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Abstract Through this paper, it is to assess a closed-loop guidance algorithm for
the range of observability of angles-only by rendezvous position and proximity oper-
ation. The prominence and influence of Clohessy–Wiltshire dynamics (CWD) is an
emerging area which deals with angles-only guidance coupling algorithm and rela-
tive position. Observability analysis of the of rendezvous at a low earth circular orbit,
as opposed to one spacecraft remaining fixed in its orbit, and the implications for
total times are expended. A closed-loop guidance design scheme is generally based
on unscented Kalman filter (UKF) and coupling relationship. The proposed method
is used in the analysis and the following results are obtained for an initial separa-
tion, initial state uncertainties, line-of-sight angles correctness and �V (change in
velocity) from the navigation and guidance accuracy. The novelty of the approach is
to minimize the delta-V for close-proximity operation in phasing spacecraft to the
other.

Keywords Rendezvous docking · Proximity operation · Circular phasing ·
Guidance control and Clohessy–Wiltshire dynamics

1 Introduction

Autonomous spacecraft rendezvous plays an important role in many space missions
to enabling technology. In 1967, a successful autonomous spacecraft rendezvous [1]
was tested; since then, bounteousmission proposals have been lunched and attempted
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by NASA, Soviet Russia, European Space Agency (ESA), Japan Aerospace Explo-
ration Agency (JAXA) and China National Space Association (CNSA), and meth-
ods were assorted for exploring an autonomous rendezvous and docking operation.
In addition, Demonstration of Autonomous Rendezvous Technology (DART) [2],
Orbital Express (OE), [3] and Experimental Small System (XSS) [4] have been
developed by USA to demonstrate the possibility of autonomous rendezvous and
docking technologies. Due to space race, Russian Federal Space Agency’s Soyuz
progress a spacecraft, ESA has designed an Automated Transfer Vehicle (ATV) and
JAXA’s H-II Transfer Vehicle (HTV) [5] and were considered to rendezvous with
the International Space Station (ISS). Recently, CNSA also has conducted several
rendezvous and docking tests with Tiangong-1 (TG-1) target spacecraft since 2011
[6].

Many researchers have shown a keen interest in flight safety during the process of
spacecraft rendezvous and docking, on-orbit tasks, exclusively in the close-proximity
operation to avoid the collision into the target [7]. In the aforementioned research [8],
the authors are strenuous to safety in the rendezvous trajectory planning. Another
practical approach is proposed in Ref. [8], the strategy for initial separation and con-
sidering the measurement uncertainties in a planned trajectory, for optimized colli-
sion avoidance. This case aimed to send separate spacecraft to rendezvous with the
ISS. It allows the station to remain fixed in orbit, incessantly conducting experiments,
while fresh crews and supplies are brought to it, from the ground.

2 Problem of Interest

This investigation will focus on close-range rendezvous in the Hill frame using the
Clohessy–Wiltshire equations and phasing orbits for rendezvous of spacecraft on the
same orbit. Rendezvous is important to crucial objectives such as resupply, in-orbit
spacecraft servicing and repair, contingency planning (e.g. proposed Space Shuttle
“rescue”missions) and in-orbit construction. One of themain literature gaps towhich
this research will attempt to contribute is the topic of planning of spacecraft guidance
and control over multiple stages in the presence of uncertainties.

2.1 Solution Method: Relative Motion

This section describes the solution method of relative motion. Figure 1 shows the
RSW (Radial, Along Track and Cross Track) coordinate frame, where R is in line
with the position vector, S is in the direction of the velocity vector but aligned with
the horizontal (perpendicular to the position vector), and W is normal to R and W
(forming a right-handed system); Hill’s equations are a convenient way to express
relative spacecraft dynamics in the RSW frame (see Fig. 1) when two spacecraft are
close together. They are derived, assuming that the satellites are only a few km apart,
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Fig. 1 RSW coordinate
frame

the frame (origin of the RSW frame) is in a circular orbit and there are no external
forces, such as solar radiation pressure or drag. Figure 1 shows RSW coordinate
frame where x, y and z correspond to r, s and w, respectively, and the equation is as
follows:

x(t) = x0
ω
sinωt −

(
3x0 + 2y0

ω

)
cosωt −

(
4x0 + 2y0

ω

)

y(t) =
(
6x0 + 4y0

ω

)
sinωt + 4x0

ω
cosωt − (6x0 + 3y0)t +

(
y0 + 2x0

ω

)

z(t) = z0 cosωt + z0
ω
sinωt (1)

y(t) = (6ωx0 + 4y0)cosωt − 2x0sinωt − (6x0 + 3y0)

z(t) = −z0ωsinωt + z0cosωt (2)

Setting the first three equations equal to zero (x = y=z = 0) and solving the
velocities give the necessary velocities to set the spacecraft, on a trajectory to reach
the origin of the RSW frame (usually centred on a target spacecraft) for a given time

to rendezvous. Those equations are shown below, where ω =
√

μ

a2tgt
with atgt being

the radius of the circular orbit of the target/origin of the RSW frame. Collectively this
will be called v0 because it is the initial velocity in the RSW frame of the intercept
trajectory. Figure 2 shows that relative motion coordinates for better understanding.
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Fig. 2 Represent the coordinates of relative motion

Note that initial velocity in the y-directionmust be solved first because initial velocity
in the x-direction is a function of dy0

dt .

x0 = −ωx0(4 − 3cosωt) + 2(1 − cosωt)y0
sinωt

y0 = (6x0(ωt − sinωt) − y0)ωsinωt − 2ωx0(4 − 3cosωt)(1 − cosωt)

(4sinωt − 3ωt)sinωt + 4(1 − cosωt)2

z(t) = −z0ωcotωt (3)

2.2 Clohessy–Wiltshire Dynamics

The well-known method of Clohessy–Wiltshire equation, for the relative motion
dynamics, is to the near-circular orbit. The two-body problem assumption made a
space between the target and the chaser. The distance, compared from the target to
the centre of Earth, is very small. The following equations are appropriate in the
relative position of chaser.

fx = ẍ − 2ωz

fy = ÿ + ω2y
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fz = z̈ + 2ωx − 3ω2z (4)

where ω represents the angular rate of RSW frame. The axis of x, y and z describes
the elements of r(t), f x, f y and the outward forces on the chaser element is f z. The
discrete propagating equation for the system state isX = [r; v]. Equation 4 is utilized
for ignoring the disturbing forces and the pulse manoeuvre scheme, the expression
of propagating equation, for X can be described below

ϕ(k, 0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 6{ω(tk − t0)} 4sin[ω(tk − t0)] 0 2{1 − cos[ω(tk − t0)]}
0 cos[ω(tk − t0)] 0 0 sin[ω(tk −t0 )]

ω
0

0 0 4 −3cos
[
ω(tk − t0)

{
2cos[ω(tk −t0 )]−1

ω

}]
0 sin[ω(tk −t0 )]

ω

0 0 6{ω(tk − t0)} cos[ω(tk − t0) − 3] 0 2sin[ω(tk − t0)]
0 −ωsin[ω(tk − t0)] 0 0 cos[ω(tk − t0)] 0

0 0 3ωsin[ω(tk − t0)] −2sin[ω(tk − t0)] 0 cos[ω(tk − t0)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

And, Eq. 2 is re-expressed as,

Xk = Φ(k, 0)X0 + G�v (6)

where G represents the control-driven matrix:

G = Φ(k, 0)
[
06×3, I3×3

]
(7)

3 Observation Equations

In the observation equation, two reasonable assumptions are to be made to establish
the equation. It will make the analysis, easier in the following section. Initially, the
RSW reference frame, of the chaser and target, can be observed, as being parallel in
the setting up of the proximity operation.

In this case, an orbital height 400 km is considered (Altitude of International Space
Station) and the primary distance mark, between the chaser and target, is 10 km, and
the accuracy of orbital phase angle in a deviation will be about 1.472 × 10−3 rad.
Even the poor camera setup. In addition, make the angle deviation will be smaller,
even when the equivalent, when, the chaser should not be far away from the target.
The obtained measurement transformation equation is from chaser to target RSW
frame. Figure 3 shows the relative measurement geometry.

[
ε

θ

]
=

[ −10
0 − 1

][
ε̇

θ̇

]
+

[
0
π

]
(8)

The second assumption can be realized by attitude control, when the camera mea-
suring frame is coincidingwith the chaser’sRSWframewhich has been demonstrated
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Fig. 3 Relative
measurement geometry

in PRISMA mission. Then, an observation equation in the target’s RSW frame is to
be obtained.

z1 = e + ve = arctan
z√

x2 + y2
+ ve;

z2 = θ + ve = arctan
z√

x2 + y2
+ ve (9)

Thephase ofmid-range proximity for a cooperative andnon-cooperative target can
be used in both Eq. 7 (observation equation) and Eq. 8 (measurements transformation
equation), where x, y and z unit vectors are representing the element of the line of
sight, as well as θ and ε are the azimuth angle and the elevation, respectively, vθ
and vε are the measurement noises. It is commonly modelled as zero-mean Gaussian
noise, i.e. v ∼ N(0, σ 2) and v ∼ N(0, σ 2).

3.1 Observability Analysis

For the circular phasing rendezvous case,we have two spacecraft initially on the same
circular orbit, as shown in Fig. 4. Conceptually, this method transfers the intercepting
spacecraft onto a phasing orbit, with a differing period, than the initial orbit. The
period, of this phasing orbit, is chosen, as such, that alerts the desired number of full
orbits, when the intercepting spacecraft returns to the initial orbit, at the same time,
as the target spacecraft [5], when the target leads the interceptor, the phase angle, is
negative.
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Fig. 4 Phasing orbit

When the target spacecraft leads the intercepting spacecraft, the intercepting
spacecraft must “speed up”, and thus must enter an orbit, with the smaller semi-
major axis (faster orbital period) to “catch up” to the target spacecraft. Similarly,
if the target spacecraft is trailing, the intercepting spacecraft must “slow down”
and enter a phasing orbit with the larger semi-major axis (slower orbital period) to
allow the target spacecraft to “catch up”. Mathematically, this is performed using
the equations given below [5]. Note that, this assumes two-impulse transfers, with
instantaneous application of delta-V.

Figure 2 shows the phase angle θ is negative in this case where the target leads
the interceptor, θ is positive, when the interceptor leads the target.

First, we must find the angular velocity of the target spacecraft ωtgt =
√

μ

a2tgt
.

Then, the time of the phasing orbit is given by

τphase = ktgt(2π) + θ

ωtgt
(10)

where ktgt is the desired number of orbits, the target spacecraft completes before
rendezvous? Using that, the semi-major axis, of the phasing orbit, can be found with
the expression

aphase =
(

μ

(
τphase

2πkint

)2
) 1

3

(11)

where kint is the desired number of orbits, the intercepting spacecraft completes
before rendezvous? For the analyses in this project, kint = ktgt for simplicity, though,
this certainly needs not to be true. Another important consideration is the radius of
perigee of the phasing orbit when the phasing orbit is smaller than the initial orbit (θ is
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Fig. 5 Spacecraft orbits for
circular phasing rendezvous
in the PQ frame

negative). The phasing orbitmust not intersect the central body (Earth for this project)
or go too far into the atmosphere. rp = 2aphase − ra with ra = atgt(atgt = ainitial) for
the intercepting spacecraft. For this project, rp is not allowed to drop lower than
160 km perigee altitude above Earth. Finally, the �V required, for the intercepting
satellite, is found by taking the difference of the velocity on the initial orbit and the
velocity on the transfer orbit where it intersects the initial orbit. There will be two
burns of equal magnitude and opposite direction, so the total

�v = 2

∣∣∣∣∣
√
2μ

atgt
− μ

aphase
−

√
μ

atgt

∣∣∣∣∣ (12)

An example solution using this method is illustrated in Fig. 5. Here, the initial
orbit has a radius of 8.378 * 103 and the target spacecraft is the red spacecraft (solid
orbit line). The target spacecraft has initial true anomaly of 0°, while the intercepting
spacecraft (green point, dotted line) has true anomaly of 315°, giving a phase angle
of −45°. Working through the process above with k = 1 gives the result below,
with total delta-V = 0.6579 km/s and a time to rendezvous of 1.86 h. The designed
closed-loop guidance system is represented in Fig. 6.

4 Rendezvous in Circular Phasing Orbit

Given the orbital radius of the target spacecraft and the coordinates of the intercepting
spacecraft in the RSW frame of the target, the�V, required to rendezvous in a desired
amount of time, can be calculated.
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Fig. 6 Designed closed-loop guidance model

4.1 Extension

The rendezvous problem in this context is typically posed, as having one spacecraft
rendezvous, with a second passive spacecraft, that does not manoeuvre. In this exten-
sion, the idea, of rendezvous at an intermediate point, will be explored. This also
includes investigating rendezvous locations for more than two spacecraft as well.
These types of investigations are becoming more important, as mission designers
increasingly utilizemulti-spacecraft systems, to accomplishmission goals. For exam-
ple, NASA’s Asteroid Redirect Mission requires a manned spacecraft to rendezvous,
with an asteroid sample, that will be placed in lunar orbit [9].

A possible Mars sample return mission would, likely, require some type of Mars
ascent vehicle to rendezvous,with a spacecraft inMars orbit, before returning toEarth
[10]. Finally, futuremannedMarsmissionsmay require the coordination/rendezvous
of multiple supply spacecraft, which has been sent to the planet, ahead of time
[11]. There is a growing interest in future space mission concepts which involve
the interaction of multiple spacecraft/satellites [12–16]. In each of these cases, the
multiple spacecraft involved would have the ability to manoeuvre and the finding of
an intermediate rendezvous point may help reduce the demand on a single spacecraft,
that may not have the required �V or time available. It may even reduce the total
�V or time to rendezvous.
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4.2 Circular Phasing Extension

To explore intermediate rendezvous points for circular phasing rendezvous, the same
process, as above, is followed with only minor modification. Here, the “target satel-
lite” is, instead, a point in the initial orbit that, the other spacecraft’s aim to rendezvous
with. This point defined, by its initial true anomaly, is at the start of the simulation
thus evolves with time. The circular phasing method, as described above, is per-
formed for each satellite in the system, across the full range of possible rendezvous
locations, to examine the trends. For the two-satellite case, the minimum time case
(initial true anomaly of target orbit = 240° for k = 4) is animated below, to illustrate
the method.

Setting up the initial true anomaly, of the target orbit equal to the initial true
anomaly of satellite 1, is equivalent to the setting up of the rendezvous point at
satellite 1. Satellite 2 is leading the target orbit (θ is positive), and thus satellite 2
must enter a phasing orbit with greater semi-major axis to rendezvous with satellite
1. Recall that

�v = 2

∣∣∣∣∣
√
2μ

atgt
− μ

aphase
−

√
μ

atgt

∣∣∣∣∣ (13)

This expression shows, that transfer orbits with smaller required, because, all
the other parameters in the equation are constant. Thus, the leading satellite should
rendezvouswith the trailing satellitewhen using phasing orbits to achieve rendezvous
with two spacecraft at a minimum �V cost. Another interesting relation, to note, is
the drop off in �V part way, through the plot (at around 200 degree) (Fig. 7).

This occurs because the phase angle switches from negative (trailing the target)
to positive (leading the target). This switch is a result of the phase angle, being the

Fig. 7 Delta versus true anomaly of target location
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Fig. 8 Schematic approach of control system

smaller of the two angles between the two position vectors, and changes the phasing
orbit from being smaller than the initial orbit to being larger than the initial orbit. This
larger orbit, however, is not as extreme, a change, as was required for the previous
orbit, so �V is required drops (Fig. 8).

Effect of varying target location identifies �V which is required for a continuous
rendezvous. There are also trends observed in rendezvous time, plotted below. Note
that, while using one of the satellites as a rendezvous point can minimize �V; this
does not save total time, because the second satellite must still complete its phasing
orbits. Figures 9, 10, 11, 12, 13 and 14 represent that, an intermediate rendezvous
orbit is better if minimizing this time is more important than minimizing �V. This
timeminimizing point occurs, where both satellites are still trailing the target initially
and thus enter phasing orbitswith periods, faster than the phasing orbits needed,when
leading the target. Once, one of the satellite transitions leads the target, its rendezvous
time jumps up and leaves behind a minimum.

Note that, this minimum is highly expensive in terms of �V, because it is the
scenario with the greatest changes in orbit needed, to achieve rendezvous (the smaller
the phasing orbit, the more �V needed to transfer to it).

4.3 Relative Motion Extension

The relative motion rendezvous problem was extended in a similar manner, with the
target, being a selected arbitrary orbit rather than on a specific spacecraft. However,
for this problem, the initial orbits, of the spacecraft,were definedbyusing the classical
orbital elements and then transformed into the RSW frame [4].

x = δr
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Fig. 9 Rendezvous versus true anomaly

Fig. 10 Delta-V versus altitude
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Fig. 11 Delta-V versus inclination

Fig. 12 Delta-V versus RAAN
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Fig. 13 Delta-V versus true anomaly

Fig. 14 Delta-V versus argument of perigee
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y = r(δθ + cosiδΩ)

z = r(sinθ i − cosθ sin iδΩ (14)

x = − vr

2a
δa +

(
1

r
− 1

p

)
hδΩ . . .

+ (vr aq1 + hsinθ)
δq1
p

+ (vr aq2 − hcosθ)
δq2
p

y = −3vt
2a

δa − vrδθ + (3vt aq1 + 2hcosθ)
δq1
p

. . .

+ (3vt aq2 + 2hsinθ)
δq2
p

+ vrcosiδΩ

z = (vtcosθ + vr sinθ)δi + (vtsinθ − vrcosθ) sin iδΩ (15)

Equations from [5] have been used to convert from orbital elements to RSW
frame. This gives the ability to see the ideal target location in terms of different
orbital elements. In cases with an odd number of satellites, the optimal location,
instead, appears to be on the same orbit, as the middle satellite (middle meaning the
satellite in between the other satellites with respect to whichever orbit element is
being varied). Thus, with an even number of satellites, it may be beneficial to look at
intermediate orbits; depending on the distribution of satellites, there may not be one
on an orbit that would be optimal to target for rendezvous. Of course, this analysis is
only confined to these specific parameters. A more generalized investigation would
givemore concrete recommendations. Further, investigation, of the coupling between
varying different parameters, may also be of interest.

5 Conclusion

In this project, somemore conventional rendezvous problems, with goals of reaching
a non-manoeuvring spacecraft, have been described. These methods used two-body
dynamics for the circular phasing orbits and dynamics transformed into a relative
motion frame to calculate delta-V, required for rendezvous. We then extended these
same methods to look at rendezvous in intermediate orbits. We showed that for
circular phasing orbits, to minimize delta-V, the leading satellite should rendezvous
with the trailing satellite, if �V minimization is a priority and the leading satellite
has sufficient�V. However, when minimizing time while still using circular phasing
orbits, there may be a more desirable intermediate rendezvous orbit, depending on
the mission and how important time versus �V is. In this case, for t f = 5min, �V 1

= 1.2918 m/s, �V 2 = 1.2054 m/s and �V total = �V 1 + �V 2 = 2.4972 m/s.
The extension in the relative frame also gave insight into intermediate rendezvous

locations and indicates that rendezvous orbits that do not coincide with a spacecraft
should be considered in some cases (even number of spacecraft with certain initial
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conditions). Analyses, such as these, can be useful for the understanding of how to
balance resource usage across multiple spacecraft, considering the different needs
for each, as opposed to globally optimizing a solution, that may not be optimal for a
single spacecraft. Further research would ideally extend the relative motion analysis
to investigate more general conditions and to ensure that, the initial conditions of
the spacecraft do not exceed the distances allowable by Hill’s equations. An even a
better investigation would be the research optimal control solutions for two or more
spacecraft attempting to rendezvous where the different parameters could be varied,
based on needs of the mission.
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