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Understanding Diseases from Single-Cell
Sequencing and Methylation 1
Buwei Yu, Li Li, Jiaqiang Zhang, Xiangdong Wang,
and Yiming Zeng

Abstract

Clinical single-cell biomedicine has become a
new emerging discipline, which integrates sin-
gle-cell RNA and DNA sequencing, proteo-
mics, and functions with clinical phenomes,

therapeutic responses, and prognosis. It is of
great value to discover disease-, phenome-,
and therapy-specific diagnostic biomarkers
and therapeutic targets on the basis of the
principle of clinical single-cell biomedicine.
This book reviews the roles of single-cell
sequencing and methylation in diseases and
explores disease-specific alterations of single-
cell sequencing and methylation, especially
focusing on potential applications of
methodologies on human single-cell sequenc-
ing and methylation, on potential correlations
between those changes with pulmonary
diseases, and on potential roles of signaling
pathways that cause heterogeneous cellular
responses during treatment. This book also
emphasizes the importance of methodologies
in clinical practice and application, the poten-
tial of perspectives, challenges and solutions,
and the significance of single-cell preparation
standardization. Alterations of DNA and RNA
methylation, demethylation in lung diseases,
and a deep knowledge about the regulation
and function of target gene methylation for
diagnosing and treating diseases at the early
stage are also provided. Importantly, this book
aims to apply the measurement of single-cell
sequencing and methylation for clinical diag-
nosis and treatment and to understand clinical
values of those parameters and to headline and
foresee the potential values of the application
of single-cell sequencing in non-cancer
diseases.
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With the rapid development of single-cell biology
and sequencing, clinical single-cell biomedicine
is defined a new merging discipline to integrate
single-cell RNA and DNA sequencing, proteo-
mics, and functions with clinical phenomes,
responses to therapies, and prognosis. Several
hospitals start a new independent practice to per-
form clinical single-cell biomedicine, although
there are still many challenges to be faced and
solved. Clinical single-cell biomedicine is more
expected to dynamically monitor cell–cell
variations and communications, drug efficacy
and resistances, discovery and development of
therapeutic targets, and genealogic phenotypes
of cells during disease progression [1–3]. Clinical
single-cell biomedicine will analyze inter- and
intra-cellular heterogeneity, new cell category,
dysfunctional regulatory networks, microbes,
and disease evolution. In addition to understand-
ing molecular mechanisms using single-cell
sequencing and measurements, it is more impor-
tant to discover disease-, phenome-, and therapy-
specific diagnostic biomarkers and therapeutic
targets on the basis of the principle of clinical
single-cell biomedicine. As the part of clinical
single-cell biomedicine, we demonstrated impor-
tant roles of single-cell sequencing in systems
immunology in our previous book entitled “Sin-
gle Cell Sequencing and Systems Immunology”
[4], e.g., as a tool to deeply understanding the
development and regulation of systems immunol-
ogy. In this book, we furthermore overviewed the
roles of single-cell sequencing and methylation in
diseases and explored disease-specific alterations
of single-cell sequencing and methylation. This
book specially focuses on potential applications
of methodologies on human single-cell sequenc-
ing and methylation, on potential correlations
between those changes with pulmonary diseases,
e.g., lung cancer, chronic lung diseases, and

allergic lung diseases, and on potential roles of
signaling pathways that cause heterogeneous cel-
lular responses during treatment.

The first part of the book emphasizes the
importance of methodologies in clinical practice
and application, the potential of perspectives,
challenges and solutions, and the significance of
single-cell preparation standardization. Pensold
and Zimmer-Bensch [5] headlined the importance
of accurate and reliable cell capturing in single-
cell sequencing, overviewed the current state of
single-cell isolation methods, and addressed key
parameters like sample compatibility, viability,
purity, throughput, and isolation efficiency.
Gupta et al. [6] systematically described the
value of single-cell sequencing in the investiga-
tion of T cell receptors and their transcriptional
profiles and firstly prospected the importance of
the technological development in translational
and clinical application. This is an example to
apply the single-cell sequencing for special target
clusters in a special cell population and illustrate
the translational strategy how the single-cell
sequencing is developed for clinical application.
The single-cell sequencing of T cell receptors has
the great value to benefit immune-therapy for
cancer and autoimmune diseases.

The methylation and demethylation of cyto-
sine in promoter regions play an important role
in the control and regulation of gene expression
by the modulation of translation by modifying
tRNA-bases or silencing. The process of the
methylation within cells can be influenced by
their environment or for the development of com-
plex organisms, especially for organs/tissues
which are exposed and connected directly to the
environment, e.g., lung. This book discusses
alterations of DNA and RNA methylation and
demethylation in lung diseases and provides the
deep knowledge about the regulation and func-
tion of target gene methylation for diagnosing and
treating diseases at the early stage. Zhou et al. [7]
demonstrated global methylation pattern and spe-
cific gene methylation status of associated genes
in the development of pulmonary fibrosis and
methylation patterns and severities of the pro-
moter regions of Thy-1, COX-2, p14ARF, and
PTGER2 genes as disease-specific biomarkers to
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predict the occurrence and development of the
disease. Using bioinformatics, Liu et al. [8]
addressed that altered methylations of inflamma-
tory cells downregulated the gene expression of
inflammatory mediators and initiated the occur-
rence of lung diseases. The combination of
expression quantitative trait loci and
genome-wide association studies was suggested
as a new strategy to identify alterations of target
gene methylation in chronic lung diseases, e.g.,
lung fibrosis [9] or chronic obstructive pulmonary
diseases [10]. Of many target genes, DNA meth-
ylation of RAS-association domain family 1 was
proposed as a lung cancer biomarker for new
therapeutic strategies and for monitoring the reli-
ability and sensitivity of DNA methylation [11].

One of the important issues in this book is to
apply the measurement of single-cell sequencing
and methylation for clinical diagnosis and treat-
ment and to understand clinical values of those
parameters. Wu et al. clearly reported the urgent
need to optimize and standardize the workflow
and protocol as well as standard operation perfor-
mance, the comprehensive single-cell database
and knowledgebase, and the design of clinical
studies among various hospitals during clinical
application [12]. The importance of target gene
methylation and expression phenomes, e.g.,
Aplasia Ras homologue member I [13], P16
gene [14], and related molecular mechanisms of
tumorigenesis and progression in various types of
cancers, is obvious. Of those, single-cell RNA
sequencing can be utilized to identify subtypes
of pancreatic cancer [15] and genitourinary
malignancies [16] and to improve the quality,
efficiency, and specificity of cancer diagnostics
[17]. In addition, new therapeutic targets and
strategies can be discovered and developed with
the improvement of methodologies and knowl-
edge on single-cell sequencing and methylation.
Duncan et al. offered an example of PI3K
inhibitors and a frontline view of biological
effects of the PI3K pathway and multiple
isoforms of PI3K, mutations found in the PI3K
isoforms in many different types of cancer, and
new strategy of combination therapies between
PI3K inhibitors and other target-driven
therapies [18].

One of advances in this book is to headline and
foresee the potential values of the application of
single-cell sequencing in non-cancer diseases,
which will be the frontline science and need
more efforts to be explored. Garcia et al. provided
the comprehensive understanding of single-cell
RNA sequencing in human renal, pancreatic,
and viral diseases [19]. This is an important and
expecting review to discuss the specific applica-
tion of single-cell sequencing in cellular
compositions, heterogeneity and uncovering
clues of viral infections and diseases of the kidney
and pancreas for the development of targeted and
personalized therapies. Singh specially
emphasized the importance of single-cell
sequencing in the discovery of the drug resistance
clone, intercellular variation and communication,
mutations and transcriptional profiles of a patho-
gen across different stages of human genital
infections [20]. Rajan and Dall’Acqua addressed
the potentials of those advanced technologies in
the discovery and development of antibody-based
humanized therapies [21]. Single B cell sequenc-
ing will provide a new approach and emerging
strategy for antibody-based therapy. Chang et al.
summarized the potential application and values
of single-cell sequencing in the development of
neurological cells and microglia as well as single-
cell changes during brain injury [22].

This book is one of initiatives to deeply under-
stand the importance and value of single-cell
sequencing and methylation measurement for
clinical application, although there are still many
challenges and obstacles to be broken through. It
is also highly expected to translate the simulta-
neous measurement of both single-cell sequenc-
ing and methylation in a human cell, e.g., parallel
single-cell genome-wide methylome and
transcriptome sequencing. There is a rapid growth
in the development and improvement of single-
cell methylation and sequencing, e.g., single-cell
bisulfite sequencing for genome-wide base-reso-
lution mapping of single-cell DNA methylation,
random displacement amplification sequencing
for the first full-length single-cell
RNA-sequencing method, single-cell and single-
base resolution DNA methylation analysis based
on reduced-representation bisulfite sequencing,
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and single-cell, locus-specific bisulfite sequenc-
ing for cell-to-cell variability and the pathogenic
history. Complete DNA CpG methylomes at the
single cell can be screened and compared com-
prehensively through whole genome bisulfite
sequencing, reduced-representation bisulfite
sequencing, and enrichment-based methods such
as MeDIP-seq, MBD-seq, and MRE-seq. At the
end, we as co-editors of this special book would
like to take this special opportunity to deeply
appreciate all authors and contributors for the
intensive and hard works to make this book pos-
sible for publication. We are especially grateful
for those experts to review and comment chapters
in order to maintain the high quality and look
forward to working with all of you in future.

References

1. WangW, Gao D,Wang X (2018) Can single-cell RNA
sequencing crack the mystery of cells? Cell Biol
Toxicol 34(1):1–6. https://doi.org/10.1007/s10565-
017-9404-y

2. Zeng Y, Chen X, Gao H, Wang X (2018) An artificial
intelligent single cell is part of the cell dream world.
Cell Biol Toxicol 34(4):247–249. https://doi.org/10.
1007/s10565-018-9433-1

3. Busch S, Talamini M, Brenner S, Abdulazim A,
Hänggi D, Neumaier M et al (2019) Circulating
monocytes and tumor-associated macrophages express
recombined immunoglobulins in glioblastoma
patients. Clin Transl Med 8(1):18. https://doi.org/10.
1186/s40169-019-0235-8

4. Wang XD (2015) Single cell sequencing and systems
immunology. In: Wang X (ed) Translational bioinfor-
matics (book series), vol 7. Springer, Singapore.
ISBN: 978-94-017-9752-8 (Print) 978-94-017-9753-5
(Online)

5. Pensold D, Zimmer-Bensch G (2020) Methods for
single-cell isolation and preparation. In: Single-cell
sequencing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

6. Gupta S, Witas R, Voigt A, Semenova T, Nguyen CQ
(2020) Single-cell sequencing of T cell receptors: a
perspective on the technological development and
translational application. In: Single-cell sequencing
and methylation: methods and clinical applications,
Advances in Experimental Medicine and Biology.
Springer, Singapore

7. Zhou S, Wang X, Gao H, Zeng Y (2020) DNA meth-
ylation in pulmonary fibrosis. In: Single-cell sequenc-
ing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

8. Liu Y, Gao H, Wang X, Zeng Y (2020) Methylation of
inflammatory cells in lung diseases. In: Single-cell
sequencing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

9. Luo Q-K, Zhang H, Li L (2020) Research advances on
DNA methylation in idiopathic pulmonary fibrosis. In:
Single-cell sequencing and methylation: methods and
clinical applications, Advances in Experimental Medi-
cine and Biology. Springer, Singapore

10. Chen X, Yan F, Lin X, Shi L, Wang X, Zeng Y (2020)
DNA methylation in chronic obstructive pulmonary
disease. In: Single-cell sequencing and methylation:
methods and clinical applications, Advances in Exper-
imental Medicine and Biology. Springer, Singapore

11. Zhang T, Li Y, Zhang H, Wang X, Liu X, Li L (2020)
The role of RASSF1 methylation in lung carcinoma.
In: Single-cell sequencing and methylation: methods
and clinical applications, Advances in Experimental
Medicine and Biology. Springer, Singapore

12. Wu F, Fan J, Fang J, Dalvi PS, Odenthal M, Fang N
(2020) Single cell sequencing: a new dimension in
cancer diagnosis and treatment. In: Single-cell
sequencing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

13. Liu X, Zhang T, Li Y, Zhang Y, Zhang H, Wang X, Li
L (2020) The role of methylation in the CpG island of
the ARHI promoter region in cancers. In: Single-cell
sequencing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

14. Li Y, Zhang T, Zhang H, Huang Q, Wang X, Liu X, Li
L (2020) Clinical significance of P16 gene methylation
in lung cancer. In: Single-cell sequencing and methyl-
ation: methods and clinical applications, Advances in
Experimental Medicine and Biology. Springer,
Singapore

15. Luo Q, Fu Q, Zhang X, Zhang H, Qin T (2020)
Application of single-cell RNA sequencing in pancre-
atic cancer and the endocrine pancreas. In: Single-cell
sequencing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

16. Murphy N, Shah P, Shih A, Khalili H, Liew A, Zhu X,
Lee A (2020) Chapter 13: Single cell sequencing in
GU malignancies. In: Single-cell sequencing and
methylation: methods and clinical applications,
Advances in Experimental Medicine and Biology.
Springer, Singapore

17. Probst V, Bagger FO (2020) Single cell sequencing in
cancer diagnostics. In: Single-cell sequencing and
methylation: methods and clinical applications,
Advances in Experimental Medicine and Biology.
Springer, Singapore

18. Duncan L, Shay C, Teng Y (2020) PI3K Isoform-
selective inhibitors in cancer. In: Single-cell sequenc-
ing and methylation: methods and clinical
applications, Advances in Experimental Medicine
and Biology. Springer, Singapore

4 B. Yu et al.

https://doi.org/10.1007/s10565-017-9404-y
https://doi.org/10.1007/s10565-017-9404-y
https://doi.org/10.1007/s10565-018-9433-1
https://doi.org/10.1007/s10565-018-9433-1
https://doi.org/10.1186/s40169-019-0235-8
https://doi.org/10.1186/s40169-019-0235-8


19. Garcia S, Der E, Putterman C (2020) Single cell RNA
sequencing in human disease: renal, pancreatic, and
viral diseases. In: Single-cell sequencing and methyla-
tion: methods and clinical applications, Advances in
Experimental Medicine and Biology. Springer,
Singapore

20. Singh R (2020) Single-cell sequencing in human geni-
tal infections. In: Single-cell sequencing and methyla-
tion: methods and clinical applications, Advances in
Experimental Medicine and Biology. Springer,
Singapore

21. Rajan S, Dall’Acqua WF (2020) Emerging strategies
for therapeutic antibody discovery from human B
cells. In: Single-cell sequencing and methylation:
methods and clinical applications, Advances in Exper-
imental Medicine and Biology. Springer, Singapore

22. Chang E, Ruan X, Zhu R, Wang Y, Zhang J (2020)
Single-cell mRNA sequencing technology and devel-
oping cerebral cortex. In: Single-cell sequencing and
methylation: methods and clinical applications,
Advances in Experimental Medicine and Biology.
Springer, Singapore

Buwei Yu is a professor in the Department of Anesthesi-
ology at Shanghai Ruijin Hospital affiliated to Shanghai
Jiaotong University School of Medicine and is President of
the Chinese Medical Doctor Association and the Society
of Anesthesiologists.

Li Li is director of the Department of Science Research
and Discipline Construction and Principal Investigator of
Clinical Centre of Single-Cell Biomedicine, Henan Pro-
vincial People’s Hospital. She is a member of clinical
research group of Chinese Medical Association’s Scien-
tific Research Management Branch, Standing Committee
member of Chinese Medical Association’s Henan
Research and Management Branch, and vice-chairman of
Henan Discipline Management Branch of Chinese Hospi-
tal Management Society. She has engaged in the manage-
ment of medical scientific research for 30 years, and her
main research is focused on health management scientific
research big data, laboratory biosafety, and medical ethics.
She has published more than 20 scientific papers.

Jiaqiang Zhang is professor and director of the Depart-
ment of Anesthesiology and Perioperative Medicine at
Henan Provincial People’s Hospital and is a member of
Chinese Medical Association Anesthesia Branch and the
National Committee of the Anesthesia Branch of the Chi-
nese Medical Association. He is vice-chairman of the
Anesthesia Branch of the Henan Medical Association.
His main research is focused on investigating the mecha-
nism of postoperative cognitive dysfunction, clinical bio-
informatics, anesthesia and neurodevelopment, and
physiology of pain. He is the author of more than 150
scientific publications.

1 Understanding Diseases from Single-Cell Sequencing and Methylation 5



Xiangdong Wang is a distinguished professor of medi-
cine, director of Shanghai Institute of Clinical Bioinfor-
matics, executive director of Clinical Science Institute of
Fudan University Zhongshan Hospital, director of Fudan
University Center of Clinical Bioinformatics, deputy
director of Shanghai Respiratory Research Institute, and
visiting professor of King’s College London. His main
research is focused on clinical bioinformatics, disease-
specific biomarkers, lung chronic diseases, cancer immu-
nology, and molecular and cellular therapies. He is the
author of more than 300 scientific publications with the
impact factor about 900, citation number about 6920, h-
index 48, i10-index 221, and cited journal impact factor
about 8000.

Yiming Zeng is a professor of Respiratory Medicine,
chairman of Academic Committee of the Second Affiliated
Hospital of Fujian Medical University, State Council
Expert for Special Allowance, and director of Sleep Medi-
cine Key Laboratory of Fujian Province. He achieved the
Outstanding Contribution of Middle-aged Expert of
National Health and Family Planning Commission of the
People’s Republic of China (NHFPC). His main research
is focused on clinical, interventional pulmonology, sleep-
breathing disorders, and noninvasive mechanical ventila-
tion. He is the author of more than 150 scientific
publications.

6 B. Yu et al.



Methods for Single-Cell Isolation
and Preparation 2
Daniel Pensold and Geraldine Zimmer-Bensch

Abstract

Within the last decade, single-cell analysis has
revolutionized our understanding of cellular
processes and heterogeneity across all
disciplines of life science. As the
transcriptome, genome, or epigenome of indi-
vidual cells can nowadays be analyzed at low
cost and in high-throughput within a few days
by modern techniques, tremendous
improvements in disease diagnosis on the one
hand and the investigation of disease-relevant
mechanisms on the other were achieved so far.
This relies on the parallel development of reli-
able cell capturing and single-cell sequencing
approaches that have paved the way for com-
prehensive single-cell studies. Apart from
single-cell isolation methods in high-
throughput, a variety of methods with distinct
specializations were developed, allowing for
correlation of transcriptomics with cellular
parameters like electrophysiology or
morphology.

For all single-cell-based approaches, accu-
rate and reliable isolation with proper quality
controls is prerequisite, whereby different
options exist dependent on sample type and
tissue properties. Careful consideration of an
appropriate method is required to avoid

incorrect or biased data that may lead to
misinterpretations.

In this chapter, we will provide a broad
overview of the current state of the art in
matters of single-cell isolation methods mostly
applied for sequencing-based downstream
analysis, and their respective advantages and
drawbacks. Distinct technologies will be
discussed in detail addressing key parameters
like sample compatibility, viability, purity,
throughput, and isolation efficiency.
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In recent years, rapid technological development
and improvements have been achieved in the field
of high-throughput sequencing enabling
diverse applications due to significant drop of
costs. Together with methodological advances
especially in the field of single-cell isolation,
this has paved the way for reliable single-cell-
based analysis in high-throughput. Still, tissue
dissociation, single-cell separation and isolation
represent arguably the greatest source of technical
variation, contamination, and batch effects in any
single-cell study [1], and hence represent the key
determinants for a successful experimental
design. There are diverse approaches described
to isolate material for single-cell omics with
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different advantages and limitations for protein,
RNA, or DNA analysis [2–4]. In this chapter, we
will mainly discuss methods aiming at RNA and
DNA isolation for sequencing-based analysis.

According to a survey about the German mar-
ket carried out in 2014 [2], the most frequently
used approaches for single-cell isolation were
fluorescence-activated cell sorting (FACS, 33%),
manual micromanipulation (17%), laser micro-
dissection (17%), random seeding or serial limit-
ing dilution (15%), and microfluidics/lab-on-a-
chip methods (12%). Other technologies includ-
ing optical tweezers, dielectrophoresis, or
non-contact depending methods were less fre-
quently reported (in total 6%). The requirements
for technologies to separate and isolate single
cells from specimens of different nature are as
diverse as the purpose for which the cells are
used in downstream processing and analysis. So
far, no available method suits all demands. When
only considering the isolation process in matters
of efficiency and cell viability already numerous
factors including cell type, sample preparation,
device calibration, sorting mode, and substrate
are of high relevance, in addition to other factors
that are rather hard to quantify (e.g., operator
skills, Fig. 2.1). The following paragraph seeks
to cover the most general requirements for many
of the approaches discussed in more detail in the
following chapters, helping to choose the method
of choice.

2.1 Parameters to Be Considered

Typically, specimen type and origin define to a
great extent which technology is best applicable
for sample preparation. Most methods described
here require cells in suspension for separation and
isolation procedures. Thus, all samples easily
dissociable, or liquid materials like immunologi-
cal organs such as peripheral blood, spleen, or
lymph nodes called liquid biopsies, are straight-
forward to handle often requiring only concentra-
tion of the material. However, commonly samples
originate from solid and complex tissues requir-
ing chemical or enzymatic as well as mechanical
dissociation of the cells.

Moreover, downstream analysis largely
dictates the method of choice for sample prepara-
tion. Independent of the targeted information
level ranging from genomics, epigenomics,
transcriptomics to proteomics, cell integrity and
viability has to be ensured, to avoid early degra-
dation of DNA, RNA, or proteins, respectively.
Stress factors like mechanical forces, radiation,
chemical changes in the cellular environment,
etc. may alter the intrinsic cellular states, e.g., by
inducing differentiation or apoptosis [5–7]. Fur-
ther relevant considerations refer to the purity of
the isolated single cells to avoid potential con-
tamination with cell fragments, free DNA or
RNA molecules. For some experiments, cultiva-
tion after cell separation is intended, requesting
sterile operational conditions, which can be
achieved in some approaches by using disposable
components (e.g., microfluidic chips).

Throughput in terms of single cells isolated
per second and the total number of single cells
are further crucial parameters. Low-throughput
applications in the range of one to several
hundreds of cells are usually performed manually
or half-automated using systems like Fluidigm C1
(South San Francisco, CA, USA). Thereby, most
manual approaches such as micromanipulation,
optical or acoustic tweezers work with high pre-
cision, care, or high efficiency. Low-throughput
methods apply to samples evident in low cell
numbers, which require small sample volumes
and low dead volumes as critical parameters.

High-throughput approaches enable capturing
of cells to a range of several thousands. Such
approaches may also be applied to detect under-
represented cell types like CTCs (circulating
tumor cells) as a rare cell population within
billions of different blood cells [8]. High-
throughput methods like FACS often rely on
strong sample dilution with the final sample vol-
ume being usually large, which impacts down-
stream processing. Another key issue is the
separation yield, cell-capture or isolation effi-
ciency in regard to the total input. Especially for
low-abundant samples or rare biopsies, a maxi-
mum in capturing rate is essential [2, 9, 10]. Actu-
ally, most of the common high-throughput
technologies such as FACS or droplet generation
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have their strongest limitation in terms of preci-
sion, cell-capture efficiency, and vitality of cells
after isolation.

The economical aspect including all costs
from sample acquisition, dissociation, separation,
isolation to amplification and library preparation
for next-generation sequencing [11] represents
another issue influencing the method of choice.
Of course, analysis of low numbers of particularly
selected cells will be in total cheaper than
analyzing thousands of randomly chosen ones.
However, costs per cell decline with throughput,
which significantly dropped within the last years
and which is expected to progress. The cost per
cell nowadays varies depending on the approach
and facility between less than $0.30 for some

customized microfluidic systems up to $1 to $2
for early-indexing plate-based 30-RNA sequenc-
ing methods. Manual methods and late-indexing
full-length transcriptome profiling often require
separate sample processing, consequently
increasing costs (starting about $8–12 per cell)
and time.

An overview of the different parameters that
determine the choice of a particular approach is
summarized in Table 2.1. All these and other
parameters force operators to choose a certain
compromise for the experimental design to
match the goal of each individual study. As
follows, we will discuss specific features,
applications, and limitations of a broad spectrum
of single-cell isolation methods.

Fig. 2.1 Overview of steps associated with the isolation process. ECM extracellular matrix, FACS fluorescent-activated
cell sorting, LCM laser capture microdissection, RIN RNA integrity number
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2.2 Cell Dissociation
and Enrichment

First, the protocol for dissociation and isolation
needs to be carefully optimized to ensure reliable
and valid data, aiming to keep original conditions
to the greatest possible extent (Fig. 2.1). Tissues
vary significantly in extracellular matrix (ECM)
composition, cellularity, and stiffness, which
influences the requirements for dissociation
protocols. Dissociation is often achieved by enzy-
matic digestion and/or mechanical dissociation,
which both can lead to activation of stress-related
genes [5]. General prerequisites for a successful
and mild dissociation with minimized procedure-
induced intrinsic changes include a low time
scale, working on ice whenever possible, keeping
pipetting and centrifugation to a minimum, as
well as using calcium and magnesium-free but
bovine serum albumin-containing buffers and
media. Cell lysis-induced extracellular DNA can
be diminished by DNase I application during cell
separation.

Enzymatic digestion is commonly conducted
by trypsin, collagenase, protease, accutase, elas-
tase, or dispase treatment as well as by commer-
cial enzymatic mixtures such as TrypLE Express
and Liberase Blendzyme 3, depending on the
composition of the extracellular matrix and cell–
cell connections in the different tissues. The
application of cold active enzymes like proteases
from Bacillus licheniformis thereby helps to
reduce heat stress caused by enzymatic digestion
at 37 �C [12]. The careful adjustment of enzy-
matic incubation duration for each sample type is
crucial, as extended incubation times may induce
cell lysis of fragile cell types. Short incubation in
turn, bears the risk of incomplete cell separation
and the exclusion of large cell clusters during
subsequent filter steps, potentially leading to
bias in cell composition [13]. Of note, all enzy-
matic treatments may affect the transcriptome of
single cells through cellular uptake or by altering
intercellular communications [14, 15].

For mechanical dissociation fire-polished glass
capillaries with cell size and tissue input-adjusted
tip sizes are usually applied. The frequency of

pipetting represents another critical parameter
strongly impacting cell viability and dissociation
effectiveness. The avoidance of air bubbles dur-
ing all pipetting steps is essential as oxidative
stress is one of the major sources for cell death.
The extracellular matrix and also damaged or
dead cells are the largest source for contamina-
tion, e.g., by inducing free RNA and DNA, which
affect subsequent downstream processing, espe-
cially for sequencing approaches. Including a
density gradient centrifugation may help to
reduce debris as well as free RNA and DNA
molecules but may simultaneously result in
biased recovery of the remaining cell populations.
Another way to remove clumps and debris from
suspensions is to filter with appropriately sized
cell strainers. However, the produced suspension
should be processed as soon as possible, ideally
within 30 min after dissociation, to avoid
re-aggregation of cells or induction of transcrip-
tional changes. Otherwise, loss of cellular
functions, cell–cell interactions, and the tissue
architecture may lead to transcriptional
adaptation [16].

Recently, innovative microfluidic cell dissoci-
ation devices have been fabricated that may dras-
tically change the way solid tissue samples are
processed into single cells, allowing for
automated processes [17]. Such new technologies
avoid inter-assay variation occurring from
differences in handling of the tissue. Included
microfluidic structures have been optimized for
straightforward tissue digestion, cell dissociation,
filtering, and polishing, mainly by passing the
tissue sequentially through progressively smaller
size scales. Tissue-specific kits can be designed to
integrate differences in ECM and interconnectiv-
ity of cells, improving reproducibility and effi-
ciency of single-cell preparations [18, 19].

Even if performed automatically, tissue disso-
ciation accounts as a major source of variation in
single-cell analysis, for which applicable methods
using preserved samples [20–22] or nuclear
RNA/DNA [23–26] represent an attractive alter-
native. Nuclear RNA enrichment based on cellu-
lar membrane disruption [23–26] has been shown
to be sufficient to capture cell type information
[26]. However, the overall resolution per cell is
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reduced and the RNA is biased towards the
nuclear fraction. This approach has been exten-
sively applied for epigenetic and transcriptomic
profiling of differentiated neurons, as adult
neurons are difficult to dissociate reliably due to
their axonal and dendritic processes, which are
damaged or destroyed during the dissociation
process [27, 28]. A major advantage of single
nucleus RNA sequencing is that it can be applied
to frozen and fixed tissue [20, 21, 29–32],
enabling simultaneous processing of samples
acquired at different time points, thereby
minimizing technically induced batch effects.

For many applications, the enrichment of par-
ticular cell types after dissociation is beneficial or
even essential for downstream analysis (Fig. 2.1).
Sedimentation or density centrifugation during
the dissociation process separates cells based on
cell size and density. Further, mechanical filter-
ing, hydrodynamic, electrokinetic or
acoustophoresis approaches can be applied
[33, 34]. Very common are immune-capture
methods like magnetic bead-based immune selec-
tion (MACS) or immunofluorescence using
FACS, facilitating rare cell populations to be
analyzed at single-cell level without the necessity
to sequence several thousands of cells. This was
for example applied to enrich and analyze
hematopoietic stem cells from red bone marrow
[35, 36]. Still, an a priori immune selection of
living cells for FACS or MACS is commonly
based on cell surface receptor labeling that may
induce intracellular signaling upon antibody or
ligand binding [37, 38]. Most of these methods
are capable of positive enrichment of cell types of
interest or negative depletion of unwanted cells.
Apoptosis markers and fluorescent DNA
intercalating agents are applied to label and sort
out damaged cells. A specific enrichment can also
be achieved by induced expression of fluorescent
reporter genes, which enables the identification of
a particular cell type without immune-labeling.
Reporter gene expression can either be driven
by lineage-specific promoters, or engineered to
be co-expressed with any protein of interest. A
more advanced approach identifies individual
cells based on the microanatomical location. For
that, fluorescent reporters being either

photoactivatable [39–41] or photoconvertible
[42–44] are used to precisely mark cells of inter-
est by two-photon microscopy. By linking such
reporters to cell type-specific expression, cells
can be precisely identified based on expression
markers and additionally based on specific
microanatomical locations within a tissue prior
to dissociation. Recently, this method was applied
to perform NICHE-seq, systematically
characterizing the cellular composition of
the spleen among other immune niches
[40]. However, such enrichment approaches
come with the disadvantage of additional steps
and time, which in turn influence the intrinsic
cellular state and survival.

Due to the overall cost and time-intensive pro-
cess of single-cell sequencing experiments, care-
ful quality control and monitoring is required
(Fig. 2.1). The performance of the different
approaches can be assessed by the use of several
readouts presented in the following paragraphs.
Although most of the relevant parameters for
quality control are related to sequencing results
and will be discussed elsewhere, quality control
can and needs to be included already during iso-
lation to minimize the proportion of low-quality
cells. Most importantly, attention should be paid
to the avoidance of cell duplets or even multiple
cells, as well as dead cells in the cell capture step,
as they remain difficult to assess in downstream
analysis. Imaging-based approaches are valuable
tools to control for the successful isolation and
viability of single cells. Flow cytometry like
FACS is particularly useful to measure several
critical metrics simultaneously, such as cell via-
bility, and rates of doublets and small cell
clusters. The introduction of artificial spike-in
RNAs during the isolation process (External
RNA Controls Consortium (ERCC) standards
[45] or Sequin standards [46]) helps to calibrate
measurements and account for technical
variability during subsequent sequencing data
analysis.

In summary, single-cell preparation requires
numerous considerations and careful optimiza-
tion, to choose the most appropriate protocol
(Fig. 2.1). Enrichment of certain cell types is
frequently required but also comes with
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drawbacks that need to be considered. In the
following paragraphs, we will discuss the
limitations and advantages of particular single-
cell isolation methods in more detail.

2.3 Dilution-Based Single-Cell
Isolation

Laboratories and companies all over the world
have used serial limited dilution for decades to
isolate single cells (Table 2.1). Nowadays, this
method experiences a renaissance being
implemented in automated pipetting robots that
tremendously reduce personnel workload. In
principle, many technologies, even the
microfluidic traps rely on the simple fact that
due to statistical distribution of cells in a suspen-
sion, the number of cells in a highly diluted sam-
ple will be at some point so low that individual
cells will be present in a targeted small volume
(Fig. 2.2a).

Serial limited dilutions are indeed easy to carry
out with standard laboratory inventory, and with
the help of automation by pipetting robots it is a
simple, reproducible and relative cost-efficient
method. Therefore, many pharmaceutical
companies still rely on fully automated serial
dilution solutions. However, due to the lack of
control, it is not possible to isolate specific cell
types with this method per se, but it can be com-
bined with upstream sorting or enrichment
techniques. It further has to be considered that
serial limited dilutions are prone to high false
positive rates and to exclusion of cells of interest.
Hence, it is widely applied to microbial samples,
but less applicable for isolation of cells from com-
plex or rare specimens [47].

2.4 Isolation by Micromanipulation

In the past, manual micromanipulation was one of
the mostly applied isolation approaches, nowa-
days still being useful for particular applications.
Albeit time consuming and labor intensive, this
method provides clear advantages in matters of
isolation precision (Table 2.1) [48–53]. Two of

the first single-cell DNA or RNA isolation
methods used glass capillaries to harvest either
the whole cell, which assures complete isolation
and minimizes loss of cell material [54–57], or the
cytoplasm by patch clamping [58, 59].

A common setup for manual cell isolation
typically consists of an inverted microscope
equipped with micropipettes that are coupled to
a micromanipulator, controlled by motorized
mechanical stages (Fig. 2.2b). Piston systems
coupled to glass capillaries enable reliable and
precise respiration and dispensation
[54, 56]. The tip opening diameter of the glass
capillaries is adjusted by electrode pullers and
sharp edges are polished by heat-induced melting
to avoid mechanical shearing of cells.
Silanization of the micropipette prevents sticking
of cells, or RNA and DNA molecules to the glass
capillary [49, 51].

Cells are usually provided in suspension under
a microscope allowing the operator to select for
specific target cells according to optical
parameters like size, shape and granularity,
reporter expression or cell surface labeling
(Fig. 2.2b) [49]. Such targeted isolation of a par-
ticular cell under visual control represent a crucial
advantage of this approach. The target cell
is aspirated into the micropipette and transferred
to a new reaction tube, being released by dispen-
sation together with the aspirated liquid volume.
However, the comparatively high volume of sus-
pension needed for cell harvesting represents a
major drawback [56], as it might contain
contaminants of extracellular RNA and DNA
resulting from cell damage [56]. Many protocols
therefore suggest several washing steps prior to
cell lysis to ensure contamination-free isolation
[49–51].

Although being a very flexible approach in
regard to cell types and substrates, the manual
process of obtaining single cells by micromanip-
ulation limits the overall throughput (3–8 cells/h)
rising the risk of intrinsic changes like
transcriptomic profiles caused by the extended
handling time [2, 16, 60]. In addition, the low
throughput limits the applicability to studies of
cellular heterogeneity requiring numerous single
cells. There are some commercial technologies
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that automated the isolation to some degree and
hence, increased the throughput. The ALS
CellSelector is a freely configurable pipetting
robot for automated transfer of single cells out
of solution into a well-plate format (e.g., 96-well
plate). Other automated micromanipulation
systems allowing for higher throughput in
single-cell isolation are based on acoustic
microdispensing systems (CellenONE,
Cellenion) or piezoelectric approaches (WOLF
Cell Sorter, NanoCellect Biomedical or Single-
Cell Printer, Cytena). The CellenONE system,
integrating the microcapillary dispersion technol-
ogy with constant imaging of the target cells,
offers a new, innovative approach to isolate cells
gently, rapidly and with high precision, applica-
ble for downstream single-cell sequencing.
Systems based on piezoelectric actuation utilize
a hydrodynamic pressure pulse within a
microchannel to manipulate single cells
[61]. Commercialized systems like the WOLF
Cell Sorter combine piezoelectric actuation with
laser detection system comparable to FACS on a
microfluidic scale [62]. With a response time of
~0.1 ms, more than 1000 cells can be sorted per
second, being collected in 96- to 384-well plates.
The Single-Cell Printer (Cytena) includes an
automated image analysis system for detection
and generates droplets containing a single cell
using a microfluidic drop-on-demand dispenser
chip [2]. The piezoelectric actuator raises the
pressure inside the chip to generate a single

droplet, thereby ejecting droplets through a noz-
zle encapsulating single cells [63], whereby
unwanted droplets are sorted out enabled by
image analysis. The system was shown to operate
with >80% efficiency and 90% viability at opti-
mal sample concentration of 6.2 � 105 cells/mL2.

Alike whole cell harvesting, manual isolation
of cellular material by patch-clamp approaches is
time consuming and limited in throughput
(Fig. 2.2b) [64–66]. It is frequently combined
with electrophysiological recordings coming
with the great advantage of known position and
electrophysiological properties of cells. The tip of
the glass capillary used for recording as well as
isolation of the cell’s material is much smaller and
normally produces a tight sealing in a gigaohm
range between the cell membrane and the tip.
This ensures that even small currents across the
membrane are captured while creating a barrier
between the extracellular fluids and the cyto-
plasm. Upon finishing the electrophysiological
recordings, a sub-atmospheric pressure is applied
inside the glass capillary to rupture the cell mem-
brane in the patch allowing for harvesting of the
cytoplasm. The well-trained operator needs to
collect as much cytoplasmic content as possible
without destroying the cell. This approach comes
with high sample-to-sample variation hampering
quantitative analysis. Similar to whole cell
harvesting, the micropipettes are often silanized
to avoid loss of sample and contamination from
surrounding cells and ECM [56].

Fig. 2.2 Dilution-based approaches and micromanipula-
tion: (a) Limiting serial dilution methods utilize statistical
Poisson’s distribution of highly diluted cells to separate
and isolate individual cells. (b) Manual harvesting of cells
or their content provides an economical and simple to use
method for single-cell isolation. An experimental setup
normally consists of a microscope for target identification
and observation of the isolation process, a

micromanipulator for three-dimensional movement of the
microcapillary as well as a dispensing unit (manual or
piezoelectric) connected to the microcapillary for con-
trolled pressure driven isolation. In that way, either the
whole cell out of suspension can be isolated or the cytosol
of cells in culture or even in tissue enabling for instance
correlation of patch-clamp electrophysiological recordings
with single-cell transcriptomics
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For both described manual approaches, the
monitoring of the successful transfer of the
isolated material to the final reaction tubes is
rather difficult, as this step requires leaving the
focus plane with the glass capillary. Recent
technologies improved on that by fully automated
isolation and placement of single cells assisted by
video systems and image processing
algorithms [67].

Despite the mentioned limitations,
applications of these methods are diverse, ranging
from bacterial analysis [68, 69] to reproductive
medicine [70], forensics [71], endosymbionts
from termite gut analysis [72], and crenarchaeota
from soil [73], and becoming especially attractive
for samples with limited cell numbers or fragile
cells types. Manual approaches can easily be
combined with pre-enrichment methods or fluo-
rescent labeling, like it was applied by Ramskold
et al. [74] to isolate circulating tumor cells from
the blood of a melanoma patient.

2.5 Laser Dissection

An alternative method of manual isolation is laser
capture microdissection (LCM) or laser micro-
beam microdissection (LMM), an advanced tech-
nique to collect individual cells or cell
compartments from usually solid tissue samples
under visual control (Fig. 2.3a) [75–77]. This is
especially applicable for samples or biopsies
being less amenable to single-cell suspension dis-
sociation [78]. Samples are typically provided as
formalin-fixed paraffin-embedded or cryo-fixed
tissues [79]. The Leica LMD7000 system with
Live Cell Cutting (LCC) function even permits
dissection of living cells from tissue sections [80–
84].

LCM and LMM systems rely on an optical
microscope coupled with a coaxial cutting laser
and computer assisted control. The operator
marks the targets to be cut off automatically
with a cutting width of about 1 μm or less. Fol-
lowing laser-based sectioning, different
technologies allow for precise harvesting
(Fig. 2.3a; reviewed by Hodne and Weltzien
[85]). The classical laser capture microdissection

(LCM) exploits a contact-based extraction
by employing an adhesive inert membrane to the
section surface, which is melted locally after tar-
get excision by low energy infrared (IR) laser
pulses [77]. Hence, samples are extracted via
adhesion to the membrane or adhesive tube caps
(Fig. 2.3a). For laser microbeam microdissection
(LMM) [86], the laser-cut sample is either falling
into a reaction tube following gravity, also called
contact-free gravity-assisted microdissection
(GAM), or it is catapulted against gravity. The
first option requires inversely mounted substrates
placed about a collection tube (Leica LMD7000,
Fig. 2.3a). In contrast, contact-free laser pressure
catapulting (LPC) utilizes a local plasma impulse
induced beneath the cell by a short, defocused
laser pulse to catapult excised samples
(or compartment) into a nearby collector con-
tainer (Zeiss PALM, Fig. 2.3a).

One of the main challenges in laser-assisted
microdissection is to dissect only the cell or com-
partment of interest without contamination from
neighboring cells or other unspecific fragments.
Imprecise cutting or a poorly calibrated system
can lead to both, false positive and false negative
results. Although the newest generation of
systems assist the operator with a high level of
user-friendliness and automation, the selection
process remains user-based and therefore strongly
impacts throughput and reproducibility. Similar
to the manual isolation with micromanipulation, it
might remain unclear whether the cell was actu-
ally transferred and/or whether any contaminants
were co-isolated, especially for contact-based cell
extraction (adhesive methods) [77].

The integrity of the extracted material is
important for reliable downstream analysis of
biomolecules such as DNA, RNA, and proteins
[87]. Depending on the applied fixation methods,
or cryopreservation [88], as well as extraction
methods (adhesive methods, GAM, LPC),
single-cell integrity might be compromised
[89]. In general, LCM/LMM based assays gener-
ate low yield of material, particularly for low
abundance RNA species [89].

While most of the high-throughput methods
relying on dissociated cells, LCM/LMM methods
as well as cytosol harvesting with a patch-clamp
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pipette can be applied to intact tissue [75]. More-
over, cells are harvested under direct microscopic
control providing additional information, like
localization within tissue architecture, morphol-
ogy, or immune-labeling.

In the past years, various single-cell analysis
applications based on LCM/LMM isolated cells
have been published: Single-cell RT-PCR [90],
short tandem repeat analysis (STR) analysis in
forensics [91], Western blot and mass spectropho-
tometry analysis [88]. Analysis of solid tissue
sections without prior dissociation is of great
interest when investigating heterogeneous
specimens regarding their cellular structure as
well as physiological and pathological processes
[92]. For instance, in solid tumor research linking
the molecular information of individual cells to
their specific localization or context within a com-
plex tissue has become an important field of
research [93].

2.6 Fluorescent-Activated Cell
Sorting

First applications of flow cytometry instruments
reach back to the early 1970s, and since then
numerous patents and methodological
advancements have enabled the robust and reli-
able commercial flow cytometry used today [94–
97]. Within the methodological spectrum of flow
cytometry, FACS provides the ability to enrich
and isolate particular cell types, collecting them in
separate target vessels (Fig. 2.3b) [2, 13]. Nowa-
days, FACS is the accepted worldwide standard
in analysis and sorting of cell populations [98],
probably also due to the widespread distribution
of devices.

By laser excitation and emission FACS
devices read out multiple parameters offering
various analytical options (Fig. 2.3b). Cellular

Fig. 2.3 Laser capture microdissection (LCM) and
fluorescence-activated cell sorting (FACS) technology:
(a) Schematic overview of the different technologies
applied for LCM. Dissection is usually achieved after
visual identification of the target cell using a focused
laser. The methods mostly differ in their capture process.
In contact-based methods, capturing is realized by melting
an inert adhesive membrane to the target cell with a
defocused laser pulse and by transferring the target to a
collection tube. In gravity-assisted microdissection
(GAM), the object slide is mounted inversely, and the
target falls into a collection tube after dissection. Laser

pressure catapulting (LPC) utilizes a defocused laser
beneath the target to induce a plasma pulse hurling the
sample into a collection tube. (b) FACS is applied to
analyze suspended cells according to a variety of optical
parameters ensuring single-cell separation as well as cell
type specificity by fluorescent tags. Cells are lined up
using a shed flow liquid. This stream is broken into indi-
vidually flying droplets passing a laser-detector setup that
monitors and analyzes the properties online. Droplets are
then charged and separated in an electric field. The indi-
vidual cells can be sorted in separated wells of well plates
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properties like relative size and granularity are
registered using the forward scatter (FSC) and
side scatter (SSC), respectively. This information
is further relevant to discriminate between single
cells and doublets, or cell cluster, which is highly
important to ensure single-cell isolation. Further-
more, fluorescence signals resulting from
induced reporter expression or from
preceeding labeling of cell surface markers can
be gathered to classify subtypes of cells [2, 99].

The suspension is pressure driven through the
system and lined up using a sheath flow liquid
utilizing the effect of hydrodynamic focus. To
ensure single-cell separation, a relatively high
liquid flow is established that consequently leads
to a strong dilution of cells within the system
[85]. The liquid stream is channeled through a
small nozzle (typically 60–100 μm diameter)
and afterwards disrupted into a continuous line
of flying droplets by applying targeted ultrasound
vibration. These droplets, of which some include
cells, pass the different laser beams and detectors
used to measure the physical, chemical, or optical
properties. Analysis occurs online and cells are
sorted by electrical deflection of droplets into
different outlet channels according to the user-
set gatings (Fig. 2.3b). In case of single-cell
RNA sequencing, target cells can be sorted indi-
vidually into 96- or 384-well plates. In the past,
all collected cells needed to be processed manu-
ally before sequencing, causing enormous work-
load and thus hampering high-throughput studies.
With the help of automation and individual
pre-defined sequencing indices in the collection
wells, more comprehensive studies are now man-
ageable. With an advanced method called “index
sort,” it is even possible to retrospectively corre-
late scRNA-Seq data and protein expression of
cell surface markers measured during isolation,
which is of particular interest when cells have
been stained and analyzed for multiple markers
[100, 101].

Depending on the application, FACS can be
carried out in different modes specialized on
high-throughput, enrichment or purity, differing
in the actual sorting rate (between some
hundreds up to several thousands of cells/s) as
well as capturing efficiency.

The major advantages of FACS are flexibility
in terms of cell type, compatibility with
standardized substrates and buffers, high levels
of accuracy, high-throughput and last but not
least the operability and cost efficiency as well
as the high prevalence of operating systems
(Table 2.1). Still, a proficient operator is required
to consistently and accurately sort cells into the
center of a well, so that cells are immersed in the
lysis buffer [3]. Further, the operator needs to
calibrate proper gating for the FSC and SSC to
ensure low doublet rates, reported to be as low as
2.3% [102]. Consequently, the flow sheath liquid
will be increased to reach such low values
augmenting the sample volume for each isolated
cell. This causes higher risks of co-isolation of
cell debris or free RNA contaminations [51]. The
high liquid volumes also limit sorting speed and
hence throughput, which will be especially obvi-
ous when low-abundant cell types need to be
collected from a large number of suspended
cells. Nevertheless, FACS is suitable to isolate
rare cell populations with less than 1% but it
necessitates a comparably large amount of
starting material (>10,000 cells). As FACS anal-
ysis relies on cell suspensions, dissociation of
solid tissue with all the aforementioned
disadvantages has to precede (see Sect. 2.2).

Due to the high-pressure flow within the sys-
tem cell viability may be an issue when apply-
ing FACS [103, 104]. Moreover, the osmotic and
pressure stress occuring during sorting was
shown to induce changes in cell expression
profiles [5–7]. Additionally, labeling of cell sur-
face receptors mostly involves their stimulation
with antigens potentially leading to intracellular
signaling and hence, an altered phenotype,
necessitating to keep the time of labeling and
sorting procedure as short as possible [85]. As
already mentioned in former chapters, FACS is
routinely applied to enrich cell populations prior
to other approaches of single-cell isolation. Vice
versa, pre-enrichment by other approaches like
negative selection or depletion of unwanted cells
through magnetic-activated cell sorting (MACS)
likewise improves FACS results.

Due to its broad applicability, FACS studies
cover nearly every cell type ranging from
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blood cells, bone marrow cells, tumor cells,
neurons, plants, protoplasts, yeast, to bacteria
and even viruses. Similarly, nearly all research
fields have integrated FACS applications in their
potential workflow resulting in methods for cell
cycle analysis [105], quantification of
subpopulations [5], analysis of hematopoietic
stem cells [35, 36], apoptosis [106] or DNA con-
tent analysis as well as immunophenotyping
[107], quantification of soluble molecules [108],
microbial analysis [109], and cancer diagnostics
[110, 111].

2.7 Microfluidic Approaches

In the last years, innovative microfluidic
technologies have paved new ways in single-cell
isolation and analysis [112] with several
microfluidic or lab-on-a-chip devices
[113, 114]. Microfluidic chips, mostly lithograph-
ically fabricated onto polydimethylsiloxane
(PDMS), glass, or silicon, enable sample com-
partmentalization and the control of nanoliter
reactions. Due to their low-volume reactions,
they serve as an ideal method for high-throughput
single-cell separation for sequencing-related
downstream processing (Table 2.1)
[104, 115]. Microfluidic systems are in general
fully automated and closed, which reduces the
risk of external contamination. Even sterile work-
ing conditions are easy to achieve as microfluidic
systems often rely on disposable elements (e.g.,
microfluidic chips), representing a major draw-
back for most of the aforementioned methods.
Still, internal cross contamination risk from
lysed or damaged cells within the system differs
tremendously, dependent on the applied
approach, hence requiring monitoring. Common
advantages of all microfluidic approaches are
high-throughput with minimal effort, cost effec-
tiveness, and high accuracy. On the other hand,
microfluidic chips are often less applicable for
heterogeneous cell sizes based on their inherent
chip design and channel properties.

Nowadays, microfluidic single-cell isolation
methods can be roughly categorized based
on three operating principles, namely,

microstructures, hydrodynamic effect-based
methods [116], and droplet-based assays [117–
119] (Fig. 2.4). These basic approaches can be
upgraded with a multitude of technologies like
optical tools [120, 121], immunomagnetophoresis
[13, 99], dielectrophoresis [122], or Raman spec-
troscopy [123] enabling a high specificity of
desired cell types. In this paragraph, we will
focus on single-cell isolation technologies appli-
cable for downstream sequencing analysis.
Hence, the following discussed methods are not
exhaustive for all possibilities offered for single-
cell approaches and may further be applied to
different non-sequencing approaches like single-
cell culture or stimulation experiments.

2.7.1 Microstructure

Nanoliter well devices [116, 124] comprised of
high-density arrays of wells (microstructures or
compartments) that serve as miniature target
vessels for single cells were probably one of the
first application of microfluidics for biological
purpose (Fig. 2.4a).

In their simplest versions, the microstructures
are loaded with low density cell solutions ensur-
ing one cell per microstructure, through which
high throughput single-cell analysis can be
achieved, capable of capturing hundreds to
millions of individual cells at the same time
[116, 125]. Dependent on the application, the
microstructures are sealed with capping structures
(e.g., glass slides) or hydrophobic liquids (e.g.,
oil), providing an isolated reaction volume per
well. The microwells are also called mechanical
or hydrodynamic traps as the cells within a sus-
pension are passively separated by physical
borders printed on the microfluidic chip and
finally fixed in “traps.” Typically, doublets are
attempted to be avoided by adjusting the micro-
structure size to the average target cell size. This
results in reported doublet rates up to 30% using
microwell encapsulation systems [119]. It is
claimed that for the commercial platforms
Clontech ICell8 and Fluidigm C1 relying on
post-capture visual control for empty wells and
doublets, this rate was decreased to 3%. For the
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Fluidigm C1 microfluidic robotic platform, the
captured single cells can be automatically stained
within the system for monitoring viability, sur-
face markers, or reporter genes under visual con-
trol prior to cell lysis. The device automatically
prepares indexed single-cell cDNA templates,
applicable for downstream qPCR or sequencing
analysis [126]. Since available chip designs are
tuned to three size ranges (5–10, 10–17, and
17–25 μm in cell diameter based on the micro-
structure size), cell suspension needs to be rela-
tively homogeneous in size. In combination with
pre-enrichment steps for target cells from hetero-
geneous samples, these methods represent quite
powerful and easy-to-handle tools to analyze
large number of cells. Alternatively, recent stud-
ies in custom-designed arrays utilized
immobilized antibodies on the microwell surface
for subtype-specific cell capturing with a capture
rate of about 95% [127], or coating with cell-
recognizable aptamers to achieve cell type selec-
tivity by encouraging strong 3D local topographic
interactions of target cells with the microwell
surface [128].

2.7.2 Methods Utilizing Certain
Hydrodynamic Effects

Several microfluidic methods take advantage of
certain hydrodynamic effects. One frequently

exploited effect is the Dean flow, which is
induced by fluid inertia resulting in the formation
of a vortex that is perpendicular to the original
flow direction. Cells with varying sizes, densities,
or shapes behave differently to this inertial effect,
through which they are concentrated at distinct
locations within the vortex (Fig. 2.4b). This
enables a passive and label-free isolation of single
cells. Using Dean flow, the difficult task to cap-
ture CTCs from blood was achieved in high-
throughput (1.7 mL/min) followed by fluores-
cence in situ hybridization detection for DNA
analysis [129]. In combination with droplet
encapsulation, such sorting approach was further
exploited to establish a high-yield/speed single-
cell isolation system reaching a yield of about
77% at a speed of 2700 cells/s [130]. In contrast
to microwell-based systems, these hydrodynamic
approaches establish a continuous fluid flow
allowing for even higher throughput compared
to hardware-limited numbers of microwells on
a chip.

The development of valves on a chip, back in
the early 2000 [131], likewise relying on hydro-
dynamic effects, helped to overcome other
limitations of microwells. These devices exhibit
high programmability and a relatively high-
throughput by active modulation of the liquid
flow inside the microfluidic chips, being routinely
applied for single-cell isolation [15, 131–
134]. Due to the precise fluid control exerted by

Fig. 2.4 Microfluidic approaches: (a) Single cells are
passively trapped in microwells according to their size.
Microwells can be sealed with a membrane or glass slide
and inspected microscopically after isolation. Cells or
components can be re-isolated from the wells for further
processing. (b) Spiral sorter uses the dean flow effect for
size/weight separation of cells and possible isolation by
different outlet channels. Randomly dispersed cells at the
entrance are focused on their way through the spiral at
distinct positions in the channel enabling separation and
isolation of cells. (c) Schematic overview of Drop-Seq

microfluidic setup. An aqueous stream of cells (light
blue) is co-flowing with an aqueous phase of lysis buffer
(light green) containing individually barcoded beads for
mRNA capturing. This co-flow stream is broken up by an
oil stream (brown) into individual droplets containing
random distribution of cells and beads. The cells are
lysed inside the droplets and the mRNA binds to the
barcoded beads. Afterwards all droplets are broken, and
the material can be pooled and collected for downstream
processing
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combinations of valves, a complex series of
operations can be conducted on-chip, starting
from single-cell isolation, reagent addition, lysis,
and lysate retrieval, achieving a high degree of
automation and parallelization.

Pressure-actuated valves can be applied to cap-
ture single cells in small reaction chambers with
nearly 100% efficiency, which is particularly
salient for rare samples and biopsies [135]. Differ-
ent forms of hydrodynamic methods, such as
hydrophoretic [136] and cross-flow principles
[137], or pinched flow fractionation [138] have
also been investigated, but are not routinely
applied for single-cell isolation. Several other
methods like hydrodynamic tweezers [139] or
audible frequency oscillation-based tweezers
[140] that induce liquid vortices for cell trapping,
are currently not applicable for single-cell
sequencing approaches, as proper handling of
the lysed single cells is not achieved yet. Taken
together, if applicable, single-cell methods using
hydrodynamic effects represent a cost-efficient
way to achieve high-throughput and precision in
microfluidic chips. However, there are several
limitations, such as reliability of device fabrica-
tion and necessity of complex optimization of the
microfluidic design. Moreover, the user interface
needs to be addressed for advanced applications
[34]. Although valve-based systems in particular
have been shown to overcome the limitations of
microwells, like limited operability and down-
stream molecular analysis, the complex setup
and required precise computer-controlled
pneumatics complicate the fabrication and opera-
tion, consequently increasing the costs.

2.7.3 Droplet-Based
Microfluidic Approaches

So far probably the most promising technology
for controllable handling of minimal volumes of
fluids in single-cell applications represent
droplet-based microfluidic approaches
(Fig. 2.4c) [141, 142]. Droplet-based systems
produce micrometer-scaled, surfactant-stabilized
droplets from an aqueous phase in an inert carrier
oil [118, 119, 141, 142]. These droplets constitute

individual capture and reaction volumes
separated by the inert oil phase and surfactants,
together preventing cross contamination by limit-
ing the diffusion of analytes (e.g., DNA or RNA)
into the oil and neighboring droplets. Droplet-
based microfluidic concepts encapsulate single
cells either randomly according to Poisson’s dis-
tribution [117] (similar to limiting serial dilution
methods discussed above) or with even higher
efficiency reaching more than 80% [143]. The
high-throughput character and the high frequency
of droplet generation with nanoliter reaction
volumes rely on a continuous flow of the aqueous
phase. This minimizes the required reagent
volumes, while enhancing the reaction efficiency
within the individual droplets.

Based on this, the major breakthrough in
regard to single-cell transcriptome sequencing
was achieved in 2015 by two approaches called
inDrop [118] and Drop-Seq [119], combining
microfluidics and nucleotide barcoding for retro-
spective identification. These approaches enable
parallel analysis of thousands of cells for a large
variety of sequencing methods [117, 118, 144–
146]. These technologies were transferred into
commercialized and optimized platforms such as
10� Genomics (Pleasanton, CA, USA) [29],
Dolomite Nadia (Royston, Herts, UK), and the
ddSeq system (Bio-Rad, Hercules, CA, USA),
increasing the flexibility and leading to dramatic
cost reduction in matters of single-cell mRNA
library generation.

Focusing on the initially published 30 poly-A
capture methods [118, 119], droplet-based
platforms employ beads or gel spheres containing
poly-dT oligonucleotide capture sequences cou-
pled to two barcode sequences. One barcode is
bead-specific that serves to identify the RNA of
an individual cell. The second barcode called
“unique molecular identifier” (UMI) is a short
random sequence allowing for accurate quantifi-
cation of each expressed transcript per cell
[119]. In both approaches, Drop-Seq and
inDrop, the hybridization of the mRNA to the
primer sequences is performed within the droplets
[119]. The droplets additionally serve as compart-
ment for the reverse transcription reaction when
applying inDrop [118]. Afterwards the droplets
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are chemically broken and all downstream pro-
cesses are accomplished in a one-tube reaction for
all pooled cells [118, 119].

A great advantage of droplets-in-oil-based cell
separation and sorting technologies is the tremen-
dous throughput of up to several thousand single
cells per second [143] and the low technical
noise. Moreover, the possibility to handle and
modify each single droplet is unique to this tech-
nology and allows for subsequent merging, incu-
bation, reinjection, and sorting of the droplets.

2.8 Future Perspective

The field of single-cell analysis including the
important steps of isolation and separation is rap-
idly expanding. New advances in technologies
enable the interrogation of single cells at unprec-
edented resolution with progressively decreasing
costs. This course will probably continue with
novel techniques aimed at capturing even higher
number of cells per experiment and the extraction
of several layers of cellular information at once.
Such multi-omic approaches will allow simulta-
neous analysis of genomic, chromatin,
epigenomic, transcriptional as well as proteomic
states [40, 147–150]. So far, multi-omics can be
applied at single-cell level only by the use of
low-throughput methods, but it is simply a matter
of time until these approaches will become avail-
able for high-throughput platforms, most likely
within the scope of microfluidics.

Especially, single-cell droplet microfluidic
applications have increased significantly over
the last years and further exploration of this
research field can be expected. Due to the rapid
technological progress within the microfluidic
market, even more complex and multiplexing
experimental designs may soon allow for
automated patch-clamp recordings and intracellu-
lar calcium measurements [151, 152], followed
by transcriptome and proteome analysis [153–
155]. Future improvements might further focus
on handling, sorting, or storage of single-cell-
containing droplets as well as on integrative
workflows for downstream processing,
standardized approaches for barcoding and

packaging, or increasing the sensitivity. The tech-
nical integration of sorting capabilities like FACS
into microfluidic chip designs are ongoing and
will enable fully integrated systems for the enrich-
ment and targeted isolation of cells of interest
within a microfluidic environment.
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Abstract

T cells recognize peptides bound to major
histocompatibility complex (MHC) class I
and class II molecules at the cell surface.
This recognition is accomplished by the
expression of T cell receptors (TCR) which
are required to be diverse and adaptable in
order to accommodate the various and vast
number of antigens presented on the MHCs.
Thus, determining TCR repertoires of effector
T cells is necessary to understand the immu-
nological process in responding to cancer pro-
gression, infection, and autoimmune
development. Furthermore, understanding the
TCR repertoires will provide a solid frame-
work to predict and test the antigen which is
more critical in autoimmunity. However, it has

been a technical challenge to sequence the
TCRs and provide a conceptual context in
correlation to the vast number of TCR
repertoires in the immunological system. The
exploding field of single-cell sequencing has
changed how the repertoires are being
investigated and analyzed. In this review, we
focus on the biology of TCRs, TCR signaling
and its implication in autoimmunity. We dis-
cuss important methods in bulk sequencing of
many cells. Lastly, we explore the most perti-
nent platforms in single-cell sequencing and its
application in autoimmunity.

Keywords

T cells · T cell receptors · T cell receptor
signaling · Single cell sequencing · Bulk
sequencing · Sjogren’s syndrome

3.1 Introduction

T cells are a critical component of the adaptive
immune system capable of recognizing a nearly
infinite variety of antigens. T cells recognize
antigens through unique antigen receptors called
T cell receptors (TCRs). Unlike the closely
related B cell receptors (BCRs), which can secrete
as an antibody, TCRs are strictly membrane
bound and are not secreted [1, 2]. As a result,
TCRs lack the opsonization and neutralization
abilities of antibodies and are committed to
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participating in antigen recognition followed by
intracellular signaling and subsequent T cell acti-
vation [3]. TCRs are further distinguished from
BCRs by their mechanisms for antigen recogni-
tion. While BCRs can directly bind to a wide
variety of molecules, TCRs are restricted to
recognizing short peptides of protein antigens
processed and presented by major histocompati-
bility complexes (MHCs) on the body’s own anti-
gen presenting cells (APCs) [4]. Fundamentally,
TCRs function as an antigen recognition receptor
complexed to T cell activating signaling machin-
ery and are activated in response to short contin-
uous amino acid sequences presented on MHC.
TCRs are composed of two heterodimeric poly-
peptide chains linked by a disulfide bond
[1]. Each chain of the TCR consists of two extra-
cellular immunoglobulin domains, a transmem-
brane region and a short cytoplasmic tail
[1]. The two extracellular domains are made up
of the variable (V) region and constant (C) region
[4]. The heterodimeric structure of the TCR is
analogous to the heavy and light chain
heterodimers of BCRs [5]. However, the forked
structure of the BCR consists of two antigen
binding sites, whereas each TCR possesses a sin-
gle antigen binding site. The majority of TCRs
possess an α chain and a β chain and are referred
to as αβ TCRs. A subset of T cells possesses a γ

chain and δ chain and are referred to as γδ TCRs.
γδ TCRs are capable of directly recognizing
antigens outside the context of MHC and are
even capable of recognizing non-peptide antigens
[6–8].

T cells possess the ability to bind to a vast
array of peptide antigens through their TCRs; it
has been estimated that humans can produce
between 1015 and 1020 possible unique TCR
chains [9]. This enormous variety is imparted by
an unusual genetic mechanism, largely shared
with BCR generation, that provides diversity
concentrated in the antigen binding regions of
the TCR [10]. The V region is the portion of the
TCR that participates in antigen binding. The V
region is not encoded by a single segment of
DNA, but rather is composed of multiple gene
segments that are rearranged through somatic
DNA recombination. Combinatorial diversity
afforded through recombination of the gene
segments is further augmented by junctional
diversity through the random addition of
nucleotides at the interface between segments,
thus allowing for the generation of a nearly limit-
less array of TCRs [11]. The DNA encoding the α
chain of the TCR possesses multiple variable
(V) and joining (J) segments, whereas the β
chain possesses multiple V, diversity (D), and
segments [11, 12] as represented in Fig. 3.1.

Fig. 3.1 The genetic basis of TCR formation. The figure
represents the mRNAs somatic VDJ recombination to
form the alpha and beta chains of TCRs. As indicated,
there is an arrangement step that recombines the VDJ
segment for TCR β and V and J segments for the TCR α
chain. The mRNAs formed have addition and deletion of
nucleotides at the junctions of these segments leading to

junctional diversity that leads to variability for assessing
specific antigens. There may be different combinations of
genes leading to the final formation of the TCR that
consists of the TCR α and β subunit organized in a con-
stant and variable region wherein the variable region is
responsible for antigen recognition
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A functional TCR will consist of an α chain with a
single V and J segment and a β chain with a
single V, D, and J segment. The act of rearranging
these segments into functional TCRs is referred to
as VDJ recombination. During VDJ recombina-
tion, the gene segments for the α and β chains of
an individual T cell are rearranged in order to
produce a new functional TCR. VDJ recombina-
tion employs both the lymphoid-specific RAG1-
RAG2 complex, so named for recombination
activating genes (RAG), and enzymes of the
more broadly utilized double stranded break
repair (DSBR) system [12, 13]. Antigen binding
within the TCR V region involves the three com-
plementarity determining regions (CDRs) that
contact the antigen MHC complex. CDR1 and
CDR2 are primarily encoded in the V germline
segments and therefore experience less diversity.
CDR3 however includes the junctional regions
and is the primary region in contact with the
antigen [5, 14]. The diversity of the TCR reper-
toire can change or evolve at different stages of
the disease. If one can grasp the repertoire diver-
sity, one can understand the immune response
under various disease conditions, specifically
infectious diseases, cancer, and autoimmune
diseases.

In the past decades, in an attempt to examine
the TCR repertoires, we relied on quantitative
polymerase chain reaction (PCR) and
spectratyping techniques to capture the TCR
sequences. The limitations of these processes are
the low resolution, favoring of the most dominant
sequences, and the inability to pair the receptor
expression. These constraints limit our ability to
resolve the heterogeneity of TCR expression at
high resolution. Currently, with the advancement
of single-cell isolation processes and sequencing
technologies, we are able to decipher the paired
expression of TCRs at single-cell resolution.
Understanding TCRs at the individual cell level
will revolutionize how to profile immune cell
repertoires, antigen discovery, disease prognosis,
and treatment. The body of this review will focus
on both the specific techniques and strategies
used in the past and current single-cell
technologies used to define and sequence TCR
sequences, and how these techniques provide a

better understanding of the immune cascade fol-
lowing antigen presentation in autoimmune
diseases.

3.2 TCR Repertoires
in Autoimmunity

3.2.1 TCR Signaling

TCRs recognize processed peptide antigen
presented on MHC on the surface of the body’s
own cells. The two conventional MHCs, MHC I
and MHC II are both polygenic and polymorphic
noncovalent protein complexes composed of two
polypeptide chains [4, 15]. TCRs are specific to
both peptide antigen and the MHC to which it is
bound, a phenomenon known as MHC restriction
[4, 16]. MHC I is on the surface of virtually all
nucleated cells in the body. Peptides presented on
MHC I are generally 8–10 amino acids in length
and result from the processing of foreign intracel-
lular proteins [17, 18]. For this reason, MHC I is
frequently used to signal viral infection to cyto-
toxic CD8 T cells. MHC II is only present on the
surface of antigen presenting cells of the immune
system including B cells, macrophages, and den-
dritic cells. MHC II presents peptides of 13–17,
amino acids in length that have been collected
from the extracellular environment [15]. MHC II
is recognized by CD4 helper T cells which upon
activation stimulate the effector arms of the
immune system [19]. The T cell co-receptors
CD4 and CD8 increase the T cell sensitivity to
antigens and serve to jumpstart TCR signaling
[1, 2]. T cell activation is considered to require
three discrete signals delivered to T cells [3]
(Fig. 3.2). Signal 1 occurs through the interaction
of TCR and antigenic peptide presented on MHC.
Association of T cell co-receptors CD4 or CD8
and MHC II or MHC I respectively are also
considered part of signal 1. Signal 2 consists of
a co-stimulatory signal commonly transmitted by
B7.1 and B7.2 interacting with CD28 on the T
cell surface [19, 20]. Signal 1 and signal 2 together
drive T cell survival and clonal expansion. Signal
3 is delivered through the cytokine environment
acting on the T cell, and determines
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differentiation of CD4 T cells into T helper Th1,
Th2, or Th17 subsets [19] which further in an
immune response lead to different effector
functions (Fig. 3.3).

3.2.2 Importance of Shaping the T
cell Repertoire
in Autoimmunity

While VDJ recombination allows for the devel-
opment of an arsenal of TCRs capable of
recognizing a nearly limitless array of foreign
peptides and mounting an immune response,
some of the receptors generated will be reactive
against self-peptides. These self-reactive TCRs
can erroneously engage the machinery of the
immune system against the body’s own tissues,
resulting in tissue destruction and potentially an
autoimmune disease [21]. T cells expressing
TCRs that are strongly self-reactive are typically
culled or inactivated through the mechanisms of
central tolerance during T cell development in the
thymus and peripheral tolerance after the T cells
have exited the thymus and entered the secondary

lymphoid tissues [21, 22]. However, the systems
maintaining self-tolerance are imperfect and some
self-reactive T cells will escape selection
[23]. Additionally, some TCRs are specific for
foreign peptides but also reactive against self-
peptides [24]. Therefore, the immune system
must balance the elimination of self-reactive T
cells with the maintenance of a TCR repertoire
capable of providing protection. During infection,
when latently autoreactive T cells are exposed to
self-peptide in an inflammatory environment, the
mechanisms of self-tolerance can break down and
permit the activation of autoreactive T cells
[25, 26].

Autoreactive T cells are critically involved in
many autoimmune diseases either as effector cells
or through the promotion of autoantibody
responses by providing T cell help to B cells
[21]. Type I diabetes is characterized by the infil-
tration of leukocytes, particularly autoreactive
CD8 T cells, into the pancreas [27] where the
cytotoxic CD8 T cells kill the insulin producing
beta cells, resulting in the development of disease
[28]. Multiple sclerosis is another T cell mediated
autoimmune disease where Th17 cells, subsets of

Fig. 3.2 Three discrete
signals for T cell activation.
Signal 1 occurs through the
interaction of TCR and
antigenic peptide presented
on MHC. Signal 2 is
indicated that consists of a
co-stimulatory signal that is
commonly transmitted by
the B7.1 and B7.2 receptors
of the antigen presenting
cell that interact with CD28
on the T cell surface. Signal
3 that is delivered as a result
of the cytokine
environment acting that
determines the
differentiation of the T cell
to the Th1, Th2, or Th17
subset
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CD4 T cells, propel an inflammatory response
that results in the destruction of the myelin sheath
around nerve axons [29–31]. During the patho-
genesis of psoriasis, multiple autoreactive T cell
subtypes including Th1 and Th17 cells are
activated and contribute towards the development
of inflammatory skin disease [32–34]. For many
autoimmune diseases, the antigens capable of
activating autoreactive T cells have yet to be
defined. Discovery of the sequences of TCRs of
clonally activated T cells in autoimmune diseases
presents an opportunity to elucidate the antigen-
specific response of these clones and gain a better
understanding of the determinants of autoimmune
disease.

3.3 Bulk Sequencing Technologies

Multiple techniques of immune repertoire analy-
sis have been developed over the last decade.
Pioneering studies on TCR repertoires were
initially based on the cloning and sequencing of
PCR-amplified cDNA collections [35–40]. The

mRNA gene expression level of TCR variable
gene segments in bulk is analyzed by techniques
such as semi-quantitative PCR using TCR Vβ
family specific primers [41–44]. Bulk sequencing
and analysis do not capture the expression of
single cells, but rather capture bulk samples or
many cells within the samples. Despite being
comprehensive, this qualitative and quantitative
technique does not provide any information about
CDR3 region of TCRs which forms an integral
component of the receptor [4]. The following
discussion will detail some of the major
techniques for bulk TCR analysis.

3.3.1 CDR3 Sequence Analysis by
Immunoscope

Immunoscope, also known as CDR3
spectratyping, was the first qualitative method at
the molecular genetic level for analyzing CDR3
polymorphisms and sequence length diversity
[9, 45–47]. This method based on electrophoretic
analysis of CDR3-PCR fragment length has been

Fig. 3.3 Effector functions of CD4 T Cells. The differentiation of CD4 T cells into Th1, Th2, or Th17 subsets which
further lead to an immune response and have effector functions. Different T cell subtypes are associated with different
autoimmune diseases
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the standard technique of TCR evaluation since
the 1990s [39, 48]. Musette et al. found an expan-
sion of oligoclonal Vβ5.3 + T cells population in
HLA-DR2 multiple sclerosis (MS) patients
[49]. Ercolini and Miller characterized the cross-
reactive anti-self response induced by a peptide
mimic on a model for MS [50]. Immunoscope
analysis of TCRVβ repertoire diversity in patients
with autoimmune lymphoproliferative syndrome
showed an expansion of TCRα/β+CD4�CD8�

double negative T cells derived extra-thymically
from CD8+ T cells [51]. Immunoscope analysis
has technical limitations and lacks the key
parameters of capturing TCR diversity such as
specific nucleotide sequences, codon usage, and
amino acid composition [49]. In parallel to
spectratyping, development of real-time PCRs
opened the possibility to evaluate TCR
repertoires with higher precision [39, 50–
54]. Pairing immunoscope with other techniques
allowed capture of quantitative and qualitative
data for the repertoire of V domain and C region
combinations [55–57]. Current approaches aim to
quantify genomic DNA (gDNA) or mRNA
sequences corresponding to CDR3 region of
TCR β chain, the most variable TCR region
[58, 59]. CDR3 sequences are usually unique
markers and the key determinants of antigenic
recognition, quantitative T cell responses, and
clonal composition of the T cell repertoire
[60]. However, CDR1 and CDR2 are also
associated with MHC restriction [61, 62] and
therefore sequencing of all regions is important
to provide the complete information about TCR
structure and its binding characteristics
[63]. Selecting between gDNA and mRNA is an
important consideration for sequencing. The
gDNA presents high long-term stability, ease of
isolation, and presence of a single DNA template
per T cell. The disadvantages include possible
errors of sequencing due to introns, cells with
residues of VDJ rearrangements and interfering
priming sites of the sample. Contrary to the pres-
ence of multiple TCR transcripts in gDNA, using
mRNA provides the sequence of the entire V and
J gene [51, 59, 63] which is the basis of specific
antigen recognition. Lim et al. combined
immunoscope with MHC peptides multimer-

based T cell sorting; however, specific T cells
could not be detected due to their low frequency
and/or an insufficient amount of TCR β chain
transcript [57, 64]. For the first time at the nucle-
otide sequence level, the TCR repertoire was
analyzed using molecular cloning and Sanger
sequencing [9, 65, 66]. Nonetheless these
low-throughput approaches were limited due to
their failure to individually sequence a large num-
ber of T cell clones. Over the years, there have
been several methodologies taken into consider-
ation for successful and correct sequencing
analyses. With technological interventions, it
has become possible to amplify both TCR α and
β chains simultaneously. Fundamentally, the β
chain is more preferred for analysis due to the
unique presence of the D gene component [63].

3.3.2 High-Throughput Sequencing
Techniques

3.3.2.1 Multiple-Based PCR Methods
All previous techniques presented several
limitations to create an extensive analysis of
TCR repertoire profiling until the development
of high-throughput sequencing (HTS) techniques.
These allowed for massive parallel sequencing of
millions of TCR sequences. The application of
HTS presented promising results in clinical needs
pertaining to infectious diseases, cancer, and spe-
cially autoimmunity [60, 67, 68]. There are three
principal PCR-based enrichment techniques that
are used: the multiplex PCR, target enrichment
PCR, and 50RACE-switch-oligo nested PCR. The
multiplex technique allows working with both
starting materials: gDNA and RNA and contains
a mix of primers complementary to all known V
segments and a pool of reverse primers for J
segment or constant region exons
[69, 70]. There are several kits that are available
on the market, for example: BGI, Adaptive
Biotechnologies, iRepertoire [71–73] that facili-
tate the multiplex PCR technique. Target
enrichment-based PCRs also work with both
gDNA and RNA. TCR-specific baits complemen-
tary to α and β transcripts hybridize with
molecules in the library, are conjugated to
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magnetic beads and then undergo amplification
before sequencing. Kits such as SMARTer
ThruPLEX have been developed by Takara Bio.
Lastly the nested PCR approach is an alternative
technology that has been introduced into the bulk
sequencing and is based on the 50RACE switch-
oligo approach designed only for RNA. It
involves presenting an insert of an adaptor mole-
cule at the 50 end of the cDNA during cDNA
synthesis. This technique was developed by
Clontech and follows the principle of a PCR
where the forward primer binds to 50 adaptor
molecule and reverse primer binds to the C region
of transcript improving specificity
[74]. Hendriksen et al. analyzed T cell repertoires
of paired liver and gut samples from patients
suffering from primary sclerosing cholangitis
with inflammatory bowel disease, and
demonstrated their common origin [78]. Spreafico
et al. discovered for the first time circulating
pathogenic-like lymphocytes in patients with
juvenile and rheumatoid arthritis TCR. These
cells are enriched in synovial clonotypes, circu-
late through the site of autoimmune reaction, and
correlated with progression of juvenile and adult
autoimmune arthritis [79]. Expanded findings are
summarized in Table 3.1.

3.3.2.2 Commercial Platforms for Next
Gen Sequencing

Next Gen Sequencing (NGS) consists of current
technologies that have higher accuracy as com-
pared to Sanger High-Throughput Sequencing
(HTS) platforms. The NGS platforms have
refined technologies over time and as a result
there are several available currently.
Technologies such as GS FLX by 454 Life
Sciences/Roche diagnostics, Genome Analyzer,
HiSeq, MiSeq and NextSeq by Illumina, Inc.,
SOLiD by ABI, Ion Torrent by Life
Technologies, Oxford Nanopore, Complete
Genomics by Beijing Genomics Institute, and
GnuBIO are a few platforms that have different
characteristics of sequencing accuracy. The
advantages they provide over HTS differ based
on sequencing depth, read length, error type and
their frequency but include individual TCR
clonotype quantification [58, 75]. Since error
rate is a major consideration, there is a trade-off
in choosing a sequencing platform needed to
correctly manage it. Library preparation for
companies such as Illumina sequencing, Roche,
Life Technologies, and Pacific Biosciences are
almost the same with differences in parameters
such as sequencing adapters, cluster generation

Table 3.1 Application of bulk sequencing technologies in TCR repertoire analysis for autoimmune diseases

Paper Methods Results

Musette et al.
[49]

Immunoscope Expansion of oligoclonal Vβ5.3 + T cells population in
HLA-DR2 MS patients

Ecrolini and
Miller [50]

Immunoscope Characterization of the cross-reactive anti-self response induced
by a peptide mimic on the model for MS

Bristeau-
Leprince et al.
[51]

Immunoscope Analysis of TCRVβ repertoire diversity in patients with
autoimmune lymphoproliferative syndrome demonstrated an
expansion of TCRα/β+CD4�CD8� double negative T cells
derived extra-thymically from CD8+ T cells

De Palma et al.
[87]

Immunoscope Patients affected by SS

Henriksen
et al. [78]

Multiplex PCR, immunoSEQ
assay (Adaptive Biotechnologies)

Analysis of T cell repertoires of paired liver and gut samples
showed common origin in patients with PSC-IBD

Oftedal et al.
[88]

Multiplex PCR, ImmunoSEQ
assay

Specific TCRβ sequences with limited diversity recognize self-
antigen myeloperoxidase in autoimmune Aire�/� mice, the
utilization of V and J genes are altered due to autoimmunity and
immunization

Spreafico et al.
[79]

Multiplex PCR, immunoSEQ
assay

TCR repertoire of CPLs is enriched in synovial clonotypes and
correlated with progression of juvenile and adult autoimmune
arthritis

MSmultiple sclerosis, PSC-IBD primary sclerosing cholangitis-inflammatory bowel disease, SS systemic sclerosis, AIRE
autoimmune regulator, CPLs circulating pathogenic-like lymphocyte
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and application of technologies such as paired
end sequencing. The basic process includes
RNA extraction and fragmentation from the sam-
ple and conversion into cDNA by reverse tran-
scription. DNA fragments are ligated to
sequencing adapters with specific sequences
[76]. These sequences are designed to interact
with a specific platform either the surface of an
individual flow cell in case of Illumina or the
microemulsion-based platform for Ion Torrent.
Library construction involves three primary
steps: (1) fragmentation of starting material
DNA or RNA, (2) adaptor ligation, and (3) ampli-
fication [81, 82]. Initial DNA can be sheared into
short fragments of 200–400 bp (depending on the
sequencing platform) by physical methods
(acoustic sonication and hydrodynamic shearing),
enzymatic (endonuclease and transposase) or
chemical methods (heat digestion with divalent
metal cations) [81, 83]. Random/unbiased frag-
mentation allowing to produce overlapping
segments of optimal length is one of successful
factors for NGS library construction. After frag-
mentation end repair is required, single stranded
segment ends are blunted and 50 phosphorylated,
following A-tailing by Taq or a Klenow fragment.
The sequencing adaptors are then ligated to the
DNA fragments forming the fragment
library. Several cycles of PCR are performed to
enrich for the library product.. Finally, the DNA
library can be evaluated for quality control and
followed by sequencing through NGS [81, 84].

3.3.2.3 The Illumina Platform
and Technologies

The Illumina platform presents the leading posi-
tion in the NGS market and it provides sequenc-
ing by synthesis based on reversible
dye-terminators. Illumina HiSeq and MiSeq use
four-channel sequencing systems with individual
image detection of each base. The NextSeq
500 presents a two-sequencing system wherein
only two images are needed for four base calls
that allow reduction in time, cost of sequencing,
and number of cycles as there are two images
simultaneously analyzed from both ends

[77]. Illumina MiSeq is widely used for capturing
the most common and expanded clonotypes,
whereas Illumina HiSeq is mostly applied for
increasing the depth in sequencing [59, 63]. The
principal drawback of bulk sequencing is that it
provides information about the frequency of sin-
gle TCR chains, but no information regarding
their pairing [63]. To remove this bottleneck,
unique molecular identifiers (UMIs) have been
introduced during cDNA synthesis that allow for
reduction in errors during amplification during a
PCR [74]. Using high-throughput deep TCRβ
chain sequencing, Muraro et al. showed that
autologous stem cell transplantation has distinc-
tive effects on CD4+ and CD8+ T cell repertoires
in multiple sclerosis patients [78]. Incorporating
multiple-PCR and 50 rapid-amplification of
cDNA ends (RACE) to capture CDR3 regions
and high-throughput sequencing platform
HiSeq2000, the authors found no significant dif-
ference in TCR repertoires between pancreatic
cancer patients versus healthy controls, and no
differences were found between the samples of
tumor tissue and the blood samples from patients.
Applying a template-switch anchored RT-PCR
and Illumina sequencing, diverse repertoire of
clonally expanded tumor-reactive lymphocytes
was identified on CD8+ melanoma tumor-
infiltrating lymphocytes (TILs). Additionally,
sequencing the TCRβ revealed that tumor-
reactive and mutation-specific clonotypes were
highly expanded in the CD8+ population and
preferentially expanded in the PD-1+ population
[79–81].

3.4 Single-Cell Sequencing
Techniques

As opposed to the bulk cell analyses that provide
coarse or broader resolution, the TCR repertoires
can be analyzed at a second level that is more
fine-tuned at higher resolution with single-cell
sequencing analysis. This allows us to visualize
the complex interplay between varied cell types
of the immune system bringing about a systemic
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response. Bulk technologies fail mostly in under-
standing the nuances of the complex cell
responses while single cells help in resolving
ambiguity as analyzing the interactions micro-
scopically between individual cells provides
details giving insight to bigger reactions
[82]. As indicated, bulk sequencing procedures
are only able to catch the most common and
expanded clonotypes which may or may not be
ideally suggestive of the immune responses dur-
ing an infection or autoimmune process [83]. Sin-
gle-cell analyses on the other hand provide
information indicative about rare TCR subset
sequence repertoires that will yield a comprehen-
sive understanding of the biological processes of
individual T cells and their dynamic interaction
within the biological system.

As discussed, initially platforms focused pri-
marily on providing sequencing information
on the dominant TCR α and β chains, but current
technologies can sequence the rarer and less fre-
quent cell populations such as TCR of γδ T cells
[84]. In T cell repertoire formation, it is essential
to understand the development and expansion of
the cells based on TCR expression. The differen-
tiation of a progenitor T cell into a specific subset
can be identified by single-cell RNA (scRNA)
sequencing as there is clonal expansion of a spe-
cific prototype [84, 85]. Since single-cell
sequencing helps in identification of the TCR
chains at a cellular level, depth becomes an
important consideration as it provides vital infor-
mation regarding repertoire formation
[86, 87]. Major variability can be observed
between two similar cells during the analysis of
single-cell-based data. This variability may be
attributed to either inherent biological variations
or a result of the technique for repertoire analysis.
Single-cell technologies for TCR repertoire anal-
ysis include PCR that involves the reverse tran-
scription of the mRNA to amplify the cDNA from
a single cell. The goal in single-cell receptor
sequencing is to obtain maximum coverage of
cell types and a low cost per cell, with compre-
hensive algorithms and platforms for analysis that
provide extensive detail [88]. The challenges
include the capture of single cells, isolation and

amplification of sufficient materials, and genera-
tion of vast volumes of data that require faster
methods of computation and algorithmic tools
that allow efficient data management.

3.4.1 Microfluidic Technologies
and Platforms

One of the challenges of single-cell sequencing is
the capture of the single cells. Major technologi-
cal improvement in the area of microfluidics has
facilitated the capturing process. Microfluidic
technology involves capturing of individual or
population of cells in emulsion droplets in the
picoliter or nanoliter range that is pumped in by
different speeds using microfluidic devices
[89]. The cell droplets constitution is compatible
with mammalian cells and as a result it keeps cells
functional for further investigation [90]. Cells are
barcoded via specific primers and cDNAs are
generated from thousands of cells in parallel
[91, 92]. The cDNAs formed are pooled by break-
age of the microfluid droplet, amplified by tran-
scription and then sequencing libraries are
prepared [93]. Microfluidic technologies are cur-
rently being used widely in the space of TCR
enrichment sequencing [94]. The advantages
that the process provides consist of providing T
cell activation information, pathogens targeted by
cytotoxic T cells and cytokine release [95–
97]. Not only does it provide real-time informa-
tion about the T cell repertoire, but it also
provides the functional monitoring of the individ-
ual T cell types as opposed to the conventional
methods [70, 98] such as identifying cell
populations via FACS, carrying out PCR and
then mass population sequencing that leads to
loss of diversity [98, 99]. Chokkalingam et al.
have used droplet technology combined with
flow cytometry to identify T cell populations
that secrete IL-2, IFNγ, and TNF-α [100]. Konry
et al. have characterized T cells, natural killer
cells, and antigen presenting complexes by
multiplexing different parameters that are found
in a single droplet. McDaniel et al. have proven
that the pairing of both TCR chains (αβ or γδ) can
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be kept intact by single-cell sequencing by carry-
ing out high-throughput sequencing on millions
of T cell populations by obtaining individual
chain sequences [101]. Further Segaliny et al.
demonstrated the dynamics of TCR T cell
interactions and downstream molecular analysis
using single-cell sequences that confirmed their
matching with target antigens with an exact
specificity [102].

Droplet-based microfluidics has led to rapid
discovery and has provided new tools for learning
single-cell biology that include being a high-
throughput technology [89, 91], providing insight
to sequencing [103–108], secretome analysis
[95, 96, 109], cell–cell interactions [97, 110],
protein and antibody engineering [111], reper-
toire analysis and multiplex biological
interactions [112]. Furthermore, microfluidics
allows for analysis of drug interactions [113],
antigen-specific T cell repertoires [97, 104, 114],
CAR-T cell populations [115] and facilitates
investigation of other protein secretion, e.g.,
antibodies [111, 116–118]. Microfluidics uses
in-situ PCR and can display libraries in the same
run simultaneously [119–121]. Platforms like the
Chromium Single Cell Immune Profiling Solu-
tion by 10� Genomics can provide pertinent
information on TCR, BCR, cell surface protein
expression, and RNA expression in the same cells
[122]. In addition, the small volume provides
increased sensitivity, decreases time and it
improves the signal to noise ratio [123]. As a
result, it provides an insight into complex cellular
heterogeneity instead of an average readout and
provides information on molecular details that are
essential for T cell activation. Not only can real-
time sequencing be done with control of space
time and environmental factors but it does not
compromise the screening sensitivity
[123]. There are multiple studies that have been
conducted to understand multiplex biological
responses, CDR3 CAR-T cell products, and
adoptive T cells that can be used in varied thera-
peutic platforms, and provide real-time data for
analysis by microfluidics [70].

3.4.2 Generation of TCR Sequences
Using scRNA Sequencing

Single-cell TCR sequencing typically requires a
distinct four step process. First, the isolation of
single cells. This process is often performed using
FACS sorting to isolate the target single cells. As
discussed, microfluidic devices can be used to
sequester single cells [86, 124]. Secondly, cells
are isolated and the RNA is released into a fluid
medium post lysis of the cell and Oligo dt primers
recognize polyadenylated regions which are
amplified as a result of selective reverse transcrip-
tion. In the third step, the complimentary DNA
molecule that is obtained from this process is
amplified to produce multiple replicons, and
then sequenced. Lastly, the output sequence
reads from the reactions are analyzed and
quantified [125]. The reference genome and
transcriptome of interest can be traced back by
comparing the sequence read subset to a reference
genome or transcriptome [86, 124–126]. A shift
has been observed in the single-cell sequencing
landscape, as previously used capillary-based
techniques are being replaced by emulsion-
based PCR techniques. The methodology is
improved as devices use technology where oil-
in-water emulsions are pumped and high
sequence read repeats are analyzed for individual
cells. This provides a detailed insight on the αβ
TCR chains as the mRNA coding them is released
into the individual droplet that acts as an individ-
ual reaction platform. Within the droplet, the
mRNA is amplified using a multiplex
PCR-based approach [70] (Fig. 3.4).

3.4.3 Single-Cell Sequencing Data

Multiplex PCR systems and high-throughput
systems have been used in the past for analyzing
the TCR sequences. The protocol as described
above uses isolation, amplification, library prepa-
ration, and sequencing for TCR α and β chains
[79, 127]. There are two fundamental strategies:
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barcoding and full-length complimentary DNA
sequencing. PCR has been used in the process
of single-cell barcoding, a method of identifica-
tion of cell subtypes. A barcode is a unique nucle-
otide sequence obtained from a single cell that
tags cell transcripts and allows tracing the RNA
back to its origin. This once linked to the TCR can
help in identifying individual T cell types and
subsets with distinct functions [128]. Full-length
sequencing on the other hand involves pooling
the cDNA obtained from each cell and then
making a single-cell library for comparison of
the sequence. This process is time consuming
and expensive but sensitive and can provide
information about changes in individual base
pairs, mutations in the CDR3 region, difference
in isoforms, and differences in α and β chain
pairing [98]. The SMART-seq protocol that was
developed by Stubbington was one of the first
tools developed to reconstruct paired TCR α and
β chains. Named TraCer, it was used to validate
the sequences of the TCR αβ chains. The same
cDNA was used for sequencing libraries and this
validated the experimental approach as the start
was the same PCR-based approach and the result
a comparison for the chain sequences. This pro-
cedure has given an impetus to the requirement of
efficiency in the approach [98]. TRAPes was
another tool that was created to read short-read
single-cell RNA-sequence libraries [129]. Other
methods such as the non-strand specific poly-A
tailing described by Tang et al. showed a weak
positional bias for the 30 end of the RNA
[105]. The CEL-seq and MARS-seq that are sim-
ilar techniques are also based on the principle of
in-vitro transcription and having the same strong
30 positional bias [130]. Quartz-seq a platform
based on Poly-A tailing is able to provide low
depth sequencing accurate results as it is one of
the few that use a non-specific 30 weak positional
bias [131]. Further, platforms like the VDJ puzzle
allow the analysis of T cell gene expression and
TCR diversity, which consist of a library forma-
tion and then comparison of the sequences to the
antigen-specific circulating CD8 T cells for addi-
tional validation [132].

3.4.4 An Application of Single-Cell
TCR Sequencing

It has always been the goal of TCR research to
identify the T cells at the genetic and biological
levels simultaneously; it is an ongoing quest to
understand the individuality of pathogenic or pro-
tective T cells in diseases. The challenges often
encountered include the insufficiently small size
of the human patients’ biopsies and the near
impossibility of simultaneously examining
biological functions of individual live cells
isolated from the glands and their genetic profiles.
Numerous attempts have been made using
techniques such as laser capture micro-dissection
or flow cytometric sorting to obtain single-cell
populations. However, both techniques are cum-
bersome and neither can satisfactorily ensure
single-cell analysis. Furthermore, the integrity of
such isolated cells is greatly compromised due to
the vigorous isolation process, which can affect
subsequent micromanipulation and even
functions of infiltrating T cells. Due to the fact
that the purified cells are often either not viable or
damaged, important information regarding the
biological function(s) is difficult or impossible
to obtain. To circumvent these challenges, we
utilize the single-cell microengraving technology
which was developed originally by the Love
group at MIT as a tool for identification, profiling,
and selection of single cells, specifically based on
their reactivity to or secretion of proteins
[118, 133–135]. The nanochip is fabricated via
soft lithography, where arrays of nanowells are
manufactured onto a glass slide consisting of
24 � 72 blocks containing 7 � 7 arranged
nanowells within each block, yielding 84,672
50 μm nanowells per array. Additionally, these
can be manufactured to produce 30 μm
nanowells, where the arrays consist of 248,832
nanowells. Sylgard 184 silicone elastomer base
(polydimethyl-siloxane, PDMS) is cured in a
custom-built aluminum mold to produce these
microchips. After cells are stained for desired
cell surface markers with fluorescently conju-
gated antibodies and/or calcein (a live/dead
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marker), the cells are distributed on the micro-
chip. As shown in Fig. 3.5, they can be analyzed
by fluorescent microscopy, where images are
taken of the 7 � 7 grid of nanowells to determine
the identity of the cells. Next, the microchip is
hybridized with a capture slide. This is a poly-L-
Lysine slide coated with a desired protein or an
antibody against a desired protein. For example,
for identification of T helper cells, one would coat
the slide with anti-IFNγ and anti-IL-17. In com-
bination with the data from the fluorescent
microscopy, identification of Th1, Th2, and
Th17 cells would be possible. Alternatively, to
isolate reactive antibodies, one would coat the
capture slide with proteins of interest in order to
identify B cell reactivity. Notably, in the case of
identifying cells based on secreted proteins or
antibodies, single-cell microengraving is advanta-
geous over comparable techniques, such as flow,
because the cells remain active during the process
and do not need to be permeabilized, such as in
the case of flow cytometry. After hybridization,
the capture slide is exposed to detection (fluores-
cent) antibodies and/or proteins. The capture slide
can be analyzed on a microarray scanner and the
array data is then aligned against the fluorescent
microscopy data to give a complete profile of the
cells.

One notable application of this approach is the
area of Sjogren’s syndrome (SjS) in which we
sought to determine the TCR repertoires of path-
ogenic T cells that infiltrate the salivary glands,
the main targeted tissue in SjS. Other groups have
been trying to sequence pathogenic T cells for
well over two decades utilizing a variety of
techniques [136–141]. Commonly, the final tech-
nique involves nested PCRs to identify the TCR
sequences. Single-cell sorting by flow is the most
common technique to isolate T cells prior to this
[142–145]. As previously mentioned, the pitfall
of this technique is the lack of specific subset
identification of the T cells. The one measure to
counteract this is to permeabilize the membrane,
killing the cells. Currently, there is no way to
identify intracellular antigens while keeping the
cells alive. Recently, single-cell microengraving
has been successfully utilized in this effort
[146]. As outlined in Fig. 3.6, cells presenting

the correct phenotypes were selected, e.g., live
Th1, Th17 cells, from the biopsies of SjS patients
and sicca controls (patients who present a similar
disease phenotype, but who do not meet the
criteria of SjS). After the cells were lysed to
retrieve RNA, RT-PCR was performed, immedi-
ately followed by nested PCR for the alpha and
beta TCR chains and those products were
sequenced. These sequences were then aligned
against databases for identification of VDJ
regions and compared between the subject and
control groups as well as the subset of cells to
identify unique subsets presenting specific TCRs,
implying a shared antigen. Our recent study has
identified that glandular Th1 and Th17 cells of
control and SjS patients expressed common
TCRβ variable (TRBV)3-1 and TRBV20,
whereas TCRα variable (TRAV)8-2 was uniquely
expressed by Th1 of SjS patients [146]. Using the
SjS animal model, we have shown that salivary
Th1 cells of male mice selected for TRAV8 and
TRBV16 in Th1 and Th17 cells, whereas female
Th1 cells selected for TRAV8, TRAV13D-2, and
TRBV23 [147]. Other studies attest to our
findings by ascertaining unique glandular TCRs
in the human and animal models of SjS
[145, 148]. Our seminal studies clearly imply
that the clonal expansion of the effector T cells
with the conserved TCRs is driven by SG cell
antigens, and autoimmune responses to SG cell
autoantigens evidence a specific loss of immuno-
logical self-tolerance.

3.4.5 Advantages and Limitations
of Single-Cell Sequencing

A variety of bulk sequencing measurements give
insight about large, mixed populations of cells.
ELISA, PCR, and transcriptional profiling pro-
vide information about rapidly multiplying cells
[149]. The bulk measurements stated above do
not provide input on unique subsets of cells such
as clonally expanded B cells and T cells. The
parameters tested in bulk measurements average
out phenotypic states of cells and give a generic
outlook of the basic interactions among cells
[150]. TCR profiling includes analyzing the
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transcriptome that is generated by the RNA.
While offering many advantages, there are gaps
in information which are unaccounted for in
single-cell sequencing techniques. Some include
accountability for stress conditions in the
surrounding environment that affect individual
cells. Cells may lie in varied cycle phases and
each individual unit may display a variation in
gene expression, size, and RNA content. Further-
more, every run in the single-cell sequencing
process requires a large cell population harvested
from fresh material, and it is expensive and covers
limited cell populations [151]. Hence, despite the
accuracy the variation that arises is mostly a con-
sequence of all these factors. This aspect is not
addressed clearly in most commercially available
platforms available for TCR analysis [88, 92]. To
combat these issues, there is a requirement of
unprejudiced and reproducible gene expression
patterns in single cells [152]. Seeing the varied
factors that influence TCR analysis, there are
different computational approaches that use vari-
able models to account for variability in results
and provide a better insight to the data
obtained [92].

3.5 Conclusion

Significant technological advancement has
catapulted the field of single-cell TCR sequenc-
ing. The remaining unanswered quests are how
fast the field of bioinformatics will evolve to
analyze and manage the large data generated.
Recent interests in systemic biology of single T
cells involve identification of the T cell subsets
based on surface markers, gene expression at the

Fig. 3.5 Single-cell microengraving technology. The
fabricated nanowells were loaded with lymphocytes
obtained from biopsies and were imaged using an
automated epifluorescence microscope to cell populations

Fig. 3.5 (continued) based on surface markers.
Hybridized nanowells with capture slides containing anti-
human immunoglobulins against IL-17 and IFNγ for Th17
and Th1 cells as an example were analyzed. Post incuba-
tion, nanowells containing intact live cells and capture
slides were separated and antibody-specific fluoro-
chrome-conjugated antibodies were used detection
antibodies. Lastly, micrographs of microarrays were
generated by scanning using a GenePix Autoloader
4200AL microarray scanner
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single-cell transcriptome, and single-cell TCR
expression. Our ability to comprehend and orga-
nize this set of new data will be limited if we are
not able to organize the data in a biologically
meaningful way. The second aspect that we
must grapple with is its usefulness in antigen
discovery. The current approach in examining
and testing the antigen specificity of individual
T cell clone is labor intensive using vast peptide-
MHC libraries under culture conditions mimick-
ing the in-vivo environment. In order to improve
diagnosis and define therapy, specifically
personalized medicine, it is imperative that we
can identify and test the antigen specificity
based on the single-cell TCRs. Emerging single-
cell technologies bring promising discoveries but
there are challenges that need to be addressed in
order to fully comprehend the TCR repertoires
and its application.
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understanding the etiology of Sjögren’s syndrome using
both human and animal models. His laboratory has devel-
oped a number of animal models that make it possible to
examine many facets of the disease etiology. Dr. Nguyen’s
research team was one of the first groups to identify the
presence of IL-17/Th17 cells in Sjögren’s syndrome and
its clinical correlation to the disease. His continuing
research on Th17 cell biology with its signature cytokines
emphasizes the importance and interaction of these
immune cells in the autoimmune process. Lastly, using
high-throughput sequencing in combination with single-

cell microengraving technology, Dr. Nguyen’s team
investigates the clonal diversity of the T cell receptors of
pathogenic T cells. His seminal studies have found that
there is an elevated prevalence of pathogenic effector T
cells in the salivary glands with a sexually dimorphic
selection bias of T cell receptor repertoires. Dr. Nguyen’s
recent publication determines that activated Th1 and Th17
cells of primary Sjögren’s syndrome patients showed
restricted clonal diversities with some unique antigen
binding motifs.
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DNA Methylation in Pulmonary Fibrosis 4
Shuang Zhou, Xiangdong Wang, Hongzhi Gao,
and Yiming Zeng

Abstract

DNA methylations, including global methyla-
tion pattern and specific gene methylation, are
associated with pathogenesis and progress of
pulmonary fibrosis. This chapter illustrates
alteration of DNA methylation in pulmonary
fibrosis as a predictive or prognostic factor.
Treatment with the DNA methylation
inhibitors will be an emerging anti-fibrosis
therapy, although we are still in the
pre-clinical stage of using epigenetic markers
as potential targets for biomarkers and thera-
peutic interventions.
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4.1 Introduction

Idiopathic pulmonary fibrosis (IPF) is a serious
form of pulmonary fibrosis, with which patients
have the median survival time of about 2–3 years
[1]. IPF is also a type of chronic lung disease
characterized by a progressive scarring of the
lung parenchyma and irreversible decline in
lung function with hypoxemia and dyspnea. The
prevalence and mortality of pulmonary fibrosis
are on the rise with age, especially among people
over 50 years old [2]. The incidence of IPF in men
is higher than that in women and is more common
in smokers [3]. Even after smoking cessation, the
status of IPF cannot be improved. The pathogen-
esis of IPF is not completely clear and the clinical
manifestation of IPF is highly variable. However,
there are still some recognized potential risk
factors such as environmental exposure, micro-
bial agents, or gastroesophageal reflux. Recent
studies have shown that gene expression and epi-
genetic regulation, especially the DNA methyla-
tion regulation, play an important role in the
development of IPF [4–6].

DNA methylation is an inherited epigenetic
process, involving the covalent transfer of the
c-5 position of the DNA cytosine loop by the
catalysis of DNA methyltransferases (DNMTs)
[7]. The methylation alters gene function but
does not change the sequence. The majority of
DNA methylation occurs on the fifth carbon atom
of cytosines that precede a guanine nucleotide or
CpG sites [8]. DMA methylation is a dynamic

S. Zhou · H. Gao (*)
Clinical Center for Molecular Diagnosis and Therapy, The
Second Affiliated Hospital of Fujian Medical University,
Quanzhou, Fujian Province, China

X. Wang
Zhongshan Hospital, Fudan University, Shanghai,
Shanghai, China
e-mail: Xiangdong.wang@clintransmed.org

Y. Zeng
2nd Affiliated Hospital, Fujian Medical University,
Quanzhou, Fujian, China

# Springer Nature Singapore Pte Ltd. 2020
B. Yu et al. (eds.), Single-cell Sequencing and Methylation, Advances in Experimental Medicine
and Biology 1255, https://doi.org/10.1007/978-981-15-4494-1_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-4494-1_4&domain=pdf
mailto:Xiangdong.wang@clintransmed.org
https://doi.org/10.1007/978-981-15-4494-1_4#DOI


and inheritable process. Methylation of CpG
island promoters prevents the binding of tran-
scription factors and results in gene silencing
and repression. On the contrary, hypo-
methylation and demethylation are associated
with upregulation of gene expression
[9]. DNMTs and methyl-binding proteins
(MBPs) are major enzymes to catalyze DNA
methylation [10], essential for transcriptional reg-
ulation and normal development and related to
genomic imprinting, repression of transposable
elements, X-chromosome inactivation, carcino-
genesis, and aging [7, 11].

Epigenetic changes are associated with numer-
ous diseases including cancers and pulmonary
fibrosis, where large hypomethylated blocks of
genomes and promoter hypermethylation of clas-
sic suppressor genes were found [8]. Studies on
DNA methylation analysis confirmed that DNA
methylation is common and important in pulmo-
nary fibrosis. And numerous specific genes
are involving in pathogenesis, such as Thy-1
(CD90), prostaglandin receptor 2 (PTGER2),
cyclo-oxygenase-2 (COX-2), p14ARF, or chemo-
kine IP-10 [12–16]. This chapter will focus on the
global genome methylation pattern and targeted
DNA methylation status in the pathogenesis of
lung fibrosis, and then discuss the potential
therapies of methylation inhibitors [17, 18].

4.2 Genome-Wide DNA
Methylation in IPF

Methodologies for methylation measurement
include next generation high throughput sequenc-
ing, whole genome bisulfite sequencing (WGBS),
microarray, methylated DNA immunoprecipita-
tion sequencing (Me DIP-Seq), bisulfite genomic
sequence (BGS), and methylation-specific PCR
(MSP). WGBS, Me DIP-Seq, microarray, and
BGS are widely used in genome-wide DNA
methylation analysis. For example, the human
CpG islands microarray and WGBS were used
to detect the alteration of the whole DNA
extracted from the lung tissues of patients with
or without IPF [15]. The extensive DNA methyl-
ation changes were found within CpG islands in

IPF lung samples, different from methylation
profiles of healthy, although partial methylated
areas have many similarities [15]. The DNA
methylation and RNA expression changed in
lung tissue from IPF using human methylation
chip and RNA hybridization chip. Altered DNA
methylation is consistent with the mRNA expres-
sion of many genes, indicating the importance of
DNA methylation in the pathogenesis of IPF
[8]. Unfortunately, it is hard to clarify the
alternations of DNA methylation within the indi-
vidual cell type and difference between cell types,
since most studies are based on the entire lung
tissue.

The genome-wide differences in DNA methyl-
ation were detected in fibroblasts isolated from
lung tissue of IPF patients, as compared with
patients with lung nodules [19]. The methylation
differences are mainly concentrated in genes
associated with cell proliferation, extracellular
matrix generation, potassium channel, and organ
organogenesis and corresponded with alteration
of gene expression at mRNA and protein
levels [19].

4.3 IPF Specificity of Thy-1 DNA
Methylation

Several specific genes were considered as
IPF-specific and their DNA hypermethylation is
consistent with the downregulated expression,
such as Thy-1, COX-2, PTGER2, p14ARF, and
chemokine IP-10 [13–16, 20, 21]. The reduction
in the expression of those genes can directly
induce the initiation of fibro-genesis, activation
of fibroblast proliferation, and resistance to apo-
ptosis [1]. Of those, Thy-1 cell surface antigen
(Thy-1) is also known as CD90, a 25–37 kDa
glycoprotein, localizing to lipid rafts and on the
external leaflet of the lipid bilayer [22]. The acti-
vation of Thy-1 promotes T cell activation and
affects multiple non-immunologic biological pro-
cesses, such as cellular adhesion, migration, cell
death, wound healing, neurite outgrowth, tumor
repression, and fibrosis. Thy-1 as a highly
conserved molecule has two membrane-bound
and soluble forms and the biological role of
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Thy-1 dependent upon cell type and tissue speci-
ficity [23]. Thy-1 is often used as a marker for cell
types and has a crucial effect on cell biology, of
which the dysregulation is related to fibrotic
diseases and malignancy [23]. Thy-1 located in
chromosome 9 in mice and chromosome 11q22.3
in human are both initially expressed in the form
of 161 a.a pro-form and have different post-
transcriptional modifications [24]. Two different
proteins encoded from the alleles differ only in
position 89, of which one is arginine and the other
is glycine. Thy-1 in human has only one allele for
thymine, and the first 19 a.a pro-form positions
the signal to targets the endoplasmic reticulum
(ER) [25]. Thy-1 has two isoforms in mice:
Thy-1.2 in Bal/c mice and Thy-1.1 in AKR mice
have a glutamine and an arginine at the position
89, respectively. Genetic characteristics of Thy-1
genes are similar among human, mouse, and rat
[26]. Human Thy-1 contains four exons, of which
exon 1 (Fig. 4.1a, b) produce two mRNA splicing
variants after transcription and exon 2 contains
the translation starting site, exon 3 encodes the
amino acids 7–106, and exon 4 is mainly respon-
sible for the C-terminal end and poly-A tail [27]
(Fig. 4.1).

Thy-1 participates in a number of signaling
cascades and acts as a universal signal modulator
in proliferation, survival, cell adhesion, and
cytokine/growth factor responses [23]. Thy-
1 undergoes signal transduction in
non-immunologic cells by integrins, growth
factors, cytokines, and protein tyrosine kinases.
The roles of those signaling cascades mainly
focus on cell proliferation, apoptosis, cellular
adhesion, and migration. Thy-1 interacts with
itself, adaptors, scaffolds, or signaling molecules,
such as reggies-1/2, Src family of C-terminal Src
kinase (Csk)-binding protein (CBP) and protein
tyrosine kinases (SFK), in the cell membrane of

several cell types to convey signals to the cell
interior. Thy-1 is an important component of pro-
tein complexes, to initiate cell signaling from rafts
(Fig. 4.2). In addition, Thy-1 interacts with other
receptors at the plasma membrane such as αVβ5
integrin in fibroblasts [28]. Thy-1(�) fibroblasts
move faster and migrate more efficiently in
wound healing than Thy-1(+) ones [28]. A mech-
anism to regulate fibroblast migration is involved
in SFK and Rho GTPase activation [27]. It is
proposed that Thy-1 expression regulates Src
and FAK kinase activation, as well as phosphor-
ylation of p190RhoGAP by increasing RhoA-
GTP levels, to stress fiber and focal adhesion
formation [29]. Decreased migration of Thy-1
(+) fibroblast subpopulations may occur as the
consequence of a complex Thy-1-triggered sig-
naling process, in addition to passive Thy-1-to-
matrix adhesion [27]. It implies Thy-1-dependent
roles in fibroblast-matrix adhesion and migration.

The loss of Thy-1 expression in lung
fibroblasts correlates with many aspects of the
fibrogenic phenotype including proliferation
[25]. The proliferated myofibroblasts in the fibro-
blast foci were found Thy-1 negative in IPF,
rather than in the normal fibroblasts [30]. Thy-1
can not only regulate the expression of myogenic
gene, promote myofibroblastic differentiation,
but also determine the survival of lung fibroblasts.
Yan Y. Sanders et al. [20] demonstrated that Thy
(�) fibroblasts proliferated in myofibroblastic
foci, inhibiting the myofibroblast differentiation
of fibroblasts, which was restored by DNA
methyltransferase inhibitors. The epigenetic
downregulation of Thy-1 occurred in cell trans-
formation and clinical malignant tumor
[20]. Rat lung fibroblasts without Thy-1 on the
surface, low expression of myogenic genes and
low protein levels of sarcomeric myosin, α-SMA,
and MyoD, had high responses to

Fig. 4.1 Thy-1 gene structure. Exons 1a and 1b encode two distinct alternative spliced mRNA; exon 3 for the mature
protein, and the 50-end of exon 4 for the trans-membrane sequence. Portions of the gene encoding for the mature Thy-1
protein are marked as light gray orthogons. Dark gray orthogons complete the exons
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pro-myofibroblastic stimuli including
TGF-β [30].

Loss of Thy-1 expression appears to be
associated with the differentiation of
myofibroblasts both in mouse bleomycin model
and IPF patients [31]. The relation between Thy-1
and myofibroblasts phenotype seems to be tissue-
specific and dependent. Loss of Thy-1 expression
also resulted in the hypermethylation of the Thy-1
promoter in IPF Samples and was restored
through demethylation, similar between human
and rat lung fibroblasts [20].

4.4 IPF Specificity of COX-2 DNA
Methylation

Cyclooxygenases (COXs) are a 67–72 kDa inte-
gral membrane protein, are located on the nuclear
membrane and the endoplasmic reticulum (ER),
and contain three isoforms [32]. COX-1 is
expressed constitutively like “housekeeping”
enzyme associated with homeostasis, COX-2 is
the inducible form and is upregulated in both
inflammation and cancer, and COX-3 is
expressed in spinal cord and brain although its
functions remain unclear [33]. Cyclooxygenase-
2 (COX-2) is referred to prostaglandin endoper-
oxide synthase (PTGS)I as a key enzyme that

catalyzes the conversion of arachidonic acid
(AA) to prostaglandins (PGs) [34]. COX-2 plays
a crucial role in some pathophysiological pro-
cesses, including angiogenesis, inflammation,
tumorigenesis, and tumor drug resistance, and
becomes a new target for cancer treatment
[35]. In solid tumors such as colorectal cancer,
prostate cancer, breast cancer, and most recently
hematological malignancies, COX-2 mainly
functions as a regulator of cell proliferation and
apoptosis [33]. The activation and overexpression
of COX-2 were found in tumor cells related to
tumor progression and aggressiveness
[36]. COX-2 expression could be induced by
anticancer chemoradiotherapy, resulting in drug
resistance [36]. The inhibition of COX-2 was
proposed as an attractive new strategy for cancer
treatment in patients [37]. Non-steroidal anti-
inflammatory drugs (NSAIDs), broad spectrum
COX-2-inhibitors, or COX-2-specific inhibitors
were found to have side-effects, such as
myocardial infarction [36]. The development of
new anti-COX-2 drugs with less side-effects
seems particularly urgent [34, 38].

COX-1 gene is located on chromosome
9 (9q32-9q33.3), nearly 40 kilobase (kb) pairs,
containing 11 exons and its mRNA is 2.8 kb.
COX-2 is located on chromosome 1 (1q25.2-
25.3), containing ten exons approximately

Cytoskeleton regulation

Fig. 4.2 Signaling induced by Thy-1. Thy-1 binds to its
ligand (R) and undergoes molecular clustering at the
plasma membrane. Thy-1 interacts with itself, with
adaptors, scaffolds, or signaling molecules, such as

reggies-1/2, Src family of C-terminal Src kinase (Csk)-
binding protein (CBP) and protein tyrosine kinases
(SFK), in the cell membrane of several cell types to con-
vey signals to the cell interior
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8.3 kb and transcript about 4.5 kb [39]. In
the flanking region of COX-2, there are 50 bps of
the regulation area of gene transcription,
containing a TATA box and a few putative
transcription-factor binding sites of NF-IL-6,
NF-κB, and a TGF-β response element, which
demonstrates a complex combination of
the factors associated with COX-2 gene regula-
tion [40]. Single nucleotide polymorphism (SNP)
in the gene promoter affects transcription of
COX-2 gene. The most frequently functional
polymorphisms of COX-2 gene, _765G>C
(rs20417) and _1195G>A (rs689466), are
correlated with inflammatory disorders, such as
chronic periodontitis [41], inflammatory bowel
diseases, and subclinical atherosclerosis
[41]. This is probably because those gene
polymorphisms may alter the function of COX-2
by regulation of COX-2 expression and affect the
synthesis of prostaglandins in the pathogenesis of
inflammatory diseases [42].

Prostaglandin E2 (PGE2), the major catalyzed
product of COX-2, plays a key role in the
tumorigenesis of colorectal cancer [43]. The
COX-2/PGE2-JAK2/STAT3 signaling pathway
may be the drug target for berberine to mediate
the effect on metastasis and invasiveness of can-
cer. The berberine reduced COX-2/PGE2 levels,
inhibited JAK2/STAT3 activation, decreased
expression of downstream target genes MMP-2/-
9, and caused less metastasis and invasiveness in
cancer [44] (Fig. 4.3). PGE2 is associated with
occurrence of malignant tumors and plays a ben-
eficial role in lung fibrotic diseases. This is par-
tially due to the function of PGE2 to limit the
proliferation of lung fibroblasts and to inhibit
myofibroblast differentiation, migration, and col-
lagen secretion. Figure 4.4 diagrams the homeo-
static and anti-fibrotic behavior of PGE2
signaling pathway in fibroblasts and lung epithe-
lial cells (AECs) [45].

The expression of COX-2 was downregulated
in IPF and upregulated in COPD as well as in IPF
and sclerosis [46, 47]. COX-2 downregulation
and reduced PGE2 production are related to
myofibroblasts in the development and progres-
sion of IPF [48]. The downregulation of COX-2
could reduce PGE2 and induce the continuous

proliferation of fibroblasts, which is considered
as a new viewpoint in the pathogenesis of IPF
[49]. Lung fibroblasts derived from IPF patients
were unable to induce PGE2 synthesis, even if
stimulated by proinflammatory cytokines and
LPS, probably due to the abnormal expression
of COX-2 [45, 50]. In patients with IPF, the
PGE2 level of bronchoalveolar lavage fluid was
significantly lower than that of normal
individuals, which is because PGE2 could reduce
the proliferation of fibroblast and collagen aggre-
gation by inhibiting COX-2-dominated synthesis
and promotion of degradation, beneficial for
inhibiting pulmonary fibrosis [51].

COX-2 was downregulated in lung tissue from
patients with IPF [15, 52]. By upregulation of
DNMT3a expression, PGE2 increases the gene-
specific DNA methylation of lung fibroblasts,
such as MGMT gene and IGFBP2 gene [53].

The transcriptional regulatory factor c8orf4 for
COX-2 was demethylated via 5-AZAdc, a DNA
methylation inhibitor to reverse decreased level of
COX-2 mRNA in a dose-dependent pattern
[15, 53]. C8orf4 regulates the expression of
COX-2 in lung fibroblasts by binding of the prox-
imal promoter by the hypermethylation of the
transcription regulator as an indirect epigenetic
mechanism to regulate COX-2 expression and
COX-2 derived PGE2 synthesis in pulmonary
fibrosis [15].

4.5 p14ARF and Function

The p14ARF protein as a tumor suppressor protein
is an alternate reading frame protein (ARF)
encoded by CDKN2A gene. ARF is a 14 kDa,
132 a.a protein named p14ARF in human, and a
19 kDa, 169 a.a protein named p19ARF in mice
[54]. P14ARF is a cell cycle regulation protein to
block the cell cycle in the G1 and G2 phases and
inhibit the growth of abnormal cells by activating
p53 indirectly [55]. p14ARF protein binds to and
interferes with the Mdm2 protein, a p53 negative-
regulator, and then stabilizes and activates p53
pathway [54, 56]. The role of p14ARF in carcino-
genesis was evidenced by the finding that
ARF-null mice have a high tendency to induce
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AA PGs

PGE2

PGE2

Cell Growth,
Invasion and metastasis

Fig. 4.3 COX-2/PGE2-JAK2/STAT3 signaling pathway.
PGE2, the main catalyzed product of COX-2 from
arachidonic acid, could bind to the EP receptor on the
cell membrane, thereby activating the JAK2, followed by

the phosphorylating of STAT3 in the Tyr705 site. Berber-
ine inhibits invasion and metastasis of colorectal cancer
cells via COX-2/PGE2 mediated JAK2/STAT3 signaling
pathway

Fig. 4.4 PGE2 signaling pathway in lung fibrosis.
Diagrams the homeostatic and anti-fibrotic behavior of

PGE2 signaling pathway in fibroblasts and lung epithelial
cells (AECs)
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tumors, e.g., carcinomas, gliomas, lymphomas,
and sarcomas, leading to death early in life [57].

The INK4a–ARF locus (CDKN2A in humans)
on chromosome 9p21 encodes two structure-
similar tumor suppressor proteins with different
functions, p14ARF (p19ARF in the mouse) and
p16INK4a to indirectly control the activities of
p53 and the retinoblastoma protein
(RB) transcription factor, respectively
[58]. p14ARF and INK4a mRNA consist of
3 exons of which exons 2 and 3 are the same
with two different exon 1 transcripts (α and β)
[59, 60]. Although p14ARF has an unrelated struc-
ture, it can also cause cell cycle arrest in G1 and
G2 phase [61]. P14ARF gene as a tumor suppres-
sor gene plays an important role in the progres-
sion and pathogenesis of tumor, since it is usually
mutated or deleted [62, 63].

The dysfunction of the p14ARF-Mdm2-p53
pathway, also known as p53 pathway, is one of
the most important signals of cancer pathogene-
sis. The p14ARF in the p53 pathway binds with
Mdm2 in the nucleolus, resulting in the inability
of Mdm2 to degrade p53 [64, 65] (Fig. 4.5). The
activity of Mdm2 can be inhibited by p14ARF, to
indirectly block the degradation of p53. When
p53 is activated, the consequences of the
ARF-p53 binding depend on the cell cycle state
[66]. P14ARF controls the expression of p53, and
then activated p53 secondarily regulates the

expression of p14ARF by negative feedback
[67]. Overexpression of p14ARF in the nucleus
contributes to the loss of shuttling ability of
Mdm2 and induces p53 mutations [68]. This path-
way is inactivated by p14ARF deletion, p53 muta-
tion, or amplification of Mdm2, which is complex
and interactive but common and important.

The p53/p14ARF signaling pathway is often
downregulated in patients with colorectal cancer,
and p14ARF is highly methylated in the early
stages of colorectal cancer [69]. The methylation
of p14ARF may have predictive value for early
colorectal cancer patients, but not as a prognostic
factor. The target drug for p14ARF demethylation
may be a new direction for the development of
new colorectal cancer drugs [69]. The p14ARF

gene can be inactivated in many cancers, due to
deletion, promoter hypermethylation, or
mutations [69]. In the evolution of oligoden-
drogliomas, the hypermethylation-resulted aber-
rant p14ARF expression and the deletions of
p14ARF/p16INK4a are associated with the pro-
gression to anaplastic oligodendroglioma
[70, 71]. Studies on the methylation status of the
p14ARF promoter suggested that p14ARF can be a
useful biomarker for the pathological TNM stage,
prognosis, and clinical outcome of cancer patients
[72]. Homozygous deletion of the p14ARF gene
loci was detected in multiple carcinomas and was
associated with tumorigenesis. DNA methylation

p53--Mdm2

Cell Membrane

Cytosol

p53

Mdm2-
P14ARF

Nucleolus

Oncoproteins

p53--Mdm2 Degradation of p53

Fig. 4.5 p14ARF-Mdm2-p53 pathway in breast cancer.
Mdm2 translocates from the nucleolus to the nucleoplasm

and binds to p53. The Mdm2-p53 complex then migrates
to the cytoplasm, resulting in the degradation of p53
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can regulate p14ARF mRNA levels, and the meth-
ylation status of p14ARF is related to the occur-
rence of primary liver cancer and TNM staging
[73]. The promoter methylation status of p14ARF

in fibroblasts isolated from IPF and normal lung
demonstrated that hypermethylated p14ARF

occurred in half of the IPF fibroblasts and was
correlated with the decreased expression of the
gene and protein as well as increased resistance to
apoptosis [16].

Hypermethylation and downregulated expres-
sion of PTGER2 also play an important role in the
development of IPF. Levels of DNA
hypermethylation were higher in fibroblasts
isolated from mice and human lungs with pulmo-
nary fibrosis, leading to a decrease in EP2 expres-
sion level and PGE2 resistance [14]. Therapies
with DNA methylation inhibitors (e.g., 5-Aza-2-
0-deoxycytidine and zebularine) reversed the
reduced mRNA and protein expression of EP2,
and restored PGE2 activities in fibrotic
fibroblasts. Those results indicate that DNA
hypermethylation play the decisive role in the
downregulation of PTGER2 expression and
subsequent PGE2 resistance. The enhancement
of Akt signal transduction may be a new mecha-
nism of the promotion of DNA hypermethylation
in the formation of lung fibrosis [14].

4.6 Conclusion and Prospective

DNAmethylation is one of mechanisms by which
the epigenetic regulation plays a crucial role in
lung fibrosis, cancer, and chronic diseases. Global
methylation pattern and specific gene methylation
status as an important regulatory factor contribute
to the development of pulmonary fibrosis. DNA
methylation of associated genes is associated with
the occurrence and progression of pulmonary
fibrosis and change the phenotype and destiny
of fibroblasts through the regulation of cell acti-
vation, differentiation, and balance of fibrotic and
anti-fibrotic gene expressions.

Methylation patterns and severities of the pro-
moter regions of Thy-1, COX-2, p14ARF, and
PTGER2 genes should be considered as disease-
specific biomarkers to predict the occurrence and

development of IPF. The intracellular
mechanisms and heterogeneity of DNA methyla-
tion in the regulation of signal pathway activities
should be investigated by single-cell DNA and
RNA sequencing [74–76]. The promoter methyl-
ation of the target genes can contribute to the
pathogenesis and development of pulmonary
fibrosis through multiple signal pathways, which
should be furthermore identified and validated
with advanced biotechnologies [77–81].
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Methylation of Inflammatory Cells
in Lung Diseases 5
Yifei Liu, Hongzhi Gao, Xiangdong Wang, and Yiming Zeng

Abstract

This chapter overviews roles of DNA methyl-
ation in inflammatory cell biology with the
focuses on lymphocytes and macrophages/
monocytes in lung diseases, although the
molecular mechanisms by which target genes
are methylated and regulated in lung diseases
remain unclear. Most of epigenetic studies on
DNA methylation of target genes in lung
diseases mainly demonstrated the correlation
of DNA methylation of target genes with
the levels of other corresponding factors,
with the specificity of clinical phenomes, and
with the severity of lung diseases. There is an
urgent need to identify and validate the speci-
ficity and regulatory mechanisms of inflamma-
tory cell epigenetics in depth. The epigenetic
heterogeneity among different subsets of T
cells and among promoters or non-promoters

of target genes should be furthermore
clarified in acute or chronic lung diseases and
cancers. The hyper/hypo-methylation and
modifications of chromosol and extrachromo-
somal DNA may result in alternations in
proteins within inflammatory cells, which can
be identified as disease-specific biomarkers
and therapeutic targets.

Keywords

Inflammatory cells · Lung disease ·
Epigenetics · DNA methylation

5.1 Introduction

The disorders of the immune system are regulated
by heredity and environment, such as tumors,
systemic lupus erythematosus, and asthma.
Epigenetics provide new insights for understand-
ing of tumor and autoimmune diseases and lung
diseases. Epigenetic alterations contribute to the
development of inflammation and immune
disorders, and to the instability of phenotypic
inheritance and cell differentiation
[1]. Epigenetics mainly includes DNA methyla-
tion to regulate transcription and expression of
target genes, genomic imprinting, and chromatin
remodeling (e.g., post-transcriptional regulation,
such as non-coding RNA, microRNA, antisense
oligonucleotides, and riboswitch RNAs), and
post-translational modifications of proteins (e.g.,
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methylation and acetylation of histones, other
modifications of histones, and covalent
modifications of non-histones). DNAmethylation
refers to the process to transfer from the methyl
group of S-adenosine methionine to the cytosine
of CpG island into 5-methylpyrimidine under
DNA methyltransferase [2].

The methylation of cytosine after DNA repli-
cation changes the conformation of DNA to avoid
the binding of DNA to the DNA binding protein,
leading to the long-term non-expression activity
and silence of those non-coding regions. Genes
can be transcribed by a non-methylated promoter,
even in adjacent non-transcribed areas where
genes are highly methylated. The genetically
modified epigenetic modification is transmitted
to the daughter cells in the process of somatic
cell proliferation stabilized by DNA
methyltransferase (Dnmtl), rather than at different
stages of embryonic development. Altered levels
of DNA methylation are most pronounced in
early embryonic development, essential for the
development of embryos and the selection of
alleles. Changes in DNA methylation can affect
the differentiation and reactivity of T cells by
regulating cytokines and other related genes,
responsible for the pathogenesis of immune
diseases [3–5].

Inflammatory cells, e.g., macrophages, mast
cells, endothelial cells, lymphocytes,
granulocytes, neutrophils, basophils, eosinophils,
and other cells, play a vital role in immune
response. Among those, T lymphocyte methyla-
tion was reported to be related with lung diseases.
T cells are quite complex and heterogeneous at
different stages of development or different
functions of subgroups. T cells are divided into
helper T cells (Th) with functions to assist
humoral immunity and cellular immunity, sup-
pressor T cells (Ts) to inhibit cellular immunity
and humoral immunity, effector T cells (Te) with
the function of releasing lymphatic factors, and
cytotoxic T cells (Tc) with the function of killing
target cells. According to the features and surface
marks, T cells can be roughly divided into cyto-
toxic T cells, T helper cells, and memory T cells

[6–9]. Altered methylation of immune cells such
as macrophages was found in lung diseases [10].

5.2 The Methylation of Regulatory
T cells

Regulatory T cells (Treg) account for 5–10% of
peripheral blood CD4+ T cells and are divided
into natural Treg (nTreg) and acquired Treg
(aTreg) [11]. nTreg comes from thymus gland
mainly through the cellular contact mechanism
to exert inhibitive function [12], while aTreg is
peripheral mature T cells induced by persistent
exposure of antigens and cytokines such as IL-10
and TGF-β. Of those signals and regulatory
factors, the fork head/winged helix transcription
factor (FOXP3) plays the important role in the
regulation of nTreg function through the methyl-
ation degree of multiple CpG islands related to
the expression of FOXP3 gene [13, 14].

The demethylation of exon in the upstream of
FOXP3 non-coding region plays a role in
maintaining the stability of FOXP3, evidenced
by the fact that the damage of Treg cells was
related to the increased methylation level of
FOXP3 [15, 16]. The exposure to air pollutants
induced the occurrence of hyper-methylation at
FOXP3 in Treg, leading to the development of
asthma [17]. In addition, studies have shown that
prolonged exposure to high concentrations of CO,
NO2, and PM2.5 can lead to changes in FOXP3
methylation levels [18]. In another study,
decreased methylation of the FOXP3 promoter
was associated with increased lung function
[19]. Studies have found that high concentration
of polycyclic aromatic hydrocarbons exposure
can increase the methylation of FOXP3 gene,
reduce the expression of FOXP3 and turn Treg
into Th2 cells [20], as shown in Fig. 5.1. Folic
acid, a methyl donor, could increase the suscepti-
bility to diseases caused by DNA hyper-
methylation and airway susceptibility [21]. Treg
methylation plays an important role in the recov-
ery of lung injury, since DNA methyltransferase
inhibitors act on the FOXP3 gene in Treg and

64 Y. Liu et al.



increase the number of Treg to accelerate the
repair of lung injury [16].

5.3 Th1 DNA Methylation

The differentiation process of Th is controlled by
the multiple factors and complex regulation
networks of transcription factors. Th1 mainly
generates IFN-γ, IL-2, IL-12, and TNF-beta/
alpha as the Th1 cytokines, contributing to cellu-
lar immunity [22–24]. Th2 mainly produces Th2
cytokines such as IL-4, IL-5, IL-6, and IL-10 [25]
to participate the humoral immune response and
stimulate the proliferation of B cells and produc-
tion of antibodies. Those Th cell subsets are
characterized by a series of specific gene
expressions, including cytokines, cell surface
receptors, and regulatory factors.

IFN-γ plays an important role in the regulation
of Th1 differentiation, where IFN-γwas produced
by natural killer cells (NK). IL-27 and IL-12 from

antigen presenting cells (APC) activate STAT1
and STAT4, respectively [26]. The neutralization
of IFN-γ prolonged the differentiation of Th1
through signal pathways of STAT1, STAT4,
and T-bet [27]. STAT1 and transcription factors
are activated by T cell antigen receptor (TCR)
together with T-bet, and promote the secretion
of IFN-γ and the Th1 phenotype of positive feed-
back loop. STAT4 is activated by IL-12 signal
and is involved in the regulation of the Th1
genetic program. STAT1 and STAT4 also con-
tribute to the regulation of Tbx21 expression [28].

The Th1/Th2 balance is a relatively stable
condition under normal circumstances and
changes with epigenetic disorders
[29, 30]. IFNG as a negative regulator of airway
allergic immune response corresponds with
IFN-γ as a typical Th1 cytokine, to contribute to
the occurrence and development of asthma. The
demethylation in the promoter region of the aller-
gen reverse regulating gene and Th1 cytokine
IFNG gene was related to the differential

T-reg Th2

polycyclic aromatic hydrocarbons

FOXP3 FOXP3

ME ME

ME

Transcription No Transcription

polycyclic aromatic hydrocarbons

Fig. 5.1 High concentration of polycyclic aromatic hydrocarbons exposure can increase the Increased methylation of
FOXP3 gene could reduce the expression of FOXP3 and turn Treg into Th2 cells
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direction of CD4+ T cells [31]. Frequent exposure
to trichloroethylene increases the methylation
level of IFNG promoter in CD4+ T cells [32]. In
21 pairs of twin patients with asthma, the methyl-
ation of FOXP3 gene at 13 CpG loci and IFN-γ
gene promoter region at 6 CpG loci increased in
Treg and effector T cells [33], as shown in
Fig. 5.2. The methylation level of IFNG gene
promoter region increased in experimental
asthma models induced by antigens, particles,
and toxins, e.g., egg albumin induced hyper-
methylation of IFNG gene and hypo-expression
of IFN-γ [34]. However, molecular mechanisms
by which IFNG gene promoter region is
methylated and the process is regulated in pulmo-
nary diseases remain unclear.

5.4 Th2 DNA Methylation

IL-4 gene promoter regions contain methylation
states widely in the CD4+ T cells, while can be
demethylated in the allergen-specific T cells,
especially when the T cells were stimulated by
the allergen. This process contributes to the
development of asthma by reversing the hyper-
methylation of the IFNG gene promoter region, to
promoting the binding of Th2-related transcrip-
tion factors GATA-3 and STAT6 to the
corresponding sites, and then inducing a large
number of IL-4 production and the differentiation
from T cells into Th2 cells [35, 36], as shown in
Fig. 5.3. Th2 cells were differentiated and IL4
gene was demethylated in the process of asthma
development. For example, maternal exposure to
nitrogen dioxide could increase immunoglobulins
(Ig) E, airway hyperresponsiveness, respiratory
inflammation, and asthma, which was then
reduced during postpartum development [37].

IL-13 is produced by TH2 cells. Decreased
methylation level in the promoter region of
IL-13 increased IL-13 expression and aggravated
the lung inflammation in experimental asthma
[38]. STAT6 is closely related to Th2 and is
activated by IL-4 and IL-13 [39]. DNA
methyltransferase inhibitors were found to
increase the expression of STAT6 in T cells and

influence the differentiation direction of T cells
[39]. The expression of IL-6 gene increased in
Th2, when the methylation in the promoter region
of DNA was reduced [40]. The DNMT inhibitor
could also increase the expression of IFNG and
decrease methylation in the promoter region of
IFNG in CD4+ T cells [41], as explained in
Fig. 5.4. Prenatal ETS exposure can lead to a
significant increase of house dust mite allergies
and inflammatory responses associated with
methylation in offspring. The methylation may
affect developmental plasticity and programming
of T cells and increases the over-production of
Th2 cytokines (IL-4, IL-5, and IL-13) during
airway remodeling [42].

5.5 Macrophage/Monocyte DNA
Methylation

Macrophages and monocytes are phagocytes
responsible for the non-specific defense and spe-
cific defense and for activation of lymphocytes or
other immune cells in lung diseases [43–46]. The
altered DNA methylation in alveolar
macrophages was associated with smoking
[47]. The DNA methylation status of CpG motifs
in alveolar macrophages was different between
smokers and non-smokers, measured by methyla-
tion array and pathway analysis [10]. On basis of
the whole genome methylation state of alveolar
macrophage DNA sample, methylation analysis
and gene expression data, the FLT1 gene was
selected as the target gene associated with
smoke. Smokers had higher levels of FLT1 gene
expression in three major splice variants, which
were mainly caused by epigenetic changes in the
promoter. This may provide new insights into the
pathogenesis of pulmonary diseases. Monocytes
derived from hematopoietic stem cells in bone
marrow can become macrophages in lung tissues
after the settle. The decreased methylation of
ZPBP2 in human peripheral blood mononuclear
cell will increase the expression of the genes
allocated in the 17q12-q21 region and lead to
the development of asthma [48–52].
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5.6 Summary and Perspective

This chapter overviews roles of DNAmethylation
in inflammatory cell biology with the focuses on
lymphocytes and macrophages/monocytes in
lung diseases, although the molecular
mechanisms by which target genes are
methylated and regulated in lung diseases remain
unclear. Most of epigenetic studies on DNA
methylation of target genes in lung diseases
mainly demonstrated the correlation of DNA
methylation of target genes with the levels of
other corresponding factors, with the specificity
of clinical phenomes, and with the severity of

lung diseases. There is an urgent need to identify
and validate the specificity and regulatory
mechanisms of inflammatory cell epigenetics in
depth, like targets in other diseases [53–56]. The
epigenetic heterogeneity among different subsets
of T cells and among promoters or non-promoters
of target genes should be furthermore clarified in
acute or chronic lung diseases and cancers. The
hyper/hypo-methylation and modifications of
chromosol and extrachromosomal DNA may
result in alternations in proteins within inflamma-
tory cells, which can be identified as disease-
specific biomarkers and therapeutic targets [56–
62].

T-reg effect T cells

Asthma patients

FOXP3

IFNγ 

CpG loci

CpG loci

FOXP3 CpG loci

IFNγ CpG loci

ME

MEME

ME

ME

Fig. 5.2 In 21 pairs of twin patients with asthma, the methylation of FOXP3 gene at 13 CpG loci and IFN-γ gene
promoter region at 6 CpG loci increased in Treg and effector T cells
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Fig. 5.3 The IL-4 promoter region can be demethylated
in allergen-specific T cells. This process contributes to the
development of asthma by reversing the hyper-
methylation of the IFNG gene promoter region, to

promoting the binding of Th2-related transcription factors
GATA-3 and STAT6 to the corresponding sites, and then
inducing a large number of IL-4 production and the differ-
entiation from T cells into Th2 cells
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Research Advances on DNA Methylation
in Idiopathic Pulmonary Fibrosis 6
Qian-Kun Luo, Hui Zhang, and Li Li

Abstract

Idiopathic pulmonary fibrosis (IPF) is a chronic
complex lung disease with no specific treatment
and poor prognosis, characterized by the pul-
monary progressive fibrosis and dysfunctions
that lead to respiratory failure. Several factors
may impact the progress of IPF, including age,
cigarette smoking, and dusts, of which genetic
and epigenetic factors mainly contribute to lung
tissue fibrosis. DNA methylation is one of epi-
genetic processes that occur in many diseases

and regulate chromosomal and extrachromo-
somal DNA functions in response to environ-
mental exposures. The methylation plays
pivotal roles in regulation of gene expression
to facilitate the formation of fibroblastic foci
and lung fibrosis. This chapter will describe
alterations and effects of the DNA methylation
on gene expression, the potential application of
DNA methylation as a biomarker, and signifi-
cance as therapeutic targets. Those understand-
ing will provide us new insight into the
treatment and prognosis of IPF.

Keywords

DNA methylation · Genetic variants ·
Idiopathic pulmonary fibrosis · Epigenetic

6.1 Introduction

Idiopathic pulmonary fibrosis (IPF) is an intersti-
tial lung disease with progressive proliferation of
fibroblasts and accumulation of fibrotic tissue that
is associated with age, environmental and micro-
bial exposures, and genetic and epigenetic
changes [1]. Many factors contribute to the for-
mation of IPF, including repeated microinjury of
an aging, dysfunctional alveolar epithelium,
epithelial-fibroblast communication, extracellular
matrix over-production, myofibroblast prolifera-
tion, and lung tissue remodeling [1–7]. Morbidity
and mortality increase obviously as the
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population ages [3]. Studies have verified
correlations between exposure to cigarette smok-
ing, wood, metal dust, stone, silica, and microbial
agents in patients with IPF. In addition to the
environmental factors, genetic variation has
been investigated as a potent risk factor for devel-
oping lung fibrosis. Some patients with variants
may have a better survival, while others with
genetic mutations may be susceptible to familial
interstitial pneumonia. For example, the MUC5B
promoter variant was considered an important
genetic risk for IPF, although the mechanisms
by which genetic mutations are associated with
IPF remain unclear [4–7].

DNA methylation is altered in many diseases
and often involved with environmental
exposures. Studies demonstrated that cigarette
smoking and aging have significant impacts on
epigenetic alterations, revealing a relationship
between IPF and DNA methylation [8]. Methyla-
tion of DNA modifies the fifth carbon of cytosine
residues (CpG dinucleotides) with a methyl group
transferred from S-adenyl methionine by DNA
methyltransferases (Fig. 6.1). Methylation of
CpG islands in gene bodies and promoters has
significant effects on gene expression and devel-
opment of diseases. Clinical studies demonstrated
the underlying functions for DNA methylation as

a biomarker for prognosis of cancers and others
[9]. Studies on genome-wide methylation
indicated that there were 2130 differentially
methylated regions (DMRs) between IPF lung
tissues and control samples [10]. Yan
Y. Sanders et al. also identified that 870 genes
were differentially methylated in IPF lung tissue
compared to normal lung tissue [11]. Methylation
in those DMRs may regulate expression of many
target genes and miRNAs and the regulatory sites
in genes involved in IPF [12, 13]. Previous stud-
ies defined molecular processes affected by DNA
methylation in IPF and mechanisms of how DNA
methylation prompts the development of IPF.

6.2 Genome-Wide DNA
Methylation in IPF

To explore the DNA methylation changes in IPF,
genome-wide DNA methylation has been carried
out in several studies recently. Rabinovich et al.
studied genomic DNA methylation profiles in IPF
lung tissue, lung adenocarcinomas, and control
lung tissue and found 625 distinct DMRs in IPF
compared to normal lung tissue [14]. Only a small
fraction of differentially methylated CpG islands
was in promoters, where the DNA methylation

CPG island

G C G C G C G T G A T C A A
C G C G C G C A C T A G T T

P P P P P PP P P P P PP

CH3

Methylation of Cytosine

DNMTs

Thy-1
α-SMA

PGE2

Environment Exposure

Gene expression changes

Lung fibrosis

Fig. 6.1 Methylation of the fifth carbon of cytosine in CpG island has effects on gene expressions which affect cell
proliferation, apoptosis, differentiation, and synthesis of many factors
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marks were related to biological processes,
including gene expression, development of can-
cer, and cell proliferation and apoptosis (Fig. 6.2).
However, effects of methylation in non-promoter
regions remain unknown. The study also
validated that the expressions of Serine/Threo-
nine Kinase 17b and histone cluster 1 H2ah
were upregulated in IPF, while their promoters
were hypomethylated [14].

Another study analyzed genome-wide DNA
methylation in 12 IPF patients compared with
seven normal control patients by DNA methyla-
tion microarray and found that 870 genes were
differentially methylated in IPF [11]. RNA
expression array analysis was used to verify
DNA methylation-regulated gene expression.
There were eight genes significantly regulated
by DNA methylation that were associated with
IPF [11]. However, many differentially
methylated genes were not correlated with gene
expression levels because of the small sample.
This particular study detected CpG islands and
the CpG island shores, which were shown to be
associated with gene expression, specified histol-
ogy, and stem cells in cancer. Huang et al.
cultured fibroblasts obtained from IPF lung

biopsies and detected the number of CpG sites
differentially methylated in IPF as compared to
control cells [30]. The differentially methylated
genes play important roles in proliferation of
fibroblasts and production of extracellular matrix
(ECM). Of those, three genes were identified with
altered expression according to DNA methylation
(Fig. 6.3), although the mechanism of DNA

0
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Gene body Promoter

A B

Fig. 6.2 (a) Differentially methylated CpG islands are
located in gene bodies such as intron, exon, and intergenic.
Only 8.9% DMRs are located in promoter. (b) Volcano
plot of 625 hypomethylated CpG islands in IPF. The X
axis differential methylation is represented by mean fold

change. P-value (Y axis) is adjusted by�log10. Green dots
are the significantly hypomethylated genes, red dots are
the hypermethylated genes. (This figure was modified
from REF. [14], Plos One.)

Fig. 6.3 Differentially methylated CpG loci between IPF
cells and control cell lines. Three genes (CDKN2B,
CARD10, MGMT) were identified to be associated with
the expression of genes contributing to the proliferation of
IPF fibroblasts. (This figure was modified from REF. [15],
Plos One.)
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methylation regulating gene expression was
unclear. A study assessed DNA methylation in
approximately 100 IPF lung tissue samples and
detected CpG island shores and 2130 DMRs with
significance, among which 43% are
hypermethylated in IPF lung tissues after
controlling environmental effects and other
biases. Most of the DMRs are located in gene
bodies and CpG island shores. Several novel
genes including CASZ1, SOX7, and TRIM71
were furthermore validated for the association of
those genes with IPF. CASZ1 was found to be a
strong candidate gene for association with
IPF [10].

6.3 DNA Methylation of Gene
Promoters in IPF

Many targeted genes were identified to be
methylated in gene promoter and the expression
of gene or miRNAs were modified in IPF

recently, as listed in Table 6.1. The mucin 5b
(MUC5B) gene, which contains variants, is
suggested as an important risk factor for the
development of IPF. The variant (rs35705950)
in the promoter region of MUC5B was found to
be related to familial IPF [16]. The mechanism by
which variant rs35705950 contributes to pulmo-
nary fibrosis has been a hot area for study in
recent years [17]. The study on DNA methylation
uncovered the methylated target region of the
MUC5B variant by mass spectrometry-based
methods. Several hypermethylated or
hypomethylated DMRs were identified to be
associated with IPF. The target FOXA2 binding
site (Chr11: 1241254-1241270) in a conserved
region (Chr11: 1241262-1241269) had the stron-
gest effect on MUC5B expression. The methyla-
tion surrounding the FOXA2 motif may alter the
binding of FOXA2 and regulate the coaction of
the MUC5B promoter variant and transcription
factors, leading to the overexpression of
MUC5B and MUC5B-dominated bio-function

Table 6.1 Current investigations of DNA methylation in idiopathic pulmonary fibrosis. Gene expression is upregulated
(") or downregulated (#) in association with DNA methylation

Targeted genes Mechanism
Regulation
status Samples Contribution

CASZ1 [10] Hypomethylation " IPF lung tissue, human
alveolar cell line

Fibroproliferation

STK17B, STK3, and
HIST1H2AH [14]

Hypomethylation " IPF lung tissue Cell apoptosis and
histone modification

MGMT/CDKN2B,
CARD10 [15]

Hypomethylation/
Hypermethylation

"/# Human lung fibroblast Cell proliferation

ZNF467, CLDN5/
TP53INP1, DDAH1
[11]

Hypermethylation/
Hypomethylation

#/" IPF lung tissue Pathogenesis of IPF

MUC5B [12] Methylation around
FOXA2 binding region

" Human lung fibroblast Familial IPF

COX2 [13] Hypermethylation of
c8orf4 promoter

# Human lung fibroblast Antifibrotic

TGF-β/BMP [21] Demethylation of
BMPER

"/# Human lung fibroblast and
mice cell line

Lung fibrosis

MiRNA-17~92 DNA methylation # IPF lung tissue and human
lung fibroblast

Myofibroblast
differentiation

Thy-1 [23–25] Hypermethylation # Human lung fibroblast Myofibroblast
differentiation

P14 (ARF) [26] Hypermethylation # Human lung fibroblast Proapoptotic
α-SMA [27, 28] Hypermethylation # Mice lung tissue and mice

alveolar epithelial cell
Myofibroblast
differentiation

PGE2 [29, 30] Hypermethylation of
PTGER2

PGE2

resistance
Mice lung tissue and
human lung fibroblast

Lung fibrosis
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[12]. The study indicates that the FOXA2 binding
may be one of critical factors in the composite
regulatory network to control MUC5B expres-
sion. Other transcription factors, such as
HOXA9, STAT3, and ZBTB7A, may regulate
MUC5B expression through the interaction with
FOXA2.

Keerthisingam C.B. et al. reported that expres-
sion changes of cyclooxygenase-2 (COX2) and
prostaglandin (PG) E2 were associated with lung
fibrotic responses [18]. The DNA methylation
could promote COX2 silencing in cancer and
may decrease COX2 and PGE2 expression in
fibrotic lung fibroblasts. However, COX2 expres-
sion was not regulated directly by methylation of
its promoter, evidenced by the fact that the G9a
and enhancer of zeste homolog 2 (EZH2) may
silence COX2 through interactions with histone
hypermethylation [19]. Another report
demonstrated that the hypermethylation of the
c8orf4 factor might alter COX2 expression and
promote the development of lung fibrosis [13],
although the specific regulatory mechanism is
still under exploration. Bone morphogenetic
proteins (BMPs) and transforming growth fac-
tor-β (TGF-β) were verified as key factors in
inducing lung fibrosis [20]. The TGF-β/BMP
pathway could regulate proliferation and trans-
differentiation of fibroblasts in response to lung
injury. The BMP endothelial cell precursor-
derived regulator (BMPER) is a strong factor to
affect the activity of TGF-β/BMP pathway in IPF.
BMPER is found to have effects on the invasion
and migration of lung fibroblasts. The DNA
methylation-induced demethylation can
downregulate BMPER promoter activity and
expression [21], where the target sequence and
BMPER promoter methylation are not detected.

miRNAs can regulate gene expression by
interfering with transcription or by degrading tar-
get mRNAs, since miRNA expression altered in
IPF. The miRNA-17~92 cluster is downregulated
in fibrotic lung tissue to probably target fibrotic
genes, including TGF-β, collagen, metallopro-
teinases, and DNMT-1. The DNA methylation
of the miRNA-17~92 cluster promoter can
silence its expression and be restored with

50-aza-20-deoxycytidine (5-aza) through the
reduction of the synthesis of DNA
methyltransferase (DNMT)-1 and genes that pro-
mote myofibroblast differentiation [22]. Thymo-
cyte differentiation antigen-1 (Thy-1) regulates
cell–cell and cell–matrix interactions, by which
myofibroblast production may be associated with
lung fibrosis development. Sanders YY et al. have
found that hypermethylation and downregulation
of Thy-1 occur in IPF and that suppression of
Thy-1 expression regulated by promoter methyl-
ation can be restored by the DNMT-1 inhibitor
5-aza [23, 24]. Another study investigated the
effect of hypoxia on lung fibroblasts and found
that the Thy-1 promoter is highly methylated in
hypoxic fibroblasts, while Thy-1 expression is
downregulated [25]. Moreover, the proapoptotic
gene P14 was also identified as hypermethylated
in its promoter CpG islands in IPF lung
tissue [26].

Myofibroblasts are important in ECM accumu-
lation and fibrotic cytokine production in lung
fibrosis. α-smooth muscle actin (α-SMA) is a
pivotal factor for the production of
myofibroblasts from fibroblasts. The expression
of α-SMA was associated with methylation of
CpG islands in its promoter. siRNA and 5-aza
can inhibit DNMT activity and induce the synthe-
sis of α-SMA, while overexpression of DNMT
downregulates α-SMA production [27]. α-SMA
expression is also regulated by methyl CpG bind-
ing protein 2 (MeCP2) and mild lung fibrosis
occurred in MeCP2 mutant mice [28]. It strongly
suggests that DNA methylation regulated by
DNMT plays an important role in the expression
of α-SMA and fibrogenesis. Prostaglandin E2

(PGE2) was downregulated in lung lavage fluid
of IPF patients with poor prognosis at lower
levels of PGE2. PGE2 has been verified to have
antifibrotic effects in previous studies. Huang SK
et al. reported that PGE2 resistance in IPF is
correlated with decreased expression of E
prostanoid 2 receptor (EP2), and
hypermethylation of the prostaglandin E receptor
2 gene (PTGER2) promoter is a key factor induc-
ing PGE2 resistance [29, 30].
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6.4 Perspectives

The cause of IPF was considered to be chronic
inflammation that established lung parenchymal
fibrosis, while anti-inflammatory and immuno-
suppressive therapies fail to significantly improve
the prognosis of patients. Repetitive and
sustained lung injuries associated with environ-
ment exposures, genetic mutation, and aging are
regarded as the major mechanisms bringing about
lung fibrosis [2, 31]. However, the mechanisms
underlying myofibroblast differentiation from
fibroblasts and accumulation and proliferation of
these cells remain unknown. Many studies on
fibroblast differentiation and gene expression
emerged in recent years, including studies on
genome-wide association and epigenetic
alterations [17, 32]. In addition, telocytes were
identified to possibly affect the cell–cell
interactions and apoptosis through integrins-
PI3K pathways in the lung [33, 34].

The epigenetic modulation has the significant
impact in pathogenesis of many diseases through
the comprehensive processes and mechanisms
detected by genomics, proteomics, as well as
clinical transomics [35–39]. Discovery of CpG
island shores and histone variants brought a new
perspective in gene regulation and epigenetic
mechanisms [40, 41]. DNA methylation can be
a dynamic biomarker for biological responses to
environment exposures, dietary habits, cigarette
smoking, drinking, and age. The alteration of
DNA methylation in IPF influenced by multiple
risk factors is more significant. With the develop-
ment of DNA methylation assays, it is questioned
whether DNAmethylation can meet the criteria of
disease-specific biomarkers for clinical applica-
tion to dynamically monitor disease severity,
duration, phase, and response to therapy like
others [42, 43]. Genome-wide DNA methylation
analysis allows researchers to easily measure
DNA methylation in large samples and decipher
the mechanisms by which DNA methylation
regulates gene expression, methylated CpG
islands in promoter regions of genes. These
discoveries may bring us novel therapeutic
strategies or diagnostic biomarkers to improve
the prognosis of IPF patients. However, current

studies on simplex lung tissues may lack accuracy
because of the complex pathogenesis of lung
fibrosis and the dynamic nature of epigenetic
features. Environmental effects were taken into
consideration in their genome-wide DNA meth-
ylation study on alveolar lavage and blood in
different stages of disease [10, 44].

DNA methylation was majorly investigated
in bulk cells obtained from entire lung tissue,
including alveolar epithelial and endothelial
cells, which may contain many specific epige-
netic signals in different cell types. Techniques
have been applied to deconstruct the tissue into
cell-specific components [45]. For example, cig-
arette exposure is confirmed to play a critical
role in epigenetic alteration in IPF, while it is a
great challenge to correlate cigarette exposure
and epigenetic alterations in IPF on account of
the late disease stage when tissues are taken
from lungs. In addition, the cigarette factor is
associated with the development of many
diseases, such as pulmonary fibrosis, chronic
obstructive pulmonary disease, and lung cancer
[46, 47]. It is hard to distinguish which DNA
methylation changes affected by cigarette smoke
contribute specifically to the development
of IPF.

Another challenge is to combine DNA meth-
ylation with other epigenetic mechanisms, such as
noncoding RNAs, histone modifications, and
chromatin remodeling. A key reason for poor
overlap between DNA methylation and genetic
alteration may be the complex interactions of
these epigenetic mechanisms. The combination
of expression quantitative trait loci (eQTLs) and
genome-wide association (GWA) studies
provides us a new strategy to identify methylation
marks that regulate gene expression and genetic
variants based on DNA methylation (methyl-
QTL) [10, 48, 49]. Furthermore, 5-aza has now
been applied as a therapy for lung cancers
associated with histone deacetylase [50].

In summary, dysfunction of DNA methylation
is one of critical dominants in the development of
IPF, although there are still a large number of
regulatory processes to be explored. The deep
understanding of DNA methylation will benefit
the discovery and development of a new
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therapeutic strategy for IPF treatment and novel
prognostic tools.
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Abstract

Chronic obstructive pulmonary disease
(COPD) is a lung disease affected by both
genetic and environmental factors. Therefore,
the role of epigenetics in the pathogenesis of
COPD has attracted much attention. As one of
the three epigenetic mechanisms, DNA meth-
ylation has been extensively studied in COPD.
The present review aims at overviewing the
effect of DNA methylation on etiology, patho-
genesis, pathophysiological changes, and
complications of COPD. The clarification of
aberrant methylation of target genes, which
play important roles in the initiation and pro-
gression of COPD, will provide new disease-
specific biomarker and targets for early diag-
nosis and therapy.

Keywords

Chronic obstructive pulmonary disease · DNA
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7.1 Introduction

Chronic obstructive pulmonary disease (COPD)
is a life-threatening lung disease, characterized by
chronic airway inflammation and airflow limita-
tion and induced by the exposure to noxious
particle especially by cigarette smoking and pol-
lution. The development of COPD is associated
with genetic factors as well as environmental
exposures. The epigenetic mechanisms, by
which the gene and environment interact, are
subdivided into DNA methylation, post-
translational histone methylation or acetylation
and non-coding RNAs (Fig. 7.1). DNA methyla-
tion, addition of a methyl group to the five posi-
tion of the cytosine, usually occurs in the CpG
islands located at the core sequence and transcrip-
tion start point of the structural gene promoter.
DNA methylation sites can be inherited with the
replication of DNA and catalyzed by DNA
methyltransferases (DNMTs) (Fig. 7.2).
Hypermethylation of CpG islands in gene
promoters usually leads to downregulation of
gene expression, whereas hypomethylation leads
to upregulation [1] (Fig. 7.3). Therefore, the role
of DNA methylation in COPD has become a hot
spot area. This review is focus on how
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environmental factors affect the development of
COPD through gene methylation. The present
review aims at overviewing the effect of DNA
methylation on etiology, pathogenesis, patho-
physiological changes, and complications of
COPD.

7.2 Cigarette Smoking and DNA
Methylation in COPD

Cigarette smoking is the most import environ-
ment risk factor of COPD, and other particles
such as biomass fuel and urban air pollution par-
ticulate matter (PM2.5) are also in association
with COPD prevalence [2]. Bojesen et al. studied

Fig. 7.1 The main ways of
epigenetic modification.
Most epigenetic
modifications act at DNA
methylation, histone
methylation or acetylation.
DNA methylation can be
regulated by action of DNA
methyltransferases
(DNMT). Histone
modifications are mainly
manifested in acetylation
and methylation. Histone
methyltransferases (HMTs)
and histone demethylase
(HDMs) mediated histone
methylation. Histone acetyl
transferases (HATs) and
histone deacetylases
(HDACs) mediated histone
acetylation

Fig. 7.2 The schematic
representation of DNA
methylation. The cytosine
at CpG sites converts to 50

methyl-cytosine by adding
methyl groups. DNA
methylation typically
happened at cytosine which
is followed by a guanine
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9234 individuals from the Copenhagen City
Heart Study, and measured aryl-hydrocarbon
receptor repressor (AHRR) (cg05575921) meth-
ylation using bisulfite treated leucocyte DNA
[3]. Exacerbations of COPD in participants were
followed for more than 20 years. Lower AHRR
methylation was found to be associated with
higher daily cigarette consumption, higher cumu-
lative tobacco consumption, and longer smoking
duration and shorter time since cessation.
Hypomethylation of AHRR (cg05575921) was
also associated with higher incidence of COPD
exacerbation. This particular study suggested that
AHRR (cg05575921) hypomethylation was
associated not only with cigarette smoking but
also with smoking-related morbidity and
mortality.

Cigarette smoking could also cause DNA
methylation other than AHRR. Cheng et al.
analyzed DNA methylation on glutamate-
cysteine ligase catalytic subunit (GCLC) pro-
moter in clinical lung biopsy specimens from
current-smoker, ex-smoker, and never-smoker
patients with or without COPD [4]. GCLC
regulates synthesis of glutathione (GSH), which
is a critical antioxidant in the airway [5]. They
found that the DNA methylation level of the
GCLC promoter of cigarette smoking groups
were significantly higher than those of
non-smoking groups. Furthermore, the mRNA
levels of GCLC in the lungs were correlated
with the level of GCLC promoter

hypermethylation. This finding was evidenced
by in-vitro study.

A number of genome-wide DNA methylation
data of cigarette smoking on COPD were
generated in recent years. Emily et al. detected
the methylation of buccal brushes DNA sample
from COPD patients with current and former
smoking history [6]. Seven CpG sites were
found to be correlated with current cigarette
smoking, including cg09853702, cg16323911
(long intergenic non-protein coding RNA
673, LINC00673), cg02162897 (Cytochrome
P450 1B1, CYP1B1), cg03126561 (parvin
alpha, PARVA), cg16199747 (syntaxin binding
protein 5 antisense RNA 1, STXBP5-AS1),
cg16187635 and cg21371809 (FERM domain
containing 4A, FRMD4A). The methylation
level of CYP1B1 was inversely correlated with
lung function and the radiographic severity of
emphysema in females. CYP1B1 plays a role in
xenobiotic metabolism, probably contributing to
COPD development. In addition, CYP1B1 is also
associated with the estrogen metabolism and may
play a role in difference of gender susceptibility
towards smoking-related diseases [7, 8]. After the
measurement of genome-wide DNA methylation
in lung tissue, nitric oxide synthase 1 adaptor
protein (NOS1AP), tumor necrosis factor, alpha-
induced protein 2 (TNFAIP2), BH3 interacting
domain death agonist (BID), gamma-
aminobutyric acid type A receptor beta1 subunit
(GABRB1), ataxin 7 (ATXN7), and THO

Fig. 7.3 A typical
mammalian DNA
methylation landscape. The
process made a cytosine
changing to a 50methyl-
cytosine by a family of
DNMTs. When the
promoter region is
hypermethylated, the gene
cannot be expressed. Notes:
SAM: S-
adenosylmethionine; SAH:
S-adenosylhomocysteine;
DNMTs: DNA
methyltransferases
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complex 7 (THOC7) were found to have differ-
ential methylations in lung tissues acquired from
pneumonectomy, which were further validated by
pyrosequencing. Pyrosequencing validation con-
firmed that hyper-methylations of NOS1AP, BID,
and GABRB1 were associated with low expres-
sion of the corresponding genes in smokers and
COPD patients [9].

Moreover, genome-wide DNA methylation
research demonstrated that cigarette smoking per
se could affect DNA methylation. In current
smokers, DNA methylation of six differentially
methylated positions (DMPs) were correlated
with urine cotinine levels, including G protein
subunit gamma 12 (GNG12), G protein-coupled
receptor 15 (GPR15), melatonin receptor 1A
(MTNR1A), AHRR, regulator of microtubule
dynamics 3 (FAM82A2), and F2R like thrombin
or trypsin receptor 3 (F2RL3). DNA methylation
of six DMPs were correlated with pack-years,
including 50-nucleotidase, cytosolic IA
(NTSC1A), zinc finger and BTB domain
containing 9 (2BTB9), Janus kinase and microtu-
bule interacting protein 3 (JAKMIP3),
hemopexin (HPX), cyclin D1 (CCND1), and
RING zinc finger-containing protein (RNF160)
[10]. In ex-smokers, eight DMPs were correlated
with duration of smoking cessation, including
interferon gamma inducible protein 16 (IFI16),
cytoplasmic linker associated protein
1 (CLASP1), Rho guanine nucleotide exchange
factor 3 (ARHGEF3), protein
O-glucosyltransferase 1 (KTELC1), sperm flagel-
lar 2 (SPEF2), acyl-CoA thioesterase
13 (ACOT13), B-box and SPRY domain
containing (BSPRY), and FAM82A2. The
smoking-related differential methylation in
blood was correlated with gene expression levels
in lung tissue. This particular study demonstrated
the effect of cigarette on DNA methylation, and
the dose-dependent effect. Since smoking cessa-
tion was correlated with DNA methylation, there
might be a time-dependent relationship of this
effect [10]. Cigarette smoking could affect the
expression of DNMTs in animal model and in
COPD patients. While DNA methylation is
mediated by DNMTs, cigarette smoking could
affect the expression of target genes via

differential methylation induced by abnormal
expression of DNMTs [11]. Nevertheless, the
prenatal smoke exposure was found to be
associated with differential DNA methylation in
newborns and children [12]. In an animal model,
differential methylations of insulin like growth
factor 1 receptor (IGF1r) occurred in a
sex-dependent manner after prenatal exposure to
smoke [13]. IGF1 and IGF1r play a role in lung
development [14]. Gathering those evidence, it
can be confirmed that cigarette smoking could
affect DNAmethylation. On the one hand, studies
of genome-wide DNA methylation suggested that
some suspicious genes after cigarette smoking
were related with aberrant methylation,
influencing the development of COPD. Some
gene aberrant methylations were associated with
the effect of cigarette smoking on COPD,
correlated with expression levels of these genes.
These results indicate that DNA methylation
plays an important role in the mechanism of ciga-
rette smoking on COPD.

7.3 Environmental Risk Factors
and DNA Methylation in COPD

Many potential risk factors of COPD could
induce DNA methylation. Sood et al. performed
a cross-sectional study and methylation-specific
polymerase chain reaction (PCR) assay in
induced sputum sample and found that the wood
smoke exposure was associated with reduction of
lung function, correlated with differential
methylations of p16 gene and zinc finger tran-
scription factors binding protein 4 (GATA4)
[15]. The air pollution, especially PM2.5 as a
risk factor, could induce hypermethylation of
p16 gene promoter and decrease DNMTs activity
in primary bronchial epithelial cells derived from
COPD patients, which could explain the global
DNA hypomethylation [16]. The P16 gene could
affect the genomic instability and the cell cycle
progression [17]. Chen et al. investigated PM2.5
on COPD patients without smoking history and
found that DNA hypomethylation of nitric oxide
synthase 2A (NOS2A) from buccal sample was
associated with elevated fractional exhaled nitric
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oxide (FeNO) in COPD patients [18]. Thus, ciga-
rette smoking and environmental risk factors,
such as PM2.5 and biofuels, may also contribute
to the pathogenesis of COPD through aberrant
DNA methylation. The relationships between
environment factors and gene methylation of
COPD are detailed in Table 7.1.

7.4 Genome-Wide Methylation
in COPD

Epigenetic mechanisms, specifically DNA meth-
ylation, are proposed to play an important role in
asthma and cancer [19]. However, the profiling of
DNA methylation in patients with COPD remains
unclear. Isaac et al. performed genome-wide
DNA methylation analysis in lung tissues from
COPD patients and suggested genes, such as
NOS1AP, TNFAIP2, BID, GABRB1, ATXN7,
and THOC7, needed to be further validated by
pyrosequencing. Differential DNA methylations
of NOS1AP, BID, and GABRB1 were confirmed
by pyrosequencing [9]. Jarrett et al. performed

analyses of methylation quantitative trait loci
(mQTL), association of single nucleotide
polymorphisms (SNPs) with percent DNA meth-
ylation, and the colocalization of these results
with previous COPD genome-wide association
study (GWAS) findings using Bayesian methods
and found aberrant methylation in potassium two
pore domain channel subfamily K member
3 (KCNK3), eukaryotic elongation factor,
selenocysteine-tRNA specific (EEFSEC),
phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit delta (PIK3CD), doublecortin
domain containing 2C (DCDC2C), transcription
elongation regulator 1 like (TCERG1L), FERM
domain containing 4B (FRMD4B), and interleu-
kin 27 (IL27) [20]. Those findings supported the
role of DNA methylation in COPD pathogenesis.

A large-scale gene-specific investigation of
DNA methylation demonstrated that COPD was
associated with DNA methylation of 349 CpG
sites in two family-based cohorts [21]. The gene
ontology analysis suggested that the associated
genes were involved in immune and inflamma-
tory system pathways, in stress and external

Table 7.1 Relationships between environment factors and gene methylation of COPD

Environment
factors Genes Gene function Gene methylation Possible impact on COPD References

Cigarette smoking AHRR A tumor suppressor Hypomethylation Higher COPD
exacerbation incidence;
smoking-related morbidity
and mortality.

[3]

Cigarette smoking GCLC Regulates synthesis
of GSH

Hypermethylation – [4]

Cigarette smoking CYP1B1 Regulates
xenobiotic
metabolism and
estrogen
metabolism

Hypomethylation Reduction of lung function
and severity of
radiographic emphysema
in female

[6–8]

Cigarette smoking IGF1r Regulates lung
development

Hypomethylation Reduction of lung function [13]

Wood smoke
exposure

GATA4 Hypermethylation Reduction of lung function [15]

Wood smoke
exposure and
particulate matter
(PM2.5)

p16 Affects genomic
instability and the
cell cycle
progression

Hypermethylation Reduction of lung function [15, 16]

Particulate matter
(PM2.5)

NOS2A Regulates NO
synthesis

Hypomethylation Elevated FeNO [18]
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stimuli, as well as in wound healing and coagula-
tion cascades. The top five associated genes for
COPD were chromosome 3 open reading frame
18 (C3orf18), serpin family A member
1 (SERPINA1), chloride voltage-gated channel
6 (CLCN6), core-binding factor, runt domain,
alpha subunit 2; translocated to, 3 (CBFA2T3)
and fucosyltransferase 7 (FUT7), while for forced
expiratory volume in the first second (FEV1)
were FXYD domain-containing ion transport reg-
ulator 1 (FXYD1), FUT7, SERPINA1, transient
receptor potential cation channel subfamily M
member 2 (TRPM2), and FERMT3. The
SERPINA1 hypomethylation was significantly
associated with COPD and phenotypes of lung
dysfunction. The SERPINA1 gene encodes the
alpha-1 antitrypsin protein, which is associated
with COPD [21]. However, data from genome-
wide methylation studies on COPD hardly
interpreted due to the obvious variations, com-
plexity of disease severity and stages, and uncon-
trolled samplings.

Jarrett et al. performed genome-wide DNA
methylation analysis in lung tissue samples from
114 COPD patients and 46 control subjects and
found that 11 out of 535 differential methylation
sites had the difference between disease and
controls [22]. The expression levels of those
genes were correlated with DNA methylation,
including cholinergic receptor muscarinic
1 (CHRM1), deltex 1, deltex E3 ubiquitin ligase
1 (DTX1), protein kinase C and casein kinase
substrate in neurons 1 (PACSIN1), forkhead box
K1 (FOXK1), sperm hammerhead 3 and multiple
ankyrin repeat domains 2 (SHANK2), and
forkhead box P2 (FOXP2). The associated genes
identified in previous COPD genome-wide stud-
ies were integrated with differential methylation,
where the top methylated sites from the intersec-
tion with previous GWAS were in CHRM1,
glycosyltransferase 1 domain containing
1 (GLT1D1), and chromosome 10 open reading
frame 11 (C10orf11). Of those, CHRM1 is
involved in mediation of bronchoconstriction,
suggesting that aberrant methylation of CHRM1
may play an important role in COPD [22].

7.5 Individual Gene Aberrant
Methylation in COPD

Genome-wide methylation studies can help to
identify and discover the potential genes
associated with COPD. To validate concrete
genes of which the aberrant DNA methylation
plays a crucial role in pathogenesis of COPD,
the methylation of single gene should be detected.
Genome-wide association studies identified genes
associated with COPD susceptibility on
chromosomes 19q13 [23]. Nedeljkovic et al.
detected the DNA methylation of rs7937
(RAB4B, EGLN2), a top associated gene in
19q13.2 region, and the gene expression level in
both blood and lung tissue [24]. Rs7937 was
significantly and consistently associated with dif-
ferential DNA methylation in blood at four CpG
sites in cis, independent of smoking. Aberrant
methylation at cg11298343-EGLN2 was also
found in COPD patients, and was correlated
with expression level of EGLN2 [24]. The protein
expression of EGLN2, prolyl hydroxylase
domain-containing protein 1, regulates expres-
sion of transcription factor hypoxia induced fac-
tor (HIF), of which downstream genes were
associated with inflammatory and immune pro-
cess in COPD. Four gene variants, e.g., choliner-
gic receptor nicotinic alpha 3 subunit (CHRNA3),
hydroxylysine kinase (HYKK), rs13180: iron
responsive element binding protein 2 (IREB2),
and rs8042238:IREB2 in chromosome 15q25.1
locus, were associated with COPD by
epigenome-wide association analysis [24]. The
aberrant methylation of IREB2, CHRNA3, and
PSMA4 genes was associated with COPD, inde-
pendently upon smoking. CHRNA3 encodes the
nicotinic acetylcholine receptors, associated with
risk of cigarette smoking and lung cancer [25].

Hong Li et al. assayed methylation of endothe-
lial PAS domain protein 1 (EPAS1) by bisulfite
sequencing PCR, and EPAS1 mRNA expression
by real-time PCR in bronchoalveolar lavage fluid
samples of COPD patients and healthy subjects
and found that the aberrant methylation of EPAS1
promoter was correlated with the transcriptional
level of EPAS1 mRNA in COPD [26]. Moreover,
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toll like receptor 4 (TLR4) could promote
hypermethylation of EPAS1 promoter and
inhibited EPAS1 mRNA transcription in endothe-
lial cells, suggesting that upregulation of TLR4
expression might decrease EPAS1 expression
through the regulation of DNA methylation.
EPAS1 gene encodes hypoxia inducible factor
2 subunit alpha (HIF2a), a transcription factor in
the induction of genes regulated by hypoxia,
which is an important pathophysiological charac-
teristic of COPD. The relationship between
EPAS1 methylation and COPD should be further-
more clarified. To find out the chief regulators of
epigenetics in COPD, Yoo et al. developed a
systematic approach to integrate genome-wide
DNA methylation and gene expression in lung
tissues with phenotype data of COPD patients
and control subjects [27].

Key regulators of downstream target genes are
more than all cis genes. Diffusing capacity of the
lung for carbon monoxide (DLCO), body mass
index, airflow obstruction, dyspnea and exercise
capacity index (BODE), forced expiratory vol-
ume percentage predicted 1 (FEV1), FEV1/
forced vital capacity (FVC) ratio, and emphysema
percentage were used to represent the phenotypes
of COPD severity [27]. Of 126 genes of key
regulators in patients with COPD, ACSF3,
SELO, and EPAS1 were found to be correlated
with those phenotypes of COPD severity. EPAS1
was the only gene whose downstream genes,
including vascular endothelial growth factor
(VEGF), were significantly overlapping with all
disease phenotype gene expression signature sets.
The expression of EPAS1 protein was
downregulated in lung tissues from COPD
patients. The expressions of downstream genes,
including VEGF, of EPAS1 were correlated with
methylation of EPAS1. The relationship between
EPAS1 and the downstream target genes was
confirmed using siRNA to block EPAS1
expression in cell lines and RNASeq analysis to
quantify gene expression changes [27]. This inte-
grative analysis of genome-wide DNA methyla-
tion and gene expression profiles demonstrated
that aberrant gene methylation play an important
role in the development of COPD, of which
EPAS1 may be the key regulator. However,

Andresen et al. performed bisulfite sequencing
in bronchial epithelium and BAL fluid cells
from COPD patients and failed to reveal the rela-
tionship of aberrant methylation of DEFB1 pro-
moter and upregulated expression of DEFB1 in
COPD [28]. This suggests that there might be
epigenetics factors, other than DNA methylation,
regulate gene expression of COPD. Although a
number of studies on role of gene methylation
have been carried out in patients with COPD,
roles of DNA methylation in the development of
COPD need to be furthermore clarified and
evidenced, especially due to the complexity of
DNA methylation and the unknown etiology
of COPD.

7.6 Gene Methylation and Mucus
Hypersecretion in COPD

The excessive production of mucus and hypertro-
phy or metaplasia of goblet cells are critical
characters of COPD. SAM-pointed domain-
containing ETS-like factor (SPDEF) and
forkhead box protein A2 (FOXA2) are key tran-
scription factors to regulate the differentiation of
goblet cells [29, 30]. Song et al. assessed DNA
methylation and expression of SPDEF and
FOXA2 in primary airway epithelial cells isolated
from COPD patients and used IL-13 to induce
differentiation of goblet cell [31]. They found
that the hypermethylation of SPDEF promoter
occurred during goblet cell differentiation, rather
than FOXA2 promoter. During goblet cell differ-
entiation, expression of SPDEF increased,
whereas expression of FOXA2 decreased. In the
absence of IL-13, both SPDEF promoter and
FOXA2 promoter were hypomethylated, while
only SPDEF expression increased. It implicates
that differential methylation of SPDEF and
FOXA2 promoters play a role in COPD mucus
hypersecretion.

DNA methylation could not only affect airway
mucus secretion but also affect mucus clearance.
Tessema et al. found aberrant DNA methylation
of coiled-coil domain containing 37 (CCDC37) in
sputum samples of COPD patients [32]. Mean-
while, the expression level of CCDC37 in
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patients with COPD was significantly lower than
patients without COPD. CCDC37 encodes
coiled-coil domain containing (CCDC) proteins
to regulate ciliary motility [33]. The declined
function of cilia motility could result in the obsta-
cle of mucous clearing, as one of important patho-
physiological characteristics of COPD. Studies
on the relation between DNA methylation and
mucus hypersecretion remain limited. Mucin
5AC (MUC5AC) and mucin 5B (MUC5B) are
important regulators for production and secretion
of mucins in COPD. Cells treated with 5-aza-2-
0-deoxycytidine (5-AzadC) could downregulate
DNA methylation of CpG islands near
MUC5AC promoter and increase MUC5AC
expression [33]. Studies found that demethylation
of MUC5B promoter regions with 5-AzadC led to
significant upregulation of their expression
[34, 35]. It is questioned whether those effects
are cell-line specific or regulatory function-
specific, since such findings could not be
observed in difference cell lines [36].

MUC5AC promoter has fewer CpG
dinucleotides to probably contribute to
MUC5AC expression regulation, in which it is
questioned whether MUC5AC promoter DNA
methylation may be involved [36]. The relation-
ship between MUC5AC and MUC5B expression
and DNA methylation still needs to be further
defined, due to lack of solid evidence and
conflicting results. In addition to MUC5AC pro-
moter aberrant methylation, aberrant methylation
of transcription factors could contribute to the
regulation of MUC5AC expression. Song et al.
explored the regulatory mechanism of MUC gene
expression via silencing SPDEF gene in lung
epithelial cells and found that fusing zinc finger
proteins to DNMT3A and G9A induced targeted
hypermethylation and decreased MUC5AC
expression in mouse lung epithelial cells
[37]. MUC5AC and MUC5B expression could
also be regulated by the STAT6-STAT3 pathway.
Src homology-2-containing protein-tyrosine
phosphatase 1 (SHP-1) could downregulate the
JAK/STAT pathway. Han et al. treated FLT3-
ITD cells with 5-Aza to induce the occurrence
of DNA hypomethylation and found that

hypomethylation of SHP-1 promoter could
downregulate the expression of STAT3 [38]. It
was proposed that hypermethylation of SHP-1
gene and reduced SHP-1 protein may upregulate
STAT3 expression, leading to over-expression of
MUCIN genes in airway epithelial cells.
Dysregulation of FOXA2 could cause mucus
hypersecretion. Helling et al. found that expres-
sion of MUC5B was upregulated by
hypermethylation of an enhancer region
containing the rs35705950 variant that binds
RNA polymerase II and FOXA2 [39]. Further
studies need to define roles of DNA methylation
in regulation of airway mucus hypersecretion
in COPD.

7.7 Gene Methylation
in COPD-Lung Cancer Transit

The incidence of lung cancer is five times higher
in COPD patients [40]. The mechanism by which
lung cancer develops in COPD patients is still
unknown. Cigarette smoking is a common risk
factor for both COPD and lung cancer and
induces DNA methylation, which was found in
both COPD and lung cancer. It has been supposed
that DNA methylation might play a role in
COPD-lung cancer transit. Suzuki et al. assessed
methylation profiles of 12 genes from
229 non-small cell lung cancer (NSCLC) patients
with or without COPD and found that DNAmeth-
ylation of interleukin 12 receptor, beta
2 (IL-12Rb2), and WNT inhibitory factor
1 (Wif-1) in malignant lung tissues was signifi-
cantly higher in the NSCLC with COPD patients
than in NSCLC alone. The epigenetically
silenced Wif-1 gene, a tumor suppressor gene, is
associated with many cancers. IL-12Rb2 plays a
role in Th1 cell differentiation. Hypermethylation
of IL-12Rb2 and Wif-1 might not be related to
pathogenesis of COPD, while it might be play a
role in COPD-NSCLC transit [41]. Wauters et al.
measured the methylation profiling on 49 pairs of
tumor and adjacent lung tissue from patient with
NSCLC with or without COPD [42]. Ontology
analysis of genes with differential methylation
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revealed that aberrant DNA methylation of
immune genes was significantly enriched in
NSCLC with COPD, rather than in NSCLC
alone. It seems that aberrant DNA methylation
of immune response genes in patients with
COPD and NSCLC affects the tumor tissue spe-
cifically. Genes expressed particularly by
immune cells, such as CD4-positive cells,
exhibited promoter hypermethylation and
expressions of transcriptional factor genes dif-
fered in COPD and NSCLC, indicating that
DNA methylation of immune response genes
may contribute to the COPD-NSCLC transit
[42]. Tessema et al. found that aberrant methyla-
tion of CCDC37 and MAP1B occurred more
frequently in NSCLC with COPD than in
NSCLC alone, although relationship between
CCDC37 and MAP1B with lung cancer remains
unclear [32]. Bojesen et al. studied DNA methyl-
ation of AHRR (cg05575921) in blood sample
harvested from 9234 individuals, and followed
up for exacerbation rate of COPD, incidence of
lung cancer, and mortality for up to 22 years
[3]. The multifactorial adjusted hazard ratios for
the lowest versus highest methylation quintiles
were 4.58 (95% CI 2.83–7.42) for COPD
exacerbations, 4.87 (2.31–10.3) for lung cancer,
and 1.67 (1.48–1.88) for all-cause mortality. The
expression of AHRR regulates cell growth and
differentiation. Although some studies
demonstrated that differential methylation of
AHRR was associated with cigarette smoking,
there is few evidences of the relationship of
AHRR with lung cancer or COPD-lung Cancer
transit. The role of AHRR in the development of
COPD and lung cancer and their transit needs to
be furthermore investigated. DNA methylation
was found often in patients with COPD and
lung cancer, indicating that aberrant methylation
plays a role in COPD-lung cancer transit.

7.8 DNA Methylation in Different
Races with COPD

Clinical characteristics of COPD differ among
races. African-Americans may develop COPD at

a younger age and have higher incidence of
COPD hospitalizations [43]. Despite fewer
pack-years of smoking, African-Americans pres-
ent the same degree of airflow limitation as white
and have lower quality of life scores, when COPD
developed. Race is an important contributor to
genetic variability of COPD and also to
epigenomic of COPD. Sun et al. found that
DNA methylation caused by cigarette smoking
differs between racial groups [44]. Busch et al.
measured methylation of DNA extracted from
blood samples in 362 African-American cigarette
smokers, and then compared the COPD-related
aberrant DNA methylation loci discovered in the
PA-SCOPE African-American cohort with ICGN
white cohort [45]. Seven of 12 differential meth-
ylation genes were identified in the white cohort
with significant difference. There was a difference
in the methylation in those of African-American
descent when compared to Anglo-Saxons, as
indicated by the left (2.5 percentile) tail of the
distribution. However, there is a conflicting
finding in race-related differences of aberrant
DNA methylation in COPD patients. Lee et al.
performed an epigenome-wide association study
on DNA extracted from blood sample in a
Korean COPD cohort, and found aberrant DNA
methylation associated with COPD and declined
lung function, as identified previously in
Caucasians or African-Americans populations
[45, 46]. Although there are evidences that race
factors may affect differential methylation in
COPD, there is no clinical trial directly to com-
pare DNA methylation of certain genes between
races.

7.9 DNA Methylation and Airway
Inflammation of COPD

The relationship between DNA methylation and
airway inflammation in COPD is initially
investigated, although airway inflammation is an
essential feature of COPD. Wauters et al. reported
differential DNA methylation of immune related
genes in COPD with NSCLC, including CD4
encoding a membrane glycoprotein of T
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lymphocytes to interact with major histocompati-
bility complex class II antigens, C-C motif che-
mokine ligand 5 (CCL5) encoding a
chemoattractant, tumor necrosis factor receptor
superfamily, member 21 (TNFRSF21) encoding
a member of the tumor necrosis factor (TNF)
receptor superfamily, and sushi domain
containing 2 (SUSD2) influencing tumor infiltra-
tion by CD4-positive lymphocytes [42]. Although
the specimens of this particular study were
harvested from patients with COPD and lung
cancer rather than COPD alone, the results
implicated that DNA methylation may be play a
role in the airway inflammation of COPD. Vucic
et al. analyzed genome-wide methylation and
gene expression on airway epithelial cells
obtained from COPD patient during bronchos-
copy and found that aberrant DNA methylation
was associated with expression variation of genes
and pathways involved in COPD, especially
nuclear factor, erythroid 2 like 2 (Nrf2) pathway
which mediated oxidative stress response [6].

In addition to the important role of oxidative
stress in airway inflammation, Cytochrome P450
4F11 (CYP4F11) gene in the pathway expression
was modulated by DNA methylation. CYP4F11
has a direct role in inhibition of inflammation
through suppression of leukotriene and prosta-
glandin signals [47]. Silencing of CYP4f11 in
small airways of patients with COPD increased
airway inflammation or altered activation of
inhaled steroids [48]. Although there is a need to
directly evidence roles of DNA methylation in
airway inflammation, DNA methylation was
noticed to be associated with systemic inflamma-
tion. FOXP3 is a transcription factor to control the
development and function of T-regulatory (Treg)
cells, while aberrant methylation in the promoter
region of FOXP3 affected the formation and
activity of Treg [49, 50]. Those studies call
more attentions and actions to clarify the relation-
ship between gene methylation and airway
inflammation in patients with COPD.

Loss of muscle mass and strength is an impor-
tant comorbidity of COPD. DNA methylation
may be associated with loss of muscle mass of
COPD. Lewis et al. found that DNA

hypermethylation of the H19 imprinting control
region in COPD patients was associated with
muscle weakness [51]. H19 gene as the host
gene for miR-675 was associated with loss of
muscle mass by inhibiting myoblast proliferation
and inducing differentiation. Hypomethylation of
H19 imprinting control region increased the
expression of H19 and miR-675, leading to a
low fat free mass index in patients with COPD.

7.10 Summary and Future
Directions

Although the aberrant DNA methylation was
observed in blood sample and lung tissue in
patients with COPD, COPD per se is a systemic
disease involving in multiple systems and organs
detected by medical and molecular imaging and
proteomics [52, 53]. With or without the associa-
tion with DNA methylation, a large number
factors contribute to the development and pro-
gression of COPD, e.g., fatty acid binding
proteins [54], inflammatory responses, environ-
mental complexity [55], signaling mechanisms
of YPEL4 [56], disordered biorhythms [57], epi-
thelial cell responses [58, 59], and mitochondrial
dysfunction [60]. Cigarette smoking as one of risk
factors of COPD is clearly associated with the
occurrence of aberrant DNA methylations. In
addition, aberrant DNA methylation is also
associated with airway inflammation, mucus
hypersecretion, muscle mass loss, as well as
COPD-cancer transit (Fig. 7.4).

Although the mechanism by which DNA
methylation contributes to the development of
COPD remains uncertain, the clinical and preclin-
ical evidence on roles of DNA methylation in
COPD may provide new views to understand
the pathogenesis of COPD, new opportunities to
identify and develop diagnostic biomarkers, and
therapeutic targets for COPD. It is questioned
whether DNA methylation-associated biomarkers
and targets have the specificity of disease sever-
ity, duration, staging, and response to therapy
[61–71]. Values of DNA methylation-associated
therapeutic targets are also to be furthermore
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validated in diseases, especially in COPD with
the contributions of multi-factors, since the on/
off-target situation of DNA methylation-
associated therapeutic targets in COPD is undis-
covered, although there are some discussions
recently [72–77]. Thus, we believe that the aber-
rant methylation of target genes plays the most
important role in the initiation and progression of
COPD and will provide new alternatives of
therapies for COPD.
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The Role of RASSF1 Methylation in Lung
Carcinoma 8
Tingting Zhang, Yanjun Li, Hui Zhang, Xiangdong Wang,
Xiaozhuan Liu, and Li Li

Abstract

Lung carcinoma is the most frequently
diagnosed malignant neoplasms and mainly
consists of small-cell lung carcinoma (SCLC)
and non-small-cell lung carcinoma (NSCLC).
Large number of lung carcinoma patients have
poor outcomes due to the late diagnosis and the
limited therapeutic options. Previous attempts
have proved that the evolution of lung carcinoma

is a multistep molecular aberration which vari-
ous genetic or epigenetic alterations may be take
part in. Among these molecular aberrations, the
inactivation of tumor suppressor gene has been
widely observed in all types of carcinoma
including lung carcinoma. As a vital inactivated
mechanism, DNA methylation of tumor sup-
pressor gene is frequently found in lung cancer.
To gain exhaustive comprehension of the carci-
nogenesis of lung carcinoma, we summarize our
current knowledge on DNA methylation of
RASSF1 (RAS-Association Domain Family 1)
and its clinical significance in lung carcinoma.

Keywords

Lung carcinoma · RASSF1 · Tumor-
suppressor gene · DNA methylation
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LATS1
and
LATS2

Large tumor suppressor 1 and 2

MST1
and
MST2

Mammalian sterile 20-like kinase
1 and 2

LOH Heterozygosity

8.1 Introduction

Lung carcinoma is the leading cause of cancer-
related death, with an estimated 388,000 deaths in
Europe in 2018 [1, 2]. Based upon the data of
smoking prevalence from the population-based
Adult Health Survey in 2003, the estimated lung
cancer mortality was 15.0 and 7.1 per 100,000
among men and women in 2018 [1], respectively.
In China, the incidence of lung carcinoma is also
high, with the highest mortality rate as compared
with other countries [2]. The uptake of tobacco
among males and exposure to unventilated
cooking fumes among females are the predomi-
nant non-genetic risk factors for lung carcinoma
[3–7]. The 5-year survival rate of lung carcinoma
is very low, especially in Eastern Asia, due to the
large proportion of lung carcinoma patients pres-
ent with advanced metastatic tumors when
diagnosed [8, 9].

Lung carcinoma mainly consists of small-cell
lung carcinoma (SCLC) as the most aggressive
lung carcinoma accounted for about 25% of bron-
chogenic carcinomas and non-small-cell lung car-
cinoma (NSCLC) as the most common lung
carcinoma subtype for approximately 85% of
lung cancer cases [10, 11]. The major histological
subtypes of NSCLC are represented by lung ade-
nocarcinoma, squamous cell carcinoma, and large
cell carcinoma [12], of which the resection is
performed in the early stage and chemo-
combination in the late stage, with the mean
5-year survival of 15%. The large number of
lung cancer patients have poor outcomes due to
the late diagnosis, acquired multidrug resistance,
and complex mechanisms [13]. This chapter aims
at exploring the comprehensive mechanisms on

the carcinogenesis of lung cancer by furthermore
understanding DNA methylation of
RAS-Association Domain Family 1 (RASSF1)
and its clinical significance in lung carcinoma.
We pay more specific attention on the potential
mechanisms and new specific molecular markers
of lung cancer, especially DNA methylation of
tumor suppressor genes and inactivated genes in
the development of lung carcinoma.

8.2 The RASSF1 Gene

RASSF1 is one of the key tumor-suppressor
genes allocated in chromosome 3p21.3 and
spans about 11,151 bp [14, 10]. RASSF1
promotes apoptosis, microtubule stability and
polymerization, and mitotic progression
[15]. The protein encoded by RASSF1 can par-
ticipate in RAS-related cellular signal pathways
and regulate oncogenesis, cell proliferation, dif-
ferentiation, and apoptosis in a wide variety of
cancer types [16]. Eight transcripts, i.e.,
RASSF1A, B, C, D, E, F, G, and H, are generated
by RASSF1 gene and contain a Ras-Association
(RA) domain in the carboxyterminal segments,
except for RASSF1F-H which is similar to the
RAS effector proteins, Raf1. Raf1 is associated
with Ras-GTP to activate Ras proteins, suppress
cell growth, and promote proapoptotic effects.

RASSF1A and RASSF1C are two predomi-
nant common isoforms and encode an
ATM-kinase phosphorylation site and a
conserved carboxyterminal SARAH
(Sav/RASSF/Hpo) domain as a key component
of the Hippo signaling pathway, except for the
RA domain. RASSF1A has a diacylglycerol/
phorbol ester-binding (DAG) domain containing
a central zinc finger which is also known as the
protein kinase C conserved domain (C1 domain).
RASSF1C variant is shorter than RASSF1A and
lacks the amino terminal C1 domain. RASSF1D
and E have the RA, SARAH, C1 domains and
ATM-kinase phosphorylation site similar to
RASSF1A in structure. RASSF1B contains one
RA and SARAH domain, respectively. Isoforms
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F/G and H have a C1 domain and an ATM-kinase
phosphorylation site, respectively (Fig. 8.1).

RASSF1C appears to share many of the
biological characteristics of RASSF1A. On basis
of the similar structure to Ras effector, RASSF1
gene regulates cell proliferation, differentiation,
and apoptosis. RASSF1A functions as a negative
regulator of cell proliferation by blocking the cell
cycle progression at the level of G1/S-phase [17]
and has the dual role in the coordination of p53
and p73 responses [18], while RASSF1C exhibits
growth inhibitory potency [19], although there is
little known on functions of other variants.
RASSF1B, D, and E are found poorly expressed
in hemopoietic, cardiac, and pancreatic cells,
respectively. RASSF1F, E, D, and G share the
same promoter region with RASSF1A, although
the biological significance remains unclear.

RASSF2, RASSF3, NORE1, and RASSF6
were identified as the homolog of RASSF1,
which share similar Ras-association domain with
RASSF1. These genes have SARAH domain and
code multiple transcripts. RASSF2 shares a lower
homology (29% identity) with RASSF1, while
acting as a tumor suppressor gene and undergoing
promoter methylation at high frequency similar to
RASSF1 [20]. The inactivation of RASSF2 may
be associated with tumor progression [20], and
RASSF3 suppresses tumor formation through
interacting with MDM2 and inducing NSCLC
cell apoptosis [21]. NORE1 shares about 50%
sequence identities with RASSF1 and has similar
pattern of mRNA transcript expression and func-
tion as a tumor-suppressor gene [22–
24]. RASSF6 is found frequently suppressed in
several human cancers [20, 25–27].

C1 RA SARA
H

RASSF1C
(270aa)

RASSF1A
(340aa)

N C

N C

ATM

RASSF1B
(189aa)

N C

RASSF1D
(344aa)

RASSF1E
(344aa)

RASSF1F
(92aa)

RASSF1G
(152aa)

RASSF1H
(75aa)

N C

N C

N C

N C

N C

2αβ
5

1α 1β 2γ 3 4 5 6

RASSF1A RASSF1C

CpG island CpG islandA

B

′ 3′

Fig. 8.1 (a) Schematic map of RASSF1 locus. Black
boxes indicate exons and open boxes indicate untranslated
regions, respectively. Two CpG islands are shown by
black lines. The transcription start sites of isoform A and
isoform C are indicated with black arrows. (b) The domain

structures of polypeptides encoded by RASSF1. C1,
DAG/diacylglycerol binding domain (black) putative
ATM kinase phosphorylation consensus sequence motif
(blue) RA, Ras-association domain (brown) and SARAH,
Sav/RASSF/Hpo interaction domain (red)
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8.3 Inactivation of RASSF1A by
DNA Methylation in Lung
Carcinoma

The genomic mutational landscape provided
evidences that genetic alterations taken part in
the tumorigenesis of lung cancer. The epigenetic
regulation provides a novel insight in the progres-
sion and evolution of lung cancer [28, 29]. Of the
epigenetic modifications, DNA methylation
mainly occurs in C-G dinucleotide-rich regions,
also named CpG islands [30], where the methyl
group is added by DNA methyltransferase at the
5-position cytosine and erased by demethylase.
DNA methylation mainly occurs at the cytosine‑-
phosphate‑guanine (CpG) island which locates in
promoter region of a gene and regulates the
expression of gene, which plays a vital role in
genomic imprint erasure, instability of chromatin
structure, and X-chromosome inactivation. The
aberrant DNA methylation interacts with gene
expression in the early stage of human cancers
and dynamically during lung carcinogenesis. A
lot of methylated genes have been identified in
lung carcinoma, including RASSF1, major tumor
suppressor 1, fragile histidine triad,
methylguanine-DNA methyltransferase, and
adenomatosis polyposis coli tumor suppressor.

The loss of heterozygosity (LOH) is the most
frequent event during lung tumorigenesis [31],
while rarely attributed to somatic mutations,
except for one frame-shift and missense mutation
identified in nasopharyngeal carcinomas
[32]. RASSF1 is inactivated frequently by the
hypermethylation of the promoter CpG island in
cancers [33–37]. RASSF1 methylation was origi-
nally reported in lung cancer and then shown as
the common event in cancers [33, 38]. RASSF1A
was methylation-inactivated in SCLC, while aber-
rant methylation of the RASSF1C CpG island
promoter was not observed in lung cancer [33].

8.4 Signaling Pathway Involving
RASSF1 in Lung Cancer

Among signaling pathways, RASSF1A
contributes to the carcinogenesis of lung cancer
mainly through Hippo signaling pathways. The
Hippo pathway (i.e., Salvador-Warts-Hippo path-
way) in a kinase cascade regulates the organ size
through regulating cell proliferation, differentia-
tion, and apoptosis [39–41]. The core
components of the pathway encompass the mam-
malian sterile 20-like kinase 1 and 2 (MST1 and
MST2) and the large tumor suppressor 1 and
2 (LATS1 and LATS2), and cooperate with the
adaptor/scaffold proteins, Salvador homolog
1 (hSAV1), and MOB kinase activator 1A and
1B (hMOB1). The downstream effectors of
Hippo pathway are two WW domain-containing
transcriptional coactivators TAZ and its paralog
YAP. Mst1/2 phosphorylates hSAV1 and forms
the activated Mst1/2-hSAV1 complex which
cooperates with hMOB1 and activates LATS1/2.
After then LATS1/2 phosphorylates YAP/TAZ
which is prevented from entering to the nucleus.
Then the complex with transcriptional enhancer
factors (TEADs) is formed and the expression of
anti-apoptotic and pro-proliferative genes are
activated [42–44].

During DNA damage, RASSF1A activated by
ATM can induce apoptosis through the interac-
tion of Hippo pathway with MST1/MST2 via the
C-terminus to prevent the autophosphorylation of
those protein kinases [18, 44, 45]. The
components of the Hippo pathway are intimately
involved in lung morphogenesis and
tumorigenesis [46–48]. The abnormal expression
of those components is associated with the clini-
cal classification, poor differentiation, metastasis,
and poor prognosis and survival in lung cancer
[47, 49–52]. The DNA methylation of promoter
results in the inactivation of RASSF1A,
RASSF1A-MST1/MST2 complex, and dysfunc-
tion of the Hippo pathway. RASSF1A can
enhance the transcription of proapoptotic genes
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through the formation of a complex with YAP
and p73 in the nucleus (Fig. 8.2).

RASSF1A may contribute to the carcinogene-
sis of lung cancer through microtubules and bind-
ing of Cdc20 via an N-terminal region. Cdc20
cannot bind with APC and fail to form the com-
plex Cdc20-APC for the spindle assembly check-
point during mitosis [53]. RASSF1A is required
for stabilizing the microtubule. RASSF1A
controls the motility and invasion of lung cancer
cells through the modulation of tubulin dynamics
[54, 55]. The promoter hypermethylation of
RASSF1A activates premature APC, following
by accelerated cell division, mitotic spindle
abnormalities, and chromosome misalignment
[53] (Fig. 8.2). The exogenous expression of

RASSF1A modulates levels of cyclin D1 and
induces cell cycle arrest in lung carcinoma cells
[17]. RASSF1A inhibits lung cancer cell growth
through reducing the phosphorylation of JNK
[56] (Fig. 8.2).

8.5 Clinical Significance of RASSF1
in Lung Carcinoma

RASSF1 methylation in cancer may serve an
important role in clinical utilities, especially in
lung cancer. For example, the aberrant RASSF1A
methylation may be an ideal biomarker for early
diagnostic and prognostic due to the
non-invasive, high sensitivity, and high

E4F

L

Fig. 8.2 A summary of RASSF1A pathways in
cancergenesis of lung cancer. RASSF1A regulates cell
apoptosis through its interactions with the connector
enhancer of KSR (CNK1), the proapoptotic kinase
MST1, and the modulator of apoptosis-1 (MAP-1). The
CNK1–MST1 complex is also thought to play important

role in cell proliferation. RASSF1A can regulate the
microtubule network by recruiting effectors of the
microtubule-associated protein 1B (MAP1B), C19ORF5,
and the Cdc20. RASSF1A also induced G1 and S-phase
cell cycle arrest through inhibiting the transcription factor
p120E4F (RASSF1A was enhanced by p120E4F) and JNK
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specificity characteristics. It is questionable
whether RASSF1A methylation can be a power-
ful marker for patient prognosis at early stage of
lung cancer. RASSF1A exhibited lung cancer-
specific methylation pattern, with the
hypermethylation level up to 100% in SCLC
and 63% in NSCLC [57, 58]. RASSF1A methyl-
ation can be detected in body fluids including
blood, urine, sputum, and bronchial alveolar
lavages [56–59]. For example, RASSF1A meth-
ylation is observed in the blood of patients with
NSCLC [59]. The RASSF1A methylation of
bronchial aspirates was 21% in patients with
lung cancer and smoking and 1% in patients
with lung cancer alone, respectively. The methyl-
ation level of RASSF1A was associated with the
number of cigarette packs and smoking years
during the lifetime of patients with lung cancer
[60]. The RASSF1 methylation of bronchial
washings was found to have diagnostic sensitivity
[61], which has the great potential to screen risk
populations of patients with lung cancer. DNA
methylation of RASSF1A is correlated with poor
clinicopathological characteristics in nearly all
solid tumors [62], which also includes lung can-
cer. RASSF1 promoter methylation was found in
poorly differentiated tumors [63–65], associated
with tumor grades, stages, and survival. For
example, RASSF1A methylation was associated
with patient survival time in lung adenocarci-
noma [66]. Decreased survival time was observed
in NSCLC patients with RASSF1A methylation,
irrespective of whether patients have received
adjuvant radio therapy or surgical treatment
[58, 64, 67, 68]. On basis of those evidence,
RASSF1 and isoforms as disease biomarkers
should be furthermore evaluated, since disease
biomarkers are expected to have the clear speci-
ficity for disease per se, disease stage, phase,
severity, duration, or response to therapy [69–
76]. Several natural compounds can regulate
DNMT activity or expression to re-activate
RASSF1A [77]. Peperomin E, as a natural bioac-
tive secolignan polyphenol extracted from the
plant peperomia dindygulensis, could demethyl-
ate RASSF1A and upregulate the expression of
RASSF1A by reducing the level of DNMT1 in
lung cancer cells [78].

8.6 Conclusion

Epigenetics changes especially DNA methylation
has been proved to take part in the carcinogenesis
of cancers. The DNA methylation of the tumor
suppressor genes may be exploitable for the bio-
logic and clinical significance of cancers. Overall,
as the common tumor suppressor gene of lung
cancer, evidence have suggested the DNA meth-
ylation of RASSF1 can be an essential potential
clinic diagnostic or prognostic marker and may
provide new therapeutic strategies for future suc-
cessful treatment of lung cancer. It will be very
interesting to further explore how to develop
non-invasive, rapid and less cost detection
methods for DNA methylation and to confirm
the reliability and sensitivity of DNA
methylation.
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Abstract

Cancer is one of the leading causes of death
worldwide and well known for its complexity.
Cancer cells within the same tumor or from
different tumors are highly heterogeneous.
Furthermore, stromal and immune cells within
tumor microenvironment interact with cancer
cells to play important roles in how tumors
progress and respond to different treatments.
Recent advances in single cell technologies,
especially massively parallel single cell
sequencing, have made it possible to analyze
cancer cells and cells in its tumor microenvi-
ronment in parallel with unprecedented high
resolution. In this chapter, we will review

recent developments in single cell sequencing
technologies and their applications in cancer
research. We will also explain how insights
generated from single cell sequencing can be
used to develop novel diagnostic and therapeu-
tic approaches to conquer cancer.

Keywords

Single cell sequencing · Tumor
microenvironment · Diagnosis · Therapy

9.1 Background

Cancer is one of the leading causes of death in the
world, accounting for 18.1 million new cases and
9.6 million deaths in 2018 [1]. Over the last
decades, the treatment of malignant tumors has
undergone rapid improvements with the use of
targeted therapy and immunotherapy and the
overall survival rate of cancer patients has
increased significantly. For example, the 5-year
survival rate of advanced lung cancer patients
increased from 3% to current 16% after use of
anti-PD1/PD-L1 immunotherapy [2]. However,
big challenges remain. For targeted therapy,
there are patients with actionable mutations who
cannot benefit from tyrosine kinase inhibitors
(TKIs), while the underlining mechanism for
such primary resistance is still unclear. Besides
primary resistance, almost all patients will even-
tually develop resistance to the TKIs. For
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example, non-small cell lung cancer (NSCLC)
patients with EGFR mutations who are treated
with EGFR-TKIs often develop resistance by
gain of additional mutations in the EGFR locus,
such as the common gatekeeper T790M mutation
(50–60%) [3] or mutations at EGFR codons D761
[4], L747 [5], or C797 [6]. Additionally, other
genetic alterations such as amplification of MET
or Her2 genes also contribute to acquired
resistance [7].

Immune therapy has changed the paradigm of
cancer treatment. Immune checkpoint inhibitors
(ICIs) such as PD1 or PD-L1 antibodies have
been approved in clinical practice for many can-
cer types [8, 9]. Despite substantial improvement
in duration of response (DOR), the overall
response rate (ORR) is only about 20% when
used as monotherapy in unselected patients, and
45% in patients with high PD-L1 expression or a
high tumor mutation burden (TMB) [8], which
accounts for only 30% of all patients. There
remains a large number of NSCLC patients who
cannot derive benefit from ICIs. Furthermore,
some PD-L1-negative patients can also benefit
from ICIs, which suggests that PD-L1 expression
alone is not sufficient as a reliable predictive
biomarker [10]. Are there better predictive
biomarkers or models to stratify patients? Are
there better strategies to improve the efficacy of
immune therapy in current non-responders? Are
there other effective targets for immune therapy?
To answer these questions and develop better
treatment options, a comprehensive understand-
ing of tumor heterogeneity and tumor microenvi-
ronment (TME) is necessary.

With the application of molecular biology and
“omics” tools, the process of tumor genesis is
now understood to originate from DNAmutations
that influence the gene regulatory network of
critical cellular processes. However, there is no
fixed mutation pattern that leads to tumor devel-
opment and progression. A wide variety of
genetic alterations in the regulatory network of
cell cycle, cell apoptosis, cell migration, and
angiogenesis are suggested to be involved in the
conversion of a normal cell to a malignant cell

[11]. The bulk tumor commonly comprises cells
with distinct molecular signatures across different
regions (spatial heterogeneity), and temporal
variations during the course of disease progres-
sion (temporal heterogeneity) [12]. In addition,
tumors of the same histological type might have
different pathogenesis due to differences in the
germline background, the somatic mutation pat-
tern, and environmental factors. The intertumoral
and intratumoral heterogeneity contributes to dif-
ferent levels of drug sensitivity and resistance.
Patients with high levels of intratumoral hetero-
geneity might suffer from a poor clinical outcome
and therapeutic resistance, due to subclones
predestined to evolve tumor driving mutations
or drug resistance. Until now, no standard
procedures have been used in clinical care to
identify heterogeneity of tumor and then person-
alize treatment for patients.

Tumor microenvironment (TME) is comprised
of cancer cells, infiltrating immune cells, stromal
cells, and other cell types together with
non-cellular tissue components, which determine
disease progression and response to treatment
(Fig. 9.1) [13]. The immune cell components in
tumor microenvironments are complex and
diverse, including T cells, macrophages, natural
killer (NK) cells, granulocytes, and dendritic
cells. Among tumor infiltrating immune cells,
regulatory T cells (Tregs), tumor associated
macrophages (TAMs), and myeloid-derived sup-
pressor cells (MDSCs) are mainly responsible for
immune suppression and inflammation, while NK
cells, effector T cells, and dendritic cells are
responsible for attacking tumor cells. The process
of tumor development is shaped by interaction of
tumor cells and immune cells in the TME, nor-
mally undergoing the following three stages:

1. Elimination. Tumor cells are recognized and
eliminated by immune cells.

2. Equilibrium. The quantity and strength of
tumor and immune system are in equilibrium.

3. Escape [14]. The tumor cells break through the
immune barrier, start to proliferate without
control, and spread to distant sites.
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Briefly, the mechanisms of tumor immune
escape can be summarized as (1) defective
tumor antigen presentation; (2) immunosuppres-
sive tumor microenvironment. The expression of
major histocompatibility complex (MHC)-class I
molecules on the surface of most tumor cells is
decreased or absent, including complete loss of
MHC molecules and loss of haplotype. As a
result, T cells cannot be effectively activated by
such tumor cells. In addition, immune inhibitory
molecules can be upregulated in tumor cells. For
example, tumor cells can directly contact T cells
or natural killer cells and downregulate their kill-
ing capability by binding to cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4) and
programmed death-ligand 1 (PD-1) on the cell
surface. Tumor cells can also secrete a series of
immunosuppressive cytokines and chemokines
into the tumor microenvironment. Besides, with
the growth of tumor, new blood vessels must
develop from pre-existing vascular network to

satisfy tumors’ demand for oxygen and nutrients,
and hypoxia is a crucial driver of this event.
VEGFA (Vascular Endothelial Growth Factor
A) is secreted by hypoxic cancer cells and recruits
angiogenesis-supporting TAMs into TME, which
engages VEGFR2 expressed on the endothelial
cells of neighboring blood vessels to initiate
angiogenesis [15, 16].

Cancer cells and immune cells in the TME can
be characterized by various cellular and molecu-
lar biology techniques such as FACS,
immunohistology, PCR, and sequencing. High-
throughput sequencing has gradually become a
routine method applied in both cancer research
and molecular diagnosis. Large-scale studies such
as TCGA [17] have provided new insights into
the inter-patient tumor heterogeneity at genomic,
transcriptomic, and epigenetic levels. Molecular
diagnostic tests based on mutation detection or
gene expression profiles have been successfully
commercialized for tumor subtype
classification [18].

Fig. 9.1 Cancer cells
interact with other cell
types to form tumor
microenvironment (TME).
A typical TME has cancer
cells, stromal cells, and
infiltrating immune cells
such as different types of T
cells, natural killer
(NK) cells, macrophages,
granulocytes, and dendritic
cells. The interactions
between cancer cells and
other cells in the TME play
an important role in tumor
progression and response to
treatment
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Although cellular and molecular mechanisms
of tumor and TME heterogeneity and their
interactions have been proposed to explain patient
prognosis and drug responses, current clinical
investigations are largely based on conventional
bulk sequencing methods and cannot accurately
detect genomic and genetic differences among
different cell types, nor different tumor subclones,
in the TME. Technologies with high resolution
are required to decipher the complex tumor eco-
system and their dynamic changes. Recently
developed high-throughput single cell sequencing
methods, where genetic material of thousands of
single cells can be sequenced in parallel, allow
simultaneous characterization of cancer cells,
immune cells, and stromal cells in the TME to
shed light on intratumoral genomic diversity and
intertumoral heterogeneity. In the following
sections, we will describe recent technical
advances of single cell sequencing, its clinical
applications, as well as remaining challenges.
We will also give our perspectives on the poten-
tial utilities of this revolutionizing technology as a
new frontier in cancer diagnosis and treatment.

9.2 Single Cell Sequencing
to Characterize Cancer

Advances in nucleic acid amplification and high-
throughput sequencing techniques make it feasi-
ble to sequence genome or transcriptome at single
cell level. The first mammalian single cell RNA
sequencing procedure was developed in 2009
[19] and the first human cell genome was
sequenced in 2011 [20]. Single cell sequencing
is now gaining traction in cancer research as
shown in Fig. 9.2.

A typical single cell sequencing experiment
has the following steps: single cell isolation;
whole genome amplification (WGA), or whole
transcriptome amplification (WTA); library con-
struction; sequencing; and data analysis. To
ensure that genetic information from each single
cell can be accurately captured, physical separa-
tion of each individual cell from a sample is
required. This can be achieved by manual
retrieval of cells under a microscope, or by

using special instrumentations such as FACS
sorters or laser capture microdissection (LCM)
instruments. More recently, microfluidic systems
of various designs have been developed to isolate
single cells [21]. Following cell isolation, the next
critical step is amplification of nucleic acids. A
typical human cell contains about 6 pg of geno-
mic DNA and 10–20 pg of RNA—too little to be
sequenced directly on current sequencing
platforms. There are diverse strategies to amplify
DNA or RNA from a single cell. For single cell
WGA, the mostly commonly used methods are
based either on PCR or multiple displacement
amplification (MDA) [22]. Single cell WTA nor-
mally starts with a cDNA synthesis step, followed
by PCR or in vitro transcription (IvT) for cDNA
amplification [23]. Optimized enzymatic
reactions developed in recent years enable effi-
cient amplification of genomic DNA or cDNA
from single cells, with some WGA methods
achieving close to 100% genome coverage of
single cells [24]. Using microfluidic systems to
conduct single cell WGA or WTA in miniature
volumes can further improve reaction efficiency
by increasing local concentration of substrates
[25]. Sequencing libraries can be constructed
from amplified single cell gDNA or cDNA and
sequenced with standard protocols. To analyze
single cell sequencing data, artifacts specifically
related to single cell amplification, such as allele
drop out (ADO), amplification bias, and batch
effect, should be taken into consideration [26].

The first generation of single cell sequencing
methods is quite low throughput regarding num-
ber of cells analyzed simultaneously. This is
largely due to the limitation by low-throughput
cell isolation methods at the time, as well as
relatively high sequencing costs. The main appli-
cation of low-throughput single cell sequencing
methods in cancer research is to detect mutations
in individually selected cancer cells or circulating
tumor cells (CTCs) [27, 28]. Low-throughput sin-
gle cell sequencing technologies are valuable
tools to uncover the mechanisms of cancer gene-
sis and were also able to shed light on tumor
heterogeneity and evolution. However, sequenc-
ing information from a dozen of single cells lacks
sufficient granularity and statistical power to
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interrogate biological systems as complex and
heterogeneous as cancer.

Several independently developed high-
throughput single cell sequencing methods, all
based on microfluidic systems and cell-barcoding
techniques, were published in 2015. These inno-
vative technologies finally made it technically
and financially feasible to simultaneously
sequence thousands or more single cells from
the same sample [29–31], opening up a new era
in cancer research. The principle of high-
throughput single cell sequencing is relatively
simple. First, single cells are partitioned into
either droplets or micro-wells together with
barcoding beads that carry oligos with unique
barcode sequences. In those micro-
compartments, each single is lysed and labeled
with a cell barcode. For single cell RNA sequenc-
ing, cell-barcoding beads normally have oligo-dT
following a stretch of cell-barcoding sequence,
thereby labeling all cDNA strands from the
same cell with a unique cell barcode sequence
during cDNA synthesis. cDNA from all single
cells can then be pooled together, amplified, and
sequenced. Sequence information from each sin-
gle cell can be obtained based on their unique cell
barcode sequences. More recently, methods have
also been developed to forgo microfluidics-based
partition of single cells. Instead, cells are first

made permeable by fixation, so that barcoding
oligos can enter cells to label DNA or RNA.
Sequential splitting, barcoding, and pooling of
cells is used to give genetic material from each
single cell a unique barcode after undergoing
several rounds of such split-and-pool procedures
[32, 33].

By barcoding genetic material individually for
thousands of single cells and pooling them
together in subsequent amplification and library
construction steps, high-throughput single cell
sequencing methods significantly reduce the
time and cost to produce single cell libraries at
per cell basis, making it possible to decipher
complex systems such as cancer at high resolu-
tion and efficiency. More importantly, the ability
to simultaneously process, sequence, and analyze
thousands of single cells from the same sample
effectively reduces the impact of technical and
biological variability intrinsic to single cell anal-
ysis, making the overall results more reliable and
accurate. High-throughput single cell sequencing
methods have been rapidly adopted in almost all
research fields in life sciences, as shown by dras-
tic increase in number of cells in each published
study where single cell sequencing is used
(Fig. 9.3). They are currently acting as essential
workhorses for the human cell atlas (HCA)
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Fig. 9.2 Number of publications on using single cell sequencing for cancer research, from year 2009 to 2018. Data
retrieved from Google Scholar with search keywords “single cell sequencing” AND “cancer”
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project (https://www.humancellatlas.org) to make
a comprehensive reference map of all human
cells.

9.2.1 Single Cell Sequencing Data
Analysis and Interpretation

Dedicated bioinformatics algorithms and analysis
pipelines are required to address the technical and
biological variations in single cell sequencing
data. High-throughput single cell sequencing
generates large datasets with unprecedented com-
plexity and granularity. Effective data analysis
and interpretation tools are required to extract
useful information and insights from such
datasets. Here, we will use high-throughput single
cell RNA (scRNA-seq) sequencing as an example
to illustrate commonly used primary and second-
ary analysis algorithms to generate insights from
the single cell gene expression data (Fig. 9.4).

Primary analysis steps process raw data to
gene expression matrix. Following filtering and
trimming of low quality reads, the remaining
reads are mapped to a reference genome and
annotated. A gene expression matrix containing
gene expression information for each single cell is
then generated. For second analysis, quality con-
trol is usually the first step to remove cells with

low viability, such as low number of expressed
genes and high mitochondrial contents. Due to
the high level of dropouts and technical noise,
high-throughput scRNA-seq data are zero-
inflated, and thus normalization must be
performed to remove cell-specific biases. Typi-
cally, normalization methods estimate a scale fac-
tor per cell to adjust the total number of molecules
detected. Next, unsupervised clustering is
required to partition cells into groups, followed
by differential expression analysis to identify
marker genes in each cell group. To visualize
the whole transcriptome expression patterns of
thousands of cells, popular algorithms such as
t-distributed stochastic neighbor embedding
(tSNE) and uniform manifold approximation
and projection (UMAP) can be implemented to
project the high-dimensional single cell data onto
a two-dimensional space [34, 35].

Besides cell subpopulation identification,
advanced analysis algorithms have been devel-
oped to extract more comprehensive information
from high-throughput scRNA-seq data. For
example, pseudotime trajectory inference method
utilizes the unsynchronized individual cells at an
instantaneous time point to reconstruct dynamic
trajectories of cell differentiation or progression
[36]. This approach could be applied to dissect
the tumor progression dynamics and also shed

Fig. 9.3 High-throughput
single cell sequencing is
applied in increased
number of studies. A
summary of total single cell
numbers per study in
published single cell
sequencing projects, 2009
to the first half year of 2019.
Figure adopted from “A
curated database reveals
trends in single cell
transcriptomics,” Svensson
V. et al., doi: https://doi.
org/10.1101/742304
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light on mechanisms determining the fate of
tumor infiltrating immune cells.

Another example is construction of gene regu-
latory networks (GRNs). This is inherently pow-
erful in combination with scRNA-seq, since gene
expression patterns of thousands of cells are cap-
tured under the same condition. Several methods
have been developed to identify GRN from single
cell data, and these methods have been success-
fully applied to T cell biology, providing new
insights from co-expression data analysis
[37, 38]. Elucidation of GRNs within the complex
tumor environment of different cell types could
facilitate the identification of potential drug
targets to reverse the abnormal activities of
tumor cell proliferation and immune system
suppression.

9.3 Single Cell Sequencing
in Cancer Research

Rapidly developing high-throughput single cell
sequencing technologies are revolutionizing the

field of cancer research. The complex genomic,
transcriptomic, and epigenetic patterns of individ-
ual cells in tumor and in the TME can be effec-
tively deciphered by such methods, while
advanced bioinformatics algorithms can be used
to infer cellular dynamics and intercellular
interactions [39]. This makes high-throughput
single cell sequencing a powerful tool to study
molecular mechanisms of cancer initiation and
evolution, as well as immune evasion; to discover
biomarkers that can be used for prognosis and
prediction of treatment responses; and to identify
potential therapeutic targets or combinational
treatment strategies [40].

9.3.1 Cellular and Molecular
Mechanisms of Cancer

Cancer originates from normal cells that have
acquired driver mutations through their life
cycle and also have evaded immune surveillance.
The origin and evolution of cancer are tightly
shaped by the interaction of cancer cells and
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Fig. 9.4 A typical scRNA-seq data analysis pipeline.
Following sequencing, alignment and gene annotation
are performed to generate a gene expression matrix (Cell
� Gene). To reduce bias in qualitative data analysis, cell
filtering and normalization are performed with different
statistical approaches. Subsequent analysis is performed to
explore the biology insight from dataset, including cell
clustering to identify subtypes, cell trajectories to describe

complex differentiation processes, and detecting differen-
tially expressed genes and gene regulatory network to find
biomarkers. tSNE: t-distributed stochastic neighbor
embedding; UMAP: Uniform Manifold Approximation
and Projection, both non-linear dimensionality reduction
techniques for embedding high-dimensional single cell
sequencing data for visualization in a low-dimensional
space
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other non-cancerous cells in the TME. Single cell
sequencing technology is able to generate com-
prehensive genetic information on all cell types
within a tumor. By analyzing gene expression
patterns of different tumor subpopulations and
comparing them to those of the normal tissue,
either from the same patient or from a model
system, the origin of tumor can be accurately
determined. Further analysis of differentially
expressed genes and pathways in cancer cells
can also help to identify genes and pathways
crucial for cancer development and discover
potential drug targets for therapy. Advanced bio-
informatics analysis such as pseudotime analysis
can further determine the evolution trajectory of
tumor by positioning subpopulations of a tumor
on a time axis based on their gene expression
patterns, further illustrating potential therapeutic
targets. Analysis of gene expression patterns in
different cancer cell subclones can also shed light
on the mechanisms for drug resistance. Further-
more, single cell sequencing can also be used to
detect different stromal and immune cell
populations in the TME, while specific bioinfor-
matics tools can be used to infer their interactions.
For example, a recent scRNA-seq study by
Lambrechts et al. [41] on stromal cells in the
lung cancer microenvironment was able to detect
52 different cell types and analyze their potential
roles in cancer development. Such information
can help to understand how TME shapes the
initiation and growth of cancer cells, as well as
how cancer cells might influence other cells in
the TME.

9.3.2 Biomarker Discovery

Cancer biomarkers can serve as a useful tool for
diagnosis, prognosis, and prediction of drug
responses and cancer recurrence. Traditional can-
cer biomarkers are biomolecules with distinct
features, such as cell free DNA or FFPE DNA
harboring EGFR mutations commonly used in
companion diagnosis for lung cancer treatment.
With the application of single cell sequencing,
cells with defined gene expression patterns
could become a new class of biomarkers that

can predict cancer prognosis [42–44] or responses
to treatment [42, 45]. Several recent studies have
identified tumor-specific cell populations as
biomarkers that can be used for prognosis or
prediction of drug responses. For example, a
tissue-resident memory T cell subset has been
shown to correlate with breast cancer prognosis
[44], while a NK-dendritic cell composition aids
in determining response of melanomas to PD-1
inhibitor treatment [42]. We expect more and
more such biomarkers in the form of specific
cell population to be discovered with the wider
application of single cell sequencing in cancer
research. And it is only logical that for a disease
as complex as cancer, the biomarkers that can be
used to accurately predict disease progression and
treatment responses cannot be limited to the geno-
mic DNA mutation information derived from
averaged bulk sequencing.

9.3.3 Precision Medicine

Similar to the bulk-sequencing-based biomarkers
such as DNA mutations and gene expression
signatures, cell-specific DNA mutations and
expression signatures could be employed in
patient stratification for different treatment
options. However, unlike bulk sequencing
which only gives information on the presence or
absence of certain mutations, high-throughput
single cell sequencing approach can simulta-
neously obtain information at both molecular
and cellular level. It can not only detect different
cellular groups in a tumor sample, but also obtain
information on the characteristic gene expression
patterns of each cell type and infer cellular
interactions, making it possible to discover poten-
tial therapeutic targets that can be used to select
treatment options more precisely. For immuno-
therapy, levels of immune cell infiltration could
be an indicator of checkpoint inhibitor efficacy.
Relative levels of exhausted T cells and CD8+
effector T cells in tumor tissue would help evalu-
ate if suppressed T cells could be re-activated and
effectively attack cancer by checkpoint inhibitor.

Single cell sequencing could also reveal novel
targets for efficient drug design. Gene expression
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and pathway activation patterns for multiple can-
cer cell subpopulations from the same patient
could be simultaneously detected through high-
throughput single cell measurements, making it
possible to select combinatorial therapy targeting
different cancer subclones within the same tumor.
Due to the highly heterogeneous nature of tumor,
such information-based combinatorial therapy is
theoretically more effective and sustainable than
therapies that target only one driver mutation.
There has been evidence that such approach
could also be used to combine immunotherapy
with existing targeted therapy. Jerby-Arnon et al.
used scRNA-seq to identify characteristic activa-
tion of CDK4/6 signaling pathway in tumors from
melanoma patients resistant to anti-PD1 immuno-
therapy [45]. They also demonstrated that tumors
not responding to immunotherapy alone could be
controlled using a combination of CDK4/6 inhib-
itor and immunotherapy in a mouse model [45].

High-throughput single cell sequencing gives
a comprehensive picture of cancer cells,
infiltrating immune cells, and their interactions.
This would facilitate drug discovery and screen-
ing process. For example, the molecular
signatures and functional roles of TAMs and
MDSCs and their subtypes are still not
completely clear till this date, which makes it
difficult to design drugs targeting TAMs. Single
cell sequencing can characterize gene expression
patterns in different TAM or MDSC subgroups to
understand their functions and discover potential
new therapeutic targets.

Taken together, single cell sequencing can be
used to understand precise molecular features of
cancer, to provide high-dimensional profiles of
both cancer and immune cells, and to identify
qualified therapeutic targets. Multi-dimensional
cancer information delivered by single cell
sequencing can be especially useful in developing
and optimizing novel cancer therapies such as
immunotherapy, cell therapy, and gene editing.

9.4 Outlook

To apply single cell sequencing in clinical
settings, robust standard operation procedures

(SOPs) need to be established, verified, and
validated for each step along the workflow. This
include sample acquisition and processing, single
cell isolation, amplification, sequencing library
construction, sequencing, data analysis pipelines,
data annotation, and data interpretation.

Clinical samples come in a variety of forms
and status, not always optimal for single cell
sequencing, which normally requires single cell
suspension with high cellular viability. For clini-
cal applications involving longitudinal studies
such as drug response and minimal residue dis-
ease monitoring, the ability to process archived
samples would be critical. Methods have been
developed to dissociate single cells from
cryopreserved and chemically fixed samples that
can be used for single cell RNA sequencing
[46, 47]. For example, single nucleus sequencing
(snRNA-seq) methods have been used to profile
the gene expression of single nuclei in archived or
otherwise challenging samples [48, 49]. Although
comparative studies have been carried out to con-
firm the consistencies between transcriptome of
single cells and single nuclei for tissues such as
breast, kidney, and brain [50–52], it needs to be
studied whether this conclusion can be extended
to other tissue and cell types, as well as tissues
preserved with different protocols and for differ-
ent durations.

Typical clinical trials involve multicenter
study design and thus require minimal batch
effects while conducted by different operators at
different sites. Current experimental procedures
for single cell sequencing are still relatively long
and tedious. Streamlined and automated protocols
are needed to facilitate broader adoption of single
cell sequencing in clinical settings. Furthermore,
different single cell sequencing protocols have
system-specific bias in their gene expression
quantifications [53]. On the data analysis side,
different technology platforms also have their
own accompanying pipelines. Biases introduced
by both experiment and analysis steps make
meta-analysis across different studies challeng-
ing. Computational batch effect correction
methods [54, 55] showed promises in removing
technical biases among different experimental
platforms. However, prior to their integration
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into large-scale meta-analysis pipeline, a signifi-
cant amount of validation studies is still required
to assess if real biological variations between
samples are retained while technical variations
are removed.

Besides standardization of sample handling
and library preparation protocols, the
standardization of the computational analysis
pipelines is also critical in a controlled clinical
trial setting. The primary analysis turning raw
sequencing data to the gene expression matrices
is one source of variation in the data analysis
pipelines. Some third-party analysis tools aimed
to solve this problem by unifying the primary
analysis steps for various platforms [56]. Second-
ary analysis pipeline of scRNA-seq usually
involves cell quality control, noise reduction,
and expression profile normalization, followed
by clustering and then cluster-level cell type iden-
tification through manual annotation. To deter-
mine the optimal parameters for single cell
sequencing data QC, comprehensive benchmark
efforts are needed to evaluate the effects of differ-
ent tools and parameter settings. For scRNA-seq
clustering methods, benchmark studies showed
that different analysis tools seem to have low
consistencies [55, 56]. In addition, their
performances are dependent on multiple factors,
such as complexity of the data, number of cells,
and parameter settings of the tool. On the other
hand, cell types and subtypes are hierarchically
structured and sometimes don’t have a discrete
separation between them, which makes the accu-
racy of cell clusters difficult to define. Cell ontol-
ogy, an effort to define cell types and their
hierarchical structures based on scRNA-seq
data, could be extremely useful to connect cell
types to their molecular characteristics and
functions [57]. Large international consortiums,
such as Human Cell Atlas (HCA) and the Life-
Time Initiative, are joining forces to comprehen-
sively profile single cells from different organs, in
health and diseases.

As the number of cells profiled in single cell
studies continues to grow, the clustering and
annotation approach would face a hurdle of
large computational resource requirements and
tedious manual workload. As an alternative,

supervised methods use existing reference
datasets and their validated labels to predict the
label of new datasets. Once the models have been
trained, the prediction step generates the label for
each cell independently and thus could be
parallelized infinitely. The performance of current
supervised methods designed for scRNA-seq
showed promise for common sample types such
as PBMC and human pancreas [58]. To routinely
adopt such methods in scRNA-seq analysis, cell
atlas type of studies and validated cell type labels
have to be generated to construct a comprehen-
sive reference dataset. However, more validation
work is still required to apply these methods to
cancer samples, due to the highly heterogeneous
nature of cancer cells [59, 60].

To facilitate application of single cell sequenc-
ing in cancer diagnosis and drug development, a
standard pipeline based on comprehensive single
cell knowledgebase is required for data interpre-
tation. In terms of cell types in the cancer micro-
environment, tremendous efforts have been made
to study their normal and pathological functions
in cancer through low-dimensional single cell
studies such as flow cytometry and CYTOF
[61]. The functions of many important genes
such as cytokines and transcription factors have
also been studied extensively. To translate the
existing knowledge of immunology and
immune-oncology into the interpretation of single
cell sequencing data of patients, a comprehensive
knowledgebase, similar to the genome variation
databases such as COSMIC, Clinvar, and
HGMD, is required to link scRNA-seq data to
the clinical phenotypes of patients. Single cell
sequencing data with information on both cellular
and molecular levels can potentially act as
biomarkers for cancer diagnosis and needs to be
included in such database. In addition, the data-
base should also incorporate information on
disease-associated genes or signaling pathways,
drugs targeting such genes or pathways, and
ongoing clinical trials to maximize the clinical
insights that can be derived from single cell
sequencing datasets.

Emerging new technologies could also greatly
speed up the knowledge discovery and in turn the
application of single cell sequencing in clinics.
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For example, the location of infiltrating immune
cells within a tumor could be important in the
immunotherapy response [62]. Furthermore,
directly linking genomic and phenotypic informa-
tion within single cells could be extremely useful
for understanding the mechanisms of disease as
well as drug responses. Therefore, spatially
resolved single cell sequencing and multi-omics
single cell sequencing are both exciting new
technologies that can bring new insights to cancer
research and clinical applications. High-
throughput in-situ single cell technologies could
be a convenient new way to measure single-cell
level phenotypes without the need for extracting
nucleic acids and proteins from the cells, while
retaining important spatial information [63].

In summary, single cell sequencing has
demonstrated tremendous potential to impact not
only basic cancer research, but also the way can-
cer is diagnosed and treated in the upcoming
decade. However, extensive work has to be done
to optimize and standardize the workflow in a
controlled clinical environment, to build up com-
prehensive single cell database and
knowledgebase, and to carry out large-scale clin-
ical studies through joint efforts of different
research groups. Technology developers, basic
and translational researchers, clinical
practitioners, regulatory agencies, and commer-
cial companies developing products and assays
will have to work together to bring this exciting
new technology to its full potential for next-
generation precision medicine and more effective
drug development.
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The Role of Methylation in the CpG
Island of the ARHI Promoter Region
in Cancers

10

Xiaozhuan Liu, Tingting Zhang, Yanjun Li, Yuwei Zhang,
Hui Zhang, Xiangdong Wang, and Li Li

Abstract

Hypermethylation can downregulate many
tumor suppressor gene expressions. Aplasia
Ras homologue member I (ARHI, DIRAS3) is
one of the maternally imprinted tumor
suppressors in the RAS superfamily. This chap-
ter overviewed the importance of ARHI methyl-
ation and expression phenomes in various types
of cancers, although the exact mechanisms

remain unclear. As an imprinted gene, aberrant
DNAmethylation of the paternal allele of ARHI
was identified as a primary inhibitor of ARHI
expression. The role of methylation in the CpG
islands of the ARHI promoter region vary
among ovarian cancers, breast cancers, hepato-
cellular carcinoma, colon cancers, pancreatic
cancer osteosarcoma, glial tumors, follicular
thyroid carcinoma, or lung cancers. The methyl-
ation of ARHI provides a new insight to under-
stand molecular mechanisms of tumorigenesis
and progression of cancers.

Keywords

ARHI · Methylation · Cancer · Disease ·
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10.1 Introduction

Aplasia Ras homologue member I (ARHI,
DIRAS3) is the first tumor suppressor gene
identified in the Ras superfamily [1] and allocated
in chromosome 1p31 where there is loss of het-
erozygosity. ARHI has a distinctive N terminal
extension for the suppression of tumor growth
and is one of 40 genes to be imprinted in the
human genome. ARHI is expressed in cells from
the paternal allele during the process of embry-
onic development [1]. The protein coding region
is located within exon 2 and encodes a
229-residue small GTP binding protein belonging
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to the Ras superfamily [2]. Three potential CpG
islands about 300 base pairs were found in the
promoter and exons of the ARHI gene (Fig. 10.1).
CpG island I, II, and III are located about 1 kb
upstream of the transcription initiation site, and in
the region of exon 2, respectively (Fig. 10.1b). Of
those, CpG island II spans the 50-up-stream
region of ARHI, including the transcription initi-
ation site and a portion of exon 1 (Fig. 10.1b) [3].

The imprinted gene ARHI undergoes the dys-
function with a “single hit” during carcinogenesis
by inactivating single functional allele [4]. ARHI
silencing in cancers can be caused by multiple
mechanisms, including LOH, DNA methylated,
histone deacetylation, histone methylation, and
transcriptional regulation. The acetylation and
methylation of chromatin lead to the
downregulation of ARHI expression and ability
to suppress tumor growth [4]. The histone
deacetylation and H3 lysine 9 methylation con-
tribute to the silence of ARHI by DNA

methylation-dependent pathway (Fig. 10.2) and
the binding of transcriptional repressors to recruit
relevant enzymes onto chromatin (Fig. 10.3).
Human oncogenesis may be due to the change of
DNA methylation. About 50% of human genes
have clusters of CpG islands in the 50-regulatory
sequences, of which the most are not methylated.
In human cancers, the aberrant methylation
includes hypomethylation, hypermethylation, and
increased DNA methyltransferase activity [5, 6].

Aberrant methylation of CpG islands acts as a
distinct molecular mechanism, leading to malig-
nant transformation and providing the epigenetic
equivalent of mutation/deletion during oncogene-
sis [7, 8]. Such DNA methylation is also
recognized as potential driver of carcinogenesis
[9]. CpG methylation lead to gene transcription
declining in the promoter region in ARHI genes
[10]. The downregulation of ARHI is found in
many types of cancer, including ovarian cancer,
hepatocellular carcinoma, and others [11]. This
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chapter aims at overviewing the correlation
between ARHI CpG methylation and the tumor
in the development of cancer.

10.2 ARHI and Ovarian Cancer

Of malignancies, the highest expression ARHI is
expressed in ovarian tissues [1]. The ARHI
expression was downregulated in ovarian tumor
tissues, as compared with the normal ovarian
tissues [12, 13]. The ARHI expression was

reduced in ovarian serous papillary carcinomas
[14] and ARHI protein consistently expressed in
epithelial cells of ovarian surface [4]. The levels
of ARHI expression were correlated with the
malignancy of tumors [14], of which ARHI was
reduced in 88% of ovarian cancer tissues. The
overexpression of ARHI can inhibit the prolifera-
tion of ovarian tumor cells and induced
autophagy and tumor dormancy and other
phenomena [15].

The ARHI expression is regulated by CpG
island methylation in the ARHI promoter region

CH CH

CH

CH

CH

CH

CH

CH CH

CH

HAT

TF R-P

ARHI

CH

CH

CH

MBD
HDACDNMAT
MBD

HDAC ARHI

CHCH
HAT TF R-P

Transcrip�on 
Repressor
Complex

Chroma�n
Structure

RNA Polymerase

Transcrip�on Factor 
Complex

CH CH

CH

CH

CH

CH

CH
CH CH

CH

HAT

TF R-P

ARHI

CH

CH

Inac�vated Transcrip�on Repressor

5-ZA-C TSA

MBD HDACDNMAT

Chroma�n Modifiers

C

A 

B 
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Silenced ARHI gene. Transcriptional repressor complex
including methyl-CpG binding domain (MBD) protein,
DNA methyltransferase (DNMT), histone deacetylase
(HDAC), and other repressors binds to methylated CpG
(gray circles) and inactivates the ARHI gene. (c) Chemical
inhibitors such as 5-AZA and TSA can inhibit DNMT and
reactivate the ARHI gene
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and other way. ARHI CpG islands I and II were
hypermethylated in 31% and 12% of ovarian
cancers, respectively, associated with reduced
ARHI expression [16]. ARHI expression reduced
in ovarian cancer epithelial and modified cancer
cells (SKOV-3 and HO-8910), where CpG
islands I and II were partially methylated or
hypermethylated, enhancing the proliferation of
tumor cells. Such proliferation was reversed by
the administration of 5-aza-20-deoxycytidine [17].

10.3 ARHI and Breast Cancer

ARHI expression is lost or downregulated in most
breast cancers, while the ARHI overexpression
inhibits the growth of tumor cells and induces
the apoptosis of tumor cells [18]. Transcriptional
repression of ARHI is closely related to breast
cancer progression [19]. The expressions of

ARHI were detected in normal breast epithelia,
downregulated in 41% of ductal carcinoma in situ
(DCIS) and 70% of invasive carcinomas
[20]. Compared with DCIS in the same sample,
ARHI was further downregulated in 26% of inva-
sive carcinomas. About 17% of invasive carci-
noma lost ARHI protein expression. Other
investigators reported that ARHI mRNA expres-
sion decreased in 46–48% of human breast cancer
specimens [20, 21], correlated with lymph node
metastases [21] and involved with the progression
of breast tumor.

ARHI expression can be downregulated by
various mechanisms. For example,
hypermethylation of both alleles in the CpG
island II of the ARHI promoter region was closely
correlated with silencing of ARHI expression in
10–15% of patients with breast cancers
[4, 10]. Aberrant methylation was accompanied
with decreased ARHI expression in breast cancer
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cells. Hypermethylation was detected at CpG
island I of 67% breast cancer cells, 33% at CpG
island II, and 56% at CpG island III, while
hypomethylation at CpG island II of 44% breast
cancer cells. Treatment with 5-aza-2deoxy-
cytidine, a methyltransferase inhibitor, can
demethylate and partially restore ARHI expres-
sion with hypermethylation of CpG islands
[10]. ARHI expression was partially upregulated
in cells with hypermethylation of CpG islands.
CpG islands methylation was studied in
20 human tissues. On the other hand, no
hypermethylation was found in CpG island I of
surgical specimen, 15% hypermethylation in CpG
island II, and 20% in CpG island III [10]. During
imprinting, CpG islands are consistently
methylated and silenced in the maternal allele of
normal cells, whereas not in paternal alleles. CpG
island II hypermethylation of both alleles
completely eliminated ARHI promoter activity.
The degree of ARHI methylation is related to
the survival of patients [22], which provides a
new mechanism for the breast tumors [10].

10.4 ARHI and Colon Cancer

ARHI expression was also downregulated in
colon cancer cells, while overexpression could
reduce the number of invaded cells and the adhe-
sive ability [23] and promote colon cancer cell
apoptosis [24]. ARHI expression was
downregulated in 62% of colon cancer
specimens, associated with worse differentiation
degree and Dukes’ stage. Methylation-specific
PCR assay revealed that the methylation rates of
ARHI were 53% and 47% in CpG Island I and
CpG Island II, respectively. The promoter meth-
ylation may downregulate ARHI expression in
colon cancer, which can be a therapeutic potential
for the disease [25].

10.5 ARHI and Hepatocellular
Carcinoma (HCC)

ARHI gene expression was found to be related to
hepatocellular carcinoma, evidenced by the fact

that ARHI expression was downregulated in
78.6% HCC specimens, accompanied by reduced
levels of ARHI protein [26]. The overexpression
of ARHI inhibited HCC growth and colony for-
mation, while the silencing of endogenous ARHI
promoted cell growth [26]. Upregulated ARHI
expression inhibited tumor growth and angiogen-
esis in hepatocellular carcinoma, which were
prevented by 5-aza-20-deoxycytidine
[27, 28]. ARHI hypermethylation occurred in
47% of patients with HCC without ARHI expres-
sion. The downregulated expression of ARHI in
HCCs acts as a tumor suppressor role, which was
mainly stimulated by the epigenetic modification
in HCC [26].

10.6 ARHI and Pancreatic Cancer

Overexpression of ARHI can inhibit the cell cycle
and apoptosis in pancreatic tumor cells [29]. Com-
pared with normal pancreatic tissues, ARHI is
downregulated in approximately 50% in pancre-
atic cancer tissues. The immediate reason for this
downregulation or loss of ARHI expression in
pancreatic cancer cells was due to the aberrant
methylation of ARHI locus. Hypermethylation
was detected at CpG island I of 100% pancreatic
cancer cells, at CpG island II of 40%, and at CpG
island III of 80%, respectively. The growth of
pancreatic cancer cells can be suppressed by the
overexpression of ARHI which is involved with
the apoptosis of cancer cells. The upregulation of
ARHI mRNA expression induced by the demeth-
ylation of ARHI can obviously inhibit cell growth
and increase apoptosis in human pancreatic can-
cer cells. It was evidenced that ARHI serves as a
gene that inhibits growth in pancreatic
cancers [30].

10.7 ARHI and Osteosarcoma (OS)

ARHI protein and RNA levels were
downregulated in OS cells [31]. The knockdown
of ARHI could promote OS cell proliferation and
attenuate apoptosis. Zebularine may upregulate
the tumor suppressor genes through a
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demethylation function, which inhibits the
growth and promotes apoptosis in OS cells. The
ARHI expression was upregulated by Zebularine
due to the downregulation of ARHI methylation
and the function of DNA methyltransferase
1 (DNMT1) and histone methyltransferase G9a.
The distinct reduction of ARHI methylation can
be induced by knockdown of DNMT1 or G9a.
Zebularine may directly repress DNMT1 alone,
while G9a through regulating DNMT1 function
on ARHI methylation, which were restored by
knockdown of ARHI [32].

10.8 ARHI and Glial Tumors

Experimental studies demonstrated that expres-
sion of ARHI was downregulated in human gli-
oma tumors as compared with normal brain tissue
as well as four different glioma cells [33]. The
proliferation and invasion of glioma cell can be
suppressed by up-expression of ARHI [33]. The
expression and methylation status of ARHI were
evaluated in tissue and peripheral blood [34]. The
expression of ARHI RNA increased in 67% of
patients with glial tumor and decreased in 33%
[34]. Methylation of the CpG island at ARHI was
detected using the combined bisulfite restriction
analysis and the restriction fragment length poly-
morphism in glial tumors as compared with
hypermethylated healthy volunteers.
Hypermethylation was detected at CpG island I
in two glial tumors, indicating that the progres-
sion of glial tumor may be due to the
downregulation of ARHI [34].

ARHI can be influenced by a large number of
genetic events and epigenetic mechanisms [3, 22,
35, 36], while ARHI expression may be firstly
silenced by the aberrant DNA methylation of
ARHI, varying among cell types [10].

10.9 ARHI and Follicular Thyroid
Carcinoma (FTC)

The global gene expression analysis showed that
ARHI expression was low in FTC. Studies
revealed that a complete methylation pattern was

exist in ARHI in FTC shows [37]. The silencing
of ARHI, primarily by large genomic deletion is
involved with hypermethylation of the
genomically imprinted allele, which may be an
important early event in FTC [37].

10.10 ARHI and Lung Cancer

Studies demonstrated that overexpression of
ARHI gene can inhibit the growth, proliferation
and invasion of lung cancer cells, and promote the
apoptosis of lung cancer cells [38]. Aberrant
DNA methylation was observed in non-small
cell lung cancers. The methylation status of
245 CpG positions in 59 candidate genes was
examined in different types of lung cancer and
normal adjacent lung tissues from smokers, which
found that the DNA-methylation levels were dif-
ferent among different histological types of tumor
tissues and normal adjacent tissue [39]. The
highest degree of DNA methylations in squamous
cell carcinoma was observed in ARHI,
GP1Bbeta, RAR beta genes, etc. It was proposed
that methylation profiles of specific genes may be
used to distinguish histological types of lung
cancer [39].

10.11 Conclusion and Perspectives

This chapter overviewed the importance of ARHI
methylation and expression phenomes in various
types of cancers, although the exact mechanisms
remain unclear. As an imprinted gene, aberrant
DNA methylation of the paternal allele of ARHI
was identified as a primary inhibitor of ARHI
expression. The role of methylation in the CpG
islands of the ARHI promoter region vary among
ovarian cancers, breast cancers, hepatocellular
carcinoma, colon cancers, pancreatic cancer oste-
osarcoma, glial tumors, follicular thyroid carci-
noma, or lung cancers. The methylation of ARHI
provides a new insight to understand molecular
mechanisms of tumorigenesis and progression of
cancers.

There are further needs to explore whether
ARHI methylation and expression can be defined
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as disease-specific biomarkers with the specificity
of disease duration, severity, stage, phase,
phenome, and response to therapy as requested
[40–46]. It is questioned whether the heterogene-
ity of ARHI methylations exists among cells of
the same cancer. The single-cell sequencing was
widely applied for the identification of the intra-
and inter-heterogeneity among cancer locations,
types, and durations within the cancer
[47, 48]. Dynamic three-dimensional chromatin
conformation and the potential association
between cell-type specific chromatin conforma-
tion and differential DNA methylations should be
considered in the understanding of ARHI methyl-
ation, since altered 3D genome controls gene
regulation during development and disease [49–
51]. Roles of ARHI methylation and expression
in the development and diseases are furthermore
specifically clarified by gene editing
technologies, e.g., CRISPR [52–55]. Thus, we
believe that the deep understanding of ARHI
methylation and expression will provide new
opportunities for future diagnosis and therapy.
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Clinical Significance of P16 Gene
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Abstract

Lung cancer is the leading cause of death from
cancer in China. The lack of early screening
technologies makes most patients to be
diagnosed at advanced stages with a poor
prognosis which often miss the best treatment
opportunities. Thus, identifying biomarkers
for minimally invasive detection and progno-
sis of early stage disease is urgently needed.
Genetic and epigenetic alterations that pro-
mote tumorigenesis and metastasis exist in

multiple cancers. These aberrant alterations
usually represent early events in cancer pro-
gression suggesting their potential applications
as a biomarker for cancer prediction. Studies
have shown that DNA methylation is one of
the key factors in progression of lung cancer.
P16 promoter methylation is one of the most
common epigenetic change plays a key role in
lung cancer. In this review, we highlight the
p16 gene methylation and its clinical signifi-
cance in lung cancer.

Keywords

Lung cancer · p16 · Methylation · Diagnosis ·
Prognosis

11.1 Introduction

As one of the most common malignancies in
China, lung carcinoma has become to be the
main cause of cancer death. There are two major
types of lung cancer: non-small cell lung cancer
(NSCLC) and small-cell lung cancer (SCLC).
NSCLC constituting 80% of all lung cancers is
further divided into three main subtypes: adenocar-
cinoma (AC), squamous cell lung carcinoma
(SCC), and large-cell lung carcinoma [1, 2]. The
5 years survival rate for lung patients is still very
low (approximate 20%) due to the complex
biological process and the scarcity of effective
biomarkers. The most common epigenetic
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alteration leading to NSCLC is the missing func-
tion of tumor suppressor gene p16, occurring in
about 70% patients [3]. Functioning as a tumor
suppressor, the methylation of p16 is associated
with poor prognosis and therapeutic resistance of
NSCLC patients. It is the aim of this review to
evaluate the p16 gene methylation and its clinical
significance in lung cancer.

11.2 DNA Methylation

Epigenetic alterations in DNA methylation,
microRNA expression, modifications of histones,
chromatin remodeling, and posttranscriptional
modifications are considered major pathogenesis
of lung cancer [3–5]. And studies have shown that
the DNA methylation regarded as a hallmark
contributed to carcinogenesis [6, 7]. The conven-
tional view of DNA methylation is methyl groups
tacked onto the 50-carbon of cytosine in the DNA
strand (5-methylcytosine, 5-mC) and this process
is catalyzed by DNA methyltransferases
(DNMTs), including DNMT1, DNMT2, and
DNMT3 [8]. Although these 5-methylcytosine
was thought to be a stable and heritable gene
silencing mechanism, recent evidence has
revealed that DNA changes rapidly and reversibly
in methylation and demethylation [9]. The
5-methylcytosine can be converted to
5-hydroxymethylcytosine (5-hmC) with the catal-
ysis of ten-eleven translocation (TET) proteins
[10] (Fig. 11.1). CpG islands are some regions
rich in CpG with a length of 300–3000 bp, which
mainly locate near the promoters or exon regions
of those highly expressed genes. And the CpG
islands are common methylation in human tumors
and related with tumor initiation and progression
[11]. In lung cancer, the methylation genes
involved in key cellular functions, such as DNA
repair (i.e., O6-methylguanine-DNA
methyltransferase, MGMT), growth and develop-
ment (i.e., Short Stature Homobox2, SHOX2),
and cell cycle (i.e., cyclin-dependent kinase
inhibitor 2A, CDKN2A) [12, 13]. The p16 gene
which is a tumor suppressor gene encoded by
CDKN2A is the first found aberrant
hypermethylation in lung cancer [14]. In the

early stage of lung cancer progression,
CDKN2A is silenced by DNMT1 which gene
expression is upregulated in lung cancer [15].

11.3 Structure and Function
of P16 Gene

The p16 gene (also known as CDKN2A, Multiple
Tumor Suppressor 1 and as several other
synonyms) is an anti-oncogene involved in the
regulation of cell cycle and is encoded by the
CDKN2A gene [16–19]. The CDKN2A gene is
located at chromosome 9p21, 8.5 kb full length
[20] and is composed of two introns and three
exons: exon 1 (126 bp), exon 2 (307 bp), and
exon 3 (11 bp). The exon 1 has two subtypes
with two transcription methods, Exon 1α and
Exon 1β, which is transcribed from its own pro-
moter and encodes different proteins. The p16
protein, encoded by exons 1α, 2 and 3, is a
nuclear phosphor-protein composed of
156 amino acids with a molecular weight of
16 KD. The main function of p16 gene is to
inhibit the cell cycle by binding to cyclin-
dependent kinases (CDKs) [20–22]. When
CDKs binded to cyclin D, the active complex of
cyclin D/CDKs phosphorylates the pRb protein,
resulting in the release of E2F transcription
factors and the transcription of gene critical for
G1/S -phase regulation. The specific binding of
p16 protein to the CDKs (such as CDK4 or
CDK6) inhibits the formation of the active com-
plex of cyclin D/CDKs by changing the allosteric
conformation in these proteins [22]. Due to
lacking of cyclin D/CDKs active complex, the
retinoblastoma protein (Rb) maintains in its
hypo-phosphorylated and growth-suppressive
states. Hypo-phosphorylated Rb binds to E2F
resulting in the arrest of G1 phase (Fig. 11.2).
Indeed, several studies have demonstrated that
the p16 gene is inactivated in multiple tumors
including lung cancer [14, 23, 24]. And the loss
of p16 gene has been shown to lead to carcino-
genesis and metastasis in cancer patients with
worse prognosis [25–28].
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11.4 Methylation of P16 Gene
and Lung Cancer

11.4.1 Frequency of P16 Methylation

DNA methylation plays a pivotal role in
maintaining the genomic stability, which is dis-
pensable for cells to maintain their physiological
functions. Interestingly, alterations of DNAmeth-
ylation are frequently observed in lung cancer.
Although the p16 singling pathway regulates the

G1/S phase, it is usually altered or mutated in
many cancers. The p16 gene, cyclin D1, and
CDKs, particularly p16 gene, are common
abnormalities in NSCLC but is rare in SCLC. In
SCLC, the Rb gene is usually inactivated [29]. In
the detection of 78 paired NSCLC tumor and
adjacent normal tissues, the p16 gene is
demonstrated highly methylated in tumor tissues
[30]. In another study, the methylation of p16 was
in 34% of the 64 primary lung carcinomas. Fur-
ther analysis indicated that the p16 gene is highly
methylated in large-cell carcinoma (71%),

Fig. 11.1 Proposed DNA methylation and demethylation
in the lung cancer. DNA methyltransferases (DNMT1,
DNMT3A, and DNMT3B) catalyze DNA methylation at
the 50 cytosine of CpG sites (5mC) using
S-adenosylmethionine (SAM) as a methyl donor. SAM is

converted to S-adenosylhomocysteine (SAH). Members of
the ten-eleven translocase family (TET1, TET2, and TET3)
can catalyze the oxidation of the cytosine modification
5-methylcytosine (5mC) to 5-hydroxymethylcytosine
(5hmC)

Fig. 11.2 Structure of the p16INK4a/ARF locus and the role of p16INK4a in cell cycle. The p16INK4a protein binds to the
cyclin D and CDK4/6 complexes and inhibits the activation of the transcription factors (E2Fs), which induces proteins to
move from the G1 phase to S phase in the cell cycle
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compared with adenocarcinoma (36%) and squa-
mous cell carcinoma (33%) [31]. Therefore, it is
believed that p16 methylation is a common event
in lung cancer and Table 11.1 shows the fre-
quency of p16 methylation in lung cancer. Com-
pared with normal lung tissues, cancer tissues
contain a higher occurrence rate in p16 methyla-
tion and according to literature, lung squamous
cell carcinoma has a higher methylation level than
that in lung adenocarcinoma whereas it rarely
happens in small cell lung cancer.

11.4.2 Mechanisms of P16Methylation
in Lung Cancer

Inactivation of p16 is common in lung cancer and
occurs via three major mechanisms: homozygous
deletion (HD), point mutation, and the most com-
mon methylation in the promoter CpG island
[32, 33]. Evidence has suggested that there exists
a marked correlation of methylation changes after
smoking. In a study analysis the correlation of
p16 methylation and smoking, researcher
detected the methylation of p16 in 81 NSCLC
patients with smoking and 41 never-smoking
patients. The result proved that p16 gene
methylated in 52.6% cases and was significantly
highly methylated among smokers [34]. The
same results were also founded in other studies
[35, 36]. Furthermore, there could be other
inducements, such as air pollution, that can lead
to p16 methylation. PM2.5 is a type of pollution
less than 2.5 μm in diameter. Previous studies
have shown that long-term exposure to PM2.5
contributes to the lung cancer risk [36–
38]. Indeed, the frequency of p16 methylation
increased in mice which exposed to PM2.5 for
8 h daily and last for 3 weeks. The same result has
showed in the primary murine alveolar epithelial
cells exposed to PM2.5 for daily doses of fine
urban PM. Interestingly, chronically elevated
levels of PM2.5 has been associated with an
increase in lung cancer incidence further
correlates indirectly the p16 methylation and
lung cancer [39]. Despite the above potential
mechanism by which smoking or air pollution
could increase the p16 methylation thus

eventually cancer, it should be noted that p16
methylation rarely occurs in SCLC. Considering
smoking is a major risk factor for SCLC, other
mechanisms of the p16 methylation in lung can-
cer have yet to be identified.

11.4.3 P16 Methylation for Early
Detection and Diagnosis
in Lung Cancer

Epigenetic changes were shown to be one of the
most important mechanisms contributed to the
oncogenesis and development of cancer
[40]. Moreover, aberrant DNA methylation
occurs in the early stage of cancer, thus
representing excellent biomarkers for cancer
early detection [41, 42]. This hypothesis can be
further evidenced when considering frequent
detection of methylated DNA in cancer tissue
and body fluid in malignant carcinomas such as
lung cancer [43, 44], liver cancer [45], and breast
cancer [46, 47]. In a meta-analysis included all
the published articles advocates that methylated
p16 and other eight genes (SOX17, CDO1,
ZFP42, TAC1, FAM19A4, RASSF1A, FHIT,
MGMT) are useful biomarkers in the screening
and auxiliary detection of lung cancer. And the
p16 methylation is associated with ethnicity and
sample size [48]. In order to investigate the asso-
ciation between promoter methylation of
RASSF1A and p16 and the clinicopathological
features in lung cancer, researchers retrieved
389 studies and analyses of 1259 lung cancer
patients. The results provide convincing evidence
that the promoter methylation ratio of p16 is
associated with histological types and smoking
status in lung cancer, indicating that p16 could
be used as an effective biomarker in early diagno-
sis [49]. The same results were also reported in
other studies. In a study, researcher detected the
methylation of candidate genes (p16 and other
seven genes) in 42 plasma samples from primary
NSCLC patients and 10 plasma samples from
healthy donors. The results proved that p16 gene
showed no methylation in all healthy plasma,
while is methylated in 45% cases of plasma
from lung cancers [50]. In another study,
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180 samples including cancer tissues, adjacent
normal lung tissues, blood plasma, and exhaled
breath condensate (EBC) from 30 NSCLC
patients and 30 healthy controls were analyzed
for aberrant promoter methylation of p16. Results
demonstrated that the frequency of p16 promoter
methylation in tumor tissues, blood plasma, and
EBC from tumor patients was 86.66%, 50%, and
40%, respectively, whereas it was not observed in
the samples from the healthy controls. It was
found that the detection of p16 promoter methyl-
ation in EBC was feasible, thus presenting a
potential noninvasive biomarker for NSCLC
diagnosis [51]. However, it should be noted that
the positive rate was still low compared with that
in tissues thus requesting more researches to
develop it as a NSCLC diagnostic biomarker. In
summary, these findings indicated that p16 meth-
ylation could be an effective biomarker for
NSCLC diagnosis.

11.4.4 The P16 Methylation
in Prognosis

Aberrant DNA methylation of tumor suppressor
genes has been linked to cancer development and
clinical outcome in non-small cell lung cancer
(NSCLC) [43, 52, 53]. A study analyzed the
promoter methylation of p16 in tumor tissues
from 193 surgically treated NSCLC patients of
stage I, Ib, IIa, and IIb (127 were older than
60 year old; 66 were 60 year old and younger).
Patients were dichotomized according to the age
using the cut-points of 40, 50, and 60 years of age
at diagnosis. The results showed that lower fre-
quency of p16 methylation was observed in
specimens from 60 years or younger compared
with older than 60 years and was significantly
lower in specimens from 40 years. Further
analyzed of the p16 methylation status for the
survival rate, the result indicated patients with
p16 non-methylated have a significantly extended
survival time in patients of 60-year or younger,
but no such association with clinical outcome in

Table 11.1 P16 gene methylation in lung cancer (compared to corresponding normal lung tissue; listed papers with
>50 cases)

Author

Cases
(tumor
tissue)

Histologic
type

Methylation in
tumor tissue

Methylation in corresponding
normal lung tissue Ref.

Lin Q, et al. 124 NSCLC 22.58% 7.69% (N ¼ 26) [58]
Jin M, et al. 72 NSCLC 29% 8% (N ¼ 72) [36]
Brock MV, et al. 104 NSCLC 52% 26% (N ¼ 50) [42]
Safar AM, et al. 105 NSCLC 39% 25% (N ¼ 25) [59]
Grote HJ, et al. 75 25 AC

25 SCC
25 SCLC

12% AC 56% SCC
4% SCLC

0% (N ¼ 64) [60]

Kim YT, et al. 61 42 AC
17 SCC

67% AC 67% SCC 46% (N ¼ 61) [61]

Tanaka R, et al. 57 AC 40% All 17% (N ¼ 53) [62]
Kim H, et al. 74 31 AC

43 SCC
28% All 6% (N ¼ 127) [63]

Toyooka S, et al. 514 299 AC
194 SCC
21 others

25% All 19% AC
35% SCC

5% (N ¼ 84) [64]

Jarmalaite S, et al. 64 NSCLC and
SCLC

34% All 9% (N ¼ 58) [31]

Yanagawa N, et al. 75 43 AC
29 SCC
3 others

31% All 16% AC
48% SCC

0% (N ¼ 75) [65]

Zochbauer-
Muller S, et al.

88 45 AC
43 SCC

27% All 13% AC
37% SCC

0% (N ¼ 104) [66]
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patients older than 60-year age group [54]. This
result was similar to other studies, which found
p16 promoter hypermethylation is associated with
worse survival time in lung cancer patients with
an early stage [55–57]. Investigators analyzed the
methylation status of p16 in 155 lung tumor
tissues revealed that the patients with
hypermethylated p16 had significantly shortened
survival time than patients without p16
hypermethylation [57].

11.5 Conclusion

The relationship between DNA methylation and
prognostic significance continues to be an area of
interest for investigation. Previous studies have
revealed that the p16 gene methylated is signifi-
cantly associated with clinical and pathological
features in NSCLC. Although evidence has
showed the methylation of p16 gene could serve
as a potential diagnostic biomarker that may facil-
itate the early detection and maybe useful to iden-
tify high-risk patients with lung cancer presenting
at early stage once identified, the application of its
methylation in the clinical has yet to be devel-
oped. Current methylation studies were mostly in
tumor tissue, whereas that in blood and other
samples has lower sensitivity and specificity. In
addition, tumor markers in blood are not organ
specific and cannot be used for the diagnosis of
judged lung cancer. More research to support the
use of p16 methylation as an early diagnostic
marker of NSCLC is needed.
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Application of Single-Cell RNA
Sequencing in Pancreatic Cancer
and the Endocrine Pancreas

12

Qiankun Luo, Qiang Fu, Xu Zhang, Hongwei Zhang,
and Tao Qin

Abstract

The pancreas is a complex organ composed of
an endocrine (pancreatic islets) and an exo-
crine portion. This mixed cell population has
resulted in an implacable barrier to exploring
the detailed mechanism and function of each
cell type in previous investigative approaches.
In recent years, single-cell RNA sequencing
(scRNA-seq) technologies have provided
in-depth analysis of cell heterogeneity in the
pancreas and in pancreatic cancer. It is espe-
cially effective in cell-type-specific molecule
identification and detection of interactions
between cancer cells and the stromal microen-
vironment. To date, numerous reports have
described the application of scRNA-seq in
studies of pancreatic islets and pancreatic can-
cer. The aim of this paper is to review recent
advances of pancreatic transcriptomics and
pancreatic cancer using scRNA-seq strategies.

Keywords

Single cell · RNA sequencing ·
Transcriptomics · Pancreatic islet ·
Heterogeneity · Pancreatic ductal
adenocarcinoma · Circulating tumor cells ·
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12.1 Introduction

The pancreas is a crucial organ for human diges-
tion and metabolism. The emergence of diabetes
is associated with the destruction of pancreatic β
cells (Type 1) and insulin resistance accompanied
by β cell dysfunction (Type 2). The incidence of
diabetes is increasing gradually and threatening
global health [1]. Nevertheless, the molecular
mechanism of diabetes remains to be elucidated.
Current studies show a relationship between
transcriptome variations of the pancreatic islets
and diabetes [2, 3]. However, the islets have an
abundance of distinct cell types, which increase
difficulties in detecting cell-type-specific
transcriptomes. Thus, the heterogeneity and spe-
cific markers for α, β, ε, δ, and PP cells have not
been comprehensively elaborated upon until now.

The exocrine gland of the pancreas is com-
posed of acinar and ductal cells. Previous studies
believed pancreatic ductal adenocarcinoma
(PDAC) was derived from ductal cells because
the tumor histology resembled that of ductal mor-
phology [4]. However, subsequent studies
showed acinar-to-ductal metaplasia could be
induced in Kras mutated mice, and precancerous
lesions occurred [5]. New research has
demonstrated that both acinar and ductal cells
can generate PDAC with distinct biological
features [6]. In addition, it has been confirmed
that pancreatic stellate cells divide into cancer-
associated fibroblasts (CAFs), which contributes
to the stromal microenvironment of PDAC
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[7]. Cancer stem cells (CSCs) and circulating
tumor cells (CTCs) are identified as having a
vital role in therapeutic resistance and recurrence
of malignancy [8–11]. However, the cellular
characteristics and molecular mechanism are dif-
ficult to uncover using traditional technologies
due to low counts of target cells and interference
by heterogeneous cells.

Therefore, the advent of single-cell RNA
sequencing (scRNA-seq) technologies truly
offers an avenue to definitely understand the
features, functions, and distinctions of these cell
subtypes. In this review, we will summarize the
discoveries of the endocrine pancreas and PDAC
that have resulted from the implementation of
scRNA-seq and discuss the significance and
deficiencies of these findings.

12.2 Pancreatic Cell Type
Identification
and Transcriptome Analysis by
scRNA-seq

To deeply understand pancreatic cell function and
promote the study of diabetes development,
Muraro MJ et al. developed a SORT-seq platform
based on FACs, robotic liquid handling systems,
and CEL-seq2 methodologies. With this scRNA-
seq method, they improved single-cell transcripts
by twofold over the conventional CEL-Seq2
approach [12]. They confirmed the specific
factors of different pancreatic cell types in the
human pancreas (Fig. 12.1). After that, they
mapped the unique transcriptional markers of
each cell type. According to the data, they
identified distinct clusters that were characteristic
for each cell type, and the specific genes
expressed from the endocrine and exocrine cells
by single-cell sequencing. Additionally, genes,
including ITPR1, SLC6A4, and GHSR, that had
been previously proposed to have a function in
pancreatic diseases were verified by enriching α,
PP, and δ cells [12]. Another research study
investigated the original cells of the dorsal and
ventral pancreas by single-cell transcriptomic
sequencing and mapped their distinct develop-
mental progression from pancreatic progenitors

[13]. Similarly, Maayan Baron, et al. mapped
transcriptomes of human and mouse pancreatic
cells through scRNA-seq. Except for the above
cell types validated by Muraro MJ et al., they also
detected stellate cells, vascular cells, tissue-
resident macrophages, mast cells, cytotoxic T
cells, and Schwann cells. Genes were shown to
play vital roles in cell drug therapy, cellular mat-
uration, stellate cell activation, and Schwann cell
dedifferentiation [14].

Type 2 diabetes (T2D) is thought to incapaci-
tate pancreatic beta cells. Previous studies have
demonstrated that transcriptome variations of the
pancreatic islets play an important role in the
development of T2D [15, 16]. However, the het-
erogeneity of the pancreatic islet cells, including
alpha, beta, and delta cells, remains elusive in
view of those indiscriminate bulk cell studies.
The scRNA-seq approach conquered these
shortages and has been applied for the detection
of transcripts of the pancreatic islet cells [17–
20]. The first application of scRNA-seq in the
exploration of human pancreatic islet cells was
performed by Jin Li et al. The research uncovered
specific genes expressed in pancreatic endocrine
cells (i.e., α cells, β cells, and PP cells) such as
MORF4L1, IRX2, BMI1, MEIS1, and ETV1
[19]. Yurong Xin et al. provided a deep analysis
of differentially expressed genes of the islet cells
in T2D and normal pancreatic tissue, showing the
relevance between the unique clusters and T2D.
The 245 genes were shown to be modulated due
to T2D, and the function of a large proportion of
them in development of T2D remains to be
explored. Genes enriched in α and β cells that
were screened showed significant differentiation
between the human and mouse pancreas
[17]. However, specific gene expression of PP, ε
and δ cells were detected by the same means.
Acinar cells exhibiting MHC class II genes were
demonstrated in this study [21]. These studies
characterized different cell populations of the
pancreas and have provided a resource for further
analysis of pancreatic cell subtypes and biological
function. However, most of the specific molecular
properties of the cells have not been identified.
Deep sequencing of each cell type should be
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implemented to describe detailed traits of the cells
and establish a cell function map.

Another study illustrated cell type heterogene-
ity of the endocrine pancreas in children and
adults by scRNA-seq. The data indicate that dif-
ferentially expressed transcripts of alpha and beta
cells in T2D adults have a certain amount of
similarity with the pancreatic samples of children.
It was confirmed that the sonic hedgehog signal-
ing pathway contributes to the proliferation of
alpha cells [18]. This study offers some important
insights into the heterogeneity of pancreatic endo-
crine cells in adults and children and facilitates
the investigation of pancreatic development. With
regard to the influence of age, Martin Enge, et al.
utilized scRNA-seq to identify transcriptomic
features and variation traits in different ages
[22]. The research verified that CDKN2A is a
unique molecule related to aging at the single-
cell level and that transcriptional noise there is a
characteristic of increasing along with aging. The
pattern of somatic mutation caused by aging was
identified to have an obvious correlation with
DNA damage induced by ROS. The scRNA-seq
protocols provide a valuable insight into the char-
acter of CDKN2A and how its level of expression
is impacted by aging but not by an initiation
program [23]. While previous reports suggested
the existence of aging-induced degeneration of
cellular and organ functions, more research
using scRNA-seq has identified that aging has
no negative effect on the β-cell population or

function in the mouse pancreas [24, 25]. This
method could become a meaningful tool to
advance an accurate understanding of aging and
other factors that affect individual pancreatic
cells.

12.3 Application of scRNA-seq
to Gene Function in Pancreatic
Cancer and CSCs

APE1 functions in the activation of many signal
pathways as a DNA repair protein. It has an
important role in the emergence of cancers of
the lung, breast, colon, and pancreas [26–
29]. However, the mechanism of its impacts on
these cancers has not been illustrated. Several
studies were implemented to detect the regulation
of differential expression by APE1, but the results
were not encouraging on account of the difficult
goal of building a perfect APE1-knockout cell
line [30]. Furthermore, although siRNA structure
downregulated the expression of APE1, differen-
tially expressed reads among cells brought nota-
ble bias. Thus, scRNA-seq technologies were
used to cover these shortages. Fenil Shah et al.
transfected pancreatic ductal adenocarcinoma
(PDAC) cells with APE1 siRNA and scrambled
siRNA. The group demonstrated that gene
expression changes with the downregulation of
APE1 [29]. They accurately analyzed the differ-
entially expressed genes (DEGs) among

Cells Genes Transcription Factors (TF)

Alpha cells GCG LOXL4 PLCE1 IRX2 GC KLHL41 CRYBA2 
TTR TM4SF4 RGS4

IRX2 FEV ARX PTGER3 HMGB3 RFX6 MAFB 
SMARCA1 PGR LDB2

Beta cells INS IAPP MAFA NPTX2 DLK1 ACYAP1 PFKFB2 
PDX1 TGFBR3 SYT13

MAFA PDX1 SMAD9 CDKN1C TFCP2L1 SIX3 
SIX2 MNX1 BMP5 PIR

Delta cells SST PRG4 LEPR RBP4 BCHE HHEX FRZB 
PCSK1 RGS2 GABRG2

HHEX ERBB4 POU3F1 ISL1 PSIP1 BHLHE41 
PDLIM4 EHF LCORL ETV1

Pancreatic 
polypeptide

PPY SERTM1 CARTPT SLITRK6 ETV1 THSD7A 
AQP3 ENTRD2 PTGFR CHN2

ETV1 MEIS2 ID2 EGR3 LMO3 MEIS1 ID4 ARX 
PAX6 ZNF503

Epsilon cells GHRL ANXA13 PHGR1 ACSL1 FRZB SPTSSB 
ASGR1 HEPACAM2 VTN SERPINA1

VTN EBF1 BMP7 CDKN2A PROX1 ARX 
ZKSCAN1

Duct cells SPP1 CFTR AQP1 ALDH1A3 KRT19 CRP DEFB1 
CEACAM6 MMP7 TSPAN8

ONECUT2 LITAF SOX4 DAB2 CREB5 HLA-
DQB1 WWTR1 PARGC1A PKHD1 NFIB

Acinar cells PNLIP REG1B PRSS1 ALB PRSS3P2 CPA2 
CTRB2 CEL PLA2G1B CELA3A

GATA4 MECOM NR5A2 ZFP36L1 CSDA 
CEBPD CREB3L1 XBP1 LGR4 NUPR1

Mesenchyma
l cells

COL1A1 COL1A2 COL3A1 COL6A3 FN1 SFRP2 
COL5A1 SPARC COL15A1 SERPINE1

WNT5A SNAI2 NOTCH3 FBN1 HEYL PRRX1 
UACA AEBP1 TBX3 FOXF2

Endothelial 
cells

FLT1 KDR CD93 ESAM SOX18 PECAM1 ESM1 
PASK SLCO2A1 PLVAP

SOX18 RGCC SMAD6 ERG PRDM1 TCF4 
NOTCH4 SNAI1 NKX2-3 ETS1

scRNA-seq

Pancreatic cells

Fig. 12.1 Special-expressed genes and enriched transcription factors in different cell subtypes of pancreas
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completely silenced APE1, inadequately silenced
PDAC cells and control cells by scRNA-seq. Six
genes (TMEM45A, TMEM126A, TMEM154,
COMMD7, ISYNA1, and TNFAIP2) were
found with overlapping expression relative to
the APE1 knockdown [29]. Subsequent study
indicated that scRNA-seq is a potent tool with
high sensitivity for the investigation of
transcriptome variation in cancer cells and a sub-
tle way to dissect the signal pathways regulated
by genes in PDAC.

Another research study combined scRNA-seq
with spatial transcriptomics (ST), which remedied
the shortage of weak cell resolution in ST. With
this approach, they detected PDAC cells
separated from resected tissue. The data noise
was decreased by a k-nearest neighbor smoothing
algorithm. Six cell types with different clusters
were identified, including T cells, macrophages,
fibroblasts, endothelial cells, and pericytes. They
next completed the transcriptomic sequencing of
PDAC tissue and spotted the spatial site of unique
molecular markers and genes using ST. Finally, a
spatial map of the cells was formed with
corresponding spot transcripts in each cell type
[31]. This study illustrated the cell heterogeneity
and spatial locations within tumors utilizing
scRNA-seq and ST protocols and provided a
clear structure of the PDAC microenvironment.
However, profound analysis of cellular spatial
formation and functions are still awaiting
clarification. Meanwhile, the small numerous
transcriptome reads of single cells makes the
establishment of spatial patterns challenging and
introduce a higher risk of bias. Novel strategies
should be developed to promote accurate and
sensitive research [32].

Lytle NK et al. utilized scRNA-seq to confirm
the unique molecular expression profiles in pan-
creatic cancer stem cells (CSCs) and to construct
the molecular landscape of CSCs. Lytle,
Ferguson [11] constructed a map of Msi+ cells,
which are defined as characteristic of CSCs,
showed obvious coherence with the expression
levels of IL10Rβ, IL34, and Csf1r in stromal
cells. These factors might be controlled by the
retinoic-acid-receptor-related orphan receptor
gamma (RORγ). scRNA-seq showed that RORγ

expression was obviously upregulated in pancre-
atic CSCs, and RORγ proved to be a latent target
and prognostic marker of pancreatic cancer. In
response to the small quantity and unique molec-
ular features of CSCs, scRNA-seq techniques
could be significantly beneficial for the dissection
of CSCs and provide a novel insight for PDAC
metastasis and therapeutic resistance.

12.4 Exploration of the Pancreatic
Cancer Stromal
Microenvironment
with scRNA-seq

With the exception of tumor cells, fibroblasts,
immune cells, endothelial cells, and the extracel-
lular matrix (ECM) comprise the microenviron-
ment of pancreatic cancer. The microenvironment
could provide tumors a protective barrier for drug
or immune resistance, or secrete cytokines to
promote cell proliferation and metastasis. The
stromal cells of pancreatic cancer have been
identified as playing an important role in tumor
progression, growth, and metastasis [33]. Cancer-
associated fibroblasts (CAFs), which make up the
main part of the tumor stroma, are thought to
make a considerable contribution to
tumorigenesis, proliferation, and invasion
[34, 35]. For instance, a PDAC mouse model
with depletion of α-SMA myofibroblasts showed
poor survival. The degrees of tumor differentia-
tion were reduced significantly in myofibroblast-
depleted mice. Moreover, mice treated with the
smoothened inhibitor antagonized Hedgehog sig-
naling, which resulted in a similar tumor pattern
[36, 37]. CAFs have proved to be abundant in
many cancers [38]. However, their molecular
peculiarity has not been extensively explored,
although α-smooth muscle actin (α-SMA),
FSP-1 and fibroblast-activation protein α
(FAPα) have been demonstrated to be a potential
marker [39, 40].

In recent years, scRNA-seq was extensively
applied in the investigation of cell heterogeneity
involved in the cancer field. This technology
allows the study of the PDAC microenvironment
at the individual cell level and reduces the
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sequencing noise caused by bulk signals. Giulia
Biff et al. utilized scRNA-seq in detecting the
heterogeneity of CAFs in PDAC tissue in a
mouse model. CAFs and PDAC cells underwent
scRNA-seq after coculturing. According to previ-
ous investigations, they found that CAFs
expressed two molecular subtypes
[41]. Myofibroblastic CAFs (myCAFs) were
defined by high expression levels of α-SMA,
which reportedly have a strong correlation with
PDAC [42]. On the other hand, the population
that overexpressed inflammatory cytokines and
chemokines was named inflammatory CAFs
(iCAFs). Then, scRNA-seq was performed to
verify that the same molecular markers that
identified myCAFs and iCAFs were present in
mouse tumors. IL1/JAK/STAT3 and TGFβ/
SMAD3 signaling were demonstrated to be key
modulation pathways in controlling the heteroge-
neity and functions of myCAFs and iCAFs
(Fig. 12.2) [7]. In consideration that there might
be other populations in the PDAC stromal micro-
environment, the team proceeded to explore dif-
ferent CAF subtypes using a scRNA-seq strategy.
With an analysis of the sequence data from indi-
vidual tumor cells, they mapped a cluster-
enriched plot. It is noticeable that a novel CAF
population was found in both human PDAC tis-
sue and the mouse model. This new CAF subtype
has specific molecular markers consistent with the
Major Histocompatibility Complex (MHC) class
II family and can induce CD25 and CD69 activa-
tion of T cells. Thus, these cells possessing the
capacity of antigen presentation were confirmed
to be antigen-presenting CAFs (apCAFs)
[43]. Another paper presents new evidence for
microenvironment degradation in precursor
lesions of PDAC. This group detected
transcriptomic heterogeneity in intraductal papil-
lary mucinous neoplasms (IPMNs) and PDAC by
scRNA-seq. They found that expression profiles
of low-grade IPMNs (LGD-IPMN) showed high
correlation with invasiveness and that the
immune cells infiltrating the surrounding area
were prone to be exhausted. Additionally, stromal
CAFs transform into iCAF and myCAF subtypes
and secrete factors that suppress immunoreaction
and facilitate tumor progression, although there

are some differences in the amounts of subtype
cells between LGD-IPMN and high-grade IPMNs
(HGD-IPMN) [44]. This deteriorating phenome-
non of the microenvironment in IPMNs may rep-
resent a hypothesis that stromal malignancy in
precursor lesions precedes that in tumors. The
specific stromal molecules expressed in precursor
lesions perhaps accelerate the declaration of new
biomarker and prevention of IPMN transition to
PDAC.

Now that stromal cell heterogeneity has been
illustrated, the subpopulations of tumor cells and
their regulated deserve continuing study. The cur-
rent study described distinct PDAC cell types
from solid tumor and circulating tumor cells.
Epithelial-to-mesenchymal transition (EMT),
proliferative (PRO) phenotypes and coexpression
subtypes are proposed exist in the PDAC cell
population [45]. Meanwhile, CAFs are not only
modulated by cancer cells; they could reverse to
promote or inhibit cancer cells in a complex
mechanism [46, 47]. Subsequently, scRNA-seq
and single-cell proteomics were applied to deeply
explore how CAFs impact PDAC primary tumor
cell variation. Matteo Ligorio et al. validated that
CAFs could induce PDAC cell transformations to
EMT, PRO, and double positive
(DP) subpopulations by the interaction of CAFs
and PDAC cells. TGFβ, MAPK/ERK, and
STAT3 signaling pathways are contributors to
the formation of PDAC subtypes (Fig. 12.3).
They confirmed that the development of these
specific PDAC cell phenotypes was determined
by different ratios of CAFs and tumor cell
coculturing patterns. Furthermore, the composi-
tion of cell types and the intratumoral spatial
structure have different effects on tumor growth
and progression [48].

Overall, scRNA-seq exhibited significant
advantages in distinguishing cell subtype and
intratumoral heterogeneity. The application of
scRNA-seq in the investigation of tumor
microenvironments will bring remarkable prog-
ress in the detection of the biological features and
function of stromal cells.
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12.5 Dissection of Circulating Tumor
Cells Using Single-Cell Analysis

With a poor prognosis and highly invasive
tumors, pancreatic cancer is extremely difficult
to diagnose early. Most of the patients have
local or distant metastasis tumor when they are
initially diagnosed with PDAC. Despite this,
there is a series of treatment methods, including
chemotherapy, radiotherapy, and tumor resection;
however, the 5-year survival rate is less than 9%
[49, 50]. Therefore, there is urgency in the search
for a sensitive tumor biomarker for the manage-
ment of PDAC. Circulating tumor cells (CTCs)
flow into the peripheral blood after they stem
from solid tumors [51]. They share specific
molecular markers and cell heterogeneity with
the primary tumors. For instance, CTC subtypes
expressing EMT or PRO traits have an obvious
correlation with tumor invasiveness and patient
survival [48]. However, research of hepatocellu-
lar cancer showed that CTCs with EMT had an
inconspicuous relationship with the prognosis of
patients, despite opinions that epithelial and mes-
enchymal features might exhibit characteristics
such as those of cancer stem cells (CSCs)
[9, 52]. On the other hand, not all CTCs can
produce a metastatic tumor, even if CTCs have
been detected in most of the malignant tumors,
and the total number of CTCs is not associated
with the recurrence rate or metastatic risk [8]. We
hypothesize that these rare CTCs possess high
potential of invasion and capacity for tumor
regeneration if the CSCs escape from primary
tumor. Conducting a further investigation to
uncover the heterogeneity and biological features
of CTCs would be very meaningful for the pre-
diction and therapy of PDAC.

It is beneficial to take CTCs as pathologic
biopsies in PDAC in response to the complex
operation and risks in fine needle aspiration
(FNA). However, it is truly a challenging thing
to separate and extract CTCs for sequencing from
blood because of the minute amounts [51]. The
application of single-cell sequencing has pro-
moted not only CTC detection as a “liquid
biopsy” but also the analysis of tumor

heterogeneity and its molecular mechanism in
PDAC. Min Yu et al. first applied scRNA-seq in
the analysis of mouse PDAC CTCs. They
identified nine genes related to tumorigenesis
that were obviously highly expressed in CTC
and overlapped with transcripts sequenced from
mouse and human PDAC solid tumors [53]. Wnt2
was demonstrated to be especially upregulated in
primary tumors, ascites cells and CTCs. Notably,
the enrichment of Wnt2 in CTCs was found to be
present in most PDAC patients. Another study
analyzed individual transcripts sequenced from
CTCs and mouse PDAC cell lines by scRNA-
seq. They defined several specific molecules
expressed by CTCs that are connected with the
CSCs, EMT, and ECM. Among these, the
SPARC protein increased significantly in both
mouse and human PDAC CTCs, which
contributed to development of the ECM, and has
been identified in expressed clusters as playing an
important role in cell invasion. Additionally, they
also discovered a CTC subpopulation that has
proliferative traits and named this population
PRO [45]. Similarly, mRNA expression of
human PDAC CTCs was detected by single-cell
sequencing technology. The results indicated that
CTC-enriched clusters including CD24, CD44,
and ALDH1A1 resemble CSCs and that SPARC
is correlated with EMT [10]. However, the inves-
tigation also illustrated that scRNA-seq was defi-
cient in coverage of the target genes, especially in
detecting heterozygous CTCs [54]. This defi-
ciency produced a low detection rate of differen-
tially expressed genes and target variations in
CTCs. For instance, the positive rate of KRAS
variation in PDAC CTCs was measured at 27.7%
by scRNA-seq, while it was detected at 92% in
bulk CTCs. Thus, the technical bias of scRNA-
seq is still a major problem that must be improved
to promote the application of scRNA-seq to CTC
exploration [55].

12.6 Conclusions

Single-cell transcriptomics analysis has brought
new insight into cell heterogeneity and specific
cell-type biomarkers [56]. The pancreas is a
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complex organ comprising the endocrine pan-
creas, which includes α, β, ε, δ, and PP cells,
and the exocrine portion, which includes acinar
and ductal cells. Each cell type has unique respec-
tive functions. The scRNA-seq technology has
facilitated the transcriptomics and cell heteroge-
neity studies in pancreatic islets and PDAC. Cell-
specific markers and their potential functions
were identified in islet cells [13, 19]. Meanwhile,
novel molecules expressed in β cells were found
to contribute to the development of T2D
[21]. Some genes and pathways may play critical
roles in the differentiation, immunoreaction, and
aging of the pancreas [22]. The transcriptomics
atlas provides a foundation for deep exploration
of the biology and pathology of the pancreas
[12, 17]. Investigations in PDAC revealed a
more accurate understanding of CSCs, CTCs,
and cell heterogeneity using the scRNA-seq
method. The consensus now is that intratumoral
cell-to-cell distinction has a crucial role in tumor
recurrence and drug resistance. CSCs are the piv-
otal population related to clinical prognosis and
can protect themselves against toxins and the
immune system [57]. scRNA-seq permits analy-
sis of differentially expressed genes of individual
cells such as CSCs and CTCs, which provides an
approach to dissecting the cell features and gene
functions of these cells. CSCs circulating in
peripheral blood might be the crucial population
of CTCs that result in distant metastasis. In addi-
tion, cancer stromal cells were found to have
effects on tumor progression and invasiveness.
Both stromal cells and tumor cells have subtypes
that are associated with different cancer pro-
cesses. Degeneration of the microenvironment
may precede tumorigenesis, which could bring
new insight into the prevention and early diagno-
sis of cancers. The scRNA-seq technologies will
be a potent tool in promoting these explorations.
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Single-Cell Sequencing in Genitourinary
Malignancies 13
Neal Murphy, Pratik Shah, Andrew Shih, Houman Khalili,
Anthony Liew, Xinhua Zhu, and Annette Lee

Abstract

Single-cell sequencing (SCS) is a powerful
new tool that applies Next Generation
Sequencing at the cellular level. SCS has
revolutionized our understanding of tumor het-
erogeneity and the tumor microenvironment,
immune infiltration, cancer stem cells (CSCs),
circulating tumor cells (CTCs), and clonal
evolution. The following chapter highlights
the current literature on SCS in genitourinary
(GU) malignancies and discusses future
applications of SCS technology. The renal
cell carcinoma (RCC) section highlights the
use of SCS in characterizing the initial cells
driving tumorigenesis, the intercellular muta-
tional landscape of RCC, intratumoral hetero-
geneity (ITH) between primary and metastatic
lesions, and genes driving RCC cancer stem
cells (CSCs). The bladder cancer section will

also illustrate molecular drivers of bladder
cancer stem cells (BCSCs), SCS use in
reconstructing tumor developmental history
and underlying subclones, and understanding
the effect of cisplatin on intratumoral hetero-
geneity in vitro and potential mechanisms
behind platinum resistance. The final section
featuring prostate cancer will discuss how SCS
can be used to identify the cellular origins of
benign prostatic hyperplasia and prostate can-
cer, the plasticity and heterogeneity of prostate
cancer cells with regard to androgen depen-
dence, and the use of SCS in CTCs to under-
stand chemotherapy resistance and gene
expression changes after androgen deprivation
therapy (ADT). The studies listed in this chap-
ter illustrate many translational applications of
SCS in GU malignancies, including diagnos-
tic, prognostic, and treatment-related
approaches. The ability of SCS to resolve
intratumor heterogeneity and better define the
genomic landscape of tumors and CTCs will
be fundamental in the new era of precision-
based care.
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13.1 Introduction

Genitourinary (GU) malignancies, including
prostate, bladder, and renal cell carcinoma (RCC),
are associated with significant morbidity and
mortality in the United States, and individually
have an annual incidence that ranks in the top ten
of all malignancies [1]. Next Generation
Sequencing (NGS) is changing the way we
approach these cancers. By allowing rapid and
accurate sequencing of individual tumors, NGS
has helped drive a precision oncology approach,
in which the best targeted and immunological
therapies can be chosen leading to improved
outcomes and better overall survival [2]. Moving
progress further along, single-cell sequencing
(SCS) is a powerful new tool that applies NGS
at the cellular level. SCS has revolutionized our
understanding of tumor heterogeneity and the
tumor microenvironment, immune infiltration,
cancer stem cells (CSCs) and rare tumor cells,
clonal evolution and circulating tumor cells
(CTCs). The following chapter highlights the cur-
rent literature on SCS in GU malignancies and
discusses future directions.

13.2 Renal Cell Carcinoma

The first paper for the section of this chapter on
renal cell carcinoma by Young et al. 2018
illustrates how SCS can be used to identify the
cellular origin of a specific cancer. The authors
studied 72,501 single-cell transcriptomes of
human renal tumors, integrated with tumor
whole-genome DNA sequences. Single cells
were taken from Wilms tumors (n ¼ 3), clear
cell RCC (ccRCC, n ¼ 3), papillary RCC
(pRCC, n ¼ 1) and compared to healthy fetal
(n ¼ 2), pediatric (n ¼ 3), adolescent (n ¼ 2),
and adult (n ¼ 5) kidneys, and adult ureters
(n ¼ 4). Normal tissue biopsies were taken from
macroscopically normal areas of kidneys being
resected for either transplantation or for cancer.
The 72,501 fetal, normal, and cancer cells and
their respective transcriptomes were split into dis-
tinct clusters based on a community detection

algorithm. Normal and fetal cells were then
assigned to a reference map by cross-referencing
their assigned cluster-defining transcripts with
canonical markers known from established stud-
ies. Of the 42,809 non-malignant cells, 37,951
mature kidney cells represented epithelial cells
from throughout the nephron, mostly consisting
of proximal tubular cells, but fibroblasts,
myofibroblasts, and vascular endothelial cells
were also included. The remaining 4858 fetal
cells were grouped into developing nephron
cells, vascular endothelial cells, myofibroblasts,
fibroblasts, and ganglion cells [3].

After establishing the landscape of healthy
kidney cells, the authors characterized the identity
of 17,821 immune cells and 6333 nonimmune
cells from the tumors listed previously. By com-
bining a genotyping and similarity analysis, the
authors found that Wilms cells represent abnor-
mal fetal cells, and the cells matched with specific
developing nephron populations. To validate the
single-cell identification of the Wilms tumors, the
authors compared the bulk transcriptomes of an
independent group of Wilms tumors (n ¼ 124) to
a group of fetal, pediatric, and adult normal tissue,
and other childhood tumors (n ¼ 135). The spe-
cific developing populations in the single-cell
analysis were evident and limited to the Wilms
tumors and normal tissues from the bulk
analysis [3].

When comparing the ccRCC and pRCC
tumors to normal mature cells, the authors found
that the tumor cells retained transcriptional
features similar to the PT1 cluster, a subtype of
a proximal convoluted tubular cells. The authors
observed that within their data, the PT1 cluster
was defined by expression of SLC17A3 and
VCAM1, and an absence of SLC17A13. They
hypothesized that PT1 cells are the nearest normal
cell correlate of ccRCC cells, and that given both
ccRCC and pRCC have the presence of a PT1
signature, these cancers may have a similar origin
with different fates. When analyzing the tumor
microenvironment, the authors focused on VEGF
signaling and uncovered a complex circuit
involving tumor infiltrating macrophages, and
two populations of ascending vasa recta cells
[3]. Overall, by comparing normal tissue to
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tumor cells this study showed how we can trans-
late our understanding of tumor pathogenesis
from the micro-anatomical to a more defined cel-
lular and molecular level, highlighting which
cells may be the initial driving force for
tumorigenesis.

The next paper by Xu et al. 2012 illustrates
how SCS can be applied to understand the inter-
cellular mutational landscape of RCC. The
authors studied clonal diversity in a single clear
cell RCC tumor from a 59-year-old Chinese male
with Stage IV disease according to the 2002
AJCC TNM classification [4]. Whole exome
sequencing was first performed on a sample
from the patient’s tumor and local adjacent tissue.
Exome sequencing revealed that the patient’s
tumor was unlikely to be related to the presence
of VHL or PBRM-1 mutation. Instead, there were
mutant alleles with higher frequency in two
genes, specifically AHNAK and SRGAP3. Sub-
sequently, single-cell exome sequencing was next
performed on 20 cells from the tumor and 5 cells
from adjacent normal tissue using a modified
bioinformatics pipeline described in Hou et al.
2012 [5]. Two hundred and sixty somatic muta-
tion sites in the coding region were first identified
between cancer cells and the normal population.
However, PCA analysis using the somatic muta-
tion sites clustered three of the cancer cells with
the normal adjacent tissue. PCA analysis did not
reveal obvious cell subpopulations among the
cancer cells. With removal of the three cancer
cells from the initial group of 20 cells, 229 somatic
mutations sites were identified between the two
cell groups, 120 of them in coding regions [4].

To further define the intratumoral landscape,
the frequency of mutant alleles among the cells
was calculated. A small number of mutant genes,
termed “mountain” genes, were present in a large
fraction of cells (28 genes), while a large number
of genes, termed “hill” genes, were present in
only a few cells (66 genes). For the mountain
genes, in addition to correlating with the whole
exome sequencing of the sample taken from the
tumor, AHNAK was noted to be of interest due to
the gene’s relation to HIF1A and the chromatin-
remodeling process. For the hill genes, USP6, a
ubiquitin-mediated proteolysis pathway (UMPP)

gene, was found to be of interest secondary to role
in tumorigenesis by promoting matrix
metalloproteinases through NF-KB activation.
Other genes of interest in biologically relevant
pathways included: TUBB, CCKBR, and
SULT1A1. The authors concluded that mutations
in the hill genes appeared to be involved in cellu-
lar modification roles, and may be relevant in
promoting progression once the cells have
undergone mutations that initiate cancer [4].

The next paper by Kim et al. 2016, examined
intratumoral heterogeneity (ITH) between a
patient’s ccRCC primary and metastatic lung
lesion, and used their results to test a combinato-
rial regimen targeting two mutually exclusive
pathways in the patient’s metastatic cells. The
basis for their approach considered the assump-
tion that agents targeting a single pathway will
terminate a subpopulation of tumor cells without
affecting the remaining cells. Therefore,
analyzing the tumor transcriptome at high resolu-
tion could possibly reveal drug-resistant
subpopulations and guide additional therapeutic
treatments that overcome resistance [6].

The patient included in the paper was initially
diagnosed with T1NxM0 disease, had
metastasectomy of a solitary pulmonary lesion
within 1 year of initial diagnosis, and subsequent
disease progression on sequential therapies,
including pazopanib, everolimus, and high-dose
interleukin-2 resulting in multi-organ metastasis.
The authors used paired primary RCC (prRCC)
and metastatic RCC (mRCC) patient-derived
xenografts (PDX) in an attempt to better under-
stand ITH and recreate the molecular landscape
seen in the primary and metastatic tumors. Histo-
pathologic and genomic analysis revealed consis-
tent features between prRCC, mRCC, and their
respective xenografts. Whole exome sequencing
(WES) of prRCC and mRCC xenograft samples
showed that 23.5% of somatic single nucleotide
variants (SSNVs) were shared, including a muta-
tion in the VHL gene, which may have been a
founder event for this patient’s tumor. Copy num-
ber variations detected from array comparative
genomic hybridization (aCGH), revealed similar
somatic copy number alterations (SCNAs)
between the two groups, however 5q
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amplifications were only seen in prRCC. Taken
together, WES and aCGH major clones harboring
driver mutations were seen in both groups and
minor subclones were enriched in mRCC,
indicating nonlinear, branching clonal evolution
to support ITH for this patient instead of parallel
evolution [6].

The authors next used scRNA-seq to profile
single cells from both the mRCC (n ¼ 34), PDX
mRCC (n ¼ 36), and PDX prRCC (n¼ 46). PCA
analysis generated three clusters: normal kidney
cortex, parental mRCC and the PDX mRCC, and
the PDX prRCC cells. Unsupervised clustering
demonstrated correlation of the average bulk cell
populations to that of the averaged expression of
single cells. PCA analysis also revealed a statisti-
cally significant molecular signature in the paren-
tal and PDX mRCC cells, specifically an
epithelial-mesenchymal transition signature and
Gene Ontology terms supporting “regulation of
cell proliferation.” The authors then used
predefined gene sets involved with known drug
targets to estimate drug sensitivity of the PDX
cells. PDX-prRCC exhibited higher gene expres-
sion in C-met and PI3K/AKT pathways, while
PDX-mRCC cells exhibited higher expression in
EGFR, Src, and BRAF/MEK pathways. With
these findings, Kim et al. 2016 hypothesized that
the PDX metastatic cells would respond to
afatinib and dasatinib, two inhibitors targeting
EGFR and Src, respectively. This was further
supported by the fact that only 14.7% of parental
mRCC and 13.9% of PDX mRCC had neither
activation of both pathways in subpopulation
analysis. Subsequent in vitro and in vivo testing
of PDX mRCC cells proved that combining
afatinib and dasatinib was superior to single
agent treatment [6]. Overall, Kim et al. 2016
proved that to overcome resistance created by
ITH, SCS can be used in the translational design
of personalized therapeutic strategies.

The final research to be presented in the RCC
section comes from Li et al. 2017 and their work
using SCS to identify genes driving RCC cancer
stem cells (CSCs). Given that CD133 is a com-
mon CSC marker [7], the authors sorted
10 CD133+ RCC cells, 10 CD133- RCC cells,
and 10 normal renal cells for single-cell WES

from a 57-year-old male patient with T3aN1M0
RCC. Both the RCC and adjacent normal tissue
were used for bulk tissue WES. One hundred and
sixty SNVs were seen in the cancer bulk tissue
WES and 297 SNVs in the 20 RCC cells. Com-
monly mutated genes in RCC (VHL, BAP1) were
found to have variations in both bulk tissue and
single cells, strengthening the reliability of the
WES analysis. PCA analysis of all somatic
mutations separated normal renal, CD133- and
CD133+ cells, proving that the isolated CD133-
and CD133+ cells were tumor cells. After
constructing a neighbor-joining tree for the
30 cells, Li et al. 2017 found that the evolutionary
distance was larger between CD133+ to normal
cells compared to CD133- cells to normal cells,
indicating that CD133+ cells likely originated
from cancer cells and not normal cells [8].

The authors then found three missense
mutations that were unique to the CD133+ cells
in the following genes: KCP, LOC44040, and
LOC440563. In addition to these genes, the
authors found that 29 mutated genes were
detected in 3 or more CD133+ RCC cells, KCP
being one of them. Of these 29 genes, 18 were
listed in the TCGA database with a combined
frequency in the TCGA patients of less than 2%.
Next, the authors used CRISPR-Cas9 to assess
the tumor propagating potential of the 18 genes
(including KCP) plus LOC44040 and
LOC440563 in RCC 786-O cells. Mutations in
the KPC gene had the highest cancer
spherogenesis, and LOC44040 in combination
with KCP was the most effective in enhancing
spherogenesis. In addition, 786-O and 769-P
RCC cells with triple mutations
(KCP/LOC44040/LOC440563) had a significant
increase in spherogenesis compared to wild-type
cells. Engraftment of these triple mutated cell
lines in mouse xenograft models had more mice
developing tumors and higher enrichment of
CSCs compared to wild-type cells. The last part
of their analysis assessed the mutation rates of
these three genes in 57 RCC patients using
Sanger sequencing. They found that patients
with triple mutations had shorter disease-free
time after primary resection [8]. In conclusion,
Li et al. 2017 was able to better characterize
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RCC CSCs, showing that these CSCs likely orig-
inate from RCC cells, and KCP, LOC440563, and
LOC44040 likely drive CSC survival and
progression.

13.3 Bladder Cancer

The first paper in the bladder cancer section
illustrates how SCS can be applied to further
support the development of a diagnostic test in
bladder cancer. Chen et al. 2018 published their
results on a microfluidic approach on harvesting
intact urinary-exfoliated cells (UETCs) for the
detection of bladder cancer. To accurately iden-
tify these UETCs, they developed a quantitative
immunoassay using the oncoproteins CK20 and
CD44v6 antigen. The authors subsequently
enrolled 79 patients with bladder cancer and
43 age-matched controls, and were able to detect
a significantly greater number of UETCs in the
cancer group compared to the control group [53.3
(10.7–1001.9) vs. 0.0 (0–3.0) UETCs/10 mL;
P < 0.0001]. A stratified tenfold cross validation
was used to assess bladder cancer detection,
demonstrating 89.8% sensitivity (95% CI,
71.5–86.4%) and 71.5% specificity (95% CI,
59.7–83.3%) [9].

Of relevance to this review article, the authors
performed single-cell whole-genome sequencing
on captured UETCs, to confirm that their immu-
noassay was collecting tumor cells. Chen et al.
2018 collected from 3 patients with bladder can-
cer, a total of 15 single cells comprising of
12 immunofluorescence identified UETCs and
3 normal urothelial cells that were referenced
control cells. The authors used a low-pass
sequencing strategy to assess the copy number
alterations (CNAs) of the single cells. They
found that 11/12 of the UETCs possessed an
unstable genome with CNAs while the 3 control
cells were found to be diploid, thus confirming
that the immunoassay is able to identify individ-
ual cancer cells from primary bladder tumors [9].

Similar to the work by Li et al. 2017 in RCC,
Yang et al. 2017 examined the origination and
genetic drivers of human bladder cancer stem
cells (BCSCs) [10]. The authors conducted

sequencing on 59 cells including bladder epithe-
lial stem cells (BESCs, pan-CK+CD44+), bladder
epithelial non-stem cells (BENSCs, pan-CK+

CD44�), BCSCs (CD31�CD45�CD44+), and
bladder cancer non-stem cells (BCNSCs,
CD31�CD45�CD44�) [11] from three bladder
cancer specimens. Analysis of these four cell
types showed that the authors were able to estab-
lish tumors in NOD/SCID mice using BCSCs and
BCNSCs, but not the other two cell types. Fur-
thermore, BCSCs and BESCs in comparison to
BCNCs and BENSCs, had upregulated expres-
sion of stem cell-related genes, and exhibited
better spherogenesis and self-renewal properties.
In serial transplantation assays, BCSCs were bet-
ter at initiating tumor formation when compared
to BCNSCs, further validating the identity of the
four cells types being examined [10].

Yang et al. 2017 next isolated 59 cells from
three bladder cancer specimens and subsequently
performed exome sequencing and phylogenetic
analysis using the modified neighbor-joining
method to assess cell clonality. They found that
BCSCs likely originated from mutations in
BESCs or BCNSCs. Four hundred and six
non-synonymous mutant genes were identified,
with BCSCs showing a higher frequency of
non-synonymous mutant genes when compared
to BCNSCs. 21 out of 46 genes were distributed
among five functional pathways: cell differentia-
tion and self-renewal (FAT4 and GPRC5A) cell-
cycle regulation (TP53, ATM, and CREBBP,
STAG2), transcription regulation (TP53, BRF1,
PAWR, ERCC2, MKL1, SIN3A, and ETS1),
chromatin remodeling (ARID1A, CREBBP and
MLL2). To test the function of BCSCs mutations,
15 genes with a mutational rate >50% were
introduced individually using CRISPR/Cas9 into
BCNSCs taken from primary bladder tumors.
MLL2 was the only gene that slightly enhanced
spheroid formation. However, further combinato-
rial and stepwise introduction of mutations
proved that a trio of mutations consisting of
MLL2+ARID1A+GPRC5A+ brought the sphere
forming ability of BCNSCs on par with BCSCs.
In addition, BCNSCs with these three mutations
were better at initiating bladder cancer and serial
tumor formation compared to wild-type BCNSCs
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in limiting dilution xenograft and serial transplan-
tation assays. Overall, the authors were able to
provide information on the origin of BCSCs, key
gene mutations in these cells, and which
mutations promote stemness [10].

Li et al. 2012 performed single-cell exome
sequencing of a patient’s muscle-invasive transi-
tional cell carcinoma (MI-TCC) to reconstruct the
developmental history of the tumor and underly-
ing subclones. By understanding the timing of
key mutations in the patient’s tumor, the authors
sought to discover genes driving carcinogenesis
and subclone development. Forty-four single
cells from the tumor and 11 from normal adjacent
tissue were sequenced, in addition to whole
exome sequencing of the bulk tissue used to
obtain the individual cells. Four hundred and
forty-three somatic mutations were identified
from single-cell analysis. The authors randomly
selected 17 genes to verify with PCR-Sanger cap-
illary sequencing with 100% of predicted genes
being confirmed. None of these mutations
appeared in RB1 or TP53, and the majority of
mutations were C:G > T:A. Exome sequencing
of DNA from the bulk tissue could only identify
134 of the 443 somatic mutations (30.25%) found
in SCS. The authors noted significant copy num-
ber variations and loss of heterozygosity in
chromosomes 9 and 11 that were consistent with
MI-TCC [12].

The authors next applied population genetics
to analyze bladder cancer development by deriv-
ing the somatic mutant allele frequency spectrum
(SMAFS) between normal and bladder tumor
cells. The majority of tumor cells had a peak in
SMAFS around 50%, indicating that TCC likely
originated from a single cell. PCA analysis using
identified mutations was able to separate the nor-
mal cells from tumor cells. The tumor cells had
significant diversity across the principal vectors
supporting a heterogenous makeup of the tumor.
However, the authors were able to cluster the
tumor cells into three subclones (A, B, and C)
using mutational heat map changes
(146 non-synonymous mutations in 113 genes).
Almost all three subclones had mutations in
22 genes, which were thought to be driver genes
that initiated tumorigenesis from a common

ancestral cell. Clones B and C were estimated to
have emerged late in the tumor history, but sur-
prisingly made up a larger portion of the tumor
than expected (35%). The authors hypothesized
that these two subclones had conferred additional
growth advantages and were undergoing positive
selection in comparison to Clone A. The authors
used conventional exome sequencing in a cohort
of 99 TCC patients and found that 4 of their
22 genes had non-silent mutations in at least
three of these patients: CFTR, NIPBL, ASTN1,
and DHX57. The authors also found three recur-
rent mutations in this 99 patient cohort that were
unique to clone B and C, potentially serving as
driving genes for these two subclones: ATM in
subclone B and COL6A3, KIAA1958 in subclone
C. Taken together, Li et al. were able to provide
significant insight on the monoclonal origin of
their patient’s tumor supporting a clonal evolu-
tion model, and the subsequent subclonal devel-
opment and genetic changes [12].

Zhang et al. 2016 used single-cell RNA-seq on
67 tumor cells and 7 normal cells to characterize
the heterogenous gene expression profile of a
patient with localized squamous cell carcinoma.
PCA analysis indicated no normal cell
populations amongst the tumor cells. However,
no specific subclonal population was identified.
NOISeq identified differentially expressed genes
in significant pathways between normal versus
tumor cells (p53 signaling, cell-cycle pathways).
Between individual tumor cells, the authors cal-
culated individual gene coefficient of variation
(CV) as a way to define intratumor heterogeneity.
They analyzed the 100 most variable and
100 most stably expressed gene sets. The variably
expressed gene group had enrichment in many
cell-cycle related genes, specifically six genes
from the MAPK pathway (RPS6KA1, RAC2,
CACNG4, CACNA1E, CACNA1H, and
MAPKAPK5), while the stably expressed genes
had enrichment in the expected housekeeping
genes. The authors also looked at co-expression
profiles between 5530 highly variable genes at a
system level (RPM > 10, SD > 100) using
Weighted Gene Co-Expression Network Analysis
(WGCNA). Hub-gene-network-analysis revealed
several significant “hub genes:” GCC2, OR9Q1,
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LINC00189, NKD1, POU2F3. Of these genes,
POU2F3 was found to play a significant role in
squamous epithelial stratification and is reported
to have tumor suppressor function in cervical
cancer. Overall, the authors further illustrated
how SCS can define intratumor heterogeneity
and identify significant genetic changes that
could lead to further functional validation tests
and therapeutic studies [13].

The final paper in the bladder cancer section
published by Tanaka et al. 2018 examined
platinum-based therapy’s effect on intratumoral
heterogeneity in vitro using scRNA-seq, in order
to elucidate a potential mechanism behind plati-
num resistance. The authors used urothelial cell
line 5637 cells, passaged 1–2 times per week in
medium containing platinum-based cisplatin
(CDDP) over 6 months, increasing the CDDP
gradually to 3 μmol/L. Parental cells were contin-
ually cultured and passaged without CDDP. SCS
analysis occurred 3 months after CDDP was
discontinued. When comparing gene expression
between the two cell lines, 12 genes were found
to be consistently downregulated in platinum
resistant cells: COX7B, MT1E, LGALS1,
KRT17, EIF3E, TMA7, ARL6IP1, HES1,
UQCR10, MORF4L1, CDKN3, and PSMD10.
Transfected siRNAs against these 12 genes
showed that 4 genes (COX7B, MT1E, LGALS1,
and KRT17) caused the highest CDDP resistance.
However, a Kaplan–Meier analysis of TCGA
bladder cancer cohort revealed that out of these
four genes only COX7B was associated with
worse mortality and predicted poor prognosis.
Therefore, COX7B could potentially be used as
a marker for platinum resistance, and over-
expression of COX7B re-sensitized cell lines to
CDDP. During their in vitro analysis, the authors
were able to identify a subclone of platinum-naive
cells with low-COX7B that behaved as if they
already had acquired platinum resistance. Using
fluorescent-activated cell sorting (FACS) the
authors found that CD63 could sort this subclone
from bulk cancer cells. In conclusion, the work by
Tanaka et al. 2018 highlights how scRNA-seq
can be used to examine gene expression that
promotes chemotherapy resistance, which may

be used to guide future treatments in bladder
cancer [14].

13.4 Prostate Cancer

Identifying the cellular origins of benign prostatic
hyperplasia and prostate cancer first requires an
understanding of the identity and function of each
cell type within the prostate. Defining the cellular
origins of prostate organ cells is not only impor-
tant in understanding the diseases of prostate can-
cer and BPH, but also important in developing
novel therapies against these conditions. To prop-
erly define human prostate cellular anatomy and
create a baseline for understanding the cellular
origins of disease, Henry et al. 2018 performed
single-cell RNA sequencing (scRNA-seq) on
approximately 98,000 cells from five young
adult human prostates [15]. Initially, scRNA-seq
transcriptome analysis was used to broadly define
cell types either in the epithelial, stromal, or neu-
roendocrine lineage. The authors found a molec-
ular identity for five epithelial and two stromal
cell types. Following transcriptome analysis, the
authors used the scRNA-seq dataset to identify
cell surface markers more specific to each indi-
vidual prostate cell subtype to enhance the enrich-
ment yield by FACS. The transcriptomic
signature was used to describe the function and
spatial location of the cell types.

Furthermore, their data led to the discovery of
two previously unknown epithelial cell types
marked by a high expression of SCGB1A1 and
KRT13. Prostate SCGB1A1+ cells are similar in
morphology and transcriptomic profile to Clara
cells (or club cells) of the lungs. Prostate club
cells may function to enrich immunomodulatory
programs and further testing of their function in
the prostate or prostatic urethra needs to be done.
Prostate KRT13+ cells are similar in morphology
and transcriptomic profile to hillock basal cells of
the lung. Prostate hillock cells are found rarely in
adult prostates but in high density in fetal pros-
tate. KRT13+ cells are also enriched in localized
prostate tumors, and in stem-like cells that display
androgen resistance and a capacity for branching
morphogenesis. Two of the top genes associated
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with the KRT13+ subtype (AKR1C1 and
AKR1C2) are part of the androgen metabolism
pathway. Findings from this study show that hill-
ock cell type may be responsible for the KRT13
expression that was hypothesized to originate
from basal and luminal cell types. Overall,
Henry et al. 2018 provide a better understanding
of how to best characterize prostatic cell subtypes
to allow for further research to elucidate the cel-
lular mechanisms of prostatic disease [15].

One of the major challenges in the manage-
ment of prostate cancer addressed by Horning
et al. 2018 is the plasticity and heterogeneity of
prostate cancer cells with regard to androgen
dependence. The stepwise model and punctuated
models are two theories that potentially explain
how prostate cancer cells develop resistance to
androgen deprivation therapy (ADT). The step-
wise model suggests that a single cell or clone
develops a mutation that favors ADT resistance,
and that clone subsequently takes over under
ADT. The punctuated model suggests that the
progression of cancer cells and clones is nonlin-
ear. Instead, there are likely multiple subclones
with their own molecular alterations, each with a
different degree of androgen sensitivity. Eventu-
ally, through ADT selection and clonal expan-
sion, an androgen insensitive subclone grows
and becomes the predominant cell type. Horning
et al. 2018 attempted to stratify these cell
subpopulations using scRNA transcriptome
profiling of 144 single LNCaP prostate cancer
cells first treated with ADT, and then either
treated or untreated with androgens after cell-
cycle synchronization. This method identified
397 differentially expressed genes in eight poten-
tial subpopulations of LNCaP cells, revealing a
previously unknown level of cellular heterogene-
ity among the LNCaP cells [16].

Of note, one of the subpopulations exhibited
stem-like features (slow doubling rate, increased
spherogenesis) and enhanced growth of this sub-
population showed increased expression in ten
cell-cycle genes: CCN, HMMR, CDC20,
CCNB2, DLGAP5, CENPF, PLK1, CENPE,
MKI67, PTTG1. The authors used in silico
RNA-seq data from the TCGA to show that
these genes are linked to prostate recurrence.

Overall, the results from Horning et al. 2018 are
more consistent with a punctuated model, in
which pre-existing subpopulations have stem
cell like features that promote resistance to
ADT. Furthermore, the ten gene panel discovered
by the authors may potentially be used for sub-
population stratification, and may identify tumors
at high risk for recurrence if validated in a large-
scale study [16].

In order to apply precision medicine for cancer
patients with metastatic disease, a tissue sample is
required that is sometimes difficult to obtain.
Circulating tumor cells in the blood (CTCs)
circumvents this issue, and the remainder of the
prostate cancer section will focus on these cells.
CTCs mediate the metastatic spread of many solid
tumors and when found are generally a poor
prognostic indicator. The difficulty of isolating
and analyzing individual CTCs has limited prog-
ress in understanding the molecular expression of
these cells. Cann et al. 2012 published their
results on the use of MagSweeper to harvest indi-
vidual CTCs without contaminating leukocytes.
The authors performed single-cell transcriptome
analysis on CTCs isolated by MagSweeper to
confirm their identity. All but one of the cells
were confirmed to be CTCs given their expres-
sion of the androgen receptor and downstream
target genes (KLK3, TMPRSS2). Pathway analy-
sis further confirmed activation of the AR
pathways, cell-cycle regulation, and mitotic spin-
dle genes. As expected, mitotic spindle genes had
increased expression in patients on taxane ther-
apy. Several transcripts associated with
aggressiveness in localized prostate cancer were
seen in the CTCs (PLK-1, TOPA). Furthermore,
the authors noted that several transcripts that were
upregulated in CTCs may serve as potential
targets (BIRC5, SPINK1). In conclusion, Cann
et al. 2012 highlight the effectiveness of
MagSweeper to capture individual CTCs that
offers further potential to understand the genetic
makeup of these cells and potential druggable
targets [17].

Similar to Cann et al. 2012, Lohr et al. 2014
used MagSweeper and developed a set of experi-
mental and analytical protocols for the sequenc-
ing of whole exomes of prostate CTCs and
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confidential calling of SSNVs. They compared a
patient’s CTC sequencing to their primary tumor,
sequencing nine spatially distinct foci from the
primary tumor. Ten SSNVs were found in all
primary foci and the CTCs (including TP53),
suggesting a single ancestor initiated the patient’s
cancer with divergent evolution. Fifty-six
mutations were present in both the primary
tumors (any foci) and CTCs. Together, both of
these findings by Lohr et al. 2014 show how
CTCs can be used to understand tumor
evolution [18].

CTCs provide a noninvasive way to assess
chemotherapy resistance during therapy and to
monitor the genetic changes that are driven by
treatment. Dago et al. 2014 used the High
Definition-CTC method for the identification
and isolation of CTCs in a patient with metastatic
prostate cancer being treated with chemotherapy
and abiraterone at four different time points
[19]. To correlate protein expression data with
genome-wide CNV alterations in 41 CTCs taken
at each time point, the authors used the protocols
established by Navin et al. 2011 [20] and Baslan
et al. 2012 [21]. Bulk metastatic biopsy prior to
therapy provided the root CNV profile that
subsequent CTC profiles were compared against.
The first two draws were taken after being treated
with ADT (leuprolide acetate), in which a sub-
population (clone A) was found to be a descen-
dant of the initial bulk metastatic tumor with the
development of high-copy AR amplification. The
cells in this clone likely evolved to overexpress
the androgen receptor protein due to pressure
from ADT. Clone A was surprisingly found to
have few changes between the first two treatments
of ADT [19].

However, the patient was switched to
abiraterone acetate and at draw 3 the androgen-
dependent AR positive cells were mostly absent.
These cells were replaced by AR negative
pseudodiploid cells. During draw 4, AR+ cells
had returned as demonstrated by the dominant
subpopulation clone C. Clone C had first become
evident during draw 3, but was not the dominant
clone at that time. The authors concluded that
clone C was selected as a drug-resistant subclone
from one of the initially depleted metastatic sites.

Of note, a complex rearrangement of 8q causing
amplification in MYC for the cells in the later
draws may be related to the re-emergence of AR
protein expression. c-MYC expression is related
to androgen independent growth [22]. Thus,
targeting c-MYC and AR at the time point of
draw 4 may have delayed progression or
prevented the development of resistance to
abiraterone acetate. Overall, Dago et al. 2014
demonstrate how “fluid biopsies” looking at
CTCs may be able to guide treatments and sup-
port a minimally invasive, precision based
approach to treat metastatic disease [19]. The
PROPHECY study by Armstrong et al. 2019
further supports the “fluid biopsy” approach
demonstrated by Dago et al. 2014, in which
the authors used a qPCR CTC assay to detect
the androgen receptor splice variant (AR-V7).
The authors found that AR-V7 detection in
CTCs is associated with shorter PFS and OS in
men with metastatic castrate resistant prostate
cancer prior to receiving abiraterone or
enzalutamide [23].

The last paper in this chapter by Miyamoto
et al. 2015 also examines CTC heterogeneity
and changes in gene expression after ADT
[24]. The authors performed single-cell RNA-seq
on 77 CTCs isolated by microfluidic enrichment
from 13 patients. In addition to the CTCs, the
authors obtained bulk transcriptomes from the
primary tumors of 12 patients, 30 single cells
taken from different prostate cancer lines and
5 patient-derived leukocyte controls. Unsuper-
vised hierarchical clustering analysis was able to
separate the CTCs, primary tumors, and cell lines.
Gene markers of prostate lineage were examined
(epithelial, mesenchymal, and stem cells). The
CTCs had upregulation in epithelial markers, but
not mesenchymal markers when compared to pri-
mary tumors and prostate cell lines. Sixty percent
of CTCs had increased expression in three stem
cell markers: ALDH7A1, CD44, and KLF4. The
authors found 711 genes that were upregulated in
CTCs compared to primary tumors. One gene
specifically, HSP90AA1, is known to regulate
the AR receptor [25]. The authors used the Path-
way Interaction Database to identify pathways
updated in CTCs and found 21 pathways, mostly
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related to cell adhesion, growth factor, and hor-
mone signaling. Analysis of mRNA splice
variants revealed heterogeneous and complex
patterns of AR splice-variant expression among
the CTCs [24].

The authors next performed retrospective dif-
ferential analysis in CTCs to identify potential
molecular mechanisms of resistance to
enzalutamide. The authors compared 41 CTCs
from 8 patients without enzalutamide treatment
(Group A) to 36 CTCs from 5 patients with evi-
dence of progression of disease on enzalutamide
(Group B). Disease progression was determined
by either a rising PSA or radiographically. A gene
set enrichment analysis (GSEA) showed signifi-
cant enrichment in the Wnt signaling group for
the group B CTCs. This signaling pathway
controls multiple downstream regulators of cell
proliferation, survival, and motility: specifically,
RAC1, RHOA, and CDC42. Surprisingly, AR
abnormalities were not significantly increased
amongst group B when compared to group
A. The authors next ectopically expressed WNT
ligands (WNT4, WNT5A, WNT7B, WNT11) in
LNCaP androgen-sensitive cell lines. Survival of
these AR positive cells was increased in the pres-
ence of enzalutamide by increased expression of
all the ligands tested, and most significantly for
WNT5A. In addition, the authors found that
WNT5A expression increased in untreated
LNCaP cells with the addition of enzalutamide
to cell medium. Overall, similar to the previous
papers publishing results using CTCs, Miyamoto
et al. 2015 provided additional support to the
utility of using CTCs to understand the molecular
mechanisms of therapy acquired resistance and
disease progression.

13.5 Conclusion

The studies listed in this chapter illustrate many
translational applications of SCS in GU
malignancies, including diagnostic, prognostic,
and treatment-related approaches. Collectively,
these studies provide evidence for clonal evolu-
tion from a single ancestral cell, and proof that
cancer stem cells play a vital role in

tumorigenesis. The ability of SCS to resolve
intratumor heterogeneity and better define the
genomic landscape of tumors and CTCs will be
fundamental in the new era of precision-based
care. The authors’ research highlighted in this
chapter represents the first critical step toward
better defining GU cancers at the cellular level.
Future analysis with a larger number of cells and
improved SCS technology will be the next step to
successfully continue moving the field forward.
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PI3K Isoform-Selective Inhibitors
in Cancer 14
Leslie Duncan, Chloe Shay, and Yong Teng

Abstract

PI3K inhibitors are a common area of research
in finding a successful treatment of cancer. The
PI3K pathway is important for cell growth,
apoptosis, cell metabolism, cell survival, and
a multitude of other functions. There are mul-
tiple isoforms of PI3K that can be broken
down into three categories: class I, II, and III.
Each isoform has at least one subunit that
helps with the functionality of the isoform.
Mutations found in the PI3K isoforms are
commonly seen in many different types of
cancer and the use of inhibitors is being tested
to stop the cell survival of cancer cells. Indi-
vidual PI3K inhibitors have shown some inhi-
bition of the pathway; however, there is room
for improvement. To better treat cancer, PI3K

inhibitors are being combined with other path-
way inhibitors. These combination therapies
have shown better results with cancer
treatments. Both the monotherapy and dual
therapy treatments are still currently being
studied and data collected to better understand
cancer and other treatment options.
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PtdIns Phosphatidylinositol
PtdIns
(3) P

Phosphatidylinositol 3-phosphate

PtdIns
(4) P

Phosphatidylinositol 4-phosphate

PTEN Phosphatase tensin homologue
Rheb Ras homolog enriched in brain
Tor Target of rapamycin
Wnt Wingless type MMTV integration

site family

14.1 Introduction

Phosphatidylinositol 3-kinase, otherwise known
as PI3K, is a lipid based enzyme, responsible for
phosphorylating molecules when activated by a
growth factor [1–6]. The activation of the PI3K in
turn initiates a signaling pathway in different
cells. The PI3K pathway is important in cell
growth, cell survival, apoptosis, metabolism,
and a variety of other cellular functions [2, 7–
10]. The pathway starts with a growth factor
binding to a tyrosine kinase receptor [11]. This
binding stimulates many signaling pathways,
including the PI3K pathway. The binding of the
growth factor to the receptor activates PI3K
which catalyzes the 30 hydroxyl group on a
phosphatidylinositol, or PtdIns, specifically
phosphatidylinositol (3,4,5)-triphosphate, or
PIP3 [1, 11]. The now phosphorylated PIP3
binds to protein kinase B, otherwise known as
Akt, initiating a conformational change. Akt is
then activated by being phosphorylated by 30

phosphoinositide dependent protein kinase
[11]. The now activated Akt further
phosphorylates different substrates, one being
BAD otherwise known as, BCL2 associated
against cell death. Bad normally promotes apo-
ptosis; however, when it is inhibited, apoptosis is
suppressed [11–18]. Akt also inhibits cell cycle
arrest by activating a G protein that is a RAS
homolog enriched in the brain, known as Rheb
[11, 13, 17, 19–21]. The activation of Rheb then
leads to the activation of a cell growth regulator
target of rapamycin, known as Tor [11, 13, 17,
21]. This activation stimulates cell growth. The

PI3K signaling pathway ultimately promotes cell
survival and cell growth [2, 7, 8, 11, 13, 17, 21].

The PI3K signaling pathway is a focus of
many research topics and is important in cancer
development. Mutations in the pathway increase
the activity of the protein kinase Akt increasing
cell proliferation and survival [22]. The increase
concentration of Akt inhibits Bad and Rheb
decreasing apoptosis and increasing cell growth
[2, 7, 8]. This increased Akt activity is found
frequently in many types of cancer cells including
breast cancer, prostate cancer, head and neck
cancer, leukemia, and many others. Research
suggests the inhibition of the PI3K signaling
pathway may be a successful treatment for cancer
by suppressing the cancer cell proliferation.
Isoforms of PI3K have the same functionality
with a difference in physical makeup. PI3K
isoforms are named based on their substrate pref-
erence and structure. There are three classes of
isoforms: class I, II, and III. In mammals the first
class is further subdivided into class IA and IB
[2, 7, 8, 23]. Class IA consists of three types of
catalytic subunits: p110α, p110β, and p110δ and
a regulatory subunit p85 as seen in Table 14.1
[24]. The isoforms are made up of a catalytic and
regulatory subunit making a heterodimer. Class
IB only has one catalytic subunit, p110γ, and two
regulatory subunit p101 and p87 [2]. Class IA and
class IB both possess many different domains
each with a responsibility, including the phos-
phorylation of phosphatidylinositol
4,5-biphosphate or PIP2 [2]. Class II isoforms
are still being researched as little is known about
them. It is known that there are three catalytic
subunits: PI3K-C2α, PI3K-C2β, and PI3K-C2δ
and no regulatory subunits as seen in Table 14.1
[2]. The lack of the regulatory subunit makes the
class II isoforms monomeric. It was thought that
class II isoforms could phosphorylate PtdIns and
phosphatidylinositol 4- phosphate (PtdIns (4) P);
however, recent studies show that class II
isoforms may prefer PtdIns producing phosphati-
dylinositol 3- phosphate (PtdIns (3) P) [2]. Class
III includes one catalytic subunit, VPS34, and one
regulatory subunit, VPS15. Like class I, class III
isoforms are heterodimers with a catalytic and
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regulatory subunit. Class III isoforms phosphory-
late PtdIns to generate PtdIns (3) P [2].

One of the most frequent occurrences in cancer
is increased activation of the PI3K pathway [2, 7,
8]. This can occur by activation of tyrosine kinase
receptors, loss of phosphatase tensin homologue
(PTEN), and changes in isoforms [25]. PTEN is a
protein made up of phosphatase and tensin that
encodes the PTEN gene [2]. PTEN negatively
regulates the PI3K pathway by dephosphoryla-
tion of PIP2 and PIP3 [25]. Class IA mutations
are commonly found in many types of cancer.
Mutations are found in three genes affecting the
corresponding catalytic subunits as seen in
Table 14.2. Gene PIK3CA mutations occur in
all domains of p110α specifically the helical and
kinase domains [7, 22]. Helical mutations limit
the inhibition of p110α by p85 or they ease the
interaction between p110α and receptors. Kinase
mutations increase the interaction between p110α
with membranes. PIK3CB gene mutations were
seen in a breast cancer case where the helical
domain increased the PI3K activation, therefore
increasing p110β association with membranes
[8]. PIK3CD gene mutations, however, have not
been linked to cancers. Mutations found in the
genes coding for regulatory subunits have also
been seen in cancer. PIK3R1 gene mutations are
frequently substitutions, insertions, or deletions in
a domain of p85α [8]. These mutations prevent
the binding of the regulatory subunit to the cata-
lytic subunit ultimately preventing inhibition of
p110. p85α can negatively regulate the PI3K sig-
naling. Mutations in other genes such as PIK3R2,
coding for p85β, have also been found but at a
lower rate. Class IB mutations in PIK3CG are

generally found to be over expressed but not
mutated in cancers, similar to the PIK3CB and
PIK3CD genes [8]. Little information is known
regarding classes II and III. It is known that the
genes PIK3C2A and PIK3C2B have been
expressed in a few types of cancer; however, the
outcome of that expression remains unknown
[8]. Class III has minimal evidence that VSP34
plays a role in cancer and research is still ongoing
[8]. Inhibitors have been a prime target of thera-
peutic treatment and work by binding to the target
active site and preventing the substrates binding.
Several inhibitors were tried as mono therapies
including epidermal growth factor receptors
(EGFR), BRAF, anaplastic lymphoma kinase
(ALK), and PI3K [2]. As mono therapies the
inhibitors have shown little progress and efficacy
probably due to the lack of specificity. Instead,
PI3K-based combination therapies were applied
for better specificity and results. These combina-
tion therapies are in different stages of trial; how-
ever, they are showing better results.

14.2 Application of PI3K Isoform
Inhibitors in Cancer Treatment

14.2.1 The Impact of PI3K Inhibitors
on Breast Cancer

Inhibitors affect different processes in cells
depending on their target of action. They also
affect different types of cancer in different ways.
Breast cancer inhibitors such as BYL719,
Anastrozole, Buparlisib, and Pictilisib, as seen
in Table 14.3, are studied along with other

Table 14.1 PI3K isoform subunits

Catalytic subunit Regulatory subunit

PI3K class IA isoforms P110α P85
P110β
P110δ

PI3K class IB isoforms P110γ P101
P84

PI3K class II isoforms PI3KC2α
PI3KC2β
PI3KC2δ

PI3K class III isoforms VPS34 VPS15
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inhibitors to understand their effect on breast
cancer [26, 27]. Clinical studies have shown that
pan- class I PI3K inhibitors have been affective in
patients with cancer; however, new PI3K p110α
specific inhibitors are showing even more effec-
tive in PIK3CA mutations [18, 27]. One of these
specific inhibitors is BYL719 (also known as
Alpelisib) and is a p110α inhibitor currently
being studied and researched for its possible role
in cancer treatment, specifically breast cancer
[27]. Clinical trials showed a good response in
most patients, but not all patients. This lack of
response in some patients may be due to some
resistance to PI3Kα inhibitors. When BYL719
was tested in multiple cell lines, it was determined
that the marker Akt was being inhibited; however,

the mechanism target of rapamycin complex
1 (mTORC1) component of the pathway was
not being inhibited [27]. This lead to the combi-
nation of an mTORC1 inhibitor with BYL719
resulting in better outcomes. Another inhibitor
currently being studied for its role in breast cancer
is the aromatase inhibitor, Anastrozole.
Anastrozole inhibits aromatase, which is an
enzyme that aids in converting different
hormones into estrogen [27]. This inhibitor,
when added with other inhibitors, was seen to
suppress cancer cell growth. Pictilisib is a PI3K
inhibitor that was found to be toxic when used as
a monotherapy treatment; however, is currently
being studied when combined with other
inhibitors [18, 27]. Pictilisib and Anastrozole

Table 14.2 PI3K isoforms and corresponding genes

Gene Catalytic subunit Gene Regulatory subunit

PI3K class IA isoforms PIK3CA P110α PIK3R1 P85α, p55α, p50α
PIK3CB P110β PIK3R2 P85β
PIK3CD P110δ PIK3R3 P85γ

PI3K class IB isoforms PIK3CG P110γ PIK3R5 P101
PIK3R6 P87, p84, p87(PIKAP)

PI3K class II isoforms PIK3C2A PI3K-C2α
PIK3C2B PI3K-C2β
PIK3C2G PI3K-C2γ

PI3K class III isoforms PIK3C3 VPS34 PIK3R4 VPS15

Table 14.3 Inhibitors tested in treatment for types of cancer

Cancer type Inhibitor Target of inhibitor

Breast cancer BYL719 P110 inhibitor
Anastrole Aromatase inhibitor
Buparlisib (BKM120) PI3K inhibitor
Pictilisib PI3K inhibitor

Prostate cancer GSK 2636771 (β) P110 inhibitor
AZD 8186 (β) P110 inhibitor
Everolimus mTORC1 inhibitor
Uprosertib (GSK2141795) AKT inhibitor

Head and neck cancer Buparlisib (BKM120) PI3k inhibitor
Copanlisib (BAY80–6946) PI3K inhibitor
MK2206 AKT inhibitor
Everolimus (RAD001) mTOR inhibitor
Temsirolimus (CCI-779) mTOR inhibitor

Leukemia Idelalisib (CAL101) PI3Kδ inhibitor
Duvelisib (ABBV-954, INK-1197, IPI-145) PI3Kδ/PI3Kγ inhibitor
Dactolisib (BEZ235) PI3K/mTOR inhibitor
Buparlisib (BKM120) Pan-PI3K inhibitor
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were combined in a study to test the effects of the
combination therapy, and significant inhibition of
cell growth was seen. Pictilisib has also been
combined with Fulvestrant with little to no benefit
on inhibition due to the toxicity of Pictilisib
[18, 27]. Another PI3K inhibitor studied is
Buparlisib. Two studies were directed at deter-
mining the most effective dosage without toxic
effects on patients. When Buparlisib was paired
with a human epidermal growth factor receptor
2 (HER-2) drug, the result was a patient popula-
tion with slight evidence of antitumor activity,
with more data needing to be collected [27].

14.2.2 The Impact of PI3K Inhibitors
on Prostate Cancer

Inhibitors such as GSK2636771, AZD8186,
Everolimus, and Uprosertib are studied for their
effect on patients with prostate cancer
[28]. GSK2636771 is a p110β inhibitor studied
in PTEN-deficient tumors. This selective inhibitor
is considered to help avoid toxicities found in
other treatments because GSK2636771 targets
p110β only rather than the other isoforms. This
specific p110 inhibition is also being studied in
combination with androgen receptor antagonists
[28, 29]. Similar to GSK2636771, AZD8186 is a
selective inhibitor of p110β as well as p110δ
[28, 30]. AZD8186 is showing sufficient progress
in cancer research as a monotherapy and in com-
bination with other drugs. Isoform-specific PI3K
inhibitors do however, show limited capability
due to the toxicities and upregulation of pathways
[30]. Everolimus is a mechanism target of
rapamycin (mTOR) inhibitor also explored for
its effect on prostate cancer [28]. When
Everolimus was combined with another drug
there were few patients with positive results com-
pared to the higher percentage of patients with
positive affects with just the other drug. This
study indicated that Everolimus is not a success-
ful inhibitor in prostate cancer [18]. Uprosertib, or
GSK2141795, is an Akt inhibitor. In a study
investigating Uprosertib, a majority of patients
had stable disease and measurable responses
after being treated [28, 29].

14.2.3 The Impact of PI3K Inhibitors
on Leukemia

Research on leukemia is currently studying mul-
tiple inhibitors including Idelalisib, Duvelisib,
Dactolisib, and Buparlisib [31]. Dactolisib is cur-
rently being studied for its influence on leukemia
and other cancers. Dactolisib inhibits mTOR
activity as well as PI3K activity, including the
different isoforms [31, 32]. Akt phosphorylation
activation must be initiated after Dactolisib ther-
apy or the mechanism target of rapamycin com-
plex 2 (mTORC2) inhibition will be very unstable
[32]. Unregulated activation of the PI3K pathway
has been seen in many patients with leukemia. As
such, Buparlisib is a class I PI3K inhibitor, is
being tested for its influence on regulating and
inhibiting this pathway [31, 33]. It was reported
that Buparlisib produced phosphorylation of
PI3K target Akt suggesting a neutralized feed-
back [33]. A study with leukemia cells treated
with Duvelisib, a PI3Kδ and PI3Kγ inhibitor,
displayed a diminished adhesion of lymphocytes
to endothelial cells [31]. This discovery suggests
Duvelisib may be used for impairment of signal-
ing between tumor cells [31]. A PI3Kδ inhibitor,
known as Idelalisib, has been studied and found
to be active against leukemia. The inhibition of
the PI3K pathway decreases the tumor size and
strengthens antileukemia activity [31, 34–
38]. Idealalisib also has been found to minimize
growth and increases apoptosis of leukemia cells
[31, 34–38].

14.2.4 The Impact of PI3K Inhibitors
on Head and Neck Cancer

Similarly to the other cancers discussed, head and
neck cancer is also being studied to test if the use
of inhibitors is a helpful treatment. Some
inhibitors for head and neck cancer that are
being examined are Buparlisib, Copanlisib,
MK2206, Everolimus, and Temsirolimis [39–
41]. Buparlisib is a PI3K inhibitor, inhibiting all
of the class I isoforms. In a study conducted on
Buparlisib, it was seen that there was a similar
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impact on both the mutated and wild-type forms
of the PIK3CA gene [39]. There is a concern with
the inhibitor Buparlisib in the clinical application
due to its higher toxicity levels than other PI3K
inhibitors. Copanlisib is another PI3K inhibitor
specific to isoforms p110α and p110δ. Like
Buparlisib, Copanlisib shows similar influence
on both mutant and wild-type forms of the
PIK3CA gene and stipulates antitumor activity
[39, 40]. Other inhibitors are used to inhibit
other portions of the pathway. Akt activation is
commonly connected to resistance of cancer treat-
ment such as chemotherapy. For this reason it has
been important to find Akt inhibitors such as
MK2206. MK2206 has shown to be a very force-
ful Akt inhibitor and increases antitumor activity.
In a trial in patients, MK2206 was seen to slow or
stop progression of the head and neck cancer
[39]. Final results for that trial are still being
collected; however, they show promise.
Everolimus is an mTOR inhibitor being tested in
head and neck cancer. Alone, Everolimus was
determined to be unsuccessful at inhibiting the
pathway and current studies are testing it in com-
bination with other inhibitors [39]. Temsirolimus
is an inhibitor that has mTOR inhibition along
with the ability to become hydrolyzed to form
sirolimus, another mTOR inhibitor, after
application [39].

14.3 PI3K Inhibitor-Based
Combination Therapies
for Cancer

PI3K inhibitors along with other treatments such
as epidermal growth factor receptor (EGFR)
inhibitors and Wnt inhibitors have shown little
efficacy when given to patients as monotherapies,
so combinations of the different inhibitors are
being studied as combination therapies.

14.3.1 EGFR Inhibitors in Combination
with PI3K Inhibitors for Cancer

Epidermal growth factor receptor inhibitors were
used as a monotherapy to treat cancer patients.

Patients showed antitumor activity; however,
with long-term treatment a resistance was
acquired and the cancer relapsed. The resistance
to the EGFR inhibitors are likely due to the reac-
tivation of the PI3K pathway [42–48]. It is known
that the inhibition of a pathway can lead to the
activation of other pathways in a feedback loop
style. For this reason, a combination therapy is
being tested combining EGFR inhibitors with
PI3K inhibitors. The PI3K pathway involves cell
proliferation and because of this, regulation of the
pathway by combined therapy is efficient in apo-
ptosis sensitive cell lines [46]. The combination
of PI3K with EGFR have promising therapeutic
outcomes; however, recent studies have shown
anti-climatic data with the dual therapy. In head
and neck cancer, an EGFR targeting antibody,
known as Cetuximab, was combined with PI3K
inhibitors such as PX-866 [43, 46]. This combi-
nation did not show any improvement in patient
survival, leading scientists to believe there needs
to be a deeper understanding to find a successful
treatment for cancer. Studies are being continued
in hopes to find the correct combination by com-
bining different PI3K and EGFR inhibitors
together on differing cell lines [42, 46]. In one
experiment, different inhibitors were tested and it
was determined that PI3Kα inhibitors in combi-
nation with EGFR inhibitors, show better
outcomes in cancer patients [46].

14.3.2 Wnt Pathway Inhibitors
in Combination with PI3K
Inhibitors for Cancer

Abnormal wingless type MMTV integration site
family, Wnt, signaling is seen in many types of
cancer and is being studied as a form of treatment
[49–51]. Using a dual therapy approach, the Wnt
pathway inhibitors are combined with PI3K
inhibitors for reasons similar to the EGFR path-
way. The Wnt pathway inhibitors are studied in
combination with PI3K inhibitors due to PI3K
inhibitor resistance when used as a monotherapy.
It was seen in some cancers, such as breast cancer,
that the Wnt pathway was activated when treated
with a PI3K inhibitor [49–51]. For this reason,
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dual combination therapy began being studied
using a Wnt inhibitor, known as WNT974, in
combination with PI3K inhibitor, Buparlisib
[39]. WNT974 inhibits a protein known as porcu-
pine which is important in the Wnt pathway
[50, 51]. Cells were first treated with Buparlisib,
which inhibited PI3K pathway components and
activated Wnt components as seen in Table 14.4
[51]. Treatment of WNT974 was then
administered to the cell lines and inhibition of
Akt as well as increased expression of porcupine
was observed [50, 51]. This combination of
inhibitors taken together was seen to show signif-
icant effects in breast cancer, and further testing is
being done to determine if it is plausible to use in
humans [51].

14.4 Conclusions and Perspectives

PI3K inhibition is studied as a broad treatment for
cancer showing varied results. The use of PI3K
inhibitors is still currently being studied with
some showing promising outcomes and others
showing little to no outcomes. This data is used
to generate a new treatment for cancer with the
aim of better initiating apoptosis in cancer cells
rather than all cells. Current treatments are very
harsh on the human body including the good
cells. The study of PI3K inhibitors is trying to
better target cancer cells. PI3K inhibitors are
showing some positive results; however, they
are very limited. For this reason, PI3K inhibitors
are also studied in combination with other
therapies. The combination therapy treatment
studies are seen to have better effects on treatment
of cancer while still initiating apoptosis predomi-
nantly in cancer cells unlike current treatments.
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Single Cell Sequencing in Cancer
Diagnostics 15
Frederik Otzen Bagger and Victoria Probst

Abstract

Personalized medicine has been driven by
improvements in genomic sequencing and
analysis. For several diseases, in particular
cancers, it has for nearly a decade been stan-
dard clinical practice to analyze the genome
and expression of the genes of patients. The
results are reflected directly in the treatment
plan for the patient, in targeted medical
inventions. This specialized mode of
diagnostics has been restricted to account for
averaged trends in the tumor. The approach
sharply contrasts our knowledge on heteroge-
neity within tumors. Several studies further
describe how treatment against one tumor
subclone in some cases merely serves to pro-
vide space and support for uncontrolled
growth of more aggressive subclones. In this
chapter, we describe current possibilities for
implementation of single cell sequencing of
malignomas in clinic, as well as discuss
hands-on practical advice for single cell rou-
tine diagnostics that allows for full delineation
of tumor clonality.

Keywords

Single cell sequencing · Cancer · Diagnostics ·
Precision medicine · Clinical research

15.1 Introduction

To this date, assessment of cancer tumor
sub-clonality in single patients has not been tech-
nically feasible. However, recent development of
technologies for Single Cell Sequencing (SCS)
has progressed research on tissue heterogeneity
to a new paradigm, and today single cell
technologies are applied on a large scale,
famously in the Human Cell Atlas (HCA) project,
aiming at building a reference map of all human
cells [1]. Similar initiatives applying single cell
sequencing include National Institutes of Health
(NIH) Human Biomolecular Atlas Program
(HuBMAP), and The LifeTime Initiative
[2, 3]. Also, SCS is being used to monitor disease
progression and response to therapy in cancer
research [4–8]. In the following, we briefly intro-
duce the field of SCS in clinic and the
implications for cancer, followed by a review of
clinically relevant single cell technologies, with
key guides for clinical implementation of single
cell sequencing of malignomas.

15.2 Importance of Single Cell
Technologies

Currently, Clinical next generation sequencing
(NGS) techniques are built upon bulk DNA- and
RNA sequencing, where tumors are treated as a
homogenous tissue specimen. SCS has the poten-
tial to unravel sub-clonality of tissue (e.g., tumor
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samples) by looking at samples at the level of an
individual cell. Bulk-sequencing has limited
capabilities to uncover the cellular heterogeneity
of tumors, because it provides an averaged signal
from a complex cell population [9]. Deep-
sequencing, and sequencing of different spatial
regions of tumors, have proven to disclose clonal
heterogeneity to some extent, however, the data
always reflects an averaged signal [10]. This
potentially makes identifying distinct cell
populations difficult, and the ability to uncover
populations important for disease progression
might be lost. Another issue with bulk-
sequencing of heterogeneous samples is the inca-
pability of distinguishing whether transcriptomic
changes are caused by alteration in gene regula-
tion or by a shift in the ratio of different cell
populations. These caveats associated with tradi-
tional bulk NGS potentially result in patients
being treated with therapies targeting only the
most abundant cancer cell population, whereafter
less abundant populations might sustain and
spread. Applying technologies for unraveling
tumor heterogeneity are hypothesized to make
targeted therapies more efficient and potentially
capable of minimizing risk of disease relapse.
Single cell genomics is believed to have the abil-
ity to account for traditional NGS-associated
biases by uncovering the heterogeneous nature
of tumors (Fig. 15.1).

15.3 Mutagenesis and Cancer

Cancerous genetic variants are either acquired or
inherited. Inherited, or germline, variants may
predispose individuals to develop certain types
of cancer. Cancer is a condition where cells divide
uncontrollably, and development requires
acquired mutations that circumvent advanced
networks of defense mechanisms. Mutagenesis
may occur from intrinsic risk factors, being ran-
dom errors in DNA replication, or non-intrinsic
endogenous risk factors such as genetic suscepti-
bility or biological ageing. Mutagenesis might

also occur from non-intrinsic exogenous risk
factors such as radiation, chemical substances,
or lifestyle choices [11].

Mutations that enhance cell proliferation or
affect the stability of the entire genome, are
important for cancer development. Some initial
mutations increase the risk of a cell to acquire
additional mutation by either inducing genomic
instability or by giving the cell a growth advan-
tage [12]. Mutations to genes that have the poten-
tial to increase the overall mutational rate are
divided into two broad categories—tumor sup-
pressor genes (TSGs) and proto-oncogenes
[13]. The mechanism of oncogene activation is
gene amplification and may be caused by point
mutations leading to hyperactive gene products or
overall increased transcription of the gene. This
can occur via gene duplications which is classi-
fied as a copy number variation (CNVs), or it can
occur via translocations that relocate the gene to a
chromosomal region with higher expression [14–
16].

The normal role of TSGs is to restrain inap-
propriate cell growth, and they contribute to
tumorigenicity by loss-of-function mutations
leaving both maternal and paternal copy of the
gene dysfunctional [13]. Cancerous mutation
affecting TSGs are often point mutations or
small deletions resulting in nonfunctional gene
products, or chromosomal breaks that destroy
the gene [17]. Alternatively, TSG inactivation
can be acquired through epigenetic changes,
such as DNA methylation or modification of his-
tone tails [6]. Hereditary cancer is often
associated with mutations affecting one copy
(either maternal or paternal) of a TSG. One
mutant TSG copy increases an individual’s sus-
ceptibility to loss of heterozygosity (LOH). LOH
in tumors refers to loss of the functional copy of a
TSG in a heterozygous person (born with only
one functional copy), making tumor cells homo-
zygous for loss of the gene. Individuals born
heterozygous for TSGs mutations are thus at
higher risk of developing cancer [18].
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15.4 Precision Diagnostics

Precision diagnostics refers to tailoring a medical
treatment plan to suit the characteristics of each
patient’s disease. In precision diagnostics each
patient is classified into a subgroup, depending
on e.g., genetics, gene expression patterns, dis-
ease susceptibility, treatment options, or treat-
ment response. Targeted treatment refers to
drugs targeting specific genes, proteins or parts
of the tissue environment, and is highly applied in
personalized cancer therapy. One of the most
prominent challenges in cancer diagnostics is
matching each patient with the most suitable
treatment, among the available options. Tailoring
medical treatment to each patient is predicted to
become more common in the future, with the aim
of minimizing disease progression, period, and
risk of relapse [19]. Current workflows for preci-
sion diagnostics of cancer patients are built on
knowledge from bulk RNA and DNA sequencing
of the tumor specimen. A whole-blood
(WH) sample is also retrieved from the patient
for germline analysis by whole-genome sequenc-
ing (WGS). WH sequencing commonly acts as a
normal background for the patient, allowing to
identify tumor specific (somatic) changes
resulting from the cancer. Both DNA- and RNA
sequencing can directly determine treatment
options for the specific patient, and whether the
patient is eligible for targeted treatment. DNA

sequencing of tumor tissue determines the genet-
ics of a cancer by identifying mutation from a
panel of variants known to have clinical
implications. RNA sequencing assigns a cancer
subtype by comparing the expression profile with
that of previous cancer patients. This is achieved
either by mathematical transformation of full
gene expression pattern in the tumor, or as deter-
mined by expression levels of small sets of
predefined marker genes.

15.4.1 Therapeutic Resistance

A challenge in clinical application of targeted
therapy is when patients acquire therapeutic resis-
tance following a period of treatment. Resistance
to therapy and disease relapse has been correlated
with advanced disease progression following
targeted treatment [20, 21]. Cancer clonal evolu-
tion has been suggested to take place within tissue
ecosystems where cancer cells interact with stro-
mal and immune cells in their neighboring micro-
environment [22]. These interactions are crucial
for providing cancerous cells with resources,
however also limits their developmental potential,
due to repression from the immune system, and
space limitations. Limited resources and space
provide a natural selective pressure within the
tumor, leading certain subpopulation to prolifer-
ate to a greater extent than others (Fig. 15.2).

Fig. 15.1 Bulk vs. single
cell RNA sequencing. Bulk
RNA sequencing provides
an averaged transcriptional
profile across all cell
populations residing within
the tumor sample. Single
cell sequencing gives an
individual transcriptional
profile from single cells of
the tumor specimen,
allowing assessment of
intra-tumor heterogeneity.
(Figure Illustrated using
Biorender)
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Treating patients with drugs or radiotherapy
introduces an artificial selective pressure, chang-
ing the dynamics within the tumor. It has been
suggested that the introduction of an artificial
pressure may aid therapeutic resistance by
eliminating therapy sensitive cells, while poten-
tially leaving resistant cancerous cells with excess
space and resources [22]. These remaining cells
can cause cancer recurrence (Fig. 15.2). Follow-
ing targeted treatment, the genetic profile of the
tumor is likely to be changed, and new strategies
for patient treatment must be planned. Tumor cell
drug resistance is enabled in several ways includ-
ing drug inactivation, change of drug target or
drug target levels, increased drug efflux,
decreased uptake, increased DNA damage repair,
or apoptosis suppression [23].

15.5 Single Cell Sequencing: A
Clinical Aspect

NGS implementation in diagnostics of cancer
patients is an important technique for providing
prognosis of disease state, and to propose suitable
patient treatment. DNA sequencing provides
information about CNV, Single nucleotide

variants (SNV), and structural variants (SV).
RNA-seq provides information on which gene
products are expressed and in what quantity.
Techniques for SCS has within recent years
been developed to enable studying human health
and development as well as providing potential
for diagnostics, monitoring, and treatment of dis-
ease. Several different approaches for single cell
RNA and DNA sequencing have been developed
within the last decade [24, 25].

Techniques for SCS are roughly divided in
two categories—plate-based (e.g., SMART-seq)
and droplet-based techniques (e.g., 10x Genomics
Chromium™ Single Cell 30 RNA-seq)
(Fig. 15.3). Both strategies start with dissociated
single cells in suspension and aims at adding a
unique identifier (barcode) to each cell, allowing
for multiplexed sequencing on Illumina
sequencers. For plate-based techniques each sin-
gle cell is deposited into a chamber in a multi-well
PCR plate or a tube, and subsequently indexes are
added to each, as a part of final library prepara-
tion. Droplet-based techniques are based on
microfluidics, where single cells in suspension
and primer-covered beads are capsuled in small
emulsion droplets, leading to random indexing. In
each droplet, a single cell is lysed and combined

Fig. 15.2 Tumor ecosystem. Illustration showing
branching of subclones from a founder cell. The tumor
microenvironment allows for selective pressure of specific
subclones to expand and others to become extinct. Intro-
duction of an artificial selective pressure (e.g., Targeted

therapy) may eliminate therapy sensitive cells, leaving
space and resourcing for resistant cells to cause cancer
recurrence. (Figure inspired from Greaves and Maley
[22]. Illustrated using Biorender)
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with a bead covalently bound to primers
containing both unique molecular identifiers
(UMIs) and a bead-specific barcode. In general,
droplet-based approaches allows for preparation
of a great number of single cell libraries simulta-
neously. However, it only allows for detection of
highly expressed genes. For most diagnostic
purposes this level of resolution is inadequate,
mainly because a high number of important
marker genes will never be detected, only because
they have low expression. Plate-based methods
require more technical know-how and does not
allow for processing as many cells in parallel, as
droplet-based methods. Plate-based approaches
does, however, allow for detection of more
genes per cell, important in a clinical aspect
[26]. Selecting the most appropriate single cell
RNA- or DNA-sequencing method is furthermore
a question of price versus gained information.

Droplet-based methods are in general cheaper
per cell, but the information gained from each
cell is shallow, and currently limiting for both
research and clinic.

15.6 Single Cell Genome
Sequencing

With single cell genome sequencing, genomic
heterogeneity of cell populations can be explored,
such as mutations or chromosomal abnormalities.
Plate-based single cell DNA-sequencing
(scDNA-seq) have few commonly used—Multi-
ple Annealing and Looping-Based Amplification
Cycles (MALBAC), Multiple Displacement
Amplification (MDA), and PicoPLEX®. All
techniques are available as commercial kits.
Common for all current scDNA-seq methods is

Single Cell
Suspension

Bead + Lysis
Buffer

Oil

Emulsion
Droplets

1x Cell in
Each Well

Single Cell
Suspension

FACS
Single Cell Isolation

Collection Tube

Fig. 15.3 Single cell sequencing technologies. Single
cell sequencing technologies are roughly divided into
two categories—Plate-based approaches (Bottom) and
Droplet-based approaches (Top). Plate-based approaches
isolate single cells into lysis buffer containing multi-well
PCR plates or tubes. Isolation may be performed using
fluorescent activated cell sorting (FACS). Barcodes are

added during final library preparation steps. Droplet-
based approaches combine primer-covered beads and sin-
gle cells in emulsion droplets. Cells are lysed within the
droplet, and reverse transcription carried out. Single cell
cDNA is subsequently pooled and processed in bulk.
(Figure Illustrated using Biorender)
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the requirement of an amplification step, which
has the potential to introduce an amplification
bias, well known from low-input bulk DNA
sequencing techniques [27]. Importantly, quanti-
fication of repetitive regions which are notori-
ously hard to sequence with standard short read
sequencing, is sensitive to even amplifications,
where not all methods perform equally. Repeti-
tive regions include gene duplication CNVs,
important for cancers.

15.6.1 MDA

MDA is based on annealing random hexamer
primers to denatured DNA, followed by primer
extension and strand displacement enabled by
Bacillus Stearothermophilus (Bst) phi29 DNA
polymerase at isothermal conditions [28]. MDA
has been suggested to surpass PicoPLEX® and
MALBAC for detection of Small nucleotide
polymorphisms (SNPs) and Structural variants
(SVs) [24]. These properties are enabled by the
low error rate of Bst phi29 DNA polymerase and
the generation of larger amplicons than
PCR-based methods. However, MDA exhibits
amplification bias by over-representing some
areas while under-representing others. When
sequencing complex diploid genomes, such as
human, MDA may give rise to uneven genome
coverage yielding false quantification of CNVs.

15.6.2 MALBAC

MALBAC is a technique combining MDA with
PCR. Random primers are annealed to single-
stranded templates similar to MDA and extended
using Bst phi29 DNA polymerase at isothermal
conditions. Using a PCR machine, several cycles
of annealing, extension, melting, and looping are
performed, ensuring a more equal distribution of
transcripts across the genome compared to MDA.
This property makes MALBAC more suitable for
detection of CNVs [24, 29]. However, MALBAC
suffers a greater proportion of false positives by
amplification of polymerase errors occurring in

early PCR cycles, which makes MALBAC less
suitable than MDA for detection of SNVs [24].

15.6.3 PicoPLEX®

PicoPLEX® is a purely PCR-based technique.
Denatured template DNA is pre-amplified using
random primer extension with primers containing
sequences that hybridize to single-stranded DNA
(ssDNA), and with a PCR handle at its 30 end.
Pre-amplification steps accumulate a hairpin
library which is amplified by PCR with primers
toward the handle sequences. PicoPLEX® tech-
nique has been found to be most suitable for CNV
detection. New generation PicoPLEX® Gold
promises improved detection of both SNVs and
SVs to levels exceeding MDA [24, 30].

15.7 Single Cell Transcriptome
Sequencing

Single cell mRNA sequencing allows for the
study of intercellular transcriptional variability,
enables identification of marker genes and related
pathways in specific subpopulation of cells. All
current fully functioning techniques require
isolation and subsequent lysis of single cells,
conversion of RNA to cDNA, and amplification
of cDNA. Due to low concentration of starting
material, necessitating multiple rounds of ampli-
fication, the process of single cell RNA sequenc-
ing (scRNA-seq) suffers from several technical
biases. Choosing your method for scRNA-seq
depends on which transcript properties one
wishes to uncover.

ScRNA-seq techniques enabling full-length
transcripts are preferred when wishing to uncover
structural variation, mutations within transcripts
(still problematic from mRNA) or for the detec-
tion of pseudogenes and splice variants. How-
ever, a disadvantage to this feature is the
preclusion of early barcoding steps and
incorporation of Unique Molecular Identifiers
(UMIs). UMIs are 4–10 random nucleotides
introduced in the primer oligo for 50 and 30

cDNA synthesis. The principle for adding UMIs
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is to establish a unique identity of each RNA
molecule. During PCR amplification, each
cDNA containing the same UMI will be consid-
ered derived from the same transcript molecule.
This, in theory, eliminates PCR amplification bias
commonly seen when applying a high number of
PCR cycles, leading to falsely counting identical
reads as different transcripts [31, 32]. Counting
UMIs instead of actual reads make protocols suit-
able for transcript CNV detection. A way of
adjusting for amplification bias in full-length
RNA-seq protocols is by adding External RNA
Control Consortium (ERCC) spike-ins to the
experiment [33]. ERCCs are 92 synthetic
transcripts that function to standardize sequenc-
ing experiments by adding an equal amount to
each single cell reaction prior to processing steps.
ERCCs are of bacterial origin and designed to
show minimal sequence homology with endoge-
nous eukaryotic transcripts, but features a poly
(A)-tail, different GC-content, and varying
lengths. Applying ERCCs in a sequencing exper-
iment can account for biases such as primer cap-
ture efficiency and are used for normalization of
gene expression across cells during data analysis.

Droplet-basedmethods have a limited transcript
information compared to full-length protocols, by
only capturing 30 or 50 transcript-ends for sequenc-
ing. Techniques that are UMI-based are primarily
suitable for high-throughput experiments of gene
expression heterogeneity, since these have an
advantage with small technical biases. UMI-based
techniques are not suitable in experiments designed
to uncover specific transcript properties, or for
diagnostic purposes where specific variants are of
great importance and severe dropouts are not
tolerated [25, 34].

15.7.1 First Generation Full-Length
ScRNA-seq

Fuchou Tang’s method was the first plate-based
technique for full-length scRNA-seq, and built
upon the unique feature of mRNA, the poly-A
tail at the end of each mRNA which is to be
translated into protein [35]. In brief, a poly
(T) primer, which will bind the poly-A tail,

coupled to a specific anchor sequence allows to
make a cDNA copy, by reverse transcription, of
full length of the mRNA. The single-stranded
cDNA is subsequently added a 30 end poly(A)-
sequence to which a new poly(T) primer coupled
to a different anchor sequence is annealed,
facilitating the formation of double stranded
cDNA molecules. These cDNA molecules are
then amplified using polymerase chain reaction
(PCR), and amplicons of each cell in the plate is
then a sample that can be sequenced with standard
sequencing machines.

15.7.2 SMART-seq1/2/3

Switching Mechanism at the 50 End of RNA
Template (SMART-seq) is a plate-based tech-
nique also built around the polyadenylation
(poly(A)) feature of mRNA transcripts.
SMART-seq is a protocol for full-length
transcriptome sequencing relying on Reverse
Transcription (RT) followed by template
switching (TS) [36]. The poly(A)-tails of mRNA
transcripts are primed using an oligo-d(T) primer
coupled to a PCR handle. The primed mRNA is
reverse transcribed by Moloney Murine Leuke-
mia Virus (M-MLV) RT, which has terminal
transferase activity, and adds non-templated
nucleotides to the 30 end of cDNA ends. These
non-templated nucleotides are preferentially
cytosines, which allow annealing of a template
switching oligo (TSO) containing ribo-
guanosines at its 30 end. The second generation,
SMART-seq2, applies a TSO carrying a locked
nucleic acid (LNA) in its last 30 end position. The
LNA locks the nucleotide in endo-formation,
improving base-stacking and annealing ability
yielding raised melting temperature between the
cDNA strand and the TSO [37]. This feature
provides SMART-seq2 with a stronger ability
for transcript capture, which mounts in improved
gene detection [38]. In general, SMART-seq2 is
believed to have good sensitivity and accuracy in
regards to gene detection, and to give even read
coverage [25, 38]. Several different SMART-seq
kits are commercially available from different
vendors (e.g., Clontech and New England
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Biolabs) differing in chemistry, price-point, and
hands-on processing time. SMART-seq3 is the
newest generation full-length scRNA-seq proto-
col and differs from traditional SMART-seq by
the implementation of UMIs in the 50 end of full-
length RNA transcripts [39]. Inclusion of UMI
counting gives the protocol higher power in
regard to transcript copy number, detection, and
PCR bias. The protocol features a next-generation
MMLV RT, switching of salt component from
KCl to NaCl, and implements PEG to improve
cDNA yield during reverse transcription. The
protocol also adds GTPs during RT to support
TS. SMART-seq3 has been suggested to improve
the sensitivity of original SMART-seq protocols
to sensitivity levels approaching single-molecule
RNA fluorescence in situ hybridization (smRNA
FISH) [39].

15.7.3 MARS-seq

Mars-seq is a plate-based method implementing
Unique Molecular Identifiers (UMIs) and
barcoding of each single cell during transcript
priming. Single cells are, as in the case of
SMART-seq, sorted into PCR plates or tubes, in
which libraries are prepared. MARS-seq has been
found to have a high dropout rate and a low
detection of genes per cell compared to remaining
SCS protocols [32]. Second generation MARS-
Seq 2.0 was released as an improvement to the
original MARS-Seq protocol. By lowering RT
working volumes and quantity of reaction
reagents, price per single cell was reduced six-
fold, and background noise reduced from 15 to
2% [40].

15.7.4 Seq-well

Seq-well is a portable UMI-based single cell
RNA-seq method [41]. Seq-well differs from
both droplet-based and plate-based RNA-seq
approaches by using sealed arrays of

sub-nanoliter wells. Primer-covered mRNA cap-
ture beads are isolated in each well, and subse-
quently a single cell suspension is poured over
the array, before sealing the plate using a semi-
permeable membrane. The size of the well
should limit the majority of wells to contain
only a single primer-covered bead and a single
cell. Newest generation seq-well S3 have been
found to have more sensitive transcript capture
and higher gene detection than drop-seq and
10x Chromium, however it cannot outperform
plate-based SMART-seq2 [42]. Due to its sim-
plicity, low cost, and high-throughput seq-well
has been applied in clinical studies to identify
HIV-infected immune cells and research on
cells infected with Malaria in developing
countries [43]. Seq-well is not sold as a com-
mercially available kit, however due to its sim-
plistic experimental design, doesn’t require a
plenitude of specialized equipment.

15.7.5 Drop-seq

Drop-seq is a droplet-basedmethodwhere a flowof
primer-covered beads suspended in lysis buffer and
a flow of single cell suspension are combined using
amicrofluidic chip generating emulsion droplets. In
each droplet a single cell is lysed and combined
with a bead covalently bound to oligo-d(T) primers
containing both UMIs and a bead-specific barcode.
Cells are lysed within each droplet, and mRNA
attach to the oligo-d(T) covered beads. Subse-
quently droplets are dissolved to allow for parallel
cDNA amplification, and final library preparation
of all cells within a single tube [25, 44]. The tech-
nique has a low cost per cell, however the cell input
requirement is fairly high (~150.00 cells per run)
[25, 45]. Furthermore, drop-seq has been found to
have low detection of genes per single cell com-
pared to remaining SCS protocols [32]. Drop-seq is
not available as a commercial kit, which can make
experiment setup time consuming and technically
challenging.
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15.7.6 10x Genomics Chromium Single
Cell 30 RNA-seq (10x Chromium)

The 10x Chromium system is a droplet-based
semiautomated platform, commercially available
with reagent kits to be used in small specialized
liquid handler machine. It works by combining
single cells in suspension and primer-covered
beads within a single emulsion droplet enabled
by the use of a microfluidic chip. Each primer
contains both a UMI and a unique barcode.
Within the droplet, mRNA transcripts are
converted to cDNA. Following RT, emulsion
droplets are dissolved, and final library prepara-
tion is performed in bulk. 10x Chromium system
can prepare up to 10,000 single cell libraries in a
single run and requires a read depth of approxi-
mately 25,000 reads per single cell. Due to its
ability to cover a large number of cells, 10x
Chromium has been found better at detecting
rare cell types in tissue compared to SMART-
seq2 [26]. 10x Chromium have a slightly better
transcript capture and requires a lower minimum
cell input compared to other droplet-based
approaches [45]. 10x Chromium data has been
found to have severe gene dropout problems,
especially of lowly expressed genes [26]. Plate-
based method SMART-seq2 has a higher gene
detection, especially in regard to low abundance
transcripts and spliced transcripts [26]. A great
advantage of 10x Chromium is that it’s almost
fully automated, minimizing both hands on time
and risk of inducing confounding factors (e.g.,
pipetting errors). Even though the price of 10x
Chromium is slightly higher than similar droplet-
based approaches (e.g., drop-seq), the per cell
library price is lower than plate-based approaches
(e.g., SMART-seq2) [45, 46].

15.8 Single Cell Parallel Genome
and Transcriptome Sequencing

Single cell G&T-seq, is a method developed for
studying both the genome and transcriptome of
the same single cell [47] (Fig. 15.4). This method

enables investigation of genetic variations and its
correlation with gene expression. The core of the
method is a step separating mRNA and DNA
from the same single cell into different plates or
tubes. Following separation, DNA and mRNA is
eligible for a range of library preparation
protocols, individually processed and sequenced.
The protocol was originally described applying a
modified SMART-seq2 protocol for
transcriptome amplification, and PicoPLEX® or
MDA for genome amplification [36, 47]. The sep-
aration of DNA from mRNA is enabled by primer
coupled magnetic beads (Oligo-d(T)30VN
beads). The primer is an oligo-nucleotide
containing a PCR sequence, a stretch of 30 thymi-
dine residues (oligo-d(T)30), and an anchor
sequence (VN) (V ¼ A,G, or C; N ¼ A,G,C or
T) coupled to biotin in the 50 end (Fig. 15.4). The
50 Biotin modification enables conjugation to
streptavidin coated magnetic Dynabeads®.
Oligo-d(T)30VN beads capture mRNA
transcripts in the cell lysate, and transcripts are
moved to one part of the well using a magnet.
This allows for transferring DNA in the superna-
tant to a new plate, which can be stored at�80 �C
for later processing. mRNA is immediately
processed, performing on-bead RT. The protocol
applies a strong lysis buffer containing
guanidinium salt and sodium dodecyl sulfate
(SDS) to enable complete lysis of both the cell
membrane and nucleus membrane. Before
processing, DNA must be liberated from this
lysis buffer using solid-phase reversible immobi-
lization (SPRI) beads to avoid inhibition of down-
stream amplification protocols.

G&T-seq is relevant for cancer diagnostic
purposes by the ability of sequencing both RNA
and DNA from the same single cell. Single cell
transcriptome data can be used to cluster cells into
subpopulations, which may show differences in
proliferation, marker gene expression, or metastatic
potential. DNA-seq from these single cells may be
pooled according to assigned subpopulations for
disclosing relevant diagnostic mutagenic variants
between and within subpopulations.
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15.9 Single Cell RNA-seq Data
Processing

ScRNA-seq initial data processing comprise steps
of alignment, gene annotation, count matrix
processing, and normalization. Following initial
processing biological analysis of single cells
often include identification of differentially
expressed (DE) genes, clustering of single cells
into distinct populations, classification of cells,
and trajectory reconstruction. Normalization has
been suggested to be the step influencing
biological DE analysis the most. Second most
important factor for DE analysis performance
was suggested to be library preparation
protocol [49].

Most appropriate choice of alignment tool
depends on the sequencing protocol. 30

UMI-based protocols are more sensitive to the
choice of aligner and annotation tool. In a com-
parison of tools, Spliced Transcripts Alignment to
a Reference (STAR) tool in combination with
GENCODE assigned most reads to 30

UMI-based protocols. Kallisto was found to
assign fewest reads, has the lowest mean gene
expression and highest gene dropout rates for 30

UMI-based protocols [49]. Aligning 30 UMI reads
using Burrows-Wheeler Aligner (BWA) were
found to give a higher false mapping fraction,
and expression variance than UMI reads mapped
using STAR. BWA also has reduced power to
detect differentially expressed features compared
to STAR, or kallisto alignment for UMI reads. In
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Magnetic Bead
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RNA/DNA
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RNA DNA

Fig. 15.4 Genome and transcriptome sequencing. Over-
view of G&T-seq technique. DNA and mRNA from the
same single cell are physically separated using streptavidin
magnetic beads coupled to a biotin oligo-d(T)30VN
primer. Subsequently both DNA and mRNA can be
amplified and sequenced separately. DNA is stored at
�80 �C for later processing, and may be amplified by

either MDA, MALBAC, or PicoPLEX®. MRNA is
amplified by on-bead SMART-seq technology immedi-
ately following separation. VN ¼ anchor sequence
(V ¼ A,G, or C; N ¼ A,G,C, or T). oligo-d(T)30 ¼ a
stretch of 30 deoxythymidine. (Figure inspired from
Macaulay et al. [48]. Illustrated using Biorender)
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general, UMI-based protocols are recommended
aligned using STAR with GENCODE annotation,
whereas for full-length protocol SMART-seq2,
kallisto with RefSeq annotation performed
slightly better than STAR and have advantage of
lower computation time [49]. ScRNA-seq data
has lower signal-to-noise ratio, and higher drop-
out of both cells and transcripts compared to bulk
data. Careful filtering prior to normalization and
biological analysis can minimize this issue
[50]. A number of checks can be performed,
bearing in mind that sequencing is a sampling of
fragments of cDNAs, where quantity is only
meaningful relative to the total number of reads.
The total number of reads depend only on how
much sequencing time and reagents is invested,
but one to ten million reads per cell have been
reported to capture most mRNA information,
compared to cost of more cells, but it will vary,
depending on the platform [51]. Common quality
control (QC) metrics for filtering scRNA-seq data
are library size, feature count (features are genes,
fragments, or transcripts, depending on alignment
strategy), and proportion of ERCC spike-ins or
mitochondrial features [52]. Library size
constitutes the total sum of counts across all
features for each single cell. Cells with small
libraries are considered of low quality. This
could be the result of RNA degradation by either
RNase contamination or a product of inefficient
transcript capture before first strand synthesis and
cDNA amplification. Library size, however, also
depends on sequencing depth. The number of
expressed features is defined as the number of
features with nonzero counts for each specific
cell. Cells with very few expressed genes are
considered to be of poor quality as the wide
range of expressed transcripts have not been effi-
ciently captured.

If spike-in controls were added to the sample,
the proportion of reads mapped to ERCC spike-
ins can be calculated relative to the library size of
each single cell. ERCC spike-ins are added in
equal amount to each cell lysis prior to
processing. An enrichment in spike-in counts
represents either loss of endogenous RNA,
empty wells, or simply too high concentration of

spike-ins added each sample. The proportion of
mitochondrial features (mtRNA) can be assessed
as a QC metric the same may ERCCs spike-ins
are used. The reasoning is that due to the size of
mitochondria, and physical protection of
mtRNAs, they will not as readily leak from
perforated cells as individual transcripts. Mito-
chondrial transcripts are thus more likely to be
protected from degradation, captured and
sequenced, and will take up a larger proportion
of the reads in damaged or stressed cells.

In general, there should be rough agreement
between QC metrics. If there is no clear agree-
ment, it might correspond to technical bias in the
data—pipetting uncertainty, sample preparation
steps, or PCR bias. However, a lack of agreement
between metrics may also represent genuine
biological differences—RNA content, size
differences, or different mtRNA content.

15.10 Before Starting a Plate-Based
Single Cell Experiment

Handling single cell RNA and DNA is much
more technically demanding than handling a
pool of cells. Single cell experiments can be chal-
lenging to perform because it requires both
specialized equipment and technical know-how
on sample and reagent handling. Diploid human
cells contain between 0.5–50 pg of RNA and
6.6 pg of DNA, which make single cell
experiments extremely sensitive to contamina-
tion, sample degradation, and elevated back-
ground noise in the final sequencing data. All
pre-amplification steps must be performed within
a positive air flow hood, located in a clean
pre-PCR room. Instruments must be cleaned
using UV hood, ethanol, and DNA/RNase away.
Experimenter must wear gloves and a clean lab
coat when processing single cells.

Establishment of protocols for generating suc-
cessful plate-based single cell libraries often
requires some adaptation to the specific cell
type. When working with primary cells, it is
recommended to first test and practice protocols
using a comparable cell line. Often protocols for
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plate-based SCS do not provide guidance on
either preparation of single cell suspensions nor
sorting of your cells. However, both are pivotal
starting points for generating successful single
cell libraries.

15.10.1 Single Cell Suspensions

Preparation of single cell suspension is an often
disregarded but critical starting point of SCS
protocols. Cell line single cell suspensions com-
patible with SCS are performed similar to
subculturing protocols. However, it is important
to thoroughly wash cells from tryptic medium.
Preparing single cell suspensions from primary
cells are more challenging. First, if performing
scRNA-seq, cells must be processed max. 4 h
post surgery and kept on ice, to minimize risk of
RNA degradation [53]. Second, it’s pivotal to
design your enzymatic dissociation assay to fit
the tissue of origin and avoid damage to sorting
surface markers. No standard protocols exist to fit
all tissues, and this step will require optimization
for each tissue. Furthermore, working with epi-
thelial cells, it is recommended to use correct
plastic equipment (e.g., LoBind Eppendorf
tubes), to avoid losing sticky cells. Finally, single
cell suspension, either primary or cell lines, must
be resuspended for isolation in a suitable sorting
buffer. Sorting buffer must be free of agents, salts
or enzymes, that can interfere with downstream
amplification protocols. Cell viability between
60–90% is generally to be expected for primary
cells when dissociating using a fast disaggre-
gation protocol. Cell viabilities below this thresh-
old should cause reason for concern, as cells
might be damaged, apoptotic or necrotic, induced
either prior to or during processing. This will
cause a shift in transcriptomic activity not
representing tissue of origin, which might reflect
as untruthful conclusions in your final sequencing
data. Enrichment for viable cells can be
performed by applying several rounds of low
force centrifugation, removing dead cells and
cell debris. Working with bloody tissue, it’s
recommended to remove erythrocytes and enrich
for cells of interest by applying red blood cell

(RBC) lysis buffer (Do not apply if working
with mammalian alpha-intercalated kidney
cells). Results not shown are from work at
Department of Genomic Medicine, Danish State
Hospital, Rigshospitalet, Denmark.

15.10.2 Single Cell Isolation

The handling and isolation of single cells is a
technically challenging task. A variety of
methods are available for the isolation and sorting
of single cells into lysis buffer containing PCR
plates or tubes [54]. For plate-based SCS
purposes, the most common method for single
cell isolation is fluorescence activated cell sorting
(FACS). FACS allows sorting of a heterogeneous
single cell suspension into populations based on
the cells physical properties enabled by light scat-
tering. Fluorescent labeling allows further
distinguishment between single cells based on
surface markers and viability. When designing a
fluorescent assay, it’s important to minimize
spectral overlap between fluorochromes. Cell
lysis should take place as the single cell hits the
well. It is thus of great importance to carefully
center the stream before each sort, making sure
the cell hits the lysis buffer and not the sides of
the well. Immediately after sorting, samples
should be thoroughly vortexed to make sure sin-
gle cells are completely lysed and cell content
placed within the buffer. Finally, samples should
be spinned down, and placed in dry ice for a few
minutes until completely frozen before storing at
�80 �C for future use.

15.10.3 PCR Cycling

When working with single cells, the number of
PCR cycles must be adjusted according to the
RNA content of the cell. In general, the number
of pre-amplification cycles should be kept as low
as possible to avoid introducing PCR bias into the
experiment. However, if cDNA concentration is
too low, it is difficult to assess the quality of the
cDNA fragments. In general, between 17 and
20 cycles is suggested for cell lines, depending
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on the RNA content of the strain. For single
primary cells the approximate RNA content
should determine the number of PCR cycles for
proper amplification. The optimal number of
cycles should be determined according to trial-
and-error for each tissue and cell type when
conducting a new single cell experiment. Bear in
mind that commercial kits are often designed and
tested on cell lines, thus suggesting lower cycles
than needed for live tissue.

15.11 Research Studies
of Carcinomas by Single Cell
Sequencing

The first single cell study by Navin et al. [7] on
breast cancer heterogeneity applied single nuclei-
sequencing of 100 cells from both a polygenomic
and a monogenomic triple-negative (HER2-/ER-/
PR-) breast cancer patient [7]. The study proved it
was possible to flow-sort and amplify genomic
DNA of a single cell nuclei for NGS quantifica-
tion of gene copy numbers. Analysis of the
polygenomic patient tumor showed presence of
four distinct populations. The first population
consisted of CNV-neutral diploid cells and
“pseudo diploid” cells, that is cells with normal
copy numbers but abnormal chromosomal com-
position. The three remaining populations had
specific CNVs. Each subpopulation showed rela-
tion to one another by shared genomic alterations,
while also having distinct characteristics. These
findings correlate with beliefs of cancer progres-
sion by clonal expansions. Investigation of CNV
breakpoints within the monogenomic tumor
(52 cells) and its liver metastasis (48 cells)
showed high genomic similarities between cells
of the metastasis and one population within the
original tumor. This attributed to a belief that
cancer metastasis occur from a single clonal
expansion within the original tumor. The authors
introduce the term “punctuated clonal evolution,”
describing how distinct mutations give rise to
complicated genomic alterations within very few
cell generations. A more extensive study on CNV
breakpoints supporting punctuated clonal evolu-
tion was published a few years later [5]. In this

study 1000 single nuclei were sequenced from a
total of 12 HER2-/ER-/PR- breast tumors (Aver-
age 83 cells per patient). This study also provided
insight into tumor heterogeneity by finding that
patient tumors had 1–3 major subpopulations of
aneuploid cells, supporting subclonal architecture
of breast tumors.

A study of single cell transcriptomes by Chung
et al. [55] further attributed to exploration of
inter- and intra-tumor heterogeneity in breast can-
cer [55]. In this study 515 single cell
transcriptomes were amplified by full-length
SMART-seq1 technology from 11 patients with
different breast cancer subtypes. Both tumor and
immune cells were isolated together by “marker-
free” microfluidics. The study showed that each
cancer subtype did have a core gene expression
profile correlating to its assigned breast cancer
subtyped by bulk RNA- seq. However, SCS
revealed intra-tumor heterogeneity. First, it was
found that only one of three patients characterized
as HER2+ had actual activation of HER2 down-
stream pathway. One HER2+ patient had both
HER2+ and ER+ expression, with predominating
ER pathway initiation, and categorized as LumB
subtype. This HER2+/ER+ LumB subtype patient
might initially correspond well to hormonal ther-
apy targeting ER, however may retain HER2+
cells. Extinction of the ER+ subpopulation poten-
tially leave space and resources for the HER2+
subgroup to remain and spread, leading to
prolonged disease for the patient. Another HER2
+ patient had been treated using HER2 targeted
therapy based upon expression analysis at the
sampling time point. However, following targeted
therapy, the genetic profile of the tumor had
changed, showing low level HER2+ pathway
activation and higher basal gene expression
resembling HER2-/ER-/PR- tumors.

A study by Karaayvaz et al. was published in
2018, applying SMART-seq2 technology on
>1500 breast tumor cells from six untreated
HER2-/ER-/PR- patients with the aim of
unraveling sub-clonality [56]. Cells were sorted
by FACS using both a “marker-free” approach
and by negative selection of CD45+ cells. Cell
types were subsequently identified by cell type
specific marker genes in the expression data.
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Malignant cells were selected as cycling cells and
showed that most G1/S and G2/M cells (98.5%)
were of epithelial origin, consistent with the idea
that malignant cells exhibit higher proliferation
than non-malignant cells. Furthermore, clustering
of all cells showed that while immune, stromal,
and endothelial cell types clustered together, both
inter- and intra-tumoral, epithelial cells formed
several distinct clusters. Epithelial cell clusters
from tumors were also compared to normal mam-
mary epithelia, and showed that normal epithelial
cells had high concordance, while tumor epithe-
lial cells had weaker concordance both inter- and
intra-tumorally. In general, tumor epithelial cells
clustered according to tumor, even when some
clusters consisted of cells from different patients,
suggesting the existence of subpopulations
defined by common states between patients. The
study also investigated the correlation between
RNA expression and CNVs from bulk whole-
exome sequencing of four out of six patients.
The analysis found high correlation between
CNV in the genome and copy number in expres-
sion data, suggesting that genomic aneuploid
alterations determine transcriptional alterations,
giving rise to intra-tumor heterogeneity.

Single cell transcriptomic analysis of head and
neck squamous cell carcinoma (HNSCC) also
highlighted carcinogenic intra-tumor heterogene-
ity [57]. Single cell RNA was processed using a
modified SMART-seq2 protocol, featuring a
RNA cleanup step, on 2215 malignant and 3363
non-malignant cells from 18 different tumors.
Malignant epithelial cells from different patients
were found to have concordance in expression
signatures, suggesting common patterns of intra-
tumor expression. Seven different expression
programs were identified within malignant
populations, associated with either cell cycling,
hypoxia, stress, epithelial-mesenchymal transi-
tion, or epithelial differentiation. The authors
also suggested a refined HNSCC tumor classifi-
cation system. Four different bulk-sequencing
classification subtypes of HNSCC tumors
exist—basal, classical, atypical, and mesenchy-
mal. However, malignant cells from 10 patient

tumors mapped to just three subtypes (basal ¼ 7,
classical ¼2, atypical ¼ 1). No malignant cells
mapped to the mesenchymal subtype, even
though this represents the second most common
subtype among HNSCC tumors. Malignant cells
from mesenchymal subtype assigned tumors
instead mapped to the basal subtype. Expanding
the analysis to include stromal and immune cells,
suggested that tumors mapped to mesenchymal
subtype by bulk-sequencing merely had a higher
degree of stromal and immune cell infiltration.
The authors thus suggested a refined classification
system for HNSCC tumors, eliminating mesen-
chymal subtype.

In a study from 2017, single cell RNA
signatures of colorectal cancer cells showed that
tumors previously assigned to a single cancer
subtype by bulk-sequencing could be divided
into subgroups with different survival
probabilities [58]. Li et al. sequenced
transcriptomes of 375 tumor cells from 11 differ-
ent colorectal cancer patients and 215 cells from
matched normal tissue using Fluidigm C1
SMART-seq1 protocol. The authors identified
three clusters of tumor epithelial cells assigned
as Stem/transit-amplifying-like, enterocyte
2B-like, and goblet-like. Ninety-three percent of
tumor epithelial cells were identified as Stem/
transit-amplifying-like, in contrast to only 30%
of normal epithelia. Comparing differentially
expressed (DE) genes between tumor and normal
tissue from single cell data with DE genes
identified by bulk-sequencing, it was found that
the majority of DE genes from single cell analysis
were lost in bulk analysis. The list of tumor-
normal tissue DE genes identified by bulk-
sequencing were also found contaminated by
cell type markers relating to differences in com-
position of cell types within the tissue. The
authors suggest that single cell transcriptomics
and subsequent cell type clustering provides a
better approach for identification of DE genes
between tumor and normal tissue. Furthermore,
it was found that single cell transcriptome
sequencing could refine traditional colorectal
tumor classification by introducing new tumor
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subclasses defining differences in patient survival
outcomes.

15.12 Conclusions

Future precision diagnostics of cancer patients are
predicted to include both RNA and DNA
sequencing of single cells for identification of
tumor subpopulations (Fig. 15.5). Several

different research grade SCS methods have been
developed within the last decade and choosing
between them depends on the biological question
at hand. In general plate-based full-length
RNA-seq approaches are evaluation to be better
suited for diagnostics purposes, due to higher
gene detection and genome coverage. Current
droplet-based UMI approaches are too insensitive
and inconsistent for implementation in robust
diagnostic workflow. Research on intra-tumor
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Fig. 15.5 Improved cancer precision diagnostics
workflow. Diagnostics of cancer patients are predicted to
include single cell sequencing in the near future. Plate-
based full-length RNA-seq approaches are best suited for
diagnostic cancer subtype classification, due to higher
gene detection and genome coverage than droplet-based
RNA-seq approaches. Cancerous tumors are collected
max. 4 h post surgery, and tumors dissociated to single
cell suspensions. Single cells are isolated in multi-well

PCR plates using fluorescent activated cell sorting
(FACS). RNA and DNA is amplified using PCR, and
subsequently subjected to library preparation allowing
for multiplexed sequencing on Illumina machines. Follow-
ing sequencing, computational analysis allows detection
of tumor subpopulations, and identification of possible
biomarkers for targeted therapy. (Figure Illustrated using
Biorender)
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heterogeneity applying both RNA and DNA sin-
gle cell sequencing has highlighted the impor-
tance of applying such technologies, also in the
clinic. Identification of subclones within cancer
patient tumors are hypothesized to improve preci-
sion diagnostics, minimize disease period and risk
of cancer relapse, by allowing for treatment of all
cancer subclones, and not only the major clone. A
general pitfall with sequencing single cells from a
tumor specimen, is evaluating the amount of cells
needed for authentic mapping of the tumor land-
scape. Sequencing too few cells or only one area
of a tumor might still lead to lost detection of
subclones. Thorough testing and evaluation of
SCS on clinical samples must be performed to
determine whether clinical implementation of
these technologies provide novel information
important for efficient patient treatment. Immedi-
ate challenges with implementation of single cell
sequencing in clinic is the lack of standardized
computational pipelines for downstream analysis
of subclones and clusters of cells. Previous stud-
ies have suggested that similarities between tumor
subclones are higher than differences between
individuals. This opens for automated approaches
and clinical use of also global mRNA expression
patterns with little batch, or individual, effect to
account for, which has been a major challenge in
diagnostics of bulk samples. When larger number
of patients and tumors have been profiled at single
cell level it is possible that future subtyping,
identification of origin of metastasis and compar-
ison with previous treatment responses will be
computationally feasible, without current
research driven analysis by bioinformatics
experts in batch-driven cohorts.
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Single Cell RNA Sequencing in Human
Disease: Renal, Pancreatic, and Viral
Diseases

16

Sayra Garcia, Evan Der, and Chaim Putterman

Abstract

In this chapter, we discussed some of the spe-
cific uses of scRNA-seq in exploring viral
infections and diseases of the kidney and pan-
creas. This review, however, is by no means
exhaustive, and indeed this technology has
advanced the study of pulmonary and cardiac
diseases, transplant immunology, cancer, and
many others as well. Nevertheless, the above
reviewed studies do illustrate the utility and
resolution of scRNA-seq in understanding
exact cellular compositions, discovering het-
erogeneity within cellular expression patterns,
and uncovering clues that may eventually lead
to the development of more targeted and
personalized therapies. Additionally, the
increasing availability of whole tissue cellular
atlases in both health and disease as a result of
scRNA-seq studies provides an important
resource to better understand complicated

molecular signaling patterns and events that
are similar and different between human
diseases.

Keywords

scRNA-seq · Virus · Infection · Kidneys ·
Pancreas

16.1 Introduction

Single-cell RNA sequencing (scRNA-seq), a tech-
nology with increasing impact, has advanced our
understanding of the development and function of
organ systems and the pathophysiology of diseases
that affect them. scRNA-seq is built on the foun-
dation provided by conventional bulk RNA
sequencing (RNA-seq) and is fundamentally simi-
lar, differing only in the power of its resolution.
Bulk RNA-seq, a powerful whole transcriptomic
tool, has provided major insights into human
diseases by elucidating differences in gene expres-
sion patterns at the level of tissue or cell
populations. Bulk RNA-seq, however, suffers
from a lack of sensitivity to gene expression from
rare cell types or cell states which can be lost in the
average of the dominant cells, potentially masking
important contributors to disease pathogenesis. As
scRNA-seq becomes more widely applied, more
novel types and subtypes of cells are being discov-
ered, further underscoring the need to increase the
resolution at which diseases are studied.
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scRNA-seq has developed rapidly in recent
years; from the original tube-based technology,
several platforms have emerged. Common to all
platforms is the need to generate a single-cell
suspension which is typically accomplished by
gentle enzymatic digestion. Early scRNA-seq
used flow cytometry (FACS) to separate cells of
interest into standard 96- or 384-well plates.
Later, advances in microfluidics allowed more
sophisticated capture using microfluidic devices,
such as integrated fluidic chips. Most recently,
platforms using microfluidic oil droplets to cap-
ture cells including 10x Genomics Chromium,
DropSeq, and inDrop have become the gold stan-
dard, due to the massive potential throughput
offered by these techniques [1, 2]. Concurrently,
advances in scRNA-seq chemistry has allowed
for individual transcripts to be barcoded with a
unique molecular identifier (UMI), providing an
absolute count of transcripts per cell instead of a
relative abundance. Droplet-based scRNA-seq
runs typically generate thousands of single-cell
transcriptomic profiles, which can be mined for
gene expression patterns to reveal signatures that
may have otherwise been overlooked.

This chapter demonstrates the power of
scRNA-seq to advance the understanding of
human diseases by highlighting some recent
applications of this technology. While the focus
is on the kidney, pancreas, and viral infections,
many other diseases and organs have been studied
using scRNA-seq. For instance, scRNA-seq
approaches have provided important new insights
into mechanisms of disease affecting the lung and
liver, and those involved in neoplasia. Addition-
ally, studies of healthy organs and normal organ-
ogenesis have revealed previously unknown
cellular heterogeneity, states, and interactions.

16.2 Kidney

The kidney is a homeostatic organ with several
important physiologic functions including blood
filtration, and consists of several distinct cell
types typically classified by their function and
location [3]. scRNA-seq of kidney tissue initially

was focused on exploring the heterogeneity of
tumor cells in renal cell carcinoma, but more
recently has expanded to other human renal
diseases, including lupus nephritis (LN) and
chronic kidney disease (CKD). A major undertak-
ing recently has been the generation of healthy
renal tissue cell atlases, which can be used as a
reference point in the comparison of renal cell
profiles from disease states. Park et al. applied
droplet-based scRNA-seq to healthy adult
mouse renal cells discovering novel transition
states between cell types and revealing a novel
population of collecting duct cells [4]. The
authors additionally identified a population of
cells expressing both intercalated cell and princi-
pal cell markers, indicating that these cells exist in
a transitional continuum. When transcriptional
profiles of renal cells from a mouse model of
fibrosis analogous to CKD was compared to
controls, Park et al. found that the balance in
renal tissue was shifted toward principal cells.
Since intercalated cells are key in proton secretion
through ATP-dependent proton pumps, their
decreased number could explain the acid buildup
contributing to the metabolic acidosis seen in
mouse models and patients with CKD [4]. This
finding was extended to the human disease in
which CKD was associated with an increase in
principal cells as compared to intercalated cells.
Park et al. further used scRNA-seq to categorize
the specific cellular populations expressing sus-
ceptibility genes identified by GWAS studies for
various renal diseases, including tubular acidosis
and nephrotic syndrome. From this analysis it was
hypothesized that there is a cell-type-specific con-
tribution of these genes in each disease.

Sivakamasundari et al. similarly created a
single-cell atlas of the human kidney [5]. This
analysis revealed novel cell populations, and
markers for previously known cell types similar
to those identified by Park et al. in mice.
Sivakamasundari et al. tracked the expression of
known LN-associated genes, such as NOTCH4,
which in healthy conditions was highly expressed
in endothelial cells of the ascending and
descending vasa recta. This observation localizes
the cellular compartment responsible for the
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phenotype associated with NOTCH4 LN suscep-
tibility alleles. Interestingly, they also reported
expression of albumin in proximal tubular cells,
raising questions about the source of urinary albu-
min which is characteristic of many renal diseases
but which is often attributed to a loss of function
in the glomerular filtration barrier rather than
reflecting tubular damage and proteinuria from a
tubular source.

LN has been a focus of several studies using
scRNA-seq. Using an integrated fluidic chip plat-
form, we recently characterized renal and skin
biopsies from LN patients [6]. This analysis
revealed an interferon response signature that
correlated with clinical parameters, including his-
tological features such as glomerular IgG deposi-
tion, and was associated with poor response to
conventional treatment. The prognostic impor-
tance of an interferon signature was validated in
a separate cohort using a higher throughput plat-
form. Moreover, a fibrotic signature in tubular
cells was found which predicted response to treat-
ment at 6 months post biopsy [7]. This signature
indicated the early activation of a pro-fibrotic
cascade in tubular cells in LN, which in many
cases appeared before fibrosis in the tissue was
visible by traditional histological evaluation. The
increased number of cells analyzed and the larger
patient cohort in this latter study allowed for
biopsy class specific comparisons, which
revealed several pathways which may contribute
to the histological differences in the disease and
provide a potential molecular basis for the biopsy
classification system. For instance, tubular cells
from biopsies of proliferative class disease (class
III or class IV) had upregulated TNF signaling
when compared to membranous (class V) or
mixed class (class III/IV + V) biopsies. Arazi
et al., as part of the same consortium but in a
separate cohort, studied LN patient biopsies
using a plate-based CEL-SEQ2 approach on
sorted populations of leukocytes. They presented
an immune landscape of the LN kidney and were
able to identify several subsets of immune cells
including T follicular helper regulatory cells,
myeloid cells, NK cells, and B cells with both

pro-inflammatory and inflammation resolving
interferon signatures [8].

16.3 Pancreas

The pancreas is comprised of cells which have
many important exocrine and endocrine
functions. Acinar cells are the main exocrine
cells of the pancreas, the main function of which
is the secretion of digestive enzymes into the
small intestine. The islets of Langerhans are
micro-organs made up of five different endocrine
cell types whose primary role is to regulate blood-
glucose homeostasis by hormone secretion. Pre-
viously, gene expression in the islets of
Langerhans (studied as whole islets) had been
probed by bulk sequencing, providing essential
insights into pancreatic function and diseases,
such as type II diabetes (T2D). Nevertheless,
despite the important discoveries made using
bulk RNA-seq methods, global gene expression
patterns are only representative of the most abun-
dant cells found in the pancreas or islets [9]. This
results in ambiguity as to the cellular source of the
signals identified and does not account for the
expression of rare cell types which may be critical
for pathogenesis. Having a more complete inven-
tory of different cell types within the pancreas
along with individual expression patterns can
provide major insight into pancreatic biology
and diseases affecting this organ such as diabetes,
cancer, and pancreatitis [10].

In vitro and animal models have long been
used to study and advance our understanding of
pancreatic physiology and pathophysiology.
scRNA-seq allows researchers to examine the
expression profiles of cells in vitro in parallel
with in vivo, while also performing comparisons
between different species. Xin et al. characterized
the transcriptomic profiles of alpha and beta islet
cells from non-diabetic and T2D human as well as
mouse pancreas. Interestingly, there were
245 genes differentially expressed between non-
diabetic and T2D islet cells, almost all of which
were previously unreported. Moreover, although

16 Single Cell RNA Sequencing in Human Disease: Renal, Pancreatic, and Viral Diseases 197



they found a high correlation among the species
among homologous genes, about 15% of genes
were species-specific highlighting a drawback in
using mouse models of complex human diseases
[11]. Wang et al. also used scRNA-seq to explore
T2D, and compared expression patterns between
children and adults with and without T2D. Inter-
estingly, they found that pancreatic islet cells
from patients with T2D resembled those found
in children, which they believe indicates a partial
dedifferentiation of the islet cells during disease
pathogenesis [12].

scRNA-seq has also facilitated transcriptomic
profiling of the rarer cell types of the islet of
Langerhans, such as delta and epsilon cells
[13]. Of the five cell types of the islet of
Langerhans, the most prevalent are the glucagon
producing alpha cells and the insulin producing
beta cells which together account for approxi-
mately 75–85% of the islet [14]. The remaining
cell types: delta cells, epsilon cells, and pancreatic
polypeptide cells secrete primarily somatostatin,
ghrelin, and pancreatic polypeptide, respectively.
One of scRNA-seq’s strengths is the ability to
study rare cell types. Segerstolpe et al. found
when specifically examining the rare cell types
of the islet that delta cells expressed ghrelin and
leptin receptors and epsilon cells expressed
receptors for a diverse range of molecules includ-
ing neurotransmitters, endorphins, and
glycoproteins. Together, these results suggest a
role for delta and epsilon cells as islet sensor cells.
Further, they found expression of MHC class II
molecules in acinar cells, indicating a role for
pancreatic exocrine cells as antigen presenting
cells relevant to immune interfacing, which
could have implications for type I diabetes
(T1D) pathogenesis [15].

In addition to insights into pathogenesis,
scRNA-seq offers potential to monitor and dis-
cover biomarkers to facilitate early diagnosis and
intervention. In the context of T1D, diagnosis in
children typically only occurs after there are
detectable levels of autoantibodies and the
immune mediated destruction of islet cells has
already progressed. A longitudinal study of T1D

using scRNA-seq to monitor PBMC expression
profiles in children and their matched controls
found upregulated genes including IL32 well
before autoantibodies were detectable [16].
Another study used scRNA-seq in evaluating
stem cell differentiation as a potential therapy
for T1D and found that WNT signaling pathways
may induce proliferation and differentiation of a
pluripotent stem cell population to replace dam-
aged cells in the pancreas [17]. Similarly, in adult
T2D Wang et al. found that the sonic hedgehog
signaling pathway was active in a small popula-
tion of proliferating alpha islet cells, providing a
potential novel pathway to target in therapy.

16.4 Viral Infections

In viral diseases, understanding the heterogeneity
of cell populations is key given that viruses have
evolved to exploit cellular mechanisms for their
own benefit. Better characterizing the cells that
are the target of infection by scRNA-seq technol-
ogy has led to a better understanding of the
mechanisms by which viruses replicate and
spread. Moreover, scRNA-seq provides a unique
means of monitoring the change in transcriptome
before, during, and after viral exposure, while
offering a new way to identify novel targets of
inhibition, treatment, and vaccination [18].
Indeed, scRNA-seq allows for single-cell resolu-
tion of both the cellular transcriptome as well as
the specific virus that infected that cell. scRNA-
seq has already been applied to a variety of
viruses which infect humans including influenza,
Zika, West Nile, and HIV [19–22].

16.5 HIV

HIV, a lentivirus, has posed formidable
challenges to researchers since its appearance on
the global stage. While much has been discovered
and advances in treatment have vastly improved
the prognosis and quality of life in HIV-infected
patients, much also remains to be learned. Recent
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studies using scRNA-seq have focused on better
characterizing HIV permissive cells, the process
of HIV latency, and creation of viral reservoirs.

The success of a virus depends on its ability to
inhibit cellular defenses and exploit cellular machin-
ery to replicate and effectively infect an organism.
The interplay between cellular susceptibility and the
viral ability to replicate determines the permissive-
ness of a cell [23]. Studies have indicated that this
permissiveness is highly variable as evidenced by
the finding that not all CD4+ T cells are equally
permissive to HIV infection, both between patients
and within the same patient [24]. This difference in
permissiveness varies across tissue, cell line, activa-
tion state, and proliferation state. More activated
and proliferating T cells appear to have a higher
permissiveness to HIV infection; accordingly, the
activation marker CD25 is a classic biomarker for
HIV permissiveness [24]. While the existence of a
permissiveness spectrum is generally accepted, the
mechanism behind differential sensitivity to infec-
tion has not yet been fully explored. Rato et al.
explored the basis of permissiveness using
scRNA-seq analysis of non-infected CD4+ T cells
patients with both high and low permissiveness
(as determined by previous studies with cells
isolated from these individuals). They found that a
continuum of cell states mediated by T-cell receptor
activation was strongly linked to permissiveness.
Further, they identified surface proteins which
were linked with infection permissiveness, includ-
ing CD25, CD298, CD63, and CD317. A popula-
tion expressing all of these markers showed an
enrichment of HIV infection of up to 28-fold as
compared to the negative population. FACS purifi-
cation of these susceptible cells indicated
downregulation of interferon-induced genes and
the antiviral restriction factors BST2, APOBEC3G,
MX2, SAMHD1, and TRIM5 as potential
mechanisms of increased permissiveness. This
study identified biomarkers for cells that are more
permissive to HIV, and validated increased cellular
activation states as being an indication of
permissiveness [24].

In a latent state, HIV is known to establish
reservoir cells which are infected with HIV but
do not actively produce viral particles. These

latent cells have a low viral load, and therefore
are not easily detected and can remain unnoticed
without inducing patient symptoms. Efforts are
being made to eliminate these reservoirs of latent
cells, for they often persist despite treatment with
anti-retroviral therapy or latency reversing agents
and are often responsible for rebound infection
[25]. Latent cells exist as multiple subtypes and
during different stages of differentiation; hence,
elucidating specific gene expression patterns in
host cells might provide clues into the viral repli-
cation processes that are being inhibited in latent
reservoir cells.

Bradley et al. used a single-cell approach to
explore the expression of viral and host cell genes
in latently infected cell lines and primary cells.
They found that latently infected cellular subsets
occur in many cellular environments, and in sev-
eral subsets of T cells from naive to central mem-
ory T cells. Additionally, Bradley et al. reported
that a specific host transcriptional signature was
associated with the latent state, and that latency
induction was most prevalent in cells with higher
proliferation potential or cells returning from an
activated state to a resting state [26]. This finding
was confirmed by Golumbeanu et al. who used
human primary T cells and scRNA-seq to study
gene expression signatures in latent cells, reveal-
ing a gene expression pattern including IL32,
GAPDH, and CD96 associated with latency
[27]. Thus, scRNA-seq has provided important
insights into gene expression of both the host
cells and the viruses themselves, allowing
investigators to recognize patterns that may deter-
mine disease progression and perhaps facilitate
the development of more directed and effective
therapeutic strategies to target specific cells.

16.6 Zika Virus

Zika virus is an RNA flavivirus that is prevalent
in certain parts of the world including Africa and
the Americas. Clinically the presentation can be
relatively mild, often resembling flu-like
symptoms. However, Zika is thought to hijack
autophagic processes, subsequently leading to
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abnormal fetal development and microcephaly in
babies born to pregnant mothers who are infected
with the Zika virus [28]. Despite the Zika epi-
demic of 2015, Zika biology remains mostly
unknown, including key mechanisms underlying
viral entry and disease.

Two recent studies have used scRNA-seq to
investigate Zika virus pathogenesis. Nowakosky
et al. employed scRNA-seq to characterize the
gene expression profile of multiple cell types of
the developing human cortex to identify Zika
susceptible cell types. They identified AXL, a
tyrosine kinase receptor that transmits signals
from the extracellular matrix to the cytoplasm,
as a highly expressed gene in astrocytes,
microglia, and endothelial cells. Moreover,
increased AXL expression was also found in
radial glial cells (cortical neuron progenitors) in
the ventricular zone and neural stem cells,
suggesting it as a candidate viral entry receptor
[19]. A second study used scRNA-seq to investi-
gate neurodevelopment effects of Zika infection
on cell lines of human spinal cord neuroepithelial
stem cells and radial glial cells. They also con-
firmed previous findings in that there was a higher
expression of AXL in neuroepithelial stem cells
and radial glial cells, further supporting AXL as a
candidate viral entry receptor [20].

16.7 Influenza

While influenza virus is a commonly occurring
virus in the general population, it remains a major
cause of morbidity and mortality among immune-
compromised groups such as infants, the elderly,
and immunosuppressed individuals. Even though
influenza is common, intracellular viral replica-
tion and the variation in host responses across
different cell types remain uncharacterized.
Using scRNA-seq, Steuerman et al. investigated
the heterogeneity of lung cell responses to influ-
enza infection in vivo. They analyzed both the
host and viral transcriptomes in individual cells,
and further compared exposed but uninfected
cells (bystander cells) to host cells infected by
influenza. Epithelial cells are generally

understood to be the main cell type infected by
influenza. In this study, however, they found that
at lower viral loads non-epithelial cell types,
including endothelial cells, NK cells, and
macrophages, were infected as well. While
infected cells showed some evidence for a spe-
cific antiviral type I interferon response,
bystander cells were more heterogeneous in their
interferon expression pattern which was
accompanied by a more effective antiviral
response. This finding suggests the importance
of heterogeneity in cell-type-specific responses.
Additionally, Steuerman et al. found upregulation
of mitochondrial suppression genes in influenza-
infected cells, pointing to mitochondrial suppres-
sion as another possible therapeutic target [21].

16.8 Conclusion

We have provided here an overview of some of
the impressive strides in the understanding of
complex disease pathogenesis accomplished
using scRNA-seq. scRNA-seq is quickly
facilitating the discovery of previously unknown
cellular subtypes and cell states, revealing impor-
tant contributions of overlooked cell types and
subsets in human diseases. The increasing
throughput of droplet-based platforms and sensi-
tivity of improving chemistry is rapidly
cementing scRNA-seq as an invaluable asset for
the study of human diseases.

In this chapter, we discussed some of the spe-
cific uses of scRNA-seq in exploring viral
infections and diseases of the kidney and pan-
creas. This review, however, is by no means
exhaustive, and indeed this technology has
advanced the study of pulmonary and cardiac
diseases, transplant immunology, cancer, and
many others as well. Nevertheless, the above
reviewed studies do illustrate the utility and reso-
lution of scRNA-seq in understanding exact cel-
lular compositions, discovering heterogeneity
within cellular expression patterns, and
uncovering clues that may eventually lead to the
development of more targeted and personalized
therapies. Additionally, the increasing availability
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of whole tissue cellular atlases in both health and
disease as a result of scRNA-seq studies provides
an important resource to better understand com-
plicated molecular signaling patterns and events
that are similar and different between human
diseases.
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Single-Cell Sequencing in Human
Genital Infections 17
Reema Singh

Abstract

Human genital infections are one of the most
concerning issues worldwide and can be
categorized into sexually transmitted, urinary
tract and vaginal infections. These infections,
if left untreated, can disseminate to the other
parts of the body and cause more complicated
illnesses such as pelvic inflammatory disease,
urethritis, and anogenital cancers. The effec-
tive treatment against these infections is fur-
ther complicated by the emergence of
antimicrobial resistance in the genital infec-
tion causing pathogens. Furthermore, the
development and applications of single-cell
sequencing technologies have open new
possibilities to study the drug resistant clones,
cell to cell variations, the discovery of
acquired drug resistance mutations, transcrip-
tional diversity of a pathogen across different
infection stages, to identify rare cell types and
investigate different cellular states of genital
infection causing pathogens, and to develop
novel therapeutical strategies. In this chapter,
I will provide a complete review of the

applications of single-cell sequencing in
human genital infections before discussing
their limitations and challenges.

Keywords

Single-cell sequencing · Bioinformatics ·
Genital Infections · Sexually transmitted
infections · Urinary tract Infections

17.1 Introduction

Genital Infections (GIs) are one of the most com-
mon problems worldwide, which are commonly
transmitted via sexual contacts (vaginal, anal, and
oral), mother to fetus or mother to child during
birth, and imbalance in the vaginal microbiota
[1]. It would not be wrong to classify GIs into
three different categories i.e., Sexually Transmit-
ted Infections (STIs) [2], Urinary Tract Infections
(UTIs), [3] and Vaginal Infections (VIs) [4]. STIs
are gonorrhea, chlamydia, syphilis, genital her-
pes, genital warts, Acquired Immunodeficiency
Syndrome (AIDS), and hepatitis B. Bacterial vag-
inosis, trichomoniasis, and candidiasis are the
commonly known VIs and UTIs, respectively,
collectively called as vulvovaginitis. UTIs are
described as uncomplicated and complicated.
Uncomplicated UTIs mostly affect the healthy
individuals whereas complicated UTIs are linked
with factors that compromise the host defense
[5]. GIs are caused by different types of bacteria,
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viruses, and parasites, and associated with infer-
tility, acute illnesses, and complications in the
upper genital part. Most curable GIs are caused
by bacteria belonging to the gram-negative strain
category (Neisseria gonorrhea, Chlamydia
trachomatis, Escherichia coli, Treponema
pallidum, Haemophilus ducreyi, and Klebsiella
granulomatis (also known as Calymmato-
bacterium granulomatis) [6]. While virus-
mediated infections such as genital herpes,
hepatitis B, AIDS, and genital warts are incur-
able. The complete information about each infec-
tion including symptoms and global estimates is
given in Table 17.1.

Several difficulties are associated with genital
infections. Firstly, life-threatening complications
can happen when the untreated GIs disseminate
into other parts of the body. For example,
untreated gonorrhea, chlamydia, and bacterial vag-
inosis can cause pelvic inflammatory disease
(PID), which can result in long-term reproductive
disabilities such as ectopic pregnancy, infertility,
and pelvic pain [21]. Furthermore, sexually
acquired infections with hepatitis B and certain
types of human papillomavirus are considered to
be the leading cause of liver cirrhosis, hepatocellu-
lar carcinoma, and cervical cancer develop-
ment, respectively [22, 23]. Some of the STIs
induced diseases in the human host are shown in
Fig. 17.1. Finally, coinfection with multiple
pathogens is another obstacle. A growing body of
evidence suggested that both bacterial and viral
STIs, as well as bacterial vaginosis (BV), are
known to be associated with the probability of
HIV acquisition [24–26], and these infections
appear to facilitate a vicious cycle of each other’s
transmission [27–31]. Furthermore, the chances of
getting HPV-related cancers are higher in a person
living with HIV and HPV coinfection [32].

The treatment therapy for GIs is based on the
use of antibiotics such as penicillins,
cephalosporins, quinolone, amoxicillin, erythro-
mycin, azithromycin, doxycycline, macrolides,
fluoroquinolones, and tetracycline [33]. However,
the continuous rise of antibiotic resistance
impeded the therapeutical strategies, especially
due to the emergence of multidrug-resistant
(MDR), extensive drug-resistant (XDR), and

pan-drug-resistant (PDR) bacteria, which are
resistant against a wide range of available classes
of antimicrobial agents [34]. There are sev-
eral well-defined genetics and mechanistic ways
that these disease causing pathogens use to with-
stand the drug effects i.e., (1) resistance acquired
by mutations and horizontal gene transfer and
(2) biochemical resistance mechanisms e.g., tar-
get modification, antibiotic inactivation and
changes in outer membrane permeability
[35, 36]. Several studies have reported the
increasing cases of antibiotic resistance in genital
infection causing pathogens such as Neisseria
gonorrhea, Escherichia coli, Candida albicans,
Herpes simplex virus (HSV), HIV, etc. [37–42].

Recent advancements in next-generation
sequencing technologies and analysis tools to
study genomes and transcriptomes in bulk
tissues/body fluids have provided new insights
into the epidemiology and antimicrobial resis-
tance/susceptibility pattern of genital infec-
tion causing pathogens. Reports are published
on the applications of single-cell sequencing to
investigate various human diseases such as can-
cer, infectious diseases, brain disorders, etc.
[43, 44], however, in the case of GIs, limited
information is available. Therefore, the focus of
this chapter is to highlight the current applications
of single-cell sequencing in human genital infec-
tion studies. As single-cell sequencing and analy-
sis methods have already been reviewed in detail
elsewhere [45, 46] so I will discuss them briefly in
this chapter. Challenges and limitations are also
highlighted along with the conclusions.

17.2 Single-Cell Sequencing:
Different Types and Analysis

Single-cell sequencing has proven an important
milestone in diverse fields of biology such as can-
cer research, metagenomics, developmental biol-
ogy, reproductive health, drug discovery,
immunology, microbiology, and neurobiology
[43, 44]. Until the present, this platform has
applied to study cell heterogenicity, host–pathogen
interactions, clonal structure, clonal expansion and
evolution, copy-number variants (CNVs), target
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Table 17.1 Types of genital infections in humans, causative pathogens, symptoms, and global estimates (adapted
Passos [7])

Types Causative pathogens Symptoms
Global
estimates References

Genital herpes Herpes simplex virus Genital ulcers 19.2
million

Looker et al. [8]

Syphilis Treponema pallidum Genital ulcers 19.9
million

Rowley et al.
[9]

Gonorrhea Neisseria gonorrhoeae Urethral discharge,
Endocervicitis/pelvic
pain, testical pain/
swelling, proctitis,
ophthalmia

30.6
million

Rowley et al.
[9]

Chlamydia Chlamydia trachomatis Urethral discharge,
Endocervicitis/pelvic
pain, testical pain/
swelling, proctitis,
ophthalmia

124.3
million

Rowley et al.
[9]

Bacterial vaginosis Gardnerella vaginalis,
Mobiluncus sp., Mycoplasma
hominis, Bacteroides, Prevotella
sp., Peptostreptococcus sp.,
Atopobium vaginae

Vaginal discharge Limited Kenyon et al.
[10]

Candidiasis Candida albicans Vaginal discharge 138
million

Cai and Chen
[11]

Trichomoniasis Trichomonas vaginitis Vaginal discharge, vulvar
irritation

110.4
million

Rowley et al.
[9]

Chancroid Haemophilus ducreyi Papule 7 million
(cases are
decreasing)

Steen [12],
González-
Beiras et al.
[13]

Lymphogranuloma
venereum

Chlamydia trachomatis, serovars
L1,L2 and L3

Painless papule Limited de Vries [14],
Cole et al. [15]

Donovanosis Calymmatobacterium
granulomatis

Ulcerative lesions Limited O’Farrell [16]

Genital warts Human papillomavirus Papular or flat lesions 160–289
cases per
100,000
person

Patel et al. [17]

Acquired immune
deficiency
syndrome (AIDS)

Human immunodeficiency virus Genital sores 36.9
million

UNAIDS 2017
global estimate

Hepatitis B Hepatitis B virus Dark urine, abdominal
pain

257
million

WHO 2015
global estimate

Scabies Sarcoptes scabiei Genital papular and
itching

>200
million

Chandler and
Fuller [18]

Urinary tract
infection

Escherichia coli, Klebsiella
pneumoniae, Pseudomonas
aeruginosa, Acinetobacter
baumannii

Pain/burning sensation on
urination,

92 million Global Burden
of Disease
Study 2013
Collaborators
[19]

Genital
mycoplasmas

Mycoplasma hominis,
M. primatum, M. genitalium,
M. spermatophilum,
M. penetrans, Ureaplasma
urealyticum

Vaginal itching, pain
during sex, burning
sensation on urination

Limited Baumann et al.
[20]
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therapy, expression profiling, and RNA
splicing [47].

To understand biological processes and how
they contribute to a particular disorder, it is
important to study genetic regulation at all levels
including genome, epigenome, protein, and
metabolite. Single-cell sequencing provides the
oppertunity to construct a multiomics profile that
can give insights to link genotypes to phenotypes
of the individual cells. The analysis using single-
cell sequencing in any biological and/or clinical
study starts with a research question, depending
on which the most suitable technology is selected
and subsequently sequencing is performed.
Finally, the resulting raw sequencing data
gets analyzed before interpreting the meaningful
information from results (Fig. 17.2).

Single-cell sequencing approaches can be
described into two categories i.e.,
low-throughput and high-throughput. Single-cell
microscope, single-cell flow cytometry, single-
cell imaging, and single-cell PCR (qPCR and
RT-PCR) are some of the low-throughput tradi-
tional techniques, with a diverse spectrum of
applications, which have been frequently used to
detect certain markers of single cells until now
[48–50]. However, these methods are only able to
uncover the gene expression pattern of a very
small set of genes. Thus, these limitations can
be easily bypassed by using high-throughput
modern global analytical technologies available
for single-cell sequencing including single-cell
genomics, single-cell epigenomics, single-cell
transcriptomics, single-cell proteomics, single-
cell metabolomics, and single-cell omics (Box

Fig. 17.1 Different types of diseases that occur in the
human host when the untreated STIs disseminate to the
other parts of the body. Diseases (neurosyphilis, conjunc-
tivitis, pelvic inflammatory diseases, epididymitis, liver
cirrhosis, hepatocellular carcinoma, penile cancer, and
cervical cancer) and genital infections (syphilis, chla-
mydia, gonorrhea, hepatitis B, and genital warts), caused
by the same pathogens, are highlighted in similar colors.

The basic human body drawings are copied from https://
www.clipartqueen.com/human-body-diagram.html (these
are free to use for academic purpose). Please note—chla-
mydia (caused by Chlamydia trachomatis) and gonorrhea
(caused by Neisseria gonorrhoeae) are highlighted in the
same color because they both can cause conjunctivitis,
epididymitis, and pelvic inflammatory disease
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17.1) [48–50]. A variety of wet-lab and dry-lab
analysis tools are chosen depending upon the nature
of the research hypothesis [49, 51]. For example, if
the objective of the study is to understand the cell
heterogenicity and/or lineage tracing in early devel-
opment then single-cell transcriptomics is the most
popular choice (Box 17.1). Besides, the com-
plete single-cell sequencing analysis procedure can
be divided into three different steps, (1) selecting
and isolating individual cells from the bulk popula-
tion, (2) single-cell sequencing, and (3) downstream
computational analysis. The complete single-cell
sequencing workflow and several methods (tradi-
tional and modern) for cell isolation, sequencing as
well as for bioinformatics analysis are explained
somewhere else in detail [44, 52].

Box 17.1 Summary of Available Single-Cell
Sequencing Technologies
and Their Applications

Technologies Applications
Single-cell
genomics

• To resolve variation
between individual cells
• To study genetic
alteration of rare cell
types

Technologies Applications
Single-cell
epigenomics

• To understand DNA
modification as
regulatory epigenetic
mark
• To understand
developmental process

Single-cell
transcriptomics

• To identify novel
cellular subtypes
• Cell heterogenicity
analysis and lineage
tracing
• Identification of
diagnostic primers
• To detect emergence
of resistance clone
during chemotherapy
• Gene regulatory
network construction

Single-cell
proteomics

• To study protein–
protein interactions
• To determine post-
translational
modifications

Single-cell
metabolomics

• To understand the
phenotypical variations
between cells

Fig. 17.2 General
flowchart showing the
single-cell sequencing use
in a clinical application. A
typical analysis includes
the following steps:
(1) Selecting an objective,
(2) Single-cell isolation,
(3) Selection of “omics”
technology and
Sequencing, (4) Use of
bioinformatics software to
analyze the data, and
(5) Inferring meaningful
information
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Technologies Applications
Single-cell
omics

• To discover novel
regulatory mechanisms
• To reveal
relationship between
different omics data
types

Multiple challenges exist for the bioinformat-
ics and statistical analysis of single-cell sequenc-
ing data, which needs to fix using two important
steps i.e., quality check and normalization, before
applying any specialized algorithms. To decide
whether the data generated from single-cell
sequencing is valid for further analysis or not,
several factors need to consider during quality
check. For instance, removal of contaminated
cells, genes that are always present in low quan-
tity and cells with an elevated mitochondrial
gene expression can tremendously increase the
quality of the raw data [45, 53, 54]. Furthermore,
the normalization step is very crucial to eliminate
the batch effects generated due to technical
variations.

Moreover, a plethora of open-source computa-
tional tools have been developed, often free for
academic users, and reviewed previously [46, 54–
57]. To check the performance of different single-
cell RNA-Seq analysis pipeline and complete
workflow describing the best-practice
recommendations, please see the recently
published literature [58, 59]. Besides, a list of
these tools is given in Table 17.2.

17.3 Applications of Single-Cell
Sequencing to Study Human
Genital Infections

Recently, single-cell sequencing technologies
have exploited to investigate the bacteria and
viruses that cause genital infections. Despite the
dominance of bacteria in the STIs, scientists have
mainly applied single-cell sequencing to study
viral-mediated infections. The most direct
applications of single-cell sequencing in genital

infections are outlined in Fig. 17.3. In most of the
studies reported in this chapter, high-throughput
single-cell transcriptomic analysis has utilized. In
the following sections, major single-cell sequenc-
ing applications are in.

17.3.1 Sexually Transmitted Infections

17.3.1.1 Acquired Immunodeficiency
Syndrome (AIDS)

HIV is one of the research areas that is greatly
benefited from single-cell sequencing. Until the
present, this technology has been widely applied
to understand cell heterogenicity, clonal expan-
sion, HIV-1 replication cycle, and expressed gene
signature in HIV (Fig. 17.3A).

HIV is transmitted sexually and attacks the
CD4+ lymphocytes cells that fight against
infections. The final stage of HIV infection
(if left untreated) is called AIDS. The virus elects
some strategies for its survival in the host. One of
these strategies is latent reservoirs, using which
the virus does not only persist in the infected
person but also reactivate the infection if treat-
ment is stopped. While antiretroviral therapy
(ART) is the widely accepted treatment to inhibit
the HIV replication in the host, ART has not been
able to eradicate the virus. Thus, most single-cell
sequencing studies of HIV have applied to
research on HIV-infected individuals on ART.

Reactivation of latent reservoirs is one of the
leading research focus to study viral persistence
in host and to identify novel therapeutical
strategies for HIV annihilation. To report the het-
erogeneous effect of latency reserving agents
(LRA) on HIV-1 activation, Yucha et al., devel-
oped a microfluidic single-cell-in-droplet PCR
assay [70]. The assay was then applied to measure
the number of transcriptionally active CD4+ T
cells from HIV-1 infected individuals on ART
[70]. Furthermore, in another study, working on
the Interleukin-7 (IL-7) authors indicated that
IL-7 stimulates the spread of latently infected
cells by enhancing the residual level of viral pro-
duction in HIV-infected subjects. Therefore, IL-7
is not a suitable candidate for future therapeutical
strategies to eradicate HIV [71].
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Moreover, clonal expansion is one of the key
mechanisms using which the HIV-1 reservoir
persists in the latently infected cells [72]. An inte-
gral part of the latent reservoir, called provirus,

reactivates the dormant infection by producing
the unspliced RNA. Evidence of this clonal
expansion using single-cell sequencing came
from a previous study [73]. In this study, authors

Table 17.2 List of bioinformatics software and tools available for the single-cell sequencing data analysis

Types Software/tools References

Pipelines Scruff, Granatum, BALDR, ScPipe, SINCERA Wang et al. [56], Zhu et al. [60], Upadhyay et al.
[61], Tian et al. [62], Guo et al. [63]

R-packages Seurat, Scran, SingleSplice, OncoNEM, batchelor,
infercnv, scds, scMerge, scRecover, scater, monocle,
MAST, SC3, AUCell, clusterExperiment, splatter,
M3Drop,SCnorm, scmap, TSCAN, scDD, BASiCS,
slingshot, cellTree, AneuFinder, scfind, cellity,
switchde, MetaNeighbor, DEsingle, cicero,
BEARsec, singleCellTK, MIMOSA, sincell, slalom,
LineagePulse, cellscape, celaref, bayNorm,
scFeatureFilter, scTensor, mbkmeans, Melissa,
phemd, cellBench, scds, scRecover, scAlign, Oscope

https://www.bioconductor.org

Others ASAP, SSCC, iS-CellR, ESAT,SC1, bigSCale Gardeux et al. [64], Ren et al. [65], Patel [66],
Derr et al. [67], Moussa and Măndoiu [68],
Iacono et al. [69]

Fig. 17.3 Applications of
single-cell sequencing in
human genital infections:
Sexually transmitted
infections (A), Urinary tract
infections (B) and Vaginal
infections (C). In the case of
vaginal infections (dotted
lines with orange box),
single-cell sequencing
technologies have not
directly applied to the
samples extracted from
human vagina, instead, the
experiment was performed
on samples extracted from
mouse bone marrow
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developed a method, called CARD-SGS (cell-
associated HIV RNA and DNA single-genome
sequencing), to detect the proviral expression of
HIV RNA in a single cell isolated from
individuals with viremia or on long-term suppres-
sive ART. Interestingly, this study identified dif-
ferent cells producing identical RNA molecules
which indicates that these molecules could origi-
nate either from single infected cells undergoing
clonal expansion or multiple cells infected by the
same HIV variant before ART. Therefore,
HIV-infected cells can perpetually express HIV
RNA during suppressive ART through clonal
expansion [73].

HIV-1 replication is another important field
that has benefited from single-cell sequencing
research. Using single-cell FACS-based and
quantitative fluorescence microscopy-based anal-
ysis, Holmes et al., revealed the timeline of the
key events in the HIV-1 replication cycle and
measured the gene expression level in infected
cells [74]. Also, significant heterogenicity in the
HIV-1 replication cycle length and infected cells
generate virions for only a few hours are some of
the important observations of this study.

Another area in HIV research where single-
cell sequencing has been a major asset is cell
heterogenicity. Despite the presence of technical
and computational challenges, high-throughput
single-cell sequencing approaches opened up
new perspectives in HIV latency research. Fig-
ure 17.4 highlights the types of different
experiments that have conducted using high-
throughput single-cell sequencing in the HIV
research field.

Using a combination of experiments, Cohn
et al., (Fig. 17.4a) purified and characterized sin-
gle reactivated latent cells from HIV-1 infected
individuals on suppressive antiviral therapy
[75]. Furthermore, by performing single-cell
RNA sequencing (scRNA-Seq) on 227 cells
(Control/uninfected; 109, LURE purified
Gag+Env+; 85, YU2 infected; 33) from three
subjects, authors demonstrated several
conclusions. Firstly, read sequences from LURE
purified Gag+Env+ mapped both to the human
genome and HIV, and recovery of full-length
HIV-1 from the reactivated latent cells is possible

by using scRNA-Seq. Secondly, hierarchical
clustering segregated the gene expression data
into three distinct clusters, indicating the hetero-
geneous nature of the cells. Moreover, genes
associated with HIV-1 latency are highly
expressed in LURE purified Gag+Env+ cells as
compared to control cells. Finally, gene set
enrichment analysis of eight (among
240) overlapping genes between clustering and
differential gene expression analysis are related to
significantly enriched biological processes
(immune system function), indicated that in
response to the pathogen LURE purified
Gag+Env+ and control cells are different in their
gene expression. However, to reveal more differ-
entially expressed genes and pathways
contributing to maintaining HIV latency in the
host cells, additional confirmation by performing
this analysis on more donors are needed.

Working with the CD4+ T cells, Golumbeanu
et al., (Fig. 17.4b) reported transcription
heterogenicity during the HIV reinfection and
latency stage. They also found similar in-vivo
expression pattern of 134 gene-specific signature
identified among untreated, SAHA (vorinostat),
and TCR (T-cell receptor)-treated CD4+ T cells
isolated from HIV+ individuals, a finding that
could benefit LRA (latency-reversing agents)
identification [76]. Moreover, a second study in
which exploring cellular heterogenicity has been
a primary focus includes Rato et al., (Fig. 17.4c),
suggesting that the main factor of transcriptional
heterogenicity at the single-cell level is cellular
activation state, which results into diverse levels
of HIV permissiveness. Besides, HIV-permissive
cell-specific signature is identified, most of which
are involved in innate immunity [77]. Further-
more, using single-cell transcriptomics, Bradley
et al., (Fig. 17.4d) revealed a specific set of cellu-
lar genes that are associated with the HIV expres-
sion during latency. They further identified
the latency-associated signature and concluded
that viral transcript expression during latency is
influenced by the host cell transcriptional
program [78].

Another study including virologically
suppressed HIV individuals by Farhadian et al.,
(Fig. 17.4e), identified potentially novel myeloid
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cell populations that are associated with central
nervous system (CNS) immune activation by
performing single-cell RNA sequencing of
blood cells and cerebrospinal fluid (CSF) samples
collected at different time points. Furthermore,
the gene expression signature present in these
myeloid cells intersects with neurodegenerative
disease-associated microglia in an animal model.
Therefore, indicating a common mechanistic link
between neuron injury in HIV and other neurode-
generative disease pathways. The small number
of participants is the biggest limiting factor of this

study and thus requires a large cohort study to
confirm the association between CSF immune
cells and markers of neurodegenerative
disease [79].

HIV infection impaired the host immune sys-
tem by attacking the cells such as CD4+ T and
memory B cells (MBC) that fight against
infections. As an example of this, de Armas
et al., applied single-cell RT-PCR methods to
interrogate the cellular state of MBC from
HIV-infected individuals. As a result, gene
expression data revealed the overexpression of

Fig. 17.4 Types of experiments conducted using high-
throughput single-cell sequencing in HIV studies: (a)
Cohn et al. [75]; (b) Golumbeanu et al. [76]; (c) Rato et
al. [77]; (d) Bradley et al. [78]; (e) Farhadian et al. [79]
(only single-cell sequencing transcriptomics experiments
are reported from all these studies). gag+Env+ cells

expressing both env and gag, YU2 HIV-1YU2, HPD high
permissive TCR-activated CD4+ T cells, LPD low permis-
sive TCR-activated CD4+ T cells, CSF cerebrospinal fluid,
PBMC peripheral blood mononuclear cell, TCR T-cell
receptor
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PTEN in H1N1-specific MBC from HIV-infected
as compared to healthy individuals. Moreover,
the authors concluded that as compared to
age-matched healthy controls, H1N1-specific
MBC demonstrates diverse gene expression sig-
nature in HIV, ART suppressed individuals [80].

17.3.1.2 Genital Human
Papillomavirus Infection
(Genital Warts)

Human papillomavirus (HPV) is transmitted
mainly via sexual contacts, but the infected
individual’s immune system rapidly clear the
infection in the majority of cases. There are
more than 200 HPV types that have been
identified and characterized. Based on their evo-
lutionary analysis, HPV types are categorized into
five diverse genera, the majority of which reside
in two largest groups (Alpha and Beta) and one
smallest group (Mu) [81] (Fig. 17.5). More-
over, depending on their carcinogenicity, HPV
types are classified as low-risk and high-risk sub-
type [83]. Low-risk HPV subtypes are associated
with low-grade cervical abnormalities and genital

warts, while high-risk HPV subtypes are
associated with six anogenital cancers (cervical,
penile, anal, vaginal, vulvar, and oropharyngeal)
[84]. Few studies have employed single-cell
sequencing strategies (Fig. 17.3A) to characterize
cell heterogenicity and mutations in human cervi-
cal cancer, however, none of them examine geni-
tal warts and low-grade cervical abnormalities.

Using HeLa cells, heterogenicity of viral alter-
native transcripts is revealed by Wu et al. In brief,
using a novel platform, called MIRALCS
(microwell full-length mRNA amplification and
library construction system), single-cell RNA
sequencing were performed on 40 HeLa S3 cells
to understand the heterogenicity of HPV+ cancer
cell lines in gene expression, alternative splicing,
and fusion events. Also, at the single-cell level,
they classified cells based on cell cycle states and
identified that E6 and E7 viral oncogenes were
residing in a cluster of the co-expressed gene
[85]. Another study in which heterogenicity of
HPV status has exposed at a single-cell level
include Shen et al., validated the likelihood of
single-cell analysis of HPV infection. Moreover,

Fig. 17.5 Typical
HPV genome organization
for an Alpha, Mu, and Beta.
(Adapted Doorbar [81];
Harari [82])
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to verify the coexistence of multiple HPV types,
the authors measured the viral load in single cells
using qPCR and confirmed the results by
performing PCR-based DNA sequencing [86].

Furthermore, Yang et al., investigated the
intracellular heterogenicity in tumour cells earlier
and after radiotherapy. They performed single-
cell whole-genome sequencing on 25 cervical
tumour cells including the detection of somatic
mutations, virus integration site mapping and
clustering. Consequently, they concluded that
the HPV integration site in POU5FIB might be
responsible for radiotherapy resistance [87].

17.3.1.3 Genital Herpes or Genital Ulcer
Herpes Simplex Virus (HSV) is the main cause of
genital herpes, a chronic life-long infection in the
sexually active population. It belongs to the
herpesviridae family of the virus with a linear
double-stranded genome ranging from 152 to
155 kb in size. There are two serotypes of this
virus i.e., HSV-1 (the main cause of oral lesions)
and HSV-2 (the main cause of genital lesions). A
growing number of pieces of evidence concluded
that genital ulcer cases due to HSV-1 have risen
in high-income countries [88, 89].

In the case of HSV, single-cell sequencing has
used to highlight the heterogeneous cell states in
viral infections (Fig. 17.3A). For instance, in a
recent study, Wyler et al. used single-cell
transcriptomic analysis to quantify transcripts of
human fibroblast at various time points during
early HSV-1 infection. Consequently, authors
identified cell cycle phases S/G2/M carried more
viral transcripts and as compared to cells in
the G1 phase provide a more favourable environ-
ment to establish the infection [90]. Furthermore,
in a separate study, transcriptional
heterogenicity has also characterized during
HSV-1 infection [91]. By observing differences
at the level of viral infection dynamics, gene
expression and cellular host response in infected
cells, authors concluded that highly infected cells
activate multiple developmental pathways due to
transcriptional reprogramming [91].

17.3.1.4 Hepatitis
Hepatitis B virus (HBV) causes an acute and
chronic infection which transmitted very effi-
ciently through sexual contacts (heterosexual
and/or male homosexual contacts). Coinfection
with other viral forms i.e., Hepatitis C virus
(HCV) and Hepatitis D virus (HDV) have
become chronic as well [92]. Like HBC, HCV
can be sexually transmitted [93], and both are
associated with liver cirrhosis and hepatocellular
carcinoma [23].

In the case of hepatitis, single-cell sequencing
has proven a powerful tool to study viral integra-
tion within the host genome, cellular diversity,
clonal evolution, and cell heterogenicity
(Fig. 17.3A). In an early study, single-cell RNA
viral sequencing was performed to study viral–host
interactions during HCV infection to reveal
quasispecies diversity in individual cells
[94]. Also, the existence of independent evolution
at the cellular level indicated by the diverse (in bulk
cells population) and unique (in single cells)
quasispecies in infected cells.

Furthermore, Eltahla et al., proposed a novel
computational pipeline, called VDJPuzzle, to
analyze the single-cell transcriptome of
flow-sorted Ag-specific CD8+ T cells, and to
reconstruct the native TCRαβ [95]. Moreover, to
compare the differences in CD8+ T cell exhaus-
tion, Wang et al., performed the reanalysis of the
publicly available single-cell sequencing data
from chronic hepatitis B (CHB) and Hepatocellu-
lar carcinoma (HCC). The authors further con-
firmed that cell exhaustion exists in both CHB
and HCC along with genetic and phenotypic
differences [96].

Another study performed single-cell whole-
genome sequencing of 96 tumour cells and 15 nor-
mal liver cells from patients with
HBV-associated hepatocellular carcinoma to
gain insight into the intratumor heterogenicity
[97]. Also, Chen et al., used single-cell viral cap-
ture sequencing to identify tumour heterogenicity
from a patient with multifocal HCC without
active replication and successfully identified
viral integration within the host genome [98].
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17.3.2 Urinary Tract Infections

Urinary tract infections are caused by both grams
negative and positive bacteria. Uropathogenic
Escherichia coli (UPEC) is the most frequent
cause of UTI in humans, affecting mostly
women. Treating UPEC has become challeng-
ing due to emerging resistance to the commonly
used antibiotics.

Although there are other pathogens such as
Pseudomonas aeruginosa [99], Klebsiella pneu-
monia [100] that cause UTI, Escherichia coli is
the only bacteria that have benefited with the
single-cell sequencing technologies. In the case
of UTIs (caused by Escherichia coli), single-cell
sequencing has applied to study cell viability and
sensitivity, antimicrobial susceptibility profiling,
and bacterial persister specific trait for antibiotic
resistance (Fig. 17.3B).

A previous study [101] used an infected mouse
model to understand the host and bacterial
characteristics leading to UTI and recurrent UTI.
Duraiswamy et al., developed a simple method to
isolate pure IBCs (Intracellular Bacterial
Communities) from mouse bladder during acute
experimental UTI. Using micro pipetting they
isolated the individual IBCs and further verified
the sensitivity and purity based on microscopy,
gene expression, and culture-based methods.
Besides, they found 103 viable bacteria in an
early IBC (6 h post-infection) [101]. Furthermore,
Yang et al., reported the complete procedure to
extract IBCs from a mouse infected experimen-
tally in the urinary tract [102].

While antibiotics are the most effective treat-
ment for UTI, recurrent infections (due to
antibiotic-resistant bacteria) complicate the
situations. Incorrect prescription is one of the
key factors involved in the development and
spread of antimicrobial-resistant bacterial strains.
Certainly, identifying the antibiotic resistance/
susceptibility profile of the infecting bacteria
could facilitate the use of effective antibiotics.
The previous study showed that the susceptibility
of an antibiotic can be detected in less than 30 min
using single-cell technology (such as imaging,
microscope, etc.) [103]. Thereby, these findings

further support the development of a point-of-care
test to direct the correct UTI treatment.

Bacterial persistence plays a very important
role in the evolution of antibiotic resistance
and the reoccurrence of infections. Goormaghtigh
and Melderen devised a single-cell approach and
applied it to analyze the cell persistence in wild-
type E.coli to ofloxacin in steady-state growth
conditions using microfluidics together with fluo-
rescence microscopy. Consequently, after antibi-
otic treatment, the analysis discovered persister
specific traits during recovery [104]. Therefore,
this finding could provide valuable insights to
tackle the AMR issue in UPEC.

17.3.3 Vaginal Infections

Despite the involvement of several pathogens in
vaginal infections, researchers have only applied
single-cell sequencing to study Candida
albicans (a commensal residence of healthy
human gastrointestinal and urogenital tract,
mainly casing candidiasis). Until the present,
single-cell sequencing has applied to study host–
pathogen transcriptional dynamics (Fig. 17.3C),
however, this technology has not directly applied
to study Candida albicans extracted from human
vaginal samples.

Macrophages play an essential role in
detecting, engulfing and destroying a pathogen.
In a recent study, single-cell transcriptomics
is employed to access gene expression variability
between host and C.albicans [105]. Using four
different infected murine macrophages i.e.,
infected macrophages with dead, phagocytosed
C.albicans, infected macrophages with live C.
albicans, macrophages exposed to C.albicans
that remained uninfected, and C.albicans exposed
to macrophages that remained unengulfed,
authors examined pathogen interactions with
host cells. They further observed a tightly coordi-
nated shift in transcriptional dynamics and
revealed bimodality in expression and changes
in splicing patterns that may direct infection
outcomes. Although this study was performed
using bone-marrow-derived macrophages from
mice model, this data provides useful insight
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that could be applied to study host–patho-
gen interactions during vaginal infections.

17.4 Limitations and Challenges

While pure bacterial culture is one of the essential
requirements to study pathogenic virulence
and antibiotic resistance/susceptibility pattern,
inability to grow all of the microorganisms in a
manner that enough genetic material can be pre-
served is one of the main challenges in applying
single-cell sequencing technologies to study
human genital infections [106]. Low amount of
nucleic acid content in a single cell and contami-
nation hinders their sequencing [49], especially in
the case of clinical samples where microbial cul-
turing is more difficult and requires specialized
training. Sexually transmitted infection causing
pathogens such as Chlamydia trachomatis and
Treponema pallidum require special culture
conditions. For example, Treponema pallidum
grows slowly and it proliferates only in laboratory
animals (rabbits) and Chlamydia trachomatis
requires specialized level 3 laboratories
[106]. Furthermore, other factors such as single-
cell lysis, cDNA synthesis and amplification in
the case of microorganisms are particularly chal-
lenging due to the presence of a rigid cell wall that
inhibits lysis [107]. Thus, appropriate cell isola-
tion strategies need to be selected carefully.

Another significant challenge in single-cell
sequencing is to correct technical and biological
variations during expression analysis which raises
substantial questions throughout the computa-
tional analysis. Differences in tissue sampling
and handling, and during sequencing when the
cells from one condition are cultured and
sequenced separately than another are the poten-
tial causes of technical variations. Furthermore,
the key reasons for the biological variations are
the random biochemical reactions, transcriptional
bursting causing stochastic gene expression,
and uneven genome coverage due to stochastic
primer binding and chimeric fragments [108].

Artifacts introduced during library preparation
and PCR amplification are responsible for artifi-
cial mutations and sequencing bias. These

challenges are further exacerbated by the pres-
ence of missing gene expression values in the
case of some cells which could lead to spurious
results, including incorrect data integration and
interpretation. Without proper study designs,
results can be significantly affected by batch
effects. Thus, correcting technical and biological
variations is crucial for accurately analyzing the
single-cell sequencing data. Finally, it also quite
challenging to make sure that only data from
single and live cells are included in the down-
stream analysis so that data from compromised
cells do not negatively affect the
result interpretation [53].

Moreover, another major limitation is the lack
of scRNA-Seq computational analysis
pipelines with a graphical user interface that
could be easily accessible or useful for users
with limited bioinformatics skills.

Finally, the key challenge is related to resource
and infrastructure requirements. The emergence
of high-throughput single-cell sequencing
technologies is responsible for an exponential
increase in the amount of data. Efficient
approaches are required to store, distribute and
analyze this data. Besides, along with storage,
data confidentiality, security, and integrity are
equally important and needs to be handled
properly

17.5 Conclusions

This chapter introduced single-cell sequencing
technologies and its applications in human genital
infections i.e., sexually transmitted, urinary tract,
and vaginal infections. Although in the field of
viral causing sexually transmitted infections
single-cell sequencing has paved the way to a
broad range of applications, its use in bacterial
causing genital infections is still in infancy. These
technologies that are used to analyze genital
infections from a single-cell perspective can
deliver valuable insights into the discovery of
acquired drug resistance mutations, cell to cell
variations, deeper interrogation of cellular states
and identify rare cell types, where the field of bulk
analysis present difficulties. Furthermore, several
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limitations such as complications in microbial
culturing, biological and technical variations,
unavailability of user-friendly computational
tools, and proper storage slow down the research.

Glossary

Antimicrobial Resistance The ability of a
microorganism to withstand the effect of an
antibiotic.

Antiretroviral Therapy A treatment to control
AIDS with the use of a combination of antire-
troviral agents.

Chronic hepatitis B When the host body’s
immune system is not able to clear the infec-
tion and the HBV remains in the blood and
liver.

Clonal expansion The process of unpredictable
increase in the number of cells.

Extensive Drug Resistance The ability of a
microorganism to withstand the effect of at
least one agent in all but two or fewer antimi-
crobial categories.

Genital Infection Infection related to human
reproductive organs such as vulva, vagina,
cervix, urethra, penis, fallopian tube, pelvic,
testicles, scrotum, epididymis.

Hepatocellular carcinoma Type of liver malig-
nancy that occurs in people with chronic liver
diseases caused by hepatitis B and C infection.

HIV permissiveness The feature of a cell that
supports the growth of HIV.

Horizontal gene transfer The process of trans-
fer genetic material between unrelated
organisms.

Latent reservoir These are the collections of
infected immune cells that go into a dormant
state and not actively produce new HIV.

Multidrug Resistance The ability of a microor-
ganism to withstand the effect of at least one
agent in three or more antimicrobial
categories.

Pan-drug Resistance The ability of a microor-
ganism to withstand the effect of all agents in
all antimicrobial categories.
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Emerging Strategies for Therapeutic
Antibody Discovery from Human B Cells 18
Saravanan Rajan and William F. Dall’Acqua

Abstract

Monoclonal antibodies from human sources
are being increasingly recognized as valuable
options in many therapeutic areas. These
antibodies can show exquisite specificity and
high potency while maintaining a desirable
safety profile, having been matured and
tolerized within human patients. However,
the discovery of these antibodies presents
important challenges, since the B cells
encoding therapeutic antibodies can be rare in
a typical blood draw and are short-lived
ex vivo. Furthermore, the unique pairing of
VH and VL domains in each B cell contributes
to specificity and function; therefore,
maintaining antibody chain pairing presents a
throughput limitation. This work will review
the various approaches aimed at addressing
these challenges with an eye to next-genera-
tion methods for high-throughput discovery
from the human B-cell repertoire.

Keywords

Antibody therapeutics · Next-generation
sequencing · Microfluidics · Phage display ·
Hybridoma · High-throughput screening

18.1 Introduction

In the past few years, the use of monoclonal
antibodies has seen an explosion as therapeutics,
diagnostics, and tools in biomedical research.
This is because antibodies carry exquisite speci-
ficity to their respective target, persist in the body
for many weeks (particularly if endowed with
half-life extension technology) and can elicit
responses through multiple mechanisms of
action, particularly as relates to interactions with
their Fc domains. With several improvements in
R&D for antibody discovery and development,
the number of antibody therapeutics has dramati-
cally increased, with over 570 molecules in clini-
cal development and 12 new molecules approved
in 2018 alone [1]. The therapeutic use of mono-
clonal antibodies spans the breath of therapeutic
areas, including infectious disease, cancer, and
autoimmune disorders and increasingly ingenious
delivery methods, from inhaled to gene therapy,
are constantly improving the convenience of
administering these therapeutics such that we
expect their use to continue increasing with time.

Although monoclonal antibody research began
with mouse hybridoma technology [2] and many
approved antibodies are mouse-derived, the
immunogenicity issues that ensued have led to
an interest in antibody discovery from other
sources, particularly human. This review will
therefore focus on technologies that derive thera-
peutic antibodies from human sources, though it
is acknowledged that many of the next-generation
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B cell approaches could be applied to mouse or
any species for which we have antibody sequence
information.

18.2 Antibody Discovery from
Synthetic Libraries

Antibody specificity and activity are the result of
sequence evolution for a starting set of germline
immunoglobulin sequences. One approach to arti-
ficially simulate this evolution is through random
mutation of a human germline sequence using
error-prone PCR [3, 4] or specific mutation of
the complementarity determining regions (CDR)
using randomized primers [5, 6] and selecting
variants with desirable characteristics through
one of the display-based methods such as phage
display [7]. These approaches can screen through
libraries of massive diversity for binders, though
the size of most naïve libraries is often dwarfed by
the theoretical diversity of the introduced
mutations, making full coverage of the sequence
space impossible. The resulting antibody
candidates therefore tend to be partially evolved
sequences with mid-level affinities and modest
therapeutic efficacy. They can however serve as
a template for secondary evolution through more
targeted affinity maturation processes before final
therapeutic leads can be chosen.

18.3 Antibody Discovery from
Natural Repertoires

Another approach is to use the extraordinary
power of natural systems to evolve antibodies,
through immunizations of mice or other species,
including humans. Here, sequence evolution and
selection take place in germinal centers where the
antibody expressing B cells compete for limited
antigen binding and growth factors. Once
isolated, these antibodies can display very high-
affinity (often picomolar KD or lower) for their
cognate antigens and target a variety of epitopes,
including functional ones. Moreover, antibodies

evolved within humans may be better tolerated as
therapeutics, having edited out immunogenic
sequence variants during evolution. The vast
majority of antibodies on the market and in devel-
opment have been isolated from natural
repertoires, most notably in the infectious disease
areas, with many prominent reviews on the dis-
covery of neutralizing antibodies against HIV [8],
Influenza [9], Ebola [10], Zika [11], and many
more. While not as extensive, studying B cells
from cancer patients is a burgeoning field and
recent analyses of the B cell repertoires from
non-progressing cancer patients have led to the
identification of specific tumor-inhibiting
antibodies that have therapeutic potential [12–
14]. Similarly, antibody-mediated autoimmune
diseases are benefiting from the analysis and
screening of the patient B cell repertoire, includ-
ing in myasthenia gravis [15, 16], Celiac disease
[17, 18], multiple sclerosis [19] and rheumatoid
arthritis [20]. While the identification of patho-
genic antibodies in these diseases does not
directly represent a therapeutic option, the targets
they bind can point to potential avenues for valu-
able therapies that may emerge in the future.

18.4 Challenges and Opportunities

Despite many successes, recovering antigen-
specific antibody sequences from humans is chal-
lenging for reasons listed below and in response
to these there has been a steady evolution of
technologies to further improve and simplify the
process (Fig. 18.1). Each of these approaches
have successfully led to the identification of valu-
able antibodies, some seminal to studying of the
disease in question.

18.5 Antigen-Specific B Cells Can Be
Very Rare

B cells producing antibodies against any particu-
lar antigen tend to be rare in the blood of a healthy
or convalescent individual, amidst the vast
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number of cells encoding irrelevant antibodies.
Finding these cells using the standard practice of
depositing single B cells in each well of a micro-
titer plate therefore becomes very challenging. In
some cases, this problem can be circumvented by
immunizing the host and collecting blood when
antigen-specific B cells reach peak abundance
and indeed most discovery campaigns using sin-
gle B cell cloning have used this approach. Addi-
tionally, if therapeutically relevant domains can
be purified, these can be used not only for immu-
nization, but also selection of antigen-specific
memory B cells through FACS, for instance in
the identification of broadly neutralizing anti-HIV
antibodies of high therapeutic potential
[21]. However, in the absence of a specific
domain of interest, immunodominant antibodies
elicited through vaccination may not be against
epitopes with therapeutic potential, such as sites
that mediate neutralization or conserved sites use-
ful for cross-reactivity. Moreover, the availability
of a suitable immunogen, adjuvant and relevant
host can limit the diseases for which this approach
can be used.

18.6 B Cells Are Short-Lived Ex Vivo

Campaigns using primary B cells are significantly
time-bound, as the ex-vivo viability of primary B
cells is limited to 1–2 weeks, with antibody
expression waning prior to that, particularly if
grown in isolated cultures. Moreover, the

proportion of B cells actively secreting IgG
within the blood is very low, so methods need to
be in place to differentiate non-secreting cells
(i.e., memory B cells) in culture. One method
would be to perform RT-PCR on lysed single B
cells, followed by amplification of VH/VL

sequences, and reconstitution of the antibody in
recombinant format for screening. The approach
works well to find antibodies from immunized
donors where the proportion of antigen-specific
B cells is high but can be a laborious process if
most B cells express irrelevant antibodies [22–
24]. Several approaches have focused on
immortalizing B cells using viral infection [25–
27] or hybridoma generation [28], coupled with
cytokine stimulation for cells to secrete antibody
for screening. However, each of these steps
(immortalization, stimulation, fusion, single-cell
cloning) carry inherent inefficiencies and biases
that when put together may limit the number of
single B cells that can be screened. Successful
campaigns would also need large B cell
populations to be kept in culture for extended
periods with considerable manipulations.

18.7 Antibody Chain Pairing Is
Often Important for Function

Antibodies are heterodimeric proteins encoded
by uniquely mutated heavy and light chain
transcripts whose pairing is often necessary for
specificity and activity. Ideally this information

Fig. 18.1 (continued) combinatorial libraries using display technologies (A) or barcoded using unique molecular
identifiers (UMI) and sequenced using next-generation sequencing (NGS—B). Various analysis methods can be used
to identify dominant clonotypes which need to be paired and synthesized for screening. Individual members of each
clonotype can then be subsequently screened for improved function. To preserve the native VH/VL pairing, B cells are
deposited in microtiter plates through FACS cloning and isolation of individual VH/VL sequences (C) by reverse-
transcription (RT) and polymerase chain reaction (PCR), followed by recombinant expression and screening. B cells
can also be immortalized, stimulated and cultured to allow conditioned media to be screened (D). This can be
miniaturized using commercial platforms, either using nanoliter-sized chambers (e.g., AbCellera, Berkeley Lights—E)
or picoliter-sized water-in-oil emulsions (e.g., HiFiBiO—F) whereby single B cells can be screened without immortali-
zation, recovered and sequenced. If B cells are colocated with poly-dT beads, they can be lysed and cognate VH/VL

mRNA species paired for NGS. This can be done using microwells on chips (G) or using emulsions (10x Genomics—H).
The beads can also be re-emulsified to generate a linked product suitable for NGS (I). Finally, this linked amplicon can be
generated in-frame using beads (J) or directly in droplets (K) to create a natively paired library which can be enriched for
antigen specificity using display approaches, thereby combining the advantages of most of the above-mentioned
approaches. Donor image designed by Kjpargeter/Freepik (www.freepik.com)
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can be captured by sequestering individual B cells
in microtiter plates for extraction and cloning of
their V genes [23, 24, 29], with the limitation that
again only a fraction of the full B cell repertoire of
a typical blood draw (one to ten million cells) can
be covered. Conversely, it has been a common
approach to collect total RNA from a large pool
of lysed B cells, separately amplify heavy and
light chains, then pair them randomly to form a
library of exponentially larger complexity [30–
32]. In theory, the diversity of such immune
libraries is lower than that of the synthetic
libraries mentioned above and could be harnessed
using phage display to identify the originally
paired and functional sequence and this has been
shown with immunized mice with restricted
diversity [33]. However, in more diverse libraries,
for instance from healthy donors, recovering the
original pair is a challenge. Biases in expression
and VH/VL pairing preferences [34] can lead to the
selection to nonnatural solutions and require sec-
ondary optimization screens, for instance using
light chain shuffling.

Another approach is to sequence the B cell
repertoire and synthesize candidate antibodies
for screening, for instance after hierarchical clus-
tering of sequences to identify phylogenetic
lineages. The application of next-generation
sequencing (NGS) has been well described for
the characterization of the antibody repertoire,
particularly regarding separately prepared heavy
and light chain libraries obtained from mRNA
isolated from thousands to millions of B cells
[35–37]. A recent NGS analysis of the antibody
repertoires from ten individuals revealed that their
repertoires were largely unique and that the over-
all diversity of antibody sequences in the human
population is extremely large, on the order of 1012

unique paired VH/VL sequences [37]. While the
amplification of B cell mRNA using 50 RACE
provides an unbiased representation of the
expressed repertoire for sequencing, current
NGS length limitations make assembling such a
fragment from paired-end sequencing a chal-
lenge. As a result, libraries are often made using
multiplex V-gene specific primers to remove the
50 untranslated region and leader sequences and

reduce amplicon size [38] which can introduce
bias. Additionally, given that antibodies undergo
somatic hypermutation, a significant challenge in
the field was to determine if a given mutation was
due to natural antibody diversification or a result
of PCR and/or sequencing-related artifacts. This
issue has been elegantly solved through the addi-
tion of unique molecular identifier (UMI)
barcodes, where the initial template cDNA can
be ligated to a unique tag that is also sequenced to
enable error correction at the analysis stage
[39, 40]. Using these methods, a population of B
cells can be profiled to identify phylogenetic
lineages [41] that indicate the maturation of spe-
cific clonotypes as evidence of antigen specificity.
However, given that maturation at the heavy and
light chains occur independently, it is not possible
to accurately predict chain pairing based on NGS
data and heuristics need to be used to down-select
panels of heavy and light chain sequences to
synthesize and combinatorially pair for functional
testing. Again, in cases where subjects are
immunized and B cells harvested at optimal
times, this approach can be quite effective, as
the most abundant heavy and light chain
clonotypes may represent the original pairs. How-
ever, for cases involving the identification of
antigen-specific antibodies from healthy donors
or patients with chronic diseases such as cancer,
the selection of antibody function from sequence
information alone is likely to be incomplete.

18.8 Next-Generation Microfluidic
Technologies

Though successful in many instances, these two
broad approaches (display versus B cell cloning/
sequencing) suffer from conflicting issues. On the
one hand, display-based systems can screen
through vast synthetic or combinatorial libraries
to identify antigen-specific antibodies of mid to
low quality. Conversely, B cell discovery
platforms start from B cell pools encoding poten-
tially high-quality antibodies but lack the screen-
ing power to identify antigen-specific antibodies,
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especially if the B cells encoding them are rare.
Over the past 5 years a range of new technologies
have emerged promising to solve this tradeoff by
miniaturizing the vessel into which B cells are
sequestered. Several growing companies
(AbCellera, Berkeley Lights, and HiFiBiO) have
been successful in directly screening antibody
secreting cells within these vessels for binding
or even functional activity then exporting
antigen-specific B cells into defined locations for
V gene capture. Alternatively, several approaches
described below have detailed using droplet
microfluidics to capture the natively paired reper-
toire from B cells into a format suitable for next-
generation sequencing technology. Finally, the
repertoire can be captured via microfluidics in
an expressible format to display and/or screen as
recombinant protein, effectively combining the
benefits of natural antibody evolution with the
screening power of display-based approaches.

18.9 Paired Ig Sequencing

In 2013, DeKosky and colleagues devised a
method to have B cells deposited within
microwells on a microfabricated chip along with
magnetic beads conjugated to poly-dT
oligonucleotides [42]. The chip could be sealed
with lysis reagents such that the cognate heavy
and light mRNA strands would be recovered and
linked in a format suitable for next-generation
sequencing. The repertoire from 68,000 B cells
could be captured in a single run, an improvement
in throughput of one order of magnitude over
traditional 96-well formats. In a follow-up
paper, the group expanded the method to have
the B cells and magnetic beads encapsulated into
water-in-oil droplets, further raising the through-
put to one million B cells per run [43]. This falls
within the range of B cells obtained from a typical
blood draw and enabled the first comprehensive
evaluations of the paired antibody repertoire for
therapeutic antibodies. As with the single chain
NGS studies however, it is a challenge to deter-
mine antigen reactivity from antibody sequence
alone. An elegant addition to this method

therefore has been to overlay paired sequencing
data from circulating B cells with proteomic
sequence analysis of serum antibodies
immunoprecipitated with antigen [44, 45]. Using
immunized donors, the authors were able to iden-
tify potent neutralizing antibodies targeting influ-
enza and HIV. The advent of 10x Genomics now
provides a commercial option for obtaining
paired immunoglobulin sequences from primary
B cells, albeit from a smaller number of cells
(approximately 10,000 cells) and this system has
recently been used to sequence B cells from
immunized mice to identify antigen-specific
antibodies [46].

18.10 Native Library Screening

A natural evolution of these technologies has led
to the combination of miniaturizing B cell capture
into microfluidic emulsions with paired immuno-
globulin capture into a format that can be
expressed. Recently, three independent groups
have reported in short succession microfluidic
methods to capture the repertoire from millions
of B cells and rapidly screen them for antigen-
specific antibodies.

Adler and colleagues at GigaGen devised an
approach to co-encapsulate one to two million B
cells in a co-flow setup with poly-dT magnetic
beads suspended in lysis/binding buffer [47]. Fol-
lowing bead capture of the mRNA, the emulsions
are broken and recovered beads re-emulsified
with RT-PCR buffer and a cocktail of primers to
generated linked heavy-light amplicons in scFv
format. The authors then expressed this library of
natively paired scFv amplicons on the surface of
yeast and used multiple rounds of fluorescence-
activated cell sorting (FACS) to enrich for yeast
cells displaying antibodies specific to influenza A
and pneumococcal polysaccharide antigens. A
subset of recovered scFv-s confirmed to be
antigen-specific and functional when expressed
in IgG format, and based on NGS analysis, they
were estimated to be present at 0.001% of the
starting library diversity. The approach was also
validated with immunized mice (having a higher
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proportion of antigen-specific B cells) for the
isolation of antibodies blocking checkpoint
inhibitors [48].

Wang and coworkers also reported a similar
two-step emulsification strategy to generate a
natively paired Fab library, a more aggregation
resistant antibody fragment with biophysical
properties closer aligned with IgG, that was also
displayed the library on the surface of yeast
[49]. They used this method to construct libraries
from immunized or convalescent patients and
panned them over successive rounds to isolate
functional antibodies specific to Ebola, HIV, and
influenza antigens.

Finally, our group has developed a method of
capturing the native repertoire from millions of B
cells into natively paired scFv fragments
displayed on the surface of phage [50]. Here, B
cells are not co-encapsulated with magnetic beads
but rather with a highly optimized reaction mix
that performs sequential reactions for B cell lysis,
amplification of VH and VL segments and their
pairing by overlap-extension PCR, all within the
same droplets. This streamlines the process and
obviates the need to handle beads, where captured
mRNA species can exchange. The approach was
used to rapidly identify very rare and cross-
reactive antibodies targeting influenza
hemagglutinin.

18.11 Future Directions

Since all three native screening methods use
emulsions for amplification of template, this
may have an added benefit of normalizing for
mRNA expression levels within individual B
cells, as the limiting reagents within droplets
should saturate with enough cycles of PCR. It
would be interesting to see if this bears out in
future studies using NGS analysis. On the other
hand, since these methods require priming at spe-
cific regions to be in-frame (i.e., the start of
framework 1 and the end of framework 4), the
multiplex primer sets may not be ideally suited to
perform as well as other amplification methods
(i.e., 50 RACE) and would benefit from continued
development. While not extensively mentioned in

this text, these new methods have the potential for
screening natively paired repertoires from other
species simply by changing primer sets. This has
been demonstrated with immunized mice [48],
though other species such as rat, rabbit, and
even nonhuman primates could provide B cells
from which valuable antibodies can be derived.

The success of antibody therapeutics has led to
increasing numbers of molecules in clinical trials
and as approved medicines and this trend is
expected to continue. Fueling this growth is a
continued evolution of methods for mining new
therapeutic antibodies, both through synthetic and
natural repertoires. We can expect that the
technologies of the future will continue to harness
the natural antibody repertoire with increasing
throughput, breadth, speed, and fidelity to reliably
generate therapeutic candidates against a continu-
ally expanding list of targets.
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Values of Single-Cell RNA Sequencing
in Development of Cerebral Cortex 19
Enqiang Chang, Xiaoguo Ruan, Ruilou Zhu, Yangyang Wang,
and Jiaqiang Zhang

Abstract

The single-cell RNA sequencing (scRNA-seq)
is a powerful tool for exploring the complex-
ity, clusters, and specific functions of the brain
cells. Using scRNA-seq, the heterogeneity and
changes in transcriptomic profiles of a single
neuron were defined during dynamic develop-
ment and differentiation of cells in cerebral
cortex regions, and in the pathogenesis of neu-
rological diseases. One of the great challenges
is that the brain sample is susceptible to inter-
ference and confounding. More advanced
methodologies of computational systems biol-
ogy need to be developed to overcome the
inherent interference and technical differences
in the detection of single-cell signals. It is
expected that scRNA-seq will be extended to
metabolic profiles of the single neuron cell on
basis of transcriptional profiles and regulatory
networks. It is also expected if the transcrip-
tional profiles can be integrated with molecular
and functional phenomes in a single neuron
and with disease-specific phenomes to under-
stand molecular mechanisms of brain develop-

ment and disease occurrence. scRNA-seq will
provide the new emerging neurological disci-
ple of the artificial intelligent single neuron for
deep understanding of brain diseases.

Keywords

Single-cell RNA sequencing · Cerebral
cortex · Neurons · Brain · Anesthesia

19.1 Introduction

The genome, epigenome, and microenvironment
of each single cell in the organism are unique. The
gene expression of the single-cell is based on
fluctuations in the mechanisms of transcription
and translation. The heterogeneity of cells is the
basic nature of the homeostasis and development
of the living body system to perform specific
tasks and functions. It is necessary to define
similarities and differences of different cells
from morphology, protein level, and even gene
level to understand the differences between cells.
Single-cell RNA sequencing will become a new
approach to monitor gene expression in clinical
practice to explore gene expression profiles at the
single-cell level using single-cell RNA sequenc-
ing (scRNA-seq). The scRNA-seq is a powerful
tool to classify and identify cell subtypes [1],
characterize rare or small cell populations, and
track dynamics of cell-to-cell variations [2].
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The brain is one of the most complex tissues
and is intensively investigated on brain cells, and
current studies focus on location, morphology,
electrophysiological property, target specificity,
molecular biomarker, and gene expression pattern
[3–6]. Thus, scRNA-seq becomes more important
for the understanding of the brain contributions to
learning, memory, and other cognitive functions
[7]. scRNA-seq can make it possible to under-
stand the heterogeneity and regulatory networks
in brain cells at the single-cell level [8]. The pres-
ent chapter will review recent studies on the use
of scRNA-seq in brain cells and summarize the
values of analysis method and the significance of
results from scRNA-seq in brain cells. We
emphasize the importance of clinical application
of scRNA-seq in brain cells and potential
challenges to be faced in future. We will compre-
hensively discuss the application of scRNA-seq
in the development of the cerebral cortex to better
understand the development and function of cere-
bral nervous system.

19.2 Single-Cell RNA Sequencing
Technologies

The hotspot technology of scRNA-seq methods
are summarized in Fig. 19.1 to assure the high-
resolution analysis of individual cells unbiased
and profound. The scRNA-seq contributes to
reveal the heterogeneity, dynamics of transcrip-
tion, and regulatory relationships between genes
in a cell [9]. Developed scRNA-seq is applied to
investigate the rare cell clusters, which may be
omitted by traditional analysis. Specific features
of these cells as well as the events of the
interactions among cells are unveiled by
scRNA-seq, rather than by previous high-
throughput analysis [10]. scRNA-seq revealed
the dynamic function of individual cell in devel-
opmental biology [11–16], neurobiology [17–
20], immunology [21–24], and cancer research
[25–29]. The landscape of single-cell tumor
immune map accelerates the immune treatment
on basis of high heterogeneity of immune cells

in cancer and identifies molecular characteriza-
tion of tumors in symptomatic and asymptomatic
patients [30].

Using scRNA-seq, the differentiation fate of
progenitor cells and the progress of individual cell
are defined in the development, during which new
cell clusters are distinguished by scRNA-seq [31–
33]. The complexity of brain structure enables the
delicate regulation in the developmental progress
of brain. The nervous system is the most complex
organ in mammal, where the cerebral cortex
development is the main model system for neural
developmental investigations and shares many
consistent mechanisms with the developing
brain and spinal cord. The Dll1/Notch, Nrg1/
ErB, and Fgf10/Fgfr2 pathways were involved
in this transformation of neuroepithelial stem
cells into radial glial (RG) stem cells. Other
transcriptions factors (Ap2γ, Ngn2, Insm1, or
Tbr2) are discovered to activate the generation
of basal progenitors from RGs, which was
inhibited through the Notch and FGF pathways
and the epigenetic regulator Ezh2, to differentiate
RGs into astrocytes and lead to the termination of
neurogenesis. Multiple signaling pathways (Jack/
Stat, Notch, BMP, FGF) promote the neurogenic-
to-glycogenic switch, although other signalings
are still unclear. scRNA-seq is applied to investi-
gate the novel mechanisms implicated in the cere-
bral cortex development (Fig. 19.2) and to
characterize the cellular composition of the
mouse cortex at development-embryonic day
14.5, representing a progenitor-driven stage and
birth, when neurons corresponding to all six cor-
tical layers were born and gliogenesis has begun.
Distinct cortical layer-specific cell types and the
spatial and temporal expression patterns of hall-
mark genes were assigned to 22 cell clusters and
described (Fig. 19.3).

The distinct sensory neuronal types were dis-
sected by scRNA-seq and Notch signaling is
indispensable for brain development
[17, 34]. Combining the scRNA-seq with electro-
physiology, the development of embryonic hip-
pocampal neurons and the neonatal cortical
neuron cells were mapped and classified. The
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new marker genes of the cerebral cortex during
human development and the specific develop-
mental characteristics, as well as the developmen-
tal timeline of excitatory neurons were found
using scRNA-seq [19]. By the scRNA-Seq in
situ, the neurons location and the difference
between the neighbor neurons spatially were
defined [35].

The single-cell transcriptomic profiles devel-
oped along with the qPCR development and
single-molecule fluorescence in situ hybridization
are the primary method of the transcripts analysis
[36–39]. The whole-transcriptome analysis and
the subsequent RNA sequencing are adapted for
analyzing single cells [40–43]. The scRNA-Seq
was applied to investigate the early embryonic
development and global patterns of gene expres-
sion variations [44, 45], although the amount of
biological materials were a limiting factor
[2]. The unbiased analyzing of scRNA-Seq is
adapted for the hundreds of thousands of cells
endowed of heterogeneity [46].

The methods for capturing single cells from
enormous cells include mouth pipetting, serial
dilution, robotic micromanipulation, and flow-
assisted cell sorting; while the methods for
isolating rare single cells still lag behind, includ-
ing Nanofilters [47], MagSweeper [17], Laser-
capture microdissection, CellSearch [48],
CellCelector [49], and DEP-Array [50]. It is nec-
essary to amplify the RNA sequence for scRNA-
seq due to that the total RNA in a mammalian cell
is only 10 pg and the mRNA is only 0.1 pg.
SMART-Seq is a whole-transcriptome amplifica-
tion (WTA) method performed using Moloney
Murine Leukemia Virus (MMLV) reverse tran-
scriptase to protect the full-length amplification
from the strong plague of the 30 mRNA bias.
MMLV has both template-switching and terminal
transferase activity, which leads to the addition of
contemplated cytosine residues to the 50 end of
the cDNA [1]. The templates can be switched by
MMLV and transcribe the other strand to amplify
the full-length cDNA transcripts by adding a poly

Fig. 19.2 Development of mouse cerebral cortex. Cerebral cortex develops via a complex sequence of cell proliferation,
differentiation, and migration events [93]
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(G) template with an adaptor sequence. To over-
come the distortion of the mRNA strand during
the amplification progress, cDNA is labeled with
barcodes thus specific cDNA sequence is
assigned to the specific cells [51–54]. With the
revolutionary development of technologies,
MARS-Seq, Cyto-Seq, Drop-Seq, inDrop, and
the scRNA-Seq are promoted extensively.

19.3 scRNA-seq and Developing
Cerebral Cortex

The diversity, function and the range of transcrip-
tional regulation are studied on brain cells from
the cerebral cortex with RNA-seq. As an
emerging tool, scRNA-seq is gradually applied
to study the complexity of brain cells, new cell
populations, specific genetic characteristics, and
potential regulatory networks [55, 56]. Brain cells
include highly complex nerve cell types/subtypes
with special morphology, excitability, connectiv-
ity, and cell location [57]. Different neuronal cell
types and subtypes, and new cell-specific markers
were found using scRNA-seq. For example, Amit
et al. extracted 3005 single cells from the cerebral
cortex and hippocampus from mice, performed
scRNA-seq analysis, and found nine major cell
populations, including S1 and CA1 vertebral
neurons, transfer neurons, oligodendrocytes,
astrocytes, microglia, vascular endothelial cells,
parietal cells, and ependymal cells. Novel and
specific molecular markers of different cell types
were also discovered, e.g., Gmll549 for S1 verte-
bral neurons, Pnoc for transferred neurons.

The individual adult neurons are freshly
isolated from a limited regional sample of neuro-
surgical tissue [58]. Freshly separated neurosur-
gical tissue is better for analyzing individual
neurons, while more samples of postmortem
tissues are available in clinical practice. Lake
et al. developed a new method of the neuron
nucleus and RNA sequencing for the brain,
separated the 3227 individual neurons from six
different regions of the cerebral cortex for RNA
sequencing, and found 16 subtypes of neurons in
the cortex cells with molecular biomarkers. The

cerebral cortical neurons are evaluated and devel-
oped originally from the subependymal neural
progenitors, and neural progenitor cells complete
the development process of the cerebral cortex
through the proliferation, differentiation, and
migration. The temporal and spatial
characteristics of cerebral cortex development
from rodents to primates include differentiation
characteristics from progenitors to various types
of neurons, with a clear relationship between
mental disorders and target gene expression.

The developmental mechanisms of the cortex
with different functional divisions are involved in
intrinsic and extrinsic biological mechanisms. For
example, Gbx2 contributes to the development of
normal cortical regions, rather than thalamic cor-
tical projections. Providing the first clear evi-
dence that thalamic innervation is not necessary
for the basic generation of cortical area maps, and
the formation of cortical regions depends primar-
ily on the mechanisms within the telencephalon
[59]. The intrinsic mapping center of the telen-
cephalon controls the size and location of the
cortical region. The morphine and fibroblast
growth factor 8 (FGF8) released from the com-
missural plate at the distal prefrontal tip of the
brain periphery can be adjusted along the frontal
tail. Other factors play complementary roles, such
as Fgf17 [60], BMP [61], and Wnt [62]. The
thalamic input is required to establish genetic
and functional divisions between the primary
and adjacent high-grade sensory cortexes
[63]. In addition, in-cortical self-generating
activities also contribute to the formation of cor-
tical columns [64] (Fig. 19.4).

The precise gene spatiotemporal expression
profile of the cerebral cortex is important for the
evolution, development, and function of the ner-
vous system [65–67]. The temporal and spatial
characteristics of gene expression during cortical
development are different from genetic
characteristics of different brain regions in the
same period, or developmental stages of the
same brain region. Using immunofluorescence
technology, the diversity of Drosophila neurons
was found to be dependent upon the integration of
time and space patterns [68]. The temporal and
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spatial characteristics of mouse brain develop-
ment were defined with a new algorithm by
detecting repetitive patterns in spatiotemporal
gene expression data of developing mouse brains.
Expression patterns can reveal regional
differences in brain development [69]. Previous
studies analyzed exon-level transcriptome data
from multiple brain regions and neocortex
regions of developmental brain and adult brain
by transcriptome sequencing. About 90% of
expressed genes were in the whole-transcriptome
or exogenous sublevels are different before birth,
and then the similarity of transcriptomes in the
same region increases, forming different
co-expression networks [70].

Systematic analysis of temporal and spatial
gene expression trajectories during cerebral corti-
cal development because of the coexistence of
multiple cell types in emerging tissues at different
stages of maturation and differentiation. The
scRNA-seq of primary and medial ganglionic
eminence (MGE) micro-dissected from germinal
zone and cortical plate samples was performed at
various stages of peak neuronal firing from pro-
genitor cells to neuronal differentiation during
post-mitotic neuronal differentiation [71]. Those
cortex areas mainly include DFC, HIP, AMY,
STR, MD, and CBC from the 60 days
post-conception to the 11-year-old macaque.
Human-specific transcriptomics and

FGF8
FGF17
BMP
Wnt
…

Size and Location 
of the Cortical Area

In-Cortical Self-Generating Activities

Global Spatio-Temporal Dynamics of Gene Expression

Thalamus

Transcriptomic Divergence 

Fig. 19.4 Factors involved in cerebral cortex develop-
ment. The formation of cortical regions depends mainly on
the mechanisms within the cortex, self-generating

activities, temporal-spatial differences in gene expression,
and the involvement of the thalamus in cortical develop-
ment [18, 60–64, 96, 97] (Credit: Studholme Lab/UWMC)
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spatiotemporal transcription specificity were
associated with neurological diseases such as
autism and schizophrenia, synapse formation,
and neuronal development [72].

The classification of neurons is based on mor-
phological, chemical, and electrophysiological
differences [73, 74, 75], as well as the different
molecular features that researchers use to study.
The large-scale characterization of approximately
1000 neurologically important gene expressions
was defined with in situ hybridization in the
visual and adult temporal cortex of the adult
brain prior to the application of scRNA-seq.
Changes in gene expression profiles distinguish
cortical functions between species [74]. Com-
pared with scRNA-seq, those methods have sig-
nificantly lower flux and higher workload. For
example, the isolation 49 cells from mouse cere-
bral cortex and hippocampus, including
23 GABAergic neurons, 19 glutamatergic
neurons, and 7 non-neuronal cells, took much
longer time in the previous study [76], as com-
pared with clarification of mouse somatosensory
cortex and hippocampal CA1 region cells using
scRNA-seq. About 47 different subclasses of
molecules were identified and corresponded to
cell types, morphologies, and locations. The
authors found a layer I neuron expressing Pax6
and a unique mitotic oligodendrocyte subclass
labeled by Itpr2. The diversity of cortical cell
types on basis of transcription factors forms a
complex hierarchical surveillance to demonstrate
mechanisms for maintaining adult cell type iden-
tity [73]. Three thousand two hundred and
twenty-seven data sets of single nerves from six
different regions of the cerebral cortex were
generated using a scalable approach to sequenc-
ing and quantifying RNA molecules in neuronal
nuclei isolated from postmortem brains. Using
iterative clustering and classification methods,
16 neuronal subtypes were identified by
annotating biomarkers and cortical cell structures
[77]. The cortex of different brain regions of
human embryos was analyzed using scRNA-seq
at 22 and 23 weeks. The distribution
characteristics of local gene expression and neu-
ronal maturation were evaluated using the
modified STRT-seq method in human cerebral

cortex [18]. With the advancement of scRNA-
seq, more than 20,000 cells in the primary visual
cortex and motor cortex of adult mice were
sequenced and 133 cell types were identified.
Excitatory neurons are regionally specific, and
one subtype is only distributed in a certain cortex,
where different subtypes also show different
long-range projection modes by retrograde
labeling [78].

Cortical development is experienced from
progenitors to complex neural networks. The
mechanisms by which neuronal diversity and the
connections form complex neural networks can
improve the discovery of pathogenic targets of
neurodevelopmental disorders [79]. As the
major components of a complex neural network,
excitatory neurons migrate to the cortical plate,
form six cortical layers with a stereotyped con-
nection pattern, and contribute to the
configurations of the functional circuit
[71]. Those neurons account for approximately
80% of neurons in the cortex and interact with a
small number of inhibitory cortical neurons in
important ways [79]. In the cerebral cortex,
GABAergic interneurons are evolved into high
heterogeneity of cell types with unique temporal
and spatial capabilities to affect neuronal circuits.
Up to 50 different types of GABAergic neurons
are distributed in the cerebral cortex and derived
from the subcutaneous progenitors in the ventral
surface of the lower cerebral ventricle. Internal
neuronal diversity occurs through the implemen-
tation of intracellular genetic processes in progen-
itor cells over a longer period of time until the
internal neurons acquire mature features [80]. A
few precursor cells of inhibitory neurons are pres-
ent in the early prefrontal cortex using scRNA-
seq, of which the most are in the cell cycle, except
for during the rest period [19]. Glial cells, includ-
ing astrocytes, oligodendrocyte Schwann cells,
and microglia, do not transmit transmitters like
neurons, but form the environment where neurons
survive and form neural networks [81]. Their dys-
function is associated with neurological diseases
[82]. Human glial cells wrap more than single
astrocytes in mice which can wrap more than
100,000 synaptic structures [82], support the
role of neurons, and participate in the
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development of the nervous system, plasticity,
and disease. Glial cells are also involved in syn-
apse formation, regulating synaptic function, and
blood flow [83].

Many long-chain noncoding RNAs (lncRNA)
express in brain tissue and regulate neuronal func-
tion, responsible for the development of diseases.
lncRNA exhibits stronger in the tissue and cell
specificity, as compared to mRNA [84]. The
subtype-dependent enrichment of lncRNA was
noticed in cortical progenitors isolated and
sequenced from in human fetal brain cerebral
cortex within 4 h after autopsy [85]. Liu et al.
deeply dissected lncRNA from polyadenylated
and total RNA obtained at different
developmental stages in human neocortex using
strand-specific RNA-seq and analyzed the
transcriptome of individual cells. Single-cell
transcriptomics of hundreds of neocortical cells
revealed that many lncRNAs abundantly
expressed in a single cell and are cell type spe-
cific. Among those, LOC646329 is a lncRNA
rich in single radial glial cell and regulates cell
proliferation [86]. A variety of lncRNAs are
involved in the cellular processes of brain devel-
opment and the spatiotemporal expression of
lncRNA in a cohort of 13 lncRNA null mutant
mouse models showed different between devel-
oping and adult brains, between transcriptomes
and phenomes, between temporal and spatial
brain development, and between selected and
non-selected brain regions. Among those, a vari-
ety of cellular pathways and processes changed
after deletion of the lncRNA locus, and four of the
lncRNAs affected the expression of adjacent
protein-coding genes in a cis-like manner
[87]. In addition to lncRNA, microRNAs play
an important role in posttranscriptional regulation
and complexity during brain development and are
considered as important triggers of brain develop-
ment and neurological or psychiatric diseases
[88]. The limited understanding of in vivo
miRNA targets and their intensity in single cells
makes it difficult to define miRNA-mRNA
networks. Single-cell analysis using binary and
co-expression networks is carried out by combin-
ing high-throughput sequencing of RNA and

immunoprecipitation-cross-linked immunopre-
cipitation with AGO2 antibody (AGO2-HITS-
CLIP) The miRNA-mRNA interaction as a func-
tional module undergoes dynamic transformation
during brain development and shows cell-specific
and highly dynamic during development and
throughout the evolution process. For example,
the interaction between ORC4 and miR-2115
abundant in radial glial cells, can control the
proliferation rate of radial glial cells during
human brain development [89] (Fig. 19.5).
Those studies on brain cells based on scRNA-
seq enable us to better understand the similarities
and differences between brain cells.

19.4 Application of scRNA-seq
in Neurologic Diseases

The scRNA-seq as a powerful tool can provide
new insights for understanding molecular
mechanisms of the functional and dysfunctional
regulations in a single neuron. It is the time to
deeply understand the occurrence and develop-
ment of neuro-related diseases, e.g., degenerative
diseases and brain tumors, at the level of single-
cell transcriptome, find disease-specific cell
populations, and discover target genes for
therapy.

Alzheimer’s disease (AD) is a harmful neuro-
degenerative disease without effective treatments,
due to the heterogeneity among neurocytes and
among immune cells associated with the develop-
ment and progression of AD. A microglial cell
type with molecular markers, spatial locations,
and signaling pathways was identified to contrib-
ute to neurodegenerative disease, accompanied
with AD-associated brain immune cell
populations. Such specific microglia specifically
present in neurodegenerative diseases, with great
potential for the future treatment of AD and other
neurological diseases.

Glial cells and stem cells undergo genetic
mutations during development and may develop
human gliomas, due to the composition of differ-
ent apparent states and cell types. In recent years,
more and more single-cell RNA sequencing has
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been applied in the study of glioma. Patel et al.
[90] found that 430 cells from 5 primary glioma
samples were associated with oncogene signal-
ing, proliferation, immune response, and hypoxic
signaling using scRNA-seq. The clear heteroge-
neity among intra-glioma cell subtypes was
identified, as an important breakthrough in under-
standing the heterogeneity, biology, prognosis,
and treatment of glioma.

Tumor stem cells can drive the growth of
tumor cells, but there is no particularly good
evidence for the existence of tumor stem cells in
human solid tumors. Tirosh et al. analyzed 4347
individual oligodendrocytes using scRNA-seq,
and found that the majority of tumor cells
differentiated into two specific glia oligoden-
drocytes and astrocytes as well as a small number
of cells in the undifferentiated state ranged from
genome expression level to the development pro-
cess and associated with cancer stem cell signal-
ing pathways. Proliferating characteristics of gene
defined were consistent with the tumor stem cells
promoting tumor growth in human oligoden-
droglioma. This scRNA-seq provides insight
into the developmental structure of oligoden-
droglioma at the single-cell level and strong sup-
port for disease treatment.

19.5 Limitation

Transcriptome features of glutamatergic neurons
vary widely among cortical regions. It is
questioned whether each of those transcriptome
features represents a unique cell type or reflects a
heterogeneous transcriptional state in a single
projection neuron that may be affected by a series
of nerve activity and other factors [91, 92]. By
combining the transcriptome profile to other
phenotypes, e.g., morphology, electrophysiologi-
cal properties, and function, more molecular
subtypes and phenomes of neurons are
characterized using scRNA-seq. The gene expres-
sion in the cortical cellular and molecular
networks at a single cell will generate important
information to determine the molecular

interactions between the connected genome and
transcriptome within a cell. There are urgent
needs to furthermore explore intercellular and
intermolecular heterogeneity, the degree of selec-
tivity and differentiation of cortical projections,
and disease-specific biomarkers and mechanisms
of circuit development and maturity.

19.6 Summary and Prospect

scRNA-seq is a powerful tool for exploring the
complexity, clusters, and specific functions of the
brain cells. Using scRNA-seq, the heterogeneity
and changes in transcriptomic profiles of a single
neuron were defined during dynamic develop-
ment and differentiation of cells in cerebral cortex
regions, and in the pathogenesis of neurological
diseases. One of the great challenges is that the
brain sample is susceptible to interference and
confounding. More advanced methodologies of
computational systems biology need to be devel-
oped to overcome the inherent interference and
technical differences in the detection of single-
cell signals. It is expected that scRNA-seq will be
extended to metabolic profiles of the single neu-
ron cell on basis of transcriptional profiles and
regulatory networks. It is also expected if the
transcriptional profiles can be integrated with
molecular and functional phenomes in a single
neuron and with disease-specific phenomes to
understand molecular mechanisms of brain devel-
opment and disease occurrence. scRNA-seq will
provide the new emerging neurological disciple f
of the artificial intelligent single neuron for deep
understanding of brain diseases.
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