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Abstract The present study investigates the free vibration analysis of functionally
graded material (FGM) beam which is rectangular in cross section with linearly
varying thickness along its axis with the help of finite element formulation. This
formulation of finite element is developed based on the Timoshenko beam theory
which we called as first-order shear deformation theory. In the present analysis of the
beam with linearly varying thickness, the beam element has five nodes and thirteen
degrees of freedom. Properties of the material used in this beam element are varying
continuously according to the power law along the thickness direction. Governing
equations used for the formulation of present work are derived from Lagrange’s
equations. The natural frequency of beam is calculated using different boundary
conditions, exponents of power law, depth to span ratios, and tapered ratios. The
present beam element is accurately demonstrated by comparing the results with the
available data of publications for constant thickness and for variable thickness, and
some results are new and can be further considered for future researches.

Keywords Functionally graded material · Finite element method

1 Introduction

Functionally graded materials (FGMs) have superior composites of continuous spa-
tial variables formedwith the help of two ormorematerial constituents. Thesemateri-
als are used to build amixture of two ormore constituentswhose particles have nearly
similar form and dimensions (ceramic powder, plasma particles, etc.). These materi-
als have excellent properties such as high temperature, creep, and fatigue resistance.
Therefore, these materials are extensively used in many engineering applications,
i.e., aerospace, civil, and mechanical engineering, etc. The increasing demand for
these materials is because of their good mechanical behavior in various applications.
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When we compare the researches of plates and shells, the work on FGM beams
are very less and very few data are available. Free vibration problems of functionally
graded beams (FGB) were solved by different analytical and numerical approaches
using different beam theories. Among many analytical works, some may be men-
tioned in this context. In the last of the twentieth century, many researchers have
done their works on free vibration analysis of FGM beams with different boundary
conditions and loading conditions [1–5]. In the area of sandwiched beams, Frostig
et al. [6] investigated the higher-order theory for sandwiched beams behavior with
transverse core and they investigated that how the shear is transferred from the core
to the skin. Later on, Sankar et al. [7] obtained the solution for elasticity problem
using FG beams with simply supported conditions exposed to transverse loading of
sinusoidal behavior and the modulus of elasticity varies along the thickness in the
exponential manner, and Sankar found when the loaded side of the beam is softer
as compared to homogeneous beam, the concentration of stresses are less, and vice
versa when the harder side is loaded.

In the field of thermal stress, Xiang and Yang [8] examined the frequencies of
thermally pre-stressed, laminated FG beam with variable thickness using the first-
order beam theory and the method of differential quadrature. This analysis shows
that if the layers of FGM are thicker with a lesser fractional index of volume in
the laminated beam, structure shows the effective increases in natural frequencies
and decrease in the amplitude of vibration. And after the analysis of Xiang and
Yang, characteristics of free vibration and the behavior of dynamic analysis of a FG
beam with simply supported ends under a concentrated moving harmonic load are
studied by Simsek and Kocaturk [9]. In this study, Lagrange’s equations are used
for deriving the equation of motion under the assumptions of beam theory given
by Euler–Bernoulli. This analysis says that the different material distribution effect,
movingharmonic load velocity, and the dynamic responses of excitation frequencyon
the FG beam show very vital role in the dynamic response of the FG beam. Later on,
Li et al. [10] investigated the FG beams by taking into account the effects of shear
deformation and deriving a single governing equation for the static and dynamic
behaviors of FG beams. The results obtained from the analysis are coinciding with
the standard elasticity solutions. In the analysis of mode shape and fundamental
frequencies of FGM beams, Alshorbagy et al. [11] studied the free vibration features
and dynamic response of a functionally graded beam for various distributions of
material using FEM. The obtained results have shown that the distributed variation
of material along the axial direction and the ratio of slenderness have not executed
any effect on the fundamental frequencies or mode shapes but as the power exponent
increases the natural frequencies also increases. Alshorbagy et al. [12] also examined
the dynamic behavior of FGM thick beam by analyzing the effect of temperature.

In the area of isotropic and functionally graded (FG) sandwich beams, Nguyen
et al. [13] proposed a new higher-order shear deformation theory for buckling and
free vibration analysis. This study shows a new hyperbolic variation of shear stress
in transverse direction, and the results obtained from this theory show outstanding
promise with those derived from former studies. After that, Kahya et al. [14] studied
multi-layered shear deformable beam element for dynamic analysis of laminated
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composite beams subjected to moving load. In this investigation, results show very
significant responsive evaluation of the stacking lamina of the laminated beams.After
two years, Kahya et al. [15] also examined one more result on the model of finite
element for vibration and buckling analysis of FGM beam based on first-order shear
deformation theory using a five-noded beam element with ten degrees of freedom.

Recently, Banerjee et al. [16] investigated the free vibration of FGBs by apply-
ing the dynamic stiffness method in this analysis properties of the material alter
continuously over the thickness according to the variation of power law. After that,
Armagan et al. [17] analyzed free vibration behavior of two-directional FG beams
subjected to different boundary conditions by using the shear deformation theory of
third order where the properties of materials of the beam vary exponentially in length
as well as thickness directions. In the area of nonlinear free and forced vibrations,
Sinir and Gultekin [18] have done his analysis on non-uniform cross-sectional beam
of axially functionally graded material with Euler–Bernoulli theory. The beam has
immovable boundary conditions, which leads to mid-plane stretching because of
vibrations and the frequency-response curves that show the effect of these nonlinear
correction terms on natural frequency by the unstable regions. And very recently,
Chen et al. [19] investigated the vibration problem of axially functionally FGMbeam
and parabolically varying thickness in 3D by isogeometric analysis in conjunction
with 3D theory.

From the available works of literature, it has been seen that most of the works have
been done using different beam elements for the fundamental frequency only. In the
present work, a beam element with five nodes having thirteen degrees of freedom
is used for the analysis of free vibration of the functionally graded beams with a
variable thickness along its length. In this work, the first-order shear deformation
theory has been taken into account for finite element formulation.

2 Theory and Formulation

The purpose of this study is to develop an exact finite element model with the help
of shear deformation theory of first order for free vibration analysis of functionally
graded beams (FGB) with variable thickness. The properties of materials in the beam
vary continuously through the direction of thickness according to the formulation of
power law.

2.1 Material Properties

The beam proposed here is an isotropic, non-homogeneous elastic beam having its
length l and cross section is b×hg which is rectangular in shape where the thickness
of the beam is varying linearly along its length as shown in Fig. 1 and hg is the
thickness at Gauss’s point. The beam is constituted with a mixture of two materials
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Fig. 1 Variable thickness cross section of beam element

such as ceramic and metal, the position of these materials is at its top and bottom
surfaces, respectively. Hooke’s law is obeyed by thematerial. Power law rule governs
the variation of material properties along with the thickness as follows.

P(z) = (Pc − Pm)

(
z

hg
+ 1

2

)k

+ Pm

where k is the non-negative exponent of the power law, Pm and Pc are the equivalent
properties of the metal and ceramic ingredients, e.g., Young’s modulus E, Poisson
Ratio ν, and mass density ρ, respectively.

2.2 Finite Element Formulation

Figure 2 shows the five-node beam element with thirteen degrees of freedom with
each node having three degrees of freedom except the mid node. And only the mid
node has one degree of freedom.

Displacement field equation according to the first-order shear deformation theory
is as follows:

U (x, z, t) = u(x, t) − zφ(x, t),W (x, t) = w(x, t) (1)

where u is axial displacement,w is transverse displacement, andφ is the total bending
rotation of the cross section at any point on the neutral axis.

From Eq. (1), the relationship of strain–displacement is as follows:

εxx = ∂U

∂x
= du

dx
− z

dφ

dx
and γxz = ∂U

∂x
+ ∂W

∂x
= ∂w

∂x
− φ (2)
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Fig. 2 Beam element with five nodes and thirteen degrees of freedom

where εxx and γxz are the normal and shear strains, respectively, and Eq. (2) can be
rewritten as:

(
εXX

YXZ

)
=

( du
dx −z d f

dx
∂W
∂x −φ

)
=

[
1 0 −z 0
0 1 0 −1

]
⎧⎪⎪⎨
⎪⎪⎩

du
dx
∂w
∂x
dφ
dx
φ

where

[
du

dx

∂w

∂x

dφ

dx
φ

]T

=

⎡
⎢⎢⎢⎣

N1u,x 0 0 N2u,x 0 0 0 N4u,x 0 0 N5u,x 0 0

0 N1w,x 0 0 N2w,x 0 N3w,x 0 N4w,x 0 0 N5w,x 0

0 0 N1φ,x 0 0 N2φ,x 0 0 0 N4φ,x 0 0 N5φ,x

0 0 −N1φ 0 0 −N2φ 0 0 0 −N4φ 0 0 −N5φ

⎤
⎥⎥⎥⎦{δ}

= [B]{δ} (3)

where {δ}T = {u1w1φ1u2w2φ2w3u4w4φ4u5w5φ5}
and “x” represents the derivative with respect to x.

The shape functions in [B] are as follows:

N1u = −9

16
×

(
ξ + 1

3

)(
ξ − 1

3

)
(ξ − 1)

N2u = 27

16
× (ξ + 1)

(
ξ − 1

3

)
(ξ − 1)

N4u = −27

16
×

(
ξ + 1

3

)
(ξ − 1)(ξ + 1)
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N5u = 9

16
×
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)(
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3

)
(ξ + 1)
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16
×

(
ξ + 1

3

)
(ξ)

(
ξ − 1

3

)
(ξ − 1)

N2w = −81

16
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(
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3

)
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(
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)
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)
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)(
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×

(
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)
(ξ)

(
ξ − 1

3
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N1φ = −9

16
×

(
ξ + 1

3

)(
ξ − 1

3

)
(ξ − 1)

N2φ = 27

16
× (ξ + 1)

(
ξ − 1

3

)
(ξ − 1)

N4φ = −27

16
×

(
ξ + 1

3

)
(ξ − 1)(ξ + 1)

N5φ = 9

16
×

(
ξ − 1

3

)(
ξ − 1

3

)
(ξ + 1) (4)

where ξ = x
L and 2L is the element length.

The thickness of the beam varying linearly from one end as shown in Fig. 1, the
variation of thickness at any distance “x” from one end (x = 0) is given by

tx = t0 + t1 − t0
l

(l − x) (5)

Or,tx = t0
[
1 + (

1 − x
l

)
δ
]
, where δ = t1−t0

t0
(tapered ratio), t0 is the thickness at

one end (x = l) and t1 at the other end (x = 0), and x is measured from the end
where the thickness is t1.

The element stiffness matrix can be written using the principle of virtual work as
follows:

[K ]e = l∫
−l

[B]T[D][B]dx (6)

where [B] = 1
J
d[N ]
dξ or dNi

dx = dNi
dξ × dξ

dx .
Again, on considering the beam element used in the present analysis we get,
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J = ∂x

∂ξ
= ∂

∂ξ
{N1x N3x N5x }

⎡
⎣ x1

x3
x5

⎤
⎦ (7)

where N1x = 1/2
(−ξ + ξ 2

)
), N3x = (1− ξ 2), and N5x = 1/2

(
ξ + ξ 2

)
. Total length

of the beam element is 2L . The abscissa of the nodes of the beam elements x1, x3,
and x5 for geometric interpolation is as follows:

x1 = 0, x3 = x1 + L and x5 = x1 + 2L

On putting the above values of x1, x3, and x5 in Eq. (7) we get J as follows

J = ∂x

∂ξ
= ∂

∂ξ
{N1x N3x N5x }

⎧⎨
⎩
x1
x3
x5

⎫⎬
⎭

=
{
1

2
(−1 + 2ξ) − 2ξ

1

2
(−1 + 2ξ)

}⎧⎨
⎩

x1
x1 + L
x1 + 2L

⎫⎬
⎭

= L or dξ/dx = 1/L

Total length of the beam element is 2L . Hence,x5 − x1 = 2L or

L = x5 − x1
2

(8)

Therefore, using Eqs. (6), (7), and (8), the elemental stiffness matrix can be given
as

[K ]e = 1∫
−1
[B]T[D][B] Ldξ (9)

The rigidity matrix [D] is given as:

[D] =

⎡
⎢⎢⎣

A0 0 −A1 0
0 B0 0 −B0

−A1 0 A2 0
0 −B0 0 B0

⎤
⎥⎥⎦ (10)

where A0, A1, A2, and B0 can be expressed as follows:

[A0, A1, A2] = ∫ E(z)
[
1, z, z2

]
dA

= ∫ E(z)
[
1, z, z2

]
zdz and B0
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=
∫

k G(z)dA =
∫

k G(z) zdz

It has been assumed that mechanical property of Young’s modulus is varying
along with the thickness of the beam element. This Young’s modulus variation along
the thickness of the beam is governed by the power law which is as follows:

E(z) = (Ec − Em)

(
z

h
+ 1

2

)k

+ Em and G(z) = E(z)

2(1 + ν)
(11)

where ν is taken as constant for the functionally graded material.
Therefore, putting the above relationship in the expression [A0, A1, A2] and B0

and taking the integration over the whole thickness of the beam, A0, A1, A2, and B0

are obtained as:

A0 = bhg

[
(Ec − Em)

k + 1
+ Em], A1 = bh2g

2

[
(Ec − Em)k

(k + 1)(k + 2)

]
,

A2 = bh3g
4

[
(Ec − Em)

(
k2 + k + 2

)
(k + 3)(k + 1)(k + 2)

+ Em

3

]
, and B0 = K

2(1 + μ)
A0

where hg is the total thickness of the beam at Gauss points of integration. Similarly,
the element mass matrix can be written as

[M]e =
l∫

−l

[
B

]T
[ρ]

[
B

]
Ldξ (12)

[
B

]

=
⎡
⎢⎣

N1u,x 0 0 N2u,x 0 0 0 N4u,x 0 0 N5u,x 0 0

0 N1w,x 0 0 N2w,x 0 N3w,x 0 N4w,x 0 0 N5w,x 0

0 0 N1φ,x 0 0 N2φ,x 0 0 0 N4φ,x 0 0 N5φ,x

⎤
⎥⎦

and, [ρ̄] =
⎡
⎢⎣

I0 0 −I1
0 I0 0

−I1 0 I2

⎤
⎥⎦

where I0,I1, and I2 can be expressed as follows:

[I0, I1, I2] =
∫

ρ(z)
[
1, z, z2

]
dA =

∫
ρ(z)

[
1, z, z2

]
zdz (13)

It has been assumed that densities are varying along with the thickness in the
present beam element. This variation of density along the beam thickness is governed
by power law which is as follows:

ρ(z) = (ρc − ρm)

(
z

hg
+ 1

2

)k

+ ρm (14)
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Combining Eqs. (12), (13), and (14) and taking integral over the thickness of the
beam I0, I1, and I2 are expressed as follows:

I0 = bhg

[
(ρc − ρm)

k + 1
+ ρm

]
,

I1 = bh2g

[
(ρc − ρm)k

2(k + 1)(k + 2)

]
,

I2 = bh3g
4

[
(ρc − ρm)

(
k2 + k + 2

)
(k + 1)(k + 2)(k + 3)

+ ρm

3

]
(15)

Gauss quadrature method is used to find the element stiffness and mass matrices
from Eqs. (9) and (12) numerically, and the Gauss quadrature order used is four.

By assembling the element stiffness and mass matrices, following Eigenvalue
equation is obtained:

([K ]g − ω2[M]g
){�} = {0} (16)

where [K ]g and [M]g are the global stiffness and global mass matrices, ω is the
natural frequency, and {�} is the corresponding mode shape. Equation (16) is solved
by using the simultaneous iteration technique by Corr and Jennings [20] to obtain
the natural frequencies of the beam.

3 Results and Discussion

In the present analysis, formulation of finite element model is used based on the
shear deformation theory of the first order for the study of free vibration analysis of
functionally graded beams with linearly varying thickness along its length.

The study of convergent is approved for the present beam element. Table 1 shows

the normalized fundamental frequencies
(
ωn = ωnl2

h0

√
ρm

Em

)
of FGBs with various

boundary conditions for their different values, where the length of beam is l and the
thickness is h0 at x = l. For the comparison of present work with those of Kahya
[15] and Nguyen [13], the material used in this FG beam is aluminum (Al) as metal
and alumina (Al2O3) as ceramic for which Em = 70 GPa, ρm = 2702 kg/m3,
νm = 0.3, Ec = 380 GPa, ρc = 3960 kg/m3, and νc = 0.3. Boundary condi-
tions for this analysis are assumed to be clamped-clamped (C–C), hinged-hinged
(H–H), and clamped-free (C–F). For calculation, the shear-correction factor is taken
as K = 5(1 + ν)/(6 + 5ν) from the work of Kahya [15] where υ is Poisson’s ratio.
In all of the following calculations, rectangular cross-sectional beam having different
length-to-thickness ratio (l/h0) ranging from 5 to 100 and different values of power
law exponent (k) varying from 0 to 10 has been considered. The normalized funda-
mental frequencies for different values of power law exponent, boundary conditions,
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Table 1 Convergence study of normalized fundamental frequency for FGBs with boundary
condition l/h0 = 5 and k = 0

δ Number of elements C–C H–H C–F

0 4 9.9975535 5.1524837 1.8944103

8 9.9975020 5.1524793 1.8944101

12 9.9975012 5.1524783 1.8944100

15 9.9975012 5.1524783 1.8944100

0.5 4 11.3608624 6.1601690 2.8993748

8 11.3608125 6.1601620 2.8993735

12 11.3608117 6.1601619 2.8993735

15 11.3608117 6.1601619 2.8993735

1.0 4 12.3353769 6.9591461 3.8705373

8 12.3351511 6.9591034 3.8705336

12 12.3351434 6.9591027 3.8705335

15 12.3351432 6.9591027 3.8705335

and different tapered ratios (δ = 0, 0.25, 0.50, 0.75, 1.0) obtained from the present
analysis are shown in Table 3. For the value of δ = 0, it has been experiential that,
the obtained results are very close 0.8–1.2% less than the available published results
by Simsek [4], Nguyen [13] and Kahya [15] as shown in Table 2 and the results are
shown graphically in Fig. 3. From Fig. 3, it is observed that the results obtained from
the present analysis are very close to the results obtained by Kahya [15] because I
have taken 15 elements for my present analysis. From the results, it also observed
that only 15 elements (shown in Tables as P15) are sufficient for the desired accu-
racy of the obtained results compared to the other published results by Kahya [15]
and Nguyan [13]. In Table 2, the fundamental natural frequencies are presented with
available results of Simsek [4], Nguyen [13], andKahya [15] (for δ = 0)which gives
very accurate results. And all the results with different tapered ratio except δ = 0 are
presented in Table 3 as new results and may be used for future reference for research
work in this field. In Fig. 4, it has been observed that the fundamental natural fre-
quencies of the beam increase with increasing the tapered ratio for different values of
(l/h0), keeping power law exponent (k) as constant. Again, it has been observed that
keeping (l/h0) and δ constant, the normalized natural frequencies decrease when the
power law exponent (k) increases as shown in Fig. 3. It may be further concluded that
in all cases, the normalized natural frequencies are higher for C–C beams than those
for C–F and H–H beams as shown in Fig. 5. It has been observed form Fig. 6 that
the effect of the taper ratios on the first, third, and sixth normalized frequencies are
not significant. But second, fourth, and fifth normalized frequencies are increasing
with the increase in taper ratios.

Different boundary conditions are defined as follows:
For C–C: At x = 0, u = w = φ = 0; Atx = 2l, u = w = φ = 0
For H–H: At x = 0, w = 0;At x = 2l, w = 0 and
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Table 2 Comparison of normalized fundamental frequencies with different boundary conditions
for δ = 0 and l/h0 = 5

Conditions Element k = 0 k = 0.5 k = 1 k = 5 k = 10

C–C P 15 9.99750 8.74257 7.89974 6.64281 6.31479

Kahya [15] 10.08647 8.75479 7.98414 6.71481 6.37413

Simsek [11] 10.0705 8.7463 7.9503 6.4934 6.1651

Nguyen [13] 10.0726 8.74674 7.9518 6.4929 6.1658

H–H P 15 5.15247 4.40816 3.97084 3.40227 3.29606

Kahya [15] 5.22193 4.46926 4.04967 3.48818 3.36434

Simsek [11] 5.1527 4.4102 3.9904 3.4012 3.2816

Nguyen [13] 5.1528 4.41108 3.9904 3.4009 3.2815

C–F P 15 1.89441 1.61867 1.46275 1.26419 1.22369

Kahya [15] 1.90722 1.62865 1.47294 1.27515 1.26363

Simsek [11] 1.8952 1.6182 1.4632 1.2591 1.2183

Nguyen [13] 1.8957 1.61817 1.4636 1.2594 1.2187

Fig. 3 Plot between
normalized fundamental
frequency v/s power law
exponent for the present
element with an earlier
research paper for L/h = 5, δ
= 0 and C–C boundary
condition
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For C–F: At x = 0, u = w = φ = 0.

4 Conclusion

In the present analysis, a five-node beam element with thirteen degrees of freedom
is used to study the free vibration analysis of beam made of functionally graded
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Table 3 Normalized fundamental frequencies of FGBs with various boundary conditions and
tapered ratio having different values of k at l/h0 = 5

Conditions k δ = 0 δ = 0.25 δ = 0.50 δ = 0.75 δ = 1.0

C–C 1 7.89974 8.52200 9.04984 9.50214 9.89262

5 6.64281 7.12962 7.53598 7.87901 8.17102

10 6.31489 6.75639 7.12141 7.42668 7.68429

H–H 1 3.97084 4.38696 4.75685 5.08827 5.58646

5 3.40227 3.75003 4.05684 4.32962 4.57309

10 3.29606 3.62996 3.92342 4.18324 4.41408

C–F 1 1.46275 1.85471 2.24504 2.63015 3.00721

5 1.26419 1.59915 1.93055 2.25519 2.57063

10 1.22369 1.54622 1.86435 2.17494 2.47560

Fig. 4 Plot between
normalized fundamental
frequency v/s tapered ratio
for k = 1, C–C boundary
condition and different
values of L/h
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material with linearly varying thickness under different boundary conditions for
different values of power law exponent (k) and different length to thickness ratios.
From the present analysis, it is observed that the performance of the present element
is excellent and this element can be utilized for the analysis of critical buckling of
FG beams as well as composite beams or functionally graded composite beams. It
is also observed that maximum frequencies are obtained for C–C beams as expected
than the others. It may also be seen that the power law exponent, length-to-thickness
ratio, and the tapered ratio have a significant effect on fundamental frequencies.
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Fig. 5 Plot between
normalized fundamental
frequency v/s tapered ratio
for L/h = 5, K = 1 and
different boundary
conditions
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