methylated CpG
(gray circles) and inactivates the ARHI gene. (c) Chemical
inhibitors such as 5-AZA and TSA can inhibit DNMT and
reactivate the ARHI gene
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and other way. ARHI CpG islands I and II were
hypermethylated in 31% and 12% of ovarian
cancers, respectively, associated with reduced
ARHI expression [16]. ARHI expression reduced
in ovarian cancer epithelial and modified cancer
cells (SKOV-3 and HO-8910), where CpG
islands I and II were partially methylated or
hypermethylated, enhancing the proliferation of
tumor cells. Such proliferation was reversed by
the administration of 5-aza-20-deoxycytidine [17].

10.3 ARHI and Breast Cancer

ARHI expression is lost or downregulated in most
breast cancers, while the ARHI overexpression
inhibits the growth of tumor cells and induces
the apoptosis of tumor cells [18]. Transcriptional
repression of ARHI is closely related to breast
cancer progression [19]. The expressions of

ARHI were detected in normal breast epithelia,
downregulated in 41% of ductal carcinoma in situ
(DCIS) and 70% of invasive carcinomas
[20]. Compared with DCIS in the same sample,
ARHI was further downregulated in 26% of inva-
sive carcinomas. About 17% of invasive carci-
noma lost ARHI protein expression. Other
investigators reported that ARHI mRNA expres-
sion decreased in 46–48% of human breast cancer
specimens [20, 21], correlated with lymph node
metastases [21] and involved with the progression
of breast tumor.

ARHI expression can be downregulated by
various mechanisms. For example,
hypermethylation of both alleles in the CpG
island II of the ARHI promoter region was closely
correlated with silencing of ARHI expression in
10–15% of patients with breast cancers
[4, 10]. Aberrant methylation was accompanied
with decreased ARHI expression in breast cancer
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Fig. 10.3 Methylation-independ model for silencing the
ARHI gene in cancer. (a) Silence ARHI gene. Transcrip-
tional repressor complex, including histone deacetylase

(HDAC) and other transcription repressors, inhibits HAT
and inactivates the ARHI gene. (b) TSA can inhibit
HDAC and reactive the ARHI gene
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cells. Hypermethylation was detected at CpG
island I of 67% breast cancer cells, 33% at CpG
island II, and 56% at CpG island III, while
hypomethylation at CpG island II of 44% breast
cancer cells. Treatment with 5-aza-2deoxy-
cytidine, a methyltransferase inhibitor, can
demethylate and partially restore ARHI expres-
sion with hypermethylation of CpG islands
[10]. ARHI expression was partially upregulated
in cells with hypermethylation of CpG islands.
CpG islands methylation was studied in
20 human tissues. On the other hand, no
hypermethylation was found in CpG island I of
surgical specimen, 15% hypermethylation in CpG
island II, and 20% in CpG island III [10]. During
imprinting, CpG islands are consistently
methylated and silenced in the maternal allele of
normal cells, whereas not in paternal alleles. CpG
island II hypermethylation of both alleles
completely eliminated ARHI promoter activity.
The degree of ARHI methylation is related to
the survival of patients [22], which provides a
new mechanism for the breast tumors [10].

10.4 ARHI and Colon Cancer

ARHI expression was also downregulated in
colon cancer cells, while overexpression could
reduce the number of invaded cells and the adhe-
sive ability [23] and promote colon cancer cell
apoptosis [24]. ARHI expression was
downregulated in 62% of colon cancer
specimens, associated with worse differentiation
degree and Dukes’ stage. Methylation-specific
PCR assay revealed that the methylation rates of
ARHI were 53% and 47% in CpG Island I and
CpG Island II, respectively. The promoter meth-
ylation may downregulate ARHI expression in
colon cancer, which can be a therapeutic potential
for the disease [25].

10.5 ARHI and Hepatocellular
Carcinoma (HCC)

ARHI gene expression was found to be related to
hepatocellular carcinoma, evidenced by the fact

that ARHI expression was downregulated in
78.6% HCC specimens, accompanied by reduced
levels of ARHI protein [26]. The overexpression
of ARHI inhibited HCC growth and colony for-
mation, while the silencing of endogenous ARHI
promoted cell growth [26]. Upregulated ARHI
expression inhibited tumor growth and angiogen-
esis in hepatocellular carcinoma, which were
prevented by 5-aza-20-deoxycytidine
[27, 28]. ARHI hypermethylation occurred in
47% of patients with HCC without ARHI expres-
sion. The downregulated expression of ARHI in
HCCs acts as a tumor suppressor role, which was
mainly stimulated by the epigenetic modification
in HCC [26].

10.6 ARHI and Pancreatic Cancer

Overexpression of ARHI can inhibit the cell cycle
and apoptosis in pancreatic tumor cells [29]. Com-
pared with normal pancreatic tissues, ARHI is
downregulated in approximately 50% in pancre-
atic cancer tissues. The immediate reason for this
downregulation or loss of ARHI expression in
pancreatic cancer cells was due to the aberrant
methylation of ARHI locus. Hypermethylation
was detected at CpG island I of 100% pancreatic
cancer cells, at CpG island II of 40%, and at CpG
island III of 80%, respectively. The growth of
pancreatic cancer cells can be suppressed by the
overexpression of ARHI which is involved with
the apoptosis of cancer cells. The upregulation of
ARHI mRNA expression induced by the demeth-
ylation of ARHI can obviously inhibit cell growth
and increase apoptosis in human pancreatic can-
cer cells. It was evidenced that ARHI serves as a
gene that inhibits growth in pancreatic
cancers [30].

10.7 ARHI and Osteosarcoma (OS)

ARHI protein and RNA levels were
downregulated in OS cells [31]. The knockdown
of ARHI could promote OS cell proliferation and
attenuate apoptosis. Zebularine may upregulate
the tumor suppressor genes through a
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demethylation function, which inhibits the
growth and promotes apoptosis in OS cells. The
ARHI expression was upregulated by Zebularine
due to the downregulation of ARHI methylation
and the function of DNA methyltransferase
1 (DNMT1) and histone methyltransferase G9a.
The distinct reduction of ARHI methylation can
be induced by knockdown of DNMT1 or G9a.
Zebularine may directly repress DNMT1 alone,
while G9a through regulating DNMT1 function
on ARHI methylation, which were restored by
knockdown of ARHI [32].

10.8 ARHI and Glial Tumors

Experimental studies demonstrated that expres-
sion of ARHI was downregulated in human gli-
oma tumors as compared with normal brain tissue
as well as four different glioma cells [33]. The
proliferation and invasion of glioma cell can be
suppressed by up-expression of ARHI [33]. The
expression and methylation status of ARHI were
evaluated in tissue and peripheral blood [34]. The
expression of ARHI RNA increased in 67% of
patients with glial tumor and decreased in 33%
[34]. Methylation of the CpG island at ARHI was
detected using the combined bisulfite restriction
analysis and the restriction fragment length poly-
morphism in glial tumors as compared with
hypermethylated healthy volunteers.
Hypermethylation was detected at CpG island I
in two glial tumors, indicating that the progres-
sion of glial tumor may be due to the
downregulation of ARHI [34].

ARHI can be influenced by a large number of
genetic events and epigenetic mechanisms [3, 22,
35, 36], while ARHI expression may be firstly
silenced by the aberrant DNA methylation of
ARHI, varying among cell types [10].

10.9 ARHI and Follicular Thyroid
Carcinoma (FTC)

The global gene expression analysis showed that
ARHI expression was low in FTC. Studies
revealed that a complete methylation pattern was

exist in ARHI in FTC shows [37]. The silencing
of ARHI, primarily by large genomic deletion is
involved with hypermethylation of the
genomically imprinted allele, which may be an
important early event in FTC [37].

10.10 ARHI and Lung Cancer

Studies demonstrated that overexpression of
ARHI gene can inhibit the growth, proliferation
and invasion of lung cancer cells, and promote the
apoptosis of lung cancer cells [38]. Aberrant
DNA methylation was observed in non-small
cell lung cancers. The methylation status of
245 CpG positions in 59 candidate genes was
examined in different types of lung cancer and
normal adjacent lung tissues from smokers, which
found that the DNA-methylation levels were dif-
ferent among different histological types of tumor
tissues and normal adjacent tissue [39]. The
highest degree of DNA methylations in squamous
cell carcinoma was observed in ARHI,
GP1Bbeta, RAR beta genes, etc. It was proposed
that methylation profiles of specific genes may be
used to distinguish histological types of lung
cancer [39].

10.11 Conclusion and Perspectives

This chapter overviewed the importance of ARHI
methylation and expression phenomes in various
types of cancers, although the exact mechanisms
remain unclear. As an imprinted gene, aberrant
DNA methylation of the paternal allele of ARHI
was identified as a primary inhibitor of ARHI
expression. The role of methylation in the CpG
islands of the ARHI promoter region vary among
ovarian cancers, breast cancers, hepatocellular
carcinoma, colon cancers, pancreatic cancer oste-
osarcoma, glial tumors, follicular thyroid carci-
noma, or lung cancers. The methylation of ARHI
provides a new insight to understand molecular
mechanisms of tumorigenesis and progression of
cancers.

There are further needs to explore whether
ARHI methylation and expression can be defined
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as disease-specific biomarkers with the specificity
of disease duration, severity, stage, phase,
phenome, and response to therapy as requested
[40–46]. It is questioned whether the heterogene-
ity of ARHI methylations exists among cells of
the same cancer. The single-cell sequencing was
widely applied for the identification of the intra-
and inter-heterogeneity among cancer locations,
types, and durations within the cancer
[47, 48]. Dynamic three-dimensional chromatin
conformation and the potential association
between cell-type specific chromatin conforma-
tion and differential DNA methylations should be
considered in the understanding of ARHI methyl-
ation, since altered 3D genome controls gene
regulation during development and disease [49–
51]. Roles of ARHI methylation and expression
in the development and diseases are furthermore
specifically clarified by gene editing
technologies, e.g., CRISPR [52–55]. Thus, we
believe that the deep understanding of ARHI
methylation and expression will provide new
opportunities for future diagnosis and therapy.
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