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Abstract Flexure mechanism provides precise and repeated motion over a small
range. Many monolithic designs have been discussed in the literature however
they are costly to manufacture and give no flexibility for change in the parame-
ter. This paper represents flexure micromotion stages with modular design. Compli-
ance matrix method has been used for designing the flexure mechanism. Nonlinear
2-DOF model is used to characterize the stiffness of XY stage, maximum stress-
induced. Proposed XY motion stage has a travel range of ±3.2 mm2 with 0.12 mm
parasitic error. Dynamic analysis is performed to determine modal frequency of the
stage. Maximum error estimated in analytical and FEAmodel is 26.38%. Linear and
nonlinear analytical results are compared with FEA and are in agreement.

Keywords Compliant mechanism · Cross-coupling · Stiffness matrix · Nonlinear
analytical modeling

1 Introduction

Compliant mechanism transmits motion by deformation of flexure elements. Mostly
used flexure elements are blade flexure and wire flexure or slender rod [1]. Flex-
ure elements are arranged in series or parallel. In series arrangement two or more
1-DOF are connected to obtain desired motion and motion can be controlled at the
expense of high inertia, low natural frequency, and cumulative errors [2, 3]. Parallel
mechanism has advantages of high payload capacity, lower inertia, and high natu-
ral frequency [4]. However, the parallel mechanism has disadvantages such as low
workspace and parasitic error. Flexure parallel stage is used in many applications in
precise machines and instruments. Compact XY Flexure parallel stage with a large
motion range is desirable in many applications, atomic force microscopy, MEMS,
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biomedical implant and space application [3, 5, 6]. They are used in various appli-
cations because of no backlash, free of friction, no noise emission and no need for
lubrication [4]. Designing the flexure mechanism has some challenges because of its
nonlinear behavior, lack ofmotion range and cross-axis coupling [7]. Flexure parallel
stages are mostly driven by piezoelectric or electromagnetic actuators. Stages driven
by piezoelectric actuator has small motion range, high stiffness and compactness and
those driven by electromagnetic actuator have large workspace, low stiffness, and
ease to vibrate [2]. Compliance matrix method as reported in [1–4, 8–13] has been
used for designing the micromotion stage.

In the literature, many parallel flexure mechanisms have been proposed and ana-
lyzed. Herpe et al. [14] presented a model used to characterize micromotion stage.
Two-DOF nonlinear model is used to characterize force-displacement and stress
analysis. Dynamic analysis is carried to find natural frequency of stage. The pro-
posed mechanism has motion range of ±2.3 with parasitic error of 60 micron. Awtar
[10] in his Ph.D. thesis presented analytical formulation including geometric non-
linearity for family of symmetric XY Flexure mechanism with a large workspace
and small parasitic error. Pham et al. [9] address the stiffness models based on the
way flexure elements are connected together. Awtar et al. [11] presented a nonlinear
force-displacement model for 2-D beam flexure. Su et al. [15] presented a screw the-
ory approach for synthesis and analysis of compliant joint. Li et al. [3] presented the
idea of totally decoupling and analyzed double parallelogram flexure using matrix
method for modeling compliance and stiffness. Wan et al. [12] presented a survey of
recently developed flexure mechanisms with large motion range and greater accu-
racy. Su et al. [1] presented symbolic formulation for compliance and synthesis of
mechanism with serial, parallel and hybrid topologies based on screw theory. Jia
et al. [16] presented a parameterized compliance approach for synthesis and analysis
of flexure. Xu et al. [2] proposed new multistage compound parallelogram flexure.
The motion range of the mechanism is greater than 10 mm.

In this paper, modular design for a flexure parallel stage is presented.Manymono-
lithic micromotion stages have been discussed in the literature. Monolithic design
does not require assembly of component however when flexures are deformation
beyond yield strength they get fractured. This, in turn, led to remanufacturing of
whole mechanism due to its monolithic nature. Clearly, there is the motivation for
design of modular micromotion stage. Modular design helps in manufacturing and
assembly all the components separately.Modular designhas an advantage that param-
eters of flexure element can be varied to some extent and fabrication can be done
at relatively low cost. The flow of this paper is as follows. Section 2 determines
stiffness of motion stage. Sections 3 and 4 consider nonlinear force-displacement
and maximum stress analysis. Section 5 determines the resonant frequency of the
stage. The coupling analysis of stage is carried out in Sect. 6. Section 7 compares
the analytical solution with FEA and finally conclusions are drawn.
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2 Stiffness of Mechanism

Let us consider a general twist X− = (
δx , δy, δz, θx , θy, θz

)
and general wrench

F− = (
Fx , Fy, Fz, Mx , My, Mz

)
[8] with 6 DOF (degree of freedom) at reference

point OXYZ. The parameters of a beam are shown in Fig. 1. The dimensions and
configuration of the XY motion stage are shown in Fig. 2 and CAD model is shown
in Fig. 3. Mechanism consist of four rigid blocks located at corners are fixed. There
are four intermediate blocks (P,Q,R and S) where input force is applied and amotion
stage (C) at the center.

All flexure elements are numbered 1–16 have the same dimension and are given
in meter.

According to linear elastic theory, the relation between twist and wrench can be
written as in

Fig. 1 Beam parameters [2]

Fig. 2 Spring equivalent
model [14]
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Fig. 3 CAD model

F− = Sfix · X− (1)

where Sfix is 6 × 6 stiffness matrix of fix-guided beam which is given as
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(2)

where E and G is Young’s modulus and shear modulus, respectively, A = t × w is
beam’s cross-section area, L is length of beam, J is torsion constant and Iz = w×t3

12

and Iy = t×w3

12 are the area moments [1]. This matrix is at local frame which needs to
be shifted to global frame by using the shifting law from screw theory and presented
in [5, 6, 13, 14, 17, 18]. This is implemented by pre multiplying by inverse of (Tr)
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transpose and post multiplying by inverse of (Tr) to Sfix as follows.

S j
i = (Tr) j

−T

i · Sfix · (Tr) j
−1

i (3)

where ‘i’ is local reference of beam and ‘j’ is global reference at the center of motion
stage. T is the transpose of matrix and (Tr) ji is 6 × 6 adjoint transformation matrix
given as

(Tr) ji =
[
R j
i S

(
t ji

)
R j
i

0 R j
i

]

(4)

Owing to symmetry stiffness of mechanism can be evaluated from the stiffness of
one-quarter part of parallelogram, i.e. parallelogram 1–2–3–4. The stiffness of beam
1 at center C is given by Sc1 It can be obtained by translating along X by 0.03 and
Y direction by (L + 0.03) and zero in Z direction. Therefore, tC1 = |0.03,−(L +
0.03), 0|.

Sc1 = (Tr)c
−T

1 · Sfix · (Tr)c
−1

1 (5)

The stiffness of flexure 2 at center C is obtained by revolving flexure 1 about
Y-axis by π radians with no translation as given below.

SC2 = Ry(π)C
−T

2 · SC1 · Ry(π)C
−1

2 (6)

Similarly, stiffness of flexure 3 at pointC can be obtained by revolving the flexure
1 by −π /2 rad about Z-axis and translating 0.02 in X direction 0.03 in Y direction
and zero in Z direction. Hence tC3 = |0.02,−0.03, 0|.

SC3 = (Tr)C
−T

3 · Sfix · (Tr)C
−1

3 (7)

Stiffness of flexure 4 is obtained by simply revolving flexure 3 by π radians about
Y-axis.

SC4 = Ry(π)C
−T

3 · KC
3 · Ry(π)C

−1

3 (8)

The stiffness of the parallelogram 1–2–3–4 at center C is given as

SC1 = 1
(
SC1 + SC2

)−1 + (
SC3 + SC4

)−1 (9)

The stiffness of mechanism can be obtained by rotating the parallelogram P by
−π /2 around the Z-axis as follows.
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S = SC1 + SC2 + SC3 + SC4 (10)

where SC1, SC2, SC3, SC4 are stiffness of three-quarter of mechanism.

3 Nonlinear Modeling

Owing to large deformation, the length of beam flexure is not constant thus nonlinear
analysis is considered. This nonlinearity is due to tension loading terms which cause
the change in length of beam flexure. Each beam flexure is considered as spring
connected to rigid body as shown in Fig. 2. Further it is assumed that parallelogram
P and R can travel in only Y direction and parallelogram Q and S can travel only
in X direction. Let us consider outer parallelogram i.e. beam 1–2, 5–6, 9–10, and
13–14 and inner parallelogram i.e. beam 3–4, 7–8, 11–12, and 15–16. From Fig. 2,
the deformation at the intermediate stage is written as

⎧
⎪⎪⎨

⎪⎪⎩

δPy = δ1y = δ2y

δRy = δ9y = δ10y

δQx = δ5x = δ6x

δSx = δ13x = δ14x

(11)

The reaction forces at the intermediate stage are written as follows.

⎧
⎪⎪⎨

⎪⎪⎩

FPy = F1y + F2y

FRy = F9y + F10y

FQx = F5x + F6x

FSx = F13x + F14x

(12)

where FPy represent reaction force at intermediate stage p in y direction, F1y is
reaction force in beam 1 and so on. As in [14] the total stiffness of parallelogram
1–2, 5–6, 9–10 and 13–14 can be derived by considering a single beam as shown in
Fig. 3.

The downward bending force as given in on beam 1 is given by

Fig. 4 Deformed condition
of beam 1 [1]
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Fig. 5 Spring model of
perpendicular elements

F1ybend = 12EIzδ1y
L3
1

(13)

where δ1y is a deflection of beam 1. The component of the tensile force in Y direction
is given by

F1ytens = EA ∈1 sin ∝1 (14)

where ∈1 = (L tens − L)/L is linear strain and∝1 = tan−1(δ1/L) is the angle made
by beam 1 with horizontal. Therefore, total force acting on beam 1 along the Y-axis
is given by

F1y = F1ybend + F1ytens (15)

Now taking into consideration inner structure the stiffness can be obtained by
considering one outer beam connected with single inner one as shown in Fig. 5. For
small deflection of beam 16 there is a very small deflection of beam 14, therefore,
stiffness of beam 14 is negligible as compared to stiffness of beam 16. The force
acting along the X-axis on beam 16 can be obtained as

F16xT = 12EIzδ14x
L3
14

+ EA · L14 sin α14

L14
(16)

The force acting along the Y-direction is, therefore, a combined effect of the forces
applied by beams 14 and 16 as given.

F16y = F16xT δ16y

L16x
+ 12EIzδ16y

L3
16

(17)

Therefore, the reaction forces at the center C motion stage due to δCx and δCy are

FCx = FQx + FSx + F3x + F4x + F11x + F12x (18)
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FCy = FPy + FRy + F7y + F8y + F15y + F16y (19)

The deflection at the intermediate stage is related to the deflection of the center of
the motion stage. The following equation can be deducted by applying Pythagoras
theorem to deformed and undeformed conditions between intermediate and motion
stages.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δPy = δCy −
(
L −

√
L2 − δ2Cx

)

δRy = δCy +
(
L −

√
L2 − δ2Cx

)

δQx = δCx −
(
L −

√
L2 − δ2Cy

)

δSx = δCx +
(
L −

√
L2 − δ2Cy

)

(20)

4 Stress Analysis

Stresses in the XY mechanism are determined to know allowable displacement the
stage can undergo within the elastic limit of thematerial. Themaximum stress occurs
at one of the corner of flexure beam where it is attached to rigid body. Maximum
Bending stress in beam is given by σmax =MbY /I. Where Y is the farthest point from
neutral axis (half of beam thickness) and Mb= F1y_tens × 0.5 × L. From Eq. (13),
maximum bending stress can be given by.

σ1bend = 3Ewδ1y

L2
1

(21)

Also, stress induced due to tensile loading in beam 1 is given by

σ1tens = E ∈1 (22)

From Eqs. (23) and (24) we can write maximum stress is

σ1 = K1σ1bend + K2σ1tens (23)

where K1 is a stress concentration factor for bending loading and K2 is the stress
concentration factor for tensile loading.
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5 Dynamic Analysis

Dynamic analysis helps in finding the resonance frequency of mechanism. The
equation of motion for un-damped free vibration is given.

M ẍ + S ẋ = 0 (24)

whereM is mass matrix and K is a stiffness matrix of mechanism. The mass matrix
is given by

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

Mxx 0 0 0 0 0
0 Myy 0 0 0 0
0 0 Mzz 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

(25)

where Mxx, Myy, and Mzz are moving mass in X, Y, and Z direction respectively
Ixx, Iyy and Izz are the moment of inertia about X, Y and Z direction, respectively.

Mxx = Myy = m0 + 2mp +
(
8 × 33

140
mbeam

)
+ (4 × mbeam) (26)

where mass of motion stage m0 = 0.062 × W × ρ, mass of parallelogram mp =
0.06 × 0.02 × ρ, mass of beam mbeam = W × t × L × ρ

Mzz = m0 +
(
8 × 33

140
mbeam

)
(27)

Ixx = Iyy = m0
(
0.062 + w2

)

12
+ 2mp

(
0.022 + w2

12
+ (L + 0.03)2 + 0.062 + w2

12

)

(28)

Izz = 4mp

(
0.062 + 0.022

12

)
+ m0

(
0.032 + 0.032

12

)
(29)

The resonance frequency of stage can be determined by

f = 1

2π

√
S

M
(30)
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6 Coupling Analysis

The parasitic error in flexure mechanism is due deformation of intermediate stage P
and Rwhen input displacement is applied to intermediate stageQ and S. This error is
also called cross-coupling. The parasitic error in the X direction can be determined
by subtracting the resulting displacement δSx of parallelogram S from desired output
displacement δCx as follows [14].

δx_par = δCx − δSx (31)

Similarly, the parasitic error in Y direction can be determined by subtracting
resulting displacement δRy of parallelogram R from desired output displacement δCy
as follows.

δy_par = δCy − δRy (32)

7 FEA Validation

The analytical model is validated using ABAQUS 6.14 software. The parameters of
the beam and material properties are given in Table 1.

7.1 Force-Displacement Analysis

The force-displacement relation is studied by applying gradual displacement of
3.25 mm at one of the intermediate stage and reaction forces are noted. Nonlin-
ear behavior is due to the load stiffening phenomenon at lager displacement. The
force required for 3.25 mm displacement is 166.7 N analytically and 190.5 N from
FEA. Thus the nonlinear analytical model is validated. Comparing the result of ana-
lytical model for linear (Eq. 10) and nonlinear (Eq. 21) behavior and FEA shows
some linearity for small deflection and deviates for large displacement. These results
are shown in Fig. 6.

Table 1 Parameters of beam

Parameters t (m) w (m) L (m) E (N/m2) G (N/m2) ρ (kg/m3)

Values 0.0008 0.015 0.075 68.9e9 26.9e9 2810
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Fig. 6 Force-displacement
plot
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Fig. 7 Stress displacement
plot
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7.2 Stress Analysis

In order to study the stress variation in mechanism, the stress concentration factorK1
is taken as 1 and K2 is taken as 2 as in [14]. The maximum displacement evaluated
from the analytical model is 4.3% smaller than FEA analysis. The error in the FEA
and analytical model is 26.38%. Figure 7 show that yield strength of material has
reached 5 mm displacement.

7.3 Coupling Analysis

Coupling analysis is carried to determine maximum positioning error in model. In
FEA displacement is applied in Y direction at center of motion stage in steps and
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Fig. 8 Parasitic error
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output displacement is recorded in at intermediate stage S inX direction. The parasitic
displacement plot is shown in Fig. 8. Maximum parasitic error is 0.12 mm from FEA
and error in analytical and FEA is 2%.

7.4 Modal Analysis

Frequency analysis is done in ABAQUS 6.14 using Lanczos Eigen solver. The first
four mode shapes are shown in Fig. 9. The first two resonant frequencies in X and Y
directions are the same and occur at 27.9 Hz form FEA and 26.7 Hz analytically. The

Fig. 9 Mode shapes of
mechanism
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third resonant frequency occurs at 125.15 Hz from FEA and 134.4 Hz analytically.
Fourth frequency fromFEA is 261.8 and 285.2Hz analytically. The error in analytical
and FEA model is 9.24%.

8 Conclusion

An analytical model incorporating linear and nonlinear behavior was presented.
MATLAB was used to characterize the compliant XY stage. Analytical model was
successfully applied to predict stiffness, motion range considering the limitation
such as maximum stress. The model proposed can predict the output displacement
as input displacement is applied. Its micromotion stage is used for position control
accurately. The results from FEA and analytical model are within 26.38%. The
micromotion stage has a travel range of ±3.2 mm with cross-coupling of 0.12 mm.
The yielding occurs at the displacement of 5 mm. The ratio between the first two
frequencies and third is greater than 0.22.Modular design can be successfully applied
to micromotion stage. Modular design will greatly reduce the manufacturing cost for
the same characterization of a monolithic structure.
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